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Determining the form of the Higgs potential is one of the most exciting challenges of modern particle
physics. Higgs pair production directly probes the Higgs self-coupling and should be observed in the near
future at the High-Luminosity LHC. We explore how to improve the sensitivity to physics beyond the
Standard Model through per-event kinematics for di-Higgs events. In particular, we employ machine
learning through simulation-based inference to estimate per-event likelihood ratios and gauge potential
sensitivity gains from including this kinematic information. In terms of the Standard Model Effective Field
Theory, we find that adding a limited number of observables can help to remove degeneracies in Wilson
coefficient likelihoods and significantly improve the experimental sensitivity.
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I. INTRODUCTION

The discovery of the Higgs boson at the LHC in 2012
[1,2] completed the Standard Model (SM) and marked the
beginning of an era of new measurements to characterize
the Higgs boson properties. Measurements of Higgs boson
production and decays are a powerful probe for beyond-
the-Standard-Model (BSM) physics, and such searches are
increasingly necessary given that the SM is unable to
explain all known phenomena.
The most pressing fundamental question about the Higgs

sector is the form of its potential. The structure of the
potential is linked to fundamental questions like the
stability of the Universe [3–5], the observed matter-
antimatter asymmetry [6–8], and dark matter [9]. The
SM assumes the simplest, renormalizable potential

VðϕÞ ¼ μ2ðϕ†ϕÞ2 þ λðϕ†ϕÞ4; ð1Þ
for an SU(2) doublet ϕ. This potential describes trilinear
and quartic self-couplings of the physical Higgs

scalar h, with the coupling strength related to the Higgs
vacuum expectation value (v ¼ 246 GeV) and mass
(mh ¼ 125 GeV) [10],

λ3h ¼
3m2

h

v
and λ4h ¼

3m2
h

v2
: ð2Þ

Many BSM hypotheses shift these self-couplings and thus
can be tested by measuring these shifts, either through
quantum effects [11] or through direct multi-Higgs
production.
ATLAS and CMS are capable of probing hh production

and have performed many searches for both resonant and
nonresonant di-Higgs boson production. In this way, they
have placed limits on many BSM models affecting or
extending the Higgs sector.
We focus on nonresonant Higgs-pair production [12–14],

one of the main motivations for the High-Luminosity (HL)
LHC [15,16] and for a future precision-hadron collider [17].
Effective field theory in terms of the Higgs doublet
(SMEFT) [18–20] or the physical Higgs field (HEFT)
[21–23] provides the appropriate framework for these
analyses. Such effective theories rest on the fundamental
assumption that any UV completion of the SM will not just
modify the scalar Higgs-self coupling but induce all
Wilson coefficients allowed by its underlying symmetry.
A number of theoretical studies have explored this possibil-
ity [14,24–31], and recent experimental limits can be found
in Refs. [32,33].
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Given the small hh production rate, it will be essential to
make the most of every candidate event. Many studies have
relied on differential information to inform cuts to balance
the number of hh-signal versus background events for a
counting analysis. This is effective, but we know that there
is much more information available in the full event
kinematics [12,24,34].
For a fixed BSM hypothesis, the most powerful test

statistic is the likelihood ratio with the SM. Collision events
are independent, so the log-likelihood ratio factorizes into a
rate term and a sum of per-event shape terms. Modern
machine learning gives us access to the per-event likelihood
ratios using neural simulation-based inference (NSBI) [35].
These likelihood ratios can be estimated with neural net-
works using simulated data at a variety of (B)SM parameter
points. Our goal is to demonstrate that a multidimensional
per-event analysis is a promising avenue to increase the
sensitivity of current and future data to the hh signal.
Several studies have explored the effects of certain HEFT

Wilson coefficients on the shapes of relevant kinematic
distributions, particularly mhh and pThh

[36–39]. Such
studies reflect a growing trend in particle physics toward
using NSBI for exploring effective field theory (EFT)
signatures, as also evidenced by the creation of several
repositories that publicize useful code for carrying out these
analyses [40–42].
In this paper, we explore how SMEFT Wilson coef-

ficients associated with hh production can be better con-
strained by integrating per-event shape information, similar
to earlier studies for associated Higgs production [43]. We
consider the HL-LHC and a future 100 TeV hadron collider
and attempt to constrain a set of three dimension-6 Wilson
coefficients.
The paper is organized as follows. In Sec. II, we review

relevant SM and SMEFT aspects for hh production at the
two colliders. In Sec. III, we explain the event generation
and selection procedure as well as provide an estimation of
the expected background yields. In Sec. IV, we describe the
rate and shape analyses used to constrain the Wilson
coefficients. Numerical results are presented in Sec. V.
The paper ends with an outlook in Sec. VI.

II. SMEFT SETUP

In this section, we briefly review some relevant theo-
retical background to hh production within the SMEFT
framework and define the operators we choose to vary.
SMEFT is a consistent quantum field theory framework

for parametrizing the effects of new physics on the known
StandardModel fields. The SMEFTLagrangian is written as

LSMEFT ¼ LSM þ
X
i

ci
Λdi−4

Oi; ð3Þ

where Λ is the matching scale to the UV theory, Oi is an
operator of dimension di composed of Standard Model

fields, and ci is the Wilson coefficient governing the
operator’s coupling strength.
In Eq. (3), we see that, for instance, at dimension 6 there

is a degeneracy in the way we assign a given effect on the
Wilson coefficient ci and the scale Λ. This degeneracy is
only broken by matching to a full theory with given masses
and couplings. Throughout this paper, we report SMEFT
limits on ci for the fixed scale

ci
Λ2

⟶
limits ci

ð1 TeVÞ2 : ð4Þ

At dimension 6, there exist 59 independent SMEFT
operators, ignoring the flavor structure [19]. Global analy-
ses of these operators is a realistic task for the LHC [44–
46], while the 44,807 dimension-8 operators [47] are
unlikely to be a realistic framework for global LHC
analyses [48]. To eventually combine hh results with such
a global analysis [49], we limit ourselves to dimension-6
operators.
For Higgs physics, there exist two complementary EFT

descriptions. While the SMEFT treats the Higgs as part of a
SU(2) doublet, the HEFT framework uses the physical
Higgs boson and the Goldstones as the degrees of freedom.
Different BSM models may be matched more easily to the
SMEFT or the HEFT treatment, depending on the degree
that the SM-Higgs is responsible for the gauge boson
masses; a small comparison of models is given in
Chap. 2 of Ref. [39] and Sec. 5.4 of Ref. [20]. We use
the SMEFT framework, assuming that the SM-Higgs really
forms an SU(2) doublet with the electroweak Goldstones.
The event generation framework is implemented in
MadGraph [50].
At the LHC, the main SM contribution to hh production

is gluon-gluon fusion, with the Feynman diagrams pre-
sented in Fig. 1. The triangle diagram is sensitive to the
trilinear Higgs vertex, and the box diagram can enhance
this sensitivity through a cancellation at threshold [51].
When including SMEFT operators up to dimension 6, the
SM coupling of Eq. (2) is modified to [52]

λ3h ¼
3m2

h

v

�
1 −

cϕdv2

Λ2
−
2cϕv4

Λ2m2
h

þ 4cϕdv2

3Λ2m2
h

X3
j<k

ðpjpkÞ
�
; ð5Þ

where cϕ and cϕd are the Wilson coefficients associated
with the operators

Oϕ ¼ ðϕ†ϕÞ3 and Oϕd ¼ ∂μðϕ†ϕÞ∂μðϕ†ϕÞ: ð6Þ

We see that these two operators directly affect the trilinear
Higgs coupling, but in different ways. In addition, cϕd
changes the field normalization of the physical Higgs and,
with that, all physical Higgs couplings.
The complete set of operators contributing to Higgs pair

production is given in Table I [53]. The operator OϕD
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contributes the same way as Oϕd, but it violates custodial
symmetry and is therefore strongly constrained by electro-
weak precision data.
Because the two Feynman diagrams depend on the top

Yukawa coupling differently, we include the modified top
Yukawa coupling through

Otϕ ¼ ðϕ†ϕÞQ̄tϕ̃þ H:c: ð7Þ

While a BSM-induced OϕG contributes non-negligibly to
single-Higgs and double-Higgs production, the induced
ggh and gghh couplings are related through low-energy
theorems, which means the BSM contribution to hh
production will be strongly constrained by single Higgs
production and structurally similar to the modified top
Yukawa [54]. Similarly, while OtG will produce a number
of new Higgs vertices, the coefficient is most strongly
bounded by single-Higgs and tt processes. The effect of our
three operators on the hh Feynman diagrams is summarized
in Fig. 2.
Current experimental constraints on the Wilson coeffi-

cients cϕd and ctϕ have been found through global fits to
LHC data [55,56]. For instance, Ref. [56] gives the current
(profiled) 95% confidence bounds

cϕd ∈ ½−2.23; 3.28� and ctϕ ∈ ½−3.56; 5.75�; ð8Þ

where we note that the definition of Oϕd used in Ref. [56]
differs by the one used in the generating SMEFT@NLO [53]
MadGraph model by a factor of 1=2. In the future, tight
bounds on ctϕ will come from the measurement of tth
production.

Current bounds on cϕ are much looser. Since hh
production has not yet been observed at the LHC, the
most recent limits come from the 2022 CMS and ATLAS
summaries [32,33], which constrain the Higgs self-
coupling modification κλ∈½−1.24;6.49� and ∈½−1.4;6.1�,
respectively. Assuming a cutoff scale Λ ¼ 1 TeV, the first
interval can be converted to cϕ ∈ ½−12.95; 5.39�, but this
limit is not based on a global EFT analysis and is neither
model-independent nor conservative.

III. EVENT GENERATION

In this section, we provide details on the event generation
procedure for the hh and background samples used in this
analysis.
For the decay channel, we choose the process

pp → hh → ðbb̄ÞðγγÞ: ð9Þ

The h → bb̄ decay is ideal because it has the largest
branching fraction at 58%; the h → γγ channel has a much
smaller branching rate of 0.227%, but it benefits from the
excellent photon identification and resolution [13]. At the
LHC, it is expected that a measurement of hh decay will be
made through combining five channels [32,33]: b̄bb̄b, bb̄ττ
[57–59], bb̄γγ, 4l, and bb̄ZZ, with bb̄γγ providing the best
sensitivity along with bb̄ττ. Because of the large QCD
backgrounds, the naively most promising b̄bb̄b channel
will likely be most useful for on-shell modifications of
Higgs pair production.
We consider two colliders to probe the Higgs self-

coupling directly:
(i) The HL-LHC,

ffiffiffi
s

p ¼ 14 TeV to 3 ab−1 [15].
(ii) A future hadron collider,

ffiffiffi
s

p ¼ 100 TeV to
30 ab−1 [60].

A. SMEFT signal

The gg → hh production cross sections in the SM are
known to next-to-leading order (NLO) in QCD [61–67],
approximate next-to-next-to-leading order (NNLO) [68–70],
N3LO [71,72], and NLO including parton showers [73]. We
use the NLO rate prediction 32.81(7) fb (þ13.5%, −12.5%)
for the HL-LHC and 1140(2) fb (þ10.7%, −10.0%)
at 100 TeV [28,74]. The combined branching ratio for
hh → bb̄γγ is 0.262% [75]. The expected SM event yields
are given in Table II.

FIG. 1. Interfering Feynman diagrams associated with hh production in the Standard Model.

TABLE I. Dimension-6 SMEFT operators contributing to the
gg → hh. For each operator, we provide the name of the Wilson
coefficient in the SMEFT@NLO [53] model for MadGraph.

Operator Explicit form SMEFT@NLO ID

Oϕ ðϕ†ϕÞ3 cp
Oϕd ∂μðϕ†ϕÞ∂μðϕ†ϕÞ cdp

OϕD ðϕ†DμϕÞ†ðϕ†DμϕÞ cpDC

Otϕ ϕ†ϕQ̄tϕ̃þ H.c. ctp
OϕG ðϕ†ϕÞGμν

A GA
μν cpG

OtG igsðQ̄τμνTAtÞϕ̃GA
μνþ H.c. ctG
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To generate hh events, we use MadGraph3.5.1 [50] with the
SMEFT@NLO [53] model, which assumes a finite top quark
mass and is leading order (LO) with respect to the ggh
vertex. Note that SMEFT@NLO canonically normalizes the
dynamical Higgs field, so the derivative correction to the
trilinear coupling visible in the last term of Eq. (5) is not
modeled. We use MadSpin [76] for the Higgs decays and
PYTHIA8.306 [77] for the underlying event, parton shower,
and hadronization. To simulate detector effects, we use
DELPHES3.5.0 [78] with the HL-LHC card. The detector
simulation uses a particle-flow-like reconstruction and
clusters jets with the anti-kt [79] algorithm with R ¼ 0.4
using FastJet [80].
For SMEFT extensions, precision predictions for hh

production exist to NLO with subleading operators [81],
combined with parton shower [82], including truncation
uncertainties [83], and approximate NNLO precision [84]
As to be discussed in Sec. III C, we generate signal events
at a set of 10 points in the three-dimensional (3D) Wilson
coefficient space, such that event weights at an arbitrary
parameter point can be calculated using the morphing basis.
At the SM point, we generate 106 (1.5 × 106) events for the
HL-LHC (100 TeV), and at each of the other nine points,
we generate 5 × 105 (7.5 × 105) events.

After event generation, we carry out a number of
analysis selections to guarantee the event acceptance and
enhance the hh-signal rate relative to the background
ratio. The choice of cuts leaves us a lot of freedom.
Looser cuts will lower S=B, which is less ideal for a
cut-and-count analysis but not a problem for machine
learning-based analyses. We leave further explorations of
this tradeoff to future studies. For the selections, we follow
a strategy similar to that in Ref. [24]. We define four
categories of selections:
(1) b-quality has at least two b-tagged jets.
(2) Kinematics has at least two jets and two photons

with

pT > 30 GeV and jηj < 2.4: ð10Þ

The four main analysis objects must have an angular
separation of ΔR > 0.4. These cuts select events
with high triggering efficiencies.

(3) Higgs mass windows have two mass windows,

jmbb̄ −mhj < 25 GeV

jmγγ −mhj < 3 GeV; ð11Þ

FIG. 2. Effect of the three dimension-6 operators considered in our analysis on the hh Feynman diagrams. The BSM vertices are
denoted by open circles. For diagram (c), the BSM vertex can be on either of the tth junctions. (a) Contribution from Oϕ and Oϕd.
(b) Contribution from Oϕd and Otϕ. (c) Contribution from Oϕd and Otϕ. (d) Contribution from Otϕ.

TABLE II. Signal and background cut flows for the HL-LHC (S=B ¼ 0.30) and the Future Circular Collider (S=B ¼ 0.83). Both the
signal and background event yields reflect the NLO prediction.

HL-LHC, 14 TeV, 3 ab−1 Future Circular Collider, 100 TeV, 30 ab−1

Signal Background Signal Background

Events Retention (%) Events Retention (%) Events Retention (%) Events Retention (%)

Start 257 100 � � � � � � 89,604 100 � � � � � �
þ tagging and efficiencies 95 37.1 4.65 × 104 100 29,600 33.0 5.16 × 106 100
þ kinematic cuts 49 18.9 1.43 × 104 30.8 11,100 12.3 1.58 × 106 30.6
þmh windows 15 5.89 4.09 × 102 0.88 3,950 4.40 4.02 × 104 0.78
þ angular cuts 13 4.92 4.37 × 101 0.094 3,600 4.02 4.34 × 103 0.084
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which strongly reduce the background events while
minimally reducing the signal.

(4) Angular cuts tighten the loose kinematic cuts, setting
the stricter angular separation thresholds." The item
list looks fine otherwise

ΔRbγ > 1 and ΔRγγ < 2: ð12Þ
This reduces the background by a factor of ∼7 and
the signal by only a factor ∼1.2 [13].

After event selection, we are left with 129,000 (176,000)
signal events for the HL-LHC (100 TeV), spread across the
10 morphing generation points.

B. Continuum backgrounds

The main backgrounds for the hh → bb̄γγ channel can
be divided into three categories:
(1) Continuum: gg → bb̄γγ with two real b quarks and

two real photons, but no intermediate resonances.
(2) Mistags: a light jet mistagged as a photon, or a light

or a c jet mistagged as a b jet. Possible channels
include bb̄jγ, bb̄jj, jjγγ, and cc̄γγ, all without an
intermediate Higgs.

(3) Single Higgs: a single-Higgs boson produced in
association with other objects, including bb̄h, cc̄h,
and Zh note that there is some overlap between this
category and the mistags above.

To estimate the importance of each background, we run
MadGraph at LO for each of the SM processes in Table III
at leading order. Slightly looser kinematic selections to
those from Sec. III A are enforced at the parton level during
event generation, to speed up the analysis. When

calculating the expected background yields, we do not
run PYTHIA, and we simulate detector effects manually for
computational tractability: pT smearing, jet efficiencies,
photon efficiencies, and mistagging rates are carried out
following the HL-LHC DELPHES run card.
We calculate the NLO yields by multiplying the LO

yields for each process by its corresponding K factor, given
in Table IV. In is important to highlight that the K factors
listed are for the total cross section. In reality, the K factors
are scale-dependent functions of pT and will modify the
shapes of the distributions of kinematic observables. Since
this shape modification is expected to be independent of the
SMEFT Wilson coefficients, we do not consider this effect
in this analysis.
Altogether, we generate 8 × 106 (7.6 × 106) background

events for the HL-LHC (100 TeV). This large number is
necessary to train the parametrized classifier for the shape
analysis, described in Sec. IVA. After the selection given in

TABLE III. All background cross sections are given in pb. The jjγγ background includes the cc̄γγ background. The pp → Zh cross
sections and event yields are for the full decay pp → Zð→ bb̄Þhð→ γγÞ. Cross sections are calculated at leading order with loose
kinematic cuts. All rows except the last represent the LO event yields; the last row multiplies by the process-specific K factor stated in
the text to give the NLO event yields.

pp → bb̄γγ pp → bb̄jγ pp → bb̄jj pp → jjγγ pp → Zh Total

HL-LHC Cross-section (LO) (pb) 0.009758 61.25 8833 1.946 5.773 × 10−5

Events w/ loose kinematic cuts 2.92 × 104 1.84 × 108 2.65 × 1010 5.83 × 106 1.73 × 102 2.67 × 1010

þ tagging and efficiencies 1.10 × 104 1.56 × 104 5.50 × 102 2.06 × 103 6.6 × 101 2.93 × 104

þ kinematic cuts 4.55 × 103 3.96 × 103 1.75 × 102 5.48 × 102 4.3 × 101 9.28 × 103

þmh windows 1.59 × 102 5.90 × 101 8.01 × 100 3.27 × 101 2.2 × 101 2.81 × 102

þ angular cuts 1.29 × 101 6.51 × 100 1.43 × 100 2.19 × 100 7.7 × 100 3.07 × 101

K factor adjusted 1.75 × 101 1.15 × 101 2.15 × 100 3.37 × 100 9.16 × 100 4.37 × 101

Future Circular Collider Cross-section (LO) (pb) 0.09731 707 1.127 × 105 15.72 4.062 × 10−4

Events w/ loose kinematic cuts 2.91 × 106 2.12 × 1010 3.38 × 1012 4.72 × 108 1.22 × 104 3.040 × 1012

þ tagging and efficiencies 1.10 × 106 1.83 × 106 7.24 × 104 2.54 × 105 4.61 × 103 3.26 × 106

þ kinematic cuts 4.37 × 105 4.86 × 105 2.33 × 104 6.86 × 104 3.00 × 103 1.02 × 106

þmh windows 1.47 × 104 6.57 × 103 1.10 × 103 3.98 × 103 1.50 × 103 2.79 × 104

þ angular cuts 1.01 × 103 8.38 × 102 2.73 × 102 2.94 × 102 5.92 × 102 3.01 × 103

K factor adjusted 1.37 × 103 1.47 × 103 4.10 × 102 3.82 × 102 7.04 × 102 4.34 × 103

TABLE IV. KNLO=LO factors for the cross section for the
designated background process. Where we cannot find a value
in the literature for the 100 TeV K factors, we use the 14 TeV
value. For the 100 TeV K factor for the jjγγ background, there is
a cut pTj

> 50 GeV.

Process KNLO=LO, 14 TeV KNLO=LO, 100 TeV

pp → bb̄γγ 1.36 [85] (13 TeV) (14 TeV value)
pp → bb̄jγ 1.76 [86] (14 TeV value)
pp → bb̄jj 1.50 [86] (14 TeV value)
pp → jjγγ 1.54 [86] 1.3 [87]
pp → Zh 1.19 [86] (14 TeV value)
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Sec. III A, we are left with 290,000 (183,000) background
events.
According to Table III, the bb̄γγ continuum and Zh

backgrounds contribute the most to the total background,
followed by the bb̄jγ process. The bb̄jj background has by
far the largest cross section but is effectively reduced by the
low j → γ mistag rate and the mh windows. The bb̄h and
cc̄h backgrounds with their moderate cross sections, 0.012
and 0.040 pb at the HL-LHC and 0.22 and 0.34 pb at
100 TeV, respectively, are completely removed by the mh
window requirement and thus omitted from Table III. To
simplify the analysis, we can look at the kinematic
distributions of the combined and component backgrounds
in Fig. 3. We see that the shapes of the full background
distributions are very close to that those of the two most
contributing processes bb̄γγ and bb̄jγ (which, in turn, look
similar to each other), justifying the computationally
motivated choice to only generate continuum bb̄γγ events
for the shape analysis background.
We additionally make the assumption that none of the

continuum backgrounds is significantly affected by
SMEFT modifications. While this is not exactly true, we
have checked the effect of Otϕ on the Zh background and
find that the change in the background prediction is
negligible compared with that of the hh signal.
Therefore, we do not consider SMEFT modifications to
backgrounds in this analysis.
When comparing the number of expected background

events with the number of expected signal events in
Table II, we see that S=B ∼ 0.30 at the HL-LHC and S=B ∼
0.83 at 100 TeV. Without the hard angular cuts, these would
be 0.036 and 0.098, respectively. These values, as well as
the background yields in Table III, are in agreement
with Ref. [24].
Finally, we acknowledge that our treatment of the

continuum and mistag backgrounds are simplified and
require more detailed studies with full simulations and/or
data for improved accuracy. In an actual analysis, these
backgrounds would likely be estimated from data [88,89].
We prioritize showing a proof of concept of shape

information constraining SMEFT coefficients, rather than
a highly realistic collider analysis.

C. Morphing through parameter space

Parameter estimation with simulation-based inference
compares data with simulations assuming different para-
meter values describing the underlying physics. Methods
differ in how the real and synthetic data are compared (see
Sec. IV), but they must all cover the full parameter space.
Generating new events at each parameter point is

computationally prohibitive. Instead, one reuses events
generated at one parameter point by leveraging the fac-
torization between the parton-level physics governing
Higgs production and decay and the long(er)-distance-
scale physics governing fragmentation and subsequent
simulation steps. This scale separation implies that the
likelihood ratio between two parameter points is fully
covered by an exchange of partonic matrix elements. We
can reweight an event from one parameter value to another
and in this way morph the set events for one parameter
value to the set for another parameter point.
This idea is implemented in MadMiner [40]. In particular,

MadMiner expresses the matrix elements for a given process
as a polynomial over chosen Wilson coefficients, simulates
events at a number of parameter points comprising the
“morphing basis,” and fits the polynomial to the morphing
basis in to quickly generate event weights at an arbitrary
parameter point. This works well when the new parameter
point is close to the original one; when moving too far
away, the weights can be far from unity, and the statistical
power of the weighted sample is diminished [90]. An
alternative, future direction could be to use differentiable
simulations instead of surrogate models [91–93].
In our case, the model parameter space is composed of

three-dimensional vectors

c ¼ ðcϕ; cϕd; ctϕÞ∈R3: ð13Þ

For these three Wilson coefficients, we define a polynomial
up to squared terms, leading to 10 fit parameters, which is

FIG. 3. Kinematic background distributions used in the shape analysis. We only show the HL-LHC predictions. The dashed line shows
the total background from considering all processes in Table III, while the solid lines represent each individual process, scaled to their
level of contribution. The vertical axis is linearly scaled. We defer definition and motivation of these observables to Sec. III D.
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also the standard procedure in global SMEFTanalyses [46].
In our case, the corresponding 10 basis points are given in
Table V. This set is chosen by MadMiner by minimizing the
sum of the squared weights from 107 random instantiations.
The locations of the generation points and the correspond-
ing squared morphing weights are shown in Fig. 4. To
generate the background scale, we scan over a dense grid of
points c, compute the weights needed to convert from that
point to each of the 10 benchmarks wi, and display the sumffiffiffiffiffiffiffiffiffiffiffiffiffiP

i w
2
i

p
. Since higher weights are associated with larger

uncertainties on the morphing basis, it is encouraging that
the majority of the computed weights are ≲1, orffiffiffiffiffiffiffiffiffiffiffiP

w2
i

p ≲ ffiffiffiffiffi
10

p
.

D. Kinematic observables

To study the main differences between the SM Higgs
signal, the SMEFT effects, and the continuum back-
grounds, we define a set of N ¼ 5 observables, for which
the sensitivity to the Higgs self-couplings and SMEFT
effects is well known: (i) the reconstructed di-Higgs mass,

(ii) the reconstructed transverse momentum of the photoni-
cally decaying Higgs, (iii) the reconstructed transverse
momentum of the hadronically decaying Higgs, (iv) the the
angular separation between the two photons, and (v) the
angular separation between the two b jets from the Higgs
decay,

N ¼ 5 fmtot; pTγγ
; pTbb

;ΔRγγ;ΔRbbg: ð14Þ

The reconstructed di-Higgs mass combines sensitivity to
threshold cancellations with a test of the Higgs kinematics
[12,24], and the Higgs transverse momenta test the
momentum dependence of the production process and
the top-loop threshold [58]. The angular separations are
strongly correlated to the transverse momenta, but only for
the signal and not for the continuum backgrounds.
All five observables are shown for the SM Higgs signal,

two choices of the Wilson coefficient cϕ, and the con-
tinuum background in Fig. 5. The most striking feature is
that the Higgs signals and the continuum background look
very different, where the backgrounds contain much less
energy per event and the reconstructed Higgs decays
products are widely separated. An analysis searching for
deviations from the SM hh production and for deviations
from the SM signal and the continuum background will
therefore be quite different [34].

IV. ANALYSES

Independent of the representation of our data D, the
analysis goal is to determine if the data are more consistent
with the SM prediction c ¼ 0 or some finite values for the
Wilson coefficients c ¼ ðcϕ; cϕd; ctϕÞ defined in Eq. (13).
The data can either be events or bins of an N-dimensional
observable, D ¼ fxigki¼1. For a fixed BSM model c, the
Neyman-Pearson Lemma [94] states that the most powerful
test statistic is the likelihood ratio mentioned already in

FIG. 4. Squared morphing weights over the chosen parameter ranges for the set of Wilson coefficients c ¼ ðcϕ; cϕd; ctϕÞ. The SM
point is denoted by a star, and the other nine benchmarks given in Table Vare denoted by circles. At each parameter point c, the weights
needed to convert from that point to each of the 10 benchmarks are computed; the squared sum is then displayed. For numerical stability
of the reweighting process, it is desirable that

ffiffiffiffiffiffiffiffiffiffiffiP
w2
i

p ≲ ffiffiffiffiffi
10

p
.

TABLE V. Morphing basis points, from MadMiner. This basis
minimizes the sum of the squared weights out of a set of 107

random bases.

Generation point cϕ cϕd ctϕ

1 (SM) 0 0 0
2 5.710 0.354 4.604
3 −5.873 0.817 7.124
4 1.135 3.664 −2.754
5 −12.638 3.035 −2.288
6 1.281 −4.792 1.188
7 −15.854 −1.261 −1.477
8 −15.107 5.670 7.668
9 −5.265 4.612 5.967
10 0.221 −0.006 −5.613
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qðcjDÞ ¼ −2 log
pðDjcÞ

pðDjc ¼ 0Þ ; ð15Þ

where the factor of 2 and natural logarithm imply that in the
Gaussian approximation changes in q by one unit corre-
spond to one standard deviation for a one-dimensional c.
If a production cross section strongly depends on a set of

model parameters, a natural, but by no means optimal, first
step is a rate-only analysis. This is the current approach
used by CMS [32] and ATLAS [33]. This case corresponds
to N ¼ 0, and the probability density for D simplifies to a
comparison of Poisson distributions for a given number of
k events,

qrateðcjDÞ ¼ −2 log
�

PoisðkjcÞ
Poisðkjc ¼ 0Þ

�

¼ −2
�
k̄ð0Þ − k̄ðcÞ þ k ln

�
k̄ðcÞ
k̄ð0Þ

��
: ð16Þ

where k̄ðcÞ ¼ σtotðcÞ × L is the predicted number of events
for a given parameters c.

A. Shape analysis with classifiers

Collider events are statistically independent, which
means that the full log-likelihood ratio factorizes into a
rate term and a shape term, where the shape term is a sum
over events or observable bins,

qðcjDÞ ¼ qrateðcjDÞ − 2
Xk
i¼1

log
pðxijcÞ

pðxijc ¼ 0Þ
≡ qc;rateðcjDÞ þ qc;shapeðcjDÞ: ð17Þ

We explore various scenarios, with N up to 5. The
corresponding observables are given in Eq. (14), and their
histograms are presented in Fig. 5. For our analysis, we use
subsets of the five observables, namely,

N ¼ 1 fmtotg
N ¼ 3 fmtot; pTγγ

; pTbb
g: ð18Þ

Unlike in the rate-only case, we do not know pðxijcÞ
explicitly. To estimate the per-event likelihood ratio,
we use the fact that trained classifiers CðxÞ∈ ½0; 1� learn
a monotonic function of the density ratio (see, e.g.,
Refs. [95–97]). A calibrated classifier then becomes

CðxÞ
1 − CðxÞ ≈

pðxjcÞ
pðxjc ¼ 0Þ ; ð19Þ

and the baseline configuration is known to work well [98].
Our key assumption here is that we can sample accurately
and precisely from pðxjcÞ. Here, the simulation-based
inference represents an ideal that may be achievable
completely or partially by the time such an analysis is
performed.
In our case, we need to promote the likelihood ratio to be

a function of c. This is accomplished by training a para-
metrized classifier [97,99] where c is promoted to a feature.
This means that we train a classifier C acting on ðx; cÞ. For
training, c is drawn from a prior p0ðcÞ, and then signal
events are drawn from pðxjcÞ. For the background events,
we assign values c so that the marginal distribution of c is
p0. In this way, c is not useful for the classifier, and

Cðx; cÞ
1 − Cðx; cÞ ≈

pBSMðx; cÞ
pSMðx; cÞ

¼ pðxjcÞ
pðxj0Þ : ð20Þ

This looks the same as Eq. (19), but now it is a continuous
function of c.
In practice, we can further simplify the construction of q

if we assume that we can neglect quantum interference
between the hh signal and the continuum background. For
our specific analysis, this is ensured by the small Higgs
width, which suppresses all interference contributions. In
that case, pðxjcÞ can be approximated by a mixture model

pðxjcÞ ≈ μðcÞpSðxjcÞ þ ð1 − μðcÞÞpBðxÞ; ð21Þ

where the relative proportion μðcÞ of hh to the total number
of events is known from Sec. III C, and pS;B are the
corresponding probability densities of the hh and the
continuum events. As noted above, we have verified that

FIG. 5. Kinematic signal and background distributions, including two choices of cϕ. We only show HL-LHC predictions. The vertical
axis is linearly scaled.
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for the Wilson coefficients considered the variation of pB
with c is negligible. Thus, we can rewrite the log-likelihood
ratio in terms of pS and pB [97],

pðxjcÞ
pðxj0Þ ¼

�
μð0ÞpSðxj0Þ
μðcÞpSðxjcÞ

þ ð1 − μð0ÞÞpBðxÞ
μðcÞpSðxjcÞ

�
−1

þ
�

μð0ÞpSðxj0Þ
ð1 − μðcÞÞpBðxÞ

þ 1 − μð0Þ
1 − μðcÞ

�
−1
: ð22Þ

While this expanded form may look complicated, it allows
us to break down the problem into three easier problems. In
particular, the first three terms in Eq. (22) can be approxi-
mated with classifiers that each have an easier task than
distinguishing samples drawn from pðxjcÞ and pðxj0Þ all
at once:
(1) pSðxj0Þ

pSðxjcÞ is learned by a parametrized classifier distin-
guishing SM from SMEFT hh events.

(2) pBðxÞ
pSðxjcÞ is learned by a parametrized classifier distin-
guishing background from SMEFT hh events.

(3) pSðxj0Þ
pBðxÞ is learned by a nonparametrized classifier
distinguishing SM hh events from continuum
background.

B. Training specifications

Event generation for the parameterized classifier is done
within the MadMiner framework, whose morphing feature
allows for quick generation of events at arbitrary parameter
points c.
For classifier training, we generate sets of 107 events

each for the SM hh signal, the BSM hh signal, and the
continuum background. For the BSM sample, we generate
the events by uniformly sampling 1000 values of c, which
means p0 in Sec. IVA is uniform. For the one-dimensional
(1D) coefficient tests which will be shown in Fig. 6, we
only allow the single scanned Wilson coefficient to be
nonzero; for the two-dimensional (2D) coefficient tests,
which will be shown in Fig. 7, only the two scannedWilson
coefficients are nonzero. The nonzero coefficients cover
the prior ranges cϕ ∈ ð−14;þ4Þ, cϕd ∈ ð−4;þ5Þ, and
ctϕ ∈ ð−5;þ7Þ. For the test sets, we generate a set of
events following the expected event yields from Table II.
All classifiers are parametrized as relatively small, dense

neural networks consisting of two layers with 32 hidden
nodes. We use a batch size of 1024, a weight decay 10−4,
and an initial learning rate of 10−3. The learning rate
reduces by half if the validation loss does not decrease for
five epochs. We train for up to 1600 epochs, stopping when
the validation loss does not decrease for 20 epochs and
evaluating the networks at the epoch of lowest validation
loss. In practice, the classifiers trained on data for the
100 TeV collider often converged in fewer than 200 epochs.
We use an 80∶20 training-validation split. All networks are
implemented in PyTorch [100] and optimized with ADAM

[101]. All hyperparameters are optimized by manual tuning

on a simplified version of the problem. This simplified
problem refers to carrying out the 1D coefficient tests on
pre-DELPHES samples in the zero-background case (i.e., we
just train the classifier that discriminates SM hh signal from
BSM hh signal). Performance was fairly robust with
respect to classifier architecture and training hyperpar-
amters, although we did find that a longer early stopping
parameter produced better results.
To mitigate the stochastic nature of the network training,

we ensemble the outputs of five networks with identical
architectures and different initial random number gener-
ator seeds.

V. RESULTS

A. Coefficient recovery for the SM

We first assume that the observed data corresponds to the
SM hypothesis. Using the pretrained network from the
previous section, we compute the log-likelihood ratio for a
reference dataset with all Wilson coefficients cϕ, cϕd, and
ctϕ set to zero.
A 1D scan over one Wilson coefficient at a time is shown

in Fig. 6 for both the HL-LHC and the 100 TeV collider
setups. The resulting central parameter value is given by the
maximum log likelihood, and the confidence intervals are
determined based on the shape around the minimum. These
uncertainties are indicated in Fig. 6 by vertical dashed lines
as 1σ confidence intervals for the HL-LHC (so the y axis
decreases by roughly one unit from the minimum) and 3σ
for 100 TeV.
We consider three analysis methods: a rate-only analysis,

one that incorporates shape information from the mhh only,
and one that incorporates shape information from the mhh,
pTbb

, and pTγγ
kinematic distributions. We provide equiv-

alent plots for the one-dimensional test statistics in the
Appendix for all five observables in Fig. 12, also including
ΔRbb and ΔRγγ .
Starting with single Wilson coefficients in Fig. 6, all

likelihood minima are consistent with zero within the
reported uncertainty, and adding more kinematic informa-
tion generally sharpens the peaks and leads to smaller
uncertainty around the SM minimum. Away from the SM
minimum, the additional but incomplete kinematic infor-
mation can lead to features in the likelihood ratio depend-
ence. Both effects are especially prominent for the classic
trilinear Higgs coupling cϕ—in the rate-only analysis, there
remains a degeneracy in the test statistic at cϕ ¼ 0 and
cϕ ¼ −11, which is resolved by incorporating shape
information. As a matter of fact, the rate-only analysis
leaves a degeneracy for all three Wilson coefficients, but
this degeneracy is effectively resolved by including single-
Higgs production.
The fundamental assumption of effective field theories is

that any high-energy model will induce all Wilson coef-
ficients compatible with its symmetry. This means any
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LHC signal will be affected by more than one operator, and
the correlations between contributions from different oper-
ators will reflect the underlying theory. This motivates the
variation of two Wilson coefficients at a time. The
corresponding log likelihoods for the rate-only, one-
observable, and three-observable test statistics are shown

in Fig. 7. Equivalent plots for the five-observable test
statistic are shown in the Appendix in Fig. 13. We overlay
the 1σ and 3σ confidence regions for the HL-LHC and
100 TeV colliders, respectively. For the rate-only analysis,
the double peak distribution from Fig. 6 now becomes an
ellipse or annulus. For the statistically stable 100 TeV

FIG. 6. Log-likelihood ratio test statistics in terms of 1σ (for HL-LHC) or 3σ (for 100 TeV) confidence intervals for one nonzero
Wilson coefficient at a time. Data generation and test set size reflect the collider setup.
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setup, adding kinematic information can indeed break the
degeneracy and improve the confidence contours to small
regions on the correct side of the rate-only ellipse. While
we show confidence contours for only a single realization
of nature, the fact that the SM is not always contained
within the confidence region for the 100 TeV machine is
representative. With the high statistics of the 100 TeV
machine, the precision required on the likelihood ratio
estimation is much stricter than for 14 TeV. The confidence
regions are qualitatively in the correct location, but
achieving quantitatively precise results will require addi-
tional research (see Sec. IVA for some progress in other
studies).
Going beyond two dimensions, it is difficult to visualize

the full space. Since the neural networks are differentiable,
it is possible to find the maximum likelihood estimate using
gradient descent, and the Hessian can provide an estimate
of the confidence interval. This is left to future studies to
explore in more detail.

B. Coefficient recovery for BSM scenarios

To explore the sensitivity away from the SM value of
c ¼ 0, we also show the performance of recovering a

nonzero c-vector. As a comprehensive scan of the accuracy
and precision of the various approaches would be computa-
tionally demanding and difficult to visualize, we pick
representative examples to study in detail.
In Fig. 8, we show the expected HL-LHC limits

for the single Wilson coefficient cϕ for assumed true
values away from the SM. The almost-perfect can-
cellation of the triangle and box diagrams is only true
for a SM self-coupling. This means that, while the hh rate
will increase for these points, the sensitivity will not be
enhanced as much through the cancellation. Altogether, we
find that the 1σ range for the three-observable analysis
increases to

cϕ ¼ 0 assumed : cϕ ∈ ½−1.8;þ1.7�
cϕ ¼ −4 assumed : cϕ ∈ ½−6.3;−1.2�
cϕ ¼ −6 assumed : cϕ ∈ ½−6.8;−1.8�: ð23Þ

In the HEFT basis assuming an EFT cutoff of 1 TeV and
setting all other Wilson coefficients to zero, this is
equivalent to

FIG. 7. Log-likelihood ratio test statistics in terms of 1σ (for HL-LHC) or 3σ (for 100 TeV) confidence contours for two nonzero
Wilson coefficients at a time. Data generation and test set size reflect the collider setup.
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κλ ¼ þ1 assumed : κλ ∈ ½þ0.2;þ1.8�;
κλ ¼ þ2.9 assumed : κλ ∈ ½þ1.6;þ4.0�;
κλ ¼ þ3.8 assumed : κλ ∈ ½þ1.8;þ4.2�: ð24Þ

For both choices, the rate-only measurement would
not be able to distinguish these parameter points from
the SM.
Second, we can scan the likelihoods landscape for a

given set of events, for instance, at the 100 TeV collider,
and identify parameter points far away in model space but
close in likelihood. An example is the vectors of Wilson
coefficients

ðcϕ; cϕd; ctϕÞ ¼ ð0; 0;−5.5Þ;
ðcϕ; cϕd; ctϕÞ ¼ ð−4; 0; 3Þ; ð25Þ

which are indistinguishable from each other in a rate-only
analysis and very similar in terms of our observables. In
Fig. 9, we see that the observables are clearly distinguish-
able from the SM, given the high assumed statistics of the
100 TeV collider, but not from each other. This similarity is
reflected in a shape analysis, seen in Fig. 10. Given a test
set with the generating Wilson coefficient vector

c ¼ ð−4; 0; 3Þ, the three-observable test statistic is
doubly minimized, showing high likelihood for both the
true underlying vector c and the similarly shaped
c ¼ ð0; 0;−5.5Þ. The kinematic observables mtot, pTγγ

,
and pTbb

are indeed very similar to each other, especially
when compared to the SM distributions; this similarity
leads to the likelihood ratio degeneracy, which is somewhat
broken when considering ΔRγγ , which peaks in a distinct
location for the true c and recovered c vectors. In fact, the
five-observable classifier is able to recover values of c that
are much closer to truth.

C. Statistical properties and coverage

In Fig. 7, we see that for a single realization of nature the
confidence contours are not always ellipses and the SM is
not always contained within the confidence region. This
first of these is addressed with the higher statistics of the
100 TeVmachine, while the latter issue is more acute in this
setting. The problem is that for the HL-LHC there are
around 100 total events expected, with around 10 of them
from the hh signal.
This statistics limitation leads us to explore the

accuracy and precision of the various parameter estimation
approaches by computing confidence intervals for many

FIG. 8. Log-likelihood ratio test statistics in terms of 1σ for the HL-LHC, for one Wilson coefficient cϕ at a time. The central value of
cϕ is chosen away from the SM. Data generation and test set size reflect the collider setup.

FIG. 9. Kinematic distributions from bb̄γγ events from the 100 TeV collider setup. A test set generated with the Wilson coefficients
ðcϕ; cϕd; ctϕÞ ¼ ð−4; 0; 3Þ, “BSM target,” is close to degenerate in classifier output to a test set generated with ð0; 0;−5.5Þ, “BSM
recovered.” The vertical axis is linearly scaled.
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synthetic datasets. Analyzing different datasets is of
particular interest for the HL-LHC, where there are only
tens of events after the event selection. This is why we
expect that the confidence intervals for the Wilson coef-
ficients might change significantly between different tested
event sets.

For ease of visualization, we focus on the 1D confidence
intervals testing one nonzero Wilson coefficient at a time.
In Fig. 11, we show expected 1σ confidence intervals for
each of our Wilson coefficients for the HL-LHC. We use 20
different test event sets corresponding to the SM hypo-
thesis, but with varying signal and background events.

FIG. 10. Left: 2D test statistic for the three-observable test. The generating Wilson coefficient vector c ¼ ð−4; 0; 3Þ is denoted by a
star; the test statistic is optimized at c ≈ ð0; 0;−5.5Þ, which is denoted by an open circle. Right: 3σ confidence intervals for a variety of
test statistics.

FIG. 11. Confidence intervals for log-likelihood ratio associated with a given Wilson coefficient. Data generation corresponds to the
HL-LHC. Each horizontal band corresponds to a different event set. The shaded band shows the mean confidence interval for each test.
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For each test set, we allow the sizes of the signal and
background sets to vary, following Poisson distributions
with means given by the last row of Table II.
The shaded bars in Fig. 11 denote the mean coverage

interval across the test sets, for each of the analysis
techniques: rate only, one observable, and three observ-
ables. We also include results from a five-observable
analysis strategy, adding ΔRbb and ΔRγγ .
Looking at the cϕ recovery at the HL-LHC, we see

that for the rate-only analysis (90� 7)% of the confidence
intervals contain the correct value. For the one-observable
analysis, (80� 9)% contains the correct value; for the
three-observable analysis, (80� 9)% contains the correct
value; and for the five-observable analysis, (85� 8)%
contains the correct value. For standard 1σ confidence
intervals, we would expect around 68% of the intervals to
give SM recovery. However, we almost always find
that more than this percentage of the confidence
intervals contain the SM, so our bounds are conservative.
Given that for the rate-only analysis the likelihood
ratio is exact (i.e., not estimated with neural networks),
this may be due to the non-Gaussian nature of the test
statistic.
A similar recovery is also achieved for the other two

Wilson coefficients: for cϕd, the confidence intervals for the
rate-only, one-observable, three-observable, and five-
observable analyses return the SM value (85� 8)%,
(90� 7)%, (80� 9)%, and (55� 11)% of the time. For
ctϕ, the same numbers are (75� 10)%, (65� 11)%,
(70� 10)%, and (70� 10)% of the time.
A corresponding analysis can be carried out for the

100 TeV setup, where we evaluate 1D confidence intervals
for 20 independent test sets. For cϕ recovery, all 3σ
confidence intervals for all test statistics contain the SM
value; for cϕd, the one-observable test statistic achieves SM
recovery (95� 5)% of the time and the other test statistics
100% of the time; for ctϕ, the rate-only test statistic returns
the SM value 100%, the one-observable test statistic returns
it (95� 5)%, and the three- and five-observable test
statistics return it (90� 7)% of the time.
We may further contrast the test statistic types. The mean

confidence interval is narrower when derived from the
three-observable test statistic than when derived from the
one-observable test statistic, and the mean one-observable
test statistic is narrower than that of the rate-only
analysis. Further, the test statistics that make use of
kinematic observable information more often resolve the
likelihood degeneracy seen in the cϕ recovery that is left
ambiguous for the rate-only test statistic. This is consistent
with our earlier findings that including shape information
for kinematic distributions can place tighter constraints on
Wilson coefficient bounds than rate-only analyses can. In
addition to the known mtot, the set of three observables is
informative and relevant for the coefficients cϕ, cϕd,
and ctϕ.

Finally, it is worth noting that for the HL-LHC some
test event sets do not resolve the degeneracy for the
cϕ-coefficient or resolve it incorrectly by choosing a
large negative value for this coefficient. The degeneracy
is always correctly resolved, to 3σ, for the 100 TeV
collider.

VI. CONCLUSIONS

In this work, we have explored the use of neural
simulation-based inference to enhance the sensitivity to
searches for pair production of Higgs bosons. For our
example, we have simulated an analysis to place constraints
on the SMEFT Wilson coefficients for a set of three
dimension-6 operators associated with hh production:
cϕ, cϕd, and ctϕ. We have considered two collider setups
in this report: a HL-HLC-like setup with

ffiffiffi
s

p ¼ 14 TeV and
3 ab−1 of integrated luminosity and a future hadron collider
setup with

ffiffiffi
s

p ¼ 100 TeV to 30 ab−1. We have shown that
through parametrized machine learning tools we can aug-
ment more “standard” cut-and-count analyses with per-
event shape information to increase constraining power for
these hh-relevant Wilson coefficients.
In the idealized context of our study, we encountered a

number of challenges that need to be addressed before these
methods can be used in practice. Most importantly, it is
difficult to achieve the level of precision required to
produce accurate and precise confidence regions near the
global minimum of the likelihood landscape. We have
utilized a number of techniques to address this, such as
factorizing the classifiers and using ensembling. It would
be interesting to explore additional proposals for improving
the likelihood-ratio estimation, and we hypothesize that
additional methods are required, especially for the level of
precision that will be afforded by future high-luminosity
collider data.
There are a number of steps required to connect our

idealized study to a real-life data analysis. In particular, we
assumed that simulation will be used to estimate the
background. It may be that this will be possible in the
HL-LHC era, but the current state of the art is data-driven
background estimates. It may be possible to combine such
approaches with NSBI, which would be interesting to
explore in the future. Additionally, we assumed that the
signal and background are known with no systematic
uncertainty. In practice, such uncertainties can be directly
folded into the analysis protocol, although profiling over a
large number of nuisance parameters may be challenging.
Going beyond the analysis presented here, it would also

be interesting to explore how far we could push the
dimensionality of the observable space and the parameter
space. There may also be gains possible from a dedicated
study of the tradeoffs between making restrictive selections
and using per-event information for more events. In
particular, we could relax the preselection to reduce the
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starting significance of the signal but then recover (and
ideally, exceed) the sensitivity through the per-event like-
lihood estimation. This approach will be limited in part by
the ability of the neural networks to describe very low
likelihood events. While we have focused on hh events, the
tools and challenges are common to many NSBI analyses,
and our study provides another important benchmark for
refining and developing new methods.

All data used in this report are available on Zenodo at
[102]. The analysis code is available at [103].
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APPENDIX: ADDITIONAL PLOTS

In Fig. 12, we show the one-dimension test statistic and
confidence intervals for the three-observable (mtot, pTbb

,
pTγγ

) and five-observable test statistics (þΔRbb, ΔRγγ).
This plot serves as an extension to Fig. 6. In Fig. 13, we
show the same for the two-dimension test statistic and
confidence internal, as an extension to Fig. 7. We generally
find that including more observables allows for tighter
constraints on the given Wilson coefficient—this is unam-
biguous for the 100 TeV collider setup, while the 14 TeV
setup does suffer from limited statistics (see, in particular,
the cϕ limit for Fig. 12).
In Fig. 14, we show two examples of 2D coefficient

recovery for BSM test sets for the 100 TeV collider setup.
All test statistics that make use of kinematic observables
greatly reduce the confidence limit areas when compared to
the rate-only analysis. However, the displacement of the
recovered areas from zero demonstrates the challenges
associated with the high-precision requirement of the
100 TeV collider.
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FIG. 12. Test statistics and 1σ (for HL-LHC) or 3σ (for 100 TeV) confidence intervals for the test statistic q ¼ −2 ln pðxjcÞ
pðxj0Þ associated

with the given Wilson coefficient. Data generation and test set size reflect the labeled collider setup.
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FIG. 13. Test statistics and 1σ (for HL-LHC) or 3σ (for 100 TeV) confidence contours for the test statistic q ¼ −2 ln pðxjcÞ
pðxj0Þ associated

with the given Wilson coefficient. Data generation and test set size reflect the labeled collider setup.

FIG. 14. Log-likelihood ratio test statistic in terms of 3σ confidence contours for two sets of Wilson coefficients with central values
away from c ¼ 0. The generating values are denoted by a star.
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