
RDð�Þ and survival of the fittest scalar leptoquark

Damir Bečirević ,1,* Svjetlana Fajfer ,2,3,† Nejc Košnik ,2,3,‡ and Lovre Pavičić 3,§
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Motivated by the long-standing discrepancy in lepton flavor universality ratios RD and RD� we assess the
status of scalar leptoquark states R2, R̃2 and S1 which can in principle provide a desired enhancement of
BðB → Dð�ÞτνÞ in a minimal setup with two Yukawa couplings only. We consider unavoidable low-energy
constraints, Z-pole measurements as well as high-pT constraints. After setting the mass of each leptoquark to
1.5TeVwe find that of all considered states onlyS1 leptoquark, coupled to both chiralities of leptons andquarks,
is still a completely viable solutionwhile the scenariowithR2 is ingrowing tensionwithΓðZ → ττÞ andwith the
LHC constraints on the ditau tails at high-pT . We comment on the future experimental tests of the S1 scenario.

DOI: 10.1103/PhysRevD.110.055023

I. INTRODUCTION

Experimental observations indicating the lepton flavor
universality violation (LFUV) in the exclusive processes,
based on transitions b → clν and b → sll, provided a
huge boost in the high energy physics community to build a
model of physics beyond the Standard Model (BSM) which
would capture the effects of LFUV while remaining
consistent with many experimental tests of the Standard
Model (SM). In that respect the scenarios in which the SM
is extended by one or more Oð1 TeVÞ leptoquarks proved
to be the most attractive ones, and a huge amount of work
has been invested in (i) understanding the possible exper-
imental signatures of such scenarios, and (ii) figuring out
the ultraviolet (UV) completion of the proposed models. A
practical advantage of the models which involved only
scalar leptoquarks is that the resulting theory remains
renormalizable, and therefore the loop processes can be
computed and results compared with experiments.
However, no single scalar leptoquark could describe both
types of LFUV, and therefore the viable models necessarily
involved at least two scalar leptoquarks [1–5].1 An

alternative to that situation was to use the simplest vector
leptoquark, U1, which could accommodate both types of
LFUV, but in contrast to the models with scalar leptoquarks
this scenario is not renormalizable, and therefore the loop
processes were explicitly dependent on the cutoff, which
then necessitates specifying the UV completion, meaning
new assumptions and new parameters (couplings and
masses of additional states) [6,7].
Recently, however, the hints of LFUV in the b → sll

modes, which for almost a decade indicated that the
measured RKð�Þ ¼ BðB → Kð�ÞμμÞ=BðB → Kð�ÞeeÞ < 1,
were reexamined, and the newly revised values established
by LHCb were found to be, RK ¼ 0.949ð47Þ and
RK� ¼ 1.027ð75Þ, thus fully consistent with lepton
universality [8]. The world average values of RDð�Þ ¼
BðB → Dð�ÞτνÞ=BðB → Dð�ÞlνÞ, with l∈ fe; μg, remain
Rexp
Dð�Þ > RSM

Dð�Þ , and a model with one Oð1 TeVÞ scalar
leptoquark is still a viable option to accommodate that
experimental deviation. In this paper we revisit such
models in a minimalistic setup. One, however, has to
acknowledge the emergence of another observable that
showed a departure from its value predicted in the SM,
namely BðB� → K�νν̄Þ ¼ 2.40ð67Þ × 10−5 [9,10]. Even
though we do not intend to accommodate that deviation
with respect to the SM prediction, we will monitor that our
model does not lead to BðB� → K�νν̄Þ at odds with the
experimental observations.

II. LEPTON UNIVERSALITY VIOLATING
EFFECTS IN b → cτν

Before discussing the scalar leptoquark scenarios, we
first consider the low-energy effective theory (LEET) of
b → cτν transitions. We extend the usual LEET Lagrangian
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1This last set of references also summarizes the evolution of
model building with scalar leptoquarks in order to accommodate
the so-called RKð�Þ and RDð�Þ anomalies.
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by including a singlet fermion NR (right-handed neutrino)
because it is needed in the models involving the R̃2

leptoquark which can couple to NR at tree level. By
focusing on the terms relevant to our paper we have

Lb→cτν ¼ −2
ffiffiffi
2

p
GFVcb½ð1þ gVL

Þðc̄LγμbLÞðτ̄LγμντLÞ
þ gVR

ðc̄RγμbRÞðτ̄LγμντLÞ þ gSLðc̄RbLÞðτ̄RντLÞ
þ gTðc̄RσμνbLÞðτ̄RσμνντLÞ þ g̃SRðc̄LbRÞðτ̄LNRÞ
þ g̃Tðc̄LσμνbRÞðτ̄LσμνNRÞ� þ H:c: ð1Þ

In the framework of the SM effective theory (SMEFT), the
τ-specific gVR

can only stem from a dimension-8 operator in
the linear realization of SUð2ÞL for the Higgs [11], and we
will not pursue this option in the rest of the paper.2

A. Matching to SMEFT

In the following we specify the matching and the
renormalization group running between the SMEFT
Wilson coefficients and the low-energy coefficients gi of
Eq. (1), defined at scale μ ¼ mb. Above the electroweak
scale the SMEFT Lagrangian consists of operators invariant
under the full SM gauge group [12–15]:

LSMEFT ¼ 1

Λ2

X
i

CiOi: ð2Þ

Since we consider models with a single leptoquark a natural
choice for the normalization scale is Λ ¼ mLQ. For the
semileptonic processes with the SM neutrino the following
operators are relevant:

Oð1Þ
lequ
prst

¼ ðl̄aperÞϵabðq̄bsutÞ;

Oð3Þ
lequ
prst

¼ ðl̄apσμνerÞϵabðq̄bsσμνutÞ; ð3Þ

Oð1Þ
lq
prst

¼ ðl̄jpγμlrÞðq̄sγμutÞ;

Oð3Þ
lq
prst

¼ ðl̄pγμτIlrÞðq̄sγμτIqtÞ: ð4Þ

Here l and q denote the doublet lepton and quark fields,
respectively, and u and e are singlet up-quark and charged-
lepton fields. Matrices τI are the Pauli matrices (I ¼ 1, 2, 3)
acting on SUð2ÞL, while a, b ¼ 1, 2 are the indices of
SUð2ÞL doublets. Finally, the flavor indices are denoted by
prst, and we employ the diagonal basis for the left-handed
down-type quarks and for charged leptons. The presence of
light NR requires one to consider a more general effective
theory, often referred to as NR-SMEFT, that besides a full
set of SMEFT operators includes all possible operators

containing a singlet NR [16,17]. As far as the contribution
to RDð�Þ goes, we will employ two such NR-SMEFT
operators:

Oð1Þ
Nldq
rst

¼ ðN̄Rlar Þϵabðd̄sqbt Þ;

Oð3Þ
Nldq
rst

¼ ðN̄Rσ
μνlar Þϵabðd̄sσμνqbt Þ: ð5Þ

The literature on NR-SMEFT considers operatorOð1Þ
Nldq and

its version with exchanged roles of l and q, Oð1Þ
Nqdl. These

two operators are related to those given in Eq. (5) via the
Fierz identities.
The relations between SMEFT Wilson coefficients and

the low-energy Wilson coefficients of Lagrangian (1) are
obtained by the renormalization group running and match-
ing of the two theories. Vector current Wilson coefficients

Cð1Þ;ð3Þ
lq do not run, and the coefficient gVL

is obtained as

gVL
ðmbÞ ¼ −

v2

m2
LQ

Vcs

Vcb
Cð3Þ

lq
ττsb
ðmLQÞ −

v2

m2
LQ

Cð3Þ
lq

ττbb
ðmLQÞ; ð6Þ

where mLQ is the leptoquark mass and we have assumed
both possibilities of quark flavors at high energy scales. On

the other hand, scalar and tensor operators Cð1Þ
lequ and Cð3Þ

lequ

renormalize and mix among themselves. The low-energy
Wilson coefficients present in (1) are obtained by the
renormalization group running and matching onto the low
energy effective theory (1)

gSLðmbÞ ¼ −
v2

2m2
LQ

1

Vcb

�
αsðmbÞ
αsðmtÞ

�
12=23

�
αsðmtÞ
αsðmLQÞ

�
4=7

× Cð1Þ�
lequ
ττbc

ðmLQÞ

¼ −0.56Cð1Þ�
lequ
ττbc

ðmLQÞ;

gTðmbÞ ¼ −
v2

2m2
LQ

1

Vcb

�
αsðmbÞ
αsðmtÞ

�
−4=23

�
αsðmtÞ
αsðmLQÞ

�
−4=21

× Cð3Þ�
lequ
ττbc

ðmLQÞ

¼ −0.28Cð3Þ�
lequ
ττbc

ðmLQÞ; ð7Þ

obtained to leading order in QCD. The off diagonal

mixings, i.e., mixing of Cð3Þ
lequ to gSL and Cð1Þ

lequ to gT , are
driven by electroweak radiative contributions and represent
only small corrections with respect to the QCD driven
multiplicative renormalization. The invariance of QCD
under parity implies that the chirality-flipped operators
involving right-handed NR have exactly the same QCD
running, i.e.,

2E.g., gVR
can arise in a R2 − R̃2 model via mixing term

between the two leptoquarks.
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g̃SRðmbÞ ¼ −0.56Cð1Þ�
Nldq
τbs

ðmLQÞ;

g̃TðmbÞ ¼ −0.28Cð3Þ�
Nldq
τbs

ðmLQÞ: ð8Þ

The above discussion is based on one-loop running only,
but in actual computations we included the higher correc-
tions to four loops [18–22]. The net effect is that the right-
hand side of Eq. (7) for gSL (gT) gets enhanced (suppressed)
by about 6% (4%). In other words, the relation gSL ¼ �4gT
valid at the μ ¼ mLQ, becomes gSL ¼ �8.8gT when the
four-loop running is used.3 The same applies to Eq. (8)
regarding the couplings g̃SR and g̃T .

B. RD and RD�

The goal of this study is to establish whether or not any
of the scalar leptoquarks, with a minimalistic set of Yukawa
couplings, fits the current experimental world average of
RD and RD� . The experimental averages are steadily
updated in Ref. [23]. The most recent values are

Rexp
D ¼ 0.344ð26Þ; Rexp

D� ¼ 0.285ð12Þ; ð9Þ

with a correlation coefficient ρ ¼ −0.39.
The SM predictions for these quantities are plagued by

systematic uncertainties arising from hadronic matrix
elements, i.e., from the relevant form factors. In the case
ofDmeson in the final state the problem is easier to handle
because only the vector current contributes, i.e., only two
form factors are present, fþ;0ðq2Þ, namely,

hDðkÞjs̄γμbjBðpÞi ¼
�
ðpþ kÞμ −m2

B −m2
D

q2
qμ
�
fþðq2Þ

þm2
B −m2

D

q2
qμf0ðq2Þ; ð10Þ

which are equal at q2 ¼ 0, fþð0Þ ¼ f0ð0Þ, where q ¼
p − k and q2 ∈ ½m2

l; ðmB −mDÞ2�, with l∈ fe; μ; τg. That
condition is extremely helpful when extrapolating the form
factors that are accessible through lattice QCD at large q2’s
down to low q2’s. Two such lattice QCD analyses [24,25]
agree, and their results are combined in Ref. [26], which is
used to make the SM prediction,

RSM
D ¼ 0.293ð8Þ; ð11Þ

which is a little less than 2σ smaller than measured;
cf. Eq. (9). For the new physics contributions to the
B → Dτν amplitude we will also employ the tensor form
factor fTðq2Þ, defined as

hDðkÞjs̄σμνbjBðpÞi ¼ −2ifTðq2Þ
mB þmD

ðpμkν − pνkμÞ: ð12Þ

Note that fT also depends on the renormalization scale μ. It
was observed that shapes of fTðq2Þ and fþðq2Þ are similar,
compatible with a q2-independent ratio of the two form
factors fTðq2Þ=fþðq2Þ ¼ 1.06ð12Þ [27].
The situation with RD� is more complicated. Both the

vector and the axial currents contribute to the B → D�lν̄
decay amplitude, which then involves four independent
form factors:

hD�ðkÞjc̄γμð1 − γ5ÞbjBðpÞi

¼ εμνρσε
�νpρkσ

2Vðq2Þ
mB þmD�

− iε�μðmB þmD� ÞA1ðq2Þ

þ iðpþ kÞμðε� · qÞ
A2ðq2Þ

mB þmD�

þ iqμðε� · qÞ
2mD�

q2
½A3ðq2Þ − A0ðq2Þ�; ð13Þ

where εμ is the D� polarization vector. Notice that the form
factor A3ðq2Þ is not independent but related to A1;2ðq2Þ, via
2mD�A3ðq2Þ ¼ ðmB þmD�ÞA1ðq2Þ− ðmB −mD� ÞA2ðq2Þ. It
is also related to A0ðq2Þ at q2 ¼ 0 as A3ð0Þ ¼ A0ð0Þ. We
prefer the parametrization given in Eq. (13) to the alter-
native one occasionally used in the literature [28], because
the form factors are dimensionless by definition (13).
Physical results are obviously independent of the para-
metrization used. The fact that there are many more form
factors and only one constraint [A3ð0Þ ¼ A0ð0Þ] makes the
lattice QCD computation of the B → D� form factors
particularly challenging when extrapolating the results
obtained for a few small three-momenta given to the
lighter meson down to the lower end of q2 ¼ ðp − kÞ2 ∈
½m2

l; ðmB −mD� Þ2�. Very recently, the results of three
detailed lattice QCD computations of these form factors
have been reported in Refs. [29–31]. When converted to the
same set of form factors, such as those defined in Eq. (13),
it appears that they are quite consistent when it comes to the
dominant form factor, A1ðq2Þ, but they do not agree for the
other form factors. That disagreement, when extrapolated
to low q2’s can lead to very different predictions. To
avoid such a situation, we will proceed as follows. Since
both quarks participating in this process are heavy,
mc;b ≫ ΛQCD, it is reasonable to use the decomposition
of hadronic matrix elements in terms of the form factors
motivated by the heavy quark effective theory, namely,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p hD�ðkÞjc̄γμð1 − γ5ÞbjBðpÞi

¼ εμνρσε
�νvρv0σhVðwÞ − iε�μðwþ 1ÞhA1

ðwÞ
þ iðε� · vÞvμhA2

ðwÞ þ iðε� · vÞv0μhA3
ðwÞ; ð14Þ

3Notice that the effect of one-loop running at μ ¼ mb is
gSL ¼ �8gT .
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which are used to fit the experimentally measured angular
distributions of the B → D�ð→ DπÞlν̄ decay (l∈ fe; μg).
In that way the normalization and shapes of the above
form factors are reconstructed from the measured angular
distribution. In the above expressions, vμ ¼ pμ=mB,
v0μ ¼ kμ=mD� , and w¼v·v0¼ðm2

Bþm2
D�−q2Þ=ð2mBmD� Þ.

More specifically, with the educated assumptions regarding
the shapes, as proposed in Ref. [32], the following
expressions have been used:

hA1
ðwÞ¼hA1

ð1Þ½1−8ρ2zþð53ρ2−15Þz2−ð231ρ2−91Þz3�;

R1ðwÞ¼
hVðwÞ
hA1

ðwÞ¼R1ð1Þ−0.12ðw−1Þþ0.05ðw−1Þ2;

R2ðwÞ¼
hA3

ðwÞþðmD�=mBÞhA2
ðwÞ

hA1
ðwÞ

¼R2ð1Þþ0.11ðw−1Þ−0.06ðw−1Þ2; ð15Þ

where z ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p Þ. Therefore,
only four parameters are to be obtained from the fit with
experimental data: hA1

ð1Þ, ρ2, R1ð1Þ and R2ð1Þ. After
combining the experimental results of several experiments
(cf. Ref. [23]), the following values have been quoted:

ρ2¼1.121ð24Þ; R1ð1Þ¼1.269ð26Þ; R2ð1Þ¼0.853ð17Þ;
ð16Þ

while the value of hA1
ð1Þ, being an overall multiplicative

factor, is immaterial for the discussion of RD� . The
correlation matrix for these parameters is given in
Ref. [23], and we used it in our numerical estimates.
Note that the Belle II results of the above parameters [33]
appeared after the release of the HFLAV review [23], but
the reported results are fully consistent with the numbers
quoted in Eq. (16).
The relations between the form factors given in Eqs. (14)

and (15) and those in (13) are

A1ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
mB þmD�

ðwþ 1ÞhA1
ðwÞ;

Vðq2Þ
A1ðq2Þ

¼
�
1 −

q2

ðmB þmD� Þ2
�−1

R1ðwÞ;

A2ðq2Þ
A1ðq2Þ

¼
�
1 −

q2

ðmB þmD� Þ2
�−1

R2ðwÞ; ð17Þ

where, again, w ≥ 1 is the recoil momentum, q2 ¼
m2

B þm2
D� − 2mBmD�w. The values of parameters given

in Eq. (16) are obtained from experimental studies of the
angular distribution of B → D�ð→ DπÞlν̄, with l∈ fe; μg,
for which m2

l =m
2
B;D is negligibly small, and therefore

the pseudoscalar form factor A0ðq2Þ cannot be accessed.

That form factor, however, contributes significantly to
B → D�τν̄. To get that information we will define

R0ðwÞ ¼
�
1 −

q2

ðmB þmD� Þ2
�
A0ðq2Þ
A1ðq2Þ

; ð18Þ

which is known at wmax (i.e., q2 ¼ 0), due to

A0ð0Þ
A1ð0Þ

¼ 1

2mD�

�
mB þmD� − ðmB −mD�ÞA2ð0Þ

A1ð0Þ
�
: ð19Þ

We thus have

R0ðwmaxÞ ¼
mB þmD�

2mD�
−
mB −mD�

2mD�
R2ðwmaxÞ

¼ 1.087ð14Þ; ð20Þ
where we used information from Eqs. (15) and (16) to get
the last number. We need at least one extra point to have the
information on the slope of the form factor ratio R0ðwÞ. To
that end we can use the lattice QCD results which are
computed at small w values (or equivalently, large q2’s).
From the information provided in their papers, at w ¼ 1, we
find A0=A1 ¼ 1.423ð53Þ; 1.387ð49Þ; 1.186ð72Þ for MILC/
FNAL [29], JLQCD [31], and HPQCD [30], respectively.
After taking the average,

R0ð1Þ ¼
4mBmD�

ðmB þmD� Þ2
A0ðq2maxÞ
A1ðq2maxÞ

¼ 1.087ð26Þ; ð21Þ

which, when compared with Eq. (20), indicates a flat
behavior of R0ðwÞ. If, instead, we took separately the
average of lattice values for A0ðq2maxÞ and of A1ðq2maxÞ, and
then combined them in the ratio, we would have obtained
R0ð1Þ ¼ 1.095ð31Þ, indicating a small negative slope in
w − 1. To capture these effects we will take

R0ðwÞ ¼ 1.09 − 0.16ðw − 1Þ; ð22Þ
to which we attribute an error of 10%, to account for the
spread of lattice data at w ¼ 1. With the ingredients
described above we obtain

RSM
D� ¼ 0.247ð2Þ; ð23Þ

hence over 3σ smaller than the current experimental
average given in Eq. (9).
We should stress once again that our basic assumption is

that the BSM physics can modify the coupling to τ lepton
while leaving the couplings to lighter leptons intact. This is
why we could use the experimental information on the form
factors. If that assumption is relaxed then one ends up with
a very large error bar on RD� , reflecting the disagreement
among various lattice QCD results [34,35]. To consider the
BSM scenarios captured by the Lagrangian (1) we need
three more form factors T1;2;3ðq2Þ defined as
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hD�ðkÞjc̄σμνbjBðpÞi

¼ ϵμναβ

�
−ε�αðpþ kÞβT1ðq2Þ

þ ε�αqβ
m2

B −m2
D�

q2
½T1ðq2Þ − T2ðq2Þ�

þ ðε�qÞpαkβ
2

q2

�
T1ðq2Þ − T2ðq2Þ

−
q2

m2
B −m2

D�
T3ðq2Þ

��
: ð24Þ

They have been very recently computed in Ref. [30]. From
that paper we extract (at μ ¼ mb)

T1ðq2Þ
A1ðq2Þ

¼ 0.96þ 0.041q2=GeV2;

T2ðq2Þ
A1ðq2Þ

¼ 0.96 − 0.025q2=GeV2 − 0.002q4=GeV4;

T3ðq2Þ
A1ðq2Þ

¼ 0.35þ 0.040q2=GeV2; ð25Þ

with an overall error of 6%, 4%, and 30%, respectively.
With the information given above it is convenient to

write

RDð�Þ

RSM
Dð�Þ

¼ j1þ gVL
j2 þ aD

ð�Þ
S ðjgSL j2 þ jg̃SR j2Þ

þ aD
ð�Þ

T ðjgT j2 þ jg̃T j2Þ þ aD
ð�Þ

SV Re½ð1þ gVL
Þg�SL �

þ aD
ð�Þ

TV Re½ð1þ gVL
Þg�T �; ð26Þ

where in the case ofD in the final state, thanks to the lattice
QCD results [24,25,27], we obtain [36,37]

aDS ¼ 1.08ð1Þ; aDT ¼ 0.83ð5Þ;
aDSV ¼ 1.54ð2Þ; aDTV ¼ 1.09ð3Þ: ð27Þ

Instead, for the case ofD� in the final state, and based on
the discussion presented above, we have

aD
�

S ¼ 0.037ð4Þ; aD
�

T ¼ 8.56ð35Þ;
aD

�
SV ¼ −0.107ð11Þ; aD

�
TV ¼ −2.91ð11Þ: ð28Þ

Note that the lattice QCD results of the form factors T1;2;3

significantly reduced the values of the coefficients aD
�

T and
aD

�
TV , when compared to the values given in Refs. [36–38].
Before closing this section we should reiterate that our

estimates of RSM
D� (23) and of the coefficients in Eq. (28) are

obtained by mostly relying on the form factors obtained
from the experimental data which were averaged and fit to
the parametrization of Ref. [32], and also given in Eq. (15).

Of course that parametrization is not the only one possible,
and it already received criticism in the literature, suggesting
that its extension proposed in Ref. [39] or an alternative
parametrization of Ref. [28] should be used. With the
current precision of experimental data, however, both
parametrizations fit the data equally well, and the corre-
sponding results are fully compatible. To make that point
more explicit we used the results presented in the most
recent experimental analysis of the angular distribution of
B → D�ð→DπÞlν, presented in Ref. [33], in which the
form factors are extracted by using both parametrizations,
namely the CLN of Ref. [32] and the BGL one of Ref. [28].
Both parametrizations give a satisfactory χ2=d:o:f: and
therefore lead to the same value of RSM

D� , as well as to almost
indistinguishable values of the parameters aD

�
S;T;SV;TV .

4

C. Collider constraints on leptoquarks

Asalreadymentioned above,we attribute thedeviations of
the observedRDð�Þ (9)with respect to their values predicted in
the SM(11) and (23) to a coupling of newphysics particles to
the third generation of leptons. In particular, we focus on the
scenarios in which the scalar leptoquark couples to τ and
either to c or to b quark. We refer to those coupling as to
Yukawa couplings. One should monitor that such couplings
do not become too large so that they could result in a
significant modification of the high dilepton mass tails of
pp → τν; ττ processes [40–44]. Both ATLAS [45,46] and
CMS [47] have presented results of their studies of such
Drell-Yan processes at high dileptonmasses. In this workwe
use the HighPT package [48,49] which provides us with a
built-in likelihood function of the leptoquark couplings for
each of the leptoquarks (for high-pT constraints in the case of
S1 leptoquark cf. [50]). They are obtained after recasting the
results of Refs. [45,46] to the scenarios discussed in this
paper. The exception is R̃2 and its coupling toNR which has
not been considered in HighPT. In Sec. III B we will explain
how one can simulate Drell-Yan effects of R̃2 by those of R2

coupled to ordinary neutrinos.
If light enough the leptoquarks can be produced in pairs

via QCD interactions. Single leptoquark production, on the
other hand, is completely determined by the Yukawa
couplings. To satisfy the upper bounds on the lepto-
quark-mediated cross sections determined by ATLAS

4To be fully explicit, we find RSM
D� ¼ 0.255ð5Þ and

CLN − Belle II∶ aD
�

S ¼ 0.039ð7Þ; aD
�

T ¼ 8.41ð64Þ;
aD

�
SV ¼ −0.111ð20Þ; aD

�
TV ¼ −2.80ð20Þ;

BGL − Belle II∶ aD
�

S ¼ 0.039ð7Þ; aD
�

T ¼ 8.46ð64Þ;
aD

�
SV ¼ −0.110ð21Þ; aD

�
TV ¼ −2.84ð19Þ;

where in the evaluation of the above coefficients, besides the form
factors extracted from the Belle II data [33], we used Eqs. (22)
and (25).
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and CMSwe set the leptoquark mass tomLQ ¼ 1.5 TeV for
all cases [51–53].

D. B → Kð�Þνν̄

While our goal is not to accommodate the recently
observed deviation of the measured BðB → Kνν̄Þ [9] with
respect to the SM prediction [10,54], we should monitor
that our scenarios do not get in conflict with the exper-
imental bounds on BðB → Kð�Þνν̄Þ [55]. To do so we
consider the following effective Lagrangian:

Lb→sνν
eff ¼

ffiffiffi
2

p
GFαemλt
π

	
Cij
Lðs̄LγμbLÞðν̄LiγμνLjÞ

þ Cij
Rðs̄RγμbRÞðν̄LiγμνLjÞ;

þ C̃NN
L ðs̄LγμbLÞðN̄Rγ

μNRÞ
þ C̃iN

LRðs̄LbRÞðν̄LiNRÞ
þ C̃Ni

RLðs̄RbLÞðN̄RνLiÞ

þ H:c:; ð29Þ

where i ¼ e, μ, τ. The SM contribution is characterized by
a unique and flavor diagonal left-handed interaction,
Cij
L;SM ¼ CL;SMδ

ij, with CL;SM ¼ −6.32ð7Þ. Leptoquarks,
considered in this work can contribute to operators with
different Lorentz structures or with NR included in the
interactions. We will use the expressions and ingre-
dients from Refs. [10,54] to check on the experimental
bounds [9,55].

E. Loop-induced constraints: Z → ll;νν and τ → lνν̄

Since accommodating Rexp
Dð�Þ > RSM

Dð�Þ requires significant
coupling of the third family of leptons to leptoquarks,
we should monitor that the resulting BðZ → ττÞ and
BðZ → νν̄Þ remain within the experimental error bars [55].
To do so we employ the expressions derived in Ref. [56] for
all of the scalar leptoquarks and confront them with
measured effective couplings gτV;A of Z boson. Similarly,
the couplings to neutrinos should remain consistent
with Neff ¼ 2.9840ð82Þ [57].
Modifications of the on shell fermionic couplings to W

are less precisely known, and we do not consider them here.
On the other hand, if the quark loop is charged (e.g., t̄b or
c̄b), it will induce, via W exchange, leptonic decays
of τ [56,58], which we do consider in our analyses.

III. LEPTOQUARK MODELS

In this section we focus on three specific scenarios
of SM extended by a presence of a single scalar Oð1 TeVÞ
leptoquark that could provide us with a plausible
explanation of Rexp

Dð�Þ > RSM
Dð�Þ through couplings to the third

generation of leptons. In doing so we consider the models
with a minimal number of Yukawa couplings. Three such
scenarios allow for couplings to bτ and/or cτ and will be
discussed one by one in the following.

A. R2

In terms of the SM quantum numbers,5 the R2 doublet of
scalar leptoquarks corresponds to ð3; 2Þ7=6, so that the
electric charge of its components isQ ¼ 2=3 andQ ¼ 5=3.
The Yukawa interactions are described via

LR2
¼ yijRQ̄

a
i ejR

a
2 þ yijL ūRiR

T;a
2 ϵabLb

j þ H:c:; ð30Þ

where Q and L are the quark and lepton doublets,
i.e., Qi ¼ ½ðV†uÞi; di�T , L ¼ ½νl;l�T , with V being the
Cabibbo–Kobayashi-Maskawa (CKM) matrix. Notice that
the left-handed neutrinos are in the flavor basis. The key
element in building a model is to specify the relevant
Yukawa couplings. We opt for the minimal number of
parameters, and in the down-quark and charged-lepton
mass basis we choose

yR ¼

0
B@

0 0 0

0 0 0

0 0 ybτR

1
CA; yL ¼

0
B@

0 0 0

0 0 ycτL
0 0 0

1
CA; ð31Þ

which leads to the interaction Lagrangian:

LR2
¼ ybτR V�

jbðūjPRτÞR5=3
2 þ ybτR ðb̄PRτÞR2=3

2

− ycτL ðc̄PLτÞR5=3
2 þ ycτL ðc̄PLντÞR2=3

2 þ H:c: ð32Þ

This R2 model brings a tree-level contribution to
RDð�Þ which, when matched to SMEFT at the scale
μ ¼ mR2

¼ 1.5 TeV, is parametrized by two operators,

Oð1Þ
lequ and Oð3Þ

lequ, the coefficients of which satisfy

Cð1Þ
lequ
ττbc

ðmR2
Þ ¼ 4Cð3Þ

lequ
ττbc
ðmR2

Þ ¼ −
ybτR ycτL

�

2
: ð33Þ

In terms of the LEET (1) the relevant couplings are gSL and
gT . Their relation at the matching scale (33) gSLðmR2

Þ ¼
4gTðmR2

Þ is modified by the effects of running down to
μ ¼ mb (7), and reads as

gSLðmbÞ ¼ 8.8 × gTðmbÞ: ð34Þ

It is well known that accommodating Rexp
Dð�Þ > RSM

Dð�Þ in a
scenario with R2 necessitates introducing a complex
coupling gSLðμ ¼ mbÞ [1,4,59,60], in a way consistent
with Eqs. (26) and (34). This is shown in the left panel
of Fig. 1. That also means that the product of two Yukawa
couplings has to be complex,6

5In the notation we employ the quantum numbers correspond-
ing to ðSUð3Þ;SUð2ÞLÞUð1ÞY of the SM gauge group.

6We choose to attribute the complex phase to ybτR ¼ jybτR jeiφ.
For alternative constraints on thisCP-violating phase see Ref. [4].
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gSLðmbÞ ¼ 0.60 ×
1

2
jybτR ycτL jeiφ: ð35Þ

The best fit values to RDð�Þ are

jgSLðmbÞj ¼ 0.78; φ ¼ �1.96ð¼�112°Þ: ð36Þ

In the right panel of Fig. 1 we show the other important
constraints, but this time in the plane span by the moduli of
our Yukawa couplings (jybτR j,jycτL j). We see that the 2σ
constraints arising from experimental studies of the ditau
and monotau high-pT tails at the LHC are at odds with the
values of Yukawa couplings preferred by Rexp

Dð�Þ. Otherwise
the 2σ constraint stemming from consistency with the
measured ΓðZ → ττÞ (or, better, gτV;A [55]) would select
larger values of jycτL j while keeping moderately small jybτR j.
We reiterate that we use mR2

¼ 1.5 TeV, consistent with
the lowest mass allowed for a leptoquark decaying mostly
to cτ which is experimentally set to be 1.3 TeV [61].
Varying mR2

does not change our conclusion, which is that
the constraints on Yukawa couplings deduced from exper-
imental studies of pp → ττ; τν (+ soft jets) at high-pT’s are
incompatible with those obtained from Rexp

Dð�Þ . Obviously,
that statement is valid to 2σ and not to 3σ or more. It is
therefore difficult to make a strong statement on this issue
because the uncertainties on the high energy end, related to
the reconstruction of τ leptons can be questioned [62], and
those on the low energy end related to the form factors used
to compute RD� , may change once they are fully under-
stood, and the results of various lattice collaborations agree.
Note, however, that the effect of the propagation of R2 has
been properly taken into account. Notice also that dedicated

experimental searches for a leptoquark signal in pp → ττ
could definitively exclude this scenario.
Since we have aligned the couplings with the down-

quark mass, the tree-level flavor changing neutral semi-
leptonic processes b → s or b → d are forbidden. We thus
cannot expect significant effects contributing b → sνν or
b → sll processes. The corresponding b → d rare tran-
sitions are further CKM suppressed.

B. R̃2

Another interesting scenario that could potentially
describe the deviation Rexp

Dð�Þ > RSM
Dð�Þ is the one with a

doublet of R̃2 scalar leptoquarks. In terms of the SM
quantum numbers, R̃2 is specified by ð3; 2Þ1=6, and it is
peculiar because besides its coupling to a lepton doublet, it
can also couple to a lepton singlet state, NR, namely

L ¼ −ỹijL d̄iR̃a
2ϵ

abLj;b þ ỹiNR Q̄i;aR̃a
2NR þ H:c: ð37Þ

We again opt for a minimal setup and fix our model by
choosing as nonzero Yukawa couplings

ỹL ¼

0
B@

0 0 0

0 0 0

0 0 ỹbτL

1
CA; ỹR ¼

0
B@

0

ỹsNR
0

1
CA; ð38Þ

needed to enhance RSM
Dð�Þ . As before, the coupling toNR is in

the down-quark basis. For the sake of simplicity we
introduce only one massive sterile state NR but such that
its mass is negligible with respect to all the other particles
participating in B → D�τNR. The interaction Lagrangian,
in the mass basis of quarks, then reads as

FIG. 1. R2 bounds: In the left plot are shown the real and imaginary parts of gSLðμ ¼ mbÞ compatible with Rexp
Dð�Þ to 1 and 2σ. The same

color is then used to show that same constraint on the Yukawa couplings in the right plot, but at the scale μ ¼ mR2
which we choose to be

mR2
¼ 1.5 TeV. The vertical band in the right plot stems from the 2σ consistency with the measured BðZ → ττÞ. The 2σ region allowed

by the experimental studies of high-pT tails of pp → τν; ττ, is marked by the dashed line.
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L ¼ −ỹbτL ðb̄PLτÞR̃2=3
2 þ ỹbτL ðb̄PLνÞR̃−1=3

2

þ ỹsNR ðs̄PRNRÞR̃−1=3
2 þ ỹsNR VjsðūjPRNRÞR̃2=3

2

þ H:c:; ð39Þ

where the superscript in R̃Q
2 denotes the leptoquark’s

electric charge. It is important to emphasize that NR is
not just a chirally flipped projection of the ordinary
neutrino, but a completely different particle. As such, it
entails the new physics contribution that does not interfere
with the SM, nor with the BSM contribution involving left-
handed neutrinos in the final state. In other words, the
contribution involving NR always increases the decay
width with respect to the SM. Schematically, the branching
fraction of a decay mode

B ∝ jASM þAνL
NPj2 þ jANR

NPj2: ð40Þ

In this model there are two tree-level contributions to RDð�Þ

which are described by two NR-SMEFT coefficients (5). It
is a simple matter to read them off at the matching scale
μ ¼ mR̃2

and get

Cð1Þ
Nldq
τbs
ðmR̃2

Þ ¼ 4Cð3Þ
Nldq
τbs
ðmR̃2

Þ ¼ −
1

2
ỹsNR ỹbτ�L : ð41Þ

Running from the matching scale down to μ ¼ mb is then
made by means of Eq. (8) so that one finally arrives at
the low energy effective theory (1) with a scenario
g̃SRðmbÞ ¼ 8.8 × g̃TðmbÞ.
Besides RDð�Þ , one should keep the width of Bc under

control. This is usually enforced by requiringBðBc → τνÞ ≤
30%which is indicated in Fig. 2. Constraints from pp → ττ
are obtained by theHighPTpackage in the leptoquarkmediator
mode. Conversely, NR coupled to R̃2 is not included within
the HighPT package. Thus, in order to quantify the agreement
of R̃2-mediated pp → NRτ with experimental data we first
observe that in partonic processes pp → τET;miss there is no
interference between the SM and the amplitude with NR.
Thus, the signature of an R̃2=3

2 -mediated process, e.g.,
uLb̄R → τLN̄R is experimentally indistinguishable from
an R2=3

2 -mediated process uRb̄L → τRντ, provided the cou-
plings and the masses of the two LQs are equal. In this way,
by carefully adjusting R2 couplings, we can fully assess the
agreement of R̃2 couplings with pp → τντ experimental
searches. We show the combined pp → ττ; τν constraints
in Fig. 2.
More problematic, however, is the fact that this model

generates a huge contribution to BðB → Kð�ÞννÞ, so that
accommodating the current Rexp

Dð�Þ would result in BðB →

Kð�ÞννÞ orders of magnitude larger than the current
experimental bounds. For that reason this model should
be discarded.

As a side remark, we can turn the above argument around
and claim that this scenario can be used to describe the
recently measured BðB → KννÞ [9], 3σ larger than pre-
dicted in the SM, should the improved measurement of
Rexp
Dð�Þ lower the current average.

C. S1
The scalar singlet, often referred to as S1, is the last of the

three possible scalar leptoquarks that can accommodate the
experimental hint of LFUV, Rexp

Dð�Þ > RSM
Dð�Þ , with a minimal

number of Yukawa couplings. In terms of the SM quantum
numbers this leptoquark is described by ð3̄; 1Þ1=3. Its
peculiarity is that it can couple to two fermion doublets
or to two singlets, namely,

LS1 ¼ yijLQ
C;a
i ϵabLb

jS1 þ yijRu
C
i ejS1 þ H:c: ð42Þ

For the minimal setup of Yukawa couplings we choose

yL ¼

0
B@

0 0 0

0 0 0

0 0 ybτL

1
CA; yR ¼

0
B@

0 0 0

0 0 ycτR
0 0 0

1
CA; ð43Þ

defined in the mass basis of the down-type quarks, as
before. In its more explicit form the above Lagrangian
reads as

FIG. 2. R̃2 scenario at the high-energy scale μ ¼ mR̃2
¼

1.5 TeV. The blue band corresponds to the constraint arising
from Rexp

Dð�Þ , while the exclusion from the high-pT tails corresponds
to a shaded gray region. To account for the limit arising from the
measured lifetime of Bc meson, we impose BðBc → τνÞ ≤ 30%,
which is below the dashed curve in the plot. The red curves
correspond to the recently measured BðB → KννÞ [9].
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LS1 ¼ ybτL V�
ibðuCi PLτÞS1 − ybτL ðbCPLντÞS1 þ ycτR ðcCPRτÞS1

þ H:c: ð44Þ

With the above choice of couplings one has, at the
matching scale μ ¼ mS1 ¼ 1.5 TeV,

Cð1Þ
lequ
ττbc
ðmS1Þ ¼ −4Cð3Þ

lequ
ττbc
ðmS1Þ ¼ −

ybτL ycτR
�

2
; ð45Þ

i.e., the nonzero low energy effective couplings are gSL and
gT , with

gSLðmS1Þ ¼ −
v2

4Vcb

ybτL ycτR
�

m2
S1

: ð46Þ

Their relation at the matching scale gSL ¼ −4gT , after
running down to μ ¼ mb (7), becomes

gSLðmbÞ ¼ −8.8 × gTðmbÞ: ð47Þ

In the S1 case, and with the couplings chosen as in Eq. (43),
one also gets a nonzero gVL

, namely

gVL
¼ v2

4Vcb

VcbjybτL j2
m2

S1

: ð48Þ

Contrary to the R2 case, in this situation one can find a
region in which all the constraints overlap for real values of
couplings, which is shown in Fig. 3. As before, the
measured ΓðZ → ττÞ represents a powerful constraint on

the Yukawa couplings, but this time it is interesting to
note that it is comparable to the constraint obtained from
Bðτ → μννÞ to which the leptoquark correction is also
generated through a loop, cf. Ref. [56]. We have used the
Flavio package [63,64] for the leptonic τ decays.
Clearly, this is the only acceptable single scalar lepto-

quark solution to the problem of Rexp
Dð�Þ > RSM

Dð�Þ involving a
minimal number of parameters. Since this model is viable,
we can use the region of allowed parameters shown in
Fig. 3 and make several interesting predictions.
(1) In the previous section we made sure that

BðBc → τνÞ ≤ 30%. In our S1 model such a require-
ment is not necessary since the correction to
Bc → τν is generated through gSL and amounts to

BðBc→τνÞS1
BðBc→τνÞSM∈½1.13;1.48�; where

BðBc→τνÞSM¼ð2.24�0.07Þ%×

�
Vcb

0.0417

�
2

; ð49Þ

which in fact is a prediction of this model, and it is
well below BðBc → τνÞ ≤ 30%.

(2) In the previous section we also showed that the
consistency with Rexp

Dð�Þ resulted in a huge enhance-
ment of BðB → KννÞ. In our S1 model this is not the
case because there is no tree-level coupling to sν. It
can however generate, through the box or penguin
diagrams involving one S1 and one W boson, a
contribution to b → sττ or b → sντν̄τ, as shown in
Figs. 4 and 5. The leading contribution to b → sττ is
due to the virtual top quark in the box, as shown in

FIG. 3. In the left plot is shown the region of gVL
and gSLðμ ¼ mbÞ ¼ −8.8gTðμ ¼ mbÞ compatible with Rexp

Dð�Þ to 1σ and 2σ. In the right
plot are combined the constraints on the Yukawa couplings of the S1 model specified in Eqs. (42) and (43): Blue and yellow regions
respectively depict the 2σ consistency with RDð�Þ and BðZ → ττÞ. The latter is comparable with the constraint marked with dashed lines
corresponding to the region allowed by Bðτ → μν̄μντÞ to 2σ. Note that in this case the gray regions are not allowed by the experimental
studies of high-pT tails of pp → τν; ττ (to 2σ as well). Green regions are the result of the global fit at 1σ and 2σ CL.
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Fig. 4 which then shifts the SM Wilson coeffi-
cients as

δC9 ¼ −δC10 ¼ −
jybτL j2
8πα

xt log xt
xt − 1

¼ −0.31jybτL j2; ð50Þ
where xq ¼ m2

q=m2
S1
. The contribution from the box

diagram is computed in the broken electroweak
phase with massive quarks so that the Glashow-
Iliopoulos-Maiani (GIM) mechanism actually an-
nuls all the ui-mass independent terms, leading to a
finite result (even in the unitary gauge) and to
vanishing of the whole diagram if the quarks
were mass degenerate. Comparing this to the SM
Wilson coefficients, CSM

9 ¼ 4.2, CSM
10 ¼ −4.1, we

use δC9=CSM
9 ≈ δC10=CSM

10 ¼ −0.075jybτL j2 and find

BðBs → ττÞS1
BðBs → ττÞSM ∈ ½0.73; 0.98�;

BðB → KττÞS1
BðB → KττÞSM ∈ ½0.73; 0.98� ð@2σÞ: ð51Þ

This is quite a remarkable result since the suppres-
sion occurs only due to ybτL ≠ 0. That means that
even if Rexp

Dð�Þ were equal to RSM
Dð�Þ , one could simply

have ycτR → 0, and still have the above suppression of
the b → sττ rates. Knowing that ybτL is very difficult
to constrain either through the LHC studies of high-
pT tails of pp → ττ, or via the low energy con-
straints, such as BðϒðnSÞ → ττÞ, actually measuring
BðBs → ττÞ and/or BðB → Kð�ÞττÞ would be the

only way to understand whether or not the above
suppression indeed takes place.

(3) Consider the penguin contribution to b → sντν̄τ. We
already stated that the models we consider in this
paper are not meant to solve the 2.7σ discrepancy
between the first measurement of BðB → KννÞBelle II

and its SM prediction. Since in this case there is no
tree-level contribution to b → sνν there is no worry
that BðB → Kð�ÞννÞ in this model could then be in
conflict with experimental upper bounds. This
model in fact leads to a loop induced contribution
to b → sντντ which is again proportional to jybτL j2.
The main features of the computation of the dia-
grams shown in Fig. 5 are described in Appendix B.
In terms of the relevant Wilson coefficient,

Cij
L ¼ CSM

L δij þ δCS1
L δiτδjτ;

δCS1
L ¼ jybτL j2

16πα

X
i¼u;c;t

λi
λt
xWgðxi; xWÞ; ð52Þ

where CSM
L ¼ −6.32ð7Þ [65]. In the S1 contribution

we sum over all up quarks in the loop that contribute
to the renormalized yLsτ. Besides xi ¼ m2

ui=m
2
S1
, we

also introduced xW ¼ m2
W=m

2
S1
, and the CKM fac-

tors λi ¼ VibV�
is. The explicit expression for the loop

function gðxi; xWÞ can be found in Eq. (B4). Here we
just note an important feature that a mild dependence
of the loop function on xi leads to an efficient GIM
cancellation. For illustration, we observe that
gðxu; xWÞ ≈ gðxc; xWÞ ¼ 31.0–36.8i is not much
different from gðxt; xWÞ ¼ 19.1–36.2i. The imagi-
nary part arises from the fact that all fermions
propagating in the loop can be on their mass
shell. Finally the S1 contribution to the Wilson
coefficient is

CS1
L ¼ ð−9.3þ 0.4iÞ × 10−2jybτL j2: ð53Þ

The resulting shift of the physical decay rates is

BðB → Kð�ÞννÞS1
BðB → Kð�ÞννÞSM ¼

����1þ δCS1
L

3CSM
L

����
2

∈ ½1.001; 1.02� ð@2σÞ: ð54Þ

FIG. 4. Dominant contribution to b → sτþτ− via box diagram.

FIG. 5. Dominant contribution to the ysτL renormalized vertex leading to b → sντν̄τ.
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It is important to note that this prediction depends
heavily on the assumption that ysτL ðμÞ ¼ 0 [Eq. (43)].
In principle, that does not have to hold since the
current best bound is ysτL ≲ 1.5 due to high-pT
constraints and Ds → τν decay. Such large values
for ysτL would drastically change the prediction since
it causes a tree-level effect in the given process.

(4) Among other (semi)leptonic decays, we may expect
an appreciable contribution to t → bτν decay. Even
though it is proportional to jybτL j2 that contribution is
too small to be distinguished experimentally.7

(5) A term proportional to VubjybτL j2 can contribute to
the b → uτν amplitude, and thus it can modify
BðB− → τνÞ and BðB → πτνÞ. The leading term
interferes with SM and gives at most 3% enhance-
ment of the SM branching fractions.

(6) Besides BðB → Dð�ÞτνÞ, one can infer a number of
observables from the angular distribution of this
decay, cf. for example Refs. [38,59,67–70]. In the
case of τ in the final state, the fraction of the decay
rate to a longitudinally polarized D⋆ has been
measured, and the two measurements do not agree:
FD�;Belle
L ¼ 0.60ð9Þ and FD�;LHCb

L ¼ 0.43ð7Þ, the for-
mer being larger and the latter consistent with the
SM prediction, FD�;SM

L ¼ 0.46ð1Þ. Belle also man-
aged to measure the τ-polarization asymmetry in the
B → D�τν, and found PD�;Belle

τ ¼ −0.37� 0.54
which, with increasing accuracy, may become an
important observable to select among various
BSM scenarios. Its SM value is known, PD�;SM

τ ¼
−0.51ð2Þ. In our S1, we obtain

FD�
L ¼ 0.44ð1Þ; PD�

τ ¼ −0.53ð3Þ: ð55Þ

Similarly, for the forward backward asymmetry
we find

AD�
fb ¼ −0.05ð1Þ; AD

fb ¼ 0.33ð1Þ; ð56Þ
the values that are to be compared to the SM
predictions AD;SM

fb ¼ 0.3600ð4Þ, and AD�;SM
fb ¼

−0.06ð1Þ. Predictions for the aforementioned angu-
lar observables, as well as their experimental values,
are graphically compared to the Standard Model
values in Fig. 6.

D. S1 alternative

In Eq. (43) we chose both the left- and the right-handed
Yukawa couplings. In that way we provided a viable
solution to Rexp

Dð�Þ > RSM
Dð�Þ , as shown in Fig. 3. However,

as can be seen in Lagrangian (44), one could also opt for
left-handed Yukawa couplings only and generate a con-
tribution to RDð�Þ . One (minimal) possibility is to choose

yL ¼

0
B@

0 0 0

0 0 ysτL
0 0 ybτL

1
CA; yR ¼ 0; ð57Þ

so that the only nonzero coupling in LEET (1) is gVL
, which

is expressed by the first term in Eq. (6), i.e.,

gVL
¼ −

v2

m2
S1

Vcs

Vcb
ysτ�L ybτL : ð58Þ

It is the CKM enhancement that makes this model
appealing, but it nevertheless gets excluded by the
Bs − B̄s mixing (i.e., ΔmBs

) which is incompatible with
the constraint stemming from Bðτ → μνν̄Þ, as can be seen
in Fig. 7. Relevant expressions for the Bs − B̄s mixing are
defined in the Appendix A. Note that in the numerical
analysis we used the lattice QCD result for the hadronic

parameters fBs

ffiffiffiffiffiffiffi
B̂Bs

q
¼ 256ð6Þ MeV, as obtained from the

FIG. 6. Predictions of our S1 model for three observables relevant to B → Dð�Þτν, namely (i) FD�
L , the fraction of longitudinally

polarized D�, (ii) PD�
τ , the τ-lepton polarization asymmetry, and (iii) ADð�Þ

fb , the integrated forward-backward asymmetry. Shown are the
ratios of our predictions with respect to the SM values. Dashed vertical lines thus correspond to the SM. We also display the
experimental results when available.

7The latest reported Bðt → bτνÞ ¼ 0.105ð1Þð7Þ [66] is mea-
sured with 7% of systematic uncertainty, which is much larger
than the leptoquark contribution to this decay.
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lattice QCD simulation with Nf ¼ 2þ 1þ 1 sea quark
flavors [71]. The feature of this model that we emphasized
above, namely that the constraints arising from Δmexp

Bs
and

from Bðτ → μνν̄Þexp are not mutually compatible, would be
even more pronounced if we used the world average lattice

QCD result with Nf¼2þ1 [26], fBs

ffiffiffiffiffiffiffi
B̂Bs

q
¼274ð8ÞMeV.

IV. SUMMARY

In this paper we revisited the possibilities of explaining
the experimental hint of LFUV suggesting that Rexp

Dð�Þ >
RSM
Dð�Þ to more than 3σ, by extending the SM by a single

scalar leptoquark in the minimal setup, i.e., with the
minimal number of Yukawa couplings. Of three scenarios
that could potentially contribute to RDð�Þ we found that only
the S1 leptoquark can provide the desired enhancement
without being in conflict with other constraints, most
notably those stemming from BðZ → ττÞexp and from the
LHC studies of the tails of the differential cross section of
pp → ττ; τν (þ soft jets) at high pT . While this latter
constraint will be steadily improved with higher luminosity
of the experimental data, it is important to emphasize that
important progress should be made on the low energy side
too. Current lattice QCD estimates of the hadronic matrix
elements relevant to B → D�lν still suffer from important
systematic uncertainties: the shapes of the form factors are
not clear, and, apart from the dominant form factor A1ðq2Þ
various collaborations do not agree among themselves.
In such a situation, we decided to use the form factors
extracted from the experimental studies regarding the
angular distribution of B→D�ð→DπÞlν, with l ¼ ðe; μÞ,

and to evaluate RSM
D� we needed only one piece of

information from lattice QCD, namely [A0ðq2maxÞ]. This
is also licit in the rest of our considerations since our main
assumption is that the new physics (leptoquarks) can couple
to the third generation of leptons only.8

Our only scenario, that we deem as viable, is the one with
the S1 leptoquark and with Yukawa couplings to both left-
and right-handed quark/lepton doublets. We checked that
the other possibility, in which only the left-handed cou-
plings are allowed to be nonzero, is not simultaneously
consistent with the constraints arising from ΔmBs

and from
Bðτ → lνν̄Þ. We provided several predictions that can help
with supporting or invalidating the model we propose.
As for the other models, the R2-model exhibits strong

tension between the constraints arising from RDð�Þ and from
the high-pT tails mentioned above. That tension disappears,
however, at 3σ, and even though we deem the model
unsatisfactory, one should monitor how the world average
of Rexp

Dð�Þ will evolve and in what way will move the
constraints coming from experimental studies of high-pT
tails with the next acquisition of data at the LHC.
On the other hand, the R̃2 model cannot provide an

explanation of Rexp
Dð�Þ > RSM

Dð�Þ because it necessarily results
in a huge contribution to b → sνν which then overshoots
the experimental bounds on BðB → Kð�ÞννÞ by orders of
magnitude.
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APPENDIX A: Bs MIXING

The S1 leptoquark with the choice of couplings as in
Sec. III D contributes via a box-diagram to the Bs − Bs
mixing amplitude. For convenience we match directly to
the low-energy effective theory and account for the QCD
renormalization group running between the scales μ ¼ mS1
and μ ¼ mb. The relevant Lagrangian reads as

Lbs ¼ −
4GFffiffiffi

2
p λ2t CLL

bs ðsLγμbLÞðs̄LγμbLÞ þ H:c:; ðA1Þ

FIG. 7. S1 with left-handed couplings only. Consistency with
experimental information to 2σ results in the purple bounds
obtained by combining ΔmBs

and RDð�Þ constraints, and the light
yellow region allowed by Bðτ → lνν̄Þ with l ¼ e, μ. Clearly the
two regions do not overlap, thus making this model a nonviable
solution to Rexp

Dð�Þ > RSM
Dð�Þ .

8Note also that the tensor form factors were recently computed
on the lattice [30], which we use in the form of the ratios
T1;2;3ðq2Þ=A1ðq2Þ.
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in the notation in which λt ¼ V�
tbVts. At the matching scale,

μ ¼ mS1 ¼ 1.5 TeV, for the Wilson coefficient we get

CLLðS1Þ
bs ðmS1Þ ¼

v2

256π2m2
S1

ðysτ�L ybτL Þ2
λ2t

; ðA2Þ

which, due to two loop running down to μ ¼ mb, is
rescaled by a factor of ηS1 ¼ 0.617, i.e.,

CLLðS1Þ
bs ðmbÞ ¼ ηS1C

LLðS1Þ
bs ðmS1Þ: ðA3Þ

This is to be added to the SM contribution to the same
Wilson coefficient [72,73]:

CLLðSMÞ
bs ðmbÞ ¼ ηB

m2
WS0ðm2

t =m2
WÞ

16π2v2

¼ 0.862ð3Þ × 10−3; ðA4Þ

where ηB ¼ 0.55.9 Finally, the frequency of oscillations of
the Bs − Bs system is

ΔMBs
¼ ΔMSM

Bs

����1þ CLLðS1Þ
bs ðmbÞ

CLLðSMÞ
bs ðmbÞ

����; ðA5Þ

where for the SM value, after using fBs

ffiffiffiffiffiffiffi
B̂Bs

q
¼

0.256ð6Þ GeV [71], we obtain

ΔMSM
Bs

¼ 4mBs

3
f2Bs

B̂Bs
jλtj2

CLLðSMÞ
bs ðmbÞ

v2

¼ 17.1ð8Þ ps−1
�

λt
0.04106

�
2

: ðA6Þ

A precise prediction depends on the values taken for the
bag parameters and CKM elements, which is to be
compared to ΔMexp

Bs
¼ 17.765ð6Þ ps−1 [55]. Notice also

that the above SM value of ΔMBs
does not include the

uncertainty in λt which is actually significant, cf. Ref. [10].
In our numerical analysis we used the above-mentioned
values, including the only lattice QCD estimate of

fBs

ffiffiffiffiffiffiffi
B̂Bs

q
obtained from simulations with Nf¼2þ1þ1

flavors. If, instead, we used the world average value,

fBs

ffiffiffiffiffiffiffi
B̂Bs

q
¼ 0.274ð8Þ GeV, as obtained from simulations

with Nf ¼ 2þ 1 flavors [26], we would have ΔMSM
Bs

¼
ð19.6� 1.1Þ ps−1, modulo uncertainty on λ2t .

APPENDIX B: PENGUIN CONTRIBUTION
TO b → sνν IN OUR S1 MODEL

In this appendix we describe the weak-interaction
renormalization of ysτL , a coupling that is assumed to vanish
at tree level. In the process S�1 → sντ presented in Fig. 5 we
choose the kinematical point such that S1 has an arbitrary
timelike momentum q while the fermions are massless
and on shell. We calculate the right diagram iΔysτ�L ðq2Þ
in Fig. 5 in Rξ gauge and find it gauge dependent.

10 Clearly,
the amplitude also depends on momentum q2. The renor-

malized coupling ysτL ðq2Þ ¼ ysτð0ÞL þ ΔysτL ðq2Þ is the sum of

the loop- and tree-level contribution ysτð0ÞL . We fix the latter
by the on shell renormalization condition:

ysτL ðq2 ¼ m2
S1
Þ ¼ 0: ðB1Þ

Notice that once the weak radiative corrections are present,
the S1 Yukawa couplings run with q2, and we can only set
ysτL ¼ 0 at a given momentum scale which we choose to be
such that the on shell amplitude S�1 → sντ vanishes. In
ΔysτL ðq2Þ we have not considered one-particle-reducible
diagrams with ui ↔ s flavor-changing loops on the quark
leg since these are q2 independent and are thus removed by
the renormalization condition (B1).
The resulting ysτL ðq2Þ is finite and gauge independent:

ysτ�L ðq2Þ ¼ g2ybτ�L

32π2
X
i¼u;c;t

λi
m2

S1

q2
hðq2=m2

S1
; xi; xWÞ; ðB2Þ

where the loop function reads as

hðz; xq; xWÞ ¼ −2ðxq − 1ÞzLi2
�
1 −

xW
xq − 1

�

− 2xqðz − 1ÞLi2
�
1 −

xq
xW

�

þ 2ðxq − zÞLi2
�
1 −

xW
xq − z

�

− zðxq − 1Þlog2
�

xW
xq − 1

�

þ ðxq − zÞlog2
�

xW
xq − z

�
: ðB3Þ

We have expressed the loop diagram in terms of Passarino-
Veltman functions [74] with the help of the FeynCalc

package [75]. To obtain analytic expressions for certain
C0 functions we have used Package-X [76], and the results
were numerically cross-checked against numerical values
returned by the program LoopTools [77,78]. At the scale of B
meson the momentum transfer q2 is well belowm2

S1
, and we

can safely take a limit z → 0, which leads us to

9Note that we use the renormalization group invariant defi-
nitions of ηS1 , ηB and of bag parameter B̂Bs

.

10Similar one-particle-irreducible Goldstone-mediated dia-
grams are proportional to m2

τ , and we accordingly neglect them.
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gðxi; xWÞ≡ lim
z→0

hðz; xi; xWÞ
z

¼ −2xiLi2
�
1 −

xq
xW

�
− 2Li2

�
1 −

xW
xi

�
þ
2xi logðxWxi Þ
xi − xW

− ðxi − 1Þ
�
2Li2

�
1 −

xW
xi − 1

�
þ log2

�
xW

xi − 1

��

− log2
�
xW
xi

�
: ðB4Þ
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