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In this article, we consider the propagation of QED fermions in the presence of a classical background
magnetic field with white-noise stochastic fluctuations. The effects of the magnetic field fluctuations are
incorporated into the fermion and photon propagators in a quasiparticle picture, which we developed in
previous works using the replica trick. By working in the very strong-field limit, here we explicitly
calculate the fermion self-energy involving radiative contributions at first order in a,y,, in order to obtain the
noise-averaged mass of the fermion propagating in the fluctuating magnetized medium. Our analytical

results reveal a leading double-logarithmic contribution ~[In (|eB|/m?)]? to the mass, with an imaginary

part representing a spectral broadening proportional to the magnetic noise autocorrelation A. While a

uniform magnetic field already breaks Lorentz invariance, inducing the usual separation into two

orthogonal subspaces (perpendicular and parallel with respect to the field), the presence of magnetic

noise further breaks the remaining symmetry, thus leading to distinct spectral widths associated with

fermion and antifermion, and their spin projection in the quasiparticle picture.

DOI: 10.1103/PhysRevD.110.056003

I. INTRODUCTION

The presence of strong, transient and inhomogeneous
magnetic fields and their effects over elementary particles is
a subject of great interest in several physical scenarios, such
as ultrarelativistic heavy-ion collisions [1-5] and the
corresponding genesis of the quark-gluon plasma [6-9].
In such a magnetized medium, fermions (charged leptons
and quarks) as well as neutral gauge fields (photons and
gluons) develop nontrivial responses due to vacuum polari-
zation effects. The case of a classical, static and homo-
geneous background magnetic field, since the seminal work
of Schwinger [10], has been discussed extensively in the
literature [11,12]. This idealized scenario has been studied
in the context of the gluon polarization tensor [7,8,13,14],
where the presence of the magnetic field breaks the Lorentz
invariance, thus generating three tensor components with
their corresponding refraction indexes, the so-called vac-
uum birefringence phenomena [13,14]. Similarly, the
propagation of fermions in such a uniform magnetized
background [15,16], as expressed by the self-energy, leads
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to the definition of a magnetic mass with a leading double-
logarithmic dependence ~[In (|eB|/m?)]?, where |eB| and
m are the background field and bare fermion mass,
respectively [11,16-18]. In addition, an spectral broadening
arising from imaginary parts in the fermion self-energy was
recently predicted due to Landau level mixing [16]. Since
spatiotemporal fluctuations in the background magnetic
field should indeed exist in the physical scenarios of
interest [3], we recently developed a theoretical formalism
to include random fluctuations with respect to a uniform
and constant magnetic field background, as a next step
towards a more realistic approximation [19]. For the gauge
fields A¥(x), we distinguish three physically different
contributions

A(x) — A*(x) + Apg(x) + 0ARG (%), (1)

where A#(x) is the dynamical photonic quantum field,
while BG represents the classical “background.” This
background is assumed to be generated by classical
currents J%, _ (x)

D(Al]gG + 5A%G) = 5lass (x) + 5J1:1a55 (X) (2)
that exhibit stochastic fluctuations 6J%, (x), as a model for
nonequilibrium scenarios such as the very early stages of
ultrarelativistic heavy-ion collisions. As a consequence, the
BG gauge field will develop spatial fluctuations A% (x)
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with respect to the mean value A (x), which we describe
as white noise satisfying the statistical properties

(6] (x)6ARG (X)) = AG;,8 (x — '),
(6ApG(x)) = 0. (3)

such that the corresponding classical magnetic field back-
ground is B 4+ 6B(x) = V x (Agg(x) + 6Agg(x)), with a
uniform mean value B. In our formalism, these statistical
properties are reproduced by a Gaussian functional dis-
tribution

fdz OABG

dP[6Agg] = Ne~ D[5ABG( )] (4)
The Lagrangian for the model is expressed as a super-

position of two terms

L = Lgps + Lnge: (5)

where the first represents the system of Fermions and
photons immersed in the deterministic background field
(FBG)

1
Lepg = W(i0 — eAgg — eA — m)y — —F S, (6)
with F,, = d,A, — 9,A, the electromagnetic tensor for the
quantum photon gauge fields. The second term in the
Lagrangian equation (6) represents the interaction between
the Fermions and the static classical noise (NBG), repre-
sented by the spatial fluctuations A%x(x)
Lxpe = P (—edApc)y. (7)
The generating functional (in the absence of sources) for
a given realization of the noisy fields is given by
|

ZlA + dng) = [ DDl et i Bl (g

To study the connected correlation functions in this
system, among them the fermion propagator, we need to
calculate the statistical average over the magnetic back-
ground noise SApg of the InZ[Agg + 5Apg] over the
functional measure defined in Eq. (4),

I ZlAg] = / dP[6Agc)In Z[Ags + 5Agc].  (9)

This procedure is mathematically implemented by means
of the replica trick [20,21]

n
In Z[Agg] = limm, (10)
n—0 n

where Z" is obtained by incorporating an additional
“replica” component for each of the Fermion fields, i.e.
w(x) = w9 (x), for 1 < a < n. The “replicated” Lagrangian
then has the same form as Eqgs. (6) and (7), but with an
additional sum over the replica components of the Fermion
fields. Therefore, the averaging procedure leads to

mI/DA}‘HD[li/a,Wa]eifd4xzzICFBG[V_/{I'W]
o [ Dlonugie [

—/DA”H'D[lfla,I//a]eis[’//a»v/avA;ABG], (11)
a=1

€ fd“xza | Lxpa 7 ll/]

where in the last step we explicitly performed the Gaussian
integral over the background noise, leading to the definition
of the effective averaged action for the system

1
S, ", A; Agg] = /d4 (ZW (x)(id —eABG—eA—m)y/“(x)—ZFWF/“’>

A n
+iez/d4x/d4y

As clearly seen in Eq. (12), the average over stochastic
magnetic fluctuations, in the replica formalism, leads to an
effective interacting theory for the fermion sector. The
corresponding interaction couples the fermion vector cur-
rents, it is proportional to the noise autocorrelation A and,
moreover, it is strictly local in spatial coordinates as is
evident from the presence of the 5°(x —y). In our previous
work [19,22], we analyzed the effects of this interaction as
a perturbative expansion in terms of the magnetic noise

3
Z 7w’ (1) (x —y). (12)

[
autocorrelation A > 0 for the fermion [19] and photon [22]
propagators, respectively. Since the reference system is
characterized by the presence of an average and uniform
background magnetic field B, fermions are described by
the Schwinger propagator [10] at zero order in the noise A,
with corrections incorporated via Dyson equation depend-
ing on the self-energy due to the effective interaction at
higher orders in A [19]. Moreover, the 6*(x —y) character
of this effective interaction collapses the products of
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Schwinger phases in internal diagrammatic lines to a single
point, such that only an overall phase connecting the
external points of the fermion propagator survives. This
feature considerably simplifies the perturbation theory,
such that only the translational invariant parts of the
self-energy need to be calculated in momentum space [19].
In particular, we have shown that the effects of magnetic
noise over the fermion propagator, at first order in A, is
equivalent to a dispersive media, with an effective refrac-
tion index that modifies the group velocity of the otherwise
free particles but not their mass [19]. In contrast, we have
recently shown [22] that, as a consequence of the magnetic
fluctuations combined with charged vacuum polarization in
QED, photons develop anisotropic magnetic masses M |
and M, which are proportional to A [22]. Therefore, a
related question remains opened: What are the effects of the
background magnetic noise over the fermion self-energy
and its corresponding effective mass, when radiative effects
are taken into account? In this article, we shall address this
question from a perturbation theory perspective within the
framework of QED as captured by Eq. (12) by applying our
previous results for the noise-averaged fermion [19] and
photon [22] propagators, respectively, in the very strong
magnetic field limit |eB| > m? which is relevant for heavy-
ion collisions.

II. THE QED FERMION SELF-ENERGY AT 1-LOOP

In the configuration space, for a QED fermion with
charge —e and mass m propagating through a magnetized
medium, its self-energy due to radiative effects at 1-loop (as
depicted in Fig. 1) can be expressed as follows:

—iZ(x,x") = (—ie)*p*iS(x, X )y*D,, (x —x').  (13)

Here, the fermion propagator is given by

&'k
(27)*

FACNT A
T

FIG. 1. Feynman diagrams depicting the contributions to
fermion self-energy up to order O(A?). The single lines represent
fermions and photons in a constant and intense magnetic field,
while double lines depict fermions and photons in a fluctuating
background magnetic field.

e k=2)ig(k),  (14)

iS(x, %) = ®(x, %) /

while

4
D, (x=x)= / (;1;)14 e‘iq'(x_x'>DW(q) (15)

represents the photon propagator.

As discussed in the literature [10,11], the presence of
the magnetic field breaks the translational invariance of
the propagators, but gauge-covariance is granted by the
Schwinger phase factor ®(x, x"), which takes the following
form:

<I>(x,x’):exp{ie[ df”[A +1F (& X)H. (16)

For a magnetic field B oriented along the Z direction, in
the symmetric gauge

B
:—(O, —xz,xl,()), (17)

A, >

we obtain the phase explicitly as

ieB
o) —ep (L) (9
where ¢;; is the two-dimensional Levy-Civita tensor.
S1mllarly, and in consistency with the Dyson equation
for the fermion propagator in configuration space, the
fermion self-energy also involves the Schwinger phase

=E(p)). (19)

. P _ip
—1X(x,x") = ®(x,x e ipx
() = o(ey) [ SE
where the translational-invariant factor is given by the
expression

4

—iZ(p) = (—ie)z/(jﬂ]; r*is(k)r

D/w(p - k) (20)

For the effective interaction considered in this theory, as
we explained in the Introduction, the Schwinger phase
becomes a global common factor in the Dyson equation for
the propagator. Therefore, we only need to work with the
translational-invariant, i.e. momentum-space, components
of the Dyson equation.

The presence of a constant magnetic field background
breaks the Lorentz invariance. Therefore, the phase space is
splitted into two subspaces according to the parallel and
perpendicular directions with respect to the background
field. The metric tensor is thus splitted accordingly

gv = d“‘” + ¢, where

g"“” = diag(1,0,0,-1),
¢ = diag(0,-1,-1,0). (21)
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The latter implies that for any four-vector
p' = |+l (22)

the inner product also splits accordingly p* = pﬁ -pl,
with

Pt =9\ pup, = P — P3.
Pl =9g'puro=-p1 ==(pi+p3).  (23)

A. The noise-averaged propagators

In two of our recent articles, we showed that the fermion
propagator in a media with fluctuations in a external and
very intense magnetic field can be expressed as [19,22]

iS(p) =iSo(p) + A-iS;(p) + O(A%),  (24)

where the noiseless part of the fermion propagator is
provided by its expression in the so-called lowest
Landau level [23,24]:

e_pi/‘8B|

iSy(p) = 2i (B +m)OoM, (25

pﬁ —m? +ie
and the noise-averaged part is given by [19,22]

is:r) =150 ) 1014y + O

— 0,(p)r* O 4 ©5(p)sign(eB)iy'y* (p) + m)].

(26)
where
oth =L £ 12
V=31 F sign(eB)ir'y’], (27a)
3(p} + m?)e=21/IeB]
0,(p) = : (27b)
(pf = m?)*\/pg —m?
0,(p) = ) (27¢)
(pf = m?)\/pg —m?
=207 /leBl
03(p) = (27d)

(pt = m*)\/pg —m*

On the other hand, in our recent work [22] we calculated
the photon propagator in the same strong magnetic field
regime, such that its average over magnetic noise takes the
following form:

D;w(q) — _i‘dﬁy _idj_y
6]2+iMﬁ—|—i€ q* —iM? +ie
2Mi(5§(5§

- (28)

(¢* +iM} +ie)(¢* +i(M] = 3M7 ) +ie)’

thus revealing that photons in such dispersive media may
acquire magnetic masses proportional to the noise A, i.e.
M, and M given by [22]

" — 59 |eB|* A
= 96zm

where a., = % is the QED fine structure constant. For

practical purposes, we shall expand the propagator in
Eq. (28) up to first order in A

D"™(q) = Dy’ (q) + A - Di*(q) + O(A%),  (30)
with
_ g

Dy (q) = , 31
)= G1)

the free photon propagator in the Feynman gauge, and

Oem|eB|?

(32)

the first order contribution due to the magnetic back-
ground noise.

B. The noise-averaged fermion self-energy

From a perturbation theory analysis, and considering the
system subjected to a uniform magnetic filed background
as a reference, the self-energy averaged over magnetic
noise, up to first-order in the noise autocorrelation A, is
expressed by the following terms at first order in a,,, and A:

X(p.B.A) = Zj(p. B) + Xi(p. B) + 0(A%).  (33)

These contributions are represented by the Feynman
diagrams depicted in Fig. 1, and defined by the following
algebraic expressions, plus the corresponding counterterms

4

-i%o(p.B) = (-ie [ £

1iSo(k)y* DY, (p — k),
(34a)
4
_isa(p. B) = (-ie)A / %yﬂiswkw,ev(p k).
(34b)
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Even though there are three Feynman diagrams depicted in
Fig. 1, the third one is O(aZ,) and hence is not included in
our approximation for overall consistency in perturbation
theory.

The counterterms must be determined in order to impose
the physically appropriate renormalization conditions. We
remark that in the noiseless limit A = 0, the full Lorentz
invariance of the propagator is already broken by the
presence of the uniform background magnetic field, that
here we assume is very intense (|eB| > m?). In such case,
the magnetic mass operator, as already discussed in our
previous work [16], is given by the expression

Hy(A = 0) = m+ 2(p, B)lg . (35)

1=0

On the other hand, we remark that [as seen already in the
structure of the propagators Eqs. (26) and (32)], the
presence of magnetic noise fully breaks the Lorentz
symmetry, such that when A > 0 we are restricted to
define the physical mass from the condition p = Yom,
p = 0. Therefore, in order for the limit A — 07 to correctly
match the noiseless result in Eq. (35), we consider the
following renormalization conditions

lim (p, B, A)

ASO* |1’\\:"170el’:0 =Z(p. B) |f’u=’"7°’P=°’
= MB(A =0)-
=2(p.B) |pH:m,pl:O’ (36a)
and
lim —Z(p, B,A)|
a0t I/ H W
O_%i(p.B) O S(p B (36b)
_9 % sp
~ap a0y O e
p=0 ~ pL=0

which ensure that the pole and the residue of the propagator
correspond to the physical fermion mass in the limit of zero
magnetic noise but finite background field.

These conditions allow us to determine the correspond-
ing counterterms 6, and J,, in the renormalized expression

26([’78) :ZO(po)+5Z(ﬁ|| _myo)_énw (37)

such that we have

5m Z (p7 B) “ mV z:0(17 B) Hf'"
p=0 pL=0
5, =L 5B —-2x(p.B) (38)
= P P
“ 7 opy hem 015\\ ’ A
- §

The expressions for —iX;(p,B) for i =0, A are com-
puted in Appendices A and B, in order to determine the

magnetic mass operator M g(A) according to the definition
and renormalization prescriptions described above, as will
be shown in the next section.

III. THE NOISE-AVERAGED MAGNETIC MASS
OPERATOR AT FIRST ORDER IN a., AND A

The noise-averaged magnetic mass operator of the
fermion is obtained from the corresponding expression
for the self-energy at p = y’m, p = 0, as discussed in the
previous section

A

MB(A) -—m= Z(p’ B, A)|m:m70vp:0’
= 26<p’ B)|/H:mr0 + z:rA (p’ B)ll”H:"’VO
p=0 ° p=0 ~°

=Mp(A=0)=m+Z5(p.B)lywr  (39)

p=0 >
where the magnetic mass operator in the noiseless limit
A =0, as shown in detail in Appendix A, is given by
= 0mMl) + ot lo), (40)

where we defined the fermion magnetic mass eigenvalues
for the 1 and | spin projections by

e L 2

My =% [1n28—<ye+ig>ln8+%]+0(B"),

My =%t [Inz[ﬁ' - (1 7ot 1%) In B
/4

- (2-r-%-i5)] + o) (41)

Here, we defined the average magnetic field in dimen-
sionless units by B = |eB|/m?. The contribution arising
from the self-energy terms proportional to the magnetic
noise autocorrelation A, as shown in detail in Appendix B,
are defined in terms of the two projectors,

P = (14 (42)

N[ =

onto the fermion (4) and antifermion (—) subspaces,
respectively, in the rest frame p = 0.

Therefore, we can split the noise contribution to the self-
energy into four subspaces, namely

im—i _ _ised) ool p)
lim[-iZy(p)], = Y > [HE{VOIPW), (43)

p—0 =14 A=%1
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where we defined the coefficients:

a(ld) . V2
N )Elm(3ln(2):I:S)aemA\/|eB|m+0(m2), (44a)
s(ht) _; V2

2
PHN Eiw(3ln(2):FZ)aCmA\/\eB|m—|—O(m2), (44b)
n

which are clearly purely imaginary.

In summary, our results indicate that the fermion
magnetic mass operator, in the presence of noise A > 0,
possesses four different eigenvalues depending on the spin
o =1,] and 1 = = projections, as follows:

MY (A) = m+ My + £, (45)

We notice that these eigenvalues are complex, such that
the real parts strictly correspond to the fermion magnetic
mass, i.e. mi) = ReM'¢* (A), which turns out to be noise
independent

2
mg) =m +¥ [InzB—ye lnB—i—%} +0(B™),

2
m—i—M[InZB—(I —f-ye)lnB—l—%-H/e—Z}
T

+0(B™), (46)

which are depicted in Fig. 2. We notice that the magnetic
mass is different for each spin projection, as expected from
the Zeeman interaction splitting. This effect becomes
stronger in very intense magnetic fields and may be of
interest in different physical scenarios.

On the other hand, the imaginary parts represent a Breit-
Wigner resonance I/ (A) = —2ImM ™ (A) due to the

combination of the field and the magnetic noise given by

1.6F

1.4

1.2¢

FIG. 2. The magnetic mass of the fermion, calculated from
Eq. (46), is shown for the two spin projections as a function of the
average background magnetic field (in dimensionless units)
B = |eB|/m?.

T4 (A) = agm (m B- 2\/?# (3In(2) F 2)) :
(47a)

T4 (A) = agm <ln B-1- NgffiA (3In(2) £ 8)) :
(47b)

Figure 3 shows the behavior of I'*(A), computed from
Eq. (47), as a function of the average magnetic field (in
dimensionless units) B = |eB|/m?, for the four eigenvalues
corresponding to each projection (1, &), respectively. As
can be seen in the figures, deviations from the noiseless
limit A =0 (solid line) become appreciable after some
critical value B > B, that depends on the magnitude of mA

via the product mA+v/B. In cases represented in Figs. 3(a)
and 3(c), for mA =107 and mA = 1073 respectively,
where the spin projection is parallel (1) to the direction of the
background magnetic field, the imaginary part of the
magnetic mass in the subspace given by the projection
P) decreases as compared to the corresponding one for
the projection (=) and also with respect to the noiseless case
A = 0. The opposite occurs when the spin projection is
antiparallel to the direction of the background magnetic field,
as depicted in Figs. 3(b) and 3(d), for mA = 1072 and mA =
10~3 respectively. This implies that in the quasiparticle
picture, the charge conjugation combined with the breaking
of Lorentz symmetry provided by the magnetic noise results
in different spectral widths for the various modes.

Note that in the heavy-ion collisions scenario, the
magnetic background is about the pion-mass squared, so
that for electrons we would have B~ 8 x 10*, while for
light quarks B~ 8 x 103. Therefore, our approximation
based on the lowest Landau level expression for the
fermion propagator valid for B> 1 is well justified.
Hence, for some ranges of the noise mA, the effects
displayed in Fig. 3 might be detected in actual experiments.

In Fig. 4, the imaginary part of the mass eigenvalues,
corresponding to the Breit-Wigner resonances ') (A)
defined in Eq. (47) for each of the four projections, are
shown as a function of the magnetic noise autocorrelation
mA, for a constant average field value of B = 10*. In terms
of the physical interpretation, these Breit-Wigner resonan-
ces proportional to ImX(p, B, A) lead to a small broadening
in the peak of the Lorentzian spectral density distribution,
as we discussed in Ref. [16]. As seen in Fig. 4, both parallel
(1, £) spin projections exhibit a linear dependence on mA
with a negative slope. This effect is milder in the (1, +)
than in the (1, —) polarization. In contrast, the antiparallel
spin polarizations (|, =) display opposite behavior, with
(},—) showing a positive slope, while (|, +) exhibits a
negative one. Nevertheless, since the spectral broadening
depends on the absolute value of these parameters, in all
four polarizations the spectral width grows with the
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0.08F T
—_— T /m, for A =0

0.06f == o\ () -

..................
.

g
aq
...............

0.04}

0.02} 1
mA =102 (a)

0.06 F

0.04F

0.02F

012 M /m, for A =0

- F(T‘Jr)/m -

008 e
0.04}
mA =103 (©
0. . . . .
(UEP] — Fu)/m, for A =0 “,"
--= TH/m
oot
0.04}
0 mA =103
10 102 103 10 10° 106
B
(0.4)

FIG. 3. Breit-Wigner resonance ['\”*) computed from Eq. (47),
as a function of the average background field B = |eB|/m?*. The
eigenvalues corresponding to projections onto the four indepen-
dent subspaces are shown for two different values of the magnetic
noise autocorrelation mA.

magnetic noise autocorrelation A. As discussed in our
previous work [16], the spectral density corresponding to
each projection is defined by the Lorentzian distributions

mg’)r(a.ﬂ) /71'

~(6,A)( 2\ —
pl(p?) = . ;
(P2 — ()] + [mgLen)]?

(48)

where the relative spectral width decays for very intense
magnetic fields B > 1 as T

o
mB

~ [In B]~!. The corresponding

04 B=10*

0.2F = - | — - —
o |
—02 9/ == - F(T")/m., """""""""" i,
—0.4}F svrnann F“‘“/m | — F(iﬁ)/m
0. 0.02 0.04 0.06 0.08 0.1
mA

FIG. 4. The Breit-Wigner resonance I'”Y(A), computed
from Eq. (47), as a function of the noise autocorrelation
parameter mA, for a fixed intensity of the average background
field B = |eB|/m* = 10*. The eigenvalues corresponding to
projections onto the four independent subspaces are displayed
for comparison.

spectral density distributions, as computed from Eq. (48) for
the four different projections, are displayed in Fig. 5, where
the spectral width due to the finite value of I'®% is clearly
appreciated. Interestingly, this spectral broadening effect
induced by the presence of the noise autocorrelation A > 0is
different depending on the spin projection 1, |, as well as the
projection onto the subspaces P*). However, the physical
magnetic mass representing the center of the spectral dis-
tribution only depends on the spin projection, as expected
from the usual Zeeman splitting effect due to the spin-
magnetic field interaction.

6_—5(T>/7n2;A:0 .:_:
4}
2t
U .l
12F
—— W /mia=0 4
0F () fp2 :
----- T /m :
sl pr/ 2
B 7 ) m? H
4 i L7
2t
0 -l i i i i i i
0. 0.5 1. 1.5 2. 2.5 3.
p2/m2
FIG. 5. The spectral density distributions for each of the four

projections 1, |, £, computed from Eq. (48), as a function of the
dimensionless momentum p?/m?. The dashed and dotted lines
correspond to a noise autocorrelation mA = 1072, while the solid
line represents the noiseless limit A = 0. The average back-
ground field is B = 103 for all cases.
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IV. DISCUSSION AND CONCLUSIONS

We studied the QED fermion propagator in a strongly
magnetized medium with white-noise fluctuations. In a
quasiparticle picture based on our previous results for the
fermion and photon propagators in such media [19,22], we
computed the self-energy contribution due to radiative
corrections at first order in the electromagnetic fine
structure constant «,,. The presence of the background
magnetic field breaks the Lorentz invariance, thus splitting
the metric into two subspaces according to the directions
parallel and perpendicular to the field, respectively.
Accordingly, the eigenvalues of the magnetic mass operator
obtained from the real part of the self-energy are different
for the corresponding two spin projections 1, . Moreover,
the presence of the magnetic fluctuations, whose strength is
proportional to the noise autocorrelation A, fully breaks the
Lorentz invariance, thus leading to imaginary components
in the mass operator eigenvalues that depend on the spin
polarization as well as in the projection onto the P+ =
(1 £¢°)/2 subspaces corresponding to fermion (+) and
antifermion (—) in their rest frame. The later imaginary
contributions correspond to a further spectral broadening
effect as we discussed in Ref. [16], here caused by the
magnetic noise that, nevertheless, does not renormalize the
magnetic mass in agreement with our previous studies [19].
The existence of this further splitting in the spectral width is
a clear indicator, at a perturbative level, of the charge
conjugation symmetry breaking induced by the statistical
model. The physical reason behind it is that, in the presence
of a uniform and deterministic background magnetic field,
charge conjugation symmetry C is granted given that both
the fermion charge ¢, — Cq,;C = —q and the direction of
the field B — CBC — —B revert their signs simultaneously,
the latter due to the reversal of the direction of the classical
currents that generate the field CJ ,C = —Jopass- In con-
trast, if the background classical field possesses a stochastic
fluctuating component B(x) = B + 6B(x) generated by
statistically incoherent classical sources J . + 0Jclasss
once we perform the average over magnetic fluctuations
the system looses track of the direction of the fluctuating
part 5B(x), whose statistical effect remains present on the
scalar coefficient A [see the effective interaction in
Eq. (12)]. Therefore, in this theory charge conjugation
symmetry can only be approximately satisfied by the
average background field CBC — —B, but the presence
of any finite magnetic noise A > 0 will break it. Even
though we verified this property explicitly at a perturbative
level, the previous argument supports the conclusion that it
is a nonperturbative feature of our model.
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APPENDIX A: COMPUTATION OF -iX(p,B)
From Egs. (25), (31), and (34a), we get

d*k _kLz/‘eB‘yﬂ(kH + m)(’)(T)yﬂ
(27)* (kj — m* +ie)((k — p)* + ie)’

—iZy(p,B) = 262/

(A1)
so that the tensor structure can be spitted as
a (k” + m)(')(T)yﬂ
= % [r*kyy, — isign(eB)y*kyy' vy, + my'y,
— isign(eB)my"y'r?y,].
- % [—2k) + 2isign(eB)y*y 'k + 4m],
=2[m — k;OW]. (A2)

On the other hand, by a Schwinger parametrization (in
the Feynman time-ordered prescription € — 0%),

o _i/°° drel(Atie)
A +ie 0 ’

the expression takes the form

/ an [ df2/

xexp{ E B|+1rl[(k p)? +1€]+112(kH—m +1€)}

(A4)

(A3)

—iZy(p. B)

m—kHO(U]

The factor in the exponential can be rearranged as

2

el

1 2ileJ_ 2 .
= K2 -1 P 2
(| Bl *)( L7 [eB iy ) PR

201k - py
. k2 R
+i(z; + 72)< i T

s inl(k = p)? +ie] +iny(kf — m? + ie)

+ irlpﬁ —itym? —e(1, + 12), (A5)

so that, by performing the following change of variables,

A= 1 u

(e L

ileB|r;
=k ———————p, A6
1 1 1+i|eB|11pl ( )
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we get

_izo(p,B)__“ez/dZT/(fTL;[m_ </ T‘+T ﬁ) }

1 +ileB|r,

2 .
T p ir;p?
" o [ P
X exp{ (7 —1—12)1/”” B ] + i <r] o m ) T ileBlr, e(r; + 12)}. (A7)

The Gaussian integration over the momenta are calculated as follows:

¢ . [P >
| el i) =i [ Gog e,

= R P— (A8a)

d%ﬂnx [_1+i|eB|Tl 2}_( 1 zleB| (ASb)

(2x)* leB| "*|  (27)21+ileB|r;’

where in the first equation we first performed a Wick rotation #° — i#% to render the integration coordinates to the
Euclidean metric. After this procedure, we are left with the expression

__n 40 2 N
. Qem|eB| m— - p,0 ) TP i p
—i%(p,B) = —% d? — — L m? ) - —E . (A9
Zo(p. B) n / T(1+i|eB|T1)(Tl —l—rz)eXp o 7+ 1, " 1 +ileB|r; et +) (A9)

It is convenient to introduce the change of variables

sy s(l—y) [d(z1,75) S
=2 d = =—, A10
(3 m2 an (%) m2 —)‘ a(s,y) m4 ( )
so that in the dimensionless variables B = |eB|/m?, p| | = p| /m
~ aemBm - )’ﬁu . ) isyp?
—lzo(p, / / 1 i B exp ls(l —y)(yp” - 1) —m— [SA NN (All)

In order to obtain the expression for the magnetic mass operator in the noiseless limit A = 0 as stated in the main text, we
evaluate this integral at the condition g = m, p, = 0, as follows:

B
Zo(p: )l/u =mp =0 " = Len m/ / 1+ B exp(—is(l—y)z—es),

B —1s1 -y) 2_es ) 1 1 - —iS(l—Y)Z—SS
= ds/ oy )0 (e [ o ey )0

= MWO( )+ MyoWw (A12)

where we used the completeness relation for the spin projectors
om ol =1, (A13)

and defined the corresponding fermion magnetic mass eigenvalues M ¥ for the two spin projections 1, |, respectively. In
order to explicitly compute such noiseless mass eigenvalues for the 1ntense magnetic field approximation 5> 1, the
integration region is restricted by a lower cutoff [16] ~B~!, as follows (for € — 07):
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J —1sl -y) 2_es 4 —1& 4 p (1- i s i n+1
—is(1-y)?>—es - -
o ot = e ot = e [Loer (- S (E) )

AR EG )

Let us consider the series representation of the incomplete gamma function, defined by

r(0.z) = -y, —In(z) i (k_zlzf : (A15)
k=1 .

where y, is the Euler-Mascheroni constant, and for n € Z+ by

I(-n,z) = (_lv)nr(o, 2) +M, (A16)

n! n!

with the n — 1 degree polynomials

—_

n—

fa(2) =) (=D(n—k= 1)1z~ (A17)

~
Il
=}

Then, it is convenient to reorganize the infinite series in the integrand of Eq. (A14) in order to group the leading
logarithmic contributions in the F[O;%} function as follows:

S )

(1-)?

“l e S () Y E e -

1 n=1

4(17;)2

(1-y)?
e® [ A=y e (<iBy) ™ i(y. —InB+nfi(1—y)?) )
- iByF[O’ B F By Z S fali(1 =)/ B) e +O(B2).  (Al8)

Then (with ¢ — 0T), we have that at leading order in B > 1

eI~ 1 i B+ Infi(1 - y)?])
4 ~ d e 0(B72),
/_ S/BI “1+iBsy /-' Y yB roE

zé{ [ye - 1n<i(ll;735)2>} In(B) — 2Li, (Bl; 1) } +0(B™?2),

z—iB‘llnzB—f—i(ye —l—ig)B 1lnB—l B '+ 0(B2). (A19)
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Applying the same series expansion to the second term, we have

1 _ —1\'(1—}’)2—63‘ 1 1(]/ —InB+1n [1(1 _y)Z])
~ - : N
zﬁ 1 dsA; | dy 1 —I— iBsy 131 dy(1-) yB OB,
(=) e (1=hB-BY) Ti(B-1)
z_1< 5 1B B+ 3 In|=—75
251, (B - 1) +0(B7),

2

T %) B+ 0(B2). (A20)

~ —iB_llnzB+i<1 +7. +ig>8—1 lnB+i<2—ye 3

Therefore, we conclude that in the noiseless limit A = 0, the magnetic mass eigenvalues for each spin projection are
given by the expressions

2
M) = %™ e (4, +iZ ) mB+Z| + 0B,
n 2 3
2
M) = Zen™ {anB— (1 +7, +ig> InB - <2—ye —%—igﬂ +Oo(B™M). (A21)
VA

APPENDIX B: CALCULATION OF -iZ,(p)
From Egs. (26), (31), and (34b), and given that

7 (ky 4+ m)OWy, = 2[m — k;OW], (Bla)
POy, = 2300, (B1b)
Hiy'y? (ky 4+ m)y, = 2kiy'y?, (Blc)
we get
3 )
—iZa(p) = Y =iz (p)]; (B2)
i=1
where
=) —4a,,AleB B3
(5) = et [ F4 O RO (B32)
d*k ©,(k)y*o)
—ix?(p) = —dagnAleB| / T k2 ST e (B3b)
4 s 1.2
.5 (3) o . d’k @3(k)kH1y 14
—iX; (p) = —4(xemA|(3B|Slgn(e}5’)/(27[)4 G-py tic (B3c)
Let us start with —iZ}’(p), which from Eq. (27b) is
4 K2+ m? Je ~2k? /|eB]
() d*k (kj
—izy’(p) = —12aemA|eB|/ — (m =k OW). (B4)
: @a) (1 —m22 /g —m)[(k — p)? +ie]
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After a Schwinger parametrization in the photon’s propagator and by defining the momenta shift

. ifeB|

£ = 1 A (BS)

2+ i|eB|1pr

the integral takes the form

© irp? da*¢ 2 +ileB|z
(1) . 2izp 2
- =1 AleB d it S (2 EP ) p
iz, (p) 2iag,Ale /0 Texp [ i|eB] €7,':| /( )zexp [ ( B > ]

Pk (ky +m?)e*h-n)
/ Ik _(m — kOW). (B6)

(27)% (k3 — m?)2\/kg — m

By using Eq. (A8a), and defining the parallel momenta shift:

) =k = pjp (B7)

. 2irp’
 3igenAleBJ? /°° exp [_H%\jm — €]
0

(1
_IE(A)(p> P 2+1|€B|T Il(ﬁPOvPB)» (B8)
where
it/?
e = [N = 1 4O -
17, Po, P3) = .
(27)° (&) + py)? = m*]*\/ (€0 + po)* = m?
We are interested on the limits py - m and p — 0, so that
fim| .2(1)( ) Jia.mAleB|? /°° Zi(z,m,0)e™" (B10)
1m (—1 = - 7
A ™ 0 2 +ileBr
with
ir/?
Z,(r,m,0) = / dC) [£o(£o + 2m) = €3+ 2m?|[m — ((£o + m)y° + £37°) OW]e™
(2r)? [€0(€0 +2m) — £312\/€0(€o + 2m)
— —i/ A2ty [4(¢4 = 2im) + &5 = 2m][m = ((i€4 + m)y° + £37°) OW]e~i*k (B11)
(27)? [£4(¢4 = 2im) + £3)2\/€4(2im = £,) ’

where in the second line we performed a Wick rotation in order to get the Euclidean space, i.e., £y — i, and £g = £% + ¢3,
with the following change of variables

£4 = rsind, £3 = rcoso, (B12)
. [ rdr s
Z,(z,m,0) = —i —fi(m,r)e™™, (B13)
0 271'
where
27 46 2m?* — r? + 2imrsin @
m.r) = — m ~+1irsin 0)y°OW) + rcos O3 OW) — m]. B14
Fifm.r) /) 27 15/2(r = 2im sin )% /sin 0(2im — rsin 0) ( ) 4 ] (B14)
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In order to obtain analytical results, we consider a
situation where the fermion mass is a small energy scale,
such that m?> < |eB|. This condition is physically acces-
sible, given that in heavy-ion collisions, the produced
magnetic fields are estimated to be about the pion mass
squared. Therefore, for light quarks, this is a good
approximation. So, by expanding in a power series around
m =0, we get

22.d6 (i(cos @y>OW) +isin gy OW))
film.r) = S
27 | sin 6|

— [(3 + cot?d) cot 6> OV)
+i(csc?@ + 2y°OW)]| sin 6| %} + 0(m?),

i 0oW)
_ 2i(In(2) —7|—Tr23y OWYNm +o(m).

(B15)

Hence,

Zi(z,m,0) =

0H\) o —izr?
(In(2) —|—2;/ o )m/ 2 T (BI6)
T 0 r

It is clear that the radial integral has a singularity when
r — 0. To avoid it, we regularize this by the following
prescription:

/ arf / dr—— (B17)
0 e
so that, as is shown in Appendix C,
—izr?
J(z ,u)E/oodr ¢
0 }"2‘|'H2’
iw' 2 2
:”; [1—(1+1)C<,/;Tu> —(1—i)S<\/ Tﬂ)],
(B18)

where S(z) and C(z) are the Fresnel integrals. With this in
mind, the singularity is isolated by power expanding
around 4 =0, i.e.

T T
=——(141i)y/=—4+ O0O(p), B1
J(z,p) o ( +1)1/2+ () (B19)
then we defined the regularized integral as

T (o) =T -5,

o (B20)

so that

—irr?
/ drs— elin&jﬂr,p):—(l—i—i),/%. (B21)
0 r e

Putting it all together:

. . 1 r
lim[-ix} (p)]
p—0

~3i(1 +1)(In(2) + 2/°01
3

NatemA|eB|*m

—€T

/ _vrer (B22)
24 2 +ileB|t’
where the superscript r stands for regularized.
Now, we note that
/ \/_e—er
21 2 +ileB|r
1 N 3/2

- LD ey, 823

|eB|\/_€ V2|eB/?

in such a way that we also absorb the singularity of ¢ — 0
in the counterterms associated to the noise-averaged self-
energy. Therefore:

o 3V2
lim iz} (p)]" = 3—/f<1n<2> +2/°0W)agnAy/[eBm
Do T
p—0
+ O(m?). (B24)
Finally, from the completeness relation
om Lol = (B25)

we can split the expression in the two spin components as
follows:

- ese(1) r_ () (U_M'(l.T) )
I!(}gl;)ﬂll[ iX,(p)] =—-ix, O ix, o, (B26)
0
where
. 32
—iZg'wEﬂ;{;(ln(2)+2y0)aemA leBlm, (B27a)
and
. 32
—iZ(Al’T)E%—\C;InQ)aemA leBlm.  (B27b)
-
The next structure is
d*k @ (9
R . (B28)
2 tie
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which after following the same procedure has the following
form:

ix2 : © 2irp?
i ()= e [ dverp |- -

&, 2+ileBlr\ ,
<o |- (s )
x / ) (¢34 py)e™ PO
Q) [(2)+ p)? —m?*]\/ (o + po)? —m®

(B29)

so that in the limits py — m, p — 0 it vanishes by the parity
of the parallel integration, i.e.,

. . 2
lim % (p)] = 0.
p—0

(B30)

The third structure is given by

d*k Os(k)kjiy'y®
2r)* (k= p)? +ie’
(B31)

—ix%) (p) = —4agnAleB|sign(eB) /

so that with the described procedure it turns into the
expression

—ix?) = dignAleB|sign(eB)

) 21 2
x/ drexp {— TPl _ }
0

2 +izleB]
¢, 2 +ileB|z
< e |-(ear )]
x/ d (I + B iy p
Q) [() + p)? = m/ (o + po)> —m®
(B32)

Given the parity of the integrand, the odd terms in # do
not contribute to the integral. Hence, we have

. (3
lim iz (p)]
p—=0

i AleB|*sign(eB) /00
— - i

Z3(z,m,0)e™"
2+ileBlr

. (B33)

where

Z5(7, pos 3)
- / Pt (Grmd P )
(2”)2[(f\\+P\\)2—m2] (¢0+ po)* —m?

After a Wick rotation and performing the change of
variables of Eq. (B12):

(B34)

2 H —itt%, 0
T(em.0) = d*ty (1f4'+m) ey (ir'r?) ’
(27r) [£4(¢4=2im) +£3]\/€4(2im—¢,)
0o rd .,
:—1/ Qf3(m re ", (B35)
0 2r
with
27 d6 irsind+m)y°(iy'y?
folmry= [0SOy )
0 27r32(r—2imsin6)./sinf(2im — rsin@)
(B36)
so that around m = 0:
2240 [ sinf 2i|sin@|m] , .,
f3(m’r)NA 2 |:|Sin9|r2+ ’,,3 14 (l}/]/)
+0(m?).
8im
370" + O(m?). (B37)

" 2ar

Then

r

277—21)"1\/: (ir'r?),

where the prescription of Eq. (B21) was used, and, after
using Eq. (B23), we get

om o e irr? ]
I3(T,m,0)—?A dr——y°(iy'y?)
2

(B38)

lim{iz5) ()" = 22 o sign(eB) ey i)
p=0
+ O(m?). (B39)
Finally, from the identity
isign(eB)y'y> = OW) — O, (B40)
the expression can be written as
lim[—iz{ (p)] = —iEP (OW — 01, (B41)

po—m
p—0
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where

..(3) _ 2\/§

-z, = WaemA leB|my°. (B42)
From the latter, the final expression for iX,(p) in the

limits pg — m, and p — 0 is

lim[-i%, (p))" = —iZy/OW —iEVOM,  (B43)
o
with
—igl) = ”3—\/52 [31n(2) + 8/ )acmAv/|eBlm  (B44a)
and
—ig() = ﬂ3—*/§2 (31n(2) = 2/°)aemA/|eBlm.  (B44b)

Finally, we can define two projections given by

1
PE) Ei(ﬂ +¢9), (B45)
so that
PH + P =1,
P — P =0, (B46)

in such a way that we can split the self-energy contribution
into four subspaces, namely

lim[—iZa(p)], = Y Y [-iEFPOOPE],  (B47)

po—m

p—0 o=1. A=+l

where we defined the coefficients:

- 2

_iZ<A¢~i>Eﬂ3_\//_2(31n(2)i8)aemA leBlm.  (B48a)
. 2

—izf*ﬂzﬁ—c(mm(z) T 2)aenAy/|[eBlm.  (B48b)

APPENDIX C: DETAILS ON THE CALCULATION
OF THE REGULARIZED PHASE-SPACE
INTEGRAL

In previous appendixes, we arrived at the regularized
integral

)
—itr
e

r2+ﬂ2'

Tew) = [ ar ()

Let us first apply the following integral transformation of
the denominator in Eq. (C1)

1 © 2,2
[ dyemr )
o /0 a

Substituting into Eq. (C1), and integrating over r first,
we obtain

0 0

- %E / " dye s (y + i) 12,
0

(C2)

(C3)

Let us shift the integration variable, by defining
7 =y iz, to arrive at

T © 2 .
J(t.p) = \/7_/ dze (i) =172,

eifffﬁ ®

K Jic

dZE_ZZ_l/Z,

(C4)

where in the second step we rescaled the integration
variable z — z/u?. Let us now define the auxiliary variable
z=1v>= 77 V2dz=0v""2vdv=2dv  (C5)

and hence the integral becomes

j(’ﬂﬂ) _ eiﬂzr\/i_r/oo dve"’z,
K Juvic

. S Vir
= e’”zfﬁ (/ dve™" — /ﬂ dve‘“2>,
0

H 0
- e"”zfzi (1 —%/ﬂﬁ dve‘”z),
H 7.Jo

= e (1 - o)), (C6)

where in the last line we applied the integral representation
of the probability integral ®(z). In particular, when z =
Vix for x€R, the probability integral is related to the
Fresnel integrals C(z) and S(z) by the identity

®(Vix) = VA(C(v/2/mx) - iS(v/2/)).

Applying this last identity, and using Vi = (1 +1)/v/2,
we have

(I)(//t\/i_T):(l—Fi)C(,u\/%)+(1—i)S<ﬂ %) (C8)

(C7)

056003-15



JORGE DAVID CASTANO-YEPES and ENRIQUE MUNOZ

PHYS. REV. D 110, 056003 (2024)

Substituting this last relation into Eq. (C6), we finally
obtain

J(wp) = ew%% [1 - (1+ i)C<ﬂ\/%>
- (1= i)s(,l\/%)].

In the vicinity of 4 = 0, the integral reduces to the power
series

(€9)

V3 . Izt imt
—i——ﬂ—i-O(uz).

5+ (C10)

The regularized integral is thus obtained by subtracting
the pole at 4 — 0, such that

T (e 1) = T (2, 1) — —.

o (C11)

Therefore, in the self-energy terms, we can finally
evaluate this regularized expression at y — 0, such that

(1+i)'

V2

0 —irr?
/ dré—— = imJ" (v, 4) = —/az (C12)
0 r H=0
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