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In this paper we present a relativistic Shakhov-type generalization of the Anderson-Witting relaxation
time model for the Boltzmann collision integral. The extension is performed by modifying the path on
which the distribution function fk is taken toward local equilibrium f0k, by replacing fk − f0k via
fk − fSk. The Shakhov-like distribution fSk is constructed using f0k and the irreducible moments ρμ1���μlr

of fk and reduces to f0k in local equilibrium. Employing the method of moments, we derive systematic
high-order Shakhov extensions that allow both the first- and the second-order transport coefficients to be
controlled independently of each other. We illustrate the capabilities of the formalism by tweaking the
shear-bulk coupling coefficient λΠπ in the frame of the Bjorken flow of massive particles, as well as the
diffusion-shear transport coefficients lVπ , lπV in the frame of sound wave propagation in an ultrarelativistic
gas. Finally, we illustrate the importance of second-order transport coefficients by comparison with the
results of the stochastic BAMPS method in the context of the one-dimensional Riemann problem.
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I. INTRODUCTION

In the frame of the relativistic Boltzmann equation,
the computation of the collision term C½fk� even for the
simplest case of binary collisions remains the most expen-
sive step. For this reason, models which approximate the
main features of C½fk� are highly desirable. One such
approximation is the relaxation time approximation (RTA)
introduced by Anderson and Witting [1,2].
Historically, the Anderson-Witting (AW) approximation

came as an extension of the model proposed by Marle [3],
which focused on the case of massive constituents. Both
these models reduce in the nonrelativistic limit to the
Bhatnagar-Gross-Krook (BGK) single-relaxation time
approximation of the collision integral appearing in the
nonrelativistic Boltzmann equation [4].
Much like its nonrelativistic cousin, the AW model has

gained popularity due to its relatively simple structure
which allows analytical calculations to be performed in
simplified 0þ 1-D setups, such as the Bjorken flow [5–7]
or Gubser flow [8–10], as well as numerical calculations
in setups such as the Riemann problem [11–14] or the
2þ 1-D Bjorken flow with transverse expansion [15–17].
Especially for conformal (massless) uncharged (vanishing
chemical potential) fluids, which are characterized only
by tensor moments such as the stress-energy tensor Tμν

(i.e., no charge current), the single relaxation time τR of the
Anderson-Witting model can be used to control the shear
viscosity η, which is sufficient to achieve agreement with
the solution of the full Boltzmann equation [18].
In general, these single-relaxation-time models share the

caveat that the transport coefficients governing dissipation
within the fluid are all derived from a single function—the
relaxation time τR. In the case of the BGK model, this
had the unpleasant consequence that the Prandtl number
Pr ¼ cpη=λ, where cp is the heat capacity of the gas at
constant pressure, η is the dynamical or shear viscosity and
λ is the heat conductivity, is fixed at the value 1. Most ideal
gases are known to have Pr≃2=3 [19]. This limitation was
overcome in the extension proposed by Shakhov [20,21],
which introduces a new parameter that allows Pr to be
controlled independently. There is still some controversy
regarding the well-posedness of the Shakhov modification
of the BGK collision model [22]. For example, the second
law of thermodynamics was proven only in the linear
regime of small departures from equilibrium. Also, because
the model relies on a polynomial extension of the equi-
librium distribution function, it may lead to negative values
of the distribution function in the case of flows with are
sufficiently far from equilibrium. Finally, as is the case for
the single-relaxation-time models, the Shakhov model
lacks a fundamental justification, being in essence an
effective model. Despite these drawbacks, the Shakhov
model has been highly successful at describing fluids far
from equilibrium, i.e. deep into the transition regime [23],*Contact author: victor.ambrus@e-uvt.ro
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in the strongly nonlinear regime [24], as well as in the case
of nonideal (dense) gases [22,25].
Recently, a Shakhov-like extension of the AW model

was proposed in the frame of relativistic kinetic theory [26].
Much like its nonrelativistic counterpart, this extension
provides new free parameters that allow the first-order
transport coefficients, ζ, κ, and η, to be controlled sepa-
rately. We shall refer to this model as the first-order
Shakhov model. In this paper, we introduce a systematic
procedure to extend the Shakhov model beyond first order,
in a manner allowing a selection or all of the second-order
transport coefficients to be separately controlled.
As in the case of the first-order Shakhov model, the idea

is to replace the relaxation term fk − f0k of the original
AW model with fk − fSk, where fSk is the Shakhov
distribution. For the high-order Shakhov models that we
discuss in this paper, we construct fSk using a finite
polynomial basis similar to the one employed in Grad’s
method of moments (see Ref. [27] for a rigorous discussion
in the frame of relativistic kinetic theory). The basis
involves a finite range −sl ≤ r ≤ Nl of irreducible
moments ρμ1���μlS;r of the deviation δfSk ≡ fSk − f0k of
the Shakhov distribution from equilibrium. Here, Nl
represents the usual truncation order of the polynomial
basis, while sl represents a downwards shift, allowing the
basis to directly incorporate irreducible moments of neg-
ative energy index. Such a shifted basis was shown in
Ref. [28] to play an important role in deriving the hydro-
dynamic limit of the AW model and we exploit this feature
also in the Shakhov model.
We denote the elements of collision matrix that are

controlled by the Shakhov model by AðlÞ
S;rn, where

−sl ≤ r; n ≤ Nl. Of course, the collision model has an
infinite-dimensional collision matrix, which we are able to
derive analytically in a basis-free manner, as described in
Ref. [28] (see Ref. [26] for an application to the case of the

first-order Shakhov model). The functions AðlÞ
S;rn represent

the direct degrees of freedom of the high-order Shakhov
model. On the other hand, our ultimate goal is for the
kinetic model to achieve prescribed transport coefficients in
its hydrodynamic limit. It is known that these transport
coefficients are ultimately governed by the elements of the

inverse collision matrices τðlÞrn ¼ ½AðlÞ�−1rn and we derive
their exact expressions in the basis-free manner of
Ref. [28], using the inverse-Reynolds dominance (IReD)
approach of Ref. [29]. Then, the problem of constructing
the Shakhov collision matrix boils down to solving a set of

algebraic equations that involve the elements τðlÞS;rn of the
inverse collision matrix, allowing an appropriate subset of
transport coefficients to be set as essentially arbitrary
thermodynamic functions. An extension to third order is
possible within our moment-based approach, employing
the developments in Ref. [30]; however we leave this
avenue open for future research on the topic. We illustrate

the capabilities of our proposed model by considering three
examples, described below.
The first example that we consider is the 0þ 1-D

Bjorken flow of massive ideal particles, where we aim
to separately tune the first-order bulk and shear viscosities ζ
and η (which can be tuned also by the first-order Shakhov
model, see Ref. [26]), as well as the second-order bulk-
shear coupling coefficient, λΠπ . By increasing λΠπ , we
allow for an enhanced bulk viscous pressure in the early
and intermediate times of the Bjorken expansion, even
when the particle mass is not so large.
The second example involves controlling the diffusion-

shear coupling coefficients, lVπ and lπV , which we discuss
in the context of longitudinal waves propagating through a
massless, ideal gas. Both these coefficients vanish in the
original RTA by Anderson and Witting [28], unlike in the
more realistic case of hard-sphere interactions [27,29,31] or
the interacting λφ4 scalar field theory [32,33].
The third problem consists of the time-honored Riemann

problem [34] for a dissipative, ideal gas of massless
particles. Besides providing a benchmark test for solvers
of perfect fluid dynamics, the flow around the shock front is
dominated by strong nonequilibrium effects. Our goal is to
derive a Shakhov model that is able to reproduce the results
obtained using the Boltzmann approach to multiparton
scattering (BAMPS) method [35], simulating hard-sphere
interactions via the test-particle method. We demonstrate
that using a Shakhov model able to tune all first- and
second-order transport coefficients for both diffusion and
shear leads to excellent agreement with the BAMPS data
reported in Refs. [36–38]. We also demonstrate the impor-
tance of the second-order transport coefficients, which
differ depending on the computational method employed
to derive them. While Ref. [38] found several discrepancies
between the BAMPS data and a formulation of second-
order hydrodynamics using the Denicol-Niemi-Molnar-
Rischke (DNMR) coefficients [27], the Shakhov model
tuned to recover the transport coefficients computed within
the IReD (inverse Reynolds dominance [29]) approach
gives an excellent agreement with the BAMPS data.
For all of the above examples, we show numerical

results of the kinetic Shakhov model obtained using a
discrete-velocity method implementation derived from the
relativistic lattice Boltzmann [14] method using finite-
difference techniques for the advection and time-stepping.
Our approach employs the so-called rapidity-based
moments [39], allowing the momentum magnitude to be
integrated out exactly. Taking into account azimuthal
symmetry, the momentum space complexity is reduced
to a single degree of freedom, namely the projection of the
particle velocity on the propagation axis (vz). The vz degree
of freedom is discretized using the Gauss-Legendre quad-
rature, as described in Refs. [11,12]. The algorithm is
highly efficient and its accuracy has been tested in previous
publications for the Riemann problem [12], longitudinal
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waves [28,40] and Bjorken flow [12,17,18,26,39,41,42]
setups. For validation purposes, we also solve the equations
of second-order hydrodynamics in the 0þ 1-D Bjorken
flow setup, as well as in the linearized limit of the
longitudinal wave damping problem, using Runge-Kutta
time integration. The code is available online as a
CodeOcean capsule [43] (see statement at the end of
Sec. VII).
The paper is structured as follows. In Sec. II, we review

the first-order Shakhov model introduced in Ref. [26]. We
then introduce the higher-order extension of the Shakhov
model in Sec. III, where we also discuss how to extract its
corresponding first- and second-order transport coefficients
arising in its hydrodynamic limit. Sections IV, V, and VI
illustrate the capabilities of the Shakhov model in the context
of Bjorken flow, longitudinal waves, and the Riemann
problem, respectively. Section VII concludes this paper.
We also include two appendixes: Appendix A describes our
discrete velocity method solver employing rapidity-based
moments, while Appendix B summarizes the high-order
Shakhov models considered in Sec. VI, taylored to capture a
selection of the second-order transport coefficients of an
ultrarelativistic gas of hard-sphere particles.

II. FIRST-ORDER SHAKHOV MODEL

The purpose of this section is to review the relaxation-
time approximation introduced by Anderson and
Witting [1,2] (in Sec. II A) and the first-order Shakhov
model introduced in Ref. [26] (see Sec. II B). This section
also serves to introduce much of the notation used later on
in this paper.

A. The Anderson-Witting model

The starting point of this model is the relativistic
Boltzmann equation,

kμ∂μfk ¼ C½f�; ð1Þ
where fk is the one-particle distribution function, kμ is the
on-shell particle four-momentum with k2¼ðk0Þ2−k2¼m2,
while C½f� is the Boltzmann collision term. The Anderson-
Witting approximation for the collision term C½f� reads

CAW½f�≡ −
Ek

τR
δfk; ð2Þ

where δfk ¼ fk − f0k represents the deviation of the
distribution function fk from local thermodynamic equilib-
rium. In this paper, we focus on ideal gases, for which f0k is
given by

f0k ¼ ðeβEk−α þ aÞ−1; ð3Þ
where β ¼ T−1 is the inverse temperature, α ¼ βμ is the
ratio between the chemical potential and the temperature, uμ

is the fluid four-velocity, Ek ¼ uμkμ is the particle energy in

the fluid-rest frame, while a ¼ 1, −1 and 0 are for Fermi-
Dirac, Bose-Einstein and Boltzmann statistics, respectively.
The distribution fk can be used to compute the macro-

scopic particle four-flowNμ and stress-energy tensor Tμν as

Nμ ¼
Z

dKkμfk; Tμν ¼
Z

dKkμkνfk; ð4Þ

where dK ≡ gd3k=½ð2πÞ3k0� and g is the degeneracy factor.
The equilibrium contributions to the above quantities read

Nμ
0 ¼ nuμ; Tμν

0 ¼ euμuν − PΔμν; ð5Þ

where Δμν ≡ gμν − uμuν is the projector on the hypersur-
face orthogonal to uμ, while the particle number density n,
energy density e and hydrostatic pressure P are given by

n ¼ I10; e ¼ I20; P ¼ I21; ð6Þ

where Inq are thermodynamic integrals defined as

Inq ≡ 1

ð2qþ 1Þ!!
Z

dKEn−2q
k ð−ΔαβkαkβÞqf0k: ð7Þ

For future use, we introduce the associated integrals Jnq,
defined as

Jnq ≡
�
∂Inq
∂α

�
β

¼ −
�
∂In−1;q
∂β

�
α

¼ 1

ð2qþ 1Þ!!
Z

dKEn−2q
k ð−ΔαβkαkβÞqf0kf̃0k

¼ β−1½In−1;q−1 þ ðn − 2qÞIn−1;q�; ð8Þ

with f̃0k ≡ 1 − af0k, as well as the recurrence relations:

Inq ¼
1

2qþ 1
ðIn;q−1 −m2In−2;q−1Þ; ð9aÞ

Jnq ¼
1

2qþ 1
ðJn;q−1 −m2Jn−2;q−1Þ: ð9bÞ

Taking into account the thermodynamic relations�
∂P
∂T

�
μ

¼ s;
�
∂P
∂μ

�
T
¼ n; ð10Þ

where s ¼ ðeþ P − μnÞ=T is the entropy density, one can
establish:

J21 ¼
�
∂P
∂α

�
β

¼ nT;

J31 ¼ −
�
∂P
∂β

�
α

¼ Tðeþ PÞ: ð11Þ
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Multiplying Eq. (1) by 1 and kμ and integrating with
respect to dK leads to

∂μNμ ¼ −
uμ
τR

ðNμ − Nμ
0Þ;

∂νTμν ¼ −
uν
τR

ðTμν − Tμν
0 Þ: ð12Þ

Imposing the conservation equations ∂μNμ ¼ 0 and
∂νTμν ¼ 0, we arrive at the Landau matching conditions,

uμNμ ¼ uμN
μ
0 ¼ n; uνTμν ¼ uνT

μν
0 ¼ euμ: ð13Þ

The eigenvalue equation implied in the second relation,
Tμ

νuν ¼ euμ, corresponds to the Landau (energy) frame
definition of the fluid four-velocity uμ. In the Landau frame,
the deviations from equilibrium δNμ ¼ Nμ − Nμ

0 and
δTμν ¼ Tμν − Tμν

0 can be decomposed with respect to uμ as

δNμ ¼ Vμ; δTμν ¼ −ΠΔμν þ πμν; ð14Þ

where Π is the bulk viscous pressure, Vμ is the diffusion
current and πμν is the shear-stress tensor. The conservation
equations for Nμ and Tμν give rise to the following
evolution equations for n, e and uμ:

ṅþ nθ þ ∂μVμ ¼ 0; ð15aÞ

ėþ ðeþ Pþ ΠÞθ − πμνσμν ¼ 0; ð15bÞ

ðeþ Pþ ΠÞu̇μ −∇μðPþ ΠÞ þ Δμ
λ∂νπ

λν ¼ 0; ð15cÞ

where the dot denotes the comoving derivative, ḟ ≡ uμ∂μf,
while ∇μf ≡ Δν

μ∂νf ¼ ∂μf − uμḟ becomes the spatial gra-
dient in the fluid rest frame. Furthermore, θ≡ ∂μuμ is the
expansion scalar and σμν ≡∇hμuνi is the shear tensor, while
the angular brackets denote tracelessness, symmetrization
and orthogonality with respect to uμ in all indices. In the
case of rank-one and rank-two tensors, Vμ and Aμν, we have
Vhμi ¼ Δμ

νVν ¼ Vμ − uμðu · VÞ and

Ahμνi ¼
�
1

2
ðΔμ

αΔν
β þ Δν

αΔ
μ
βÞ −

1

3
ΔμνΔαβ

�
Aαβ: ð16Þ

Considering now that the deviation δfk from equilibrium
is small, the Chapman-Enskog method allows one to
estimate δfk in the AW model as follows:

δfk ≃ −
τR
Ek

kμ∂μf0k; ð17Þ

where τR is assumed to be of the same order as δfk. Using
the expression (3) for f0k, the right-hand side of the above
equation evaluates to

kμ∂μf0k ¼ −f0kf̃0k½kμðEk∂μβ − ∂μαÞ þ βkμkν∂μuν�

¼ −f0kf̃0k½E2
kβ̇ − Ekα̇þ β

3
ðm2 − E2

kÞθ
þ khμiðβEku̇μ þ Ek∇μβ − IμÞ þ βkhμkνiσμν�;

ð18Þ

where Iμ ¼ ∇μα and we used the properties kμ ¼ khμi þ
uμEk and

kμkν ¼ E2
ku

μuν þ Ekðuμkhνi þ uνkhμiÞ þ khμkνi

þ 1

3
ΔμνΔαβkαkβ: ð19Þ

We now seek to compute the diffusive quantities Π, Vμ

and πμν, expressed as

Π ¼ −
m2

3
ρ0; Vμ ¼ ρμ0; πμν ¼ ρμν0 ; ð20Þ

where the irreducible moments ρμ1���μlr of tensor-rank l and
energy index r of δfk are defined as

ρμ1���μlr ≡
Z

dKEr
kk

hμ1 � � � kμliδfk: ð21Þ

In the above, khμ1 � � � kμli ≡ Δμ1���μl
ν1���νl k

ν1 � � � kνl represents a
complete set of basis vectors [27,44].
Using the integration formula given in Eq. (20) of

Ref. [27],Z
dKFkkhμ1 � � � kμmikhν1 � � � kνni

¼ m!δmn

ð2mþ 1Þ!!Δ
μ1���μm
ν1���νm

Z
dKFkðΔαβkαkβÞm; ð22Þ

with Fk ≡ FkðEkÞ being a function that depends on kμ

only through the combination Ek ¼ kμuμ, we obtain

Π ≃ −τR
m2

3
½J10β̇ − J00α̇ − βJ11θ�; ð23aÞ

Vμ ≃ τR½J11Iμ − J21ðβu̇μ þ∇μβÞ�; ð23bÞ

πμν ≃ 2τRβJ32σμν: ð23cÞ

Equation (23c) for πμν is already in its familiar Navier-
Stokes form, πμν ≃ 2ηAWσ

μν, where the shear viscosity of
the Anderson-Witting model is

ηAW ¼ τRα
ð2Þ
0 ; αð2Þr ¼ βJ3þr;2: ð24Þ

In order to obtain similar constitutive relations for Π and
Vμ, we must employ the conservation equations (15) to
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eliminate the comoving derivatives α̇, β̇ and u̇μ. We start
with the case of Vμ, when dP ¼ J21dα − J31dβ can be used
to replace ∇μβ in favor of Fμ ≡∇μP and Iμ ≡∇μα:

∇μβ ¼ J21
J31

Iμ −
Fμ

J31
¼ Iμ

h
−

βFμ

eþ P
; ð25Þ

where h≡ ðeþ PÞ=n is the specific enthalpy per particle.
Using Eq. (15c) to express u̇μ in terms of Fμ and higher-
order terms, Eq. (23b) leads to Vμ ≃ κAWIμ, where the
diffusion coefficient κAW reads

κAW ¼ τRα
ð1Þ
0 ; αð1Þr ¼ Jrþ1;1 −

1

h
Jrþ2;1: ð26Þ

Finally, ṅ and ė can be related to α̇ and β̇ using the
following relations:

dn ¼ J10dα − J20dβ;

de ¼ J20dα − J30dβ: ð27Þ

This leads to

α̇ ¼ 1

G22

ðJ20ė − J30ṅÞ; β̇ ¼ 1

G22

ðJ10ė − J20ṅÞ; ð28Þ

where we introduced the notation:

Gnm ≡ Jn0Jm0 − Jn−1;0Jmþ1;0: ð29Þ

Using now the conservation Eqs. (15a) and (15b), we have

α̇ ¼ Hαθ þ
J20
G22

ðπμνσμν − ΠθÞ þ J30
G22

∂μVμ; ð30aÞ

β̇ ¼ Hβθ þ
J10
G22

ðπμνσμν − ΠθÞ þ J20
G22

∂μVμ; ð30bÞ

where Hα and Hβ are given by

Hα ≡ 1

G22

½J30n − J20ðeþ PÞ�; ð31aÞ

Hβ ≡ 1

G22

½J20n − J10ðeþ PÞ�: ð31bÞ

Substituting now Eqs. (30) into Eq. (23a), we find
Π ≃ −ζAWθ, where the coefficient of bulk viscosity ζAW
reads

ζAW¼ τR
m2

3
αð0Þ0 ; αð0Þr ¼HβJrþ1;0−HαJr0−βJrþ1;1: ð32Þ

We take a moment here to remark that the above relations
arise in a fluid with one conserved charge. If there is no
conserved charge, or if there are multiple conserved

charges, then the above discussion must be generalized,
as discussed in Ref. [45]. For the purpose of this paper, we
also consider the case when the fluid possesses no such
conserved charge. This case can be obtained as the limit
when α ¼ 0, leading to

α̇ ¼ 0; β̇ ¼ −
ė
J30

¼ eþ P
J30

θ þ Πθ − πμνσμν
J30

: ð33Þ

Comparing the above relations to Eq. (30), we see that for
the uncharged fluid we can formally identify

Hα → H̄α ≡ 0; Hβ → H̄β ≡ eþ P
J30

: ð34Þ

Ultimately, this leads to a modification of the constitutive
equation for the bulk viscous pressure and diffusion
current, which now read Π ≃ −ζ̄AWθ and Vμ ≃ 0, where

ζ̄AW ¼ τR
m2

3
ᾱð0Þ0 ; ᾱð0Þr ¼ H̄βJrþ1;0 − βJrþ1;1: ð35Þ

B. The first-order Shakhov-like extension

In the first-order Shakhov model introduced in Ref. [26],
Eq. (2) is replaced by

CS½fk� ¼ −
Ek

τR
ðfk − fSkÞ ¼ −

Ek

τR
ðδfk − δfSkÞ; ð36Þ

where fSk ¼ f0k þ δfSk drives fk towards f0k on a
modified path compared to the AW model. Multiplying
Eq. (36) by 1 and kμ and integrating with respect to dK
leads to

∂μNμ ¼ −
1

τR
ðn − nSÞ;

∂μTμν ¼ −
1

τR
½ðe − eSÞuν þWν −Wν

S�; ð37Þ

where Wμ ≡ Δμ
αTαβuβ is the heat flux (Wμ ¼ 0 in the

Landau frame). The conservation of the particle four-flow
Nμ and stress-energy tensor is achieved when

n ¼ nS; e ¼ eS; Wμ ¼ Wμ
S: ð38Þ

In the AWmodel, the velocity is taken in the Landau frame,
such that Wμ ¼ 0 and thus Wμ

S ¼ 0. The extension pro-
posed in Ref. [46] allows for a different frame to be used,
e.g., the Eckart frame; however, we do not pursue this
freedom in the remainder of this manuscript. We further
assume the Landau matching conditions, such that n, e and
uμ define the local equilibrium distribution f0k.
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Considering now that the deviations δfk and δfSk from
equilibrium are small, the Chapman-Enskog procedure can
be applied just as in the previous subsection, leading to

δfk − δfSk ≃ −
τR
Ek

kμ∂μf0k: ð39Þ

Taking the off-equilibrium moments of the above equation
gives

Π − ΠS ¼ −ζAWθ; ð40aÞ

Vμ − Vμ
S ¼ κAWIμ; ð40bÞ

πμν − πμνS ¼ 2ηAWσ
μν: ð40cÞ

As originally proposed by Shakhov [20], the nonequili-
brium moments ΠS, V

μ
S and πμνS are chosen as

ΠS≡Π
�
1−

τR
τΠ

�
; Vμ

S≡Vμ

�
1−

τR
τV

�
; πμνS ≡πμν

�
1−

τR
τπ

�
;

ð41Þ

where the new relaxation times τΠ, τV and τπ are thermo-
dynamic functions representing new model parameters.
Substituting the above equalities in Eqs. (40) leads to the
modified constitutive relations

Π ¼ −ζSθ; Vμ ¼ κSIμ; πμν ¼ 2ηSσ
μν; ð42Þ

where the first-order transport coefficients of the Shakhov
model read:

ζS ¼ m2

3
αð0Þ0 τΠ; κS ¼ αð1Þ0 τV; ηS ¼ αð2Þ0 τπ; ð43Þ

or equivalently, ζS ¼ ðτΠ=τRÞζAW, κS ¼ ðτV=τRÞκAW and
ηS ¼ ðτπ=τRÞηAW.
Following Shakhov’s prescription, the simplest way to

achieve the relations in Eq. (41) is to construct the Shakhov
distribution as

fSk ¼ f0k þ f0kf̃0kSk; ð44aÞ

where

Sk ≡ −
3Π
m2

�
1 −

τR
τΠ

�
Hð0Þ

k0 þ kμVμ

�
1 −

τR
τV

�
Hð1Þ

k0

þ kμkνπμν
�
1 −

τR
τπ

�
Hð2Þ

k0 ; ð44bÞ

whereHðlÞ
k0 are polynomials that ensure the recovery of the

matching conditions in Eq. (38) and the relations (41), such
that

0B@ ρS;0

ρS;1

ρS;2

1CA ¼
Z

dK

0B@ 1

Ek

E2
k

1CAδfSk ¼ −
3

m2
0

ΠS

0B@ 1

0

0

1CA;

 
ρμS;0

ρμS;1

!
¼
Z

dK

�
1

Ek

�
khμiδfSk ¼ Vμ

S

�
1

0

�
;

ρμνS;0 ¼
Z

dKkhμkνiδfSk ¼ πμνS : ð44cÞ

Taking Hð0Þ
k0 , H

ð1Þ
k0 and Hð2Þ

k0 as second-, first- and zeroth-
order polynomials, their exact expressions can be obtained
as [28]

Hð0Þ
k0 ¼ G33 −G23Ek þ G22E2

k

J00G33 − J10G23 þ J20G22

;

Hð1Þ
k0 ¼ J31Ek − J41

J21J41 − J231
; Hð2Þ

k0 ¼ 1

2J42
; ð44dÞ

where Jnq and Gnm were introduced in Eqs. (8) and (29).
The above functions coincide with those appearing in the
14-moment approximation of δfk in Ref. [27].

III. HIGHER-ORDER SHAKHOV-LIKE
EXTENSION

As mentioned in the Introduction, the Shakhov-like
model as introduced in Eq. (36) can be used to control
also second-order transport coefficients. This requires an
extension of the first-order Shakhov model summarized in
the previous section by adding extra terms on the right-
hand side of Eq. (44b). Anticipating material that will be
introduced in this section, our proposed extension effec-
tively amounts to modifying an increasingly large set of

entries in the collision matrix AðlÞ
rn associated with the

Shakhov collision term, CS½f�.
We begin this section with a discussion on the equations

of motion for the irreducible moments ρμ1���μlr of δfk,
derived from the Boltzmann equation in Ref. [27] and
summarized in Sec. III A here. We then discuss the
collision matrix of the extended Shakhov model and its
inverse in Sec. III B. The equations of second-order hydro-
dynamics and the corresponding transport coefficients
arising from the Shakhov model are discussed in
Sec. III C. These results are specialized to the case of a
fluid without conserved charges in Sec. III D and to the case
of an ultrarelativistic ideal gas in Sec. III E. Section III F
discusses the degrees of freedom that can be fixed by the
Shakhov model.

A. Equations of motion for the irreducible moments

The central objects of the analysis are the irreducible
moments ρμ1���μlr of δfk, introduced in Eq. (21). Their
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equations of motion can be derived starting from the
Boltzmann Eq. (1), by substituting fk ¼ f0k þ δfk:

˙δfk ¼ −
1

Ek
kμ∂μf0k −

1

Ek
khμi∇μδfk þ C½f�

Ek
: ð45Þ

Similar to δfk, the collision term C½f� can also be
characterized by its irreducible moments, defined as

Cμ1���μl
r ≡

Z
dKEr

kk
hμ1 � � � kμliC½f�: ð46Þ

Multiplying Eq. (45) by Er
k, E

r
kk

hμi and Er
kk

hμkνi and integrating with respect to dK leads to [27]

ρ̇r − Cr−1 ¼ αð0Þr θ þ G2r

G22

ðΠθ − πμνσμνÞ þ
G3r

G22

ðVμu̇μ −∇μVμÞ þ ru̇μρ
μ
r−1

− ρrθ −
r − 1

3
ðρr −m2ρr−2Þθ −∇μρ

μ
r−1 þ ðr − 1Þρμνr−2σμν; ð47aÞ

ρ̇hμir − Chμi
r−1 ¼ αð1Þr Iμ þ ρνrω

μ
ν þ

1

3
½ðr − 1Þm2ρμr−2 − ðrþ 3Þρμr �θ − Δμ

λ∇νρ
λν
r−1 þ rρμνr−1u̇ν

þ 1

5
½ð2r − 2Þm2ρνr−2 − ð2rþ 3Þρνr�σμν þ

1

3
½m2rρr−1 − ðrþ 3Þρrþ1�u̇μ

þ βJrþ2;1

eþ P
ðΠu̇μ −∇μΠþ Δμ

ν∂λπ
λνÞ − 1

3
∇μðm2ρr−1 − ρrþ1Þ þ ðr − 1Þρμνλr−2σλν; ð47bÞ

ρ̇hμνir − Chμνi
r−1 ¼ 2αð2Þr σμν −

2

7
½ð2rþ 5Þρλhμr − 2m2ðr − 1Þρλhμr−2�σνiλ þ 2ρλhμr ωνi

λ

þ 2

15
½ðrþ 4Þρrþ2 − ð2rþ 3Þm2ρr þ ðr − 1Þm4ρr−2�σμν þ

2

5
∇hμðρνirþ1 −m2ρνir−1Þ

−
2

5
½ðrþ 5Þρhμrþ1 − rm2ρhμr−1�u̇νi −

1

3
½ðrþ 4Þρμνr −m2ðr − 1Þρμνr−2�θ

þ ðr − 1Þρμνλρr−2 σλρ − Δμν
αβ∇λρ

αβλ
r−1 þ rρμνλr−1u̇λ; ð47cÞ

where we considered that the fluid possesses a conserved
charge, characterized by α ¼ μ=T ≠ 0. In the case
when no such charge is present, α ¼ 0 and the above
equations are modified as discussed in Sec. II A. The
modifications to the equation for the scalar moments can
be summarized by

αð0Þr → ᾱð0Þr ;
G2r

G22

→
Jrþ1;0

J30
;

G3r

G22

→ 0; ð48Þ

such that Eq. (47a) becomes

ρ̇r − Cr−1 ¼ ᾱð0Þr θ þ Jrþ1;0

J30
ðΠθ − πμνσμνÞ − ρrθ

þ ru̇μρ
μ
r−1 −

r − 1

3
ðρr −m2ρr−2Þθ

−∇μρ
μ
r−1 þ ðr − 1Þρμνr−2σμν: ð49Þ

From a structural point of view, the equations of motion
for the vector and tensor moments remain unchanged,
with the observation that in this case Iμ ¼ 0 and all vector
moments become of second order.

B. Collision matrix of the extended Shakhov model

In the approximation when the fluid is not far from
equilibrium, Cμ1���μl

r can be linearized with respect to the
irreducible moments ρμ1���μlr of the nonequilibrium part of
the distribution function δfk ¼ fk − f0k,

Cμ1���μl
r−1 ¼ −

X
n

AðlÞ
rn ρ

μ1���μl
n ; ð50Þ

where the summation over n goes in principle from −∞
to ∞. In the case of a general collision term, the collision

matrix AðlÞ
rn must be computed with respect to a finite basis

(cf. Ref. [27]), which accounts only for the moments with
indices −sl ≤ r ≤ Nl, where sl is a shift parameter
allowing for negative-order moments to be represented
[28], while Nl is the expansion order. Here we employ the
basis-free approach introduced for the Anderson-Witting
collision model in Ref. [28], which takes advantage of the
simplicity of the relaxation time approximation to bypass
the use of any basis.
We now compute the collision matrix corresponding to

the Shakhov model:

Cμ1���μl
S;r−1 ¼ −

1

τR
ρμ1���μlr þ 1

τR
ρμ1���μlS;r ; ð51Þ
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where the first term originates from the original AWmodel,
while the second one involves the irreducible moments
ρμ1���μlS;r of δfSk. Since δfSk vanishes in equilibrium, its
irreducible moments can be written in terms of those of
δfk. For simplicity, we restrict the discussion in this paper
to the case of a linear dependence and leave the extension to
a quadratic dependence (as is the case for a generic 2 → 2
collision term) for future work.
Naturally, we may ask which moments ρμ1���μlS;r of the

Shakhov model are required and what should their relation
to the moments ρμ1���μlr of δfk be? For the first-order model
presented in Eq. (44b), we have ρS;1 ¼ ρS;2 ¼ ρμS;1 ¼ 0,
while Eq. (41) provides relations for ρS;0, ρ

μ
S;0 and ρμνS;0.

Inspection of the right-hand sides of Eqs. (47) shows
that the natural extension of this set of moments should
include both negative-order and positive-order moments.
We therefore consider a subset of moments with indices
−sl ≤ r ≤ Nl and write

ρμ1���μlS;r ¼
XNl

n¼−sl

ðδrn − τRA
ðlÞ
S;rnÞρμ1���μln ; ð52Þ

where the reduced collision matrix AðlÞ
S;rn is in principle

arbitrary, representing the degrees of freedom of the
extended Shakhov model. Substituting the above into
Eq. (51) gives

Cμ1���μl
S;r−1 ¼ −

XNl

n¼−sl

AðlÞ
S;rnρ

μ1���μl
n : ð53Þ

In what follows, we demand that the above relation is
satisfied for −sl ≤ r ≤ Nl.
Before proceeding further, we must first give an explicit

expression for δfSk. As already discussed for the first-
order Shakhov model, the deviation δfSk ¼ fSk − f0k ¼
f0kf̃0kSk considered in Eq. (44) must be constructed using
an orthogonal basis which ensures the exact recovery of the
irreducible moments of δfSk that we require, namely ρμ1���μlS;r

for −sl ≤ r ≤ Nl. For this purpose, we employ the shifted
basis introduced in Ref. [28] and write

δfSk ¼ f0k þ f0kf̃0kSk;

Sk ¼
XL
l¼0

XNl

n¼−sl

ρμ1���μlS;n E−sl
k khμ1 � � � kμliH̃ðlÞ

k;nþsl
; ð54Þ

where L is a finite but otherwise arbitrary tensor-rank

threshold, while H̃ðlÞ
kn are polynomials in energy Ek of

order Nl þ sl, defined as

H̃ðlÞ
kn ≡ ð−1Þl

l!J2l−2sl;l

XNlþsl

m¼n

ãðlÞmnP̃
ðlÞ
km: ð55Þ

In the above, P̃ðlÞ
km ¼Pm

r¼0 ã
ðlÞ
mrEr

k are polynomials of
order m, satisfying the orthogonality relationZ

dKω̃ðlÞP̃ðlÞ
kmP̃

ðlÞ
kn ¼ δmn; ð56Þ

where the weight function ω̃ðlÞ is defined as

ω̃ðlÞ ≡ ð−1Þl
ð2lþ 1Þ!!

E−2sl
k

J2l−2sl;l
ðΔαβkαkβÞlf0kf̃0k; ð57Þ

such that P̃ðlÞ
k0 ¼ ãðlÞ00 ¼ 1.

The finite-dimensional basis employed in Eq. (54)
ensures that ρμ1���μlS;r ¼ R dKδfS;kkhμ1 � � � kμliEr

k for all
−sl ≤ r ≤ Nl. When considering either r < −sl or
r > Nl, the corresponding irreducible moments will be
expressed in terms of those appearing in Eq. (54) via

ρμ1���μlS;r ¼
XNl

n¼−sl

ρμ1���μlS;n F̃ ðlÞ
−ðrþslÞ;nþsl

; ð58Þ

where the functions F̃ ðlÞ
rn are given by

F̃ ðlÞ
rn ≡ ð−1Þll!J2l−2sl;l

Z
dKω̃ðlÞE−r

k H̃ðlÞ
kn : ð59Þ

For this reason, the collision matrix AðlÞ
S;rn will contain

nontrivial entries when r < −sl and r > Nl, as illustrated
below:

AðlÞ
rn ¼

0BBB@
1
τR
δrn AðlÞ

<;rn 0

0 AðlÞ
S;rn 0

0 AðlÞ
>;rn

1
τR
δrn

1CCCA; ð60Þ

where the first and last lines correspond to row indices
satisfying r<−sl and r > Nl, respectively. The elements
on the first and third columns, having column index
satisfying n < −sl and n > Nl, respectively, have entries
that are identical to those of the AW model. On the contrary,
the middle column (where −sl ≤ n ≤ Nl) exhibits non-
vanishing entries for r < −sl and r > Nl, given by

AðlÞ
<=>;rn ¼ −

1

τR
F̃ ðlÞ

−ðrþslÞ;nþsl
þ
XNl

j¼−sl

F̃ ðlÞ
−ðrþslÞ;jþsl

AðlÞ
S;jn:

ð61Þ

The inverse of the collision matrix AðlÞ
rn in Eq. (60) can

be obtained analytically, as follows:

τðlÞrn ¼

0BB@
τRδrn τðlÞ<;rn 0

0 τðlÞS;rn 0

0 τðlÞ>;rn τRδrn

1CCA; ð62Þ
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where the reduced inverse matrix τðlÞS;rn ≡ ðAðlÞ
S Þ−1rn is the

inverse of the ðNl þ sl þ 1Þ × ðNl þ sl þ 1Þ reduced

collision matrix AðlÞ
S;rn. As in the case of AðlÞ

rn , the inverse

matrix τðlÞrn exhibits the same elements as the AW model
when the column index satisfies n < −sl or n > Nl.
However, for −sl ≤ n ≤ Nl, the rows with indices
r < −sl and r > Nl exhibit nonvanishing entries given by

τðlÞ<;>;rn ¼ −τR
XNl

j¼−sl

AðlÞ
<;>;rjτ

ðlÞ
S;jn ¼ −τRF̃

ðlÞ
−ðrþslÞ;nþsl

þ
XNl

j¼−sl

F̃ ðlÞ
−ðrþslÞ;jþsl

τðlÞS;jn: ð63Þ

C. Transport coefficients of the extended
Shakhov model

We now employ the method of moments introduced in
Ref. [27] using the basis-free approach of Ref. [28] to
derive the second-order equations of Müller-Israel-Stewart-
type hydrodynamics and the corresponding first- and
second-order transport coefficients arising from our
higher-order Shakhov collision model. In order to ensure
that the system of equations is hyperbolic, we employ the
(IReD) approach introduced in Ref. [29]. To achieve
second-order accuracy, we employ as bookkeeping param-
eters the inverse Reynolds number Re−1 and the Knudsen
number Kn. The former is proportional to the ratio between
the dissipative quantities and a corresponding equilibrium
quantity, i.e., Re−1 ∼ jΠj=P, jVμj=n or jπμνj=P. The latter is
proportional to the ratio of microscopic to macroscopic
scales, Kn ∼ λmfp∇μf, where λmfp is related to the particle
mean free path, while f is a function of the local
thermodynamic parameters. As a rule of thumb, the
irreducible moments ρμ1���μlr are of order Re−1 (or higher),
while gradient terms such as θ, Iμ or σμν will appear in
combinations making OðKnÞ contributions.
The second-order equations of fluid dynamics can be

obtained from the moment equations (47), which we
summarize as

ρ̇n þ
X
r

Að0Þ
nr ρr ¼ αð0Þn θ þOðRe−1KnÞ; ð64aÞ

ρ̇hμin þ
X
r

Að1Þ
nr ρ

μ
r ¼ αð1Þn Iμ þOðRe−1KnÞ; ð64bÞ

ρ̇hμνin þ
X
r

Að2Þ
nr ρ

μν
r ¼ 2αð2Þn σμν þOðRe−1KnÞ: ð64cÞ

For brevity, we omitted the terms which are of second or
higher order on the right-hand side of the above relations.

Note that, in the spirit of the basis-free paradigm, we did
not specify fixed limits for the summation over r. However,

the structure of AðlÞ
rn shown in Eq. (60) guarantees that this

summation is both finite and well defined. Concretely, r is
restricted to the interval f−sl;−sl þ 1;…; Nlg ∪ fng,
i.e., the middle column shown in Eq. (62) and the
element on the diagonal (implied by the τ−1R δrn entries).
Explicitly,

n < −sl∶ r∈ fng ∪ f−sl;…; Nlg;
−sl ≤ n ≤ Nl∶ r∈ f−sl;…; Nlg;

n > Nl∶ r∈ f−sl;…; Nlg ∪ fng: ð65Þ

We now multiply the relations in Eq. (64) by τðlÞrn and
sum over n. At leading order, we obtain the first-order
Navier-Stokes-like relationship between the OðRe−1Þ irre-
ducible moments ρμ1���μlr and the OðKnÞ thermodynamic
forces,

ρr ≃
3

m2
ζrθ; ρμr ≃ κrIμ; ρμνr ≃ 2ηrσ

μν; ð66Þ

where the first-order transport coefficients are

ζr¼
m2

3

X
n≠1;2

τð0Þrn α
ð0Þ
n ; κr¼

X
n≠1

τð1Þrn α
ð1Þ
n ; ηr¼

X
n

τð2Þrn α
ð2Þ
n :

ð67Þ

As before, we did not specify the summation limits for the

index n. Since the structure of τðlÞrn , shown in Eq. (62), is

identical to that of AðlÞ
nr , the values allowed for n in the

above expressions for a given r are identical to the values of
r allowed by Eq. (65) for a given of n. Throughout this
section, we will continue to omit the summation limits,
with the implicit understanding that the summation is
performed as described above. Coming back to the com-
putation of the first-order transport coefficients, when
−sl ≤ r ≤ Nl we have

ζr ¼
m2

3

XN0

n¼−s0;≠1;2
τð0ÞS;rnα

ð0Þ
n ;

κr ¼
XN1

n¼−s1;≠1
τð1ÞS;rnα

ð1Þ
n ; ηr ¼

XN2

n¼−s2

τð2ÞS;rnα
ð2Þ
n : ð68Þ

When r < −sl or r > Nl, one has

ζr ¼
τRm2

3
αð0Þr þ

XN0

n¼−s0;≠1;2
F̃ ð0Þ

−r−s0;nþs0

�
ζn −

τRm2

3
αð0Þn

�
;

ð69aÞ
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κr ¼ τRα
ð1Þ
r þ

XN1

n¼−s1;≠1
F̃ ð1Þ

−r−s1;nþs1ðκn − τRα
ð1Þ
n Þ; ð69bÞ

ηr ¼ τRα
ð2Þ
r þ

XN2

n¼−s2

F̃ ð2Þ
−r−s2;nþs2ðηn − τRα

ð2Þ
n Þ: ð69cÞ

Next, we employ the IReD approach, by which Eq. (66)
is employed at r ¼ 0 to approximate, up to first order in Kn
and Re−1, the thermodynamic forces θ, Iμ and σμν in terms
of the main dissipative quantities,

θ ≃ −
Π
ζ
; Iμ ≃

Vμ

κ
; σμν ≃

πμν

2η
; ð70Þ

with ζ ≡ ζ0, κ ≡ κ0 and η≡ η0. Then, the irreducible
moments with r ≠ 0 are approximated by replacing
Eq. (70) in Eq. (66):

ρr≃−
3

m2
Cð0Þr Π; ρμr ≃Cð1Þr Vμ; ρμνr ≃Cð2Þr πμν; ð71Þ

where the coefficients CðlÞr are given by

Cð0Þr ¼ ζr
ζ
; Cð1Þr ¼ κr

κ
; Cð2Þr ¼ ηr

η
: ð72Þ

Using the above approximations, we arrive at the hydro-
dynamical equations in the IReD approach:

τΠΠ̇þ Π ¼ −ζθ þ J þR; ð73aÞ

τVV̇hμi þ Vμ ¼ κIμ þ J μ þRμ; ð73bÞ

τππ̇
hμνi þ πμν ¼ 2ησμν þ J μν þRμν; ð73cÞ

where the relaxation times τΠ, τV and τπ are given by

τΠ¼
X
r≠1;2

τð0Þ0r C
ð0Þ
r ; τV ¼

X
r≠1

τð1Þ0r C
ð1Þ
r ; τπ¼

X
r

τð2Þ0r C
ð2Þ
r :

ð74Þ

The terms R, Rμ and Rμν are of order OðRe−2Þ and
originate from contributions to the collision term which are
quadratic with respect to δfk, or equivalently, with respect
to its irreducible moments ρμ1���μlr . As already mentioned
before, in this paper we do not include such terms in the
Shakhov model and therefore these terms vanish identi-
cally: R ¼ Rμ ¼ Rμν ¼ 0. We note that for a realistic
collision kernel, such as the 2 → 2 binary scattering kernel,
these terms do not vanish, see e.g. Refs. [47,48] for a
discussion of such quadratic terms in the case of hard-
sphere interactions.

The J ;J μ and J μν collect terms of first order in Kn
and Re−1:

J ¼ −lΠV∇μVμ − τΠVVμu̇μ − δΠΠΠθ

− λΠVVμIμ þ λΠππ
μνσμν; ð75aÞ

J μ ¼ −τVVνω
νμ − δVVVμθ − lVΠ∇μΠ

þ lVπΔμν∇λπ
λ
ν þ τVΠΠu̇μ − τVππ

μνu̇ν

− λVVVνσ
μν þ λVΠΠIμ − λVππ

μνIν; ð75bÞ
J μν ¼ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ − τπππ

λhμσνiλ þ λπΠΠσμν

− τπVVhμu̇νi þ lπV∇hμVνi þ λπVVhμIνi: ð75cÞ
The transport coefficients appearing above can be com-
puted based on the expression for the inverse of the

collision matrix τðlÞrn , given in Eq. (62). In particular, we

will need the elements on the r ¼ 0 line, where τðlÞ0n ¼ τðlÞS;0n.
For the terms appearing in J , corresponding to the
equation of motion for Π, we have

lΠV ¼ −
m2

3

X
r≠1;2

τð0Þ0r

�
Cð1Þr−1 −

G3r

D20

�
; ð76aÞ

τΠV ¼
X
r≠1;2

m2τð0Þ0r

3

�
rCð1Þr−1 þ

∂Cð1Þr−1
∂ ln β

−
G3r

D20

�
; ð76bÞ

δΠΠ ¼
X
r≠1;2

τð0Þ0r

�
rþ 2

3
Cð0Þr þHα

∂Cð0Þr

∂α
þHβ

∂Cð0Þr

∂β

−
m2

3
ðr − 1ÞCð0Þr−2 −

m2

3

G2r

D20

�
; ð76cÞ

λΠV ¼ −
m2

3

X
r≠1;2

τð0Þ0r

 
∂Cð1Þr−1
∂α

þ 1

h
∂Cð1Þr−1
∂β

!
; ð76dÞ

λΠπ ¼
m2

3

X
r≠1;2

τð0Þ0r

�
G2r

G22

þ ð1 − rÞCð2Þr−2

�
: ð76eÞ

The transport coefficients appearing in J μ read:

δVV ¼ 1

3

X
r≠1

τð1Þ0r

h
ðrþ 3ÞCð1Þr −m2ðr − 1ÞCð1Þr−2

i

þ
X
r≠1

τð1Þ0r

 
Hα

∂Cð1Þr

∂α
þHβ

∂Cð1Þr

∂β

!
; ð77aÞ

lVΠ ¼
X
r≠1

τð1Þ0r

�
βJrþ2;1

eþ P
− Cð0Þr−1 þ

Cð0Þrþ1

m2

�
; ð77bÞ

τVΠ ¼
X
r≠1

τð1Þ0r

�
βJrþ2;1

eþ P
þ rþ 3

m2
Cð0Þrþ1 − rCð0Þr−1

�
þ 1

m2

X
r≠1

τð1Þ0r
∂

∂ ln β

�
Cð0Þrþ1 −m2Cð0Þr−1

�
; ð77cÞ
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lVπ ¼
X
r≠1

τð1Þ0r

�
βJrþ2;1

eþ P
− Cð2Þr−1

�
; ð77dÞ

τVπ ¼
X
r≠1

τð1Þ0r

�
βJrþ2;1

eþ P
−
∂Cð2Þr−1
∂ ln β

− rCð2Þr−1

�
; ð77eÞ

λVV ¼ 1

5

X
r≠1

τð1Þ0r

h
ð2rþ 3ÞCð1Þr − 2m2ðr − 1ÞCð1Þr−2

i
; ð77fÞ

λVΠ ¼ −
X
r≠1

τð1Þ0r

m2

�
1

h
∂

∂β
þ ∂

∂α

��
Cð0Þrþ1 −m2Cð0Þr−1

�
; ð77gÞ

λVπ ¼
X
r≠1

τð1Þ0r

�
1

h
∂Cð2Þr−1
∂β

þ ∂Cð2Þr−1
∂α

�
: ð77hÞ

Finally, the transport coefficients from J μν are

δππ ¼
X
r

τð2Þ0r

hrþ 4

3
Cð2Þr −

m2

3
ðr − 1ÞCð2Þr−2

i
þ
X
r

τð2Þ0r

�
Hα

∂Cð2Þr

∂α
þHβ

∂Cð2Þr

∂β

�
; ð78aÞ

τππ ¼
2

7

X
r

τð2Þ0r

h
ð2rþ 5ÞCð2Þr − 2m2ðr − 1ÞCð2Þr−2

i
; ð78bÞ

λπΠ ¼ 2

5m2

X
r

τð2Þ0r

h
−ðrþ 4ÞCð0Þrþ2 þm2ð2rþ 3ÞCð0Þr

−m4ðr − 1ÞCð0Þr−2

i
; ð78cÞ

τπV ¼ 2

5

�X
r

τð2Þ0r ½ðrþ 5ÞCð1Þrþ1 −m2rCð1Þr−1�

þ
X
r

τð2Þ0r

�
∂Cð1Þrþ1

∂ ln β
−m2

∂Cð1Þr−1
∂ ln β

�	
; ð78dÞ

lπV ¼ 2

5

X
r

τð2Þ0r ðCð1Þrþ1 −m2Cð1Þr−1Þ; ð78eÞ

λπV ¼ 2

5

X
r

τð2Þ0r

�
∂Cð1Þrþ1

∂α
þ 1

h

∂Cð1Þrþ1

∂β

�

−
2m2

5

X
r

τð2Þ0r

�
∂Cð1Þr−1
∂α

þ 1

h
∂Cð1Þr−1
∂β

�
: ð78fÞ

The above equations give the tools to extract the trans-
port coefficients of a fluid with one conserved charge,
corresponding to a given implementation of the Shakhov
model. In the following subsections, we will discuss the

transport coefficients arising in a fluid with no conserved
charges, as well as for an ultrarelativistic ideal gas.

D. Transport coefficients for the fluid
without conserved charges

The case when the fluid bears no conserved charge will
be considered when discussing applications to the Bjorken
flow in Sec. IV and requires formally to set α ¼ 0, α̇ ¼ 0
and Iμ ¼ ∇μα ¼ 0 [see the discussion around Eqs. (33)
and (34)]. Thus, all vector moments ρμr are of second order
with respect to Kn and Re−1, such that the equations of
second-order hydrodynamics (73) reduce to

τ̄ΠΠ̇þ Π ¼ −ζ̄θ − δ̄ΠΠΠθ þ λ̄Πππ
μνσμν; ð79aÞ

τππ̇
hμνi þ πμν ¼ 2ησμν þ 2τππ

hμ
λ ω

νiλ − δπππ
μνθ

− τπππ
λhμσνiλ þ λ̄πΠΠσμν; ð79bÞ

where the overhead bar indicates transport coefficients
which are different from the charged case discussed in
the previous subsection. The transport coefficients
appearing in the equation for Π differ structurally from
those reported in Sec. III C. They can be obtained from
the latter under the replacements summarized in Eq. (48).
Specifically, we list below the expressions for all barred
transport coefficients:

ζ̄n ¼
m2

3

X
r≠1;2

τð0Þnr ᾱ
ð0Þ
r ; τ̄Π ¼

X
r≠1;2

τð0Þ0r C̄
ð0Þ
r ; ð80aÞ

δ̄ΠΠ ¼
X
r≠1;2

τð0Þ0r

�
rþ 2

3
C̄ð0Þr þ eþ P

J30

∂C̄ð0Þr

∂β

−
m2

3
ðr − 1ÞC̄ð0Þr−2 þ

m2

3

Jrþ1;0

J30

�
; ð80bÞ

λ̄Ππ ¼
m2

3

X
r≠1;2

τð0Þ0r

�
ð1 − rÞCð2Þr−2 þ

Jrþ1;0

J30

�
; ð80cÞ

λ̄πΠ ¼ 2

5m2

X
r

τð2Þ0r

h
−ðrþ 4ÞC̄ð0Þrþ2 þm2ð2rþ 3ÞC̄ð0Þr

−m4ðr − 1ÞC̄ð0Þr−2

i
; ð80dÞ

where C̄ð0Þr ¼ ζ̄r=ζ̄0. In addition, η, τπ , δππ and τππ are
given in Eqs. (68), (74), (78a) and (78b).

E. Transport coefficients for the ultrarelativistic
classical gas

Another limit of the system discussed in Sec. III C is that
of the ultrarelativistic classical gas, which we will refer to
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in Secs. V and VI. The equilibrium distribution for the
classical gas can be obtained by setting a ¼ 0 in Eq. (3),
leading to the Maxwell-Jüttner distribution function:

f0k ¼ eα−βEk : ð81Þ
Since ∂f0k=∂α ¼ f0k, we have Jnq ¼ Inq, with

Inq ¼
Pβ2−n

2ð2qþ 1Þ!! ðnþ 1Þ!: ð82Þ

The functions αð1Þr and αð2Þr appearing in Eqs. (26) and (24),
respectively, reduce to

αð1Þr ¼ Pðrþ 2Þ!ð1 − rÞ
24βr−1

; αð2Þr ¼ Pðrþ 4Þ!
30βr

: ð83Þ

In particular, we find

G22¼−3P2; J20−hJ10¼−P; J30−hJ20¼0; ð84Þ
such that Hα ¼ 0 and Hβ ¼ β=3.
For an ultrarelativistic fluid, Π ¼ 0 by the tracelessness

condition Tμ
μ ¼ 0, such that the scalar moments do not

play any role. The equations of second-order hydrody-
namics in the IReD approach [29] read:

τVV̇hμi þ Vμ ¼ κIμ þ J μ; ð85aÞ
τππ̇

hμνi þ πμν ¼ 2ησμν þ J μν: ð85bÞ
The tensors J μ and J μν containing second-order terms of
order OðRe−1KnÞ are given by

J μ ¼ −τVVνω
νμ − δVVVμθ þ lVπΔμν∇λπ

λ
ν

− τVππ
μνu̇ν − λVVVνσ

μν − λVππ
μνIν; ð86aÞ

J μν ¼ 2τππ
hμ
λ ω

νiλ − δπππ
μνθ − τπππ

λhμσνiλ
− τπVVhμu̇νi þ lπV∇hμVνi þ λπVVhμIνi: ð86bÞ

As usual, the first-order transport coefficients κn and ηn are
obtained from Eq. (67), while the relaxation times τV and τπ
are computed as in Eq. (74). Using now the relations

β
∂CðlÞr

∂β
¼ −rCðlÞr ;

∂CðlÞr

∂α
¼ 0; ð87Þ

it is not difficult to establish that

δVV ¼ τV; τVπ ¼lVπ; δππ¼
4

3
τπ; τπV ¼4lπV; ð88Þ

as can be seen after setting m ¼ 0 in Eqs. (77)–(78). The
other second-order transport coefficients reduce to

lVπ ¼
X
r≠1

τð1Þ0r

�
βJrþ2;1

eþ P
− Cð2Þr−1

�
; ð89aÞ

λVV ¼ 1

5

X
r≠1

ð2rþ 3Þτð1Þ0r C
ð1Þ
r ; ð89bÞ

λVπ ¼ −
1

4

X
r≠1

ðr − 1Þτð1Þ0r C
ð2Þ
r−1; ð89cÞ

τππ ¼
2

7

X
r

ð2rþ 5Þτð2Þ0r C
ð2Þ
r ; ð89dÞ

lπV ¼ 2

5

X
r

τð2Þ0r C
ð1Þ
rþ1; ð89eÞ

λπV ¼ −
1

10

X
r

ðrþ 1Þτð2Þ0r C
ð1Þ
rþ1: ð89fÞ

In evaluating the above expressions, it is instructive to
consider first that the weight function ω̃ðlÞ for the basis
shifted by sl, introduced in Eq. (57), can be written in terms
of the one corresponding to sl ¼ 0, denoted without the
overhead tilde, ωðlÞ, as

ω̃ðlÞ ¼ ð2lþ 1 − 2slÞ!!
ð2lþ 1Þ!!

J2l−2sl;l−sl
J2l−2sl;l

ωðl−slÞ: ð90Þ

Enforcing
R
dKω̃ðlÞP̃ðlÞ

kmP̃
ðlÞ
kn ¼ δmn shows that the poly-

nomials in the shifted basis (sl > 0) can be written in terms
of those in the nonshifted basis (sl ¼ 0) as

P̃ðlÞ
km ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!!

ð2lþ 1 − 2slÞ!!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l−2sl;l

J2l−2sl;l−sl

s
Pðl−slÞ
km : ð91Þ

Assuming now that Nl þ sl in the shifted basis is equal to
Nl−sl in the nonshifted basis, it is possible to express the
H̃kn polynomials in terms of the nonshifted ones via

H̃ðlÞ
kn ðNl; slÞ ¼

ð−1Þslðl − slÞ!ð2lþ 1Þ!!
l!ð2lþ 1 − 2slÞ!!

×Hðl−slÞ
kn ðNl þ sl; 0Þ: ð92Þ

The function F̃ ðlÞ
rn , defined via Eq. (59), can be shown to

satisfy

F̃ ðlÞ
rn ¼ F ðl−slÞ

rn : ð93Þ
Using the exact expression derived in Eq. (142) of
Ref. [28], we find

F̃ ðlÞ
rn ¼ βrþnð−1Þn

ðrþ nÞðr − 1Þ!n!

×
ð2l − 2sl þ 1 − rÞ!ðNl þ sl þ rÞ!
ð2l − 2sl þ 1þ nÞ!ðNl þ sl − nÞ! ; ð94Þ

where the results corresponding to r > 2l − 2sl þ 1
diverge due to the infrared behavior of the integrand in
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F̃ ðlÞ
rn . When 0 ≤ r ≤ Nl þ sl, it can be seen that F̃ ðlÞ

−r;n ¼ δrn. For r ¼ −Nl − sl − q and q > 0, it can be seen that

F̃ ðlÞ
−Nl−sl−q;n ¼

ð−βÞn−Nl−sl

βqn!ðq − 1Þ!
ðNl þ sl þ qÞ!ðNl þ 2l − sl þ qþ 1Þ!

ð2l − 2sl þ nþ 1Þ!ðNl þ sl − nÞ!ðNl þ sl þ q − nÞ ; ð95Þ

where the following relation was employed:

ð−qÞ!
ð−Nl−sl−q−1Þ!¼

ð−1ÞNlþslþ1

ðq−1Þ! ðNlþslþqÞ!: ð96Þ

The knowledge of the functions F̃ðlÞ
rn allows one to

calculate the transport coefficients κr and ηr for indices r
lying outside the basis, cf. Eqs. (69b) and (69c).
In particular, we will compute the termsPNl

n¼−sl F̃
ðlÞ
−r−s1;nþs1α

ðlÞ
n exactly, as follows. In the case

when r < −sl, the first index −r − sl of F̃ ðlÞ
−r−sl;nþsl is

larger than 0, hence we can use the representation (94),
such that

XN1

n¼−s1

F̃ ð1Þ
−r−s1;nþs1α

ð1Þ
n ¼ ðrþ 3 − s1Þ!ðN1 − rÞ!αð1Þr

ðrþ 2Þ!ð1 − rÞð−r − s1 − 1Þ! ;

×
1

ðN1 þ s1Þ!
Sð1ÞN1þs1;s1

;

XN2

n¼−s2

F̃ ð2Þ
−r−s2;nþs2α

ð2Þ
n ¼ ðrþ 5 − s2Þ!ðN2 − rÞ!αð2Þr

ðrþ 4Þ!ð−r − s2 − 1Þ!

×
1

ðN2 þ s2Þ!
Sð2ÞN2þs2;s2

; ð97Þ

where the functions αðlÞr were taken from Eq. (83). We also
introduced the following functions:

Sð1ÞN;s1
¼
XN
n¼0

�
N

n

� ð−1Þnðnþ 2 − s1Þ!ð1þ s1 − nÞ
ðn − r − s1Þðnþ 3 − 2s1Þ!

;

Sð2ÞN;s2
¼
XN
n¼0

�
N

n

� ð−1Þnðnþ 4 − s2Þ!
ðn − r − s2Þðnþ 5 − 2s2Þ!

: ð98Þ

In order to simplify the calculation, we replace s1 and s2 by
the allowed values, 0 ≤ s1 ≤ 1 and 0 ≤ s2 ≤ 2:

Sð1ÞN;0 ¼
XN
n¼0

�
N

n

� ð−1Þn
rþ 3

�
1 − r
n − r

−
4

nþ 3

�
;

Sð1ÞN;1 ¼
XN
n¼0

�
N

n

�
ð−1Þn

�
1 − r

n − r − 1
− 1

�
;

Sð2ÞN;0 ¼
XN
n¼0

�
N

n

� ð−1Þn
rþ 5

�
1

n − r
−

1

nþ 5

�
;

Sð2ÞN;1 ¼
XN
n¼0

�
N

n

� ð−1Þn
n − r − 1

;

Sð2ÞN;2 ¼
XN
n¼0

�
N

n

�
ð−1Þn

�
rþ 4

n − r − 2
þ 1

�
: ð99Þ

The factors 1=ðnþ αþ 1Þ appearing inside the summation
over n can be replaced using the formula

1

nþ αþ 1
¼

8>>><>>>:
Z

1

0

dxxnþα; nþ α > −1;

−
Z

1

0

dxx−n−α−2; nþ α < −1:
ð100Þ

Then, the sum over n can be performed using the binomial
theorem,

XN
n¼0

�
N

n

�
ð−1Þnxnþα ¼ xαð1 − xÞN;

XN
n¼0

�
N

n

�
ð−1Þnx−n−α−2 ¼ ð−1ÞNx−α−2−Nð1 − xÞN: ð101Þ

The limit x ¼ 1 shows that for N > 0, we always haveP
N
n¼0ðNnÞð−1Þn ¼ 0. This is always the case when sl > 0,

since N ¼ Nl þ sl > 0. Finally, the integration with
respect to the auxiliary variable x can be performed in
terms of the Beta function [49],

Bða; bÞ ¼
Z

1

0

dxxa−1ð1 − xÞb−1 ¼ ΓðaÞΓðbÞ
Γðaþ bÞ ; ð102Þ

where Γðnþ1Þ¼n! is the Gamma (factorial) function [49].
Without further ado, we find
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Sð1ÞN;0 ¼
N!

rþ 3

�ð1 − rÞð−r − 1Þ!
ðN − rÞ! −

8

ðN þ 3Þ!
�
;

Sð1ÞN;1 ¼
ð1 − rÞð−r − 2Þ!N!

ðN − r − 1Þ! ;

Sð2ÞN;0 ¼
N!

rþ 5

�ð−r − 1Þ!
ðN − rÞ! −

24

ðN þ 5Þ!
�
;

Sð2ÞN;1 ¼
ð−r − 2Þ!N!

ðN − 1 − rÞ! ;

Sð2ÞN;2 ¼
ðrþ 4Þð−r − 3Þ!N!

ðN − r − 2Þ! : ð103Þ

We thus find for the unshifted bases (s1 ¼ s2 ¼ 0):

XN1

n¼−s1

F̃ ð1Þ
−r−s1;nþs1α

ð1Þ
n

�
s1¼0

¼ αð1Þr

�
1 −

8ðN1 − rÞ!
ð1 − rÞð−r − 1Þ!ðN1 þ 3Þ!

�
;

XN2

n¼−s2

F̃ ð2Þ
−r−s2;nþs2α

ð2Þ
n

�
s2¼0

¼ αð2Þr

�
1 −

24ðN2 − rÞ!
ð−r − 1Þ!ðN2 þ 5Þ!

�
: ð104Þ

The second term in the square brackets provides a non-
vanishing correction depending on both r and N2 to the

intuitive result, αðlÞr . These results exactly agree with those
in Eqs. (161)–(162) of Ref. [28]. Remarkably, for any
nonvanishing shift sl ≠ 0, the second term completely
disappears:

XNl

n¼−sl

F̃ ðlÞ
−r−sl;nþslα

ðlÞ
n

�
sl≠0

¼ αðlÞr : ð105Þ

The above calculation can be repeated for the case

when r > Nl, when the representation (95) of F̃ ðlÞ
rn is

appropriate. In this case, we have

XN1

n¼−s1

F̃ ð1Þ
−r−s1;nþs1α

ð1Þ
n ¼ ðrþ 3 − s1Þ!ðrþ s1Þ!αð1Þr

ðrþ 2Þ!ð1 − rÞðr − 1 − N1Þ!

×
1

ðN1 þ s1Þ!
Sð1Þ0N1þs1;s1

;

XN2

n¼−s2

F̃ ð2Þ
−r−s2;nþs2α

ð2Þ
n ¼ ðrþ 5 − s2Þ!ðrþ s2Þ!αð2Þr

ðrþ 4Þ!ðr − 1 − N2Þ!

×
1

ðN2 þ s2Þ!
Sð2Þ0N2þs2;s2

; ð106Þ

where

Sð1Þ0N;s1
¼
XN
n¼0

�
N

n

� ð−1ÞnþNðnþ 2 − s1Þ!ð1þ s1 − nÞ
ðrþ s1 − nÞðnþ 3 − 2s1Þ!

;

Sð2Þ0N;s2
¼
XN
n¼0

�
N

n

� ð−1ÞnþNðnþ 4 − s2Þ!
ðrþ s2 − nÞðnþ 5 − 2s2Þ!

: ð107Þ

Repeating the same steps as above, we arrive at similar
results:

XN1

n¼−s1

F̃ ð1Þ
−r−s1;nþs1α

ð1Þ
n

�
s1¼0

¼ αð1Þr

�
1þ 8ð−1ÞN1r!

ð1 − rÞðr − 1 − N1Þ!ðN1 þ 3Þ!
�
;

XN2

n¼−s2

F̃ ð2Þ
−r−s2;nþs2α

ð2Þ
n

�
s2¼0

¼ αð2Þr

�
1þ 24ð−1ÞN2r!

ðr − N2 − 1Þ!ðN2 þ 5Þ!
�
;

XNl

n¼−sl

F̃ ðlÞ
−r−sl;nþslα

ðlÞ
n

�
sl≠0

¼ αðlÞr : ð108Þ

We thus conclude that for any nonvanishing shift of the
basis, i.e. sl > 0, the transport coefficients κr and ηr are
obtained from Eqs. (69b) and (69c) as follows:

κr ¼
XN1

n¼−s1;≠1
F̃ ð1Þ

−r−s1;nþs1κn; ð109Þ

ηr ¼
XN2

n¼−s2

F̃ ð2Þ
−r−s2;nþs2ηn; ð110Þ

where we keep in mind that for −sl ≤ r ≤ Nl, the

functions F̃ ðlÞ
−r−sl;nþsl ¼ δrn reduce to the Kronecker

symbol. In the case of the unshifted basis, s1 ¼ 0 or
s2 ¼ 0, we have for r < 0:

κr<0 ¼
8ðN1 − rÞ!τRαð1Þr

ð1 − rÞð−r − 1Þ!ðN1 þ 3Þ!þ
XN1

n¼0;≠1
F̃ ð1Þ

−r;nκn;

ηr<0 ¼
24ðN2 − rÞ!τRαð2Þr

ð−r − 1Þ!ðN2 þ 5Þ!þ
XN2

n¼0

F̃ ð2Þ
−r;nηn: ð111Þ
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In the case when r > Nl, we have

κr>N1
¼ −

8ð−1ÞN1r!τRα
ð1Þ
r

ð1− rÞðr− 1−N1Þ!ðN1 þ 3Þ!þ
XN1

n¼0;≠1
F̃ ð1Þ

−r;nκn;

ηr>N2
¼ −

24ð−1ÞN2r!τRα
ð2Þ
r

ðr− 1−N2Þ!ðN2 þ 5Þ!þ
XN2

n¼0

F̃ ð2Þ
−r;nηn: ð112Þ

F. Degrees of freedom in the extended Shakhov model

Let us consider a Shakhov model employing the
expansion orders ðN0; N1; N2Þ, together with the shifts
ðs0; s1; s2Þ. In order to enforce particle number and energy-
momentum conservation, N0 ≥ 2 and N1 ≥ 1. Since the

r ¼ 1, 2 and r ¼ 1 lines of the scalar Að0Þ
rn and vector Að1Þ

rn

matrices are ignored, the resulting Shakhov matrices have
the following effective sizes:

Að0Þ∶ ðN0 þ s0 − 1Þ × ðN0 þ s0 − 1Þ;
Að1Þ∶ ðN1 þ s1Þ × ðN1 þ s1Þ;
Að2Þ∶ ðN2 þ s2 þ 1Þ × ðN2 þ s2 þ 1Þ: ð113Þ

Generically, the relevant size of the matrix AðlÞ is
ðNl þ sl þ l − 1Þ2. For the purpose of fixing the transport
coefficients of second-order fluid dynamics, we remark that
Eqs. (76)–(78) show that only the elements on the zeroth

line of the inverse collision matrices, τðlÞ0n , and the coef-

ficients CðlÞr representing the ratios of first-order transport
coefficients play a role. As can be seen from Eqs. (69), the
transport coefficients ζr, κr and ηr corresponding to indices
r lying outside the range ½−sl; Nl� can be expressed
completely in terms of those with indices satisfying
−sl ≤ r ≤ Nl. Skipping those corresponding to r ¼ 0, 1
and r ¼ 0 for the scalar and vector sectors, we haveP

lðNl þ sl þ l − 1Þ first-order transport coefficients that
can be independently fixed. As shown in Eq. (68), the first-
order transport coefficients corresponding to r ¼ 0 are
fixed solely by the zeroth line of the corresponding inverse

collision matrix τðlÞ0n and therefore do not represent addi-

tional independent degrees of freedom. Thus, the CðlÞr

coefficients provide an extra
P

lðNl þ sl þ l − 2Þ inde-
pendent parameters. We conclude that the total number
of relevant degrees of freedom of the extended Shakhov
model is

general∶
X2
l¼0

½2ðNl þ sl þ lÞ − 3� ¼ 2
X2
l¼0

ðNl þ slÞ − 3:

ð114Þ

In the case when there is no conserved charge, the
vector moments are not relevant, such that one can safely

skip the l ¼ 1 case and the total number of degrees of
freedom reads

no conserved charge∶ 2ðN0 þ N2 þ s0 þ s2Þ − 2: ð115Þ

In the case of a gas of ultrarelativistic particles with a
conserved charge, the total number of degrees of freedom
becomes

UR gas∶ 2ðN1 þ N2 þ s1 þ s2Þ: ð116Þ

We will denote in Secs. V, VI and Appendix B such
Shakhov models for ultrarelativistic particles using the
quartet ðN1; N2; s1; s2Þ.

IV. SHEAR-BULK COUPLING: BJORKEN FLOW

We now consider one of the standard problems for heavy-
ion collisions: the Bjorken flow. In Sec. IVA, we discuss the
equations of motion of second-order hydrodynamics and of
kinetic theory in the Bjorken flow setup. In Secs. IV B
and IV C, we discuss the Shakhov model that allows the
cross-coupling coefficient λ̄Ππ to be controlled. The capa-
bilities of the model are demonstrated in Sec. IVD.
While in the main text, we employed an overbar for the

transport coefficients computed in the absence of a con-
served charge in order to avoid confusion with similar
coefficients for a fluid with conserved charges, within this
section we will omit the bar for notational convenience,
keeping in mind that all transport coefficients correspond to
the case without a conserved charge.

A. Problem description

The Bjorken flow represents an idealization of the
dynamics of the quark-gluon plasma created in a heavy-
ion collision, based on the experimental observation that
the system properties are independent of the space-time
rapidity η ¼ artanhðz=tÞ around mid-rapidity (when η ≃ 0).
This property translates into the requirement of invariance
with respect to Lorentz boosts along the longitudinal
(beam) direction, which greatly restricts the possible
structure of four-tensors. Ignoring the dynamics in the
transverse plane, the velocity field is uniquely identified as

uμ∂μ ¼
t
τ
∂t þ

z
τ
∂z ¼ ∂τ; ð117Þ

where τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is the Bjorken time. With respect to the

Bjorken coordinates ðτ; x; y; ηÞ, the stress-energy tensor
becomes diagonal, Tμν ¼ diagðe; PT; PT; PLÞ, where the
transverse and longitudinal pressures can be related to the
bulk viscous pressure Π and the shear stress tensor
coefficient πd via

PT ¼ Pþ Π −
πd
2
; PL ¼ Pþ Πþ πd: ð118Þ
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The conservation equation for Tμν reduces to

τ
de
dτ

þ eþ PL ¼ 0: ð119aÞ

Taking into account that θ ¼ 1=τ and σμν ¼ diagð0; 1=3τ;
1=3τ;−2=3τ3Þ, the equations for Π and πd read

τΠ
dΠ
dτ

þ Π ¼ −
1

τ
ðζ þ δΠΠΠþ λΠππdÞ; ð119bÞ

τπ
dπd
dτ

þπd¼−
1

τ

�
4η

3
þ
�
δππþ

τππ
3

�
πdþ

2λπΠ
3

Π
�
: ð119cÞ

In the above equations, we can identify 9 transport
coefficients, out of which two appear in the combination
λ ¼ δππ þ τππ=3. A Shakhov-like model that allows all
of these coefficients to be controlled should provide 8
free parameters. According to Eq. (115), this requires
ðN0 þ s0 − 2Þ þ ðN2 þ s2Þ ¼ 3, which is achievable
employing, e.g., one 3 × 3 matrix and another 2 × 2 matrix
for the scalar and the tensor sectors, respectively.
In this section, we will focus only on the first-order

transport coefficients ζ and η and the cross-coupling
coefficient λΠπ, for which we can use ðN0; N2; s0; s2Þ ¼
ð2; 0; 0; 2Þ. We choose s2 ¼ 2 instead of s2 ¼ 1 because in
the Bjorken flow, the moments with even energy index and
those with odd energy index are decoupled. Since Tμν and
its evolution can be characterized exclusively in terms of
even moments, we will ignore odd ones in what follows.

B. Shakhov matrices for the Bjorken flow

We seek to achieve

λΠπ
τΠ

¼ A
λRΠπ
τR

; η ¼ HηR; ζ ¼ ζR; ð120Þ

where λRΠπ corresponds to the equivalent Anderson-Witting
model with relaxation time τR,

λRΠπ ¼
m2τR
3

�
Rð2Þ

−2 þ
J10
J30

�
; ð121Þ

while ηR ¼ τRα
ð2Þ
0 and ζR ¼ ðm2=3ÞτRαð0Þ0 . In the above,

we introduced the notation

RðlÞ
r ¼ αðlÞr

αðlÞ0

: ð122Þ

Our strategy is to shift the basis for the tensor moments
down by two units, while ignoring the contributions from
the moments of energy-rank −1. In other words, we set

N0 ¼ 2; N2 ¼ 0; s0 ¼ 0; s2 ¼ 2: ð123Þ

The relevant submatrices and their inverses then read

Að0Þ
S;rn ¼ Að0Þ

S;0;0; τð0ÞS;rn ¼ τð0ÞS;0;0; ð124Þ

and

Að2Þ
S;rn ¼

 
Að2Þ

S;−2;−2 Að2Þ
S;−2;0

Að2Þ
S;0;−2 Að2Þ

S;0;0

!
;

τð2ÞS;rn ¼
 
τð2ÞS;−2;−2 τð2ÞS;−2;0

τð2ÞS;0;−2 τð2ÞS;0;0

!
: ð125Þ

Note that we did not include the rows and columns

corresponding to r ¼ 1, 2 in the matrices Að0Þ
S and τð0ÞS ,

as these do not enter the transport coefficients.
The first-order transport coefficients are given by

ζ0 ¼
m2

3
τð0ÞS;0;0α

ð0Þ
0 ; ð126aÞ

η0 ¼ τð2ÞS;0;−2α
ð2Þ
−2 þ τð2ÞS;0;0α

ð2Þ
0 ; ð126bÞ

η−2 ¼ τð2ÞS;−2;−2α
ð2Þ
−2 þ τð2ÞS;−2;0α

ð2Þ
0 ; ð126cÞ

while the relaxation times read

τΠ ¼ τð0ÞS;0;0; τπ ¼ τð2ÞS;0;−2C
ð2Þ
−2 þ τð2ÞS;0;0: ð127Þ

For simplicity, we set τΠ ¼ τð0ÞS;0;0 ¼ τR. From the bulk-
shear coupling

λΠπ ¼
m2τΠ
3

�
Cð2Þ−2 þ

J10
J30

�
ð128Þ

we obtain the coefficient Cð2Þ−2 as

Cð2Þ−2 ¼ 3

m2

λΠπ
τΠ

−
J10
J30

¼ ARð2Þ
−2 þ ðA − 1Þ J10

J30
: ð129Þ

For simplicity, we set τð2ÞS;0;−2 ¼ 0. From Eq. (127), we

find τð2ÞS;0;0 ¼ τπ . Substituting the above into Eq. (126b), we
find τπ ¼ HτR. Summarizing, we have

τð2ÞS;0;−2 ¼ 0; τð2ÞS;0;0 ¼ τπ ¼ HτR: ð130Þ
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Noting that, when τð0ÞS;0;0 ¼ τΠ ¼ τR, we have C
ð0Þ
r ¼ Rð0Þ

r ¼
αð0Þr =αð0Þ0 , the other second-order transport coefficients
become

λπΠ ¼ 2

5
HτRð3þm2Rð0Þ

−2Þ;

δππ þ
τππ
3

¼ HτR
21

�
38þ 11m2

�
ARð2Þ

−2 þ ðA − 1Þ J10
J30

�	
:

ð131Þ

From Eq. (129), the entries in the r ¼ −2 line of τð2ÞS;rn

matrix are constrained by

τð2ÞS;−2;−2R
ð2Þ
−2 þτð2ÞS;−2;0¼ τRH

�
ARð2Þ

−2 þðA−1ÞJ10
J30

�
: ð132Þ

For simplicity, we demand that τð2ÞS;−2;−2 ¼ τπ ¼ HτR, such

that the last unknown entry τð2ÞS;−2;0 becomes

τð2ÞS;−2;0 ¼ τRHðA − 1Þ
�
Rð2Þ

−2 þ
J10
J30

�
: ð133Þ

The resulting Shakhov inverse matrix thus reads

τð2ÞS ¼ τRH

0@ 1 ðA − 1Þ
�
Rð2Þ

−2 þ J10
J30

�
0 1

1A: ð134Þ

Consequently, the Shakhov collision matrix Að2Þ
S;rn is

given by

Að2Þ
S ¼ 1

τRH

0@ 1 ð1 − AÞ
�
Rð2Þ

−2 þ J10
J30

�
0 1

1A: ð135Þ

C. The Shakhov collision term

The construction of the Shakhov collision term relies on

the functions H̃ðlÞ
kn that ensure the recovery of the moments

ρμ1���μlS;n of δfSk ¼ fSk − f0k for −sl ≤ n ≤ Nl. Normally,

this can be achieved when H̃ðlÞ
kn is taken as a polynomial of

order Nl þ sl þ 1 in Ek ¼ kμuμ. However, given that the
symmetries of the Bjorken flow of a neutral gas (with no
conserved charge) imply that even- and odd-order moments
do not mix, we only need to ensure the recovery of even-
order moments of δfSk. To avoid confusion, we shall

employ the notation h̃ð2Þkn to denote this basis in even powers

of energy, as opposed to the standard basis H̃ðlÞ
kn .

Specifically, we are employing a Shakhov model with
ðN2; s2Þ ¼ ð0; 2Þ, for which we need to recover only ρμνS;−2

and ρμνS;0, thus h̃ð2Þkn become polynomials of the form

An þ BnE2
k. Then, Sk ¼ δfSk=f0kf̃0k becomes

Sk ¼ ðπS;−2h̃ð2Þk0 þ πS;0h̃
ð2Þ
k2 Þ
�

k2η
τ2k2τ

−
k2⊥
2k2τ

�
; ð136Þ

where the last term follows by noting that, under our
assumptions of longitudinal-boost invariance and trans-
verse plane homogeneity, ρμνS;r ¼ diagð0;− 1

2
;− 1

2
; τ−2ÞπS;r

and

ρμνS;rkhμkνi ¼ πS;r

�
k2η
τ2

−
k2⊥
2

�
: ð137Þ

The scalar coefficients πS;−2 and πS;0 are given by

πS;−2 ¼
�
1 − τRA

ð2Þ
S;−2;−2

�
π−2 − τRA

ð2Þ
S;−2;0π0;

πS;0 ¼ −τRA
ð2Þ
S;0;−2π−2 þ

�
1 − τRA

ð2Þ
S;0;0

�
π0: ð138Þ

The polynomials h̃ð2Þkn must be constructed to ensureZ
dKδfSkE−2

k khμkνi ¼ ρμνS;−2;Z
dKδfSkkhμkνi ¼ ρμνS;0: ð139Þ

Taking into account the integration identityZ
dKFkkhμ1 � � � kμmikhν1 � � � kνni

¼ m!δmn

ð2mþ 1Þ!!Δ
μ1���μm
ν1���νm

Z
dKFkðΔαβkαkβÞm; ð140Þ

one may rewrite Eq. (139) as

2ðAnJr;2 þ BnJ2þr;2Þ ¼ δrn; ð141Þ

valid for r; n∈ f0; 2g. The polynomials h̃ð2Þkn ¼ An þ BnE2
k

can be obtained as

h̃ð2Þk0 ¼
J42−J22E2

k

2ðJ02J42−J222Þ
; h̃ð2Þk2 ¼

−J22þJ02E2
k

2ðJ02J42−J222Þ
: ð142Þ

D. Numerical results

In order to validate the kinetic Shakhov model, we
performed numerical simulations of both the hydrodynam-
ics and the kinetic theory models, taking constant values for
the relaxation time: τR ¼ τΠ ¼ 0.05 fm=c and 0.5 fm=c.
The particle mass was set to m ¼ 1 GeV=c2 and at initial
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time τ0 ¼ 0.5 fm=c, we set fkðτ0Þ ¼ expð−β0EkÞ, with
initial temperature β−10 ¼ 0.6 GeV.
In the first set of simulations, shown in Fig. 1, we took

the parameters A and H of the Shakhov model to obey
AH ¼ 1, such that the A ¼ H ¼ 1 case corresponds to the
AW model. We considered a wide range of values for A,
from 0.5 to 100. The kinetic theory results are shown with
solid lines and symbols, while the solutions of the corre-
sponding second-order fluid-dynamical equations (119)
are shown with dashed lines. Panels (a1)–(c1) of Fig. 1
show the results for τR ¼ τΠ ¼ 0.05 fm=c, while panels
(a2)–(c2) correspond to τR ¼ τΠ ¼ 0.5 fm=c. Panels (a1)
and (a2) show the ratio PL=PT , while panels (c1) and (c2)
show the dimensionless ratio −10πd=ðeþ PÞ. In these
panels, kinetic theory and hydrodynamics are always in
good agreement. As expected, increasing A and decreasing
H has the effect of lowering jπdj and thus leads to ratios
PL=PT which are closer to unity. Panels (b1) and (b2)
show the ratio −103Π=ðeþ PÞ. In the case when
τΠ ¼ 0.05 fm=c, shown in panel (b1), the magnitude of
Π=ðeþ PÞ remains unchanged for all tested values of A, as
expected since while πd scales with H, the contribution
λΠππd to Π scales like AH ¼ 1. In panel (b2), Π=ðeþ PÞ
exhibits a clear dependence on A, and moreover the

agreement between kinetic theory and hydrodynamics
deteriorates, especially for A ¼ 0.5, indicating a breakdown
of the hydrodynamics assumptions.
In Fig. 2, we considered the case when H ¼ 1 is fixed

and A was varied from 100 down to 0.1, with A ¼ H ¼ 1
corresponding to the AW model. As before, the kinetic
theory and hydrodynamics results for τR¼ τΠ¼0.05 fm=c
are in good agreement. At τR ¼ τΠ ¼ 0.5 fm=c, visible
discrepancies can be seen in the case of large A, most
notably during the early-time evolution, where hydrody-
namics cannot be expected to be valid.

V. SHEAR-DIFFUSION COUPLING:
LONGITUDINAL WAVES

In the previous section, we discussed a second-order
Shakhov model modifying the cross-coupling coefficient
λ̄Ππ of a fluid having constituents of mass m and with
no conserved charge. We now discuss the second-order
Shakhov model which modifies the shear-diffusion cross-
coupling coefficients lVπ and lπV , and for simplicity,
we focus on an ultrarelativistic ideal gas, whose properties
are summarized in Sec. III E. We start with a brief
problem description in Sec. VA, while our proposed

FIG. 1. The ratios (left) PL=PT , (middle) −Π=ðeþ PÞ and (right) −πd=ðeþ PÞ in the case of Bjorken flow, obtained using the
Shakhov model (solid lines with symbols) and second-order hydrodynamics (dashed lines) for (top) τΠ ¼ 0.05 fm and (bottom)
τΠ ¼ 0.5 fm. In all cases, the parameters of the Shakhov model are taken such that HA ¼ 1. The case A ¼ 1 corresponds to the
Anderson-Witting model. The hydrodynamics results are shown in black in all instances, except for panel (b2), where the color of the
hydro curves follows that of the kinetic theory curves.
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extended Shakhov model is introduced in Sec. V B and
validated in Sec. V C.

A. Problem description

We consider the propagation of longitudinal waves in a
fluid at rest, as discussed in Refs. [28,40]. Taking the
wave vector k along the z axis, the four velocity reads
uμ∂μ ≃ ∂t þ δv∂z, where jδvj ≪ 1 is the velocity along the z
axis. Denoting via n0, e0 the particle number density and
energy density of the background state, we consider the
perturbations δn ¼ n − n0 and δe ¼ e − e0 to be of the
same order as δv. To linear order, the diffusion current Vμ

and shear-stress tensor πμν take the form

Vμ
∂μ ≃ δV∂z; πμν ≃ δπdiag

�
0;−

1

2
;−

1

2
; 1

�
; ð143Þ

where the scalar quantities δV and δπ are also assumed to
be infinitesimal.
The conservation equations ∂μNμ ¼ 0 and ∂μTμν ¼ 0

reduce to

∂tδnþ n0∂zδvþ ∂zδV ¼ 0;

∂tδeþ ðe0 þ P0Þ∂zδv ¼ 0;

ðe0 þ P0Þ∂tδvþ ∂zδPþ ∂zδπ ¼ 0; ð144Þ

while the dynamical equations for δV and δπ are

τV∂tδV þ δV ¼ −κ∂zδαþ lVπ∂zδπ;

τπ∂tδπ þ δπ ¼ −
4η

3
∂zδv −

2

3
lπV∂zδV: ð145Þ

The above equations feature 6 independent transport
coefficients: τV; κ and lVπ determine the behavior of
the diffusion current δV, while τπ; η and lπV control
the evolution of the shear-stress δπ. These coefficients
can be fixed in the extended Shakhov model by employ-
ing, e.g., 2 × 2 matrices for both the vector and the tensor
sectors. In this section, we will focus on changing
only the first-order transport coefficients κ and η, as well
as the ratios of the cross-coupling coefficients with
their respective relaxation times, lVπ=τV and lπV=τπ .
This can be achieved by employing the parameters
ðN1; N2; s1; s2Þ ¼ ð1; 0; 0; 1Þ. In the following, we will
refer to this model as the (1001) model. For definiteness,
we take the overall relaxation time as

τR ¼ 5η

4P
: ð146Þ

FIG. 2. Same as Fig. 1 for the case when H ¼ 1 is fixed and A varies between 0.1 and 100 (see legend).
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B. Shakhov model for the shear-diffusion coupling

Wewill now discuss the (1001) extended Shakhov model

in more detail. In the diffusion sector, the matrix Að1Þ
S;rn

features a single element, which is related to the respective

relaxation time as τV ¼ τð1ÞS;0;0 ¼ 1=Að1Þ
S;0;0. Considering the

diffusion coefficient κ fixed, the relaxation time τV is
readily obtained as

τV ¼ 12κ

βP
: ð147Þ

The collision matrix Að2Þ
S;rn for the shear sector and its

inverse can be written as

Að2Þ
S;rn ¼

0@Að2Þ
S;−1;−1 Að2Þ

S;−1;0

Að2Þ
S;0;−1 Að2Þ

S;0;0

1A;

τð2ÞS;rn ¼
0@ τð2ÞS;−1;−1 τð2ÞS;−1;0

τð2ÞS;0;−1 τð2ÞS;0;0

1A: ð148Þ

The first-order transport coefficients of the shear sector are
given by

η−1 ¼
P
5

�
βτð2ÞS;−1;−1 þ 4τð2ÞS;−1;0

�
;

η0 ¼
P
5

�
βτð2ÞS;0;−1 þ 4τð2ÞS;0;0

�
; ð149Þ

such that

Cð2Þ−1 ¼ η−1
η0

¼ τð2ÞS;−1;−1 þ 4β−1τð2ÞS;−1;0

βτð2ÞS;0;−1 þ 4τð2ÞS;0;0

β: ð150Þ

The relaxation time τπ is

τπ ¼ τð2ÞS;0;−1C
ð2Þ
−1 þ τð2ÞS;0;0; ð151Þ

while the shear-diffusion cross-coupling coefficients read

lπV ¼ 2

5
τð2ÞS;0;−1; lVπ ¼ τV

�
β

4
− Cð2Þ−1

�
: ð152Þ

We express τð2ÞS;0;−1, τ
ð2Þ
S;0;0 and Cð2Þ−1 in terms of η, lVπ and

lπV as

τð2ÞS;0;−1 ¼
5lπV

2
; τð2ÞS;0;0 ¼

5η

4P
−
5β

8
lπV;

Cð2Þ−1 ¼ β

4
−
lVπ

τV
: ð153Þ

Note that knowledge of the transport coefficients cannot fix

both entries on the r ¼ −1 line of τð2ÞS;rn, since these entries

appear only through the combination shown in Cð2Þ−1 . Wewill
take advantage of the second degree of freedom below,
in order to optimize the structure of the resulting matrix.
For now, we express also the relaxation time τπ as

τπ ¼
5η

4P
−
5lVπlπV

2τV
: ð154Þ

Besides the transport coefficients in Eq. (88) which are
fixed for ultrarelativistic particles, we express the remain-
ing ones using Eqs. (89):

λVV ¼ 3

5
τV; λVπ ¼

βτV
16

�
1 −

4lVπ

βτV

�
; λπV ¼ 0;

τππ ¼
5

7

�
5η

2P
−
βlπV

2
− 3

lVπlπV

τV

�
: ð155Þ

We have now determined all transport coefficients of the
(1001) model. In order to assemble the collision matrix and
its inverse, we still need to specify the remaining degree of

freedom pertaining to the r ¼ −1 line of τð2ÞS;rn. To simplify
the discussion, we introduce the following notation:

H¼ 5η

4τπP
; LVπ ¼

4lVπ

βτV
; LπV ¼

5βlπV

8τπ
: ð156Þ

Considering LVπ and LπV as input parameters, H can be
obtained by dividing Eq. (154) by τπ:

H ¼ 1þ LVπLπV: ð157Þ

This allows τπ to be expressed as

τπ ¼
5η

4Pð1þ LVπLπVÞ
: ð158Þ

Furthermore, the transport coefficients in Eq. (155) read

λVV
τV

¼ 3

5
;

λVπ
τV

¼ β

16
ð1 − LVπÞ; λπV ¼ 0;

τππ
τπ

¼ 2

7
ð5H − 2LπV − 3LVπLπVÞ: ð159Þ

Moreover, the elements of τð2ÞS satisfy:

τð2ÞS;0;−1

τπ
¼ 4

β
LπV;

τð2ÞS;0;0

τπ
¼ H − LπV;

τð2ÞS;−1;−1

τπ
þ 4τð2ÞS;−1;0

βτπ
¼ Hð1 − LVπÞ: ð160Þ
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Coming back to the r ¼ −1 line of the τð2ÞS;rn matrix, one
may be tempted to simply set the off-diagonal term to 0,

i.e. τð2ÞS;−1;0 ¼ 0. However, this choice fails when lVπ

approaches βτV=4 and hence LVπ approaches 1, since then

τð2ÞS;−1;−1 → − 4
β τ

ð2Þ
S;−1;0 → 0 and τð2ÞS becomes singular. To

circumvent this problem, we take advantage of the τð2ÞS;−1;0

degree of freedom to ensure that the eigenvalues of τð2ÞS
remain positive. Introducing the notation

τð2ÞS;−1;0 ¼
βτπ
4

x; ð161Þ

the matrix τð2ÞS can be written as

τð2ÞS ¼ τπ

 
Hð1 − LVπÞ − x β

4
x

4
βLπV H − LπV

!
; ð162Þ

and its eigenvalues are given by

λ1;2 ¼
τπ
2

h
Hð2 − LVπÞ − LπV − x

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHLVπ þ LπV þ xÞ2 − 4HLVπLπV

q i
: ð163Þ

Considering λ2 > λ1, we have

lim
x→−∞

λ1 ¼ lim
x→∞

λ2 ¼ τπH: ð164Þ

At finite values of x, it holds that λ1 < τπH < λ2. Writing
λ1 ¼ ατπH, with 0 < α < 1, we have

x ¼ Hð1 − α − LVπÞ − LπV −
1 −H
1 − α

; ð165Þ

while λ2 is given by

λ2 ¼
1 −Hα

1 − α
τπ: ð166Þ

Noting that detτð2ÞS ¼ τ2παHð1−αHÞ=ð1−αÞ, the matrix

τð2ÞS can be inverted to obtain the collision matrix Að2Þ
S as

Að2Þ
S ¼ 1 − α

αHτπð1 − αHÞ

 
H − LπV − β

4
x

− 4
βLπV Hð1 − LVπÞ − x

!
;

ð167Þ
where x is fixed by the value of α (taking values between 0
and 1) via Eq. (165). In the following, we will employ for
definiteness α ¼ 1=2, such that

λ1 ¼
H
2
τπ; λ2 ¼ ð2 −HÞτπ; ð168Þ

with detτð2ÞS ¼H
2
ð2−HÞτ2π and x ¼ 5H

2
−HLVπ − LπV − 2.

Before moving on to the numerical results, we remark
that, while our proposed Shakhov model allows the coef-
ficients lVπ;lπV; κ and η to be controlled independently,
they are in principle related through the constraint [50]

lVπ

κ
þ lπV

2ηT
¼ 0 ð169Þ

which is necessary for the phenomenological entropy current
to have a non-negative divergence. Under this constraint,
it holds that

LπV ¼ −3HLVπ; H ¼ 1

1þ 3L2
Vπ

: ð170Þ

Furthermore, the constraint (169) forces the couplings lVπ
and lπV to have opposite signs, thereby ensuring that the
relaxation time (154) stays positive.

C. Numerical results

We now consider a system of size L ¼ 2π=k with
periodic boundary conditions, where k is the wave number
and L is the wavelength of the propagating wave. We
initialize the system in local thermodynamic equilibrium at
rest, with pressure and density given by

Pðt ¼ 0Þ ¼ P0 þ δP0 cosðkzÞ;
nðt ¼ 0Þ ¼ n0 þ δn0 cosðkzÞ: ð171Þ

As can be seen from Eq. (145), lVπ and lπV introduce the
coupling between the shear and diffusion sectors. In
particular, when δn0 ¼ 0 and δP0 ≠ 0, lVπ introduces
shear modes into the evolution of δV, which cause it to
oscillate. Conversely, when δP0 ¼ 0 and δn0 ≠ 0, lπV
allows δπ to develop a nonvanishing value through its
coupling to δV. In order to characterize the evolution of δV
and δπ, we consider the Fourier amplitudes

fδVðtÞ ¼ k
π

Z
2π=k

0

dzδV sinðkzÞ;

eδπðtÞ ¼ k
π

Z
2π=k

0

dzδπ cosðkzÞ: ð172Þ

The time evolution of fδVðtÞ and eδπðtÞ is shown in
Fig. 3 for the cases ðδP0=P0; δn0=n0Þ ¼ ð10−3; 0Þ
and ð0; 10−3Þ in panels (a) and (c), and (b) and (d),
respectively.
In all cases, the Shakhov model was constructed using

Að1Þ
S ¼ τ−1R and α ¼ 1=2 for the Að2Þ

S matrix. We also
considered η ¼ η0 ¼ 4

5
τRP, like in the Anderson-Witting

model, such that τπ ¼ τR=H, as indicated in Eq. (156). In
Fig. 3(a), we took lπV ¼ 0 and considered nonvanishing
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values of lVπ , in which caseH ¼ 1 and x ¼ 1
2
− LVπ. Then,

the Shakhov matrix (167) reduces to

Að2Þ
S ¼ 1

τπ

�
2 − β

4
ð1 − 2LVπÞ

0 1

�
: ð173Þ

For Fig. 3(b), we considered the case when lVπ ¼ 0, such
that H ¼ 1 and x ¼ 1

2
− LπV and Eq. (167) reduces to

Að2Þ
S ¼ 2

τπ

0@ 1 − LπV − β
4

�
1
2
− LπV

�
− 4

βLπV
1
2
þ LπV

1A: ð174Þ

Finally, for Figs. 3(c) and 3(d), we enforced the entropy
constraint in Eq. (169), leading to H ¼ 1=ð1þ 3L2

VπÞ,
x ¼ − H

2
ð12L2

Vπ − 4LVπ − 1Þ and

Að2Þ
S ¼ 2

τπð2 −HÞ

 
1þ 3LVπ

β
8
ð12L2

Vπ − 4LVπ − 1Þ
12
β LVπ 6L2

Vπ − 3LVπ þ 1
2

!
:

ð175Þ

Finally, we employed a constant relaxation time τR, taken
such that kτR ¼ 0.5 for Figs. 3(a) and 3(b), and 0.25 for
Figs. 3(c) and 3(d). For definiteness, we considered the
wavelength to be L ¼ 2π=k ¼ 1 fm, while the initial
temperature was set to T0 ¼ 1 GeV and the initial chemical
potential was set to 0, such that n0 ¼ 212.04 fm−3 and
P0 ¼ 212.04 GeV=fm3. This corresponds to a shear vis-
cosity to entropy density ratio of 4πη=s ¼ LT=5 ≃ 1.02
for Figs. 3(a) and 3(b) and half of that (4πη=s ¼
LT=10 ≃ 0.51) for Figs. 3(c) and 3(d).
All kinetic theory results shown in Fig. 3 using colored

lines and symbols are in good agreement with the corre-
sponding hydrodynamics results, shown with dashed black

FIG. 3. Time evolution of the amplitudes (a),(c) fδV and (b),(d) eδπ, multiplied by the factors −100=δP0 and 100=δn0. The initial
fluctuation amplitudes are ðδn0; δP0Þ ¼ ð0; 10−3P0Þ and ð10−3n0; 0Þ, respectively. The curves represented with lines and symbol
correspond to the Shakhov model results, while the hydro solutions (obtained numerically) are represented with black dashed lines.
In (a), we varied lVπ ∈ f0;�0.35;�0.7g at vanishing lπV ¼ 0. In (b), we varied lπV ∈ f�0;�0.35;�0.7g with lVπ ¼ 0. In (c) and (d),
we imposed the entropy constraint (169) to obtain lπV for lVπ ∈ f0;�0.1;�0.2g. In (a)–(b), we set kτR ¼ 0.5, while in (c)–(d),
we employed kτR ¼ 0.25.
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lines. As expected, the agreement improves at smaller kτR
and it becomes worse when kτR is increased.

VI. HARD-SPHERE GAS:
THE RIEMANN PROBLEM

In this section, we focus on the problem of the propa-
gation of shock waves (the Riemann problem). The
Shakhov models presented here will be validated against
the values obtained in Refs. [37,38] using the BAMPS
algorithm, where binary elastic scattering of ultrarelativistic
(massless) particles via a constant, momentum-independent
cross section was considered. In a sense, this section
extends the considerations of Sec. V to the case when
nonlinear effects become important. Keeping to the nota-
tion ðN1; N2; s1; s2Þ introduced in Sec. III F, we will
distinguish between Shakhov models of various orders,
as described below. Our goal is to develop a Shakhov
kinetic model which is able to reproduce the BAMPS data,
and in doing so, we will aim to reproduce increasingly more
transport coefficients of the hard-sphere (HS) gas, enumer-
ated in Table I.
First, we will consider the Anderson-Witting model,

where the relaxation time τR is taken to match the shear
viscosity η of the BAMPS model, namely

AW∶ τR ¼ 5η

4P
; η ¼ 1.2676

σβ
¼ 1.2676Pλmfp; ð176Þ

where λmfp ¼ 1=nσ is the particle mean free path and
n ¼ βP is the particle number density. In units of λmfp, the
relaxation time τR becomes

τR ¼ 1.5845λmfp: ð177Þ
For definiteness, we keep the above relation between τR
and λmfp for all models discussed below. One may hope that
with the above choice, the AWmodel can give a reasonable
description of shear-driven quantities, such as πμν.
However, diffusion-related phenomena cannot be accu-
rately described, as the diffusion coefficient of the AW
model is incorrect (see Table I).
We therefore also consider the first-order Shakhov model

introduced in Ref. [26] and summarized in Sec. II, dubbed

(1000) according to our convention. For definiteness,
we consider τπ ¼ τR with τR given in Eq. (176), while
τV is computed based on

τV ¼ κHS
κR

τR ¼ 1.2036τR; ð178Þ

where the values of κ for the hard-sphere and AW models
are given in Table I. As it will become clear in the
applications subsections, the above 20.4% increase of
the diffusion coefficient is insufficient to capture the
magnitude of the diffusion current. The resulting Shakhov
model has the following collision matrices:

ð1000Þ∶ Að1Þ
S ¼ 0.52437

λmfp
; Að2Þ

S ¼ 0.63111
λmfp

; ð179Þ

with τV ¼1.2036τR¼1.9071λmfp and τπ ¼ τR ¼ 5η=4P ¼
1.5845λmfp, as explained above. Please note that

ρμν0;S ¼ 1 − τRA
ð2Þ
S;0;0 ¼ 0, hence the Shakhov term Sk of

the (1000) model consists only of the vector term.
The next model that we employed is the (1001) model

discussed in Sec. V. As before, we set τR according
to Eq. (176) and take η ¼ ηR, thus τπ ¼ τR=H. Similarly,
τV is set via Eq. (178), such that κ given in Eq. (147) takes
the HS value. Imposing the HS value for lVπ=τV ¼
0.028371β and the entropy constraint (169) gives lπV=τπ ¼
−0.52446=β, while LVπ ¼ 0.11348 and LπV ¼ −0.32779.
Thus, H ¼ 0.96280 and subsequently all transport coef-
ficients come out as shown in Table I. The Shakhov
matrices read

ð1001Þ∶ Að1Þ
S ¼ 0.52437

λmfp
;

Að2Þ
S ¼ 1

λmfp

�
1.5706 −0.19031β

1.5956=β 0.27748

�
; ð180Þ

where the element in bold font represents theAð2Þ
S;0;0 entry of

the Shakhov matrix.
We also consider two higher-order models which

are derived in Appendix B. In the (1012) model, we are
able to fix all transport coefficients except λVV and λVπ .

TABLE I. Transport coefficients for the hard-sphere gas of ultrarelativistic particles interacting via an isotropic cross-section σ,
computed using the IReD approach [29,31], as well as for the AW and Shakhov models considered in Sec. VI. Besides the transport
coefficients shown above, all models have δVV ¼ τV , δππ ¼ 4τπ=3, τVπ ¼ lVπ and τπV ¼ 4lπV .

Model ησβ τπ=λmfp βlπV=τπ τππ=τπ βλπV=τπ κσ τV=λmfp lVπ=βτV λVV=τV λVπ=βτV

HS 1.2676 1.6557 −0.56960 1.6945 0.20503 0.15892 2.0838 0.028371 0.89862 0.069273

AW 1.2676 1.5845 0 1.4286 0 0.13204 1.5845 0 0.6 0.0625
1000 1.2676 1.5845 0 1.4286 0 0.15892 1.9070 0 0.6 0.0625
1001 1.2676 1.6457 −0.52446 1.5946 0 0.15892 1.9070 0.028371 0.6 0.055407
1012 1.2676 1.6557 −0.56960 1.6945 0.20503 0.15892 2.0838 0.028371 0.762023 0.062933
2012 1.2676 1.6557 −0.56960 1.6945 0.20503 0.15892 2.0838 0.028371 0.89862 0.069273
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The collision matrices are given in Eq. (B9) and reproduced
below for convenience:

ð1012Þ∶Að1Þ
S ¼ 1

λmfp

�
0.63419 0

0.22111=β 0.34155

�
;

Að2Þ
S ¼ 1

λmfp

0B@ 0.84927 0 0

0 0.70961 0

−1.3008=β2 1.5229=β 0.37307

1CA:

ð181Þ

Finally, the (2012) model allows all transport coefficients
to be set to the values obtained from kinetic theory,
employing the Shakhov matrices from Eq. (B18), repro-
duced below:

ð2012Þ∶Að1Þ
S ¼ 1

λmfp

0B@ 0.62732 0 0

0.11113=β 0.59563 0.011012β2

0 0 0.42171

1CA;

Að2Þ
S ¼ 1

λmfp

0B@ 0.82802 0 0

0 0.70553 0

−1.2528=β2 1.5120=β 0.37256

1CA:

ð182Þ

A. Problem description

The Riemann problem constitutes a well-established test
for the accuracy of fluid-dynamical codes. It consists in
determining the flow of a fluid which is initially separated
into distinct regions with different (constant) values for
their relevant parameters, such as flow velocity, pressure,
and density. In the cases considered here, which are
equivalent to the setups of Refs. [37,38], we assume the
fluid to be homogeneous in the ðx; yÞ-plane, such that the
system is effectively (1þ 1)-dimensional. The discontinu-
ity is taken to be at z ¼ 0, thus dividing the fluid at the
initial time into two regions: the left region, where z < 0,
and the right region, where z > 0. In both regions, the flow
velocity is taken to vanish at initial time.
This setup corresponds to the so-called Sod shock

tube [34] and the subsequent evolution of the fluid gives
rise to 5 distinct regions. Far to the left (region 0), we have
the unperturbed initial state characterized by n ¼ n0
and P ¼ P0. A rarefaction wave (region 1) connects the
unperturbed fluid to a central plateau (region 2), where
n ¼ n2 and P ¼ P2 assume constant values. The central
plateau is split in two regions by the contact discontinuity.
In region 3, to the right of the contact discontinuity, the
density is n3 ≠ n2, while the pressure remains unchanged,
P2 ¼ P3. Region 4, corresponding to the unperturbed
fluid with parameters n ¼ n4 and P ¼ P4, lies to the right
of the shock front. In the perfect (inviscid) fluid limit, the
Sod shock tube problem can be solved analytically [51].

The solution for the particular case of an ultrarelativistic,
classical ideal gas is presented in detail in Ref. [12].
This analytical solution for the initial conditions consid-

ered in Sec. VI B is represented with a solid red line in Fig. 4,
with the particle density n, pressure P and four-velocity uz

shown in panels (a), (b) and (c), respectively. The dotted
black lines, arrows and inset labels indicate the above-
mentioned regions of the flow. We also show here the results
obtained using our code for the simple case of the Anderson-
Witting model, as well as BAMPS data from Ref. [37] for
comparison. It can be seen from the figure that our numerical
solution approaches the analytical one as the shear viscosity
to entropy density ratio ηIS=s decreases (the meaning of the
IS subscript will be elucidated in the following subsection).

B. Sod shock tube

Our first test case will be the Sod shock tube setup
presented in Ref. [37], where the system is initialized at
vanishing chemical potential, μ ¼ 0. The initial temper-
atures in the left (x < 0) and right (x > 0) regions are T0 ¼
0.4 GeV and T4 ¼ 0.2 GeV, respectively. The shear-stress
tensor and the diffusion current are zero at the initial time,
but they develop nontrivial profiles during the subsequent
evolution of the fluid. For these quantities, we benchmark
the performance of the various Shakhov models by com-
parison to the results obtained using the BAMPS algorithm.
Before discussing the results, a few remarks regarding

our proposed comparison are in order. First, we note that
the results presented in Figs. 3–7 of Ref. [37] probe the
perfect fluid limit, being obtained at very low shear
viscosity to entropy density ratio, ηIS=s ¼ 0.001, or at
very large constant cross section, σ ¼ 224.431 mb. In both
cases, reasonable agreement with the analytical solution of
the relativistic Euler equations is found, however such large
cross-section simulations require a fine spatial resolution,
making the simulations computationally very time con-
suming (see discussion at the start of Sec. IV.C of
Ref. [37]). Consequently, as the corresponding BAMPS
results are very noisy, we will not consider this limit in this
paper and instead we will focus on the cases ηIS=s ¼ 0.1
and 0.01, shown in Figs. 8–10 of Ref. [37].
To understand the comparison, we first note that, in the

BAMPS simulations, the desired η=s ratio was achieved by
employing a local interaction cross-section σ ¼ 1=nλmfp

leading to the desired value of η. Based on the more recent
method of moments analysis of DNMR [27], we know that
in a hard-sphere gas, the shear viscosity is η ≃ 1.2676=βσ.
However, in Ref. [37], the Israel-Stewart relation ηIS ¼
2
5
eλmfp ¼ 1.2=βσ is employed. Since the shear viscosity of

the gas is given by the cross-section σ, we conclude that the
results shown in Ref. [37] have a true η=s ratio given by

η

s
¼ ηIS

s
×
1.2676
1.2

≃
ηIS
s
× 1.056; ð183Þ
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thus the actual ratio η=s is 5.6% larger than the one reported
in Ref. [37].
The comparison between the Shakhov and BAMPS

results is shown in Fig. 5. Remarkably, π ¼ πzz=γ2 is
recovered well in all considered models, showing that

fixing the value of the shear viscosity alone is sufficient to
capture the dynamics of the shear-stress tensor, as can be
seen in Figs. 5(a) and 5(b).
The heat flux qz, shown in Figs. 5(c) and 5(d), exhibits

an unexpected sensitivity to the higher-order transport
coefficients. For both ηIS=s ¼ 0.01 and ηIS=s ¼ 0.1, qz

has two peaks: the first corresponds to the contact dis-
continuity, exhibiting a small, negative qz; the second
corresponds to the shock front and exhibits a large, positive
qz. Furthermore, at ηIS=s ¼ 0.1, the heat flux develops a
nontrivial structure inside the rarefaction wave. None of
these features are correctly recovered by the AW model.
Remarkably, the shock front peak is almost two times taller
in BAMPS than in the AW model. Clearly, fixing the
diffusion coefficient to match the one in BAMPS is
insufficient, as this provides a roughly 20% increase in
the height of the AW peak, as indicated by the (1000)
curves. Surprisingly, fixing the cross-coupling coefficients
lVπ and lπV within the (1001) model provides a very good
match not just at the level of the two peaks, but also
throughout the rarefaction wave.
From these plots, it can be seen that all extended

Shakhov models (1001, 1012 and 2012) perform better
than standard RTA, which is not able to reproduce
especially the stronger variations seen in the BAMPS data.
Interestingly, the first-order Shakhov model that fixes the
diffusion coefficient κ is still strongly inconsistent with the
BAMPS data.

C. Heat flow problem

The second setup we consider is that of Denicol et al.
[38], consisting of two individual cases. In both cases,
the asymptotic left state is described by the temperature
T−∞ ¼ 0.4 GeV and vanishing chemical potential,
μ−∞ ¼ 0, such that the reference pressure becomes P0 ≡
P−∞ ¼ gT4

−∞=π2 ¼ 5.401 GeV=fm3 for a degeneracy fac-
tor of g ¼ 16 and the asymptotic left fugacity is
λ−∞ ¼ eμ−∞=T−∞ ¼ 1. The reference particle number den-
sity then reads n0 ≡ n−∞ ¼ P−∞=T−∞ ¼ 13.50 fm−3. The
initial conditions are specified at the level of the pressure
and fugacity, which are given by the Woods-Saxon profile:

PðzÞ¼P∞þP0−P∞

1þez=D
; λðzÞ¼ λ∞þ λ0−λ∞

1þez=D
; ð184Þ

with D ¼ 0.3 fm being the shock thickness. Considering
the relations P ¼ gT4λ=π2 and n ¼ P=T, the particle
number density n and temperature T can be obtained from
P and λ via

T ¼
�
π2P
gλ

�
1=4

; n ¼
�
gλ
π2

P3

�
1=4

: ð185Þ

At initial time, the fluid is at rest [uμ ¼ ð1; 0; 0; 0Þ] and the
diffusion current and shear-stress tensor vanish identi-
cally, Vμ ¼ πμν ¼ 0.

FIG. 4. Profiles of (a) density n, (b) pressure P and (c) z
component of the flow velocity, uz, for ηIS=s ¼ 0.1, 0.01 and
0.001, shownwith lines and points, as well as the analytical solution
for the inviscid case (shown with a solid red line). The dotted black
lines help distinguish the various features of the flow structure.
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Following Ref. [38], we consider two sets of initial
conditions, labeled as case (i) and case (ii). For case (i),
the fugacity stays constant, λðzÞ ¼ eμðzÞ=TðzÞ ¼ 1, and the
pressure drops to P∞ ¼ gT4

∞=π2 ¼ 0.824 GeV=fm3, cor-
responding to T∞ ¼ 0.25 GeV. In summary, we have

ðiÞ∶ λ∞ ¼ 1; P∞ ¼ 0.824 GeV=fm3;

T∞ ¼ 0.250 GeV; n∞ ¼ 3.297 fm−3: ð186Þ

For case (ii), the pressure stays constant, PðzÞ ¼ P0, while
the fugacity drops to its asymptotic right state, λ∞ ¼ 0.2,
such that

ðiiÞ∶ λ∞ ¼ 0.2; P∞ ¼ 5.401 GeV=fm3;

T∞ ¼ 0.598 GeV; n∞ ¼ 9.030 fm−3: ð187Þ

The simulation domain spans L ¼ 14 fm, such that
−L=2 < z < L=2 and the total simulated time is
T ¼ 6 fm.
As in the preceding section, we consider that the fluid

is made up of ultrarelativistic hard-sphere particles
interacting via an isotropic cross-section σ. Contrary to
the situation in the previous section, σ is fixed and we
shall consider either σ ¼ 2 mb or 8 mb. This means that
the ratio η=s is no longer constrained to be a constant.

FIG. 5. Profile of (left) π ¼ πzz=γ2 and (right) qz ¼ −ðeþ PÞVz=n, taken at t ¼ 3.2 fm for ηIS=s ¼ 0.01 (top) and 0.1 (bottom). The
BAMPS results shown using black lines and filled circles are taken from Ref. [37]. The AWmodel results are shown with the purple line
and squares. The Shakhov results obtained using the (1000), (1001), (1012) and (2012) models are shown with lines and empty symbols
(circles, upper triangles, lower triangles and rhombi, respectively).
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Nevertheless, the relaxation time τR is still fixed via
Eq. (176), namely

τR ¼ 5η

4P
¼ 1.5845

nσ
; ð188Þ

where n≡ nðzÞ is the local particle number density. The
Shakhov model is then implemented exactly as discussed
in the preceding section, using λmfp ¼ 1=nσ. The numeri-
cal results are shown in Figs. 6 and 7 and, before
discussing them in detail below, we mention that for

presentation purposes, we have chosen to show the results
for both values of σ together on the same canvas. For this
purpose, we have shifted each quantity A by an offset ΔA
for σ ¼ 2 mb and by −ΔA for σ ¼ 8 mb.
Case (i) above is a milder version of the Sod shock tube

problem considered in the previous subsection. First, the
temperature jump is smaller (T∞ ¼ 0.25 GeV compared to
0.2 GeV considered in Sec. VI B), and second, the initial
discontinuity is smoothed out by the Woods-Saxon profile.
Figure 6 shows the comparison between the BAMPS data
and our simulation results. Figures 6(a) and 6(d) show the

FIG. 6. Profiles of (a) P=P0, (b) λ ¼ eα, (c) qz=P and (d) π=Pwith respect to z taken at t ¼ 6 fm for the initial conditions referred to as
“case 1,” described in Sec. VI C. The datasets corresponding to σ ¼ 2 mb (filled symbols) and 8 mb (open symbols) are shifted
symmetrically by the quantities þΔ and −Δ, respectively, with ΔP ¼ 0.1, Δλ ¼ 0.05, Δq ¼ 0.01 and Δπ ¼ 0.
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normalized pressure P=P0 and the shear-stress tensor
coefficient π ≡ πzz=γ2. All models (including the AW
model) are in good agreement with the BAMPS data,
confirming that the dynamics of these quantities are
dominated by the shear viscosity η, which is correctly
recovered by all considered models.
Figures 6(b) and 6(c) show the fugacity, λ ¼ eμ=T , and

the heat flux qz ¼ −ðeþ PÞVz=n. For the larger cross-
section, σ ¼ 8 mb, shown with empty symbols, all model
results seem to be consistent with the BAMPS data at the
level of the fugacity. However, Fig. 6(c) shows that the AW
and (1000) models significantly underestimate the peak
values of the heat flux, while the higher-order models

(1001, 1012 and 2012) capture the BAMPS data quite
accurately. For the lower cross-section, σ ¼ 2 mb, shown
with full symbols, the AW and (1000) models deviate
significantly from the BAMPS data for both λ and qz. The
(1001) model provides a significant improvement; how-
ever, one may observe a slight discrepancy in the λ profile
before the onset of the shock front, as well as a slight
overestimation of the heat-flux peak. On the other hand,
both high-order models (1012 and 2012) are in excellent
agreement with BAMPS.
The setup considered as “case (ii),” shown in Fig. 7,

favors a flow pattern dominated by the heat flux. While the
fugacity λ, shown in Fig. 7(a), is excellently captured by all

FIG. 7. Profiles of (a) λ ¼ eα, (b) P=P0, (c) qz=P and (d) π=Pwith respect to z taken at t ¼ 6 fm for the initial conditions referred to as
“case 2.” As in Fig. 6, we have shifted the datasets with Δλ ¼ 0.15, ΔP ¼ 0.003, Δq ¼ −0.01 and Δπ ¼ 0.002.
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TABLE II. Transport coefficients for the hard-sphere gas of ultrarelativistic particles interacting via an isotropic cross-section σ,
computed using the original DNMR approach [27,31], as well as for the high-order Shakhov models (1001), (1012) and (2012)
considered in Sec. VI D. Besides the transport coefficients shown above, all models have δVV ¼ τV , δππ ¼ 4τπ=3, τVπ ¼ lVπ and
τπV ¼ 4lπV .

Model ησβ τπ=λmfp βlπV=τπ τππ=τπ βλπV=τπ κσ τV=λmfp lVπ=βτV λVV=τV λVπ=βτV

HS 1.2676 2 −0.68317 1.6888 0.24188 0.15892 2.5721 0.11921 0.92095 0.051709

1001 1.2676 1.98958 −0.68317 1.43987 0 0.15892 1.9070 0.11921 0.6 0.032698
1012 1.2676 2 −0.68317 1.6888 0.24188 0.15892 2.5721 0.11921 0.76998 0.043070
2012 1.2676 2 −0.68317 1.6888 0.24188 0.15892 2.5721 0.11921 0.92095 0.051709

FIG. 8. Same as Fig. 6 for the Shakhov model implementing the DNMR transport coefficients. The “2012, IReD” entry shown in
red with rhombi corresponds to the results obtained using the IReD transport coefficients, being in excellent agreement with the
BAMPS data.
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models, the pressure fluctuations, arising at a subpercent
level around the initial value, are completely missed by the
AW and 1000 models. The higher-order models give a
reasonable representation of the general trend of these
fluctuations, with the 1001 model performing (surpris-
ingly) marginally better than the 1012 and 2012 models;
however, the small amplitude of the oscillations may
indicate that transport phenomena beyond second order
may play an important role. The same remarks hold equally
for the shear-stress coefficient π, shown in Fig. 7(d).
Surprisingly, the heat flux profile shown in Fig. 7(c) is

recovered by all Shakhov models, while the AW model
underestimates its magnitude by roughly 11%. The first-
order Shakhov model (1000), implementing the correct
value of the diffusion coefficient, already provides an
excellent match to the BAMPS data. Furthermore, the
(1001) model already captures the main features of
the pressure and shear-stress tensor fluctuations, while
the higher order models (1012 and 2012) provide a
marginal improvement over the (1001) model.

D. Using the DNMR transport coefficients

Before ending this section, we remark that the point of
the original Denicol et al. paper [38] was to demonstrate
that one can obtain agreement with the BAMPS data within
the framework of second-order fluid dynamics by increas-
ing the number of dynamical moments. Surprisingly,
Figs. 2 and 3 of Ref. [38] indicate that keeping the original
14 dynamical moments—for ultrarelativistic particles, just
13 moments, namely n, uμ, e, Vμ and πμν—and increasing
the accuracy for the computation of the transport coeffi-
cients within the DNMR method of moments leads to
worse agreement with BAMPS.
The reason for this apparently divergent behavior lies in

the way the second-order hydrodynamics scheme is set up.
In the original DNMR framework, one encounters second-
order terms of the type Re−2 (not considered in our present
work), Re−1Kn (the J , J μ, and J μν terms) and Kn2 (theK,
Kμ, and Kμν terms). The latter Kn2 terms are parabolic and
must thus be omitted from a hydrodynamics solver, as is
done also in Ref. [38]. Within the IReD framework of
Ref. [29], these Kn2 terms are consistently absorbed in the
Re−1Kn terms, which leads to a restoration of the second-
order accuracy by a modification of the second-order
transport coefficients appearing in the Re−1Kn terms.
Hence, employing the values of the transport coefficients
for the Re−1Kn terms derived in the DNMR framework
while discarding the OðKn2Þ terms cannot lead to a
hydrodynamic model which is second-order accurate,
hence the persistent discrepancy to the BAMPS data.
To test this, we consider again the Shakhov models

discussed until now, tuned to recover the DNMR transport
coefficients for hard-sphere interactions, shown in Table II.
The equivalent AW and (1000) models are evidently

identical to the IReD ones, since they fix only the first-
order transport coefficients, which are identical between the
IReD and DNMR approaches. For the (1001) model, we
employed lVπ ¼ 0.11921βτV and lπV ¼ −0.68317τπ=β.
The higher order (1012) and (2012) models are derived
in Secs. B 3 and B 4 of Appendix B. In all cases, we
summarize the resulting transport coefficients in Table II.
Our results shown in Fig. 8 confirm the interpretation

that the transport coefficients derived within the DNMR
framework are ill-suited for hydrodynamical simulations.
While the pressure [Fig. 8(a)] and shear-stress coefficient π
[Fig. 8(d)] profiles are recovered well by all models,
showing that the dynamics of these quantities is dominated
just by the value of the shear viscosity η, the fugacity λ
[Fig. 8(b)] and most of all, the heat flux [Fig. 8(c)], are
strongly sensitive to the second-order transport coefficients
and the Shakhov model results with DNMR coefficients
exhibit strong disagreement to the BAMPS data. One can
see again that employing the IReD transport coefficients
within the high-order (2012) model gives excellent agree-
ment with the BAMPS data.

VII. CONCLUSIONS

In this work, we presented a general method to extend
the standard Anderson-Witting elaxation time approxima-
tion for the Boltzmann equation via a high-order Shakhov-
like construction. Depending on the chosen truncation, the
model allows for a varying number of transport coefficients
to be fixed from the hydrodynamic limit of kinetic theory.
To validate our construction, we first considered two
canonical setups: the Bjorken flow for massive particles
and longitudinal waves for massless particles, where we
compared simulation results between the Shakhov model
and second-order Israel-Stewart-like hydrodynamics
with transport coefficients taken from the Shakhov model.
In the context of the Bjorken flow, we demonstrated that the
Shakhov model can be used to simultaneously tweak the
shear viscosity η, bulk viscosity ζ, and the bulk-shear
coupling coefficient λΠπ . In the longitudinal waves setup,
we demonstrated that the Shakhov model is able to
simultaneously tweak the shear viscosity η, particle dif-
fusivity κ, and the shear-diffusion cross-coupling coeffi-
cients, lVπ and lπV . The results of the kinetic Shakhov
model were in good agreement with those from hydrody-
namical simulations with the transport coefficients
expected from the Shakhov model, validating the hydro-
dynamic limit of the Shakhov model.
The third example that we considered consisted of

several incarnations of the Riemann problem, where we
employed the Shakhov model to reproduce the solution of
the full Boltzmann equation obtained using the BAMPS
code for massless particles interacting via an isotropic
cross-section σ. The transport coefficients of such a hard-
sphere gas were computed using the method of moments in
the famous DNMR paper [27], and we took them in the
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IReD formulation that completely avoids parabolic,
OðKn2Þ terms [29] (see also Ref. [31] for a discussion
on the analytical structure of the hard-sphere collision
matrix). Here we considered several models, in increasing
order of complexity:

(i) The AW model, which recovers just the shear
viscosity η.

(ii) The first-order Shakhov model, labeled (1000),
recovering both η and the particle diffusivity κ.

(iii) The (1001) model, discussed in the context of
longitudinal waves, recovering η, κ, as well as the
diffusion-shear coupling coefficients lVπ and lπV .

(iv) The (1012) model, recovering all transport coeffi-
cients except λVV and λVπ.

(v) The (2012) model, recovering all first- and second-
order transport coefficients of the hard-sphere
model.

In the above, we employed the ðN1; N2; s1; s2Þ models
introduced in Sec. III F. As explained in Eq. (116), such
models benefit from 2ðN1 þ N2 þ s1 þ s2Þ independent
degrees of freedom, plus the overall relaxation time τR. For
simplicity, we took τR to be related to the model’s shear
viscosity η through the standard RTA relation, τR ¼ 5η=4P.
Then, the (1000) model has 2 parameters, used to fix η and
κ; the (1001) model has 4 parameters, fixing η, κ, lVπ and
lπV ; the (1012) model has 8 parameters, fixing η, κ, τπ , τV ,
lVπ , lπV , τππ and λπV ; finally, the (2012) model has 10 free
parameters, fixing also λVV and λVπ .
Our first conclusion was that the dynamics of both the

pressure P and the shear-stress tensor πμν is dominated by
the shear viscosity η and is thus accurately recovered by all
considered models, including the AW model. Contrary to
expectations, the dynamics of the heat flux qμ requires
more than just fixing the diffusion coefficient κ. While
performing in principle better than the AW model, the first-
order (1000) Shakhov model is still in visible disagreement
with the BAMPS data. A notable exception is that of
“case 2” from Denicol et al. [38], where both P and πμν

exhibit subleading fluctuations and the dynamics of qμ is
dominated by κ, such that the (1000) model is in excellent
agreement with the BAMPS data. In a more general setting,
cross-couplings are important and the (1001) model pro-
vides a significant improvement over the AW and (1000)
models by correctly capturing the lVπ and lπV cross-
coupling coefficients. The small discrepancies with respect
to the BAMPS data are almost entirely removed when
considering the (1012) and (2012) models.
We must remark that in this paper, we have focused

entirely on the linearized part of the collision term. For a
generic 2 → 2 scattering, the moments of the collision term
receive both a linear and a quadratic contribution [47].
Since our models already display very good agreement to
the BAMPS data, we can only conclude that for the
instances of the Riemann problem considered in this paper,
these missing Re−2 terms make subleading contributions,

however it is not inconceivable that such terms may become
important in more general settings.
The setups presented here can be applied to more

complex (3þ 1)-dimensional problems, in particular
related to the study of heavy-ion collisions. While usually
in simulations a hydrodynamic stage is followed by an
afterburner which is based on kinetic theory, a Shakhov-
type model can cover both regimes, eliminating the
need for particlization. The Shakhov extension of the
RTA provides the means to determine realistic models
for, e.g., the shear and bulk viscosities, by employing
Bayesian analysis on numerical and experimental data, as
discussed in Ref. [52]. This should bring an important
improvement to the results reported in Ref. [52], where
pure hydrodynamics was used to obtain the numerical data,
since hydrodynamics is known to be inaccurate during
preequilibrum, when the quark-gluon plasma fluid is in a
far-from-equilibrium state [17].

The numerical code, raw data and scripts to generate the
plots shown in this paper are available on Code Ocean [43].
The code consists of two separate programs, one for the
Bjorken flow and the other for the Riemann problem,
extending the code in Ref. [26] (the original version for the
Bjorken flow code was introduced in Ref. [39]). We remark
that the evaluation of the modified Bessel functions KnðzÞ
and of the Bickley function Ki1ðzÞ, required for the Bjorken
flow problem, is performed using the algorithms designed
by Amos in Refs. [53–56], openly available through the
OpenSpecfun project [57].
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APPENDIX A: NUMERICAL SCHEME

In this section of the appendix, we discuss the method
employed to obtain numerical solutions of the Boltzmann
equation with the Shakhov-like collision model. The
scheme extends that introduced in Refs. [26,39] and
employs the so-called rapidity-based moments, summa-
rized in Sec. A 1. Sections A 2 and A 3 summarize the
strategy employed for the Bjorken flow and Riemann
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problems, respectively. Section A 4 summarizes the dis-
cretization scheme and numerical algorithm. A note on
code availability can be found at the end of Sec. VII.

1. Boltzmann equation in 1 + 1-D Minkowski space
and 0 + 1-D Milne space

The applications considered in the validation sections
concern flows which are homogeneous with respect to
the transverse plane spanned by x⊥, in which case the
Boltzmann equation reads

kt∂tfk þ kz∂zfk ¼ −
Ek

τR
ðfk − fSkÞ: ðA1Þ

We parametrize the momentum space as�
kt

kz

�
¼m⊥

�
coshy

sinhy

�
;

�
kx

ky

�
¼k⊥

�
cosφk

sinφk

�
; ðA2Þ

where m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p
is the transverse mass, y ¼

tanh−1 vz is the rapidity and vz ¼ kz=kt. Dividing
Eq. (A1) by kt, we arrive at

∂tfk þ vz∂zfk ¼ −
γð1 − βzvzÞ

τR
ðfk − fSkÞ; ðA3Þ

where we assumed that the transverse components of the
four-velocity vanish, uμ∂μ ¼ γð∂t þ βz∂zÞ. Equation (A3) is
appropriate to analyze the sound and shock wave propa-
gation problems considered in Secs. V and VI.
In the case of the Bjorken flow considered in Sec. IV,

invariance with respect to longitudinal boosts imposes the
velocity profile uμ∂μ ¼ τ−1ðt∂t þ z∂zÞ, where τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is the Bjorken time. Introducing the space-time rapidity
η ¼ tanh−1ðz=tÞ, such that

t ¼ τ cosh η; z ¼ τ sinh η; ðA4Þ

Eq. (A1) becomes

∂fk
∂τ

þ tanhðy − ηÞ 1
τ

∂fk
∂η

¼ −
1

τR
ðfk − fSkÞ; ðA5Þ

where the functional dependence of the distribution
function is fk ≡ fkðτ;x⊥; η;m⊥;φk; tanh yÞ. Boost invari-
ance dictates that fk depends on η and y only through
their difference. It is therefore convenient to parametrize
the momentum space using ðm⊥;φk; vzÞ with vz ≡
tanhðy − ηÞ, such that Eq. (A5) finally reads [26,39]

∂fk
∂τ

−
vzð1 − v2zÞ

τ

∂fk
∂vz

¼ −
1

τR
ðfk − fSkÞ; ðA6Þ

where in the above, fk ≡ fkðτ;m⊥;φk; vzÞ. This para-
metrization can be related to that arising when the

curvilinear coordinates ðτ; ηÞ are employed, when it is
convenient to introduce

kτ ¼ ∂τ

∂t
kt þ ∂τ

∂z
kz ¼ m⊥ coshðy − ηÞ;

kη ¼ ∂η

∂t
kt þ ∂η

∂z
kz ¼ m⊥

τ
sinhðy − ηÞ; ðA7Þ

such that vz ¼ τkη=kτ.
The macroscopic moments of the distribution function

are obtained after integration over the momentum space
using the integration measure d3k=k0, which reads
dkxdkydkz=kt on Minkowski space and τdkxdkydkη=kτ

on Milne space. In both cases, when employing the
appropriate parametrization ðm⊥;φk; vzÞ, this integration
measure becomesZ

d3k
k0

→
Z

1

−1

dvz

1 − v2z

Z
2π

0

dφk

Z
∞

m
dm⊥m⊥: ðA8Þ

In the case of the 0þ 1-D and 1þ 1-D flows considered
in this paper, the parametrization of the momentum space
using the rapidity-based degrees of freedom ðm⊥;φk; vzÞ
allows the dimensionality of the momentum space to be
reduced from 3 degrees of freedom to a single one, namely
vz. Introducing the rapidity-based moments

FnðvzÞ ¼
g

ð2πÞ3
Z

2π

0

dφk

Z
∞

m

dm⊥mnþ1⊥
ð1 − v2zÞðnþ2Þ=2 fk; ðA9Þ

it is possible to recast Eq. (A3) as

∂Fn

∂t
þ vz

∂Fn

∂z
¼ −

γð1 − βzvzÞ
τR

ðFn − FS
nÞ; ðA10aÞ

while Eq. (A6) becomes

∂Fn

∂τ
þ 1

τ
½1þ ðn − 1Þv2z �Fn −

1

τ

∂½vzð1 − v2zÞFn�
∂vz

¼ −
1

τR
ðFn − FS

nÞ: ðA10bÞ

The functions FS
n corresponding to the Shakhov distribu-

tion fSk must be computed using Eq. (A9). A general
expression is cumbersome and uninsightful, such that
we defer the details of this computation to the following
subsections, where we will separately make use of the
particular symmetries of the 0þ 1-D Bjorken flow of
massive particles and the 1þ 1-D Riemann problem for
massless particles.

2. Strategy for Bjorken flow

Due to the symmetries of the 0þ 1-D Bjorken flow,
Tμν ¼ diagðe; PT; PT; τ−2PLÞ has a diagonal form, while
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uμ∂μ ¼ ∂τ. The quantities e ¼ Tττ, PL ¼ τ2Tηη and PT ¼
1
2
ðe − PL − Tμ

μÞ can be obtained from the moments Fn

using

Tμ
μ ¼ m2

Z
1

−1
dvzF0;�

Tττ

τ2Tηη

�
¼
Z

1

−1
dvz
�

1

v2z

�
F2: ðA11Þ

In the Bjorken flow setup, we consider only the case of a
gas in chemical equilibrium (α ¼ 0), for which the vector
moments are not relevant.
The requirements of orthogonality to uμ, tracelessness

and transverse-plane isotropy constrains the form of the
irreducible rank-2 tensors, written with respect to the
Bjorken coordinates ðτ; x; y; ηÞ, to

ρμνr ¼ diag

�
0;−

1

2
;−

1

2
;
1

τ2

�
πr; ðA12Þ

such that their dynamics can be described by the scalar
quantities πr, with π0 ¼ 2

3
ðPL − PTÞ. In terms of the

functions Fn, the quantities πr can be written as

πr ¼
1

3

Z
1

−1
dvz½ð3v2z − 1ÞFrþ2 þm2Fr�: ðA13Þ

Similarly, the nonequilibrium contributions ρr to the scalar
moments can be obtained via

ρr ¼
Z

1

−1
dvzðFr − Feq

r Þ; ðA14Þ

with the bulk viscous pressure given by Π ¼ − m2

3
ρ0 ¼

1
3
ðe − 3P − Tμ

μÞ.
We finally discuss the construction of the Shakhov

functions FS
n. In the case of the ideal gas considered in

this section, the Shakhov term fSk becomes

fSk ¼ f0kð1þ SkÞ; ðA15Þ

with Sk given by Eq. (136). Using Eq. (142), Sk becomes

Sk ¼
�
πS;−2 πS;0

��
j4 −j2
−j2 j0

��
1

m2⊥=ð1 − v2zÞ

�
×

�
3v2z − 1

2
þm2

2

1 − v2z
m2⊥

�
; ðA16Þ

where jn ¼ Jn2=½2ðJ02J22 − J242Þ�. Specifically, we find

FS
n ¼ Feq

n þ
�
πS;−2 πS;0

��
j4 −j2
−j2 j0

�
×

�
3v2z − 1

2

�
Feq
n

Feq
nþ2

�
þm2

2

�
Feq
n−2

Feq
n

��
; ðA17Þ

where the functions Feq
n introduced in Eq. (A9) evaluate to

Feq
n ¼ geα

4π2
Tnþ2Γ

�
nþ 2;

m=Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p �
; ðA18Þ

with Γðn; xÞ ¼ R∞x tn−1e−tdt being the incomplete Gamma
function. The coefficients πS;−2 and πS;0 characterizing the
Shakhov distribution can be calculated from the coeffi-
cients π−2 and π0 obtained from fk using the following
matrix equation:

�
πS;−2

πS;0

�
¼
0@ 1 − τRA

ð2Þ
S;−2;−2 −τRA

ð2Þ
S;−2;0

−τRA
ð2Þ
S;0;−2 1 − τRA

ð2Þ
S;0;0

1A� π−2

π0

�
;

ðA19Þ

with the matrix elements Að2Þ
S;rn given in Eq. (135). Taking

into account that πr can be expressed in terms of Frþ2 and
Fr, as shown in Eq. (A13), the above relation shows that
the Boltzmann equation for the rapidity-based moments,
Eq. (A10a), can be closed by tracking the evolution of F−2,
F0 and F2.

3. Strategy for 1 + 1-D flows

We now move to the case of 1þ 1-D flows. Due to the
symmetries of a system with transverse-space homo-
geneity, the only nonvanishing components of Tμν are its
diagonal ones, as well as Ttz ¼ Tzt. The components Ttt

and Tzz are as in Eq. (A11), the trace cancels (Tμ
μ ¼ 0),

while Ttz is given by

Ttz ¼
Z

1

−1
dvzvzF2: ðA20Þ

Due to isotropy in the transverse plane, the transverse
components satisfy Txx ¼ Tyy ¼ 1

2
ðTtt − TzzÞ. The Landau

frame can be obtained by solving the eigenvalue equation
Tμ

νuν ¼ euμ, i.e.�
Ttt −Ttz

Ttz −Tzz

��
1

βz

�
¼ e

�
1

βz

�
: ðA21Þ

This leads to the solution

e ¼ 1

2

h
Ttt − Tzz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTtt þ TzzÞ2 − 4ðTtzÞ2

q i
; ðA22Þ
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while βz ¼ Ttz=ðeþ TzzÞ [40]. The particle number density
n ¼ uμNμ ¼ γðNt − βzNzÞ can be obtained using

�
Nt

Nz

�
¼
Z

1

−1
dvz
�

1

vz

�
F1: ðA23Þ

As in the case of the Bjorken flow, the vector and
tensor off-equilibrium moments ρμr and ρμνr are each
characterized by a single number, Vr and πr, which we
define as follows:

ρμr∂μ ¼ Vrðβz∂t þ ∂zÞ;

ρμνr ¼ πr

0BBBBB@
β2zγ

2 0 0 βzγ2

0 − 1
2

0 0

0 0 − 1
2

0

βzγ2 0 0 γ2

1CCCCCA: ðA24Þ

Defining the macroscopic quantities Nμ
r ¼ hkμEr

ki and
Tμν
r ¼ hkμkνEr

ki, we have

�
Nt

r

Nz
r

�
¼
Z

1

−1
dvz
�

1

vz

�
ðu · vÞrFrþ1;0B@ Ttt

r

Ttz
r

Tzz
r

1CA ¼
Z

1

−1
dvz

0B@ 1

vz

v2z

1CAðu · vÞrFrþ2; ðA25Þ

where vμ ¼ kμ=k0 and u · v ¼ γð1 − βzvzÞ. Apart from the
components Tij

r ¼ 1
2
δijðTtt

r − Tzz
r − Tμ

r;μÞ with i; j∈ f1; 2g
being transverse indices, all other transverse components
Ni

r, Tti
r and Tiz

r can be taken to vanish. The nonequilibrium
quantities Vr and πr can be obtained via

Vr ¼ Δz
νNν

r ¼ γ2
Z

1

−1
dvzðu · vÞrFrðvz − βzÞ;

πr ¼
1

γ2
Δzz

μνT
μν
r ¼

Z
1

−1
dvzðu · vÞrFr

×

�
2

3
γ2ðvz − βzÞ2 − 1 − v2z

3

�
: ðA26Þ

We now discuss the moments FS
n of the Shakhov

distribution function. Considering the generic split
fSk ¼ f0k þ δfSk, we have

FS
n ¼ Feq

n þ δFS
n; ðA27Þ

where Feq
n reduces to

Feq
n ¼ geα

4π2

Z
∞

0

dm⊥mnþ1⊥
ð1 − v2zÞðnþ2Þ=2 exp

�
−
βm⊥ðu · vÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2z
p �

¼ In0
2ðu · vÞnþ2

; ðA28Þ

with In0 ¼ geαðnþ 1Þ!=2π2βnþ2, as shown in Eq. (82).
Furthermore, considering that δfSk ¼ f0kf̃0k

P
L
l¼0PNl

r¼−sl ρ
μ1���μl
S;r khμ1 � � � kμliE−sl

k H̃ðlÞ
k;rþsl

, we have

δFS
n¼

1

2

XL
l¼0

ð2lþ1Þ!!
ð−1Þll!

XNl

r¼−sl

ρμ1���μlS;r vhμ1 � ��vμli
ðu ·vÞlþnþ2

F̃ ðlÞ
l−sl−n;rþsl

;

ðA29Þ

where F̃ ðlÞ
rn was introduced in Eq. (59) and was evaluated

in Eq. (95) for the massless case. In order to arrive at
Eq. (A29), we inserted kt ¼ m⊥=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
, performed the

φk-integral and employed that in the massless limit

F̃ ðlÞ
rn ¼ ð−1Þll!

ð2lþ 1Þ!! β
−2ðl−slÞ−2þr g

2π2

×
Z

∞

0

dxx2ðl−slÞþ1−rf0ðxÞf̃0ðxÞH̃ðlÞ
kn ðxÞ;

where x ¼ βk0 and we evaluated the integral in the rest
frame of the fluid. Specializing the above to the case when
1 ≤ l ≤ 2 gives

FS
n ¼ Feq

n −
3ðβz − vzÞ
2ðu · vÞnþ3

XN1

r¼−s1

VS;rF̃
ð1Þ
1−s1−n;rþs1

þ 15

4ðu · vÞnþ4

�
γ2ðβz − vzÞ2 − 1 − v2z

2

�
×
XN2

r¼−s2

πS;rF̃
ð2Þ
2−s2−n;rþs2

; ðA30Þ

where we employed Eq. (A24) and used that kμkμ ¼ 0. The
coefficients VS;r and πS;r corresponding to the Shakhov
distribution can be obtained from the coefficients Vr and πr
corresponding to fk via

VS;r ¼
XN1

n¼−s1

ðδrn − τRA
ð1Þ
S;rnÞVn;

πS;r ¼
XN2

n¼−s2

ðδrn − τRA
ð2Þ
S;rnÞπn; ðA31Þ

cf. Eq. (52).
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4. Space, time and momentum space discretization

The numerical algorithms employed in this paper are
identical to those described in the supplementary material
of Ref. [26] and fall in the category of the discrete velocity
methods (see Refs. [12,14,18,26,39,41] for previous devel-
opments of this code). Due to the symmetries of the flows
considered in this paper, the momentum space becomes
one dimensional. The remaining vz degree of freedom is
discretized according to the Gauss-Legendre prescription,
such that the continuous functions FnðvzÞ are replaced by

Fn;j¼wjFnðvzjÞ; wj¼
2ð1−v2z;jÞ

½ðKþ1ÞPKþ1ðvzjÞ�2
; ðA32Þ

where vzj (1 ≤ j ≤ K) are the K roots of the Legendre
polynomial PKðzÞ and wj are the associated weights. The
derivative with respect to vz appearing in Eq. (A6) is
replaced by the finite sum�

∂½vzð1 − v2zÞFn�
∂vz

�
j
¼
XK
j0¼1

Kj;j0Fn;j0 ; ðA33Þ

where the kernel Kj;j0 is obtained by projecting the
left-hand side expression onto the space of Legendre
polynomials [12]:

Kj;j0 ¼ wj

XK−3
m¼1

mðmþ 1Þðmþ 2Þ
2ð2mþ 3Þ PmðvzjÞPmþ2ðvzj0 Þ

− wj

XK−1
m¼1

mðmþ 1Þ
2

PmðvzjÞ
� ð2mþ 1ÞPmðvzj0 Þ
ð2m − 1Þð2mþ 3Þ

þ m − 1

2m − 1
Pm−2ðvzj0 Þ

�
: ðA34Þ

The time stepping is performed using the third-order
total variation diminishing Runge-Kutta algorithm of
Refs. [58,59]. Considering the equation ∂tf ¼ L½t; f�, the
scheme advances fn ≡ fðtnÞ from time tn to fnþ1 ≡
fðtnþ1Þ at time tnþ1 ¼ tn þ δtn via two intermediate stages:

fnþ1 ¼
1

3
fn þ

2

3
fð2Þn þ 2

3
δtnL

�
tn þ

1

2
δtn; f

ð2Þ
n

�
;

fð2Þn ¼ 3

4
fn þ

1

4
fð1Þn þ 1

4
δtnL½tn þ δtn; f

ð1Þ
n �;

fð1Þn ¼ fn þ δtnL½tn; fn�: ðA35Þ

In the case of Bjorken flow, the time step is taken
adaptively, δτn ¼ minð10−3τn; τR=2Þ, while in the case of
the longitudinal waves and Riemann problems, we employ
equal time steps.
Finally, the spatial advection for the 1þ 1-D problems is

implemented using a flux-based scheme. The domain of

length L is discretized using S equal intervals of size
δz ¼ L=S. The spatial nodes are taken as the centers of
these cells, having coordinates zs¼ðs− 1

2
Þδz−L

2
(1≤ s≤S).

The spatial derivative at point zs is calculated using�
vz

∂Fn

∂z

�
s
¼ Fsþ1=2 − Fs−1=2

δz
; ðA36Þ

where the flux Fsþ1=2 at the interface between cells s
and s − 1 is computed using the upwind-biased WENO-5
(fifth-order weighted essentially nonoscillatory) scheme of
Refs. [51,60].

APPENDIX B: SHAKHOV MATRICES FOR
ULTRARELATIVISTIC HARD SPHERES

In this appendix, we illustrate the procedure for the
implementation of the (1012) and (2012) high-order
Shakhov matrices, tuned to recover the transport coeffi-
cients of a classical gas of hard-sphere particles, interacting
via the constant cross section σ, shown on the first lines
of Tables I and II. In Secs. B 1 and B 2, we focus on
recovering the transport coefficients obtained in the IReD
approach [29,31], summarized in Table I. Sections B 3
and B 4 present the collision matrices recovering the values
of the transport coefficients calculated using the standard
DNMR approach [27,31].

1. IReD ðN1;N2; s1; s2Þ= ð1012Þ model

In this truncation, the basis is shifted downwards as far as
possible in the ultrarelativistic case (s1 ¼ 1 and s2 ¼ 2).
The interesting submatrices and their inverses for l ¼ 1
and l ¼ 2 are given by

Að1Þ
S;rn ¼

0@Að1Þ
S;−1;−1 Að1Þ

S;−1;0

Að1Þ
S;0;−1 Að1Þ

S;0;0

1A;

τð1ÞS;rn ¼
0@ τð1ÞS;−1;−1 τð1ÞS;−1;0

τð1ÞS;0;−1 τð1ÞS;0;0

1A; ðB1Þ

and

Að2Þ
S;rn ¼

0BBB@
Að2Þ

S;−2;−2 Að2Þ
S;−2;−1 Að2Þ

S;−2;0

Að2Þ
S;−1;−2 Að2Þ

S;−1;−1 Að2Þ
S;−1;0

Að2Þ
S;0;−2 Að2Þ

S;0;−1 Að2Þ
S;0;0

1CCCA;

τð2ÞS;rn ¼

0BBB@
τð2ÞS;−2;−2 τð2ÞS;−2;−1 τð2ÞS;−2;0

τð2ÞS;−1;−2 τð2ÞS;−1;−1 τð2ÞS;−1;0

τð2ÞS;0;−2 τð2ÞS;0;−1 τð1ÞS;0;0

1CCCA; ðB2Þ
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respectively. In the above and in what follows, we employed
bold font to highlight the (0,0) entry in each matrix. The first-
order transport coefficients read in this case

κ0 ¼
Pβ
12

�
τð1ÞS;0;−1β þ τð1ÞS;0;0

�
;

η0 ¼
P
15

�
τð2ÞS;0;−2β

2 þ 3τð2ÞS;0;−1β þ 12τð2ÞS;0;0

�
: ðB3Þ

The relaxation times are given by

τV ¼ τð1ÞS;0;−1C
ð1Þ
−1 þ τð1ÞS;0;0;

τπ ¼ τð2ÞS;0;−2C
ð2Þ
−2 þ τð2ÞS;0;−1C

ð2Þ
−1 þ τð2ÞS;0;0; ðB4Þ

while the second-order transport coefficients for the particle
diffusion read

δVV ¼ τV; λVV ¼ 1

5

�
Cð1Þ−1τ

ð1Þ
S;0;−1 þ 3τð1ÞS;0;0

�
;

lVπ ¼ τVπ ¼
�
τð1ÞS;0;−1

�
β2

12
− Cð2Þ−2

�
þ τð1ÞS;0;0

�
β

4
− Cð2Þ−1

��
;

λVπ ¼
1

4

�
2τð1ÞS;0;−1C

ð2Þ
−2 þ τð1ÞS;0;0C

ð2Þ
−1

�
: ðB5Þ

Lastly, the second-order transport coefficients for the shear-
stress tensor are given by

δππ ¼
4

3
τπ; λπV ¼ 1

10
τð2ÞS;0;−2C

ð1Þ
−1 ;

τππ ¼
2

7

h
Cð2Þ−2τ

ð2Þ
S;0;−2 þ 3Cð2Þ−1τ

ð2Þ
S;0;−1 þ 5τð2ÞS;0;0

i
;

lπV ¼ 1

4
τπV ¼ 2

5
ðCð1Þ−1τ

ð2Þ
S;0;−2 þ τð2ÞS;0;−1Þ: ðB6Þ

Let us briefly discuss how a matching procedure may

look in this case. Firstly, we may fix τð1ÞS;0;0 and τð2ÞS;0;0 via κ0
and η0, respectively. Then, we fix τð1ÞS;0;−1 and τð2ÞS;0;−1 via τV
and τπ . The last remaining coefficient in the zeroth row of

τð2ÞS , i.e., τð2ÞS;0;−2, is fixed by means of lπV , after which C
ð2Þ
−1 is

expressed via τππ . Having used all nonvanishing second-
order coefficients of the shear-stress equation, we turn to

the diffusion current and fix Cð2Þ−2 through lVπ . By now we

have left only Cð1Þ−1 as a degree of freedom, but three free
coefficients, namely λVπ, λVV and λπV . Thus, we have to

choose one of these coefficients to fix Cð1Þ−1 and compare
the results for the other two with the reference values
from Ref. [31], where they have been computed to high
precision recently.
Putting in the converged values from Ref. [31] (consid-

ering the “IReD”values, which are based on the approach
presented in Ref. [29]) and fixing λπV , we follow the
procedure outlined above numerically to obtain the values

of τð1ÞS and τð2ÞS . Note that, since only the values of Cð2Þ−2 , C
ð2Þ
−1

and Cð1Þ−1 are fixed, we may set τð2ÞS;−2;−1 ¼ τð2ÞS;−2;0 ¼
τð2ÞS;−1;−2 ¼ τð2ÞS;−1;0 ¼ τð1ÞS;−1;0 ¼ 0. Furthermore, since there
are two solutions for the matrices, we may classify
them by the agreement between the (unfixed) values for
λVV; λVπ and the reference values λVV ¼ 1.8725=ðPβσÞ;
λVπ ¼ 0.14435=ðPσÞ [31]. The two solutions yield

λðiÞVV ¼ 2.3185=ðPβσÞ; λðiÞVπ ¼ 0.16508=ðPσÞ;
λðiiÞVV ¼ 1.5879=ðPβσÞ; λðiiÞVπ ¼ 0.13114=ðPσÞ; ðB7Þ

where the second solution fits slightly better. Choosing this
solution, we obtain

τð1ÞS ¼ λmfp

�
1.5768 0

−1.0208=β 2.9279

�
;

τð2ÞS ¼ λmfp

0B@ 1.1775 0 0

0 1.4092 0

4.1056=β2 −5.7524=β 2.6805

1CA; ðB8Þ

where λmfp ¼ 1=Pβσ and we have represented in bold font
the (0,0) component of each matrix. The actual matrices
needed for the Shakhov term are then

Að1Þ
S ¼ 1

λmfp

�
0.63419 0

0.22111β−1 0.34155

�
;

Að2Þ
S ¼ 1

λmfp

0B@ 0.84927 0 0

0 0.70961 0

−1.3008β−2 1.5229β−1 0.37307

1CA:

ðB9Þ

2. IReD ðN1;N2; s1; s2Þ= ð2012Þ model

We now consider the truncation where the basis is
shifted downwards as far as possible and an additional
vector moment is included, i.e., the submatrices are
given by

Að1Þ
S;rn ¼

0BBB@
Að1Þ

S;−1;−1 Að1Þ
S;−1;0 Að1Þ

S;−1;2

Að1Þ
S;0;−1 Að1Þ

S;0;0 Að1Þ
S;0;2

Að1Þ
S;2;−1 Að1Þ

S;2;0 Að1Þ
S;2;2

1CCCA;

τð1ÞS;rn ¼

0BBB@
τð1ÞS;−1;−1 τð1ÞS;−1;0 τð1ÞS;−1;2

τð1ÞS;0;−1 τð1ÞS;0;0 τð1ÞS;0;2

τð1ÞS;2;−1 τð1ÞS;2;0 τð1ÞS;2;2

1CCCA; ðB10Þ
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and

Að2Þ
S;rn ¼

0BBB@
Að2Þ

S;−2;−2 Að2Þ
S;−2;−1 Að2Þ

S;−2;0

Að2Þ
S;−1;−2 Að2Þ

S;−1;−1 Að2Þ
S;−1;0

Að2Þ
S;0;−2 Að2Þ

S;0;−1 Að2Þ
S;0;0

1CCCA;

τð2ÞS;rn ¼

0BBB@
τð2ÞS;−2;−2 τð2ÞS;−2;−1 τð2ÞS;−2;0

τð2ÞS;−1;−2 τð2ÞS;−1;−1 τð2ÞS;−1;0

τð2ÞS;0;−2 τð2ÞS;0;−1 τð2ÞS;0;0

1CCCA: ðB11Þ

The first-order transport coefficients are given by

κ0 ¼
Pβ
12

�
βτð1ÞS;0;−1 þ τð1ÞS;0;0 − 12β−2τð1ÞS;0;2

�
;

η0 ¼
Pβ
15

�
βτð2ÞS;0;−2 þ 3τð2ÞS;0;−1 þ 12β−1τð2ÞS;0;0

�
; ðB12Þ

while the relaxation times read

τV ¼ τð1ÞS;0;−1C
ð1Þ
−1 þ τð1ÞS;0;0 þ τð1ÞS;02C

ð1Þ
2 ;

τπ ¼ τð2ÞS;0;−2C
ð2Þ
−2 þ τð2ÞS;0;−1C

ð2Þ
−1 þ τð2ÞS;0;0: ðB13Þ

The remaining second-order transport coefficients for the
diffusion current are

δVV ¼ τV; λVV ¼ 1

5

�
Cð1Þ−1τ

ð1Þ
S;0;−1 þ 3τð1ÞS;0;0 þ 7Cð1Þ2 τð1ÞS;0;2

�
;

lVπ ¼ τVπ ¼
�
τð1ÞS;0;−1

�
β2

12
− Cð2Þ−2

�
þ τð1ÞS;0;0

�
β

4
− Cð2Þ−1

�
þ τð1ÞS;0;2

�
5

β
− Cð2Þ1

��
;

λVπ ¼
1

4

�
2τð1ÞS;0;−1C

ð2Þ
−2 þ τð1ÞS;0;0C

ð2Þ
−1 − τð1ÞS;0;2C

ð2Þ
1

�
; ðB14Þ

and the second-order coefficients for the shear-stress tensor
read

δππ ¼
4

3
τπ; λπV ¼ 1

10
τð2ÞS;0;−2C

ð1Þ
−1 ;

τππ ¼
2

7

h
Cð2Þ−2τ

ð2Þ
S;0;−2 þ 3Cð2Þ−1τ

ð2Þ
S;0;−1 þ 5τð2ÞS;0;0

i
;

lπV ¼ 1

4
τπV ¼ 2

5

�
Cð1Þ−1τ

ð2Þ
S;0;−2 þ τð2ÞS;0;−1

�
: ðB15Þ

Note that we gain two additional parameters compared to
the last section, such that we can fix all free quantities to
the hydrodynamic second-order transport coefficients.

While Cð1Þ−1 , C
ð1Þ
2 , Cð2Þ−1 and C

ð2Þ
−2 represent degrees of freedom

of the model, the coefficient Cð2Þ1 ¼ η1=η0 corresponds to a

transport coefficient that lies outside the basis. Since our
tensor basis is shifted, we can use Eq. (110) to replace

Cð2Þ1 ¼
XN2¼0

n¼−s2¼−2
F̃ ð2Þ

−3;nþ2C
ð2Þ
n ¼ 24

β3
Cð2Þ−2 −

36

β2
Cð2Þ−1 þ

12

β
;

ðB16Þ

where we employed F̃ ð2Þ
−3;0 ¼ 24=β3, F̃ ð2Þ

−3;1 ¼ −36=β2,
and F̃ ð2Þ

−3;2 ¼ 12=β.
The set of solutions for the inverse matrices reads in this

case

τð1ÞS ¼ λmfp

0B@ 1.5941 0 0

−0.29743β 1.6789 −0.043798β2

0 0 2.3713

1CA;

τð2ÞS ¼ λmfp

0B@ 1.2077 0 0

0 1.4174 0

4.0612=β2 −5.7524=β 2.6842

1CA; ðB17Þ

whereas the actual matrices are given by

Að1Þ
S ¼ 1

λmfp

0B@ 0.62732 0 0

0.11113=β 0.59563 0.011012β2

0 0 0.42171

1CA;

Að2Þ
S ¼ 1

λmfp

0B@ 0.82802 0 0

0: 0.70553 0

−1.2528=β2 1.5120=β 0.37256

1CA: ðB18Þ

In this case, only one viable solution with real entries exists.

3. DNMR ðN1;N2; s1; s2Þ= ð1012Þ model

Taking exactly the same steps as in Sec. B 1, we find
two solutions which yield for the unfixed parameters λVV
and λVπ

λðiÞVV ¼ 2.9200=ðPβσÞ; λðiÞVπ ¼ 0.16811=ðPσÞ;
λðiiÞVV ¼ 1.9805=ðPβσÞ; λðiiÞVπ ¼ 0.11078=ðPσÞ; ðB19Þ

which we compare to the true values of the DNMR theory:
λVV ¼ 2.3688=ðPβσÞ and λVπ ¼ 0.13300=ðPσÞ. Since the
second solution fits better, we obtain the Shakhovmatrices as

Að1Þ
S ¼ 1

λmfp

�
0.84344 0

0.40458β−1 0.27285

�
;

Að2Þ
S ¼ 1

λmfp

0B@ 4.6173 0 0

0 1.1968 0

−11.978β−2 3.2933β−1 0.33340

1CA: ðB20Þ
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4. DNMR ðN1;N2; s1; s2Þ= ð2012Þ model

In order to derive the (2012) model that recovers all of
the DNMR transport coefficients, we follow the same steps
as in Sec. B 2. In contrast to the IReD case, in the DNMR
one we find two real solutions, which are given by

Að1Þ;i
S ¼ 1

λmfp

0B@ 0.86786 0 0

0.26578=β 0.46905 0.0044985β2

0 0 0.26889

1CA;

Að2Þ;i
S ¼ 1

λmfp

0B@ 6.0275 0 0

0: 1.2396 0

−16.191=β2 3.4324=β 0.33550

1CA ðB21Þ

and

Að1Þ;ii
S ¼ 1

λmfp

0B@ 0.66178 0 0

0.44072=β 0.13535 −0.0020283β2

0 0 0.32059

1CA;

Að2Þ;ii
S ¼ 1

λmfp

0B@ 1.4065 0 0

0: 0.95234 0

−2.7355=β2 2.5039=β 0.31856

1CA; ðB22Þ

respectively.
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namique des fluides relativistes dissipatifs. I.—L’équation
de Boltzmann relativiste, Ann. l’I. H. P. Phys. Théor. 10, 67
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