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In this paper we present a relativistic Shakhov-type generalization of the Anderson-Witting relaxation
time model for the Boltzmann collision integral. The extension is performed by modifying the path on
which the distribution function f) is taken toward local equilibrium fg, by replacing fy — fox via
fx — fsk. The Shakhov-like distribution fgy is constructed using fox and the irreducible moments p»'
of fy and reduces to f( in local equilibrium. Employing the method of moments, we derive systematic
high-order Shakhov extensions that allow both the first- and the second-order transport coefficients to be
controlled independently of each other. We illustrate the capabilities of the formalism by tweaking the
shear-bulk coupling coefficient Ay, in the frame of the Bjorken flow of massive particles, as well as the
diffusion-shear transport coefficients £y ., £y in the frame of sound wave propagation in an ultrarelativistic
gas. Finally, we illustrate the importance of second-order transport coefficients by comparison with the

results of the stochastic BAMPS method in the context of the one-dimensional Riemann problem.
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I. INTRODUCTION

In the frame of the relativistic Boltzmann equation,
the computation of the collision term C[f] even for the
simplest case of binary collisions remains the most expen-
sive step. For this reason, models which approximate the
main features of C[fy] are highly desirable. One such
approximation is the relaxation time approximation (RTA)
introduced by Anderson and Witting [1,2].

Historically, the Anderson-Witting (AW) approximation
came as an extension of the model proposed by Marle [3],
which focused on the case of massive constituents. Both
these models reduce in the nonrelativistic limit to the
Bhatnagar-Gross-Krook (BGK) single-relaxation time
approximation of the collision integral appearing in the
nonrelativistic Boltzmann equation [4].

Much like its nonrelativistic cousin, the AW model has
gained popularity due to its relatively simple structure
which allows analytical calculations to be performed in
simplified O + 1-D setups, such as the Bjorken flow [5-7]
or Gubser flow [8-10], as well as numerical calculations
in setups such as the Riemann problem [11-14] or the
2 + 1-D Bjorken flow with transverse expansion [15-17].
Especially for conformal (massless) uncharged (vanishing
chemical potential) fluids, which are characterized only
by tensor moments such as the stress-energy tensor 7
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(i.e., no charge current), the single relaxation time 7y of the
Anderson-Witting model can be used to control the shear
viscosity #, which is sufficient to achieve agreement with
the solution of the full Boltzmann equation [18].

In general, these single-relaxation-time models share the
caveat that the transport coefficients governing dissipation
within the fluid are all derived from a single function—the
relaxation time 7p. In the case of the BGK model, this
had the unpleasant consequence that the Prandtl number
Pr = c¢,n/A, where ¢, is the heat capacity of the gas at
constant pressure, # is the dynamical or shear viscosity and
A is the heat conductivity, is fixed at the value 1. Most ideal
gases are known to have Pr~2/3 [19]. This limitation was
overcome in the extension proposed by Shakhov [20,21],
which introduces a new parameter that allows Pr to be
controlled independently. There is still some controversy
regarding the well-posedness of the Shakhov modification
of the BGK collision model [22]. For example, the second
law of thermodynamics was proven only in the linear
regime of small departures from equilibrium. Also, because
the model relies on a polynomial extension of the equi-
librium distribution function, it may lead to negative values
of the distribution function in the case of flows with are
sufficiently far from equilibrium. Finally, as is the case for
the single-relaxation-time models, the Shakhov model
lacks a fundamental justification, being in essence an
effective model. Despite these drawbacks, the Shakhov
model has been highly successful at describing fluids far
from equilibrium, i.e. deep into the transition regime [23],
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in the strongly nonlinear regime [24], as well as in the case
of nonideal (dense) gases [22,25].

Recently, a Shakhov-like extension of the AW model
was proposed in the frame of relativistic kinetic theory [26].
Much like its nonrelativistic counterpart, this extension
provides new free parameters that allow the first-order
transport coefficients, ¢, k, and 7, to be controlled sepa-
rately. We shall refer to this model as the first-order
Shakhov model. In this paper, we introduce a systematic
procedure to extend the Shakhov model beyond first order,
in a manner allowing a selection or all of the second-order
transport coefficients to be separately controlled.

As in the case of the first-order Shakhov model, the idea
is to replace the relaxation term fy — fox of the original
AW model with fy — fsk, where fgr is the Shakhov
distribution. For the high-order Shakhov models that we
discuss in this paper, we construct fg, using a finite
polynomial basis similar to the one employed in Grad’s
method of moments (see Ref. [27] for a rigorous discussion
in the frame of relativistic kinetic theory). The basis
involves a finite range —s, <r <N, of irreducible
moments p! " of the deviation &fsx = fsk — fox of
the Shakhov distribution from equilibrium. Here, N,
represents the usual truncation order of the polynomial
basis, while s, represents a downwards shift, allowing the
basis to directly incorporate irreducible moments of neg-
ative energy index. Such a shifted basis was shown in
Ref. [28] to play an important role in deriving the hydro-
dynamic limit of the AW model and we exploit this feature
also in the Shakhov model.

We denote the elements of collision matrix that are

controlled by the Shakhov model by A(SQH, where
—sy <r,n < Ng. Of course, the collision model has an
infinite-dimensional collision matrix, which we are able to
derive analytically in a basis-free manner, as described in
Ref. [28] (see Ref. [26] for an application to the case of the

first-order Shakhov model). The functions Aé’fﬁn represent
the direct degrees of freedom of the high-order Shakhov
model. On the other hand, our ultimate goal is for the
kinetic model to achieve prescribed transport coefficients in
its hydrodynamic limit. It is known that these transport
coefficients are ultimately governed by the elements of the

inverse collision matrices 715 = [A )]} and we derive
their exact expressions in the basis-free manner of
Ref. [28], using the inverse-Reynolds dominance (IReD)
approach of Ref. [29]. Then, the problem of constructing
the Shakhov collision matrix boils down to solving a set of

algebraic equations that involve the elements ré”jﬁn of the
inverse collision matrix, allowing an appropriate subset of
transport coefficients to be set as essentially arbitrary
thermodynamic functions. An extension to third order is
possible within our moment-based approach, employing
the developments in Ref. [30]; however we leave this

avenue open for future research on the topic. We illustrate

the capabilities of our proposed model by considering three
examples, described below.

The first example that we consider is the 0+ 1-D
Bjorken flow of massive ideal particles, where we aim
to separately tune the first-order bulk and shear viscosities ¢
and » (which can be tuned also by the first-order Shakhov
model, see Ref. [26]), as well as the second-order bulk-
shear coupling coefficient, Aj,. By increasing Ap,, we
allow for an enhanced bulk viscous pressure in the early
and intermediate times of the Bjorken expansion, even
when the particle mass is not so large.

The second example involves controlling the diffusion-
shear coupling coefficients, £y, and ¢y, which we discuss
in the context of longitudinal waves propagating through a
massless, ideal gas. Both these coefficients vanish in the
original RTA by Anderson and Witting [28], unlike in the
more realistic case of hard-sphere interactions [27,29,31] or
the interacting Ap* scalar field theory [32,33].

The third problem consists of the time-honored Riemann
problem [34] for a dissipative, ideal gas of massless
particles. Besides providing a benchmark test for solvers
of perfect fluid dynamics, the flow around the shock front is
dominated by strong nonequilibrium effects. Our goal is to
derive a Shakhov model that is able to reproduce the results
obtained using the Boltzmann approach to multiparton
scattering (BAMPS) method [35], simulating hard-sphere
interactions via the test-particle method. We demonstrate
that using a Shakhov model able to tune all first- and
second-order transport coefficients for both diffusion and
shear leads to excellent agreement with the BAMPS data
reported in Refs. [36-38]. We also demonstrate the impor-
tance of the second-order transport coefficients, which
differ depending on the computational method employed
to derive them. While Ref. [38] found several discrepancies
between the BAMPS data and a formulation of second-
order hydrodynamics using the Denicol-Niemi-Molnar-
Rischke (DNMR) coefficients [27], the Shakhov model
tuned to recover the transport coefficients computed within
the IReD (inverse Reynolds dominance [29]) approach
gives an excellent agreement with the BAMPS data.

For all of the above examples, we show numerical
results of the kinetic Shakhov model obtained using a
discrete-velocity method implementation derived from the
relativistic lattice Boltzmann [14] method using finite-
difference techniques for the advection and time-stepping.
Our approach employs the so-called rapidity-based
moments [39], allowing the momentum magnitude to be
integrated out exactly. Taking into account azimuthal
symmetry, the momentum space complexity is reduced
to a single degree of freedom, namely the projection of the
particle velocity on the propagation axis (v,). The v, degree
of freedom is discretized using the Gauss-Legendre quad-
rature, as described in Refs. [11,12]. The algorithm is
highly efficient and its accuracy has been tested in previous
publications for the Riemann problem [12], longitudinal
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waves [28,40] and Bjorken flow [12,17,18,26,39,41,42]
setups. For validation purposes, we also solve the equations
of second-order hydrodynamics in the O+ 1-D Bjorken
flow setup, as well as in the linearized limit of the
longitudinal wave damping problem, using Runge-Kutta
time integration. The code is available online as a
CodeOcean capsule [43] (see statement at the end of
Sec. VII).

The paper is structured as follows. In Sec. II, we review
the first-order Shakhov model introduced in Ref. [26]. We
then introduce the higher-order extension of the Shakhov
model in Sec. III, where we also discuss how to extract its
corresponding first- and second-order transport coefficients
arising in its hydrodynamic limit. Sections IV, V, and VI
illustrate the capabilities of the Shakhov model in the context
of Bjorken flow, longitudinal waves, and the Riemann
problem, respectively. Section VII concludes this paper.
We also include two appendixes: Appendix A describes our
discrete velocity method solver employing rapidity-based
moments, while Appendix B summarizes the high-order
Shakhov models considered in Sec. VI, taylored to capture a
selection of the second-order transport coefficients of an
ultrarelativistic gas of hard-sphere particles.

II. FIRST-ORDER SHAKHOV MODEL

The purpose of this section is to review the relaxation-
time approximation introduced by Anderson and
Witting [1,2] (in Sec. II A) and the first-order Shakhov
model introduced in Ref. [26] (see Sec. II B). This section
also serves to introduce much of the notation used later on
in this paper.

A. The Anderson-Witting model

The starting point of this model is the relativistic
Boltzmann equation,

k9, fx = C[f]. (1)

where f) is the one-particle distribution function, k* is the
on-shell particle four-momentum with k? = (k°)? —k? =m?,
while C[f] is the Boltzmann collision term. The Anderson-

Witting approximation for the collision term C[f] reads

Cawlf] = —’j—;‘éfk, 2)

where Ofy = fix — fox represents the deviation of the
distribution function f} from local thermodynamic equilib-
rium. In this paper, we focus on ideal gases, for which fy is
given by

fox = (P54 a)7!, 3)

where = T-! is the inverse temperature, @ = fu is the
ratio between the chemical potential and the temperature, u/
is the fluid four-velocity, Ey, = u,k* is the particle energy in

the fluid-rest frame, while a = 1, —1 and O are for Fermi-
Dirac, Bose-Einstein and Boltzmann statistics, respectively.

The distribution f} can be used to compute the macro-
scopic particle four-flow N* and stress-energy tensor 7+ as

Nﬂ _/deﬂfk, le—/deﬂkyfk? (4)

where dK = gd*k/[(27)?k°] and g is the degeneracy factor.
The equilibrium contributions to the above quantities read

Ny = nu, Ty = eu'u” — PAM, (5)
where A = ¢ — u'u" is the projector on the hypersur-
face orthogonal to u*, while the particle number density 7,
energy density e and hydrostatic pressure P are given by

n = I, e = Iy, P =1, (6)

where [,,, are thermodynamic integrals defined as

Iy

1 -2
—— | dKEy, =AYk k) for. (7

For future use, we introduce the associated integrals J
defined as

J = alnq . aIn—l.q
M\ oa ), B ),

ng»

1 . )
- W/ AKE (= Akl ) fo ok
= Loy g1 + (0 =2q)1, . (8)

with fox = 1 — afox, as well as the recurrence relations:

1

Tng = 2q+1 (Tng-1 = m*Tuz 1), (9a)
1 2

Tng = m (Jn.q—l —m Jn—Z.q—l)- (9b)

Taking into account the thermodynamic relations

@ @

where s = (e + P — un)/T is the entropy density, one can

establish:
J op T
= e = n s
21 E 5

T ——(3—;)a—T(e+P). (11)
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Multiplying Eq. (1) by 1 and k* and integrating with
respect to dK leads to

u
0Nt = ——L(N* = Np),
TR

u, v v
0,T" = — =~ (T — ). (12)
TR

Imposing the conservation equations J,N* =0 and
d,T* = 0, we arrive at the Landau matching conditions,

u, N* :uﬂNg =n,

u u, " = u,Ty" = eu*. (13)

The eigenvalue equation implied in the second relation,
T# ,u¥ = eu”, corresponds to the Landau (energy) frame
definition of the fluid four-velocity #*. In the Landau frame,
the deviations from equilibrium SN* = N* — Nij and
STW = T — T4 can be decomposed with respect to u# as

ONF = VI, OTH = —I1AM + 7, (14)
where IT is the bulk viscous pressure, V¥ is the diffusion
current and z#* is the shear-stress tensor. The conservation

equations for N* and T give rise to the following
evolution equations for n, e and u*:

n+nd+9,V* =0, (15a)
¢+ (e+P+1)0 -6, =0, (15b)
(e + P+t — VH(P+10) + A*,9,z%* =0, (15¢)

where the dot denotes the comoving derivative, f = uo,f,
while V,f = Ald,f = d,f —u, f becomes the spatial gra-
dient in the fluid rest frame. Furthermore, 0 = dﬂu” is the
expansion scalar and 6, = V,u, is the shear tensor, while
the angular brackets denote tracelessness, symmetrization
and orthogonality with respect to u* in all indices. In the
case of rank-one and rank-two tensors, V¥ and A*Y, we have

Vi = ALVY = V¥ — ut(u- V) and
Alw) = ! ALAY + AV AK lA/‘”A A% (16
- E( as=p + g ﬁ) _§ af . ( )

Considering now that the deviation df} from equilibrium
is small, the Chapman-Enskog method allows one to
estimate §f) in the AW model as follows:

T
8fi = =7 K0 ok (17)
k

where 7 is assumed to be of the same order as §f}. Using
the expression (3) for fy, the right-hand side of the above
equation evaluates to

k0, fox = —foxf ok [k (Ex9,B — 0,a) + PRk 0,u,]
= —focfok[Exf — Exax -l-'g(m2 - EL)0
+ kY (BEy i, + BV, B~ 1) + pk¥i a,),
(18)

where I* = V¥a and we used the properties k* = k) +
u'Ey and

Kk = Epu'u® + Ex (k) + u' kW) + kWi

1
3 A AR H. (19)

We now seek to compute the diffusive quantities IT, V¥
and 7/, expressed as

2
m
= -pp.

3 V= pp,

™ =py’, (20)

where the irreducible moments py' **

energy index r of §f are defined as

of tensor-rank # and

e = /dKEﬁkO” KPS (21)

In the above, k1 ... ki) = AL L kv
complete set of basis vectors [27,44].
Using the integration formula given in Eq. (20) of

Ref. [27],

--- k¥ represents a

/dKFkk</‘l . .kﬂlw>k<yl ok

m!d sy
mn 17 Him af m
(2 n 1)!!A,,1..A,,m /dKFk(A kakﬂ) , (22)

with F = Fy (Ey) being a function that depends on k*
only through the combination Ey = k*u,, we obtain

m2

H:_TR?[JIO:B_JOO(Z_,BJHQ]’ (23a)
VI g [T I = Ty (Bi + VFB)], (23b)
7~ 2R fiJ 300t (23¢c)

Equation (23c¢) for #*¥ is already in its familiar Navier-
Stokes form, 7#¥ ~ 25,wo*”, where the shear viscosity of
the Anderson-Witting model is

2 2
Naw = TRa(() ), ag ) = ﬂJ3+r,2~ (24)

In order to obtain similar constitutive relations for IT and
V¥, we must employ the conservation equations (15) to
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eliminate the comoving derivatives @, # and i#. We start
with the case of V¥, when dP = J,;da — J5;df can be used
to replace V#f in favor of F¥ = V#P and I" = Via:

J VA [ il
Vﬂ/}—ﬂlﬂ——:——ﬁ , (25)
J31 .131 h €+P

where h = (e 4+ P)/n is the specific enthalpy per particle.
Using Eq. (15¢) to express i in terms of F* and higher-
order terms, Eq. (23b) leads to V¥ ~k,wl#, where the
diffusion coefficient kv reads

Kaw = TRG(()I), a£1> =S = ZJr+2.l' (26)

Finally, 2 and ¢ can be related to & and j using the
following relations:

dn = Jl()d(l - Jz()dﬁ,

de = J20da - J3()dﬂ. (27)
This leads to
. 1 . ) . 1 . .
a=——(Jpe—Jyn), p= G—(Jloe — Jyoit), (28)

G22 22

where we introduced the notation:
Gum = JnoImo = In-10dm+1,0- (29)

Using now the conservation Egs. (15a) and (15b), we have

J J
a="Mu0+ 2 (20, —10) + =29, V¥,  (30a)
Gn G
- Jo Joo
p=Hy0 +—— (o6, —110) +—=0,V*, (30b)
G Gn
where 'H, and H; are given by
1
HaEG—[Jso"—Jzo(e‘l‘P)]v (31a)
2
1
H/}E?[Jzon—J10(€+P)]. (31b)
2

Substituting now Egs. (30) into Eq. (23a), we find
IT~ —{ w0, where the coefficient of bulk viscosity {aw
reads

2
m= (o 0
Caw = TR?“(() )’ a)) = Hyd 10— Hal o= P11 (32)

We take a moment here to remark that the above relations
arise in a fluid with one conserved charge. If there is no
conserved charge, or if there are multiple conserved

charges, then the above discussion must be generalized,
as discussed in Ref. [45]. For the purpose of this paper, we
also consider the case when the fluid possesses no such
conserved charge. This case can be obtained as the limit
when a = 0, leading to

é _€+P0+H9—7TWO'W

=0, f=—— =
“ P === T T

(33)

Comparing the above relations to Eq. (30), we see that for
the uncharged fluid we can formally identify

e+ P
Hﬁ*HﬁE .

30

(34)

Ultimately, this leads to a modification of the constitutive
equation for the bulk viscous pressure and diffusion
current, which now read Il ~ —{, w6 and V* ~ 0, where

2
— m _ 0 _ 0 —
Caw = TR?Q(() ) a = Hydrir0=PJrira- (35)

B. The first-order Shakhov-like extension

In the first-order Shakhov model introduced in Ref. [26],
Eq. (2) is replaced by

Cslfil = —f—;wfk ~fe) = —f—;‘wfk “Sfg). (36)

where fg = fox +0fsk drives fy towards fg, on a
modified path compared to the AW model. Multiplying
Eq. (36) by 1 and k* and integrating with respect to dK
leads to

d,N¥ = !
" __g(n_nS)’

1
0,T" = —— [(e —es)u” + W" — Wg], (37)
TR

where W = A*,T*uy is the heat flux (W* =0 in the
Landau frame). The conservation of the particle four-flow
N* and stress-energy tensor is achieved when

n=ng, e=es, WH'=Ws. (38)
In the AW model, the velocity is taken in the Landau frame,
such that W# = 0 and thus W§ = 0. The extension pro-
posed in Ref. [46] allows for a different frame to be used,
e.g., the Eckart frame; however, we do not pursue this
freedom in the remainder of this manuscript. We further
assume the Landau matching conditions, such that n, ¢ and
ut define the local equilibrium distribution f.
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Considering now that the deviations dfy and §fg, from
equilibrium are small, the Chapman-Enskog procedure can
be applied just as in the previous subsection, leading to

T
5fk—5f5k2—E—ik”5ﬂf0k~ (39)

Taking the off-equilibrium moments of the above equation
gives

I —1Ils = =Caw0, (40a)
VH = VE = kg™, (40b)
v — ﬂjéy = 27’]Awglw. (400)

As originally proposed by Shakhov [20], the nonequili-
brium moments I1g, Vg and %~ are chosen as

HSEH<1—T—R>, V’ngﬂ(l—T—R>, ﬂ’éyEn”“’<l—T—R>,
n Ty Tr

(41)

where the new relaxation times 7y, 7y and 7, are thermo-
dynamic functions representing new model parameters.
Substituting the above equalities in Egs. (40) leads to the
modified constitutive relations

= -0, VH = kglH, 7 = 2ngot,  (42)
where the first-order transport coefficients of the Shakhov
model read:

2

m= (o 2
(s = ?05(() >Tn, Kg = a(()l)Tv’ s = aé >Tfr’ (43)

or equivalently, s = (z1/7g){aw, ks = (7y/7Tg)kaw and
ns = (72/TR)Naw-

Following Shakhov’s prescription, the simplest way to
achieve the relations in Eq. (41) is to construct the Shakhov
distribution as

fsk = fox + foxfoxSk. (44a)
where
_ 3 TR\ (0) TR\ 1,(1)
Skz—W<l—a>Hk0 +kMV” 1_; Hko
+ k7 (1 - T_R) HE. (44b)
T]T

where H{Q are polynomials that ensure the recovery of the
matching conditions in Eq. (38) and the relations (41), such
that

Ps0 1 3 1

psi | = /dK Ex |6fsk = —?Hs 01,
0

Ps2 E; 0

(%) g o)

P = / dKk¥ I Sf g = 7. (44c)

Taking Hi(oo), Hf(lo) and HE(ZO) as second-, first- and zeroth-
order polynomials, their exact expressions can be obtained
as [28]

Gy3 — GEy + GpE}

Ho = :
Jo0G33 — J10G23 + J20Gn
JyE —J 1
Hs(lo) B —Jy @) (44d)

YR K0T 2y
where J,,, and G,,, were introduced in Egs. (8) and (29).
The above functions coincide with those appearing in the
14-moment approximation of §f in Ref. [27].

III. HIGHER-ORDER SHAKHOV-LIKE
EXTENSION

As mentioned in the Introduction, the Shakhov-like
model as introduced in Eq. (36) can be used to control
also second-order transport coefficients. This requires an
extension of the first-order Shakhov model summarized in
the previous section by adding extra terms on the right-
hand side of Eq. (44b). Anticipating material that will be
introduced in this section, our proposed extension effec-
tively amounts to modifying an increasingly large set of

entries in the collision matrix Asf,) associated with the
Shakhov collision term, Cs[f].

We begin this section with a discussion on the equations
of motion for the irreducible moments py'"* of 5f,
derived from the Boltzmann equation in Ref. [27] and
summarized in Sec. III A here. We then discuss the
collision matrix of the extended Shakhov model and its
inverse in Sec. III B. The equations of second-order hydro-
dynamics and the corresponding transport coefficients
arising from the Shakhov model are discussed in
Sec. III C. These results are specialized to the case of a
fluid without conserved charges in Sec. I1I D and to the case
of an ultrarelativistic ideal gas in Sec. III E. Section III F
discusses the degrees of freedom that can be fixed by the
Shakhov model.

A. Equations of motion for the irreducible moments

The central objects of the analysis are the irreducible
moments p)'* of §fy, introduced in Eq. (21). Their
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equations of motion can be derived starting from the
Boltzmann Eq. (1), by substituting fi = fox + 6fk:

Clf]

Similar to §fy, the collision term C[f] can also be
characterized by its irreducible moments, defined as

. 1 1
5fy = _E—kkﬂaﬂ fox —E—kk<”>Vﬂ6fk +E—k. (45) cht = / dKE} k¥ - .. kre) C[f). (46)
|
Multiplying Eq. (45) by Ej, El’(kW> and El’(k<"k’“> and integrating with respect to dK leads to [27]
G,, G, .
p,—C,_| = Vo + G—; (16 — n*o,,) + G; Vi, =V, VE) + rigph_,
r—1 Y
- prg - 3 (pr - mzpr—2)9 - vﬂp/:—l + (r - ])pl;—ZO-ﬂl/’ (473)
1 v
P — ¥ = a4 prar, + S = )mpy = (r 4 3)H10 = MV, + 1
1 1 .
+5[2r=2)m*pi_y = (2r + 3)pilot + S [m?rpry = (r + 3)p, Ji"
Jr L.
+ﬁe —:301 (M — VFTI + Ajon™) — —V (m2p,_y = prit) + (r = 1)p%50,, (47b)
1 1 2 v
pgﬂ ) _ C(ﬂ ) 20[& )(7’“/ _ ? [(2}, 4 5>p/rl<ﬂ _ 2m2(r _ l)pfylz]aﬁ + 2[0/}(/4(01/)}L
2
15 [(l"+ 4)pr+2 - (27’+ 3)m Pr + (r_ ])m Pr— Z]GMU + v (pr+1 —m pr> 1)
2 . 1 v
=S+ 5)ply = rmpl i) =2 [(r + 4t = mP(r = Dpfy)0
+(r= 1P 6;, — NN+ iy, (47¢)

where we considered that the fluid possesses a conserved
charge, characterized by a=pu/T #0. In the case
when no such charge is present, « = 0 and the above
equations are modified as discussed in Sec. II A. The
modifications to the equation for the scalar moments can
be summarized by

(0) _, ~(0) Gor _ Jriio G,
Gy Jy G

-0, (48)
such that Eq. (47a) becomes

J
pr=Cpo =30+ =110~ 2%0,,) — p,0
30

. r—1
+ ruﬂpl:—l - T (pr - mzpr—2)9
- vﬂp/;—l

+ (r - 1>pl:i26ﬂl/' (49)

From a structural point of view, the equations of motion
for the vector and tensor moments remain unchanged,
with the observation that in this case /¥ = 0 and all vector
moments become of second order.

|
B. Collision matrix of the extended Shakhov model

In the approximation when the fluid is not far from
equilibrium, Cy'"* can be linearized with respect to the
irreducible moments p}' "¢ of the nonequilibrium part of
the distribution function é6fy = fix — fok»

7
e = _ZAgn)pzn He (50)

n
where the summation over n goes in principle from —oo
to oo. In the case of a general collision term, the collision

matrix .A(,';? must be computed with respect to a finite basis
(cf. Ref. [27]), which accounts only for the moments with
indices —s, <r < N,, where s, is a shift parameter
allowing for negative-order moments to be represented
[28], while N, is the expansion order. Here we employ the
basis-free approach introduced for the Anderson-Witting
collision model in Ref. [28], which takes advantage of the
simplicity of the relaxation time approximation to bypass
the use of any basis.

We now compute the collision matrix corresponding to
the Shakhov model:

1, 1
CSr 1= ap/;l ”f_'—apg;r ”f’ (51)
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where the first term originates from the original AW model,
while the second one involves the irreducible moments
P " of &f . Since Sf gy vanishes in equilibrium, its
irreducible moments can be written in terms of those of
of. For simplicity, we restrict the discussion in this paper
to the case of a linear dependence and leave the extension to
a quadratic dependence (as is the case for a generic 2 — 2
collision term) for future work.

Naturally, we may ask which moments pfg! " of the
Shakhov model are required and what should their relation
to the moments p;' ** of §f) be? For the first-order model
presented in Eq. (44b), we have pg, = ps, = p’S‘;l =0,
while Eq. (41) provides relations for pg.g, po and ph.
Inspection of the right-hand sides of Eqs. (47) shows
that the natural extension of this set of moments should
include both negative-order and positive-order moments.
We therefore consider a subset of moments with indices
—sy < r < N, and write

N¢

pgi;»ﬂf _ Z (5”1 _ TR-AS m)plrlll ,”f (52)

n=-—s,

where the reduced collision matrix AS .y 1s in principle
arbitrary, representing the degrees of freedom of the
extended Shakhov model. Substituting the above into
Eq. (51) gives

glr ﬂlf = Z AS rnp W)' (53)

n=-sy

In what follows, we demand that the above relation is
satisfied for —s, < r < N,.

Before proceeding further, we must first give an explicit
expression for dfgy. As already discussed for the first-
order Shakhov model, the deviation 6fg = fsk — foxk =
Foxfox Sk considered in Eq. (44) must be constructed using
an orthogonal basis which ensures the exact recovery of the
irreducible moments of 5/ that we require, namely p!, "
for —s, < r < N,. For this purpose, we employ the shifted
basis introduced in Ref. [28] and write

8fsk = fox + forfokSk.

Sy = Z Z P B Ky,

=0 n=—s,

=~ (7
/4(’> Hﬁ(,l)ﬂrxf ’ (54)

where L is a finite but otherwise arbitrary tensor-rank

threshold, while 7:[551) are polynomials in energy Ej of
order N, + s,, defined as

» _ l)f Nt’+5f 2 = (¢
RO = DT SN e p. 55
kn K!JZK—ZS/ km ( )

,~f m=n

In the above, P< Zmoa,(n)Ek are polynomials of

order m, satlsfylng the orthogonality relation
/dK&J(f)i)l((i)zpl(fz = O (56)

where the weight function @) is defined as

—25
P I
(20 + D) opng, v

(Aaﬂkak/})ffOk]?Ok’ (57)

such that 13550) = Zz(()";) =1

The finite-dimensional basis employed in Eq. (54)
ensures that pf, " = [dKSfs k% - - k#E} for all
—s, <r<N,. When considering either r < —s, or
r > Ny, the corresponding irreducible moments will be
expressed in terms of those appearing in Eq. (54) via

1 He Z pgl ﬂ/’f sty (58)

n=-sy

where the functions F Si) are given by
FO = (=185 a0 / dKa\OEZHY). (59)

For this reason, the collision matrix .Agzn will contain
nontrivial entries when r < —s, and r > Ny, as illustrated
below:

A =1 o A2 o |. (60)

where the first and last lines correspond to row indices
satisfying r < —s, and r > N, respectively. The elements
on the first and third columns, having column index
satisfying n < —s, and n > N,, respectively, have entries
that are identical to those of the AW model. On the contrary,
the middle column (where —s, < n < N,) exhibits non-
vanishing entries for r < —s, and r > N, given by

(%) (%)
‘A</>;rn - __‘7: (r+sz),n+s, + Z r+s/ ]+sf'AS;le'

J==5¢

(61)

The inverse of the collision matrix Ag’,’:) in Eq. (60) can
be obtained analytically, as follows:

@)

TRérn T<irn 0
al=1 0o 4 o | (62)
0 T(>f;)rn TR(srn
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where the reduced inverse matrix TS o (.AS ),‘n is the
inverse of the (Nf +5,4+1)x (Ny+ 5,4+ 1) reduced

collision matrix A As in the case of A(,i), the inverse

matrix rﬁ? exhibits the same elements as the AW model

when the column index satisfies n < —s, or n > N,.
However, for —s, <n <N, the rows with indices
r < —sy and r > N, exhibit nonvanishing entries given by

Sirn*

_ § : 7(¢)
T< >un — TTR A< >irj S ]n - TRf—(r+S/),’1+S[/
j==s¢

79
+ Z r+sf Jtse S]n (63)

J==5¢

C. Transport coefficients of the extended
Shakhov model

We now employ the method of moments introduced in
Ref. [27] using the basis-free approach of Ref. [28] to
derive the second-order equations of Miiller-Israel-Stewart-
type hydrodynamics and the corresponding first- and
second-order transport coefficients arising from our
higher-order Shakhov collision model. In order to ensure
that the system of equations is hyperbolic, we employ the
(IReD) approach introduced in Ref. [29]. To achieve
second-order accuracy, we employ as bookkeeping param-
eters the inverse Reynolds number Re~! and the Knudsen
number Kn. The former is proportional to the ratio between
the dissipative quantities and a corresponding equilibrium
quantity, i.e., Re™! ~ |I1|/P, |V¥|/n or |z**|/ P. The latter is
proportional to the ratio of microscopic to macroscopic
scales, Kn ~ 4,4,V f, where ¢, is related to the particle
mean free path, while f is a function of the local
thermodynamic parameters. As a rule of thumb, the
irreducible moments pi' ** are of order Re™! (or higher),
while gradient terms such as 0, I* or ¢ will appear in
combinations making O(Kn) contributions.

The second-order equations of fluid dynamics can be
obtained from the moment equations (47), which we
summarize as

put S AWp, = a0+ O(Re"'Kn), (64a)
P+ ZAW “ = a1+ O(Re'Kn),  (64b)
Py + ZA,,, P =2aP " + O(Re'Kn).  (64c)

For brevity, we omitted the terms which are of second or
higher order on the right-hand side of the above relations.

Note that, in the spirit of the basis-free paradigm, we did
not specify fixed limits for the summation over r. However,

the structure of A%) shown in Eq. (60) guarantees that this
summation is both finite and well defined. Concretely, r is
restricted to the interval {—s,,—s,+1,...,N,} U {n},
i.e., the middle column shown in Eq. (62) and the
element on the diagonal (implied by the %', entries).
Explicitly,

n<-sy: re{n}u{-sg,...
Ny},
N,} u {n}. (65)

’Nf}v
=5, <n<Ng:ire{-sg,...

n>Ng: re{-sg...,
We now multiply the relations in Eq. (64) by 1%) and
sum over n. At leading order, we obtain the first-order
Navier-Stokes-like relationship between the O(Re™!) irre-
ducible moments p;'"* and the O(Kn) thermodynamic
forces,

3
=00, ikl Pl 2o, (66)

where the first-order transport coefficients are

2
¢r= m? Soalal k=Yl p, = el

n#1,2 n#l n
(67)

As before, we did not specify the summation limits for the

index n. Since the structure of Tﬁ?, shown in Eq. (62), is

identical to that of Aﬁfj), the values allowed for n in the
above expressions for a given r are identical to the values of
r allowed by Eq. (65) for a given of n. Throughout this
section, we will continue to omit the summation limits,
with the implicit understanding that the summation is
performed as described above. Coming back to the com-
putation of the first-order transport coefficients, when
—s, <r <N, we have

2

m d 0) (0
é"‘ =5 Z Té;t)‘na’(" )’

n=—s9,#1,2
A 1 1 Ak 2 2
o= 5 el g =3 2a (68)
n=-sy,#1 n=-—s,

When r < —s, or r > N, one has

2 2
o TRm TrM (())
gr - 3 + E ‘7:—r —S0,1n+50 (Cu an > ’

n=—sy,#1,2

(69a)
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Ky = TRagl) + Z j‘:(—lr)—sl,n-s—sl (Kn - TRagll)>v (69b)
n=-sy,#1
N, .

nr= TRa(r2> + Z f<—2r)—sz,n+sz (ﬂn - TRaS?))' (690)

n=-s,

Next, we employ the IReD approach, by which Eq. (66)
is employed at » = 0 to approximate, up to first order in Kn
and Re™!, the thermodynamic forces @, I* and 6" in terms
of the main dissipative quantities,

m 1z Z
0~ ——, W~ — U”Uzﬂ—, (70)
¢ K 2n

with { =, k =k, and n =ny. Then, the irreducible
moments with r# 0 are approximated by replacing
Eq. (70) in Eq. (66):

3
2

pre——C0M,  phecve g ecPar, (1)
m

where the coefficients cif) are given by

c&"’—%, cﬁ”:%, 05”:%. (72)

Using the above approximations, we arrive at the hydro-
dynamical equations in the IReD approach:

I+ = -0+ J + R, (73a)
Ty V¥ 4 VE = kIt 4 TF 4+ RE, (73b)
T, 78+ o = 2ot + T+ R, (73c)

where the relaxation times 7y, 7y and 7, are given by

= Z T(()(?C(ro), Ty = ZT((JI,>C§1), T, = Zrézr)c(z)
r#1,2 r#l r
(74)

The terms R, R* and R* are of order O(Re™?) and
originate from contributions to the collision term which are
quadratic with respect to dfy, or equivalently, with respect
to its irreducible moments pi'"*. As already mentioned
before, in this paper we do not include such terms in the
Shakhov model and therefore these terms vanish identi-
cally: R =R} =R* =0. We note that for a realistic
collision kernel, such as the 2 — 2 binary scattering kernel,
these terms do not vanish, see e.g. Refs. [47,48] for a
discussion of such quadratic terms in the case of hard-
sphere interactions.

The 7, J* and J* collect terms of first order in Kn
and Re™!:

‘_7 = —fnvvﬂvﬂ - Tnvvﬂu” - 5HHH0

- /IHV V”I” + /11‘1”71'””6” (753.)
jﬂ = —TVVl,a)”” - 5vvvﬂ6 - f‘/nvﬂn

+ KV”AMI/V]]T]LU + TVHHl:{ﬂ —_ Tvﬂﬂ'””itb

— AV, 4 Ay TIE — Ay 21, (75b)

— OO — Tmﬂ’wa? + A nlle*

+ Loy VUV 4 QL V)

JH = 21,,7151”0)””

— Ty Vi) (75¢)
The transport coefficients appearing above can be com-

puted based on the expression for the inverse of the
(®)

collision matrix z;,’, given in Eq. (62). In particular, we
will need the elements on the » = 0 line, where Téi) = r(siin.
For the terms appearing in J, corresponding to the

equation of motion for I, we have

G3r
fHV - T 5 Tor ( rl—l —> 4 (763)
EPRACEE
mzr(()(» (1) 6C(1)1 G;
= —L e 76b
v ;12 3 <rc,_1 T omnp Dzo) (760)
(0) r—+ 2 OC 6C
o = C
TIIT ';l.z’l'or |: 3 + H H/j aﬁ
2 2
m 0 m Gzr]
- —(r—= 1 C S ’ 76c
3 ( ) r—=2 3 D20 ( )
m? ac, 1acl
Ay = — - —l 76d
=" ;1; ( da ' h op (76d)
m 0 [G @ }
A = = . C5|. 76e
11 3 ’;;2 0 G22 ) 2 ( )
The transport coefficients appearing in J* read:
Ovy =3 ZTUr { r+3)C" —m3(r - 1)65]32}
r#l
act! act!
+ AN\ Hye———+H 77a
;1 0 oa Mo (77a)
y Z (1) ﬂ‘]r+2,1 C(O) + C<r(-)21 (77b)
= T, _ = —
vl r¢l Oor e+ P r—1 m2 ’
V(P21 T+3 0 (0)
= c.,—rC
tvn ; or < TP + e
m2
2 z Tor alnﬁ ( r+1 C ) (77C)
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J
oo N (B o0 , 774
21 ;TOr e+ P r—1 ( )
@)
W (Plr2n  0CZ )
- il S : 77
Tvr ;Tﬂr <e 4+ P (ﬂnﬂ rcr—l ( e)
=< ZTOr [ 2r +3)C — 2m2(r - 1)651_)2}, (77f)
r#1
_ T((») 10 9\ (o0 _, 200
/IVH - _; h0ﬁ+ o < r+1 m r—l)’ (77g)
Loc® a0
dye = ai) (=t 4 2=t ) 77h
Vr ;TOr h aﬁ + ( )
Finally, the transport coefficients from [J** are
N [r—+ 4 2 m2 2
57”1 = ZT(()r) [ 3 CE« ) - ?(r - I)Cg_)z}
2 3652)
+3 (Ha FHy ). (78a)
2 2 2 2
. = ?ng) [(2;» +5¢ —2m2(r - 1)6522] . (78b)
At = 3m 2ZTOr[ (r+4)C £ﬁ2+m(2r+3)c()
— (- 1)c§°_>2} : (78¢)
2 @ (M) _ 2l
Tay = g ZTOr [(r + S)C —m rCr—l]
aocl)y ac
2) r+l 2%
+ ZTOr <alnﬂ m alnﬂ)}’ (78d)
2 2) /(1 1
Cov =352 10 (€ —micl), (78¢)
Z oy, 19Ch
v =527 Ty T op
2m? ac) 1act?,
—— 1), 78f
5 r°’<0a+haﬁ> (78)

The above equations give the tools to extract the trans-
port coefficients of a fluid with one conserved charge,
corresponding to a given implementation of the Shakhov
model. In the following subsections, we will discuss the

transport coefficients arising in a fluid with no conserved
charges, as well as for an ultrarelativistic ideal gas.

D. Transport coefficients for the fluid
without conserved charges

The case when the fluid bears no conserved charge will
be considered when discussing applications to the Bjorken
flow in Sec. IV and requires formally to set a =0, @ = 0
and I* = VFa =0 [see the discussion around Egs. (33)
and (34)]. Thus, all vector moments p are of second order
with respect to Kn and Re™!, such that the equations of
second-order hydrodynamics (73) reduce to

’f]‘[ﬂ —+ II = —59 - 5]‘[]‘[1—19 —+ Z]‘[nﬂ'ﬂyﬁﬂ (793)
T,,ir<’”’> + 7 = 2not” + 27,,71,%”0)”” — OO
- T,mﬂ,'M”O'Z) + ApIlo™, (79b)

where the overhead bar indicates transport coefficients
which are different from the charged case discussed in
the previous subsection. The transport coefficients
appearing in the equation for IT differ structurally from
those reported in Sec. III C. They can be obtained from
the latter under the replacements summarized in Eq. (48).
Specifically, we list below the expressions for all barred
transport coefficients:

2 _
L="3"d0a, =Y e, (80a)
3 r#1,2 r#1.2
~(0)
- (0) r+2—(0) e+ PaC;
onmn = Cy
T rZIZTOr [ 3 + Ty 0p
#1,
m2 =(0) m2 J 1.0
——(r=1C,, + =22 80b
3 (r ) r=2 + 3 J30 :| ( )
- m? 0) @ |, Jri10
AHII = ? ZTOV (1 - I”)Cr_z + J3O ) (8OC)

r#1,2

pa— szzrm[ (r+4)C £+)2+m(2r+3)C(>

—m*(r - 1) 32], (80d)

where C\) = Z,/Z,. In addition, 7, ,, 8,, and 7,, are
given in Egs. (68), (74), (78a) and (78b).

E. Transport coefficients for the ultrarelativistic
classical gas

Another limit of the system discussed in Sec. III C is that
of the ultrarelativistic classical gas, which we will refer to
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in Secs. V and VI. The equilibrium distribution for the
classical gas can be obtained by setting a = 0 in Eq. (3),
leading to the Maxwell-Jiittner distribution function:

fox = e* Pk, (81)

Since df ok /da = fox, we have J,, = I,,, with
PﬂZ—n
] =—" 1) 82
= g T Y (82)

The functions agl) and aﬁz) appearing in Egs. (26) and (24),

respectively, reduce to
() _Pr+2)i(1-r)

r

@ P(r+4)!

up—t 0 * 305" (83)

In particular, we find

Gpn=-3P, Jy-hJijg==P, Jy—hJxn=0, (84)

such that H, = 0 and H; = /3.

For an ultrarelativistic fluid, IT = O by the tracelessness
condition 7%, = 0, such that the scalar moments do not
play any role. The equations of second-order hydrody-
namics in the IReD approach [29] read:

Ty VI 4 VE = kIF 4 T, (85a)
T, 7 4 o = 2ot 4 T (85b)

The tensors J* and J* containing second-order terms of
order O(Re~'Kn) are given by

j’l = —TVVDa)”” - 5VVV”9 + fvﬂAlwviﬂjy

- Tvﬂﬂ’u/l/.ly - AVVVDO"“’ - lvﬂﬂ"uyly, (863)
T = 21,[71'/(1” oV -5, "l — Tﬂ”ﬂ"l(”(f?
— T VW) + £,V £ 2 VR (86b)

As usual, the first-order transport coefficients «, and 7, are
obtained from Eq. (67), while the relaxation times 7y and 7,
are computed as in Eq. (74). Using now the relations

aC<f> C(f) acﬁf)
= —F ro —_—

b ap oa

0, (87)
it is not difficult to establish that

5VV:TV’ TV;r:fVm 57[71:_17:’ TﬂV:4l’ﬂ7tV’ (88)

3

as can be seen after setting m = 0 in Eqs. (77)-(78). The
other second-order transport coefficients reduce to

1) (P ri2a 2
foe= 3oty (B2

r#l

(89a)

Avy = ;;(h +3)lel, (89b)
Iye = —}‘;v ~ 1), (89¢)
Ton = %Z(Zr +5)c2cl?, (89d)
Cay = %ZT@CQN (89)
hv = =S4 el (89D

104

In evaluating the above expressions, it is instructive to
consider first that the weight function @) for the basis
shifted by s, introduced in Eq. (57), can be written in terms
of the one corresponding to s, = 0, denoted without the
overhead tilde, @©), as

- (¢ (20 +1=2s5,)!"op 25,.0-5,

= ol (90)

‘]Zf—ZSf.f
Enforcing [dK& >13§315553 = §,,, shows that the poly-

nomials in the shifted basis (s, > 0) can be written in terms
of those in the nonshifted basis (s, = 0) as

- 20+ 1)1 Jor_os _s
B = [+ 22l plesd) (o)
(2 + 1 =25)!1\| Jop_ag, 05,

Assuming now that N, + s, in the shifted basis is equal to
N,_, in the nonshifted basis, it is possible to express the

7:(1(,1 polynomials in terms of the nonshifted ones via
(=1)5(€ = s.)1(2¢ + 1)1

126 +1=2s,)!!
X HETO (N, + 54,0). (92)

ﬂf(i)(Nﬂst’) =

The function F %), defined via Eq. (59), can be shown to
satisfy

FO = Flo=se), (93)

Using the exact expression derived in Eq. (142) of
Ref. [28], we find

ﬁrJrn(_l)n
(r+n)(r—1)n!
(2¢ =25, +1=r)!(Ny+s,+7)!

4
X225, A TN, 55, = Y

F) =

where the results corresponding to r > 27 —2s,+ 1
diverge due to the infrared behavior of the integrand in
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j—'%). When 0 < r < N, + s,, it can be seen that j—'(_fr),,, =90,,. Forr=—-N,—s,—¢q and g > 0, it can be seen that

() (=p)"Nese

(N/+SK+CI)'(NL£+22/£—S£+C]+1)'

“Ne=se=an = pan\ (g — 1)1 (26 =25, +n+ 1)!(Ny+ 5, —n)!(Ny+ s, +q—n)’

where the following relation was employed:

(_1)Nf+3f+1

(—=q)!

(—Nf—sf—q—U!: (g—1)!

(No+s,+9)". (96)

The knowledge of the functions F %) allows one to

calculate the transport coefficients x, and 5, for indices r
lying outside the basis, cf. Egs. (69b) and (69c).
In  particular, we will compute the terms

7(%) @)

N
nt-s, F /s ns,0m exactly, as follows. In the case

when r < —s,, the first index —r — s, of .7:(_?_”,,”4“‘,/ is
larger than 0O, hence we can use the representation (94),
such that

(r+3—s)!\(N, = n)lal”
(r+2)!(1=r)(=r—s, = 1)’

N, _
Z F(—lr)—sl,nJrslagil) =

n=-s,

1 (1)
Xi
(N syt e

i F 2 :(r+5—52)!(N2—r)!a§2)
Tresymtsy (r+4)(-r—s,—1)!

n=-s,

1 2)

Wit 07

where the functions agf) were taken from Eq. (83). We also

introduced the following functions:

o NO/ANN (D" (n+2—s)1(1 + 5, —n)
SNnYl _Z<n> (”—V—Sl)(n+3—2s1)! ,

n=0
@ _N~(N)_ (=DMt 4-s)!
SN‘Sz_;<n>(n—r—sz)(n+5—2s2)!' (98)

In order to simplify the calculation, we replace s, and s, by
the allowed values, 0 <s; <l and 0 <s, <2:

(95)

NN (D) 1-r 4
(1)

Syo = - :
N0 nz:; n r+3(n—r n—|—3>
N /N 1—r

1 _ _1)n _
=) (Ve (5 5),

-5l

The factors 1/(n + a + 1) appearing inside the summation
over n can be replaced using the formula

! dxxn+a
1 B 0 ’

— = 1
nrat —/ dxx" 2 p4a<-—1.
0

n+a> -1,
(100)

Then, the sum over n can be performed using the binomial
theorem,

S (V)=

n=0 n

i (N> (=1)ame=? = (=N V(1 - )V, (101)

=0 \ 1

The limit x = 1 shows that for N > 0, we always have

N o(™M)(=1)" = 0. This is always the case when s, > 0,
since N =N, + s, > 0. Finally, the integration with
respect to the auxiliary variable x can be performed in

terms of the Beta function [49],

[(a)C(b)

B(a,b) = Al dxx (1 = x)P! = Tatb) (102)

where I'(n+ 1) = n! is the Gamma (factorial) function [49].
Without further ado, we find
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Jn _ N [(l—r)(—r—l)!_ 8 ]

NOT 13 (N—r)! (N+3)!
m (I =r)(=r—=2)!N!
SN.I = . _ 1\ ’
(N=r—1)!
§@ _ N! [(=r=1)! 24
NOT 45 (N=7)! (N+95)!]
o) _ (r=2)w!
NET(N=1=1)1"
) (r+4)(-=r—23)IN!
p— 1
RE (N—r=2)! (103)
We thus find for the unshifted bases (s; = s, = 0):
N
Z f(—lr)—sl,nwLAr]aEll)J
n==5 51=0
:a(l) 1— S(Nl—r)'
' (1=r)(=r= 1IN, +3)!]’
N 2
>0 FL sl
n==5 5,=0
(2) 24(N2 - r)!
=a’|1- . 104
“ { (—r=1)!(N, £ 5)! (104

The second term in the square brackets provides a non-

vanishing correction depending on both r and N, to the
intuitive result, aﬁ"p). These results exactly agree with those
in Egs. (161)-(162) of Ref. [28]. Remarkably, for any
nonvanishing shift s, # 0, the second term completely

disappears:

(105)

Ny .
3 fafg_sf,wa;f>J —d.

n=—=5¢ S/#O

The above calculation can be repeated for the case

when r > N,, when the representation (95) of F %) is
appropriate. In this case, we have

Zj-"(l) all = (r+3—s1)!(r+s1)!a§1>
ST T e ) (1= 1) (r =1 = Ny)!

n=-s,

! (1)
X—

(Ny + syt
r+3—5)r—+s)!ar
(r+5—s5)! )l

(r4+4)!(r—1—=N,)!

) 2
Z ‘F—r—sz,n-&-szan =

n=-s,

1 2

X m Nytsy.5,° (106)

where

24(N T ar
Nr<0 = ( 2 : + Zf—rnr]n

s Z3o(M) 2 st £
N.si =\ n (r+s —n)(n+3-2s))!
N /N (=1)""N(n+4—s,)!
(2)r 2):
S = . 107
Nos2 ;( )(r+s2—n)(n+5—2s2)! (107)

Repeating the same steps as above, we arrive at similar
results:

N, _
>0 F sl

n==5 51=0

(1)

:ar

8(=1)Nir!
{1 TS = 1= NN, + 3)1]’

> 70 @)
Z ‘F—V—Sz.n—FSzan J

n==5 $,=0

—1)N2 41
:agz) 14 24( 1) 2r! ’
(r—N,—1)!(N, +5)!

Ny 5
Z f(—fr)—stlJrSfa}('lf)J = agf) .

n==5¢ s¢#0

(108)

We thus conclude that for any nonvanishing shift of the
basis, i.e. s, > 0, the transport coefficients «, and 7, are
obtained from Egs. (69b) and (69c) as follows:

N,

Ky = j_—(—lr)—s],nJrlenv (109)
n=-—s1,#1
N, (2
= Z f‘(—r)—sz,nJrsznn’ (110)

n=-s;

where we keep in mind that for —s, <r < Ny, the

functions F) Zf—s,m+s, = Oy reduce to the Kronecker

symbol. In the case of the unshifted basis, s; =0 or
s, = 0, we have for r < 0:

8(Ny — r)!TRagl) Moo ()
Kr - + f—rnKn,
<0 (1—r)(—r—1)!(N1+3)! n;ﬂ ’

(=r— N2+5 (1)
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In the case when r > N,, we have

8(—=1)M rlzgay’
. __ + f—rnkn’
S ([ AT nzél

+ Zf—r nnn

24(— I)Nzr'rRar
(r— 1 —N2 N2 + 5

Nysn, = = (112)

F. Degrees of freedom in the extended Shakhov model

Let us consider a Shakhov model employing the
expansion orders (Ny, N, N,), together with the shifts
(50, 51, 2). In order to enforce particle number and energy-
momentum conservation, Ng > 2 and N; > 1. Since the

r=1,2 and r = 1 lines of the scalar Aﬁ(,),) and vector A£}2
matrices are ignored, the resulting Shakhov matrices have
the following effective sizes:

AO: (Ny+ 59— 1) X (Ng + 59— 1),
A(l>: (N1 +S1) X (Nl +S1),
AP (Ny + 554+ 1) x (Ny + 5, + 1). (113)

Generically, the relevant size of the matrix A g
(Ny + s, + ¢ — 1)2. For the purpose of fixing the transport
coefficients of second-order fluid dynamics, we remark that
Egs. (76)—(78) show that only the elements on the zeroth

line of the inverse collision matrices, T(()?, and the coef-

ficients C”) representing the ratios of first-order transport
coefficients play a role. As can be seen from Eqgs. (69), the
transport coefficients ¢, k, and 7, corresponding to indices
r lying outside the range [—s,,N,| can be expressed
completely in terms of those with indices satisfying
—s, < r < N,. Skipping those corresponding to r =0, 1
and r =0 for the scalar and vector sectors, we have
> #(Ny+ s, + ¢ — 1) first-order transport coefficients that
can be independently fixed. As shown in Eq. (68), the first-
order transport coefficients corresponding to r =0 are
fixed solely by the zeroth line of the corresponding inverse

collision matrix r(()i) and therefore do not represent addi-

tional independent degrees of freedom. Thus, the c\)
coefficients provide an extra ) ,(N, + s, + ¢ —2) inde-
pendent parameters. We conclude that the total number
of relevant degrees of freedom of the extended Shakhov
model is

2

2
general : Z[2(Nf+sf+f :22 Ny +s,) —
=0 =0

(114)

In the case when there is no conserved charge, the
vector moments are not relevant, such that one can safely

skip the # =1 case and the total number of degrees of
freedom reads
no conserved charge: 2(Ng + N, + 5o + 55) — 2. (115)
In the case of a gas of ultrarelativistic particles with a
conserved charge, the total number of degrees of freedom
becomes

UR gas: 2(N; + Ny + 51 + 5,). (116)
We will denote in Secs. V, VI and Appendix B such

Shakhov models for ultrarelativistic particles using the
quartet (Nl s Nz, S, 52).

IV. SHEAR-BULK COUPLING: BJORKEN FLOW

We now consider one of the standard problems for heavy-
ion collisions: the Bjorken flow. In Sec. IV A, we discuss the
equations of motion of second-order hydrodynamics and of
kinetic theory in the Bjorken flow setup. In Secs. IV B
and IV C, we discuss the Shakhov model that allows the
cross-coupling coefficient Ay, to be controlled. The capa-
bilities of the model are demonstrated in Sec. IV D.

While in the main text, we employed an overbar for the
transport coefficients computed in the absence of a con-
served charge in order to avoid confusion with similar
coefficients for a fluid with conserved charges, within this
section we will omit the bar for notational convenience,
keeping in mind that all transport coefficients correspond to
the case without a conserved charge.

A. Problem description

The Bjorken flow represents an idealization of the
dynamics of the quark-gluon plasma created in a heavy-
ion collision, based on the experimental observation that
the system properties are independent of the space-time
rapidity # = artanh(z/r) around mid-rapidity (when 7 ~ 0).
This property translates into the requirement of invariance
with respect to Lorentz boosts along the longitudinal
(beam) direction, which greatly restricts the possible
structure of four-tensors. Ignoring the dynamics in the
transverse plane, the velocity field is uniquely identified as

t
w9, = =9, +§az =9, (117)

where t = V/1*> — z? is the Bjorken time. With respect to the
Bjorken coordinates (z,x,y,7), the stress-energy tensor
becomes diagonal, T#* = diag(e, Py, Py, P;), where the
transverse and longitudinal pressures can be related to the
bulk viscous pressure Il and the shear stress tensor
coefficient 7z, via

P L= P —+ 11 + d-

Pr=pin-", (118)
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The conservation equation for 7+ reduces to

de
ra—i—e—l—PL:O. (119a)

Taking into account that & = 1/7 and ¢** = diag(0, 1/3z,
1/37,-2/37%), the equations for IT and z, read

dIT 1
TH—+H:—;(§+5HHH+ﬁHn”d)’ (119b)

dr

d 114 22
Tﬂﬂ+ﬂd:__ —]7—|— 5m—|-rﬂ T+ . (119c)
dr T 3 3

In the above equations, we can identify 9 transport
coefficients, out of which two appear in the combination
A =64+ 7.,/3. A Shakhov-like model that allows all
of these coefficients to be controlled should provide 8
free parameters. According to Eq. (115), this requires
(Ng+5s9—2)+ (N, +s,) =3, which is achievable
employing, e.g., one 3 x 3 matrix and another 2 x 2 matrix
for the scalar and the tensor sectors, respectively.

In this section, we will focus only on the first-order
transport coefficients ¢ and # and the cross-coupling
coefficient Ar,, for which we can use (Ny, N», g, 5,) =
(2,0,0,2). We choose s, = 2 instead of s, = 1 because in
the Bjorken flow, the moments with even energy index and
those with odd energy index are decoupled. Since 7" and
its evolution can be characterized exclusively in terms of
even moments, we will ignore odd ones in what follows.

B. Shakhov matrices for the Bjorken flow

We seek to achieve

@:A@,

n = Hup, { =g, (120)

n TR

where AR corresponds to the equivalent Anderson-Witting
model with relaxation time zp,

i, = (R(” + @>

(R (121)

while 7z = rRa[(Jz> and {x = (m2/3)1Ra(()0). In the above,

we introduced the notation

(122)

Our strategy is to shift the basis for the tensor moments
down by two units, while ignoring the contributions from
the moments of energy-rank —1. In other words, we set
(123)

S():O, S2:2.

The relevant submatrices and their inverses then read

0 0 0 0
‘A(S;zn = ‘A(S;()),O’ 7’-(S;r)fn = T(S;()),O’ (124)
and
2 2
(2) Aé;)—2,—2 'A(S;)—Z,O
Asm =\ 0 @ |
Aso—2  Asoo
2) (2)
@ [ Fs2-2 Tsi20
TS;rn - ( 2) 2 > (125)
7s:0.-2 $;0.0

Note that we did not include the rows and columns

corresponding to » = 1, 2 in the matrices .A(SO) and T(SO>,
as these do not enter the transport coefficients.

The first-order transport coefficients are given by

o= m;r(s?&oaéo), (126a)
o = 5,203 + 750005 - (126b)
N = Téz;)_z__za(_zz) + Téz;)_z,oaéz), (126¢)
while the relaxation times read
n= T(so;g,o’ Tp = T(sz;g,—zc—zg + T(sz;g,o- (127)

For simplicity, we set 7 = Tg;)()),o = 7. From the bulk-
shear coupling

2 J
My = = (@) 4 210 (128)
we obtain the coefficient C<_22) as
c? — 3 nx_Jio
-2 m2 M J30
J
—ARY + (A-1)2, (129)
J30

For simplicity, we set 1(52;2),_2 = 0. From Eq. (127), we

find 1(52()),0 = 7,. Substituting the above into Eq. (126b), we

5

find 7, = Htp. Summarizing, we have

(130)

@ __ _
7500 = Tn = Hrp.

056002-16



HIGH-ORDER SHAKHOV-LIKE EXTENSION ...

PHYS. REV. D 110, 056002 (2024)

Noting that, when T(S(;)z),o = Ty = Tp, We have c§°) = Rﬁ") =

aﬁo) /a(()()), the other second-order transport coefficients
become

2
iﬂn = _HTR(S + mzR(_Oz)),

5
I @) J10
Opn + 25 =—=—1938+11m*|AR A-1)—|¢.
7[71'+3 21 { + m|: —2+( )J30
(131)
From Eq. (129), the entries in the r = —2 line of r(sz;zn

matrix are constrained by

J
s RO e =r | AR+ (4-1)78]. 132

For simplicity, we demand that 1(52;)_2’_2 = 1, = Htp, such

that the last unknown entry Téz;)_z’o becomes

J
w0 = trH(A 1) (R@ + J—;2> (133)

The resulting Shakhov inverse matrix thus reads

2
1A= (RY +70)
0 1

1) = oxH (134)

Consequently, the Shakhov collision matrix Agln is
given by

2
4o 1(1—A)(R<_2)+%g)

= 135
TRH 0 1 ( )

C. The Shakhov collision term
The construction of the Shakhov collision term relies on

the functions 7:{&2 that ensure the recovery of the moments
Psin ™ of 8fsk = fsk = fox for —s, < n < Ny. Normally,

this can be achieved when 7:[32 is taken as a polynomial of
order Ny + s, + 1 in Ey = k*u,. However, given that the
symmetries of the Bjorken flow of a neutral gas (with no
conserved charge) imply that even- and odd-order moments
do not mix, we only need to ensure the recovery of even-
order moments of Jfg,. To avoid confusion, we shall

employ the notation f)fn) to denote this basis in even powers

of energy, as opposed to the standard basis ’Hg,).
Specifically, we are employing a Shakhov model with
(N, s5) = (0,2), for which we need to recover only p’g’;“_z

and pl, thus f)g become polynomials of the form
A, + B,E;. Then, Sy = 8fsk/foxfox becomes

=(2) con (kK
S = . . -
k = (ms.2bi + ms.0byy) (rzk$ 2%

), (136)

where the last term follows by noting that, under our
assumptions of longitudinal-boost invariance and trans-
verse plane homogeneity, pf, = diag(0, -3, —3.77%)7s,

207 2
and
y G K
sk k) = 7sir (T_g - 7) :

The scalar coefficients 7g._, and 7, are given by

(137)

2 2
.2 = (1 - TR-A(s;)_z,_z)”—2 - TR-A(s;)_z.o”O,

ﬂs;() = —TRA(SZ;())‘_ZH_Z -+ (1 - TRAéz;gyo)ﬂ(). (138)

The polynomials f)l((z,z must be constructed to ensure

/ dKSfsk 2Kk = plt,,

/ dKSf sk k?) = plhy. (139)

Taking into account the integration identity

/dKFkk<”1 ...kum>k<yl ok,

m!o,,, oy, " m
:mA’JI‘“.L‘m /dKFk(A Pkokp)™,  (140)

one may rewrite Eq. (139) as

2(An‘]r,2 + Bn']2+r,2) = 5rnv (141)

valid for r, n € {0, 2}. The polynomials f)f,? =A, + B,E}
can be obtained as

Jyn—JnE;
2(Jopdan—J3,)

—Jy+JnEj

by = by =Rk (142)
K0 k2 2(‘]02‘]42 _J%Z)

D. Numerical results

In order to validate the kinetic Shakhov model, we
performed numerical simulations of both the hydrodynam-
ics and the kinetic theory models, taking constant values for
the relaxation time: 7z = 7y = 0.05 fm/c and 0.5 fm/c.
The particle mass was set to m = 1 GeV/c? and at initial
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FIG. 1. The ratios (left) P; /Py, (middle) —I1/(e + P) and (right) —z;/(e + P) in the case of Bjorken flow, obtained using the

Shakhov model (solid lines with symbols) and second-order hydrodynamics (dashed lines) for (top) zy = 0.05 fm and (bottom)
g = 0.5 fm. In all cases, the parameters of the Shakhov model are taken such that HA = 1. The case A = | corresponds to the
Anderson-Witting model. The hydrodynamics results are shown in black in all instances, except for panel (b2), where the color of the

hydro curves follows that of the kinetic theory curves.

time 7y = 0.5 fm/c, we set fy(79) = exp(—foEy), with
initial temperature ;! = 0.6 GeV.

In the first set of simulations, shown in Fig. 1, we took
the parameters A and H of the Shakhov model to obey
AH =1, such that the A = H = 1 case corresponds to the
AW model. We considered a wide range of values for A,
from 0.5 to 100. The kinetic theory results are shown with
solid lines and symbols, while the solutions of the corre-
sponding second-order fluid-dynamical equations (119)
are shown with dashed lines. Panels (al)—(cl) of Fig. 1
show the results for 7z = 7;; = 0.05 fm/¢, while panels
(a2)—(c2) correspond to 7z = 7; = 0.5 fm/c. Panels (al)
and (a2) show the ratio P; /Py, while panels (c1) and (c2)
show the dimensionless ratio —10z,/(e + P). In these
panels, kinetic theory and hydrodynamics are always in
good agreement. As expected, increasing A and decreasing
H has the effect of lowering |z,;| and thus leads to ratios
P, /Py which are closer to unity. Panels (bl) and (b2)
show the ratio —10°I1/(e + P). In the case when
i = 0.05 fm/c, shown in panel (bl), the magnitude of
I1/(e + P) remains unchanged for all tested values of A, as
expected since while 7, scales with H, the contribution
Ariz7g to I scales like AH = 1. In panel (b2), IT/(e + P)
exhibits a clear dependence on A, and moreover the

agreement between kinetic theory and hydrodynamics
deteriorates, especially for A = 0.5, indicating a breakdown
of the hydrodynamics assumptions.

In Fig. 2, we considered the case when H =1 is fixed
and A was varied from 100 down to 0.1, with A = H =1
corresponding to the AW model. As before, the kinetic
theory and hydrodynamics results for 7z =7; =0.05 fm/c
are in good agreement. At 7z = = 0.5 fm/c, visible
discrepancies can be seen in the case of large A, most
notably during the early-time evolution, where hydrody-
namics cannot be expected to be valid.

V. SHEAR-DIFFUSION COUPLING:
LONGITUDINAL WAVES

In the previous section, we discussed a second-order
Shakhov model modifying the cross-coupling coefficient
A of a fluid having constituents of mass m and with
no conserved charge. We now discuss the second-order
Shakhov model which modifies the shear-diffusion cross-
coupling coefficients ¢y, and £,y, and for simplicity,
we focus on an ultrarelativistic ideal gas, whose properties
are summarized in Sec. IIIE. We start with a brief
problem description in Sec. VA, while our proposed
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FIG. 2. Same as Fig. 1 for the case when H = 1 is fixed and A varies between 0.1 and 100 (see legend).

extended Shakhov model is introduced in Sec. VB and
validated in Sec. V C.

A. Problem description

We consider the propagation of longitudinal waves in a
fluid at rest, as discussed in Refs. [28,40]. Taking the
wave vector k along the z axis, the four velocity reads
ut0, =~ 0, + 6vad,, where |dv| < 1 is the velocity along the z
axis. Denoting via ny, e, the particle number density and
energy density of the background state, we consider the
perturbations én = n —ny and de = e — ey to be of the
same order as év. To linear order, the diffusion current V#
and shear-stress tensor 7# take the form

1 1
Vi, ~6Va., 7" ~ drdiag <0, 575 1), (143)

where the scalar quantities 6V and oz are also assumed to
be infinitesimal.
The conservation equations 9,N* =0 and 9,7" =0

reduce to
d,6n + nyo,0v + 9,0V = 0,
9,6e + (eq + Py)0.6v =0,

(e + Py)d,6v + 0.6P + 0.6m = 0, (144)

while the dynamical equations for 6V and 6z are

Ty 0;0V 4 6V = —kd, 0a + £y,0,6m,

4 2
.60 —Z£,0.6V.

3 % 3 (145)

7,0,01 + O = —

The above equations feature 6 independent transport
coefficients: 7y,x and £y, determine the behavior of
the diffusion current 6V, while 7z,,n7 and ¢, control
the evolution of the shear-stress ozx. These coefficients
can be fixed in the extended Shakhov model by employ-
ing, e.g., 2 x 2 matrices for both the vector and the tensor
sectors. In this section, we will focus on changing
only the first-order transport coefficients « and 7, as well
as the ratios of the cross-coupling coefficients with
their respective relaxation times, ¢y,/ty and &,y /7,.
This can be achieved by employing the parameters
(N{,N,,s1,80) = (1,0,0,1). In the following, we will
refer to this model as the (1001) model. For definiteness,
we take the overall relaxation time as

_n

= . 146
TR 4P ( )
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B. Shakhov model for the shear-diffusion coupling

We will now discuss the (1001) extended Shakhov model
in more detail. In the diffusion sector, the matrix .AS i
features a single element, which is related to the respective
relaxation time as 7y, = 18&0 =1/ Aé{g’o. Considering the
diffusion coefficient « fixed, the relaxation time 7y is
readily obtained as

12k

The collision matrix A(sz.in for the shear sector and its
inverse can be written as

2 2
A(S;)—l,—l 'A(S;)—l.O

AS), = ,
srn 2 2
A(S;()),—l "4<S;(>),0

(2) ()

T Tg._
T(sz;zn _ s=i-1 TS0 | (148)

(2) (2)
7s.0.-1  Ts;00

The first-order transport coefficients of the shear sector are
given by

P
-1 g(ﬁfs 1 1"‘47(5)10)
P )
=3 ([}TS;O,—I + 4Ts;0.0>’ (149)
such that
2 1.2
e -1 T(s;)—l,—l +4p 1T(s;—lA,()ﬂ (150)
S N (2) 472 )
0 Prso-1 T 47500
The relaxation time 7, is
T = 750 1C + 7600, (151)

while the shear-diffusion cross-coupling coefficients read

e
Cyn :TV(Z_C(—I) :
©) 2)

2) .
We express 7g _;, 75,0 and C(_l) in terms of 5, £y, and
Ly as

(152)

o w51 5B,
S:0,—1 2 ’ SOO 4P 8 Vo
¢
) b _tur 153
-1 4 Ty ( )

Note that knowledge of the transport coefficients cannot fix
(2)

both entries on the r = —1 line of g, , since these entries

appear only through the combination shown in C(_zl) . We will
take advantage of the second degree of freedom below,
in order to optimize the structure of the resulting matrix.
For now, we express also the relaxation time 7, as

5’7 SfVﬂfer

154
g 4P 2TV (5)

T

Besides the transport coefficients in Eq. (88) which are
fixed for ultrarelativistic particles, we express the remain-
ing ones using Egs. (89):

3 47
Ayy = gTV, Ave = ﬂﬂ <1 - Vﬂ), Ay =0,

16 Bty
5 <5’7 ﬁfﬂV fVﬂfﬂV>
T =5 _3Zvatav ),

1
2P 2 Ty ( 55)

We have now determined all transport coefficients of the
(1001) model. In order to assemble the collision matrix and
its inverse, we still need to specify the remaining degree of
ézzn To simplify
the discussion, we introduce the following notation:

freedom pertaining to the r = —1 line of =

5n 40y, _5p¢ v
= , Ly,= , L= 156
47, P v Pry Ve 87, (156)

Considering Ly, and L,y as input parameters, H can be
obtained by dividing Eq. (154) by 7,:

H == 1 + LVJ[LHV' (157)
This allows 7, to be expressed as
5
T, = 1 (158)

4P(1 + LVﬂLnV> '
Furthermore, the transport coefficients in Eq. (155) read

AVJZ ﬁ

Avv _

3
=, = 1-Ly, Ay =0,
v 5 Ty 16( ve): v
Tor 2
— ? (SH 2L7L’V 3LV”L”‘/). (159)
Tﬂ
Moreover, the elements of 1(52) satisfy:
2 e
T 4
S:0,— 1__L”V’ 75,0,0 —H-1L,,
Tﬂ' ﬂ Tﬂ
(2) (2)
Tso1o1, 4Tt
— —— =H(1-Ly,). 160
S T (- L) (160)
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Coming back to the r = —1 line of the 1<52;Zn matrix, one

may be tempted to simply set the off-diagonal term to O,

ie. 1(52;)_1‘0 = 0. However, this choice fails when 7y,

approaches firy, /4 and hence Ly, approaches 1, since then

(2) 4_(2) )

Ts._1-1 = ~5Ts.-10 = 0 and 7g" becomes singular. To

circumvent this problem, we take advantage of the réz;)_l’o

degree of freedom to ensure that the eigenvalues of rg)

remain positive. Introducing the notation
@ _Pu

Ts—10 = 4 %

. (161)

(2)

the matrix zg

B

@ H(l—Ly,) —x /Zx

s T 4 H-L
/} Vv -

can be written as

and its eigenvalues are given by

/11,2 = % [H(Z - Lv”) —Lyy—x

+ \/(HLVH + LﬂV + X)2 - 4HLVﬂLnV] . (163)
Considering 4, > 1;, we have

lim 4, = limA, = 7,H. (164)

X—=>—00 X—00

At finite values of x, it holds that 1; < 7,H < 1,. Writing
A = ar H, with 0 < a < 1, we have

1-H

=H(l—-a-Ly,) — L,y ———, 165
X ( a Vﬂ) Vv l—a ( )

while 4, is given by

1-H
/12: ¢

z,. (166)

l-a

Noting that detféz) =12aH (1 —aH)/(1-a), the matrix

r(sz) can be inverted to obtain the collision matrix A(Sz) as

A<2) _ l-a H—-L,y _gx ,
S " aHr,(1 —aH) ~5Lay H(l=Ly,)—x
(167)

where x is fixed by the value of a (taking values between 0
and 1) via Eq. (165). In the following, we will employ for
definiteness a = 1/2, such that

H
/11 = _Tﬂv/12 = (2 _H)Tm

5 (168)

with detr?) =2 (2—H)2 and x = 32 — HLy, — L,y —2.

Before moving on to the numerical results, we remark
that, while our proposed Shakhov model allows the coef-
ficients ¢y,,¢,y,x and 5 to be controlled independently,
they are in principle related through the constraint [50]

4 Vr fﬂ'V

—= =0 169
K + 2nT (169)

which is necessary for the phenomenological entropy current

to have a non-negative divergence. Under this constraint,
it holds that

1

Lyy=-3HLy,, H=———.
\%4 \% 1+3L%/ﬂ

(170)

Furthermore, the constraint (169) forces the couplings £y,
and 7,y to have opposite signs, thereby ensuring that the
relaxation time (154) stays positive.

C. Numerical results

We now consider a system of size L =2x/k with
periodic boundary conditions, where k is the wave number
and L is the wavelength of the propagating wave. We
initialize the system in local thermodynamic equilibrium at
rest, with pressure and density given by

0) = Py + 6Py cos(kz),

P(
n(t =0) = ng + éng cos(kz).

(

As can be seen from Eq. (145), £y, and 7,y introduce the
coupling between the shear and diffusion sectors. In
particular, when ony =0 and 6Py #0, ¢y, introduces
shear modes into the evolution of 6V, which cause it to
oscillate. Conversely, when 6Py, =0 and ong #0, ¢,y
allows o6z to develop a nonvanishing value through its
coupling to V. In order to characterize the evolution of §V
and 6z, we consider the Fourier amplitudes

t
1 (171)

—~ k [2x/k .
oV (1) = ;A dz6V sin(kz),

- (172)

~ k [2x/k
or(t) = —/ dzér cos(kz).
0
The time evolution of 6V(¢) and 6z(¢) is shown in
Fig. 3 for the cases (6Py/Py,dny/ny) = (1073,0)
and (0,1073) in panels (a) and (c), and (b) and (d),
respectively.

In all cases, the Shakhov model was constructed using
.A(Sl) =17%' and a=1/2 for the Aéz) matrix. We also
considered n =1y = %TRP, like in the Anderson-Witting
model, such that 7, = 7x/H, as indicated in Eq. (156). In
Fig. 3(a), we took ¢,y = 0 and considered nonvanishing
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FIG. 3. Time evolution of the amplitudes (a),(c) 5V and (b),(d) 5;1’, multiplied by the factors —100/6P, and 100/6n,. The initial
fluctuation amplitudes are (Sng,5Py) = (0,1073Py) and (1073ny,0), respectively. The curves represented with lines and symbol
correspond to the Shakhov model results, while the hydro solutions (obtained numerically) are represented with black dashed lines.
In (a), we varied ¢y, € {0, £0.35, £0.7} at vanishing ¢, = 0. In (b), we varied ¢,y € {£0, £0.35, 0.7} with ¢y, = 0. In (c) and (d),
we imposed the entropy constraint (169) to obtain £,y for £y, €{0,£0.1,£0.2}. In (a)—(b), we set krz = 0.5, while in (c)-(d),

we employed krp = 0.25.

values of £y, in which case H = 1 and x =1 — Ly,,. Then,
the Shakhov matrix (167) reduces to

(

For Fig. 3(b), we considered the case when 7y, = 0, such
that H =1 and x =} — L,y and Eq. (167) reduces to

(3-10)

T+ L,y

1

Tr

2 —4(1-2Ly,)

. 1 (173)

p

1 =L,y a

2

T

AP = (174)

_%LﬂV

Finally, for Figs. 3(c) and 3(d), we enforced the entropy
constraint in Eq. (169), leading to H = 1/(1 +3L? ),
x=-4(12L%, —4Ly, — 1) and

1+3Ly, 4(12L}, — 4Ly, —1)

2 2
6L}, —3Ly, +1

S 777[(2_H)

).

(175)

(

Finally, we employed a constant relaxation time zp, taken
such that kzp = 0.5 for Figs. 3(a) and 3(b), and 0.25 for
Figs. 3(c) and 3(d). For definiteness, we considered the
wavelength to be L =2z/k =1 fm, while the initial
temperature was set to Ty = 1 GeV and the initial chemical
potential was set to 0, such that ny, = 212.04 fm™ and
Py = 212.04 GeV/fm>. This corresponds to a shear vis-
cosity to entropy density ratio of 4zn/s = LT/5 ~1.02
for Figs. 3(a) and 3(b) and half of that (4zy/s =
LT/10~0.51) for Figs. 3(c) and 3(d).

All kinetic theory results shown in Fig. 3 using colored
lines and symbols are in good agreement with the corre-
sponding hydrodynamics results, shown with dashed black

1/72LV7[
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lines. As expected, the agreement improves at smaller kzp
and it becomes worse when kzj is increased.

VI. HARD-SPHERE GAS:
THE RIEMANN PROBLEM

In this section, we focus on the problem of the propa-
gation of shock waves (the Riemann problem). The
Shakhov models presented here will be validated against
the values obtained in Refs. [37,38] using the BAMPS
algorithm, where binary elastic scattering of ultrarelativistic
(massless) particles via a constant, momentum-independent
cross section was considered. In a sense, this section
extends the considerations of Sec. V to the case when
nonlinear effects become important. Keeping to the nota-
tion (Ny,N,,s;,s,) introduced in Sec. IIF, we will
distinguish between Shakhov models of various orders,
as described below. Our goal is to develop a Shakhov
kinetic model which is able to reproduce the BAMPS data,
and in doing so, we will aim to reproduce increasingly more
transport coefficients of the hard-sphere (HS) gas, enumer-
ated in Table L.

First, we will consider the Anderson-Witting model,
where the relaxation time 7y is taken to match the shear
viscosity 7 of the BAMPS model, namely

5n 1.2676
AW: TR:E, n= of

= 1.2676P g, (176)
where A5 = 1/no is the particle mean free path and
n = PP is the particle number density. In units of 4,,g,, the
relaxation time 7z becomes

p = 1.58457. (177)

For definiteness, we keep the above relation between 7y
and A, for all models discussed below. One may hope that
with the above choice, the AW model can give a reasonable
description of shear-driven quantities, such as z**.
However, diffusion-related phenomena cannot be accu-
rately described, as the diffusion coefficient of the AW
model is incorrect (see Table I).

We therefore also consider the first-order Shakhov model
introduced in Ref. [26] and summarized in Sec. II, dubbed

TABLE L

(1000) according to our convention. For definiteness,
we consider 7, =tz with 7 given in Eq. (176), while
7y is computed based on

ry =SB 120367,

. (178)

where the values of k for the hard-sphere and AW models
are given in Table I. As it will become clear in the
applications subsections, the above 20.4% increase of
the diffusion coefficient is insufficient to capture the
magnitude of the diffusion current. The resulting Shakhov
model has the following collision matrices:

0y 052437 » 063111
(1000): A =220 A =

Amfp

. (179
T (179)

with 7y =1.20367; = 1.9071 4, and 7, = 74 = 5n/4P =
1.5845 s, as explained above. Please note that
Pos = 1= rR.A(sz;())YO =0, hence the Shakhov term Sy of
the (1000) model consists only of the vector term.

The next model that we employed is the (1001) model
discussed in Sec. V. As before, we set 7z according
to Eq. (176) and take n = 5y, thus 7, = 7z/H. Similarly,
7y is set via Eq. (178), such that « given in Eq. (147) takes
the HS value. Imposing the HS value for #y,/7y =
0.028371f and the entropy constraint (169) gives £,y /7, =
—0.52446/p, while Ly, = 0.11348 and L,, = —0.32779.
Thus, H = 0.96280 and subsequently all transport coef-
ficients come out as shown in Table I. The Shakhov
matrices read

0.52437
(1001): AY) = ,
ﬂmfp
1 1.5706  —0.19031
A =—< ﬂ>, (180)
Amp \ 1.5956/5  0.27748

where the element in bold font represents the Agz;()).o entry of
the Shakhov matrix.

We also consider two higher-order models which
are derived in Appendix B. In the (1012) model, we are
able to fix all transport coefficients except Ayy and Ay,.

Transport coefficients for the hard-sphere gas of ultrarelativistic particles interacting via an isotropic cross-section o,

computed using the IReD approach [29,31], as well as for the AW and Shakhov models considered in Sec. VI. Besides the transport
coefficients shown above, all models have vy = vy, 6., = 41,/3, Ty, = €y, and 7,y = 4¢,y.

Model ']Gﬁ Tir/)'mfp ﬁfﬂv/Tﬂ TI[II/TI[ ﬂiﬂV/Tir Ko TV/)'mfp an/ﬂTV )'VV/TV }“Vﬂ/ﬂTV
HS 1.2676 1.6557 —0.56960  1.6945  0.20503  0.15892 2.0838 0.028371  0.89862 0.069273
AW 1.2676 1.5845 0 1.4286 0 0.13204 1.5845 0 0.6 0.0625
1000 1.2676 1.5845 0 1.4286 0 0.15892 1.9070 0 0.6 0.0625
1001 1.2676 1.6457 —0.52446 1.5946 0 0.15892 1.9070 0.028371 0.6 0.055407
1012 1.2676 1.6557 —0.56960 1.6945  0.20503  0.15892 2.0838 0.028371  0.762023 0.062933
2012 1.2676 1.6557 —0.56960 1.6945 0.20503 0.15892 2.0838 0.028371 0.89862 0.069273
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The collision matrices are given in Eq. (B9) and reproduced
below for convenience:

| /063419 0
(1012): A§”=< >

Amp \0.22111/5 0.34155
0.84927 0 0
I 0 07091 0
™\ Z1.3008/42 1.5229/4 0.37307
(181)

Finally, the (2012) model allows all transport coefficients
to be set to the values obtained from kinetic theory,
employing the Shakhov matrices from Eq. (B18), repro-
duced below:

062732 0 0
(2012):A§”:/1L 0.11113/p 0.59563 0.0110124 |,
mip 0 0 042171
0.82802 0 0
AP :% 0 070553 0
™\ Z1.2528/42 1.5120/8 0.37256
(182)

A. Problem description

The Riemann problem constitutes a well-established test
for the accuracy of fluid-dynamical codes. It consists in
determining the flow of a fluid which is initially separated
into distinct regions with different (constant) values for
their relevant parameters, such as flow velocity, pressure,
and density. In the cases considered here, which are
equivalent to the setups of Refs. [37,38], we assume the
fluid to be homogeneous in the (x, y)-plane, such that the
system is effectively (1 + 1)-dimensional. The discontinu-
ity is taken to be at z = 0, thus dividing the fluid at the
initial time into two regions: the left region, where z < 0,
and the right region, where z > 0. In both regions, the flow
velocity is taken to vanish at initial time.

This setup corresponds to the so-called Sod shock
tube [34] and the subsequent evolution of the fluid gives
rise to 5 distinct regions. Far to the left (region 0), we have
the unperturbed initial state characterized by n = n,
and P = P,. A rarefaction wave (region 1) connects the
unperturbed fluid to a central plateau (region 2), where
n =n, and P = P, assume constant values. The central
plateau is split in two regions by the contact discontinuity.
In region 3, to the right of the contact discontinuity, the
density is n3 # n,, while the pressure remains unchanged,
P, = P;. Region 4, corresponding to the unperturbed
fluid with parameters n = n, and P = P,, lies to the right
of the shock front. In the perfect (inviscid) fluid limit, the
Sod shock tube problem can be solved analytically [51].

The solution for the particular case of an ultrarelativistic,
classical ideal gas is presented in detail in Ref. [12].
This analytical solution for the initial conditions consid-
ered in Sec. VI B is represented with a solid red line in Fig. 4,
with the particle density n, pressure P and four-velocity u*
shown in panels (a), (b) and (c), respectively. The dotted
black lines, arrows and inset labels indicate the above-
mentioned regions of the flow. We also show here the results
obtained using our code for the simple case of the Anderson-
Witting model, as well as BAMPS data from Ref. [37] for
comparison. It can be seen from the figure that our numerical
solution approaches the analytical one as the shear viscosity
to entropy density ratio #;5/s decreases (the meaning of the
IS subscript will be elucidated in the following subsection).

B. Sod shock tube

Our first test case will be the Sod shock tube setup
presented in Ref. [37], where the system is initialized at
vanishing chemical potential, 4 = 0. The initial temper-
atures in the left (x < 0) and right (x > 0) regions are Ty =
0.4 GeV and T, = 0.2 GeV, respectively. The shear-stress
tensor and the diffusion current are zero at the initial time,
but they develop nontrivial profiles during the subsequent
evolution of the fluid. For these quantities, we benchmark
the performance of the various Shakhov models by com-
parison to the results obtained using the BAMPS algorithm.

Before discussing the results, a few remarks regarding
our proposed comparison are in order. First, we note that
the results presented in Figs. 3—7 of Ref. [37] probe the
perfect fluid limit, being obtained at very low shear
viscosity to entropy density ratio, n5/s = 0.001, or at
very large constant cross section, ¢ = 224.431 mb. In both
cases, reasonable agreement with the analytical solution of
the relativistic Euler equations is found, however such large
cross-section simulations require a fine spatial resolution,
making the simulations computationally very time con-
suming (see discussion at the start of Sec. IV.C of
Ref. [37]). Consequently, as the corresponding BAMPS
results are very noisy, we will not consider this limit in this
paper and instead we will focus on the cases #5/s = 0.1
and 0.01, shown in Figs. 8-10 of Ref. [37].

To understand the comparison, we first note that, in the
BAMPS simulations, the desired #/s ratio was achieved by
employing a local interaction cross-section ¢ = 1/nly,
leading to the desired value of #. Based on the more recent
method of moments analysis of DNMR [27], we know that
in a hard-sphere gas, the shear viscosity is 1 ~ 1.2676/fo.
However, in Ref. [37], the Israel-Stewart relation g =
%eﬁmfp = 1.2/po is employed. Since the shear viscosity of
the gas is given by the cross-section o, we conclude that the
results shown in Ref. [37] have a true /s ratio given by

n_ms., 12676 ms

1.056,
s K 1.2 K x

(183)
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FIG. 4. Profiles of (a) density n, (b) pressure P and (c) z
component of the flow velocity, u?, for n/s = 0.1, 0.01 and
0.001, shown with lines and points, as well as the analytical solution
for the inviscid case (shown with a solid red line). The dotted black
lines help distinguish the various features of the flow structure.

thus the actual ratio 7/ s is 5.6% larger than the one reported
in Ref. [37].

The comparison between the Shakhov and BAMPS
results is shown in Fig. 5. Remarkably, 7 = 7%%/y? is
recovered well in all considered models, showing that

fixing the value of the shear viscosity alone is sufficient to
capture the dynamics of the shear-stress tensor, as can be
seen in Figs. 5(a) and 5(b).

The heat flux ¢*, shown in Figs. 5(c) and 5(d), exhibits
an unexpected sensitivity to the higher-order transport
coefficients. For both #5/s = 0.01 and #5/s = 0.1, ¢*
has two peaks: the first corresponds to the contact dis-
continuity, exhibiting a small, negative ¢°; the second
corresponds to the shock front and exhibits a large, positive
g*. Furthermore, at 7;5/s = 0.1, the heat flux develops a
nontrivial structure inside the rarefaction wave. None of
these features are correctly recovered by the AW model.
Remarkably, the shock front peak is almost two times taller
in BAMPS than in the AW model. Clearly, fixing the
diffusion coefficient to match the one in BAMPS is
insufficient, as this provides a roughly 20% increase in
the height of the AW peak, as indicated by the (1000)
curves. Surprisingly, fixing the cross-coupling coefficients
fvy, and £y, within the (1001) model provides a very good
match not just at the level of the two peaks, but also
throughout the rarefaction wave.

From these plots, it can be seen that all extended
Shakhov models (1001, 1012 and 2012) perform better
than standard RTA, which is not able to reproduce
especially the stronger variations seen in the BAMPS data.
Interestingly, the first-order Shakhov model that fixes the
diffusion coefficient « is still strongly inconsistent with the
BAMPS data.

C. Heat flow problem

The second setup we consider is that of Denicol et al.
[38], consisting of two individual cases. In both cases,
the asymptotic left state is described by the temperature
T_o =04 GeV and vanishing chemical potential,
HU_s = 0, such that the reference pressure becomes P, =
P_, = gT* /7> = 5.401 GeV/fm? for a degeneracy fac-
tor of g=16 and the asymptotic left fugacity is
A_o = et-=/T-= = 1. The reference particle number den-
sity then reads np =n_y, = P_.,/T_o = 13.50 fm™3. The
initial conditions are specified at the level of the pressure
and fugacity, which are given by the Woods-Saxon profile:

/10_/100
14 e¥/P’

PO_Poo

P(Z):Poo W,

AMz) =2+ (184)
with D = 0.3 fm being the shock thickness. Considering
the relations P = gT*1/z*> and n = P/T, the particle
number density n and temperature 7" can be obtained from
P and 4 via

2P\ /4 gA 1/4
T: _— . - —P3 . 185
() =) o

At initial time, the fluid is at rest [u#* = (1,0,0,0)] and the
diffusion current and shear-stress tensor vanish identi-
cally, V¥ =z = 0.
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FIG. 5. Profile of (left) 7 = 7% /y? and (right) ¢° = —(e + P)V?/n, taken at ¢t = 3.2 fm for ;5/s = 0.01 (top) and 0.1 (bottom). The
BAMPS results shown using black lines and filled circles are taken from Ref. [37]. The AW model results are shown with the purple line

and squares. The Shakhov results obtained using the (1000), (1001),

(1012) and (2012) models are shown with lines and empty symbols

(circles, upper triangles, lower triangles and rhombi, respectively).

Following Ref. [38], we consider two sets of initial
conditions, labeled as case (i) and case (ii). For case (i),
the fugacity stays constant, A(z) = e#(/7() = 1, and the
pressure drops to P, = gT% /7> = 0.824 GeV/fm?, cor-
responding to 7', = 0.25 GeV. In summary, we have

(i) Ay =1,
T, = 0.250 GeV,

P., = 0.824 GeV/fm?,

ne =3.297 fm=3. (186)
For case (ii), the pressure stays constant, P(z) = P, while
the fugacity drops to its asymptotic right state, 1o, = 0.2,
such that

P, = 5.401 GeV/fm?3,
n, = 9.030 fm=>,

(i) A = 0.2,

T, = 0.598 GeV, (187)

The simulation domain spans L = 14 fm, such that
—L/2 <z<L/2 and the total simulated time is
T =6 fm.

As in the preceding section, we consider that the fluid
is made up of ultrarelativistic hard-sphere particles
interacting via an isotropic cross-section . Contrary to
the situation in the previous section, ¢ is fixed and we
shall consider either 6 = 2 mb or 8§ mb. This means that
the ratio #/s is no longer constrained to be a constant.
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FIG. 6. Profiles of (a) P/ Py, (b) 1 = €%, (c) ¢°/P and (d) =/ P with respect to z taken at t = 6 fm for the initial conditions referred to as
“case 1,” described in Sec. VIC. The datasets corresponding to ¢ = 2 mb (filled symbols) and 8 mb (open symbols) are shifted
symmetrically by the quantities +A and —A, respectively, with Ap = 0.1, A; = 0.05, A, = 0.01 and A, = 0.

Nevertheless, the relaxation time 7 is still fixed via
Eq. (176), namely

Sy 1.5845
TR = E =

no

, (188)

where n = n(z) is the local particle number density. The
Shakhov model is then implemented exactly as discussed
in the preceding section, using Ay = 1/n0. The numeri-
cal results are shown in Figs. 6 and 7 and, before
discussing them in detail below, we mention that for

presentation purposes, we have chosen to show the results
for both values of ¢ together on the same canvas. For this
purpose, we have shifted each quantity A by an offset A,
for 6 =2 mb and by —A, for 6 = 8 mb.

Case (i) above is a milder version of the Sod shock tube
problem considered in the previous subsection. First, the
temperature jump is smaller (7, = 0.25 GeV compared to
0.2 GeV considered in Sec. VIB), and second, the initial
discontinuity is smoothed out by the Woods-Saxon profile.
Figure 6 shows the comparison between the BAMPS data
and our simulation results. Figures 6(a) and 6(d) show the
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normalized pressure P/P, and the shear-stress tensor
coefficient 7 = 7%/y*>. All models (including the AW
model) are in good agreement with the BAMPS data,
confirming that the dynamics of these quantities are
dominated by the shear viscosity 7, which is correctly
recovered by all considered models.

Figures 6(b) and 6(c) show the fugacity, 4 = e*/'T and
the heat flux ¢° = —(e + P)V?/n. For the larger cross-
section, ¢ = 8 mb, shown with empty symbols, all model
results seem to be consistent with the BAMPS data at the
level of the fugacity. However, Fig. 6(c) shows that the AW
and (1000) models significantly underestimate the peak
values of the heat flux, while the higher-order models

1.2
4 ‘ BAMPS —e— BAMPS —e—
AW —a— AW —p—
1000 —e— 1000 —o—
1001 1001 i,
1012 1012
2012 —e— 2012 —o—
(o =2 mb) (0 =8 mb)

0.8

0.6

A+ Ay

0.4

0.2

0 1
—6 -4 2 0 2 4 6
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0.08 ‘ ‘ ‘ ‘
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AW —a— AW —p—
1000 —eo— 1000 —o—
1001 1001

0.04 | 1012 1012 1
2012 —o— 2012 —o—

/P £ A,

—0.12 L L L L L 1 1

z [fm]

(1001, 1012 and 2012) capture the BAMPS data quite
accurately. For the lower cross-section, 6 = 2 mb, shown
with full symbols, the AW and (1000) models deviate
significantly from the BAMPS data for both 1 and ¢*. The
(1001) model provides a significant improvement; how-
ever, one may observe a slight discrepancy in the A profile
before the onset of the shock front, as well as a slight
overestimation of the heat-flux peak. On the other hand,
both high-order models (1012 and 2012) are in excellent
agreement with BAMPS.

The setup considered as “case (ii),” shown in Fig. 7,
favors a flow pattern dominated by the heat flux. While the
fugacity 4, shown in Fig. 7(a), is excellently captured by all

1.008
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9
4 1
_H
(=)
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(o =2 mb) (o =8 mb)
BAMPS —e— BAMPS —e—
0.994 AW —m— AW —@—
1000 —e— 1000 —o—
0.992 | 1001 1001 7
1012 1012 (b)
2012 —e— 2012 —o—
0499 | | | | | | |
-6 -4 -2 0 2 4 6
z [fm]
0.006 ‘ ‘
BAMPS —o—
AW —g—
1000 —o—
1001
0.004 1012 .
2012 —o—
(o =8 mb)
0.002
[
< 4
[¢
. P
~
[

—0.002

—0.004 1 1 1 1 1 I I

FIG.7. Profiles of (a) A = e“, (b) P/ P, (c) ¢°/ P and (d) =/ P with respect to z taken at t = 6 fm for the initial conditions referred to as
“case 2. As in Fig. 6, we have shifted the datasets with A, = 0.15, Ap = 0.003, A, = -0.01 and A, = 0.002.
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TABLE II. Transport coefficients for the hard-sphere gas of ultrarelativistic particles interacting via an isotropic cross-section o,
computed using the original DNMR approach [27,31], as well as for the high-order Shakhov models (1001), (1012) and (2012)
considered in Sec. VID. Besides the transport coefficients shown above, all models have &y, = 7y, 6., = 47,/3, 1y, = €y, and
Ty = 47 Ve

Model ’70'ﬁ Tﬂ/imfp ﬁfﬂV/Tﬂ Tl[l[/Tﬂ ﬂj'r[V/Tﬂ Ko TV/lmfp fVT[/ﬂTV }'VV/IV AVﬂ/ﬂTV
HS 1.2676 2 —0.68317 1.6888 0.24188 0.15892 2.5721 0.11921 0.92095 0.051709
1001 1.2676 1.98958 —0.68317 1.43987 0 0.15892 1.9070 0.11921 0.6 0.032698
1012 1.2676 2 —0.68317 1.6888 0.24188  0.15892 2.5721 0.11921 0.76998  0.043070
2012 1.2676 2 —-0.68317 1.6888 0.24188  0.15892 2.5721 0.11921 0.92095  0.051709
‘ ; 1.2
BAMPS —e—
1001 —E—
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5 4 VR
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Same as Fig. 6 for the Shakhov model implementing the DNMR transport coefficients. The “2012, IReD” entry shown in
red with rhombi corresponds to the results obtained using the IReD transport coefficients, being in excellent agreement with the
BAMPS data.
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models, the pressure fluctuations, arising at a subpercent
level around the initial value, are completely missed by the
AW and 1000 models. The higher-order models give a
reasonable representation of the general trend of these
fluctuations, with the 1001 model performing (surpris-
ingly) marginally better than the 1012 and 2012 models;
however, the small amplitude of the oscillations may
indicate that transport phenomena beyond second order
may play an important role. The same remarks hold equally
for the shear-stress coefficient 7, shown in Fig. 7(d).

Surprisingly, the heat flux profile shown in Fig. 7(c) is
recovered by all Shakhov models, while the AW model
underestimates its magnitude by roughly 11%. The first-
order Shakhov model (1000), implementing the correct
value of the diffusion coefficient, already provides an
excellent match to the BAMPS data. Furthermore, the
(1001) model already captures the main features of
the pressure and shear-stress tensor fluctuations, while
the higher order models (1012 and 2012) provide a
marginal improvement over the (1001) model.

D. Using the DNMR transport coefficients

Before ending this section, we remark that the point of
the original Denicol et al. paper [38] was to demonstrate
that one can obtain agreement with the BAMPS data within
the framework of second-order fluid dynamics by increas-
ing the number of dynamical moments. Surprisingly,
Figs. 2 and 3 of Ref. [38] indicate that keeping the original
14 dynamical moments—for ultrarelativistic particles, just
13 moments, namely n, u*, e, V¥ and 7#*—and increasing
the accuracy for the computation of the transport coeffi-
cients within the DNMR method of moments leads to
worse agreement with BAMPS.

The reason for this apparently divergent behavior lies in
the way the second-order hydrodynamics scheme is set up.
In the original DNMR framework, one encounters second-
order terms of the type Re™? (not considered in our present
work), Re™'Kn (the 7, J#, and J** terms) and Kn? (the /C,
K*, and K* terms). The latter Kn? terms are parabolic and
must thus be omitted from a hydrodynamics solver, as is
done also in Ref. [38]. Within the IReD framework of
Ref. [29], these Kn? terms are consistently absorbed in the
Re~'Kn terms, which leads to a restoration of the second-
order accuracy by a modification of the second-order
transport coefficients appearing in the Re 'Kn terms.
Hence, employing the values of the transport coefficients
for the Re™'Kn terms derived in the DNMR framework
while discarding the O(Kn?) terms cannot lead to a
hydrodynamic model which is second-order accurate,
hence the persistent discrepancy to the BAMPS data.

To test this, we consider again the Shakhov models
discussed until now, tuned to recover the DNMR transport
coefficients for hard-sphere interactions, shown in Table II.
The equivalent AW and (1000) models are evidently

identical to the IReD ones, since they fix only the first-
order transport coefficients, which are identical between the
IReD and DNMR approaches. For the (1001) model, we
employed 7y, = 0.11921p7y, and ¢,, = —0.683177,/p.
The higher order (1012) and (2012) models are derived
in Secs. B3 and B4 of Appendix B. In all cases, we
summarize the resulting transport coefficients in Table II.

Our results shown in Fig. 8 confirm the interpretation
that the transport coefficients derived within the DNMR
framework are ill-suited for hydrodynamical simulations.
While the pressure [Fig. 8(a)] and shear-stress coefficient z
[Fig. 8(d)] profiles are recovered well by all models,
showing that the dynamics of these quantities is dominated
just by the value of the shear viscosity 7, the fugacity 4
[Fig. 8(b)] and most of all, the heat flux [Fig. 8(c)], are
strongly sensitive to the second-order transport coefficients
and the Shakhov model results with DNMR coefficients
exhibit strong disagreement to the BAMPS data. One can
see again that employing the IReD transport coefficients
within the high-order (2012) model gives excellent agree-
ment with the BAMPS data.

VII. CONCLUSIONS

In this work, we presented a general method to extend
the standard Anderson-Witting elaxation time approxima-
tion for the Boltzmann equation via a high-order Shakhov-
like construction. Depending on the chosen truncation, the
model allows for a varying number of transport coefficients
to be fixed from the hydrodynamic limit of kinetic theory.
To validate our construction, we first considered two
canonical setups: the Bjorken flow for massive particles
and longitudinal waves for massless particles, where we
compared simulation results between the Shakhov model
and second-order Israel-Stewart-like hydrodynamics
with transport coefficients taken from the Shakhov model.
In the context of the Bjorken flow, we demonstrated that the
Shakhov model can be used to simultaneously tweak the
shear viscosity #, bulk viscosity {, and the bulk-shear
coupling coefficient Ap,. In the longitudinal waves setup,
we demonstrated that the Shakhov model is able to
simultaneously tweak the shear viscosity #, particle dif-
fusivity «, and the shear-diffusion cross-coupling coeffi-
cients, £y, and £,,. The results of the kinetic Shakhov
model were in good agreement with those from hydrody-
namical simulations with the transport coefficients
expected from the Shakhov model, validating the hydro-
dynamic limit of the Shakhov model.

The third example that we considered consisted of
several incarnations of the Riemann problem, where we
employed the Shakhov model to reproduce the solution of
the full Boltzmann equation obtained using the BAMPS
code for massless particles interacting via an isotropic
cross-section o. The transport coefficients of such a hard-
sphere gas were computed using the method of moments in
the famous DNMR paper [27], and we took them in the
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IReD formulation that completely avoids parabolic,
O(Kn?) terms [29] (see also Ref. [31] for a discussion
on the analytical structure of the hard-sphere collision
matrix). Here we considered several models, in increasing
order of complexity:

(i) The AW model, which recovers just the shear
viscosity 7.

(i) The first-order Shakhov model, labeled (1000),
recovering both # and the particle diffusivity .

(iii) The (1001) model, discussed in the context of
longitudinal waves, recovering 7, k, as well as the
diffusion-shear coupling coefficients ¢y, and £,y .

(iv) The (1012) model, recovering all transport coeffi-
cients except dyy and Ay,.

(v) The (2012) model, recovering all first- and second-
order transport coefficients of the hard-sphere
model.

In the above, we employed the (N, N,,s;,s,) models
introduced in Sec. III F. As explained in Eq. (116), such
models benefit from 2(N; + N, + s; + s,) independent
degrees of freedom, plus the overall relaxation time 7. For
simplicity, we took 7, to be related to the model’s shear
viscosity 7 through the standard RTA relation, 7z = 51/4P.
Then, the (1000) model has 2 parameters, used to fix # and
k; the (1001) model has 4 parameters, fixing #, k, £y, and
¢ v; the (1012) model has 8 parameters, fixing #, k, 7, Ty,
Cvps Crys Tur and Ay finally, the (2012) model has 10 free
parameters, fixing also Ayy and Ay,.

Our first conclusion was that the dynamics of both the
pressure P and the shear-stress tensor 7#* is dominated by
the shear viscosity 7 and is thus accurately recovered by all
considered models, including the AW model. Contrary to
expectations, the dynamics of the heat flux ¢* requires
more than just fixing the diffusion coefficient x. While
performing in principle better than the AW model, the first-
order (1000) Shakhov model is still in visible disagreement
with the BAMPS data. A notable exception is that of
“case 2” from Denicol et al. [38], where both P and n*¥
exhibit subleading fluctuations and the dynamics of ¢* is
dominated by «, such that the (1000) model is in excellent
agreement with the BAMPS data. In a more general setting,
cross-couplings are important and the (1001) model pro-
vides a significant improvement over the AW and (1000)
models by correctly capturing the ¢y, and £, cross-
coupling coefficients. The small discrepancies with respect
to the BAMPS data are almost entirely removed when
considering the (1012) and (2012) models.

We must remark that in this paper, we have focused
entirely on the linearized part of the collision term. For a
generic 2 — 2 scattering, the moments of the collision term
receive both a linear and a quadratic contribution [47].
Since our models already display very good agreement to
the BAMPS data, we can only conclude that for the
instances of the Riemann problem considered in this paper,
these missing Re™? terms make subleading contributions,

however it is not inconceivable that such terms may become
important in more general settings.

The setups presented here can be applied to more
complex (3 + 1)-dimensional problems, in particular
related to the study of heavy-ion collisions. While usually
in simulations a hydrodynamic stage is followed by an
afterburner which is based on kinetic theory, a Shakhov-
type model can cover both regimes, eliminating the
need for particlization. The Shakhov extension of the
RTA provides the means to determine realistic models
for, e.g., the shear and bulk viscosities, by employing
Bayesian analysis on numerical and experimental data, as
discussed in Ref. [52]. This should bring an important
improvement to the results reported in Ref. [52], where
pure hydrodynamics was used to obtain the numerical data,
since hydrodynamics is known to be inaccurate during
preequilibrum, when the quark-gluon plasma fluid is in a
far-from-equilibrium state [17].

The numerical code, raw data and scripts to generate the
plots shown in this paper are available on Code Ocean [43].
The code consists of two separate programs, one for the
Bjorken flow and the other for the Riemann problem,
extending the code in Ref. [26] (the original version for the
Bjorken flow code was introduced in Ref. [39]). We remark
that the evaluation of the modified Bessel functions K, (z)
and of the Bickley function Ki, (z), required for the Bjorken
flow problem, is performed using the algorithms designed
by Amos in Refs. [53-56], openly available through the
OpenSpecfun project [57].
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APPENDIX A: NUMERICAL SCHEME

In this section of the appendix, we discuss the method
employed to obtain numerical solutions of the Boltzmann
equation with the Shakhov-like collision model. The
scheme extends that introduced in Refs. [26,39] and
employs the so-called rapidity-based moments, summa-
rized in Sec. A 1. Sections A2 and A3 summarize the
strategy employed for the Bjorken flow and Riemann

056002-31



VICTOR E. AMBRUS and DAVID WAGNER

PHYS. REV. D 110, 056002 (2024)

problems, respectively. Section A4 summarizes the dis-
cretization scheme and numerical algorithm. A note on
code availability can be found at the end of Sec. VIL.

1. Boltzmann equation in 1+ 1-D Minkowski space
and 0+ 1-D Milne space

The applications considered in the validation sections
concern flows which are homogeneous with respect to
the transverse plane spanned by x,, in which case the
Boltzmann equation reads

E
Kofi+K0:fu ==—(f=fs) (A1)
R
We parametrize the momentum space as
k' cosh k* cos
(D)) () () v
k* sinhy k> singy

where m; = \/k3 +m® is the transverse mass, y =

tanh~! »* is the rapidity and ¢° = k?/k'. Dividing
Eq. (A1) by k', we arrive at
y(1 = fof
Oifk + v°0,fx = —¥ (fx = fsk)s  (A3)
R

where we assumed that the transverse components of the
four-velocity vanish, #*9, = y(d, + °0,). Equation (A3) is
appropriate to analyze the sound and shock wave propa-
gation problems considered in Secs. V and VL.

In the case of the Bjorken flow considered in Sec. IV,
invariance with respect to longitudinal boosts imposes the
velocity profile u*d, = v' (19, 4 z0,), where 7 = V1* — 22
is the Bjorken time. Introducing the space-time rapidity
n = tanh™!(z/1), such that

t = rcoshy, z = zsinhy, (A4)
Eq. (Al) becomes
of 10f 1
k+tanh(y n)— ak -—(fk—fsk).  (AS)
n TR

where the functional dependence of the distribution
function is fy = fy(r, X, n;m,, @, tanhy). Boost invari-
ance dictates that fj depends on n and y only through
their difference. It is therefore convenient to parametrize
the momentum space using (m, ¢y, v*) with v®=
tanh(y — ), such that Eq. (A5) finally reads [26,39]

i v(1=D)ofi 1
or T ot

(fk —fsk).  (AO)

where in the above, fy = fx(z;my, @y, v,). This para-
metrization can be related to that arising when the

curvilinear coordinates (z,7) are employed, when it is
convenient to introduce

d d
kKt = a:kt —l——TkZ = m, cosh(y — 1),
d 0
kn :_nkl+_nkz

0z (A7)

=L sinh(y - ).
T
such that v* = zk/k".

The macroscopic moments of the distribution function
are obtained after integration over the momentum space
using the integration measure d’k/k°, which reads
dk*dk?dk*/k' on Minkowski space and zdk*dkYdk"/k”
on Milne space. In both cases, when employing the
appropriate parametrization (m_, ¢y, v°), this integration
measure becomes

&k 2
/ / / fﬂk/ dmym,;. (A8)
1 1- 1)

In the case of the 0 + 1-D and 1 + 1-D flows considered
in this paper, the parametrization of the momentum space
using the rapidity-based degrees of freedom (m |, ¢y, v°)
allows the dimensionality of the momentum space to be
reduced from 3 degrees of freedom to a single one, namely
v*. Introducing the rapidity-based moments

20 dmlm”“
n Uz 2” / ¢k/ n+2 )/2 fk7 (A9)

it is possible to recast Eq. (A3) as

oF oF y(1 = pv?)
L - T J(F,-F A10
a[ v az TR ( n Vl)’ ( a)
while Eq. (A6) becomes
oF, 1 10[v*(1 — v?)F,]
-1 - )i|F,———m———
or + T [T+ (n )v ] T ov*
1
=——(F,-F%). (A10b)
TR

The functions F5 corresponding to the Shakhov distribu-
tion fg must be computed using Eq. (A9). A general
expression is cumbersome and uninsightful, such that
we defer the details of this computation to the following
subsections, where we will separately make use of the
particular symmetries of the 0+ 1-D Bjorken flow of
massive particles and the 1+ 1-D Riemann problem for
massless particles.

2. Strategy for Bjorken flow

Due to the symmetries of the 04 1-D Bjorken flow,
T* = diag(e, Py, Pr,772P;) has a diagonal form, while

056002-32



HIGH-ORDER SHAKHOV-LIKE EXTENSION ...

PHYS. REV. D 110, 056002 (2024)

w0, = 0,. The quantities ¢ = T™, P, = 7T and Py =
1(e—P,—T*,) can be obtained from the moments F,
using

1
™, = mz/ dv*F,
-1

() = [0 ()7
= v .
27m —1 v% 2

In the Bjorken flow setup, we consider only the case of a
gas in chemical equilibrium (a = 0), for which the vector
moments are not relevant.

The requirements of orthogonality to u*, tracelessness
and transverse-plane isotropy constrains the form of the
irreducible rank-2 tensors, written with respect to the
Bjorken coordinates (z, x,y,7), to

1 11
P = diag(O,——,—— )n,,

(Al1)

Ty (A12)

such that their dynamics can be described by the scalar
quantities r,, with my =3(P;, —P7). In terms of the
functions F,, the quantities z, can be written as

1 1
7, = g/ dv?[(312 = 1)F,,» + m*F,].  (A13)
-1

Similarly, the nonequilibrium contributions p, to the scalar
moments can be obtained via

1
p = / dvi(F, — FS9), (A14)

1

with the bulk viscous pressure given by Il = —’”TZ pPo =
(e=3P—-T+,).

We finally discuss the construction of the Shakhov
functions F3. In the case of the ideal gas considered in
this section, the Shakhov term fg, becomes

fsk = fox (1 + Sk), (A15)

with Sy given by Eq. (136). Using Eq. (142), Sy becomes

so=(m w0 ) (5 70) Ca-n)
k — S;—2 S:0 . .
=J2  Jo mi/(l—vg)
3v2—1 m?1 -2
X +_ )
2 2 m2l

where j, = J,5/[2(JoaJ22 — J3,)]. Specifically, we find

(A16)

F§:F;q+(ﬂs;—2 ”s;o)(J‘% _.]2)
=J2 Jo
302 -1/ F m? (Fl,
X 5 «q |+ 5 w || (A17)
Fn+2 Fn

where the functions F; introduced in Eq. (A9) evaluate to

a
T

LT2> (A18)
1 —v;

with ['(n,x) = [* ""'e~dt being the incomplete Gamma
function. The coefficients zg._, and g, characterizing the
Shakhov distribution can be calculated from the coeffi-
cients 7_, and 7z, obtained from f) using the following
matrix equation:

(”s;-z) (1= TRA(SZ;)—z,—z —TRA(SZ;)—z,o <7T—2>

2 2
_TR“A(S;()),—2 1 - TRA(S;(>),0 7o

7s:0

(A19)

with the matrix elements A(Szin given in Eq. (135). Taking

into account that 7z, can be expressed in terms of F, , and
F,, as shown in Eq. (A13), the above relation shows that
the Boltzmann equation for the rapidity-based moments,
Eq. (A10a), can be closed by tracking the evolution of F'_,,
F 0 and F 2.

3. Strategy for 1+ 1-D flows

We now move to the case of 1 + 1-D flows. Due to the
symmetries of a system with transverse-space homo-
geneity, the only nonvanishing components of 7# are its
diagonal ones, as well as T = T%. The components T
and T are as in Eq. (All), the trace cancels (7%, = 0),
while T is given by

1
T’Z:/ do*v*F,.
-1

(A20)

Due to isotropy in the transverse plane, the transverse
components satisfy 7°* = 7% = I (T" — T%%). The Landau
frame can be obtained by solving the eigenvalue equation
TH u* = eu*, i.e.

T TN 1 (]
(re ) () =)

This leads to the solution

(A21)

1
e=s [ -1+ Jamrep —arep], (a)
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while ° = T'% /(e + T%) [40]. The particle number density
n = u,N" = y(N' — f*N*) can be obtained using

()= Lol )

As in the case of the Bjorken flow, the vector and
tensor off-equilibrium moments py and p)” are each
characterized by a single number, V, and z,, which we
define as follows:

(A23)

pro, = V.0, +9.),

gy 0 0 5y

s 0 -1 0 o0 (a24)
‘1o o -1 o
g 0 0

Defining the macroscopic quantities Ny = (k*E}) and
T = (K'kYE}), we have

N!. L1 .
()= Lo (L )ormes

T 1

1
T —/ do*| v* |(u-v)'F, 0, (A25)
T= oA\

where v* = k*/k and u - v = y(1 — f*v?). Apart from the
components T = 18U(T! —T% = TV,) with i, j€{1,2}
being transverse indices, all other transverse components
Ni, T and T can be taken to vanish. The nonequilibrium
quantities V, and 7, can be obtained via

1
V=N = [ dve oy F o - ),
-1
1 1
T, =5 ARTY = / dvi(u-v)'F,
4 -1

2
< [jree-rp- 135 (A26)

We now discuss the moments FS of the Shakhov
distribution function. Considering the generic split

fsk = fox + 6f sk, we have
FS = F' + 6F8, (A27)

where F$! reduces to

Feq_ﬂ/“’ dmm'}*! exp _pmy(u-v)
Tdn? Jo (1 - 0?2)n22 V1-0?

InO
= S (A28)

with 1,y = ge®(n + 1)!/22%$"*2, as shown in Eq. (82).

Furthermore considering that  6fsk = foxfox L,
N P kK, E_SfHk ris,» We have
AN @E DI SR P8 V) 200

_Z ffl r;f (um)”"“ C=sp=n,r+ss’

(A29)

where F 5? was introduced in Eq. (59) and was evaluated
in Eq. (95) for the massless case. In order to arrive at

Eq. (A29), we inserted k' = m, /+/1 — v2, performed the
@ -integral and employed that in the massless limit

() _ (=D’ 5 2b=sp)-24r_ 9
22+ 1 27

x/ dax2(C=sH1=7 £ (00) Fo (x)HE) (x),
0

where x = pk° and we evaluated the integral in the rest
frame of the fluid. Specializing the above to the case when
1 <¢ <2 gives

S _ 4 _ E
Fn— n u 11)"+3 VSr 151 n,r+s;

r=—s

15 1 —v;
+ 4(u - ,U)n+4 |:72(ﬁz - vz)z - 21] :|

N,
§ : 7-(2)
X ﬂs;rj:2—s2—n,r+s2’

r=—=5,

(A30)

where we employed Eq. (A24) and used that k#*k, = 0. The
coefficients Vg, and g, corresponding to the Shakhov
distribution can be obtained from the coefficients V, and z,
corresponding to fy via

Ny
= Z (5rn - TRA(SI;B«n)Vm

n=-s;
Ny
= 3" (6~ AG, ), (A31)

of. Eq. (52).
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4. Space, time and momentum space discretization

The numerical algorithms employed in this paper are
identical to those described in the supplementary material
of Ref. [26] and fall in the category of the discrete velocity
methods (see Refs. [12,14,18,26,39,41] for previous devel-
opments of this code). Due to the symmetries of the flows
considered in this paper, the momentum space becomes
one dimensional. The remaining »* degree of freedom is
discretized according to the Gauss-Legendre prescription,
such that the continuous functions F, (v°) are replaced by

2(1-22%))
F,,;j:ij,,(vi), w;= 2l

TP A

where vf (1 £j<K) are the K roots of the Legendre
polynomial P(z) and w; are the associated weights. The
derivative with respect to v° appearing in Eq. (A6) is
replaced by the finite sum

e,

where the kernel K, is obtained by projecting the
left-hand side expressmn onto the space of Legendre
polynomials [12]:

(A33)

Z’CJJ'F"]’

j'=1

K-3
W/Zm 2(2m —I—m3;_ * P (V5)Pi2(v5)
Klmm—i—l) [ @m+1)P,(v)
_szl (v )[(2m— 1)(2m + 3)

+ L_IIP,,,_Q( uj,)] . (A34)

2m

The time stepping is performed using the third-order
total variation diminishing Runge-Kutta algorithm of
Refs. [58,59]. Considering the equation 9d,f = L[, f], the
scheme advances f, = f(¢,) from time ¢, to f, =
f(t,,,)attime 1, = 1, + 6t, via two intermediate stages:

1 2 o) 2 1 )
- = ~Jn . nL n ~UVlys)n 3
S 3f,1+3f +35t [t —|—25t f
@ _3 Loy 1 (1)
n ==Jn —fn 75tnL t, 5[,1, nls
£ = L g I oLl + 5ty £

P = fut St,Lt,, f]. (A35)

In the case of Bjorken flow, the time step is taken
adaptively, 6z, = min(1073z,, 75/2), while in the case of
the longitudinal waves and Riemann problems, we employ
equal time steps.

Finally, the spatial advection for the 1 4+ 1-D problems is
implemented using a flux-based scheme. The domain of

length L is discretized using S equal intervals of size
6z = L/S. The spatial nodes are taken as the centers of
these cells, having coordinates z, = (s —3)6z—5 (1 <s < ).
The spatial derivative at point z is calculated using

oF, Foop-Foip
=— 1= A36
( 0z > 0z (A36)
where the flux Fy ,, at the interface between cells s
and s — 1 is computed using the upwind-biased WENO-5
(fifth-order weighted essentially nonoscillatory) scheme of
Refs. [51,60].

APPENDIX B: SHAKHOV MATRICES FOR
ULTRARELATIVISTIC HARD SPHERES

In this appendix, we illustrate the procedure for the
implementation of the (1012) and (2012) high-order
Shakhov matrices, tuned to recover the transport coeffi-
cients of a classical gas of hard-sphere particles, interacting
via the constant cross section ¢, shown on the first lines
of Tables I and II. In Secs. B1 and B2, we focus on
recovering the transport coefficients obtained in the IReD
approach [29,31], summarized in Table I. Sections B3
and B 4 present the collision matrices recovering the values
of the transport coefficients calculated using the standard
DNMR approach [27,31].

1. IReD (Nl,Nz,Sl,S2>=<1012) model

In this truncation, the basis is shifted downwards as far as
possible in the ultrarelativistic case (s; = 1 and s, = 2).
The interesting submatrices and their inverses for £ = 1
and £ = 2 are given by

;_> ’ (B1)
7s:0-1  Ts:00
and
2 2 2
AL AL AL
@ 2 2 2
AS rm A( )—1 2 A(S;>—1,—1 A<S )—1 o |
2 2 )
A(s ()) -2 Aé;()),—l Ago0
2 2 2
T(s;)—z,—z T(s;)—z,—1 T§;>—2,0
@ 2 2 2
TSirn = T(s;)_1,_2 T(S;)—l,—l Té;>—1,0 ’ (B2)
2 2 1
T<s;()),—2 Té;()),—1 T<S;()),0
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respectively. In the above and in what follows, we employed
bold font to highlight the (0,0) entry in each matrix. The first-
order transport coefficients read in this case

Pp
Ko = 12(50 b+ S())O)

P
=15 <Tso P+ 31, so 1h+ 127(52)0) (B3)
The relaxation times are given by
1 1 1
vy = 750 1CL + 7500
2 2 2 2 2
T, = T(S;())’_ZC_Z) + r(s;g‘_lc_f + T(S;())’O, (B4)

while the second-order transport coefficients for the particle
diffusion read

1 1
Oyy = Ty, Ayy = 5 (C<—11)T(s;<)),—1 + 37(512) 0)’
2
| 2 n (P 2
re=va = |1 (F5-0%) + o (§-¢2) |
1 I 2 ) A2
/IVIZ = Z (2Té,()) —IC—Z) + é;(>),0C—1)) (BS)

Lastly, the second-order transport coefficients for the shear-
stress tensor are given by

4 1 1
5,1.” = ng ﬂﬂV E (S C( 1>’
21,0 ¢ 2
ur = 2 [CBeL) #3638, + 528,
1 2
sz:ZTnVZE(C Vs0o2 + Ts0-1)- (B6)

Let us briefly discuss how a matching procedure may

look in this case. Firstly, we may fix T(Sl;g’o and 7(52;3’0 via K

and 7, respectively. Then, we fix rél;g’_l and r(sz;g‘_l via 7y

and 7,. The last remaining coefficient in the zeroth row of
T(SZ), i.e., 1(52;())’_2, is fixed by means of £y, after which C(_zl) is
expressed via 7,,. Having used all nonvanishing second-
order coefficients of the shear-stress equation, we turn to

the diffusion current and fix C<_22) through Zy,. By now we

have left only C(_ll) as a degree of freedom, but three free
coefficients, namely Ay,, 4yy and A,y,. Thus, we have to

choose one of these coefficients to fix C<_11) and compare
the results for the other two with the reference values
from Ref. [31], where they have been computed to high
precision recently.

Putting in the converged values from Ref. [31] (consid-
ering the “IReD”values, which are based on the approach
presented in Ref. [29]) and fixing 4,y,, we follow the
procedure outlined above numerically to obtain the values

(1) (2)

of g’ and 7. Note that, since only the values of C 3, C(_z)
2) (2)

and C_1 are fixed, we may set Tq 9 | =Tg 00 =

2 2 1 .
T(S;)_l__z = T(S;)_LO = T<s;)—1,o = 0. Furthermore, since there

are two solutions for the matrices, we may classify
them by the agreement between the (unfixed) values for
Ayv, Ay, and the reference values Ayy = 1.8725/(Ppo),
Ay, = 0.14435/(Po) [31]. The two solutions yield

A =0.16508/(Po),
A =0.13114/(Po),

AN, =2.3185/(PBo),

A0 = 1.5879/(Ppo), (B7)

where the second solution fits slightly better. Choosing this
solution, we obtain

" 1.5768 0
‘L'S :ﬂmfp
—1.0208/8 2.9279
1.1775 0 0
@ = Ay 0 1.4092 o |. s
4.1056/8> —5.7524/p 2.6805

where Ay, = 1/Ppo and we have represented in bold font
the (0,0) component of each matrix. The actual matrices
needed for the Shakhov term are then

0 L (063419 0
S Tty <0.22111ﬁ‘1 0.34155)
0.84927 0 0
a0 - L 0 0.70961 0
™\ Z1.3008672 1522967 0.37307

(B9)

2. IReD (Ny,N,,sq,5,)=(2012) model

We now consider the truncation where the basis is
shifted downwards as far as possible and an additional
vector moment is included, i.e., the submatrices are
given by

A
T(sl;)—L 1 T<sl;)—1 0 T<SI;)—1 2

= | 0o oo oo | (B10)
T(sl% -1 T(s]% 0 T(slgz

056002-36



HIGH-ORDER SHAKHOV-LIKE EXTENSION ...

PHYS. REV. D 110, 056002 (2024)

and

2 2 2
'A<S;)—2,—2 Aé;)—z,—l 'Aé;>—2,0

2 _ 2 2 2
‘As;m - ‘A<S;)—1, 2 “Aé;)—l,—l A(S,> 1,0 |

(B11)

The first-order transport coefficients are given by

Pp _
Ko = (ﬂ 75.0,— 1+T(S())0_12ﬁ T 02)

ﬂ _
Mo = Tg (Beboo + 37601 + 1267'80,).  (B12)
while the relaxation times read
1 1 1 1) A1
7y = 750, 1 C 4 7600 + 750G,
2 2 2 2 2
T = T(s,()),—zc(—z) T<s;()),—1€(-1) + T<s;()),0- (B13)

The remaining second-order transport coefficients for the
diffusion current are

L/,a
5VV:TV,/1VV:§(C(—1> (S()) 1+3§ +762 (831)’

ﬂ2
fvﬂ:‘fvﬂ:[f(sl -\~ C<2)

+Tsoo(g Cz < <12)>}

1 | 2 | 2
o= (8 - ).

; (B14)

and the second-order coefficients for the shear-stress tensor
read

4 1
5717[ :g‘tm/{nv 10 (S()) C( l)’
2 2) (2 2) (2 2
ur = 2 (€62, + 3055, 565,
1 2
Cav =1 Tav =3 (C(_lr)f(sz;()),—z + ng;()x—l)' (B15)

Note that we gain two additional parameters compared to
the last section, such that we can fix all free quantities to
the hydrodynamic second order transport coefficients.

While ¢ 1,Cz .c? | and c? 5 represent degrees of freedom

of the model, the coefficient ct? " = n1/no corresponds to a

transport coefficient that lies outside the basis. Since our
tensor basis is shifted, we can use Eq. (110) to replace

— 24 @) 36 @) 12
:_C_ __C_ +_5
=_Z=_ A

(B16)

where we employed F B0=24/p°, F :—36/ﬂ2,

and .7-' 3, =12/p.
The set of solutions for the inverse matrices reads in this
case

1.5941 0 0
o) =g, | —0.297435 1.6789 —0.04379842 |,
0 0 2.3713
1.2077 0 0
o) =ty 0 1.4174 o |, (B17)
4.0612/8> —5.7524/p 2.6842
whereas the actual matrices are given by
062732 0 0
Agl):% 0.11113/4 0.59563 0.0110124° |,
m 0 0 042171
0.82802 0 0
I 0. 070553 0 (B18)
Ay

—1.2528/4% 1.5120/p 0.37256

In this case, only one viable solution with real entries exists.

3. DNMR (Nl,Nz,Sl,Sz) =(1012) model

Taking exactly the same steps as in Sec. B 1, we find
two solutions which yield for the unfixed parameters Ay,
and Ay,

A =0.16811/(Ps).
A = 0.11078/(Po),

AN, = 29200/ (Ppo),

A0 = 1.9805/(Ppo), (B19)

which we compare to the true values of the DNMR theory:

Ayy = 2.3688/(Ppo) and Ay, = 0.13300/(Po). Since the
second solution fits better, we obtain the Shakhov matrices as

1 0.84344 0

Amfp \0.404585~1 0.27285
X 4.6173 0 0
AP = — 0 1.1968 0 (B20)
/lmfp

—11.978472 3.293357! 0.33340
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4. DNMR (Nl,Nz,sl,Sz) = (2012) model

In order to derive the (2012) model that recovers all of
the DNMR transport coefficients, we follow the same steps
as in Sec. B 2. In contrast to the IReD case, in the DNMR
one we find two real solutions, which are given by

0.86786 0 0
Ag‘“:% 0.26578/f 0.46905 0.00449854 |,
mip 0 0 0.26889
6.0275 0 0
A1 0. 12396 0 (B21)
Aty

~16.191/4* 3.4324/p 0.33550

and
| 0.66178 0 0
Aé‘””:ﬁ— 0.44072/p 0.13535 —0.00202834> |,
mip 0 0 0.32059
| 1.4065 0 0
A@”:l_ 0. 095234 0 |. (B22)
™\ _2.7355/42 2.5039/8 0.31856
respectively.
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