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Motivated by the accumulated experimental results on three-body charmed B decays with resonance
contributions in BABAR, LHCb, and Belle (II), we systematically analyze BðsÞ → DðsÞðV →ÞP1P2 decays
with V representing a vector resonance (ρ; K�;ω, or ϕ) and P1;2 as a light pseudoscalar meson (pion or
kaon). The intermediate subprocesses BðsÞ → DðsÞV are calculated with the factorization-assisted
topological-amplitude (FAT) approach and the intermediate resonant states V described by the relativistic
Breit-Wigner distribution successively decay to P1P2 via strong interaction. Taking all lowest resonance
states (ρ; K�;ω;ϕ) into account, we calculate the branching fractions of these decay modes as well as the
Breit-Wigner-tail effects for BðsÞ → DðsÞðρ;ω →ÞKK. Our results agree with the data by BABAR, LHCb,
and Belle (II). Among the predictions that are still not observed, there are some branching ratios of order
10−6–10−4 which are hopeful to be measured by LHCb and Belle II. Our approach and the perturbative
QCD approach (PQCD) adopt the compatible theme to deal with the resonance contributions. What is
more, our data for the intermediate two-body charmed B-meson decays in FAT approach are more precise.
As a result, our results for branching fractions have smaller uncertainties, especially for color-suppressed
emission diagram dominated modes.
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I. INTRODUCTION

Three-body nonleptonic B meson decays are not only
important for the study of common topics of nonleptonic B
meson decays, such as testing the standard model (SM), the
studying the mechanism ofCP violation and the emergence
of quantum chromodynamics, but also provide oppor-
tunities for the analysis on the hadron spectroscopy.
Specifically, three-body B meson decays have nontrivial
kinematics and phase space distributions, which are usually
described in terms of three two-body invariant mass
squared combinations and two of them constitute two axes
to form a Dalitz plot. In the edges of the Dalitz plot, the
invariant mass squared combinations of two final-state
particles will generally peak as resonances, which indicates
that intermediate resonances in three-body Bmeson decays
show up, and we are able to study the properties of these
resonances through three-body B meson decays.

The Dalitz plot technique has proven to be a powerful
tool to analyze the hadron spectroscopy and is widely
adopted by experiments. The information on various
resonance substructures including the mass, spin-parity
quantum numbers, etc. have been collected by BABAR,
Belle (II), and LHCb [1–8]. Simultaneously, usually under
the framework of isobar model [9], these collaborations
have also measured fit fractions of each resonance and
nonresonance components. In the isobar model, the total
decay amplitude can be expressed as a coherent sum of
amplitudes of different resonant and nonresonant inter-
mediate processes, where the relativistic Breit-Wigner
(RBW) model usually describe resonant dynamics and
exponential distribution for nonresonant terms. It is a very
good approximation to adopt the RBW function for narrow
width resonances which can be well separated from any
other resonant or nonresonant components in the same
partial wave, so that the three-body decays with narrow
intermediate states, such as ρ; K�;ω;ϕ, have been precisely
measured by experiments [2–7,10–12].
On the theoretical side, analysis on the nonresonant

contributions of three-body B meson decays are in an early
stage of development. Approaches or models such as the
heavy meson chiral perturbation theory [13–15] and a
model combining the heavy quark effective theory and
chiral Lagrangian [16] have been applied for calculating the
nonresonant fraction of three-body charmless B meson
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decays, such as B → KKK, B → Kππ which are domi-
nated by nonresonant contribution [17]. More theoretical
interest is concentrated on the resonant component of three-
body B decays, where two of the three final particles are
produced from a resonance and recoil against the third
meson called a “bachelor” meson. This type of three-body
decay is also called quasi-two-body decay. Because of the
large energy release in B meson decays, the two meson
pair moves fast antiparallelly to the bachelor meson in the B
meson rest frame. Therefore, the interactions between
the meson pair and the bachelor particle are power sup-
pressed naturally which is similar to the statement of
“color transparency” in two-body B meson decays. Then
approaches based on the factorization hypothesis have been
proposed for calculating the quasi-two-body decays, such
as the QCD factorization (QCDF) [13–15,18], the PQCD
approach [19–35] and factorization-assisted topological-
amplitude (FAT) approach [36,37].
In this work, we focus on three-body charmed B decays

BðsÞ → DðsÞP1P2, where P1;2 represents a pion or kaon.
Different from charmless decays, intermediate resonances
in BðsÞ → DðsÞP1P2 decays are expected to appear in the
m2ðDP1Þ and m2ðP1P2Þ combinations, thus more reso-
nances, such as charmed statesD� and light vector or scalar
resonances, can be researched simultaneously in one Dalitz
plot. In addition, they provide opportunities for studies of
CP violation. In particular, the Dalitz plot analysis of
B0 → DKþπ− can be used as a channel to measure the
unitarity triangle angle γ [38,39] and B0 → D̄0πþπ− is
sensitive to the β angle [40,41]. Therefore, much attention
has been already paid to BðsÞ → DðsÞP1P2 decays in
experiments and theoretical calculations. LHCb
Collaborations have investigated structures of ground
and excited states of D�, K� with their corresponding fit
fractions through BðsÞ → DðsÞKπ [4,10], and D�, ρ in
BðsÞ → DðsÞππ by BABAR and Belle [1,3]. Recently, the
virtual contribution from ρ in BðsÞ → DðsÞKK has been
measured by Belle II [8]. Motivated by the experimental
progress on BðsÞ → DðsÞP1P2 decays, theoretical calcula-
tion on the branching fractions of various types of charmed
quasi-two-body decays, BðsÞ → DðsÞππ, BðsÞ → DðsÞKπ,
and BðsÞ → DðsÞKK with intermediate resonances D�,
ρ; K�;ϕ have been completed in a series of works with
the PQCD approach [42–47]. In FAT approach, we have
done a systematic research on BðsÞ → DðsÞP1P2 with
ground charmed mesons D� as the intermediate states
and P1, P2 representing π or K [36]. The results of
B → D�P2 → DP1P2 in FAT approach are in better agree-
ment with experimental data and more precise than the
PQCD approach’s predictions.
FAT approach is firstly proposed to resolve the problem

about nonfactorizable contributions in two-body D and B
meson decays [36,48–54] and then has been successfully
generalized to quasi-two-body B meson decays [36,37].

It is based on the framework of conventional topological
diagram approach, which is used to classify the decay
amplitudes by different electroweak Feynman diagrams,
but keeping SUð3Þ breaking effects. Only a few unknown
nonfactorization parameters need to be fitted globally with
all experimental data. Therefore, FAT approach is able to
provide the most precise decay amplitudes of (inter-
mediate) two-body B meson decays especially with
charmed meson final states. Then in a quasi-two-body B
meson decay the intermediate resonances successively
decay to final meson pairs via strong interaction, which
are described in terms of the usual RBW formalism as what
is done in experiments. Actually, in the PQCD approach the
light cone distribution amplitude (LCDA) of a meson pair
originating from a P-wave resonance can be expressed as
timelike form factors and then is also parametrized by the
RBW distribution. So their framework of dealing with the
resonances is compatible with that in FAT. More details
about this can be found in [47]. Therefore, the main
difference between the FAT and the PQCD approach in
quasi-two-body decays is how to calculate the intermediate
two-body weak decays. It is well known that large non-
perturbative contributions and power corrections expanded
in mc=mb of color suppressed and W-exchange diagrams
in charmed B decays have not been able to be calculated
in PQCD approach [55], which results in large uncertainties
of PQCD approach’s predictions for B → DP1P2 with
resonances D�, ρ; K�;ϕ. In this paper we will apply
FAT approach to study the BðsÞ → DðsÞP1P2 decay with
the ground state light vector intermediate resonances
ρ; K�;ϕ;ω, which are generally the largest components
and their fit fractions have been well measured separately
from any other vector resonances in LHCb and
Belle II [1,4–8].
This paper is organized as follows. In Sec. II, the

theoretical framework is introduced. The numerical results
and discussions about BðsÞ → DðsÞðρ →Þππ, BðsÞ →
DðsÞðK� →ÞKπ, BðsÞ → DðsÞðϕ →ÞKK̄, and BðsÞ →
DðsÞðρ;ω →ÞKK̄ are collected in Sec. III. Finally, a
summary is given in Sec. IV.

II. FACTORIZATION OF AMPLITUDES FOR
TOPOLOGICAL DIAGRAMS

The charmed quasi-two-body decay BðsÞ → DðsÞðV →Þ
P1P2 happens through two subprocesses, where the DðsÞ
meson represents DðsÞ or its antiparticle D̄ðsÞ. BðsÞ meson
decays to an intermediate resonant state DðsÞV firstly, and
subsequently the unstable resonance decays to a pair of
light pseudoscalar, V → P1P2. The first subprocess
at quark level is induced by weak transitions b → cqū
ðq ¼ d; sÞ and b → uqc̄ðq ¼ d; sÞ for DðsÞ and D̄ðsÞ final
states, respectively. The secondary one proceeds directly
by strong interaction. According to the topological
structures of b → cqū, the diagrams contributing to
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B̄ðsÞ → DðsÞðV →ÞP1P2 can be classified into three
types as listed in Fig. 1, (a) color-favored emission dia-
gram T, (b) color-suppressed emission diagram C, and
(c) W-exchange diagram E. Similarly, besides T, C, E
diagrams, the topologies of B̄ðsÞ → D̄ðsÞðV →ÞP1P2

induced by b → uqc̄ transitions include an additional
W-annihilation diagram A as shown in Fig. 2.
The amplitudes of the first subprocess B̄ðsÞ → DðsÞV can

be referred to the ones of two-body charmed B decays in
FAT approach [50]. Factorization has been proven in T
topology at high precision by the QCD factorization, the
perturbative QCD based on kT factorization, together with
the soft-collinear effective theory [55–57]. However, large
nonfactorizable contributions have been found in C and E.
As done in [50], we parametrize matrix elements of the
nonfactorizable diagrams C and E in FATapproach. In case
a small strong phase associated with T amplitude arise from
nonfactorizable contribution such as final-state rescattering
effects, it would have been included in the relative strong
phase between C or E amplitude. Therefore, to reduce one
free parameters, we will just apply the well proven
factorization formula for T, together with parametrized
C and E amplitudes, explicitly as follows,

TDV ¼
ffiffiffi
2

p
GFVcbV�

uqa1ðμÞfVmVFB→D
1 ðm2

VÞðε�V · pBÞ;
CDV ¼

ffiffiffi
2

p
GFVcbV�

uqfDðsÞmVAB→V
0 ðm2

DÞðε�V · pBÞχCeiϕC
;

EDV ¼
ffiffiffi
2

p
GFVcbV�

uqmVfB
fDðsÞfV
fDfπ

ðε�V · pBÞχEeiϕE
: ð1Þ

So far there is not enough experimental data to do a global
fit for B̄ðsÞ → D̄ðsÞV decays to extract the unknown

nonfactorizable parameters in the C, E amplitudes.
Therefore, the same nonfactorizable parameters
χC;ϕC; χE;ϕE as those for B̄ðsÞ → DðsÞV are adopted in
a good approximation, just as what we do in Ref. [50]. The
topological diagram A for B̄ðsÞ → D̄ðsÞV is dominated by
large factorizable contribution and can be calculated in the
pole model [50], which is given as

AD̄V ¼ −
ffiffiffi
2

p
GFVubV�

cqa1ðμÞfB
fDðsÞgDDVm2

D

m2
B −m2

D
ðε�V · pBÞ:

ð2Þ

For simplification of notations, we omit the subscript (s) in
DðsÞ in Eqs. (1) and (2) and the following equations except in
fDðsÞ . a1ðμÞ is the effective Wilson coefficient for the

factorizable topologies T and A. χCðEÞ and ϕCðEÞ represent
the magnitude and associated phase of CðEÞ diagram
globally fitted with the experimental data. fV , fDðsÞ , and
fB are the decay constants of the corresponding vector,DðsÞ
and B mesons. FB→D

1 and AB→V
0 denote the vector form

factors of BðsÞ → D and BðsÞ → V transitions. In Eq. (2),
gDDV is the effective strong coupling constant and its
value can be obtained from the vector meson dominance
model [58], gDDV ¼ 2.52.
Next we will illustrate the calculation of the second

subprocess, e.g., intermediate resonances decay to final
states via strong interaction, V → P1P2. As what is done
in experiments [12,59,60], we also adopt the RBW
distribution for ρ,K�,ω, and ϕ resonances, which is
expressed as [15],

(a) (b) (c)

FIG. 1. Topological diagrams of B̄ðsÞ → DðsÞðV →ÞP1P2 under the framework of quasi-two-body decay with the wave line
representing aW boson: (a) the color-favored emission diagram T, (b) the color-suppressed emission diagram C, and (c) the W-exchange
diagram E.

(a) (b) (c) (d)

FIG. 2. Topological diagrams of B̄ðsÞ → D̄ðsÞðV →ÞP1P2 under the framework of quasi-two-body decay with the wave line
representing a W boson: (a) the color-favored emission diagram T, (b) the color-suppressed emission diagram C, (c) the W-exchange
diagram E, and (d) W-annihilation diagram A.
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LRBWðsÞ ¼ 1

s −m2
V þ imVΓVðsÞ

; ð3Þ

where s represents the invariant mass square of meson pair
with 4-momenta p1, p2, s ¼ ðp1 þ p2Þ2. ΓVðsÞ represents
s-dependent width of vector resonances and is defined as

ΓVðsÞ ¼ Γ0

�
q
q0

�
3
�
mVffiffiffi
s

p
�
X2ðqrBWÞ; ð4Þ

where XðqrBWÞ is the Blatt-Weisskopf barrier factor,

XðqrBWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðq0rBWÞ2�=½1þ ðqrBWÞ2

q
�: ð5Þ

In the above two equations, q ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðmP1

þmP2
Þ2�½s − ðmP1

−mP2
Þ2�=s

q
is momentum

magnitude of the final state P1 or P2 in the rest frame of
resonance V, and q0 is just value of q when intermediate
resonance is on-shell, s ¼ m2

V . While for the case that the
pole mass locates outside the kinematics region, i.e.,
mV < mP1

þmP2
, mV needs to be replaced by an effective

massmeff
V so that

ffiffiffi
s

p ¼ meff
V forq0. The effectivemassmeff

V is
given by the ad hoc formula [61,62],

meff
V ðmVÞ ¼ mmin þ ðmmax −mminÞ

×

�
1þ tanh

�
mV − mminþmmax

2

mmax −mmin

��
; ð6Þ

where mmax (mmin) is the upper (lower) boundary of the
kinematics region. Another parameter together with q in
XðqrBWÞ is the barrier radius with its value rBW ¼
4.0 ðGeVÞ−1 for all resonances [12]. Γ0 in Eq. (4) represents
the full widths of the resonant states and their values are

taken from Particle Data Group (PDG) [63] and listed in
Table I together with their masses mV .
After getting the distribution function of the vector

resonances, we proceed to consider matrix element
hP2ðp2ÞP3ðp3ÞjVðpVÞi. It can be parametrized as a strong
coupling constant gVP1P2

which describes the strong inter-
actions of the three mesons at hadron level. Inversely, the
strong coupling constant gVP1P2

can be extracted from the
partial decay widths ΓV→P1P2

by

ΓV→P1P2
¼ 2

3

p3
c

4πm2
V
g2VP1P2

; ð7Þ

where pc is the magnitude of one pseudoscalar meson’s
momentum in the rest frame of the mother vector meson.
The numerical results of gρ→πþπ− , gK�→Kþπ− , and gϕ→KþK−

have already been directly extracted from experimental
data [15],

gρ→πþπ− ¼ 6.0; gK�→Kþπ− ¼ 4.59; gϕ→KþK− ¼−4.54:

ð8Þ

Those strong coupling constants, which cannot be extracted
directly with experimental data, can be related to the ones in
Eq. (8) by employing the quark model [64],

gρ→KþK−∶ gω→KþK−∶gϕ→KþK− ¼1∶1∶−
ffiffiffi
2

p
;

gρ0πþπ− ¼gρþπ0πþ ; gρ0π0π0 ¼gωπþπ− ¼0;

gρ0KþK− ¼−gρ0K0K̄0 ¼gωKþK− ¼gωK0K̄0 ; gϕKþK− ¼gϕK0K̄0 :

Finally, combining the two subprocesses together, one
can get the decay amplitudes of the topological diagrams
for B → DðV →ÞP1P2 shown in Figs. 1 and 2, which are
given as

T ¼ hP1ðp1ÞP2ðp2Þjðq̄uÞV−Aj0ihDðpDÞjðc̄bÞV−AjBðpBÞi

¼ hP1ðp1ÞP2ðp2ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞjðq̄uÞV−Aj0ihDðpDÞjðc̄bÞV−AjBðpBÞi

TABLE I. Masses mV and full widths Γ0 of vector resonant states [63].

Resonance Line shape parameters Resonance Line shape parameters

ρð770Þ mV ¼ 775.26� 0.23 MeV ωð782Þ mV ¼ 782.66� 0.13 MeV

Γ0 ¼ 149.1� 0.8 MeV Γ0 ¼ 8.68� 0.13 MeV

K�ð892Þþ mV ¼ 891.67� 0.26 MeV K�ð892Þ0 mV ¼ 895.55� 0.20 MeV

Γ0 ¼ 51.4� 0.8 MeV Γ0 ¼ 47.3� 0.5 MeV

ϕð1020Þ mV ¼ 1019.46� 0.02 MeV
Γ0 ¼ 4.25� 0.01 MeV
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¼ pD · ðp1 − p2Þ
ffiffiffi
2

p
GFVcbV�

uqa1fVmVFB→D
1 ðsÞ gVP1P2

s −m2
V þ imVΓVðsÞ

;

C ¼ hP1ðp1ÞP2ðp2Þjðq̄bÞV−AjBðpBÞihDðpDÞjðc̄uÞV−Aj0i

¼ hP1ðp1ÞP2ðp2ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞjðq̄bÞV−AjBðpBÞihDðpDÞjðc̄uÞV−Aj0i

¼ pD · ðp1 − p2Þ
ffiffiffi
2

p
GFVcbV�

uqfDmVAB→V
0 ðm2

DÞχCeϕC gVP1P2

s −m2
V þ imVΓVðsÞ

;

E ¼ hDðpDÞP1ðp1ÞP2ðp2ÞjHeff jBðpBÞi

¼ hP1ðp1ÞP2ðp2ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hDðpDÞVðpVÞjHeff jBðpBÞi

¼ pD · ðp1 − p2Þ
ffiffiffi
2

p
GFVcbV�

uqmVfB
fVfDðsÞ

fπfD
χEeiϕ

E gVP1P2

s −m2
V þ imVΓVðsÞ

; ð9Þ

for b → c transition, and

T ¼ hP1ðp1ÞP2ðp2ÞjðūbÞV−AjBðpBÞihD̄ðpD̄Þjðc̄qÞV−Aj0i

¼ hP1ðp1ÞP2ðp2ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞjðūbÞV−AjBðpBÞihD̄ðpD̄Þjðc̄uÞV−Aj0i

¼ pD̄ · ðp1 − p2Þ
ffiffiffi
2

p
GFVubV�

cqa1fDmVAB→V
0 ðm2

DÞ
gVP1P2

s −m2
V þ imVΓVðsÞ

;

C ¼ hP1ðp1ÞP2ðp2ÞjðūbÞV−AjBðpBÞihD̄ðpD̄Þjðc̄qÞV−Aj0i

¼ hP1ðp1ÞP2ðp2ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞjðq̄bÞV−AjBðpBÞihD̄ðpD̄Þjðc̄uÞV−Aj0i

¼ pD̄ · ðp1 − p2Þ
ffiffiffi
2

p
GFVubV�

cqfDmVAB→V
0 ðm2

DÞχCeiϕC gVP1P2

s −m2
V þ imVΓVðsÞ

;

E ¼ hD̄ðpD̄ÞP1ðp1ÞP2ðp2ÞjHeff jBðpBÞi

¼ hP1ðp1ÞP2ðp2ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hD̄ðpD̄ÞVðpVÞjHeff jBðpBÞi

¼ pD̄ · ðp1 − p2Þ
ffiffiffi
2

p
GFVubV�

cqmVfB
fVfDðsÞ

fπfD
χEeiϕ

E gVP1P2

s −m2
V þ imVΓVðsÞ

;

A ¼ hD̄ðpD̄ÞP1ðp1ÞP2ðp2ÞjHeff jBðpBÞi

¼ hP1ðp1ÞP2ðp2ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hD̄ðpD̄ÞVðpVÞjHeff jBðpBÞi

¼ pD̄ · ðp1 − p2Þ
ffiffiffi
2

p
GFVubV�

cqa1fB
fDgDDVm2

D

m2
B −m2

D

gVP1P2

s −m2
V þ imVΓVðsÞ

; ð10Þ

for b → u transition, respectively. In the above equations
q ¼ d, s and pV ¼ p1 þ p2 ¼

ffiffiffi
s

p
. The decay amplitudes

of B → DP1P2 in Eqs. (9) and (10) can also be formally
written as

hDðpDÞP1ðp1ÞP2ðp2ÞjHeff jBðpBÞi ¼ pD · ðp1 − p2ÞAðsÞ;
ð11Þ

where AðsÞ represents the sub-amplitudes in Eqs. (9) and
(10) with the factor pD · ðp1 − p2Þ taken out. The differ-
ential width of B → DP1P2 is

dΓ ¼ ds
1

ð2πÞ3
ðjpDkp1jÞ3

6m3
B

jAðsÞj2; ð12Þ
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where jpDj and jp1j represent the magnitudes of the
momentum pD and p1, respectively. In the rest frame of
the vector V resonance, their expressions are

jpDj¼
1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B−m2
DÞ2−2ðm2

Bþm2
DÞsþs2

q

jp1j¼
1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s−ðmP1

þmP2
Þ2�½s−ðmP1

−mP2
Þ2�

q
; ð13Þ

where jp1j ¼ q.

III. NUMERICAL RESULTS AND DISCUSSION

The input parameters are classified into (a) electroweak
coefficients: Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements andWilson coefficients; (b) nonperturbative QCD
parameters: decay constants, transition form factors and
nonfactorizable parameters χCðEÞ, ϕCðEÞ; and (c) Hadronic
parameters: mV , Γ0, and gVP1P2

involved in strong inter-
action decays of vector mesons, which have been listed in
Table I given in previous section. The Wolfenstein para-
metrization of the CKM matrix is utilized with the
Wolfenstein parameters as [63]

λ ¼ 0.22650� 0.00048; A ¼ 0.790þ0.017
−0.012 ;

ρ̄ ¼ 0.141þ0.016
−0.017 ; η̄ ¼ 0.357� 0.01:

The decay constants of π, K, D and B are from the PDG by
global fit with experimental data [63]. The decay constants
of other mesons have not been measured by experiments
directly but calculated in several theoretical approaches,
such as the quark model [65], the covariant light front
approach [66], the light-cone sum rules [67,68], the QCD
sum rules [69–75], and the lattice QCD [76–83] etc. Since
the theoretical results are different in these approaches, we

choose the numerical values shown in Table II and keep a
5% uncertainty of them.
Due to absence of enough experimental data for the

transition form factors of B meson decays, they have been
calculated in the theoretical approaches, such as constitute
quark model and light cone quark model [65,84–87],
covariant light front approach(LFQM) [66,88,89], light-
cone sum rules [90–111], PQCD [112–121], SCET [122],
and lattice QCD [123–126] etc. Based on all above results,
we list the maximum-recoil form factors in Table III,
with 10% uncertainties kept in the calculation. The square
of transfer momentum Q2-dependence of form factors can
be parametrized in different ways, such as the z-series
parametrization applied recently for B → π; K in [122],

B → ρ;ω; K� in [127] and BðsÞ → Dð�Þ
ðsÞ [128] and also pole

model parametrization widely used for BðsÞ → P, BðsÞ → V

and BðsÞ → Dð�Þ
ðsÞ . When dealing with (quasi-)two-body B

decays, we indeed concentrate on form factor at the fixed
kinematic point, so that the difference of these types of
parametrization would almost have no effect. Considering
the completeness of all form factors in the same para-
metrization for charmed B decays, we will apply the pole
model parametrization as,

FiðQ2Þ ¼ Fið0Þ
1 − α1

Q2

m2
pole

þ α2
Q4

m4
pole

; ð14Þ

where Fi represents F0;1 or A0, and mpole is the mass of the
corresponding pole state, such as B� for F0;1 and B for A0.
α1;2 are the model parameters also shown in Table III. The
effective Wilson coefficients a1 is 1.036 calculated at scale
μ ¼ mb=2. We update the nonfactorizable parameters χCðEÞ

and ϕCðEÞ involved in B → DP;Dð�ÞP;DV by fitting 32
updated experimental data [63]. The best-fitted values are

TABLE II. The decay constants of light pseudoscalar mesons and vector mesons (in units of MeV).

fπ fK fD fDs
fB fBs

fρ fK� fω fϕ

130.2� 1.7 155.6� 0.4 211.9� 1.1 258� 12.5 190.9� 4.1 225� 11.2 213� 11 220� 11 192� 10 225� 11

TABLE III. The transition form factors at maximum recoil and dipole model parameters.

FB→π
0 FB→K

0 FBs→K
0 F

B→ηq
0 FBs→ηs

0 FB→D
0 FBs→Ds

0 AB→D�
0 ABs→D�

s
0 FB→D

1 FBs→Ds
1

Fð0Þ 0.28 0.36 0.24 0.23 0.31 0.54 0.58 0.56 0.57 0.54 0.58
α1 0.50 0.53 0.54 0.52 0.53 1.71 1.69 2.44 2.49 2.44 2.44
α2 −0.13 −0.13 −0.15 0 0 0.52 0.78 1.98 1.74 1.49 1.70

FB→π
1 FB→K

1 FBs→K
1 F

B→ηq
1

FBs→ηs
1

BðsÞ → V AB→ρ
0

AB→ω
0 ABs→ϕ

0
AB→K�
0 ABs→K�

0

Fð0Þ 0.28 0.33 0.29 0.21 0.31 Að0Þ 0.30 0.26 0.28 0.33 0.27
α1 0.52 0.54 0.57 1.43 1.48 α1 1.56 1.60 1.73 1.51 1.74
α2 0.45 0.50 0.50 0.41 0.46 α2 0.17 0.22 0.41 0.14 0.47
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χC ¼ 0.453� 0.007; ϕC ¼ ð65.06� 0.83Þ∘;
χE ¼ 0.023� 0.001; ϕE ¼ ð142.54� 5.99Þ∘; ð15Þ

with χ2=d:o:f: ¼ 1.6.
With all the inputs, we integrate the differential width in

Eq. (12) over the kinematics region to obtain the branching
fractions of B̄ → DðV →ÞP1P2 and B̄ → D̄ðV →ÞP1P2.
Specifically, the numerical results for B̄ðsÞ → Dðρ →Þππ,
B̄ðsÞ → DðK� →ÞKπ, B̄ðsÞ → Dðϕ →ÞKK, and B̄ðsÞ → D
ðρ;ω →ÞKK, together with their corresponding doubly
CKM suppressed decays B̄ → D̄ðV →ÞP1P2, are collected
in Tables IV–VII, respectively. In our results denoted
by BFAT, the uncertainties are in sequence from the
fitted parameters, form factors, decay constants for
B̄ → DðV →ÞP1P2, and an additional error from Vub in
the last one for B̄ → D̄ðV →ÞP1P2 decays induced by
b → u transitions. The errors from hadronic parameters, the
masses and decay widths of vector mesons, can be ignored.
One can see that the dominating errors are from the
uncertainties of form factors, which can be improved by
more precise calculations. Besides the CKM matrix ele-
ments shown in these tables, we also list the intermediate
resonance decays as well as the topological contributions T,
C, E, and A for convenience of analyzing hierarchies of
branching fractions in the following. Experimental data in

the third column and the results in PQCD approach in last
column are also list for comparison.

A. Hierarchies of branching fractions

The decay modes are classified by CKMmatrix elements
involved, Cabibbo favored VcbV�

ud, Cabibbo suppressed
VcbV�

us, and doubly Cabibbo suppressed VubV�
ud and

VubV�
us, shown in the second column of Tables IV–VI.

The hierarchies of branching fractions can be seen clearly
from this classification. The Cabibbo favored decay modes
are about two orders larger than the doubly Cabibbo
suppressed ones of the same type in the same table.
As a result, these Cabibbo favored decay modes are able
to be measured first by experiments, such as the first four
modes of B̄ðsÞ → Dðρ →Þππ [63] in Table IV and B̄0

s →
D0ðK�0 →ÞKþπ− [4] in Table V. Our results and the
experimental data are consistent within errors.
Besides CKM matrix elements, the hierarchy of

branching fraction is also dependent on contributions
from different topological diagrams. Similar to the dynam-
ics of two-body hadronic B decays, the color favored
emission diagram (T) is absolutely dominating in the
quasi-two-body decays. For instance, the topology T
dominated decay modes, B− → D0ðK�− →ÞK−π0, B̄0 →
DþðK�− →ÞK−π0 and B̄0

s → Dþ
s ðK�− →ÞK−π0 happening

through Cabibbo suppressed VcbV�
us, are the same order as

the Cabibbo favored but only C contributed decay,

TABLE IV. Branching ratios in FAT approach of quasi-two-body decays (top) B̄ðsÞ → Dðρ →Þππ (×10−4) with the uncertainties from
the fitted parameters, form factors and decay constants, respectively, and (bottom) B̄ðsÞ → D̄ðρ →Þππ (×10−6) with one more error from
Vub in the last one, together with results in PQCD and experimental data for comparision. The CKM matrix elements and characters T,
C, E, and A representing the corresponding topological diagram contributions are also listed in the second column.

Decay modes Amplitudes Data BFAT BPQCD

B̄ → Dðρ →Þππ VcbV�
ud

B− → D0ðρ− →Þπ0π− T þ C 134� 18 90.8þ1.5þ16.1þ8.1
−1.5−15.0−7.8 115þ59

−38
B̄0 → Dþðρ− →Þπ0π− T þ E 76� 12 58.4þ0.5þ12.9þ6.2

−0.5−11.6−5.9 82.3þ49.2
−29.0

B̄0 → D0ðρ0 →Þπþπ− 1ffiffi
2

p ðE − CÞ 3.21� 0.21 2.40þ0.13þ0.22þ0.03
−0.13−0.45−0.03 1.39þ1.24

−0.90

B̄0
s → Dþ

s ðρ− →Þπ−π0 T 95� 20 74.5þ0.0þ15.6þ7.9
−0.0−14.2−7.5 77.2þ40.2

−25.6
VcbV�

us

B̄0
s → Dþðρ− →Þπ−π0 E 0.016þ0.003þ0þ0.005

−0.001−0−0.004 0.051þ0.022
−0.014

B̄0
s → D0ðρ0 →Þπþπ− 1ffiffi

2
p E 0.008þ0.001þ0þ0.002

−0.001−0−0.001 0.026þ0.010
−0.006

B̄ → D̄ðρ →Þππ VubV�
cs

B− → D−
s ðρ0 →Þπþπ− 1ffiffi

2
p T 16.7þ0.0þ3.5þ1.7þ1.5

−0.0−3.2−1.6−1.5 15.2þ11.1
−8.2

B̄0 → D−
s ðρþ →Þπþπ0 T 29.7þ0.0þ6.2þ2.9þ2.6

−0.0−5.6−2.8−2.6 28.2þ20.4
−15.3

B̄0
s → D−ðρþ →Þπþπ0 E 0.17þ0.02þ0þ0.02þ0.02

−0.01−0−0.02−0.02 0.69þ0.20
−0.16

B̄0
s → D̄0ðρ0 →Þπþπ− 1ffiffi

2
p E 0.09þ0.01þ0þ0.01þ0.01

−0.01−0−0.01−0.01 0.34þ0.10
−0.08

VubV�
cd

B− → D−ðρ0 →Þπþπ− 1ffiffi
2

p ðT − AÞ 0.35þ0þ0.10þ0.01þ0.03
−0−0.09−0.01−0.03 0.53þ0.36

−0.27

B− → D̄0ðρ− →Þπþπ0 Cþ A 0.41þ0.01þ0.06þ0.01þ0.04
−0.01−0.06−0.01−0.04 0.05þ0.02

−0.01
B̄0 → D−ðρþ →Þπþπ0 T þ E 0.99þ0.01þ0.22þ0.01þ0.09

−0.01−0.20−0.01−0.09 0.76þ0.59
−0.31

B̄0 → D̄0ðρ0 →Þπþπ− 1ffiffi
2

p ðE − CÞ 0.10þ0.01þ0.02þ0þ0.001
−0.01−0.02−0−0.001 0.013þ0.009

−0.008
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B̄0
s → D0ðK�0 →ÞKþπ−. Besides the mode B̄0

s →
D0ðK�0 →ÞKþπ− with large branching ration has been
measured by LHCb experiment through Dalitz plot analysis
and isobar model [4], another mode B̄0 → D0ðK̄�0 →Þ
K−πþ with one order smaller branching ration is also
measured by LHCb [6]. The remaining three modes with
comparable branching ratio as B̄0

s → D0ðK�0 →ÞKþπ− are
also measurable in LHCb and Belle II. Our results of other
decays, especially those with branching ratios in the range
10−6–10−4 in Tables IV–VI are expected to be observed in
future experiments.

B. Comparison with the results in the PQCD approach

Since most quasi-two-body decays BðsÞ → DðsÞðV →Þ
P1P2 have not been measured by experiments until now,

we list the results calculated in PQCD approach
[42,43,45–47] in the last column of the tables for com-
parison. As we have stated in Sec. I, LCDA of P-waveP1P2

meson pair from resonance is described by RBW model in
PQCD, which is the same theme adopted in the FAT
approach for V → P1P2. The two approaches are effec-
tively compatible for intermediate resonance strong decays,
the main difference between them is the calculation of the
weak decays of B to D meson and a vector resonance.
As known, T diagram is proved to be factorizable at all

orders of αs for these decays, thus the perturbative
calculation is reliable. Our results of the T diagram
dominating decay modes in Tables IV and V are in good
agreement with PQCD’s predictions. The magnitude of
topologies C is larger than E, jCj > jEj, in the FAT

TABLE V. The same as table IV, but for the quasi-two-body decays (top) B̄ðsÞ → DðK� →ÞKπ (×10−4), and (bottom) B̄ðsÞ →
D̄ðK� →ÞKπ (×10−6).

Decay modes Amplitudes Data BFAT BPQCD

B̄ → DðK� →ÞKπ VcbV�
ud

B̄0 → Dþ
s ðK�− →ÞK−π0 E 0.10þ0.01þ0þ0.02

−0.01−0−0.01 0.52þ0.14þ0.05þ0.05
−0.12−0.08−0.00

B̄0
s → D0ðK�0 →ÞKþπ− C 2.86� 0.44 3.33þ0.10þ0.70þ0.03

−0.10−0.63−0.03 2.86þ1.67þ0.43þ0.05
−1.33−0.56−0.08

VcbV�
us

B− → D0ðK�− →ÞK−π0 T þ C 1.89þ0.03þ0.33þ0.16
−0.03−0.31−0.16 1.67þ0.71þ0.32þ0.07

−0.53−0.34−0.07
B̄0 → DþðK�− →ÞK−π0 T 1.31þ0þ0.28þ0.13

−0−0.25−0.13 1.24þ0.55þ0.15þ0.06
−0.40−0.18−0.05

B̄0 → D0ðK̄�0 →ÞK−πþ C 0.32� 0.05 0.24þ0.01þ0.05þ0.003
−0.01−0.05−0.003 0.17þ0.10þ0.03þ0.00

−0.08−0.03−0.01
B̄0
s → Dþ

s ðK�− →ÞK−π0 T þ E 1.38þ0.01þ0.31þ0.14
−0.01−0.28−0.14 1.11þ0.45þ0.20þ0.05

−0.33−0.21−0.04

B̄ → D̄ðK� →ÞKπ VubV�
cs

B− → D̄0ðK�− →ÞK−π0 Cþ A 3.83þ0.12þ0.64þ0.05þ0.34
−0.12−0.59−0.05−0.39 1.00þ0.43þ0.20þ0.00

−0.48−0.27−0.07
B− → D−ðK̄�0 →ÞK−πþ A 0.72þ0þ0þ0.03þ0.06

−0−0−0.01−0.06 0.21þ0.10þ0.03þ0.04
−0.06−0.02−0.00

B̄0 → D̄0ðK̄�0 →ÞK−πþ C 3.10þ0.10þ0.65þ0.03þ0.27
−0.10−0.59−0.03−0.27 1.96þ1.01þ0.52þ0.11

−0.87−0.41−0.12
B̄0
s → D−

s ðK�þ →ÞKþπ0 T þ E 8.11þ0.15þ1.87þ0.82þ0.72
−0.16−1.68−0.77−0.72 13.3þ6.84þ0.76þ0.80

−3.04−0.73−0.79
VubV�

cd

B− → D−
s ðK�0 →ÞKþπ− A 0.037þ0þ0þ0.002þ0.003

−0−0−0.001−0.003 0.014þ0.008þ0.004þ0.002
−0.003−0.008−0.0002

B̄0 → D−
s ðK�þ →ÞKþπ0 E 0.005þ0.0004þ0þ0.0007þ0.0004

−0.0004−0−0.0006þ0.0004 0.005þ0.003þ0.001þ0
−0.003−0.001−0

B̄0
s → D−ðK�þ →ÞKþπ0 T 0.35þ0þ0.07þ0.004þ0.03

−0−0.07−0.004þ0.03 0.6þ0.30þ0.03þ0.04
−0.15−0.04−0.04

B̄0
s → D̄0ðK�0 →ÞKþπ− C 0.15þ0.01þ0.03þ0.002þ0.01

−0.01−0.03−0.002−0.01 0.08þ0.05þ0.02þ0.00
−0.03−0.02−0.00

TABLE VI. The same as Table IV, but for the quasi-two-body decays (top) B̄ðsÞ → Dðϕ →ÞKK (×10−4), and
(bottom) B̄ðsÞ → D̄ðϕ →ÞKK (×10−6).

Decay modes Amplitudes BFAT BPQCD

B̄ → Dðϕ →ÞKK VcbV�
us

B̄0
s → D0ðϕ →ÞKþK− C 0.150þ0.005þ0.031þ0.002

−0.005−0.028−0.002
→ D0ðϕ →ÞK0K̄0 0.104þ0.003þ0.022þ0.001

−0.003−0.020−0.001

B̄ → Dðϕ →ÞKK VubV�
cs

B− → D−
s ðϕ →ÞKþK− A 0.75þ0þ0þ0.32þ0.07

−0−0−0.32−0.07 0.15þ0.02þ0.01þ0.01
−0.02−0.01−0.01

→ D−
s ðϕ →Þ → K0K0

0.52þ0þ0þ0.32þ0.05
−0−0−0.34−0.05 0.10þ0.01þ0.01þ0.01

−0.01−0.01−0.01
B̄0
s → D̄0ðϕ →ÞKþK− C 2.21þ0.07þ0.82þ0.02þ0.19

−0.07−0.42−0.02−0.19
→ D̄0ðϕ →ÞK̄0K0

1.54þ0.05þ0.57þ0.02þ0.14
−0.05−0.29−0.02−0.14

SI-HONG ZHOU, RUN-HUI LI, and XIAO-YAO LÜ PHYS. REV. D 110, 056001 (2024)

056001-8



approach as shown in Eq. (15), while C is approximately
equal to E, jCj ∼ jEj, in the PQCD approach [129], because
it is sensitive to the power corrections and high order
contributions which are hard to be calculated in PQCD
approach. Therefore, it is easy to find in Tables IV and V
that the results of the FAT approach for the decays
dominated only by C, larger than those in the PQCD
approach, are in better agreement with the current exper-
imental data. However, our results of decay modes with
only power suppressed E contribution are a little smaller
than those in PQCD, which need to be tested by the future
experiments. At last, we emphasize that the branching
ratios of decays in the FAT approach are more precise than
those in the PQCD in Tables IV–VI. The reason is that the
topological amplitudes in the FAT including the nonfactor-
izable QCD contributions were extracted through a global
fit with experimental data of these decays, while large
uncertainties arise from nonperturbative parameters and
QCD power and radiative corrections in the PQCD.

C. The virtual effects of BðsÞ → Dðρ;ω →ÞKK̄
Contrary to the quasi-two-body decays through ρ → ππ,

K� → Kπ and ϕ → KK proceeding by the pole mass

dynamics, i.e., the pole mass is larger than the invariant
mass threshold of two final states, the other modes with
strong decays by ρ;ω → KK can only happen by ρ, ω off-
shell effect. It is also called the Breit-Wigner tail (BWT)
effect, which has also appeared in charmed quasi-two-
body decay with off-shell D� resonance [36,44] and
charmless one through ρ, ω resonances [21–23,25,37].
We denote branching ratios of this kind of decays by Bv and
their numerical results are listed on Table VII, together with
the PQCD’s predictions for B → Dðρ →ÞKK in last
column.
Apparently, the branching ratios of Bv modes are approx-

imately two orders smaller than those of B modes in
Table IV, that is, the BWT effect in B → Dðρ →ÞKK is
only about 1% of the on-shell resonance contribution,
B → Dðρ →Þππ. In Tables VI and VII, one can see that
all the intermediate states of ρ, ω, and ϕ can decay into KK
via virtual effects (for ρ, ω) or pole mass dynamics (for ϕ).
However, different from neutral states ρ0;ω;ϕ, the charged
ρ� is the unique resonance contributing to the charged
meson pair K�K0 in the low mass region of K�K0 system,
which have beenmeasured recently byBelle II collaboration
[8] based on a study of the small mðK−K0

SÞ invariant mass

TABLE VII. Comparison of results from FAT (Bv
FAT) and PQCD (Bv

PQCD) approach for the virtual effects of
BðsÞ → Dðρ;ω →ÞKK̄ decays, happened when the pole masses of ρ, ω are smaller than the invariant mass of KK̄.

Decay modes Bv
FAT Bv

PQCD

B̄ → Dðρ →ÞKK
B− → D0ðρ− →ÞK−K0 6.59þ0.10þ1.21þ0.61

−0.09−1.12−0.60 × 10−5 11.8þ6.2þ0.9þ0.7
−4.0−1.2−0.9 × 10−5

B̄0 → Dþðρ− →ÞK−K0 4.54þ0.03þ0.99þ0.48
−0.03−0.89−0.46 × 10−5 7.93þ5.01þ0.32þ0.65

−2.93−0.30−0.63 × 10−5

B̄0 → D0ðρ0 →ÞKþK− 1.28þ0.07þ0.12þ0.01
−0.07−0.24−0.01 × 10−6 1.07þ0.46þ0.80þ0.01

−0.37−0.58−0.01 × 10−6

B̄0
s → Dþ

s ðρ− →ÞK−K0 5.63þ0þ1.18þ0.60
−0−1.07−0.60 × 10−5 6.06þ3.47þ0.04þ0.47

−2.06−0.04−0.45 × 10−5

B̄0
s → Dþðρ− →ÞK−K0 8.68þ0.77þ0þ2.52

−0.74−0−1.76 × 10−9 4.22þ0.58þ0.90þ0.40
−0.67−0.65−0.30 × 10−8

B̄0
s → D0ðρ0 →ÞKþK− 0.44þ0.04þ0þ0.10

−0.04−0−0.06 × 10−8 1.05þ0.15þ0.23þ0.10
−0.17−0.15−0.07 × 10−8

B̄ → D̄ðρ →ÞKK
B− → D−ðρ0 →ÞKþK− 1.89þ0þ0.53þ0.03þ0.04

−0−0.46−0.03−0.04 × 10−9 3.22þ0.52þ0.86þ0.01
−0.45−0.43−0.01 × 10−9

B− → D̄0ðρ− →ÞK−K0 2.15þ0.07þ0.31þ0.04þ0.19
−0.07−0.29−0.03−0.19 × 10−9 0.53þ0.12þ0.25þ0.03

−0.06−0.17−0.01 × 10−9

B− → D−
s ðρ0 →ÞKþK− 8.74þ0þ1.83þ0.87þ0.77

−0−1.66−0.83−0.77 × 10−8 6.26þ1.69þ2.69þ0.03
−1.30−0.92−0.02 × 10−8

B̄0 → D−ðρþ →ÞKþK0 5.15þ0.07þ1.16þ0.06þ0.05
−0.08−1.04−0.06−0.05 × 10−9 6.87þ2.05þ3.30þ0.08

1.60−1.01−0.08 × 10−9

B̄0 → D̄0ðρ0 →ÞKþK− 5.49þ0.31þ1.16þ0.06þ0.48
−0.30−1.04−0.06−0.48 × 10−10 0.78þ0.20þ0.46þ0.08

−0.13−0.29−0.06 × 10−10

B̄0 → D−
s ðρþ →ÞKþK0 1.51þ0þ0.32þ0.15þ0.13

−0−0.29−0.14−0.13 × 10−7 2.32þ0.63þ1.00þ0.01
−0.48−0.34−0.01 × 10−7

B̄0
s → D−ðρþ →ÞKþK0 0.99þ0.17þ0þ0.11þ0.09

−0.08−0−0.11−0.09 × 10−9 7.47þ1.49þ2.42þ0.40
−0.32−1.83−0.37 × 10−9

B̄0
s → D̄0ðρ0 →ÞKþK− 0.51þ0.09þ0þ0.06þ0.04

−0.04−0−0.05−0.04 × 10−9 1.85þ0.36þ0.61þ0.09
−0.32−0.45−0.08 × 10−9

B̄ → Dðω →ÞKK
B̄0 → D0ðω →ÞKþK− 1.54þ0.08þ0.13þ0.02

−0.07−0.27−0.02 × 10−6

B̄0
s → D0ðω →ÞKþK− 3.68þ0.33þ0þ0.84

−0.31−0−0.53 × 10−9

B̄ → D̄ðω →ÞKK
B− → D−

s ðω →ÞKþK− 6.90þ0þ1.45þ0.68þ0.61
−0−1.31−0.65−0.61 × 10−8

B− → D−ðω →ÞKþK− 4.15þ0þ0.68þ0.06þ0.37
−0−0.63−0.05−0.37 × 10−9

B̄0 → D̄0ðω →ÞKþK− 5.16þ0.26þ1.00þ0.07þ0.46
−0.25−0.91−0.07−0.46 × 10−10

B̄0
s → D̄0ðω →ÞKþK− 3.87þ0.34þ0þ0.46þ0.34

−0.33−0−0.41−0.37 × 10−10
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for B− → D0K−K0
S and B̄0 → DþK−K0

S. With ρ−-like
resonances and nonresonance contribution, the branching
ratios are BðB−→D0K−K0

SÞ¼ð1.89�0.16�0.10Þ×10−4

and BðB̄0 → DþK−K0
SÞ ¼ ð0.85� 0.11� 0.05Þ × 10−4,

respectively. Our result for only ground state ρð770Þ is
BðB− → D0ðρ− →ÞK−K0Þ ¼ ð7.01þ0.13þ1.26þ0.63

−0.14−1.16−0.60 Þ × 10−5

and BðB−→D0ðρ−→ÞK−K0Þ¼ð4.64þ0.03þ1.00þ0.49
−0.02−0.90−0.47 Þ×10−5

in Table VII, which can reach a proportion of about 20% of
above measured all ρ− resonant and nonresonant compo-
nents (considering half of branching ratios of K0 or K̄0 to
becomeKS). The similar mode B̄0

s → Dþ
s ðρ− →ÞK−K0with

comparable branching ratio ð5.63þ0þ1.18þ0.60
−0−1.07−0.60 Þ × 10−5 is

suggested to be measured in LHCb and Belle II.
The study of invariant mass of neutral KþK− system for

B̄ → DKþK− in experiments is relatively complex, as it
involves various resonances ρ0;ω and ϕ as well as
nonresonances. Especially, in the low-mass region of
mðKþK−Þ, the BWT effects from neutral resonance ρ0

and ω in decay modes such as B̄0 → D0ðρ0 →ÞKþK−

and B̄0 → D0ðω →ÞKþK−, B̄0
s → D0ðρ0 →ÞKþK− and

B̄0
s → D0ðω →ÞKþK−, are pretty much the same in

Table VII, even though the decay widths of ρ and ω meson
are very different, shown in Table I. As we have mentioned
in [36,37], the BWT effects in these decays are not very
sensitive to the widths of resonances. It can be attributed to
the behavior of the Breit-Wigner propagator in Eq. (3)
describing off-shell resonance, where the invariant mass
square s is far away from the on-shell mass of resonance,
e.g. the real part, js −mρ;ωj, of denominators of Breit-
Wigner formula is much larger than the imaginary
part imρ;ωΓρ;ω.
Finally, the comparison of BWT effect in B → Dðρ →Þ

KK between the FATand PQCD approaches is very similar
with that of the on-shell resonance contributions in
B → Dðρ →Þππ. They are in agreement for T diagram
dominated modes, but different from those dominated by C
and E diagrams. It indicates again that no matter for on-
shell resonance or for off-shell one, the mechanisms or
models applied by the two approaches are effectively
consistent.

IV. CONCLUSION

Motivated by the measurements of three-body charmedB
meson decays with resonance contributions, especially
ground state resonance contributions, from BABAR,
LHCb, and Belle (II), we systematically analyze the corre-
sponding quasi-two-body decays BðsÞ → DðsÞðV →ÞP1P2

through intermediate ground states ρ; K�;ω and ϕ. They
proceed by b → c or b → u transitions to a DðsÞV inter-
mediate state with V as a resonant state which decays
consequently into final states P1, P2 via strong interaction.
Weutilize the decay amplitudes extracted from the two-body
charmed B decays in the FAT approach for the first
subprocess BðsÞ → DðsÞV and RBW function for the narrow
widths resonances V as usually done in experiments and the
PQCD approach. We categorize BðsÞ → DðsÞðV →ÞP1P2

into four groups according to different vector resonance,
BðsÞ → DðsÞðρ →Þππ, BðsÞ → DðsÞðK� →ÞKπ, BðsÞ →
DðsÞðϕ →ÞKK and BðsÞ → DðsÞðρ;ω →ÞKK, where the
former three kinds of modes decay by pole dynamics,
and the last one by BWT effect.
We calculate the branching ratios of all the four kinds of

decay modes in the FAT method. Our results are consistent
with the data by BABAR, LHCb, and Belle (II). Our
predictions of order 10−6–10−4 without any experimental
data are hopeful to be observed in the future experiments.
The FATapproach and the PQCD approach have effectively
compatible mechanism of resonant state strong decays.
Meanwhile, their treatments on the weak decays of B to aD
meson and a vector resonance are different. Since the
calculation of the first subprocess is done by a global fit
with experimental data in the FAT approach, our results for
the color suppressed diagram dominating modes are larger
than those in the PQCD approach whose information on
nonperturbative contribution andmc=mb power corrections
are not included so far. In addition, our results have
significantly less theoretical uncertainties due to accurate
nonfactorizable parameters extracted from experimen-
tal data.
The fourth type of modes happen through the tail effects

of ρ and ω resonance to KK. It is found that the BWTeffect
of ρ resonance approximately is about two orders smaller
than ρ on-shell resonance contribution, which induce that
they are usually ignored in experimental analysis. However
charged ρ�-like resonance of low mass region of K�K0

system have been started to be studied in Belle II recently.
The comparable modes, such as B̄0

s → Dþ
s ðρ− →ÞK−K0,

also have the potential to be measurable in LHCb and
Belle II.
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