
Constraints on the variation of physical constants, equivalence principle
violation, and a fifth force from atomic experiments

V. A. Dzuba ,* V. V. Flambaum ,† and A. J. Mansour ‡

School of Physics, University of New South Wales, Sydney 2052, Australia

(Received 14 February 2024; accepted 22 August 2024; published 12 September 2024)

The aim of this paper is to derive limits on various forms of “new physics” using atomic experimental
data. Interactions with dark energy and dark matter fields can lead to space-time variations of fundamental
constants, which can be detected through atomic spectroscopy. In this study, we examine the effects of a
varying nuclear mass mN and nuclear radius rN on two transition ratios: the comparison of the two-photon
transition in atomic hydrogen with the hyperfine transition in 133Cs based clocks, and the ratio of optical
clock frequencies in Alþ and Hgþ. The sensitivity of these frequency ratios to changes in mN and rN
enables us to derive new limits on the variations of the proton mass, quark mass, and the QCD parameter θ.
Additionally, we consider the scalar field generated by the Yukawa-type interaction of feebly interacting
hypothetical scalar particles with Standard Model particles in the presence of massive bodies such as the
Sun and Moon. Using the data from the Alþ=Hgþ, Ybþ=Cs, and YbþðE2Þ=YbþðE3Þ transition frequency
ratios, we place constraints on the interaction of the scalar field with photons, nucleons, and electrons for a
range of scalar particle masses. We also investigate limits on the Einstein equivalence principle (EEP)
violating term (c00) in the Standard Model extension (SME) Lagrangian and the dependence of
fundamental constants on gravity.
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I. INTRODUCTION

The existence of life is consistent with a narrow possible
range of values for fundamental physical constants, see
e.g., the review [1]. This precise fitting of constants for life
may be explained by the variation of these constants in
space; life emerged in regions of the universe where the
fundamental constants have suitable values. Potential
evidence for such spatial variation in the fine structure
constant α has been observed in quasar absorption spectra
[2,3]. Based on this astrophysical data, it is suggested that
we are moving in the direction of increasing α, which could
lead to a slow drift of fundamental constants observable in
laboratory experiments [4,5].
There are a number of models which predict the

space-time variation of fundamental physical constants,
which may be related to dynamical dark energy models,
dark matter models, the variation of the unification scale
and string theory models—see, e.g., the review [1]. For

example, the space-time variation of fundamental constants
may be due to an interaction with a slowly evolving
scalar dark energy field or an oscillating dark matter field.
The dark matter candidate particles in this class are the
pseudoscalar axion (and axion like particles) and the
dilatonlike scalar particle [6–8]. If the mass of the cold
dark matter is very light (mDM ≪ 1 eV), it may be
considered to be a classical field oscillating harmonically
at every particular point in space. For axions, we may write
this as

a ¼ a0 cosðωtþ φÞ; ω ≈ma; ð1Þ

where φ is a (position-dependent) phase andma is the mass
of the axion. Assuming that axions saturate the entire dark
matter density, the amplitude a0 may be expressed in terms
of the local dark matter density ρDM ≈ 0.4 GeV=cm3, see
e.g., Ref. [9],

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ma

: ð2Þ

Similar expressions are used to describe the case of a scalar
field dark matter ϕ.
The effects of the interaction between the scalar field and

fermions may be presented as the apparent variation of
fermion masses. This immediately follows from a com-
parison of the interaction of a fermion with the scalar field
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−gfMfϕ
nψ̄ψ and the fermion mass term in the Lagrangian

−Mfψ̄ψ . Adding these terms gives M0
f ¼ Mfð1þ gfϕnÞ,

with n ¼ 1, 2. Similarly, the interaction of the scalar field
with the electromagnetic field may be interpreted as a
variable fine structure constant α0 ¼ αð1þ gγϕnÞ. These
variations may manifest themselves as a slow drift or
oscillations of frequencies of atomic clocks [10–12]. If the
interaction is quadratic in ϕ, the scalar field becomes
interchangeable with the pseudoscalar (axion) field as ϕ2

always has positive parity [11]. The corresponding theory
has been developed in Ref. [13], in which limits on the
axion interaction from atomic spectroscopy experiments
were obtained (see also Refs. [14,15]).
In this paper we consider the slow drift of the physical

constants, which may be due to an interaction with an
evolving nonoscillating dark energy field or the variation
of the density of the dark matter field ρDM in the case
where n ¼ 2, after averaging over fast oscillations of
cos2ðωtþ φÞ ¼ ð1þ cos 2ðωtþ φÞÞ=2. Such slow varia-
tion also appears in other models [1]. In then present paper
we do not assume any specific model predicting the
variation of the fundamental constants.
The dependence of atomic transition frequencies on α

and the quark masses has been calculated in Refs. [16–21].
These calculations and results measuring the time depend-
ence of atomic transition frequencies have previously been
used to place improved limits on the interaction strength
of the low mass scalar field dark matter ϕ with photons,
electrons and quarks by up to 15 orders in magnitude
[11,22]. The experimental results have been obtained by
measuring the oscillating frequency ratios of electron
transitions in a range of systems, including Dy=Cs [23],
Rb=Cs [24], Yb=Cs [25], Sr=H=Si cavity [26], Cs=cavity
[27], Cs=H [28], Alþ=Hgþ [29], and Ybþ=Ybþ=Sr [30,31].
Scalar particles can mediate Yukawa-type interactions

between Standard Model particles. A range of experimental
methods have been used to constrain these interactions,
some of which include equivalence principle tests via
torsion pendulum experiments [32,33], lunar laser ranging
[34] and atom interferometry [35]. Experimental limits on
equivalence principle violation may be expressed in terms
of the Eotvos parameter η

η≡ 2
ja⃗A − a⃗Bj
ja⃗A þ a⃗Bj

; ð3Þ

where a⃗A and a⃗B are the accelerations of two test bodies A
and B (which are composed of different materials) toward
a third body C. Most recently, direct fifth force measure-
ments have placed constraints on η. Specifically, the
MICROSCOPE mission monitored the difference in accel-
eration of two freely falling test masses (composed of Pt
and Ti) as they orbited the Earth, constraining the Eotvos
paramater to be η ¼ ð−1� 27Þ × 10−15 at a 2-σ confidence
level [36,37]. Constraints on this parameter may be

repurposed into individual limits on the couplings of the
scalar particle to standard model particles.
Another method of constraining these interactions is via

atomic spectroscopy measurements. The scalar field is
produced by massive bodies and causes the variation of
fundamental constants, leading to a variation in the ratio of
transition frequencies. Such calculations and measurements
have been performed in Refs. [38,39].
This paper is divided into three parts. In the first part, we

seek to obtain limits on the variation of physical constants.
The variation of nuclear parameters affects electronic
transitions, and the results of the measurements of the
variation in the ratio of transition frequencies in Cs=H [28]
and the ratio of optical clocks transitions in Alþ=Hgþ [29]
allow us to place constraints on the variation of the proton
mass mp, the variation of the average quark mass mq ¼
ðmu þmdÞ=2 and the variation of the nuclear charge radius
rN and nuclear mass mN , all of which may be used to place
limits on the variation of the QCD parameter θ. The idea
that the dependence of the electronic atomic transition
frequencies on the nuclear radius (and subsequently on the
hadronic parameters above) may be used in the search for
dark matter fields in optical transitions was first proposed in
Ref. [30], while the effect of the variation of the nuclear
radius (and hadronic parameters) in hyperfine transitions
was earlier calculated in Ref. [40]. In this paper, we employ
a similar method to Ref. [41], in which the sensitivity of the
optical clock transitions in Ybþ to the variation in the
nuclear radius was used to place constraints on the variation
of the hadron and quark masses, and the QCD parameter θ.
In the second part we consider the beyond-standard-

model effects of gravity, such as the Einstein equivalence
principle (EEP) violating term (c00) in the Standard Model
extension (SME) Lagrangian [42] and the dependence of
fundamental constants on the gravitational potential.
In the third part we consider the effects produced by

the interaction between hypothetical scalar particles and
standard model particles in the presence of massive bodies
creating a Yukawa-type potential mediated by scalar
particles. Such effects have previously been considered
in Ref. [38]. The scalar field, produced by the Sun and the
Moon, affects the fine structure constant α and the fermion
mass mf. We perform relevant calculations and use the
measurement of the variation in the ratio of clock transition
frequencies Alþ=Hgþ in Ref. [29], Ybþ=Cs in Ref. [43]
and YbþðE2Þ=YbþðE3Þ in Ref. [31] to determine limits
on the interactions between this scalar field and standard
model particles for a range of scalar particle masses. These
constraints are compared to those obtained from the results
of the MICROSCOPE mission [36,37].
Note that when discussing the variation of dimensionful

parameters, we must be mindful of the units they are
measured in, as these units may also vary. In other words,
we should consider the variation of dimensionless param-
eters which have no dependence on any measurement units.
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Nuclear properties depend on the quark mass and ΛQCD.
In this work, we keep ΛQCD constant, meaning our
calculations are related to the measurement of the variation
of a dimensionless parameter Xq ≡mq=ΛQCD. As a result,
we measure the quark mass in units of ΛQCD—see
Refs. [19,44,45]. A similar choice of units is assumed
for the variation of hadron masses.
In this paper, we assume natural units ℏ ¼ c ¼ 1 if ℏ and

c are not explicitly presented.

II. ATOMIC TRANSITION FREQUENCY SHIFT
DUE TO VARIATION OF NUCLEAR

MASS AND RADIUS

The total electronic energy Etot of an atomic state
contains the energies associated with the finite mass of
the nucleus mN (mass shift, MS) and the nonzero nuclear
charge radius rN (field shift, FS). Both effects contribute to
the isotope shifts of atomic transition frequencies. These
are parametrized as [46]

EMS ≈ KMS
1

mA
∝

1

A
and EFS ≈ KFSr2N ∝ A2=3; ð4Þ

where KMS and KFS are the mass and field shift coefficients
respectively and mA is the mass of an atom with atomic
mass number A, which is largely determined by the nuclear
mass mN . The variation of the total electronic energy
associated with the nuclear degrees of freedom can be
written as [47]

δEtot

Etot
¼ −

EMS

Etot

δmN

mN
þ EFS

Etot

δr2N
r2N

: ð5Þ

The mass shift term dominates for light nuclei while the
field shift term dominates for heavy nuclei. In general,
comparing the electronic transition frequencies νa and νb of
two different atomic species, we obtain

δðνa=νbÞ
ðνa=νbÞ

¼ ðK1 − K2Þ
δr2N
r2N

þ ðK3 − K4Þ
δmN

mN
; ð6Þ

where

K1 ¼
Kνa

FSr
2
N;a

νa
; ð7Þ

K2 ¼
Kνb

FSr
2
N;b

νb
; ð8Þ

K3 ¼
Kνa

MS

νamN;a
; ð9Þ

K4 ¼
Kνb

MS

νbmN;b
: ð10Þ

III. LIMITS ON THE LINEAR DRIFT OF THE QCD
PARAMETER θ AND PARTICLE MASSES

In this section, we use the above theory along with
experimental observations of the drift in atomic transition
frequencies to place limits on the variation of quark and
hadronic parameters. The approach in this section is similar
to that presented in Ref. [41].
Let us first consider the variation of fundamental constants

due to the variation of the ratio of transition frequencies in
Cs=H. Ref. [28] compared results of the variation in the
j12S1=2; F ¼ 1; mF ¼ �1i → j22S1=2; F0 ¼ 1; m0

F ¼ �1i
two-photon transition in atomic hydrogen to results from
clocks based on 133Cs in order to deduce limits on the
fractional time variation of the fine structure constant α. The
comparison of the transition in H against the ground state
hyperfine transition in 133Cs gives the following fractional
time variation [28]

1

ðνCs=νHÞ
dðνCs=νHÞ

dt
¼ 3.2ð6.3Þ × 10−15 yr−1: ð11Þ

The variation of this ratio may be related to the variation of
fundamental constants—see Ref. [19]

δðνCs=νHÞ
ðνCs=νHÞ

¼ 2.83
δα

α
þ 0.009

δmq

mq
þ δðme=mpÞ

ðme=mpÞ
: ð12Þ

The relative variation of the electron to proton mass ratio can
be described as [48]

δðme=mpÞ
ðme=mpÞ

¼ −0.037
δmq

mq
− 0.011

δms

ms
þ δme

me
; ð13Þ

where ms is the mass of the strange quark. For brevity,
we may assume that δms=ms ¼ δmq=mq. Combining these
expressions gives

δðνCs=νHÞ
ðνCs=νHÞ

¼ 2.83
δα

α
− 0.039

δmq

mq
þ δme

me
: ð14Þ

Therefore, using this expression along with the limit
presented in Eq. (11), we may obtain a limit on the variation
of the quark massmq assuming that there is no variation of α
and me

1

mq

dmq

dt
¼ −8.2ð16Þ × 10−14 yr−1: ð15Þ

When considering the variation of the QCD parameter θ, it is
convenient to consider the problem at the hadron level, rather
than the quark level. Using the calculations presented in
Ref. [19] and the limit (11) we obtain

δmπ

mπ
¼ −4.1ð8.0Þ × 10−14 yr−1: ð16Þ
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Using this value, along with the following result from
Ref. [13]

δmp

mp
¼ 0.13

δmπ

mπ
; ð17Þ

we may subsequently place limits on the drift of the proton
mass due to the drift of the pion mass

1

mp

dmp

dt
¼ −5.3ð10Þ × 10−15 yr−1: ð18Þ

Finally, we may use the relation between the variation of
the pion mass and the QCD parameter θ, presented in
Ref. [49], to place limits on the linear drift of θ. The pion
mass has dependence on θ, and the shift of the pion
mass due to a small θ relative to the pion mass for θ ¼ 0 is
given by [49]

δmπ

mπ
¼ −0.05θ2 ð19Þ

Thus, substituting the value for the drift of the pion mass
from Eq. (16) yields

dθ2

dt
¼ 8.2ð16Þ × 10−13 yr−1: ð20Þ

We may also perform a similar calculation relevant to
measurements of a different ratio of transition frequencies.
The drift of the ratio of the optical clock transition
frequencies of aluminium and mercury has been measured
in Ref. [29]. This drift was used to place limits on the
temporal variation of the fine structure constant. Using a
similar method to that above, this result may be repurposed
to extract limits on the variation of the nuclear radius and
hadronic parameters. The rate of change in the ratio of the
transition frequencies of 1S0 → 3P0 transitions in Alþ and
2S1=2 → 2D5=2 transitions in Hgþ was found to be [29]

1

νAlþ=νHgþ
dðνAlþ=νHgþÞ

dt
¼ −5.3ð7.9Þ × 10−17 yr−1: ð21Þ

Once again we note the fact that mass shift dominates the
isotope shift effects in light elements, while field (volume)
shift dominates in heavy elements. As such, the isotopic
shift in Alþ is dominated by the mass shift component,
while the isotopic shift in Hgþ is dominated by the field
shift component.
The mass shift is divided into two components: the

normal mass shift (NMS) and the specific mass shift
(SMS). The NMS results from a change in the reduced
electron mass, and its parameter is easily calculated from
the transition frequency using the nonrelativistic virial

theorem stating that in the case of the Coulomb interaction,
the electron’s total energy change corresponds to the
change in its kinetic energy, with a negative sign

Kν
NMS ¼ −

ν

1822.888
amu; ð22Þ

where the factor in the denominator refers to the ratio of
the atomic mass unit to the electron mass. Using the
transition frequency from the experimental observation
of the 1S0 → 3P0 transition in 27Alþ of Ref. [50], we
calculate the normal mass shift factor in Alþ to be
K

νAlþ
NMS ¼ −615 GHz amu. Using the calculated ratio of

the specific to normal mass shifts from Ref. [51], we yield
a total mass shift parameter of K

νAlþ
MS ¼ −1530 GHz amu.

Now we must consider the effects from the field shift in
Hgþ. We have performed relativistic many-body calcula-
tions of the shift of atomic transition frequencies due to the
variation of the nuclear radius in Hgþ. The wave functions
and energies in the zeroth-order approximation have been
calculated using the Dirac-Hartree-Fock method, including
Breit corrections. The correlation corrections were calcu-
lated using the CIPT method (configuration interaction
with perturbation theory [52]), which allows us to deal
with open electronic shells. This approach is similar to
that described in Ref. [53]. We have found the field shift
parameter for the 2S1=2 → 2D5=2 transition in Hgþ to be
85.5 GHz=fm2. Similar calculations are performed to find
isotope shifts in atomic transitions. Our value for the
isotope shift in the 2S1=2 → 2D5=2 transition of Hgþ is in
agreement with the calculations of the isotope shift in Hgþ
presented in Ref. [54]. Thus, using the MS and FS
parameters along with Eq. (6), we obtain

δðνAlþ=νHgþÞ
νAlþ=νHgþ

¼ −
�KνHgþ

FS r2N;Hgþ

νHgþ
δr20
r20

þ K
νAlþ
MS

νAlþmN;Alþ

δmN

mN

�
:

ð23Þ

Here, we have used the fact that the nuclear radii in all
nuclei may be quite accurately related to the internucleon
distance r0 by the universal formula rN ¼ A1=3r0. This
implies that these quantities have equivalent fractional
variations. Presenting limits on the variation of r0 is more
useful as it allows one to compare the results of measure-
ments in different nuclei. Noting that r2N;Hgþ ¼ 5.4474 fm

in 199Hg [55] and mN;Alþ ≈ 27mp in 27Al, we yield the
following limits

1

r0

dr0
dt

¼ −1.1ð1.7Þ × 10−14 yr−1; ð24Þ

1

mp

dmp

dt
¼ 1.0ð1.6Þ × 10−12 yr−1: ð25Þ
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Considering these effects as separate sources of the
variation allows us to derive independent limits on the
variation of quark and hadronic parameters.
Firstly, using a similar method to the one presented in

Ref. [41], we consider the effects arising from a variation in
the internucleon distance r0. Calculations of the depend-
ence of nuclear energy levels and nuclear radii on funda-
mental constants were performed in Refs. [44,45,56].
Specifically, in Table VI of Ref. [45], the sensitivity
coefficients of nuclear radii to the variation of hadron
masses for several light nuclei have been presented. These
results may be extended to all nuclei due to the relation
rN ¼ A1=3r0. This relation follows from the constancy of
nuclear density and reasonably describes the nuclear radius
for nuclei with mass number A > 2. Therefore, by calcu-
lating the variation in r0, a fundamental parameter, we can
generalize the results for light nuclei to include all nuclei.
The sensitivity coefficients are defined by the relation

δr0
r0

¼
X
h

Kh
δmh

mh
: ð26Þ

The sum over hadrons in Refs. [45,56] includes contribu-
tions from π, nucleon, Δ and vector mesons (these hadron
masses are parameters of the kinetic energy and nucleon
interaction operators used in Refs. [45,56]). The sensitivity
to the pion mass is given by the coefficient Kπ ¼ 1.8 and
the sensitivity to the nucleon mass is given by Kn ¼ −4.8.
We neglect contributions from Δ and vector mesons as they
are of a similar magnitude with opposing sign, meaning
their resulting contribution is small and unstable.
Note that the estimate in Eq. (26) is model dependent and

may have an error O(1).
Subsequently, the variation of hadron masses may be

related to variation of the quark mass, see, e.g., Ref. [57]:

δmh

mh
¼ Kh;q

δmq

mq
; ð27Þ

where mq ¼ ðmu þmdÞ=2 corresponds to the average
light quark mass. The sensitivity coefficient for the pion
mass is an order of magnitude bigger than that for
other hadrons since the pion mass vanishes for zero quark
mass (mπ ∝ m1=2

q ) while other hadron masses remain finite.
Indeed, according to Refs. [58,59] Kπ;q ¼ 0.498 for the
pion, while Kn;q ¼ 0.06 for nucleons. The sensitivity
coefficients to the quark mass have been calculated for
light nuclei in Ref. [45]. The average value is given by

δr0
r0

¼ 0.3
δmq

mq
: ð28Þ

We note that here there are partial cancellations of different
contributions, so the sensitivity is smaller than that

following from pion mass alone. References [45,56] have
also presented calculations of the dependence of the nuclear
energies and radii on the variation of the fine structure
constant α. Applying Eq. (28) to the limit on the variation
of the internucleon distance presented in (24), we deter-
mine limits on the variation of the quark mass to be

1

mq

dmq

dt
¼ −3.7ð5.7Þ × 10−14 yr−1: ð29Þ

Once again, in order to place limits on the variation of the
proton mass and the QCD parameter θ, it is convenient to
consider the problem at the hadron level, rather than the
quark level. In Ref. [45], the sensitivity of the nuclear
radius to the masses of the pion, nucleon, vector meson and
delta has been calculated. In the following estimate, we do
not include contributions from the vector meson and delta
as their contributions are smaller. These contributions
also have opposing signs, meaning they partially cancel
each other out making their contribution less reliable. The
variation of the nuclear radius may be written in terms of
the pion and nucleon mass as

δr0
r0

¼ 1.8
δmπ

mπ
− 4.8

δmn

mn
¼ 1.2

δmπ

mπ
; ð30Þ

where in the last equality we have applied Eq. (17). Thus,
once again applying Eq. (24), we obtain a limit on the drift
of the pion mass

1

mπ

dmπ

dt
¼ −9.2ð14Þ × 10−15 yr−1: ð31Þ

Finally, we apply Eq. (19) in order to place constraints on
the linear drift of the QCD parameter θ

dθ2

dt
¼ 1.8ð2.8Þ × 10−13 yr−1: ð32Þ

These limits are approximately 44 times weaker than the
limits imposed from the sensitivity of the optical clock
transitions in Ybþ obtained in Ref. [41]. This difference
corresponds exactly to the difference in the accuracy of
the experimental measurements of the variation in clock
frequency ratios, showing that these systems have equiv-
alent sensitivities to the variation of the internucleon
distance. We however note that the limits from the
Alþ=Hgþ clock ratio are ∼2–4 times stronger than those
calculated for the Cs=H system, despite the fact that the
accuracy of the Alþ=Hgþ measurements is ∼60 times
better. This implies that the sensitivity of the Cs=H ratio to
changes in the hadron constants is higher than that of the
Alþ=Hgþ ratio.
Let us now consider the effects arising from a variation

of the nuclear massmN . The nuclear mass may be related to
the proton mass mp by the following relation mN ≈ Amp.
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As such, these parameters have equivalent fractional
variations, meaning the limit from Eq. (25) applies.
Using this result, along with the relation between the pion
and the proton mass presented in Eq. (17), we may place
limits on the drift of the pion mass

1

mπ

dmπ

dt
¼ 8.1ð12Þ × 10−12 yr−1: ð33Þ

Using the calculations presented in Ref. [19], we may
use this result to place limits on the variation of the quark
mass mq

1

mq

dmq

dt
¼ 1.6ð2.4Þ × 10−11 yr−1: ð34Þ

We also use the relation between the variation of the pion
mass and the QCD parameter θ presented in Eq. (19) to
place constraints on the linear drift of θ2

dθ2

dt
¼ −1.6ð2.4Þ × 10−10 yr−1: ð35Þ

As expected, the limits obtained upon considering the
variation in the ratio of frequencies (21) as being due to
the drift of the nuclear (and hence nucleon) mass are
weaker than the limits from the variation of the internu-
cleon distance.

IV. GRAVITY RELATED VARIATION OF
FUNDAMENTAL CONSTANTS

In some theoretical models, atomic transition frequencies
and fundamental constants may depend on the gravitational
potential. In Ref. [60] limits on the gravity related variation
of fundamental constants are derived frommeasurements of
the drift of atomic clock frequency ratios. In a similar way,
we may obtain limits on the gravity related variation of the
nuclear radius and nuclear mass using the measurement
of the variation in the ratio of transition frequencies in
Alþ=Hgþ from Refs. [29,61]. We will also calculate limits
on gravity related variation of these quantities for other
systems of interest, Ybþ=Cs [43] and Ybþ=Ybþ [31].
Noting the dependence of the frequency shift on the

nuclear mass and radius from Eq. (6), we introduce the
parameters κr;N as follows: (see Ref. [60])

δr2N
r2N

¼ κrδ

�
GM
rc2

�
; ð36Þ

δmN

mN
¼ κNδ

�
GM
rc2

�
: ð37Þ

It is instructive to link these parameters κr and κN to the
Einstein equivalence principle (EEP) violating term in the
Standard Model extension Hamiltonian [42]. This term

may be presented as a correction to the kinetic energy
which in nonrelativistic form is equal to (see, e.g., [62])

δH ¼ 2

3
c00

U
c2

p2

2me
; ð38Þ

where c00 is a parameter of the Standard Model extension
(SME) Lagrangian [42], U is the gravitational potential,
p is the electron momentum operator andme is the electron
mass. Limits on c00 have been found by monitoring the
drift of atomic clock frequencies for different transitions
(see, e.g., [61,62]). Reference [61] subsequently used the
limits on this parameter to determine a limit on the gravity-
related variation of the fine structure constant κα

δα

α
¼ καδ

�
GM
c2r

�
; ð39Þ

where in the case of a relative change of two transition
frequencies in different atomic species δωa=ωa ¼
Kαaðδα=αÞ and δωb=ωb ¼ Kαbðδα=αÞ, the parameter κα
is equal to

κα ¼
2

3

Rb − Ra

Kαa − Kαb
c00; ð40Þ

where Ra and Rb represent the relativistic factors of atoms a
and b respectively, which describe the deviation from the
expectation value of the kinetic energy of a relativistic
atomic electron from the value given by the nonrelativistic
virial theorem [61]

R ¼ −
ΔEi − ΔEj

Ei − Ej
; ð41Þ

where ΔEi is the energy shift of the state i due to the
relativistic kinetic energy operator. In the nonrelativistic
limit, R ¼ 1. Thus, we employ a similar method and derive
expressions for the parameters κr and κN describing the
variation of the nuclear radius and nuclear mass

κr ¼
2

3

Rb − Ra

K1 − K2

c00; ð42Þ

κN ¼ 2

3

Rb − Ra

K3 − K4

c00; ð43Þ

where K1;2;3;4 are defined in Eq. (6). The value of R has
been calculated for a number of clock transitions in
Ref. [61], see Table I. Ref. [61] also calculated a limit
on the value of the SME parameter c00 due to the change
in the Sun’s gravitational potential for the ratio of these
transition frequencies νAlþ=νHgþ . As such, we may sub-
stitute all known quantities into Eqs. (42), (43) and
determine a limit on the gravity related variation of the
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nuclear radius and nuclear mass. We also use the limits on
the coupling to gravity of the fine structure constant α,
presented in Refs. [43] (Ybþ=Cs) and [31] (Ybþ=Ybþ) in
order to place improved limits on gravity’s coupling to the
nuclear radius κr. In performing these calculations, we
make use of the following result for the difference in field
shift parameters in the electric octupole (E3) and electric
quadrupole (E2) transitions in Ybþ: K1 − K2 ¼ 2.4 × 10−3

[30], and the sensitivity of variations in this ratio to the fine
structure constant α, kαðE3Þ − kαðE2Þ ¼ −6.95 [18]. The
results are presented in Table II.

V. CONSTRAINTS ON THE YUKAWA-TYPE
INTERACTION MEDIATED BY THE SCALAR
FIELD PRODUCED BY MASSIVE BODIES

In this section, we consider the Yukawa-type interaction
mediated by the scalar field produced by massive bodies.
Let us first provide an introduction to the phenomenology
of this scalar field, following Ref. [38]. A scalar field ϕ
interacts with the standard model sector via the Yukawa-
type Lagrangian

Lint ¼ −
X
f

ϕ

Λf
mff̄f þ ϕ

Λγ

FμνFμν

4
: ð44Þ

Here, the first term represents the coupling to fermion fields
f, with mass mf and f̄ ¼ f†γ0, while the second term
represents the coupling to the photon field. Λf and Λγ are
new-physics energy scales which determine the strength of
these couplings. Adding these interaction terms to the
relevant terms in the standard model Lagrangian

L ⊃ −
X
f

mff̄f −
FμνFμν

4α
; ð45Þ

we observe that we may present the effects of the interaction
terms in the form of a variable fermion mass mf and
electromagnetic fine-structure constant α (see, e.g., [12])

mf → mf

�
1þ ϕ

Λf

�
; ð46Þ

α →
α

1 − ϕ=Λγ
≈ α

�
1þ ϕ

Λγ

�
: ð47Þ

Adding the kinetic term to the interaction Lagrangian (44)
gives the following equations of motion for the field ϕ

ð∂μ∂μ þm2
ϕÞϕ ¼ −

X
f

mf

Λf
mff̄f þ 1

Λγ

FμνFμν

4
; ð48Þ

wheremϕ is the mass of the scalar particle. This implies that
in the presence of the interaction (44), the standard model
fermion and photon fields act as sources of the scalar field.
Massive bodies such as stars or galaxies, which are com-
posed of atoms, may act as these sources, producing a scalar
field mediating Yukawa-type interactions. This field may
produce a local variation of fundamental constants in the
presence of a massive body with a varying distance to the
laboratory. As such, we may investigate the influence of
the scalar particle ϕ on atomic spectroscopy experiments, see
Ref. [38]. In the following subsections we place constraints
on the scalar field’s interaction with the Standard Model
particles. Specifically, we consider the effects produced
by a variation in the scalar field due to both the semi-
annual variation in the Sun-Earth distance, and the
approximately semi-monthly variation in the Moon-
Earth distance. These constraints are compared to those
obtained from tests of the equivalence principle by the
MICROSCOPE mission [36,37].

A. Effects produced by the variation
in the Sun-Earth distance

Similar to the gravitational potential, the scalar Yukawa
potential depends on the distance between Sun and Earth.

TABLE I. Relativistic factors (R) for optical clock transitions in
atoms and ions [61].

Atom=Ion Ground state Clock state ℏω ½cm−1� R

Alþ 3s2 1S0 3s3p 3Po0 37393 1.00
Hgþ 5d106s 2S1=2 5d96s2 2D5=2 35515 0.2
Ybþ 6s 2S1=2 5d 2D3=2 22961 1.48
Ybþ 6s 2S1=2 4f 2F7=2 21419 −1.9

TABLE II. Limits on the Standard Model Extension parameter c00 and the parameters κα, κr, κn and κe describing the dependence of
the fine structure constant α, the internucleon distance r0 (derived from the nuclear charge radius rN), the nucleon mass and the electron
mass on the gravitational potential.

System Source c00 κα κr κn κe

Alþ=Hgþ [29] Sun −3.0ð5.7Þ × 10−7 [61] 5.3ð10Þ × 10−8 [61] −6.7ð13Þ × 10−5 −3.1ð6.0Þ × 10−3 � � �
Moon −6.0ð12Þ × 10−3 1.1ð2.1Þ × 10−3 −0.67 (1.3) −63 (120) � � �

Ybþ=Cs [43] Sun 4.2ð3.3Þ × 10−8 14ð11Þ × 10−9 [43] 4.0ð3.1Þ × 10−5 7ð45Þ × 10−8 [43] −7ð45Þ × 10−8 [43]
Ybþ=Ybþ [31] Sun −7.4ð9.3Þ × 10−9 −2.4ð3.0Þ × 10−9 [31] 7.0ð8.7Þ × 10−6 2.1ð2.9Þ × 10−4 � � �
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Assuming the Sun’s elemental composition to be 75% 1H and 25% 4He by mass, the resultant scalar field may be
expressed as [38]

ϕSun ¼ −Nsmn

�
0.15
Λn0

þ 1.1

�
1

Λp
þ 5 × 10−4

Λe

�
þ 8 × 10−4

Λγ

�
e−mϕr

4πr
¼ −Nsβs

e−mϕr

4πr
; ð49Þ

where mn ¼ ðmp þmn0 Þ=2 ¼ 0.94 GeV is the average
nucleon mass and Ns is the number of atoms inside
the Sun. The number of nucleons inside the Sun may
be determined as mass of the Sun divided by the proton
mass, Ns ¼ Ms=mp ¼ 1.99 × 1030 kg=1.67 × 10−27 kg ¼
1.19 × 1057. The ratio of the number of neutrons and
protons depends on the composition of the Sun, which
is mainly composed of hydrogen and helium. According to
Eq. (49), the average atom in the Sun contains 1.1 protons
and 0.15 neutrons, i.e., 1.25 nucleons. This implies that
the number of atoms in the Sun is Ns ¼ 0.95 × 1057. In
obtaining limits on the nucleon constantΛn we consider the
sum of the proton and neutron contributions assuming

Λn0 ¼ Λp. In this case, the limits on Λn have no depend-
ence on the composition of the Sun. The Earth’s orbit is
elliptical, with the Earth-Sun distance changing between
1.52 × 108 km and 1.47 × 108 km.
Using new and existing calculations of the variation

of fundamental constants due to changes in the Yukawa
potential (see the Appendix), we place constraints
on the Yukawa-type interactions of the scalar field
from the Sun with photons, nucleons and electrons
for a range of scalar particle masses, using a similar
method to Ref. [38]. Constraints on the parameters Λγ ,
Λn, and Λe are presented in Fig. 1 and summarized
in Table III.

FIG. 1. Limits on the constants of the Yukawa-type interaction Eq. (44) of the scalar field ϕs with photons (Λγ), nucleons (Λn) and
electrons (Λe). In obtaining limits on the nucleon constant Λn we sum the contributions from the proton and neutron coupling constants,
assuming Λn0 ¼ Λp. The upper curve depicts the region constrained by the potential of the Sun, while the lower and longer curve depicts
the region constrained by the Moon’s potential. There is no data for the effect of the Moon’s gravitational potential on the electron
interaction constant (lower right tile). The region in blue shows the parameter space which is excluded by the MICROSCOPE
experiment [36,37].
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B. Effects produced by the variation
in the Moon-Earth distance

We may also extract limits on these parameters by
considering the varying Yukawa potential of the Moon’s
orbit around Earth. Doing so allows one to investigate

the coupling at larger values of the scalar particle mass mϕ.
The average atom in the Moon contains 12 protons and
12 neutrons. Following Ref. [38] we obtain the Moon’s
scalar field to be

ϕMoon ¼ −Nmmn

�
12

Λn0
þ 12

�
1

Λp
þ 5 × 10−4

Λe

�
þ 0.03

Λγ

�
e−mϕr

4πr
¼ −Nmβm

e−mϕr

4πr
: ð50Þ

The number of nucleons in the Moon may be determined as
the mass of the Moon divided by the proton mass, Nm ¼
Mm=mp ¼ 7.34× 1022 kg=1.67× 10−27 kg ¼ 4.40× 1049.
The average atom in the Moon contains 24 nucleons. This
implies that the number of atoms in the Moon to be
Nm ¼ 1.8 × 1048. In obtaining limits on the nucleon con-
stant Λn we once again consider the sum of the proton
and neutron contributions assuming Λn0 ¼ Λp. In this case,
the limits on Λn have no dependence on the composition of
the Moon.
The averageEarth-Moondistance is3.84 × 105 km, centre

to centre, and this value varies between 3.69 × 105 km and
3.99 × 105 km with a period of approximately 27.3 days.
Furthermore, due to the relatively large diameter of the
Earth (∼1.27 × 104 km), we note that there is also a daily
variation in the distance between the Moon and the
laboratory. Despite this, the contributions from the
monthly variations are more significant, and as such we
consider a variation of ∼3.0 × 104 km in the Earth-Moon
distance, which corresponds to the minimal seasonal
variation (see Ref. [38]).
Thus, using a similar method to that of the previous

subsection, we may determine limits on the Yukawa-type
interaction between the varying scalar field and photons/
nucleons for a range of scalar particle masses. Constraints
on these parameters are presented in Fig. 1, and summa-
rized in Table III.
These limits may be compared to the limits from

the atomic spectroscopy measurements presented in

Refs. [38,39]. Our limits based on the Sun and
Moon data are significantly stronger than that of those
presented in Ref. [38]. Despite this, their results also
contain limits on the scalar field produced by a 300 kg
lead mass on a distance of 1 m. This area is sensitive to
much bigger scalar masses and is not covered by our
results. Further, our constraint on the photon coupling
constant Λγ is stronger than the corresponding limit
obtained from existing atomic clock experiments pre-
sented in Fig. 5 of Ref. [39]. This is due to the fact that
the constraint presented in this reference uses the
results obtained from Ybþ=Cs experiments [43] only,
while our constraints are based on the more sensitive
Ybþ=Ybþ experiments [31].
Constraints yielded from the results of existing

atomic clock experiments do not exceed the sensitivity
provided by direct fifth force searches such as the
MICROSCOPE mission [36,37] (see Fig. 1). In order
for them to do so, we require an improvement of ∼3
orders of magnitude in the fractional frequency uncer-
tainty in optical clocks located on Earth, something
which is predicted to occur over the next few decades
[63]. Alternatively, there exist proposals for experi-
ments with clocks based on nuclear transitions [64],
which are very sensitive to the variation of fundamental
constants [58], and optical clock experiments conducted
in space [65,66]. Constraints yielded from such experi-
ments are predicted to match/exceed the sensitivity of
direct fifth force searches [39].

TABLE III. Lower limits on the constants of the Yukawa-type interaction Eq. (44) of the scalar field ϕs with
photons (Λγ), nucleons (Λn) and electrons (Λe) in the interval of small scalar field masses determined by
the condition that the scalar particle’s Compton wave length ℏ=mϕc is bigger than the distance to the source,
mϕ < 1.0 × 10−18 eV for the Sun-Earth distance and mϕ < 0.5 × 10−15 eV for the Moon-Earth distance. In
obtaining limits on the nucleon constant Λn we sum the contributions from the proton and neutron coupling
constants, assuming Λn0 ¼ Λp. The full exclusion plots are presented in Fig. 1.

System Source=Attractor Λγ=β (GeV2) Λγ (GeV) Λn (GeV) Λe (GeV)

Alþ=Hgþ [29] Sun 7 × 1043 2 × 1020 1 × 1021 � � �
Moon 1 × 1038 2 × 1018 6 × 1018 � � �

Ybþ=Cs [43] Sun 4 × 1044 6 × 1020 5 × 1021 1 × 1020

Ybþ=Ybþ [31] Sun 2 × 1045 1 × 1021 4 × 1021 � � �
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C. Limits on combinations of coupling constants

Spectroscopy measurements may also be used to
probe different combinations of the couplings constants
Λγ;p;n;e [38], some of which may not be otherwise probed
using anomalous-force measurements. Such results may be
useful in the case when the variation of the ratio of optical
clock transition frequencies and the source-dependent
functions βs;m are dominated by different terms. Thus
we may use the results of the previous two subsections
to provide constraints on the combination of parameters
ΛγΛn, see Figure 1. If the scalar particle’s Compton wave
length ℏ=mϕc is bigger than the distance to the source,
we determine the following limits for the combination of
parameters βs;n=Λγ

Λγ

βs
≳ 2 × 1045 GeV2; ð51Þ

Λγ

βm
≳ 1 × 1038 GeV2: ð52Þ

Limits on the variation of α, the nucleon mass and the
electron mass due to the variation of the Sun’s distance to
Earth are presented in Table IV. The details are presented in
the Appendix.

VI. SUMMARY

Atomic spectroscopy measurements are used to search
for the potential space-time variation of physical constants.
In particular, we relate the proton mass mp and the quark
mass mq variation to measurements in the variation of two
frequency ratios: the comparison of the two-photon tran-
sition in atomic Hydrogen to the results from clocks based
on 133Cs in Ref. [28], and the variation in the ratio of the
two optical clock frequencies in Alþ and Hgþ in Ref. [29].
We used this data to place new limits on the variation of
the proton mass mp, as well as independent limits on the
variation of the quark mass mq, both of which may be used
to place limits on the variation of the QCD parameter θ.
In the second part of this paper we considered the

beyond-standard-model effects of gravity, such as the
Einstein equivalence principle (EEP) violating term (c00)
in the Standard Model extension (SME) Lagrangian [42]
and the dependence of fundamental constants on the
gravitational potential, based on the measurements of the

dependence of the ratio of atomic transition frequencies
Alþ=Hgþ [29,61], Ybþ=Cs [43], and Ybþ=Ybþ [31] to the
Sun-Earth distance.
In the third part of this paper we considered the scalar

field produced by massive bodies. We determine limits on
the interactions of the scalar particle with photons, nucleons
and electrons for a wide range of scalar particle masses,
basing on the measurements of dependence of the ratio of
atomic transition frequencies Alþ=Hgþ [29,61], Ybþ=Cs
[43], and Ybþ=Ybþ [31] on the Sun-Earth and Moon-Earth
distances. If the scalar particle’s Compton wave length
ℏ=mϕc is bigger than the distance to the source, we place
the following limits on the coupling constants of the
interaction of the scalar field with photons, nucleons,
and electrons: Λγ ≳ 1 × 1021 GeV, Λn ≳ 5 × 1021 GeV,
and Λe ≳ 1 × 1020 GeV.
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APPENDIX: COUPLING OF FUNDAMENTAL
CONSTANTS TO CHANGES IN THE YUKAWA

POTENTIAL FROM THE SUN/MOON

In this appendix we detail the calculations of the
variation of fundamental constants due to changes in the
Yukawa potential. We will use experimental data on
the variation of atomic transition frequencies as functions
of Sun-Earth and Moon-Earth distances motivated by the
search for dependence of the fundamental constants on the
gravitational potential. Constraints on this dependence
were obtained for all the systems of interest: Alþ=Hgþ,
Ybþ=Cs, and Ybþ=Ybþ. The summary is presented
in Table IV.
Let us start with the variation of the fine structure

constant α. Equation (47) implies the following relation

δα

α
¼ δϕ

Λγ
; ðA1Þ

At mϕ → 0 we have from (49) or (50)

δϕ ¼ −
βNS;M

4π
δ

�
1

r

�
S;M

≡ βDS;M: ðA2Þ

TABLE IV. Summary of the obtained constraints on the variation of fundamental constants due to changes in the
distance to the Sun (interpreted in Refs. [29,31,43] as the effect of the variation in the Sun’s gravitational potential).

System δα=α δmn=mn δme=me

Alþ=Hgþ [29] 0.17ð0.33Þ × 10−16 1.2ð2.3Þ × 10−15 � � �
Ybþ=Cs [43] 4.6ð3.6Þ × 10−18 2.3ð15Þ × 10−17 −2.3ð15Þ × 10−17

Ybþ=Ybþ [31] −7.9ð9.9Þ × 10−19 1.3ð1.6Þ × 10−16 � � �

DZUBA, FLAMBAUM, and MANSOUR PHYS. REV. D 110, 055022 (2024)

055022-10



Here NS;M is number of atoms in the Sun or the Moon
(NS ≈ 0.95 × 1057 and NM ≈ 1.8 × 1048) and δð1=rÞS;M is
half-yearly variation of the inverted Sun-Earth or Moon-
Earth distance. Then

jΛγ=βj ¼
				DS;M

δα=α

				; ðA3Þ

and

Λγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi				mnaγDS;M

δα=α

				
s

; ðA4Þ

where aγ ¼ 8 × 104 for the Sun, and aγ ¼ 0.03 for the
Moon [see (49) and (50)].
Now let us consider the variation of the fermionic

masses, of which we consider the nucleon and electron
mass, mn and me respectively. From Eq. (30), we have
δr0
r0

¼ 1.2 δmπ
mπ

, where r0 is the internucleon distance and mπ

is the pion mass. From Eq. (17) we see that δmp

mp
¼ 0.13 δmπ

mπ
,

where mp is the proton mass. Upon substitution into
Eq. (30), we yield

δmn

mn
¼ 0.11

δr0
r0

: ðA5Þ

This relation indicates that the nucleon mass is less
sensitive to variations in the pion mass (or quark mass)
compared to the internucleon distance r0. This is consistent
with the fact that the quark contribution to nucleon mass
is relatively small, while r0 is very sensitive to the pion
exchange potential. Thus, we yield

δmn

mn
¼ δðνa=νbÞ

ðνa=νbÞ
�

1

18.5ðK1 − K2Þ þ ðK3 − K4

�
; ðA6Þ

where K1, K2, K3, and K4 are defined in Eq. (6). For the
Alþ=Hgþ and Ybþ=Ybþ systems we use the calculated
values of the field shift and mass shift constants (Ref. [67]
for Ybþ and the present work for Hgþ) and the exper-
imental limits on the variation of the frequency ratios
[29,31] to obtain the mass variation from (A6). For the
Ybþ=Cs system, we use the limits on the coupling of the
electron to proton mass ratio μ ¼ mp=me to gravity
presented in Ref. [43] to place constraints on the fractional
variation of the nucleon and electron mass due to changes
in the distance to Sun. These calculations may once again
be used to place constraints on the Yukawa-type inter-
actions of the scalar field from the Sun/Moon with nucleons
and electrons, noting the following relations which may be
yielded from Eq. (46)

δmn

mn
¼ δϕs

Λn
; ðA7Þ

δme

me
¼ δϕs

Λe
: ðA8Þ

Then following the same steps as for Λγ we obtain

Λn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi				mnanDS;M

δmn=mn

				
s

; ðA9Þ

where an ¼ 1.25mn for the Sun and an ¼ 24mn for the
Moon. To get an expression for Λe we replace an by ae and
δmn=mn by δme=me in (A9); an ¼ 5.5 × 10−4mn for the
Sun and an ¼ 6 × 10−3mn for the Moon.
Note that in the case of the nucleon coupling constant Λn

it is also possible to perform calculations using the values
of κn, presented in Table II, however in this case the results
provide weaker constraints.
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