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We employ the entropic uncertainty relations and the quantum Fisher information to explore the
formation of quark tt̄ pairs at the Large Hadron Collider through the combination of qq̄ pair and gg pair
initiated processes. A comprehensive analysis has been undertaken on the procedure of quark and gluon
channel mixing in the production of top quark pairs tt̄, encompassing the tightness of the entropic
uncertainty inequalities and the maximum quantum Fisher information of the system.
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I. INTRODUCTION

The study on the standard model from the perspective of
quantum information theory has resulted in a variety of rich
results. The quark spin correlation of top quark pairs has
been investigated at the LargeHadronCollider (LHC) [1–5].
The quantum entanglement has been used to search for new
physics in top quark pairs [6–12]. In addition, the Bell
inequalities have been employed for examination [13–17] in
tt̄ events at the LHC and Higgs boson [11,16].
Establishing a connection between quantum information

and high-energy physics is of great importance and has
sparked numerous research endeavors. Recent reports
have demonstrated that top quarks [18] can effectively
be characterized in terms of quantum entanglement [19],
discord [20], and steering [21]. The top quark, the heaviest
particle in the standard model, has a significant mass [7]
which contributes to a large decay width. The rapid decay
of the top quark motivates researchers to use its unique
characteristics to extract information about its spin from the
decay products. Extensive investigations of the spin of top
quarks, produced in top-antitop (tt̄) pairs, have been
conducted. The detection of spin correlations in top quarks
is already a well-established technique at the Tevatron
and LHC.

Among the various quantum features [22,23], the quan-
tum uncertainty principle is one of the essential issues in the
quantum world. Originally formulated by Heisenberg, it
clearly illustrates the distinction between the classical and
quantum physics. Recently, the entropy-based uncertainty
relation has been extended to encompass quantum entan-
glement [24,25] and utilized to detect quantum entangle-
ment. On the other side, the quantum Fisher information is
of crucial importance in quantum metrology [26]. It lies at
the core of quantummetrology, providing a lower bound on
the variance of an unbiased estimator. Larger quantum
Fisher information implies a smaller variance limit for the
estimator, thereby enabling higher estimation precision. It
has also been extensively used in the construction of
entanglement witnesses [27].
We study the top quark pairs from the perspective of

entropic uncertainty relations and quantum Fisher informa-
tion. For the specific case of tt̄ pairs, we focus on the
quantum state of the most elementary quantum chromody-
namics (QCD) production processes involving interactions
between light quark-antiquark (qq̄) or gluon-gluon (gg)
pairs. It is demonstrated that any realistic QCD process of tt̄
production can be regarded as a statistical combination of qq̄
and gg at leading order. The manuscript is structured as
follows. We introduce the top quark model and the basic
notations and concepts of the entropic uncertainty relation
and quantum Fisher information in Sec. II. We present the
main results in Sec. III. The study is concluded in Sec. IV.

*Contact author: biaoliangye@gmail.com
†Contact author: feishm@cnu.edu.cn

PHYSICAL REVIEW D 110, 055025 (2024)

2470-0010=2024=110(5)=055025(11) 055025-1 © 2024 American Physical Society

https://orcid.org/0000-0001-5006-7877
https://ror.org/024qkwh22
https://ror.org/024qkwh22
https://ror.org/024qkwh22
https://ror.org/024qkwh22
https://ror.org/024qkwh22
https://ror.org/005edt527
https://ror.org/00ez2he07
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.055025&domain=pdf&date_stamp=2024-09-13
https://doi.org/10.1103/PhysRevD.110.055025
https://doi.org/10.1103/PhysRevD.110.055025
https://doi.org/10.1103/PhysRevD.110.055025
https://doi.org/10.1103/PhysRevD.110.055025


II. PRELIMINARY

A. Top quark-antiquark pair

The primary focus of our research is the tt̄ top quark pair.
Top quarks are highly distinctive high-energy entities due to
their measurable spin correlations. This study explores the
overall structure of the quantum state of a top-antitop (tt̄)
quark pair generated through QCD within a high-energy
collider. The examination of the quantum state of a tt̄ pair
generated via the fundamental QCD process necessitates an
analysis of the entanglement and Bell inequalities [14]. We
study the entropic uncertainty and the quantum Fisher
information related to the proton-antiproton collisions at
the LHC and proton-proton collisions at the Tevatron.
Two spin-1=2 quarks, such as the tt̄ pair, give rise to a two-

qubit system. A tt̄ pair is produced via high-energy proton-
proton (pp) collisions in the LHC. Protons consist of quarks
(spin-1=2 fermions) and gluons (massless spin-1 bosons).
Collectively, these constituents are referred to as partons.
The interactions among these partons through quantum
chromodynamics result in the production of a tt̄ pair. For
example, a tt̄ pair can be generated through the interaction
between a light quark and antiquark (qq̄) or a pair of gluons
(gg) as follows [7,14,18], qþ q̄ → tþ t̄ or gþ g → tþ t̄.
The production of a tt̄ pair is described by the invariant
mass Mtt̄ and the direction k̂ in the center-of-mass frame.
Specifically, in this frame, the relativistic momenta of
the top and antitop quarks are given by kμt ¼ ðk0t ;kÞ
and kμt̄ ¼ ðk0t̄ ;−kÞ, respectively, satisfying the invariant
dispersion relation k2t ¼ m2

t and k2t̄ ¼ k2t ¼ m2
t . The invari-

ant mass is defined by these momenta,

M2
tt̄ ¼ stt̄ ¼ ðkt þ kt̄Þ2; ð1Þ

where stt̄ is the usual Mandelstam variable. In the center-of-
mass frame, this gives M2

tt̄ ¼ 4ðk0t Þ2 ¼ 4ðm2
t þ k2Þ.

Relating the momentum of the top quark to its velocity β,
jkj ¼ mtβ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
, we obtain

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t =M2
tt̄

q
: ð2Þ

In the case of the threshold production (β ¼ 0), one has
Mtt̄ ¼ 2mt ≈ 346 GeV, which represents the minimum
energy required for the production of a tt̄ pair.
The kinematics of the tt̄ pair is given by the variables

ðMtt̄; t̂Þ. For a fixed production process the spins of the tt̄
pair are characterized by the following production spin
density matrix RðMtt̄; k̂Þ [7],

R¼ ÃI4þ
X
i

ðB̃þ
i σi⊗ I2þ B̃−

i I2⊗ σiÞþ
X
i;j

C̃ijσi ⊗ σj;

ð3Þ

where the first/second spin subspace corresponds to the top/
antitop, respectively. The production spin density matrix is

parametrized by 16 parameters: Ã; B̃�
i ; C̃ij. The matrix R is

not properly normalized, with trðRÞ ¼ 4Ã, where Ã rep-
resents the differential cross section for tt̄ production at a
fixed energy and top direction. The normalized form of the
spin density matrix is given by

ρ¼1

4

�
I4þ

X
i

ðBþ
i σi⊗ I2þB−

i I2⊗σiÞþ
X
i;j

Cijσi⊗σj

�
;

ð4Þ

where the spin polarizations B�
i and spin correlations Cij of

the tt̄ pair can be computed according to ρ ¼ R=trðRÞ ¼
R=ð4ÃÞ, B�

i ¼ B̃�
i =Ã, and Cij ¼ C̃ij=Ã.

In theoretical computations the QCD perturbation theory
is employed. At the leading order, two initial states can
produce a tt̄ pair: a qq̄ pair or a gg pair. Each of these initial
states, represented by I ¼ qq̄; gg, results in a distinct
quantum state for the tt̄ pair when the energy and the
top direction in the center-of-mass frame are fixed. The
expression of ρI is utilized to obtain

ρðMtt̄;k̂Þ ¼
X

I¼qq̄;gg

wIðMtt̄; k̂ÞρIðMtt̄; k̂Þ; ð5Þ

where the probabilities wi are computed from the lumi-
nosities [7]. The production spin density matrix in the
helicity basis is characterized by five parameters at the
leading order. Specifically, for the I ¼ qq̄ process, the
parameters are given by

Ãqq̄ ¼ Fqð2 − β2sin2ΘÞ;
C̃qq̄
rr ¼ Fqð2 − β2Þsin2 Θ;

C̃qq̄
nn ¼ −Fqβ

2sin2Θ;

C̃qq̄
kk ¼ Fqð2cos2Θþ β2sin2ΘÞ;

C̃qq̄
rk ¼ C̃qq̄

kr ¼ Fq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
sin 2Θ:

On the other hand, for the I ¼ gg process, the parameters
are given by

Ãgg ¼ FgðΘÞ½1þ 2β2sin2 Θ − β4ð1þ sin4ΘÞ�;
C̃gg
rr ¼ −FgðΘÞ½1 − β2ð2 − β2Þð1þ sin4ΘÞ�;

C̃gg
nn ¼ −FgðΘÞ½1 − 2β2 þ β4ð1þ sin4ΘÞ�;

C̃gg
kk ¼ −FgðΘÞ½1 − β2sin2 2Θ=2 − β4ð1þ sin4 ΘÞ�;

C̃gg
rk ¼ FgðΘÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
β2 sin 2Θsin2Θ;

where the normalization factors are given by Fq ¼ 1=18

and FgðΘÞ ¼ 7þ9β2cos2 Θ
192ð1−β2cos2 ΘÞ2.
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B. Entropic uncertainty relations

The entropic uncertainty relations have been experimen-
tally demonstrated [25,28]. Maassen and Uffink presented
the following entropic uncertainty relation for two observ-
ables R and S with eigenvectors jaii and jbji, respectively,

HðRÞ þHðSÞ ≥ log2
1

c
; ð6Þ

where H is the Shannon entropy and c ¼ maxi;j jhaijbjij2.
Berta et al. presented an entropic uncertainty relation

satisfied by the measurement on system A which is
correlated with a system (quantum memory) B,

HðRjBÞ þHðSjBÞ ≥ log2
1

c
þHðAjBÞ; ð7Þ

where HðRjBÞ and HðSjBÞ are the conditional von
Neumann entropies, which quantify the uncertainty of
the measurement outcomes of R and S given the informa-
tion contained in B. HðAjBÞ denotes the conditional von
Neumann entropy between A and B. As −HðAjBÞ provides
a lower bound on the one-way distillable entanglement, the
lower bound of (7) is basically dependent on the entangle-
ment between A and B.
The von Neumann entropy of a density matrix ρAB is

defined by HðABÞ ≔ −TrðρAB log2 ρABÞ ¼ −
P

i λi log2 λi,
where λi are the nonzero eigenvalues of ρAB. The conditional
entropy HðAjBÞ is given by HðAjBÞ ¼ HðABÞ −HðBÞ,
where HðBÞ is the von Neumann entropy of the reduced
density operator ρB¼TrAρAB. SetEL ¼ HðRjBÞ þHðSjBÞ
and ER ¼ log2

1
c þHðAjBÞ. The tightness of the entropic

uncertainty relation is given by ΔE ¼ EL − ER. The above
entropic uncertainty relations have been experimentally
demonstrated [25,28]. Similar to concurrence [7] for
Pauli matrices observables, quantum entanglement is wit-
nessed if ER < 1.

C. Quantum Fisher information

The quantum Fisher information Fðρ; AÞ of a quantum
state ρ with respect to an observable A is defined by

Fðρ; AÞ ¼ 1

4
TrðρL2Þ; ð8Þ

where L is the symmetric logarithmic derivative deter-
mined by

i½ρ; A� ¼ 1

2
ðLρþ ρLÞ; ð9Þ

with ½·; ·� denoting the anticommutator. For pure states, the
quantum Fisher information reduces to the variance Vðρ; AÞ
of ρ with respect to observable A,

Fðρ; AÞ ¼ Vðρ; AÞ ¼ TrðρA2Þ − �
TrðρAÞ�2: ð10Þ

In general, when the state ρ is mixed with spectral
decomposition,

ρ ¼
Xd
k¼1

λkjkihkj; ð11Þ

where fjkig are the eigenvectors of ρ, d is the dimension of
Hilbert space, and the quantum Fisher information can be
evaluated by using the following equation [27,29,30],

Fðρ; AÞ ¼
X
k;l

ðλk − λlÞ2
2ðλk þ λlÞ

jhkjAjlij2: ð12Þ

A set of observables fAμg is said to be a complete
collection of orthonormal observables if TrAμAν ¼ δμν and
fAμg constitutes a basis of the associated space. For two-
qubit systems, we consider the following complete collec-
tions of orthonormal observables fAμg and fBμg associated
with systems A and B, respectively,

FIG. 1. The entropic uncertainty relation for the quarks qq̄ production of a tt̄ pair, qq̄ → tt̄. (a) EL with respect to Θ and Mtt̄. (b), ER
with respect to Θ and Mtt̄. (c), ΔE with respect to Θ and Mtt̄. The unit of Mtt̄ is GeV.
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fAμg ¼ fBμg ¼
�

1ffiffiffi
2

p ;
σ1ffiffiffi
2

p ;
σ2ffiffiffi
2

p ;
σ3ffiffiffi
2

p
�
; ð13Þ

where σi, i ¼ 1, 2, 3, are the standard Pauli matrices. The
quantum Fisher information is given by

F ¼
X
μ

Fðρab; Aμ ⊗ Ib þ Ia ⊗ BμÞ: ð14Þ

A state is separable if F ≤ 2. It has been shown that any
state violating this inequality must be entangled [27].
Additionally, in this paper we consider F to be the maxi-
mal value with respect to all unitary state preparations
UρabU†, where U∈UðdÞ [31]. Similar to the entanglement
measure concurrence for top quarks at the LHC [7],
quantum Fisher information can also serve as a witness
of entanglement.

III. RESULTS AND ANALYSIS

We consider a tt̄ pair formed through the combination of
qq̄ pair and gg pair initiated processes. We demonstrate the
numerical results for the tt̄ pair based on the entropic
uncertainty relation and quantum Fisher information. The
range of Θ is taken to be in ½0; π=2� and the Mtt̄ varies
between 346 and 1000 GeV.
One observes the left-hand side of the entropic uncer-

tainty relation, EL ¼ HðRjBÞ þHðSjBÞ for qq̄ in Fig. 1.
The observables are the Pauli matrices with R ¼ σx
and S ¼ σz. In Fig. 1(a), EL varies with the production
angle Θ and the mass Mtt̄. EL remains constant with Mtt̄
when Θ ¼ 0. As Θ increases, EL gradually decreases
with Mtt̄. Moreover, when Θ ¼ π=2, EL decreases rapidly
with Mtt̄. On the other hand, when Mtt̄ is fixed to be
1000 GeV, EL slowly increases but experiences a sig-
nificant drop with Θ. The smallest value of EL is attained
at ðΘ ¼ π=2;Mtt̄ ¼ 1000 GeV).

FIG. 2. Entropic uncertainty relation for the production of quarks via gluons (gg → tt̄). (a) Variation of EL with Θ and Mtt̄.
(b) Variation of ER with Θ and Mtt̄ (c) Variation of ΔE with Θ and Mtt̄. The unit of Mtt̄ is GeV.
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FIG. 3. Entropic uncertainty relation for the production of top quarks via quark and gluons initiated channels. (a) Variation of ER with
Θ and Mtt̄ via quarks (qq̄ → tt̄). (b) Variation of ER with Θ and Mtt̄ via gluons (gg → tt̄). The unit of Mtt̄ is GeV.
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In Fig. 1(b), ER ¼ log2
1
c þHðAjBÞ ¼ 1þHðAjBÞ is

illustrated for c ¼ 1=2. ER fluctuates with Θ and Mtt̄,
where for most of the cases, ER is 1. However, in a small
parameter region, ER decreases as Θ or Mtt̄ increases. The
smallest value of ER occurs at the same point as EL,
namely, Θ ¼ π=2 andMtt̄ ¼ 1000 GeV. When the value of
Mtt increases, the resulting values become smaller. At the
limit that Mtt approaches to infinity, both EL and ER are
equal to zero.
The tightness ΔE ¼ EL − ER is presented in Fig. 1(c),

which is always greater than or equal to zero. Specifically,
ΔE ¼ 0 only when Θ ¼ 0 and π=2. This indicates that the
bound is state dependent. It is saturated for the pairs of
observables fσx; σzg. For fixed Mtt̄, ΔE first increases and
reaches a maximum value, and then decreases with
increase of Θ.

Figure 2 illustrates the entropic uncertainty relation for
the production of quarks via gluons (gg → tt̄). The sub-
figures (a), (b), and (c) display the variations of EL, ER,
andΔE as functions of Θ andMtt̄, respectively. In Fig. 2(a),
EL exhibits a progressive increase with Θ when
Mtt̄ ¼ 346 GeV. However, for Mtt̄ ¼ 1000 GeV, EL ini-
tially increases and then decreases smoothly with Θ. For
any fixed Θ, EL grows with the increase of Mtt̄.
Figure 2(b) shows that ER behaves similarly to EL. For

any fixed Θ, ER also increases with Mtt̄. Figure 2(c)
presents the tightness ΔE. At Θ ¼ 0, ΔE is zero, indicating
that maximum tightness. When Θ ¼ π=2, ΔE initially
increases rapidly and then expands gradually with the
increasing Mtt̄. The bound is dependent on the state, and
saturated when Θ ¼ 0 for pairs of observables fσx; σzg.
However, it is not saturated at Θ ¼ π=2. The point
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FIG. 4. Entropic uncertainty relation for quark and gluon initial state mixing for varied probability wI. The density of ΔE vs Θ
and Mtt̄: (a) wqq̄ ¼ 0.2; (b) wqq̄ ¼ 0.4; (c) wqq̄ ¼ 0.6; (d) wqq̄ ¼ 0.8. The unit of Mtt̄ is GeV.
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FIG. 5. Entropic uncertainty relation for tt̄ production at the LHC for
ffiffiffi
s

p ¼ 13 TeV (a). tt̄ production at the Tevatron for
ffiffiffi
s

p ¼ 2 TeV
(b). The unit of Mtt̄ is GeV.

FIG. 6. Entropyic uncertainty relation for quark and gluon initial state mixing. The density of ΔE vs Mtt̄ for Θ ¼ π=2;
13π=30; 2π=5; 11π=30; π=3; 3π=10; π=4; π=5; π=6, with different probabilities: (a) wqq̄ ¼ 0.2, (b) wqq̄ ¼ 0.4, (c) wqq̄ ¼ 0.6,
(d) wqq̄ ¼ 0.8. The unit of Mtt̄ is GeV.
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ðΘ ¼ π=2;Mtt̄ ¼ 1000 GeV) represents the maximum loss
of tightness. For Mtt̄ ¼ 346 GeV, ΔE increases quickly
with Θ. When Mtt̄ is set to be 1000 GeV, ΔE gradually
increases with Θ.
The bound ER of entropic uncertainty relation witnesses

entanglement when ER < 1. The production of top quarks
through quark and gluon initiated channels is illustrated in
Fig. 3. Figure 3(a) displays the variation of ER with respect
to Θ and Mtt̄ via quarks (qq̄ → tt̄). The maximum entan-
glement is achieved at ðΘ ¼ π=2;Mtt̄ ¼ 1000 GeV).
Meanwhile, Fig. 3(b) indicates the variation of ER with Θ
and Mtt̄ via gluons (gg → tt̄). However, the maximum
entanglement occurs at ðΘ ¼ 0;Mtt̄ ¼ 346 GeV).
Figure 4 displays the density of ΔE for the mixing of

quarks and gluons initiated channels as a function of Θ and
Mtt̄, with varied probabilities wqq̄ ¼ 0.2, 0.4, 0.6, 0.8. The
subfigures (a), (b), (c), and (d) correspond to the mixing

probabilities 0.2, 0.4, 0.6, and 0.8, respectively. They
exhibit a similar trend in terms of tightness across the
varying mixing probabilities. As Θ increases, the tightness
also increases. However, as Mtt̄ increases, ΔE exhibits a
different behavior, i.e., it decreases instead. In certain
parameter regions, the tightness vanishes. The maximum
value of tightness is observed at Θ ¼ π=2 and
Mtt̄ ¼ 346 GeV. In Fig. 4(d), different from the subfigures
(a)–(c), a slight yellow peak appears. This indicates that
when Mtt̄ ¼ 1000 GeV, ΔE initially increases and then
decreases with respect to Θ. While when Mtt̄ ¼ 346 GeV,
the behavior is similar to that of subfigures (a)–(c), with a
slow increase as Θ increases.
The entropic uncertainty relation of two specific had-

ronic processes can be observed in Fig. 5. One process
refers to pp collisions at a center-of-mass energy offfiffiffi
s

p ¼ 13 TeV, which corresponds to Run 2 at the LHC (a).

FIG. 7. Quantum Fisher information versus Θ and Mtt̄ for (a) quarks and (b) gluons.
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FIG. 8. Quantum Fisher information for quarks and gluons represented as density graphs. The density of F is plotted againstΘ andMtt̄
in (a) for quarks and in (b) for gluons, respectively.
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Another process involves pp̄ collisions at a center-
of-mass energy of

ffiffiffi
s

p ¼ 2 TeV, which closely approx-
imates the actual value of

ffiffiffi
s

p ¼ 1.96 TeV at the
Tevatron (b) [14].
Figure 6 presents the slice figure for Fig. 4 by displaying

the 2D plots of ΔE with varied mixing probabilities
wqq̄ ¼ 0.2, 0.4, 0.6, 0.8, corresponding to figures (a),
(b), (c), (d) for the respective Θ values π=2; 13π=30;
2π=5; 11π=30; π=3; 3π=10; π=4; π=5; π=6, with different
colored lines corresponding to different Θ values. From
Fig. 6(a), (b), (c), and (d), it can be observed that as Θ
decreases, the majority of ΔE decreases with respect toMtt̄.
However, for the mixing probability wqq̄ ¼ 0.8, there is not
a strictly monotonic relationship between ΔE and Mtt̄ as Θ
increases. In Fig. 6(a), there is also a small parameter region
ofMtt̄ whereΔE initially increases and then declines slowly
with Mtt̄ for Θ ¼ π=2 and Θ ¼ 13π=30. In Fig. 6(d), one

sees that ΔE decreases more rapidly with Mtt̄ compared to
the other cases for Θ ¼ π=2.
Next we investigate the relationship between quantum

Fisher information and the generating angle Θ and mass
Mtt̄ associated with the generation of tt̄ pairs by quarks and
gluons.
Figure 7 shows the quark and gluon contributions to the

production of tt̄ pairs. The variations of the quantum Fisher
information (F) as functions of Θ and Mtt̄ are shown in
Fig. 7(a) for quarks and in Fig. 7(b) for gluons. One sees in
Fig. 7(a) that F is larger than 2 for large cases. However,
when Θ ¼ π=2, F increases slowly with the increase of
Mtt̄. Specifically, when Mtt̄ ¼ 1000 GeV, F also increases
slowly with increase of Θ. The maximum value of F is
attained at ðΘ ¼ π=2;Mtt̄ ¼ 1000 GeV).
The behavior of F for gluons in Fig. 7(b) is more

complex compared with quarks. When Mtt̄ ¼ 346, F is
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FIG. 9. Quantum Fisher information F with respect to the mixing of quarks and gluons initial state in different probabilities.
(a) wqq̄ ¼ 0.2, (b) wqq̄ ¼ 0.4, (c) wqq̄ ¼ 0.6, (d) wqq̄ ¼ 0.8.
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ffiffiffi
s

p ¼ 13 TeV (a). tt̄ production at the Tevatron forffiffiffi
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FIG. 11. Quantum Fisher information vs Mtt̄ and mixing degree for the mixing of quarks and gluons initial state with respect to
different probabilities: (a) wqq̄ ¼ 0.2, (b) wqq̄ ¼ 0.4, (c) wqq̄ ¼ 0.6, and (d) wqq̄ ¼ 0.8, for Θ ¼ π=2; 13π=30; 2π=5; 11π=30;
π=3; 3π=10; π=4; π=5; π=6, respectively.
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near maximal value for almost Θ. However, when
Mtt̄ ¼ 1000 GeV, F first decreases and reaches the valley
floor, and then increases. The maximum value is attained at
ðΘ ¼ 0;Mtt̄ ¼ 346 GeVÞ. Moreover, F falls and then
grows with the increase of Mtt̄ for given Θ ¼ π=2.
Figures 8(a) and 8(b) illustrate the density plots for

quarks and gluons, respectively, in the generation of tt̄ pairs
as in Fig. 7. Both the quark and gluon density plots show
the same color contour for the F, resulting in the generation
of tt̄. The quarks’ prominent color region with F > 2
exhibits entanglement characteristics, similar to those
shown in Fig. 3(b) of Ref. [7]. The range of values F
for gluons also resembles the concurrence depicted in
Fig. 3(a) of Ref. [7]. The quarks attain their maximum values
at ðΘ ¼ π=2;Mtt̄ ¼ 1000 GeV). In contrast, the gluons
reach their maximum values at ðΘ¼0;Mtt̄¼346GeV).
We present the representation of themixture of quarks and

gluons process to generate the tt̄ pair in Fig. 9. The quantum
Fisher information F varies as a function of Θ andMtt̄. The
subfigures (a), (b), (c), and (d) correspond to the probabilities
wqq̄ ¼ 0.2, 0.4, 0.6, and 0.8, respectively. As the degree wqq̄

of the mixing increases, the right corner red region expands
but left corner red zone decreases, and the value of F also
changes. In the subfigures (a) and (b), the maximum value of
F is attained at ðΘ ¼ 0;Mtt̄ ¼ 346 GeV). However, in the
subfigures (c) and (d), the maximum value of F is attained
at ðΘ ¼ π=2;Mtt̄ ¼ 1000 GeV).
The quantum Fisher information of two specific

hadronic processes is illustrated in Fig. 10. One process
refers to pp collisions at a center-of-mass energy offfiffiffi
s

p ¼ 13 TeV, corresponding to Run 2 at the LHC (a).
Another process pertains to pp̄ collisions at

ffiffiffi
s

p ¼ 2 TeV,
which is in close proximity to the actual value offfiffiffi
s

p ¼ 1.96 TeV at the Tevatron accelerator (b) [14].

We plot the quantum Fisher information F against the
top quark-antiquark invariant mass Mtt̄ for various mixing
probabilities wqq̄ and fixed values of Θ ¼ π=2; 13π=30;
2π=5; 11π=30; π=3; 3π=10; π=4; π=5; π=6 in Fig. 11, which
correspond to specific slices of Fig. 9. One observes
that F falls and then grows with Mtt̄ for all the four
subfigures. However, for Θ ¼ π=6, F decreases first and
then increases slowly with Mtt̄. Interestingly, for (a) and
(b), the maximum value of F happens at ðΘ ¼ 0;
Mtt̄ ¼ 346 GeV). However, the maximum value of F
occurs at ðΘ ¼ π=2;Mtt̄ ¼ 1000 GeV) for (c) and (d).

IV. CONCLUSIONS

We have investigated the production of top quark pairs
(tt̄) through interactions involving quarks and gluons
processes. Our analysis focuses on the behaviors exhibited
by the system at the Large Hadron Collider from the
perspective of entropic uncertainty relations and quantum
Fisher information. Notably, we have found that the
entropic uncertainty relations are most stringent, while
the quantum Fisher information is maximized when con-
sidering the production angle and mass of the particles. Our
study may contribute significantly to a deeper comprehen-
sion of the LHC’s workings and to the investigation of new
physics in the realm of quarks.
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