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A first order electroweak phase transition probes physics beyond the Standard Model on multiple frontiers
and therefore is of immense interest for theoretical exploration. We conduct a model-independent study of the
effects of relevant dimension 6 and dimension 8 operators, of the Standard Model effective field theory, on
electroweak phase transition. We use a thermally corrected and renormalization group improved potential and
study its impact on nucleation temperature. We then outline bubble dynamics that lead to ultrarelativistic
bubble wall velocities which are mainly motivated from the viewpoint of gravitational wave detection.
We highlight the ranges of the Wilson coefficients that give rise to such bubble wall velocities and predict
gravitational wave spectra generated by such transitions which can be tested in future experiments.
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I. INTRODUCTION

Gauge theories generically rely on phase transitions to
generate masses for particles via spontaneous symmetry
breaking. For first order phase transition, i.e., below a
critical temperature, the Universe undergoes a transition
from a metastable state to a stable equilibrium state through
the process of bubble nucleation, growth, and eventual
merger. Physics pertaining to first order phase transition
(FOPT) has received a lot of attention in the recent past, and
the reason is mainly twofold. Firstly, an FOPT implies a
departure from thermal equilibrium which is a necessary
criterion1 for explaining matter-antimatter asymmetry in
the Universe [2,3]. This remains one of the most elusive
shortcomings of the Standard Model (SM) of particle
physics. In fact, the SM, with its specific set of parameters,
measured with great precision by particle collision experi-
ments, can only accommodate an adiabatic crossover

transition at the weak scale [4–7]. Therefore, a first order
electroweak phase transition (EWPT) is a natural testing
ground for physics beyond the Standard Model (BSM).
Secondly, cosmological FOPTs lead to the production
of a gravitational wave spectrum (GWS) [8–14] that can
be detected by current and upcoming interferometric
experiments. Thus, an FOPT furnishes a complementary
means to test BSM physics at colliders as well as at cosmic
frontiers. An FOPT at the electroweak scale can lead to a
GWS that falls within the frequency ranges of the Laser
Interferometer Space Antenna (LISA) [15–17], Deci-hertz
Interferometer Gravitational Wave Observatory (DECIGO)
[18], and Big Bang Observer (BBO) [19,20], whereas
a phase transition occurring at higher energies, say
Oð10–100 TeVÞ, would correspond to a GWS measurable
by experiments such as the Einstein Telescope (ET) [21]
and the Cosmic Explorer (CE) [22]. It has also been shown
that an FOPT plays a crucial role in the production of dark
matter [23,24], primordial black holes [25–30], magnetic
fields [31,32], and other topological defects [33–35].
As bubbles nucleate and grow, their velocity becomes a

prominent aspect of an FOPT. On one hand, the wall
experiences an outward pressure because of the difference
in energy densities between the unbroken and broken
phases. On the other hand, it also receives inward pressure
from the particles residing in the thermal plasma. The
competing influence of these two forces determines
whether the wall reaches a small nonrelativistic velocity
or if it continues to accelerate until an ultrarelativistic
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1See for alternative scenarios using spontaneous baryogen-
esis [1].
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velocity is attained. Small wall velocities are well motivated
in the context of electroweak baryogenesis [36,37], and it
was shown in [38] that large wall velocities would not leave
enough time to generate the matter-antimatter asymmetry
in front of an advancing bubble wall. However, in the recent
past, it has been shown that successful generation of the
baryon asymmetry can also occur with supersonic and
relativistic velocities of the bubble wall [39–41]. The latter
possibility can be further probed as it leaves unique
signatures in the GWS.
Ultrarelativistic wall velocities can be achieved if the

difference in energy (ΔV) exceeds the leading order
pressure (PLO) from the thermal plasma, i.e., ΔV > PLO
[42,43]. This situation has recently been realized within a
BSM framework augmenting the SM fields with a gauge
singlet scalar and leading to a two-step phase transition
[44]. Ultrarelativistic bubbles are associated with GW
spectra with high peaks [45–47]. Recent works also
indicate that both baryogenesis [48,49] and dark matter
production [50,51] can be explained by scenarios leading to
ultrarelativistic bubbles. This has enhanced the incentive
for the study of new physics models that lead to such large
wall velocities, for probing the physics of the electroweak
phase transition at multiple frontiers.
The prospect of FOPT has been investigated within a

wide array of BSM setups. The simplest means to accom-
modate an FOPT is to permit significant deviation of the
effective Higgs self coupling, roughly≳20% or so [52–54].
This can be achieved by introducing a gauge singlet
scalar field S, which couples to the SM Higgs field through
a portal interaction. Depending on whether the singlet
would acquire a vacuum expectation value or not, the
phase transition occurs as a two-step or one-step phenome-
non [55–63]. A similar situation can occur for the well
known two Higgs doublet model [64–68], triplet extended
SM [69–71], radiatively generated barrier [72], etc.
The possibility of FOPT has also been analyzed in super-
symmetric models. While the stop quark induced FOPT is
highly disfavored [73–76], new parameter space opens up
once the minimal version of the supersymmetric theory is
extended to include new fields [77,78].
However, a glaring lack of direct experimental evidence

for new degrees of freedom, beyond the SM ones, prompts
us to adopt an effective field theory (EFT) based approach.
In the context of a first order EWPT, BSM effects can be
neatly encapsulated within the contact interactions of the
Standard Model effective field Theory (SMEFT). Within
this framework, several studies have explored the idea
that a tree-level barrier in the potential can be generated
by introducing a H6 interaction, potentially resulting in
FOPT [79–81]. Reference [82] presents a detailed analysis
of the predictions of GW spectra sourced by an FOPT.
Additionally, it has been shown that dimension 6 structures
can be introduced as new sources of CP violation to
generate enhanced baryon asymmetry [83,84]. In the

SMEFT paradigm, uncertainties due to the renormalization
scale dependence in the usual daisy resummation approach
has been discussed in [85]. The limit of small bubble
velocities in this context has been addressed using a
hydrodynamic approach in [86]. [For other works pertain-
ing to bubble wall velocities, see Refs. [87–93] ]. On the
other hand, the prospect of ultrarelativistic bubbles was
noted in [94] with dimension 6 SMEFT operators if the
new physics scale was below 580 GeV. The challenges
associated with the power counting and constructing
UV-completion for the SMEFT scenarios that lead to
successful electroweak baryogenesis and phase transition,
in general, were pointed out in Refs. [95,96].
The objective of our analysis is to take into account the

effects of the dimension 6 SMEFToperatorsOH,OHD, and
OH□ [97] and scrutinize the Wilson coefficient parameter
space that not only is conducive to an FOPT but also leads
to ultrarelativistic bubble wall velocities. These operators
directly contribute to the Higgs potential and also to the
renormalization of the Higgs wave function. As a result, a
consistent treatment based on renormalization group
improved potential becomes necessary. Contemporary
works have shed light on the parameter space for the
SMEFT [98] as well as beyond SMEFT (BSMEFT)
[99,100] scenarios, that can lead to a strong first order
phase transition based on the condition ϕc=Tc ≳ 1. Here,
Tc is the critical temperature, where the effective potential
presents degenerate vacua, as depicted by the blue curve in
Fig. 1, and ϕc denotes the location of the minimum of the
potential at Tc. However, before a combination of param-
eter values can be declared to be suitable for a strong FOPT,
it is vital to further examine the details of the bubble
dynamics as the temperature gradually decreases below Tc.
One of the aims of our work is to inspect this aspect and
check whether the criterion of strong FOPT, ϕc=Tc ≳ 1, is
commensurate with bubble nucleation or not, mainly
focusing on ultrarelativistic bubble wall velocities. At this
point, it is important to note our findings compared to
Ref. [101]. We noticed that a successful EWPT can occur
only for a tiny range of CH, i.e., the coefficient of the
effective ðH†HÞ3 term in the Lagrangian, which for Oð1Þ
coefficients translates roughly to a new physics scale
between 563 and 627 GeV. These boundary values describe
the limits where either the height of the barrier is too high
for an EWPT or the barrier would completely disappear.
Moreover, ultrarelativistic bubbles are only possible around
the narrow window of 563–564 GeV. However, as noted in
Sec. IV, such low values of the cutoff scale requires further
investigation with dimension 8 SMEFT operators included.
Therefore, we include the most dominant contribution to
the effective potential and study its impact on the nucle-
ation temperature as well as the bubble velocity.
This article is organized as follows. We start with an in-

depth discussion of the ingredients and steps involved in
assembling the effective thermal potential in Sec. II. We
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describe how the zero-temperature, tree-level potential is
improved through the incorporation of one-loop, SMEFT,
and renormalization group (RG) effects. In Sec. III, we solve
for the bounce action and obtain nucleation temperatures for
different values of the SMEFT coefficients. Section IV
extends this analysis through the inclusion of a dimension
8 SMEFToperator. This is followed by a detailed discussion
of the pressure on the bubble wall in Sec. V. We show
that bubble nucleation occurs only in specific regions of the
SMEFT parameter space. In fact, the allowed ranges for the
Wilson coefficients shrink considerably once the discussion
is specialized toward ultrarelativistic bubble wall velocities.
We evaluate the gravitational wave spectra corresponding
to the parameter sets yielding bubbles with large velocities
in Sec. VI. Finally, we summarize our conclusions and
discuss possible UV completions in Sec. VII.

II. THE EFFECTIVE THERMAL POTENTIAL

Necessary requirements for an FOPT are the existence of
degenerate minima at a critical temperature Tc and the
appearance of a potential barrier separating the minima, at
and below a critical temperature, as shown in Fig. 1. Such a
feature emerges once we extend the zero temperature
potential to account for finite-temperature effects [102–105]:

Veffðϕ; TÞ ¼ VT¼0ðϕÞ þ VT≠0ðϕ; TÞ: ð1Þ

In the subsections that follow, we systematically build
the necessary ingredients of the effective potential. We
extend the tree-level potential to account for one-loop
effects, introduce dimension 6 SMEFT interactions, discuss
the impact of renormalization group evolution (RGE) of
parameters using the background field method, and finally
introduce the effects of finite-temperature interactions.

A. Zero-temperature one-loop corrected potential

The interactions between the Higgs scalar and other
SM fields, relevant for the electroweak phase transition,
can be described in terms of the following subset of the
renormalizable SM Lagrangian:

LðH;H†Þ ⊃ ðDμHÞ†ðDμHÞ −m2
HH

†H

−
λ

2
ðH†HÞ2 − ytq̄3LtRH̃; ð2Þ

where Dμ is the covariant derivative, i.e.,

DμH ¼
�
∂μ þ

i
2
g2WI

μτ
I þ i

2
g1Bμ

�
H; ð3Þ

where g1, g2 are the coupling constants for the Uð1ÞY ,
SUð2ÞL gauge groups and Bμ, WI

μ, (I ¼ 1; 2; 3) are the
corresponding gauge bosons. τI are the Pauli matrices,
H̃ ¼ iτ2H�, q3L and tR denote the left chiral third generation
quark doublet and the right chiral top quark, respectively,
with yt being the corresponding Yukawa coupling.
After electroweak symmetry breaking, WI

μ, Bμ are
rotated into the physical W�

μ , Zμ vector bosons and the
photon. The Higgs doublet can be expressed in terms of
fluctuations around a background field hHi ¼ ϕ as

H ¼
"

Gþ

1ffiffi
2

p ðϕþ hþ iG0Þ

#
; ð4Þ

where h corresponds to the dynamical Higgs field and
Gþ, G0 are the Goldstone bosons.
The effective thermal potential is a functional of the

static background field which is only a function of the
radial coordinate, i.e., ϕ≡ ϕðrÞ, which is defined at an
arbitrary temperature and ϕ ¼ v ¼ 246 GeV at T ¼ 0. In
addition to the terms derived from Eq. (2), the zero-
temperature one-loop contributions, i.e., the Coleman-
Weinberg corrections (in the MS renormalization scheme)
[102,103] have the following schematic form:

VCWðϕÞ ¼
1

64π2
X
i

nim4
i ðϕÞ

�
log

�
m2

i ðϕÞ
μ2

�
− Ci

�
; ð5Þ

where i ¼ W�; Z; h; G�; G0; t refers to the individual fields
and ni are the corresponding numbers of degrees of
freedom. More specifically,

nW� ¼ 6; nZ ¼ 3; nG� ¼ 2;

nG0 ¼ 1; nh ¼ 1; nt ¼ −12: ð6Þ

FIG. 1. A schematic diagram portraying FOPT. Tc is defined
by the blue curve, i.e., the temperature corresponding to
degenerate vacua.
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The constant factors Ci are given as

CW�;Z ¼ 5

6
and Ch;G�;G0;t;b ¼

3

2
: ð7Þ

After adding the Coleman-Weinberg potential, we recom-
pute the values of the Lagrangian parameters m2

H; λ by
simultaneously imposing the following renormalization
conditions:

∂ðV treeþVCWÞ
∂ϕ

����
ϕ¼v

¼0;

∂
2ðV treeþVCWÞ

∂ϕ2

����
ϕ¼v

¼m2
h;phys≈ð125.5GeVÞ2: ð8Þ

Here, V tree is the usual tree-level SM potential. The first
of these reflects the existence of a minima of the zero-
temperature potential at ϕ ¼ v, i.e., the vacuum expectation
value at T ¼ 0, and the latter demands that the mass
computed based on this zero-temperature potential must
equal the physical mass of the Higgs scalar.

B. Incorporating SMEFT (dimension 6) operators

The SM with its specific parameter set and particle
masses as affirmed by high energy experiments fails to
facilitate an FOPT, despite taking into account loop and
finite-temperature corrections to the scalar potential. In
other words, a first order EWPT is entirely an artifact of
BSM physics, and the popular frameworks that accom-
modate such a phenomenon consist of minimal extensions
of the SM scalar sector.
An effective field theory such as SMEFT provides an

ideal backdrop that can encode the features and conse-
quences of a variety of BSM models. In what follows,
we have conducted a model-independent analysis by
taking into account the effects of SMEFT operators of
mass dimension 6, constituted solely of the Higgs param-
eter and its derivatives. Therefore, the Lagrangian is
extended to

LfullðH;H†Þ ¼ LðH;H†Þ þ CH

Λ2
OH

þ CHD

Λ2
OHD þ CH□

Λ2
OH□; ð9Þ

where OH, OHD, and OH□ denote the operators

OH ¼ ðH†HÞ3; OHD ¼ ðH†iDμ

↔
HÞ2;

OH□ ¼ ðH†HÞ□ðH†HÞ; ð10Þ

and CH, CHD, and CH□ are the corresponding Wilson
coefficients (WCs). Λ refers to the unknown high energy
scale, but for a major portion of our discussion we will
absorb it within the definition of the WCs, i.e., Ci=Λ2 → Ci.

CH participates directly in the tree level Lagrangian, and
after symmetry breaking we get

V treeðϕÞ ¼
1

2
m2

Hϕ
2 þ 1

8
λϕ4 −

1

8
CHϕ

6; ð11Þ

where mH is the Higgs mass parameter in the tree-level
Lagrangian.
CHD and CH□, on the other hand, offer modifications to

the kinetic term of the physical scalar (h). This necessitates
a field redefinition of the form h → Z−1

h h, so as to retrieve
the canonical form of the kinetic term, with

Zh ¼
�
1 − CH□v2 þ

1

4
CHDv2

�
: ð12Þ

Once again, v refers to the vacuum expectation value at
T ¼ 0. While the static background field ϕðrÞ does not
undergo the same field redefinition, the effect of Eq. (12) is
captured within the expressions for the field-dependent
masses of the various degrees of freedom, collected in
Eq. (13).

m2
WðϕÞ ¼

1

4
g22ϕ

2;

m2
ZðϕÞ ¼

1

4

�
3

5
g21 þ g22

�
ϕ2

�
1þ 1

2
CHDϕ

2

�
;

m2
G�ðϕÞ ¼ m2

H þ λ

2
ϕ2 −

3

4
CHϕ

4;

m2
G0ðϕÞ ¼ m2

H þ λ

2
ϕ2 −

m2
H

2
CHDϕ

2

−
3

4
CHϕ

4 −
λ

4
CHDϕ

4;

m2
hðϕÞ ¼ m2

H þ 3λ

2
ϕ2 −

m2
H

2
ðCHD − 4CH□Þϕ2

−
3

4
ð5CH þ λðCHD − 4CH□ÞÞϕ4;

m2
t ðϕÞ ¼

1

2
y2tϕ2: ð13Þ

C. Renormalization group improved potential

The effective potential in Eq. (5) involves the renorm-
alization scale μ which is not physical. Our construction
should be independent of μ, and this can be achieved by
constructing a RG improved effective potential. This would
ensure that a change in μ is accompanied by the change in
renormalized parameters. In order to do this, we use the
background field method [106–108] to evaluate the RG
evolution equations. The principal idea is to write the Higgs
field in terms of a fluctuation and a slowly varying
background field ϕ. This decomposition is analogous to
the sharp momentum cutoff scheme. The effective
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potential, composed of both tree-level and one-loop CW
terms, is now written in terms of the background field
as shown in Eqs. (11) and (5), while the fluctuation is
integrated over in the functional integral. The all order zero-
temperature potential obeys the RG equation

�
∂

∂t
þ βi

∂

∂λi
− γϕϕ

∂

∂ϕ

�
Vðϕcl; λi; μÞ ¼ 0: ð14Þ

Here, λi is the set of Lagrangian parameters such as m2
H, λ,

CH, and so on. The solution of Eq. (14) is also well-known
where the dependence of the sliding energy scale μ is
described completely by the running parameters, i.e.,

Vðϕcl; λi; μÞ ¼ Vðϕ̄clðμ0Þ; λiðμ0Þ; μ0Þ; ð15Þ

where the barred quantities satisfy their corresponding β
functions given by

dλi
dt

¼ βifλjg; t ¼ 1

16π2
ln

μ

μ0
; ð16Þ

with μ being the scale of renormalization and μ0 being the
input or reference scale. We can further simplify Eq. (14) as
the tree-level potential does not depend on the renormal-
ization scale:

�
βi

∂

∂λi
− γϕϕ

∂

∂ϕ

�
V treeðϕcl; ::Þ ¼ −

∂

∂t
VCWðϕcl; ::Þ: ð17Þ

After incorporating the explicit expressions of V tree and
VCW into Eq. (17), we can read off the β functions for each
of the Lagrangian parameters by equating the coefficients
of ϕ2, ϕ4, and ϕ6 on both sides of Eq. (17). This results in

βm2
H
≃

1

16π2
½2m2

Hγϕ þ 6λm2
H�;

βλ ≃
1

16π2
½4λγϕ þ 12λ2 − 48CHm2

H − 12y4t �;

βCH
≃

1

16π2
½54CHλþ 6CHγϕ�; ð18Þ

where γϕ ¼ 3y2t is the anomalous dimension of the field
ϕ. Note that, at one-loop, the running of CH□ and CHD is
self-proportional and therefore we ignore their contribu-
tions.2 However, they will contribute in the physical
masses of the fields as shown in Eq. (13). Similarly, yt

and g3 follow their usual RGEs from the wave function
renormalization pieces

βyt ≃
1

16π2

�
9

2
y3t − 8g23yt

�
;

βg3 ≃
1

16π2
½−7g33�: ð19Þ

With these RG flows of the parameters, the renormal-
ization group improved effective potential can be obtained
by choosing μ → v and replacing all the parameters with
renormalized parameters in Eq. (5). This resums all the
large logarithms present in the CW potential. Notice that
such a method can be extended to multiscale problems as
well, where arbitrary choices of the renormalization scale
might not minimize all the large logarithms. The RG flows
of the parameters also help us to match our WCs at the
scale Λ, where all the operators in Eq. (10) are generated.
We will quantify the impact of the RG improved potential
on nucleation temperature and bubble dynamics in Secs. III
and V, respectively.

D. Finite temperature corrections

Temperature-dependent corrections to the effective
potential can be summarized as follows [103,105]:

Vfinite-Tðϕ; TÞ ¼
T4

2π2

�X
i

niJB=F

�
m2

i ðϕÞ
T2

��
; ð20Þ

where i once again denotes the fields, ni represents the
numbers of degrees of freedom as mentioned in Eq. (6), and
the corresponding masses m2

i ðϕÞ are given in Eq. (13). The
thermal functions JB;F correspond to bosonic and fermionic
degrees of freedom, and these can be expressed as the
following integrals:

JB;F

�
m2

T2

�
¼

Z
∞

0

dxx2 log
h
1 ∓ e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þm2=T2

p i
: ð21Þ

It is well-known that, at the critical temperature, the one-
loop approximation mentioned before breaks down. Daisy
resummation ensures that all the IR divergent pieces are
resummed in the following manner [104,105,111]:

Vdaisyðϕ; TÞ ¼ −
T
12π

X
i

½m3
i ðϕ; TÞ −m3

i ðϕ; 0Þ�; ð22Þ

where i now refers to h, G�; G0, and the longitudinal
modes of the vector bosons W�

l , Zl, γl. Note that adding
Eq. (22) is equivalent to the substitution m2

i → m2
i þ Πi in

the effective potential, where Πi is the leading self energy
corrections corresponding to the one-loop thermal mass.
However, we use Eq. (22) in the effective potential and take
into account the full thermally corrected potential instead of

2Our results are in agreement with the RGEs obtained in
[108–110]. The difference in some coefficients can be attributed
to the way couplings are defined in the potential.
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the high temperature approximation. The temperature-
dependent masses can be obtained as

m2
W;lðϕ; TÞ ¼ m2

WðϕÞ þ
11

6
g22T

2;

m2
Z;lðϕ; TÞ ¼

1

2

�
m2

ZðϕÞ þ
11g22T

2

6
þ 11g21T

2

10
þ Δðϕ; TÞ

�
;

m2
γ;lðϕ; TÞ ¼

1

2

�
m2

ZðϕÞ þ
11g22T

2

6
þ 11g21T

2

10
− Δðϕ; TÞ

�
;

m2
i ðϕ; TÞ ¼ m2

i ðϕÞ þ
�
λ

4
þ 3g21

80
þ 3g22

16
þ y2t

4

�
T2; ð23Þ

with i ¼ h;G0; G� and

Δðϕ; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

ZðϕÞ þ
11T2

900
ð3g21 − 5g22Þ2ð3ϕ2 þ 11T2Þ

r
:

The T ¼ 0 as well as T ≠ 0 pieces of the total thermal
potential can be summarized as

VT¼0ðϕÞ ¼ V treeðϕÞ þ VCWðϕÞ;
VT≠0ðϕ; TÞ ¼ Vfinite-Tðϕ; TÞ þ Vdaisyðϕ; TÞ: ð24Þ

III. BUBBLE PROFILES AND THE NUCLEATION
TEMPERATURE

The effective potential exhibits degenerate minima at the
critical temperature, and a non-zero probability for tunnel-
ing between the false and true vacua exists for temperatures
below Tc. But for the phase transition to succeed, the
system must cool below the nucleation temperature Tnucl
where the probability of nucleation of a single bubble per
Hubble volume per Hubble time is Oð1Þ.

PðTnuclÞ ¼
ZTnucl

∞

dT
T

�
2ξMPl

T

�
4

e−S3ðTÞ=T ≃ 1: ð25Þ

Here,MPl is the Planck mass scale and ξ¼4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πg�ðTÞ=45

p
,

with g�ðTnuclÞ ∼ 100 denoting the number of relativistic
degrees of freedom in the thermal plasma. The criteria in
Eq. (25) can be rewritten in a simplified form as

S3ðϕðrÞ; TÞ − S3ð0; TÞ
T

����
T¼Tnucl

≃ 140; ð26Þ

where S3 is the classical bounce action in 3 dimensions,

S3ðϕ; TÞ ¼ 4π

Z
∞

0

drr2
��

dϕ
dr

�
2

þ Veffðϕ; TÞ
�
: ð27Þ

Tunneling from the false vacuum to the true vacuum
below the critical temperature is an instantaneous process
and the trajectory for the same is dictated by the static
bubble profiles which are defined for fixed time slices and
at a particular temperature. Therefore, these are simply a
function of the radial coordinate. The profiles ϕðrÞ can be
obtained as a solution of the equation of motion:

∂
2ϕþ ∂Veffðϕ; TÞ

∂ϕ
¼ 0: ð28Þ

This can be recast as the following initial value problem,

−
1

r2
∂

∂r

�
r2
∂ϕ

∂r

�
þ ∂Veffðϕ; TÞ

∂ϕ
¼ 0; ð29Þ

subject to the boundary conditions

ϕ0ðrÞ⟶r→0
0; ϕ0ðrÞ⟶r→∞

0; ϕðrÞ⟶r→∞
0: ð30Þ

We find solutions for the single-field system described in
Eq. (29) using a numerical approach based on the shooting
method for solving initial value problems. The basic idea
behind this approach is to pinpoint an initial field configu-
ration ϕð0Þ, such that if a particle starts with a vanishing
gradient near the maxima of an inverted potential, i.e.,
ϕ0ð0Þ ¼ 0, then it would arrive at the configuration corre-
sponding to the false vacuum at large r with a vanishing
gradient, i.e., ϕ0ðrÞ ¼ 0 when ϕðrÞ ¼ 0 for r → ∞. To
obtain the solutions of Eq. (29) for constant values of T,
we relied on a simple mathematica based implementation
of the shooting method.3 Having obtained the solutions
ϕ≡ ϕðrÞ at different temperatures, we then used Eq. (26)
to ascertain the nucleation temperature.
In the process of determining the static solution ϕðrÞ,

we rescaled all dimensionful quantities in Eq. (29) with
respect to the mass of theW-boson,mW ¼ 80 GeV; i.e., we
multiply and divide Eq. (29) by powers ofmW and make the
following identifications:

1

mW
ϕ → ϕ;

1

mW
T → T;

mWr → r;
1

mW
∂r → ∂r: ð31Þ

This also implies a rescaling of dimensionful parameters in
the effective potential, i.e.,

m2
H

m2
W
→ m2

H; m2
WCi → Ci; ð32Þ

with Ci ∈ fCH;CHD; CH□g.

3A variety of sophisticated computation tools such as
CosmoTransitions [112], FindBounce [113], and
Elvet [114] can also be utilized to obtain the bubble profiles.
On the other hand, DRalgo [115] computes the finite temper-
ature effective potential within a effective theory.
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A. Parameter selection and results

In our numerical analysis, we treat CH, CH□, CHD as free
and independent parameters. Our choice of parameter
ranges is informed by the results of recent global fits,
conducted on SMEFT WCs, based on [101,116]. These
global fits were obtained by incorporating Higgs data from
8 and 13 TeV runs at the LHC as well as diboson processes
(WW and WZ) and electroweak precision observables
including the W-boson mass and decay width from LEP-
2 data. The resulting limits can be summarized (in units of
GeV−2) as

CH ∈ ½−2 × 10−5; 0.5 × 10−5�;
CH□ ∈ ½−0.4 × 10−6; 0.5 × 10−6�;
CHD ∈ ½−0.25 × 10−7;−0.02 × 10−7�: ð33Þ

Selection of benchmark points for our analysis was done
by fixing the WC values as well asm2

H and λ, in accordance
with Eq. (8) at the energy scale of 1 TeVand using RGE to
evaluate the corresponding values at the electroweak scale,
where the relevant SM parameters assume the following
values. Here, we have employed grand unified theory
normalization for g1, i.e. g1 →

ffiffiffiffiffiffiffiffi
3=5

p
g1.

g1 ¼ 0.46; g2 ¼ 0.65; yt ¼ 0.91; ð34Þ

For a particular choice of the SMEFT WCs, the critical
temperature Tc can be determined based on the features of
the effective thermal potential; i.e., it is the temperature
where potential exhibits degenerate minima, as shown in
Fig. 1. For temperatures below Tc, the bubble profiles ϕðrÞ
can be obtained by solving Eq. (29), and the ratio
S3½ϕðrÞ; T�=T can then be computed for each distinct
choice of parameters. We have shown the variation in
S3½ϕðrÞ; T�=T with respect to T for different choices of CH
and fixed values of CH□, CHD in Fig. 2.
The process of selecting benchmark points also brought

to light the following noteworthy observations:
(1) Among the three dimension 6 parameters, CH has

the most notable impact on the features of the
effective thermal potential and consequently on
the nucleation temperatures Tnucl, whereas the im-
pact of CHD is negligibly small. We highlight the
relative impact of CH vs CH□ on Tnucl in Fig. 3. Due
to the relatively smaller effects of the variation in
CH□ and CHD on the nucleation temperature, we set
these coefficients to fixed values for the rest of our
analysis and focus mainly on the impact of CH.

(2) Not the entire range of allowed WC values, deter-
mined using global fits, is conducive to a first
order EWPT. We observed that for CH > −2.53 ×
10−6 GeV−2 (at the electroweak scale), a potential
barrier never forms, there are no degenerate minima,
and the phase transition is a smooth crossover.

FIG. 2. The effect of varying CH on the ratio S3=T. Each line in
the figure corresponds to a specific CH value (expressed in units
of GeV−2). The dashed line denotes the criteria mentioned in
Eq. (26), i.e., S3=T ¼ 140. For each case, we have set CH□ ¼
1.56 × 10−7 GeV−2 and CHD ¼ −1.15 × 10−8 GeV−2.

FIG. 3. The variation of the nucleation temperature Tnucl with
respect to the simultaneous changes in CH and CH□. The
parameter space excluded by various constraints has been indicated
by the gray-shaded region. For CH > −2.53 × 10−6 GeV−2, the
barrier separating the two minima disappears, whereas for
CH < −3.39 × 10−6 GeV−2, the barrier is too high for the bubbles
to nucleate. Here, we have set CHD ¼ −1.15 × 10−8 GeV−2 for
each combination of ðCH;CH□Þ values.
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On the other hand, for CH < −3.39 × 10−6 GeV−2,
the height of the barrier remains significantly large
even as T → 0 and nucleation never happens. For
order one coefficients at the TeV scale, these upper
and lower bounds on CH correspond to an allowed
range of 563.57–627.88 GeV for Λ.

Therefore, it is safe to say that EWPT offers much
improvement of the constraints on the relevant WCs, as
compared to the ones obtained solely based on collider
data. We have catalogued the benchmark points selected for

further analysis in Table I. For each case, we have also
listed the corresponding Tc and Tnucl values.
Through a simple exercise of RG evolving the running

parameters from the electroweak scale μ ¼ v ≃ 246 GeV
down to the top quark mass scale μ ¼ mt ≃ 172 GeV, we
noticed differences in Tnucl as small as ∼4% and as large as
∼20% for the benchmark points. This has been elucidated
in Fig. 4. While we have restricted our discussion to the
two aforementioned distinct choices for μ, Ref. [85] dis-
cusses in great detail what constitutes an optimal choice for
μ, especially when it is expressed as a linear function of the
temperature characterizing the phase transition. Selecting
the optimal linear relation between μ and T, i.e., μ ¼ 2.2T
[see Ref. [85] ], we found the values of Tnucl to lie within
the region between the two curves in Fig. 4.

IV. IMPACT OF DIMENSION 8 OPERATORS

As mentioned in the previous section, the low ranges
(563 GeV≲ Λ≲ 630 GeV) for the new physics scale
required for FOPT necessitate a careful analysis of the
effective potential in the presence of dimension 8 operators.
We first look at the power counting of the effective potential
in the presence of a dimension 8 term, CH8=16. The barrier
height is chiefly dictated by the first derivative of the
potential. Taking into account the most dominant effect,
i.e., top loop contribution on the Coleman-Weinberg
potential, we find

m2
Hþ λ

2
ϕ2þ ϕ2

2π2
log

�
m2

t

μ2

�
−
3CH

4
ϕ4þCH8

2
ϕ6¼0: ð35Þ

Arguing that the contribution from the CW should domi-
nate over the dimension 8 term, we get Λ≳ 1.7v. This limit
ensures a viable power counting of the effective potential.
However, it is quite clear the dimension 8 operators would
provide a sizable contribution to our analysis. In this light,

TABLE I. Variation in the critical temperature (Tc), nucleation temperature (Tnucl), terminal boost factor (γTw), change in enthalpy (α),
speed of the phase transition (β=H�), and sound wave lifetime (H�τsh) with respect to CH , taking into account dimension 6 contribution
only. The temperatures and the UV scale (Λ) have been reported in units of GeV, whereas CH is in units of GeV−2. For each case, we
have set CH□ ¼ 1.56 × 10−7 GeV−2 and CHD ¼ −1.15 × 10−8 GeV−2. We report the CH values both at the electroweak scale and at
1 TeV, assuming that the new physics occurs in the latter case.

CH × 106 (EW scale) CH × 106 (∼1 TeV) Λ Tc ϕc=Tc Tnucl γTw α β=H� H�τsh

No barrier
−2.526 −2.537 627.88 110 1.66 104.5 < 1

a 0.008 4222 0.05
−3.115 −2.965 580.73 96.4 2.22 78.5 < 1

a 0.029 780 0.08
−3.375 −3.137 564.57 90.1 2.49 52 5.89 0.15 96 0.23
−3.389 −3.147 563.74 89.7 2.50 46.7 9.63 0.24 38 0.41
−3.392 −3.148 563.57 89.6 2.51 44.2 11.99 0.30 15 0.86

Barrier too high
aγTw < 1 is unphysical. Such a result simply highlights the invalidity of the large velocity limit for the corresponding

benchmark point.

FIG. 4. The impact of RGE of running parameters onCH and the
corresponding Tnucl values. For the purposes of our analysis, we set
the renormalization scale μ ¼ v ≃ 246 GeV, i.e., the vacuum
expectation value of the SM Higgs, within the Coleman-Weinberg
potential, and the parameters described in Eqs. (18) and (19) get
replaced by their running counterparts. The ðCH; TnuclÞ values with
this setup are described using the blue line. The red line shows how
these values change when the parameters are run down to the top
quark mass scale μ ¼ mt ≃ 172 GeV. We note that the changes in
Tnucl can be as small as 4% (on the far right) and as large as 20%
(on the far left).
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we first incorporate a dimension 8 scalar self-interaction
term so that the tree-level potential of Eq. (11) gets
modified to

Vd8
treeðϕÞ ¼ V treeðϕÞ þ

1

16
C2
Hϕ

8; ð36Þ

where once again the powers of the UV scale Λ are
absorbed within the definition of the Wilson coefficient.
Also, to maintain a correlation between the dimension 6
and dimension 8 Wilson coefficients, we have set
CH8=Λ4 ≡ ðCH=Λ2Þ2. In addition to modifying the tree-
level potential, the dimension 8 operator also modifies
the field-dependent masses of the Higgs as well as the
Goldstones. Following are the updated expressions,

m2
G�ðϕÞ ¼m2

H þ λ

2
ϕ2 −

�
3

4
CH −

1

2
C2
H

�
ϕ4;

m2
G0ðϕÞ ¼m2

H þ
�
λ

2
−
m2

H

2
CHD

�
ϕ2

−
�
3

4
CH þ λ

4
CHD −

3

16
m2

HC
2
HD

�
ϕ4

þ
�
3

8
CHCHD þ 1

2
C2
H þ 3

32
λC2

HD

�
ϕ6;

m2
hðϕÞ ¼m2

H þ 3λ

2
ϕ2 −

m2
H

2
ðCHD − 4CH□Þϕ2

−
�
15

4
CH þ 3

4
λðCHD − 4CH□Þ− 3m2

HC
2
H□

þ 3

2
m2

HCH□CHD −
3

16
m2

HC
2
HD

�
ϕ4

þ
�
7

2
C2
H −

15

2
CHCH□ þ 15

8
CHCHD

þ 9

2
λC2

H□
−
9

4
λCHDCH□ þ 9

32
λC2

HD

�
ϕ6: ð37Þ

Oð1=Λ4Þ corrections to the SM mass spectrum due to
SMEFT operators have also been computed in Ref. [117].
With the changes in the mass spectrum as presented
in Eq. (37), we once again attempt to solve Eq. (29) to
obtain bubble profiles at fixed temperatures and utilize the
criterion sketched in Eq. (26) to ascertain the nucleation
temperatures for a given set of parameters. We have
catalogued benchmark points of interest, demarcated by
the specific choice of CH in Table II. Similar to the contents
of Table I, we have listed the CH values at the electroweak
scale as well as at Λ ¼ 1 TeV. We have also highlighted
the Tc, ϕc=Tc, and Tnucl for each case. The first and last
rows of Table II correspond to the two limiting cases
where (i) for CH > −1.911 × 10−6 GeV−2, barrier forma-
tion does not occur, hence ruling out an FOPT and (ii) for
CH < −2.766 × 10−6 GeV−2, a sizeable barrier height
even as T → 0 implies that the nucleation criteria is never
satisfied. A noteworthy observation when comparing the
contents of Tables I and II is the overall shift in the CH
values and consequently in the values of the UV scale Λ,
which now falls within the range of 619.16–708.58 GeV.
We have shown the variation in S3½ϕðrÞ; T�=T with respect
to T for the last four entries of Table II in Fig. 5.

V. ULTRARELATIVISTIC BUBBLES

The velocity of the bubble wall is a crucial characteristic of
an FOPT, and it has a pronounced impact on a number of
associated phenomena, such as the production of gravitational
waves, baryogenesis, etc. The expansion of the bubble is
primarily dictated by (1) the difference in energies correspond-
ing to the two minima of the effective potential and (2) the
friction between the plasma particles and the bubble wall.
As the energy released due to the separation of the

minima drives the bubble to expand, the pressure from the
friction rises along with the increasing velocity of the wall,
leading to a scenario where a terminal velocity can be
attained. By balancing these two opposing forces, one can

TABLE II. Variation in the critical temperature (Tc), nucleation temperature (Tnucl), terminal boost factor (γTw), change in enthalpy (α),
speed of the phase transition (β=H�), and sound wave lifetime (H�τsh) with respect to CH considering dimension 8 contributions along
with dimension 6. The temperatures and the UV scale (Λ) are reported in units of GeV, whereas CH is in units of GeV−2. For each case,
we have set CH□ ¼ 1.56 × 10−7 GeV−2 and CHD ¼ −1.15 × 10−8 GeV−2. We report the CH values both at the electroweak scale and at
1 TeV, assuming that the new physics occurs in the latter case. It must be emphasized once again that ϕc=Tc > 1 is not a robust criterion
for an FOPT to occur, since owing to large barrier height nucleation fails around ϕc=Tc ∼ 2.6.

CH × 106 (EW scale) CH × 106 (∼1 TeV) Λ Tc ϕc=Tc Tnucl γTw α β=H� H�τsh

No barrier
−1.911 −1.992 708.58 116.8 1.36 114.3 < 1

a 0.005 10937 0.03
−2.723 −2.581 622.40 89.8 2.49 58.1 3.04 0.094 208 0.15
−2.750 −2.600 620.23 88.7 2.54 51.0 6.94 0.16 104 0.20
−2.758 −2.604 619.69 88.4 2.55 47.2 9.96 0.22 59 0.28
−2.766 −2.608 619.16 88.1 2.57 43.4 13.86 0.31 20 0.66

Barrier too high
aγTw < 1 is unphysical. Such a result simply highlights the invalidity of the large velocity limit for the corresponding benchmark point.
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obtain a very straightforward relationship to determine the
terminal velocity,

ΔVeff ¼ Vfalse
T¼0ðϕÞ − V true

T¼0ðϕÞ;
¼ PðTnucl; vTwÞ: ð38Þ

The primary contribution to the friction force comes
from the changes in pressure on account of the incidence
of particles, traversing from the symmetric phase to the
broken phase and vice versa, on the wall. The change in
pressure can be expressed as [90,118,119]

ΔP ¼
Z

d3p
ð2πÞ3 nifiðpÞ½p

symm
z − pbroken

z �jvwj: ð39Þ

Here, ni denotes the number of degrees of freedom for the
ith particle [see Eq. (6)] and

fiðpÞ ¼
1

eγwðEþvwpzÞ=T � 1
≡ gðEþ vwpzÞ ð40Þ

is the distribution function with γw ¼ ð1 − v2wÞ−1=2. The
þ and − signs in the denominator correspond to fermions
and bosons, respectively. The changes in pressure, owing to
particle translation, receive three distinct contributions.
(1) Particles with extremely low momenta incident from

the symmetric phase are reflected, consequently
generating pressure on the wall.

(2) Particles entering into the broken phase with high
enough momenta end up accumulating masses. This
ends up in a momentum transfer or shift in the
momentum, resulting in pressure on the bubble wall.

(3) Massive particles from the broken phase can escape
through the wall into the symmetric phase and

contribute to the pressure through the change in
momenta.

In our analysis, we have investigated the possibility of
generating bubbles with ultrarelativistic velocities within
the framework of the SMEFT. In this limit, nearly all the
particles incident from the symmetric phase have significant
momenta to traverse through the wall. Hence, the dominant
contribution to the pressure is generated through the inward
transmission of these particles. It has been shown in
Ref. [120] that the contributions from the reflection of
particles on the wall as well as the from outward trans-
mission of massive particles become negligibly small in the
case of nearly relativistic bubble wall velocities.
This simplification leads to a straightforward expression

for deriving the pressure in the leading order (LO) of the
couplings:

PLOðTÞ ≈
X
i

nicim2
i ðvÞ

T2

24
: ð41Þ

Here, m2
i ðvÞ is the mass of the ith particle in the broken

phase and ci ¼ 1; 1=2 for bosons and fermions, respec-
tively. We note from Eq. (41) that PLO is independent of the
wall velocity vw. As a result, bubbles can undergo perma-
nent accelerating (runaway) behavior.4

However, this is contrary to what occurs in most realistic
scenarios. An additional contribution, to the wall pressure,
comes from the emission of multiple gauge bosons in
frameworks where they receive masses due to an FOPT. To
elaborate, this effect primarily arises from 1 → 2 processes
that ultimately produce massive bosons within the bubble
from a massless particle incident on the wall. Taking into
consideration the change in the vertex factors due to OHD
andOH□, relevant for the processes involving h splitting to
produce massive bosons (hhZ and hhW), the expression for
NLO pressure reduces to

PNLOðTÞ ≈
κζð3Þ
π3

γwmZðvhÞT3 log

�
mZðvÞ
g2T

�
; ð42Þ

where

κ ∼ ð5þ 0.4v2CH□ − 0.2v2CHDÞ: ð43Þ

For multiple gauge boson emissions, a careful resummation
is required from the real and virtual processes [124]. It is
evident from Eq. (42) that PNLO starts to become sub-
stantial when a certain velocity threshold is surpassed.
Thus, according to Eq. (38), the bubbles reach a terminal

FIG. 5. The effect of varying CH on the ratio S3=T in the
presence of a dimension 8 term in the effective potential. Each
line in the figure corresponds to a specific CH value (expressed in
units of GeV−2). The dashed line denotes the criteria mentioned
in Eq. (26), i.e. S3=T ¼ 140. For each case, we have set CH□ ¼
1.56 × 10−7 GeV−2 and CHD ¼ −1.15 × 10−8 GeV−2.

4Reference [121] recently pointed out that the maximum
friction can be larger than the leading order pressure given in
Eq. (41) owing to the nonmonotonic relation between the
pressure and the velocity of the bubble. The possibility of
additional pressure has also been noted in Refs. [93,122,123].
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velocity when the combined friction effect from Eqs. (41)
and (42) becomes large enough to overcome ΔVeff ,

PNLOðγTw; TnuclÞ ¼ ΔVeff − PLOðTnuclÞ: ð44Þ

Throughout our calculation, we use fixed values for
CH□ and CHD, i.e., CH□ ¼ 1.56 × 10−7 GeV−2 and
CHD ¼ −1.15 × 10−8 GeV−2. Incorporating these values
in Eq. (42), we find a simplified formula for estimating the
boost factor for bubbles in an ultrarelativistic scenario,

γTw ≈ 2 ×

�ðΔVeff − PLOÞ
m4

W

��
100 GeV
Tnucl

�
3
�
log

�
mZ

g2Tnucl

��
−1
:

ð45Þ

For both sets of benchmark points, i.e., those listed in
Tables I and II, we highlight the cases where such ultra-
relativistic bubble wall velocities can be obtained. We
notice that this happens for a very narrow region of the
parameter space. This is instructive for the possibility of
simultaneously testing relevant SMEFT operators at multi-
ple frontiers, including the energy and cosmic frontiers.
The impact of RG evolution was once again tested by

running the parameters down from μ ¼ v to μ ¼ mt. We
noticed that this led to shifts in the values of CH, for the last
3 entries of Table I, into the high barrier region highlighted
on the left side of Fig. 3, therefore disallowing not only the
production of ultrarelativistic bubbles but even an FOPT for
such parameter choices.
It must be stressed that one must check if the phase

transition is complete before the disappearance of the
potential barrier. In other words, the time of phase
transition can be approximated in terms of the radius of
the bubble at the time of percolation, which is approx-
imately given by [125,126]

Rper ≃
ð8πÞ1=3
β̃per

; where β̃per ≃
β

H

����
Tper

; ð46Þ

where H denotes the Hubble parameter at the time of
percolation and Tper is defined as the temperature for which
roughly ∼30% of the space has been converted to the true
broken phase. β̃ is the inverse time duration for the phase
transition. It is defined in terms of the bubble nucleation

rate ΓðtÞ as β ≈ Γ̇=Γ, and it can be estimated using the
temperature slope of the three-dimensional bounce action
[see Eq. (27)], as

β

H

����
Tper

¼ Tper
d
dT

�
1

T
SðTÞ

�
T¼Tper

: ð47Þ

Ignoring the difference between percolation and nucleation
temperature, we find β̃∈ ð101; 102Þ for the parameter
region of interest. Consequently, the drop in temperature
associated with the expansion of the bubble is given by [44]

ΔT ∼ TnuclHΔt ∼
TnuclH

β
: ð48Þ

We note that the sufficiently large values of β=H for our
choice of parameters ensure that the temperature drop
resulting from the bubble expansion is minuscule, i.e.,
Oð10−1Þ −Oð1Þ, and hence does not lead to the disappear-
ance of the barrier.

VI. STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND

A strong FOPT produces a GWS through three distinct
mechanisms [16,17,45–48].
(1) The collision of bubble walls can lead to a sub-

stantial contribution to the GWS. Although, this
depends on whether the bubbles continue to accel-
erate until the time of collision.

(2) A second contribution arises from the propagation of
sound waves in the plasma. Based on simulations, it
has been noted that sound waves usually produce a
GWS for longer periods of time than bubble wall
collisions.

(3) If the duration of propagation of the sound waves is
not that extensive, then magnetohydrodynamic
(MHD) turbulence in the plasma also acts as a
source for the GWS.

The overall stochastic GW background signal owing to a
first order phase transition can then be given as

h2ΩGW ¼ h2Ωcol þ h2Ωsw þ h2Ωturb; ð49Þ

where the individual terms on the right side can be
quantified using the following formulas [45–48]:

h2ΩcolðfÞ ¼ 1.67 × 10−5 ×

�
β

H�

�
−2
�
κcolα

1þ α

�
2
�

g�
100

�
−1
3

�
0.11v3w

0.42þ v2w

��
3.8ðf=fcolÞ2.8

1þ 2.8ðf=fcolÞ3.8
�
;

h2ΩswðfÞ ¼ 2.65 × 10−6 × vw

�
β

H�

�
−2
�
κswα

1þ α

�
2
�

g�
100

�
−1
3

�
f
fsw

�
3
�

7

4þ 3ðf=fswÞ2
�
7=2

;

h2ΩturbðfÞ ¼ 3.35 × 10−4 × vw

�
β

H�

�
−1
�
κturbα

1þ α

�
3=2

�
g�
100

�
−1
3

� ðf=fturbÞ3
½1þ ðf=fturbÞ�11=3ð1þ 8πf=h�Þ

�
: ð50Þ

FEASIBILITY OF ULTRARELATIVISTIC BUBBLES IN SMEFT PHYS. REV. D 110, 055002 (2024)

055002-11



In each of the above equations, β is now defined at the
nucleation temperature, i.e.,

β

H�
¼ Tnucl

d
dT

�
1

T
SðTÞ

�
T¼Tnucl

; ð51Þ

and H� is the Hubble parameter when the gravitational
waves are produced.
On the other hand, α defines the change in enthalpy

associated with the FOPT, and it is given as the ratio
between the vacuum energy and the total energy stored in
radiation

α ¼ 1

ρrad

�
ΔVðTÞ − T

4

∂ΔVðTÞ
∂T

�����
T¼Tnucl

; ð52Þ

with ρrad ∼ 0.03 × T−4
nucl and ΔVðTÞ ¼ Vfalse − V true being

the depth of the true minima of the effective thermal
potential. The α and β=H� values corresponding to each
benchmark point have also been catalogued in Tables I
and II. κcol, κsw, and κturb are efficiency factors correspond-
ing to the bubbles, the bulk fluid, and the turbulence in
the plasma. These can be expressed as functions of α
based on whether we are dealing with runaway or non-
runaway bubbles.
To ascertain the runaway versus nonrunaway nature

of the bubbles, we estimate the Lorentz factor in the
absence of any NLO friction, γw⋆, just before the collision.
Note that γw⋆ controls the surface energy of the bubbles.
By equating the surface energy to the gain in the potential
energy, one finds

γw⋆ ≃
2R⋆

3R0

�
1 −

PLO

ΔV

�
: ð53Þ

Here, R0 ∼ 1=Tnucl is defined as the bubble size during
nucleation. On the other hand, R⋆ is the bubble size at the
time of the collision and under the assumption that vw → 1
is given by

R⋆ ∼
1

β
∼

1

β̃H
∼Oð10−1 − 10−2ÞH−1; ð54Þ

with β defined in Eq. (51).
Depending on the relative strengths of γw⋆ and γTw,

different contributions to the GWS become important.
For example, if γw⋆ > γTw, bubbles reach the equilibrium
or terminal boost factor before the collision and the
contribution from the wall collision to the GW spectrum
becomes minuscule. This corresponds to the nonrunaway
case for which

h2ΩGW ∼ h2Ωsw þ h2Ωturb: ð55Þ

On the other hand, γTw > γw⋆ signifies that the collision of the
bubbles happens even before the equilibrium terminal boost
can be achieved. In such a case, the GW spectrum receives
a dominant contribution from bubble collisions as well.
For each of the benchmark points of interest, i.e., the last

three entries of Table I, we find that γw⋆ ≫ γTw. Therefore,
each of these corresponds to the case of nonrunaway
bubbles and the efficiency factors for the three sources
of the GWS can be expressed as

κcol → 0;

κsw ¼ αð0.73þ 0.083 ×
ffiffiffi
α

p þ αÞ−1;
κturb ¼ ϵκsw; ð56Þ

with ϵ ∼ 0.05–0.1 representing that small fraction of the
bulk motion which is turbulent.
It has been pointed out that the sound wave lifetime is

notably smaller for weaker phase transitions, i.e. those
characterized by small α values. This affects the sound
wave contribution, h2ΩswðfÞ, in Eq. (50), which in such
cases is proportional to β−2. The sound wave lifetime can
be estimated as [127],

H�τsh ¼
ð8πÞ1=3 ×Maxðvw; csÞ

vrms

�
β

H�

�
−1
; ð57Þ

where cs is the speed of sound in plasma (1=
ffiffiffi
3

p
for

relativistic fluid) and the root-mean-square fluid velocity
vrms is given in terms of κsw and α as

vrms ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

κswα

1þ α

r
: ð58Þ

We have added the values of H�τsh corresponding to all
benchmark points in Tables I and II, and we note that
H�τsh < 1 for each case, which indicates a short lifetime for
the sound waves [17].
Lastly, the peak frequencies corresponding to each

contribution in Eq. (50) are given as

fcol ¼ 16.5 × 10−6
�

0.62
1.8 − 0.1vw þ v2w

�
gðTnuclÞ Hz;

fsw ¼ 1.9 × 10−5
�
1

vw

�
gðTnuclÞ Hz;

fturb ¼ 2.7 × 10−5
�
1

vw

�
gðTnuclÞ Hz; ð59Þ

with

gðTÞ ¼
�

β

H�

��
T

100 GeV

��
g�
100

�
1=6

; ð60Þ
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and h� in Eq. (50) represents the redshifted Hubble time

h� ¼ 16.5 × 10−6
�

Tnucl

100 GeV

��
g�
100

�
1=6

Hz: ð61Þ

Using these ingredients, we have estimated the stochastic
gravitational wave spectrum for the relevant benchmark
points and we have plotted those against the projected
sensitivities of upcoming gravitational wave detection
experiments in Fig. 6. For each curve, we have also
highlighted the α and β values.

VII. CONCLUSION

Recent studies have shown that ultrarelativistic bubble
expansion during first order phase transition can play a very
important role in addressing baryogenesis and dark matter
production. Such bubbles also leave telltale signatures in
the gravitational wave spectrum. It is well-known that many
scalar extensions of the SMwith a two-step phase transition
can accommodate such bubble velocities. However, the
absence of any direct evidence for physics beyond the SM
has prompted us to investigate the prospect of ultrarela-
tivistic bubbles in the framework of the SMEFT. In this
work, we augment the SMwith mass dimension 6 operators
constructed solely of the Higgs parameter and its deriva-
tives such asOH, OHD, andOH□. Out of these,OH plays a

crucial in the FOPT as it contributes to the Higgs potential
directly, whereas the effect of other operators comes
through wave function renormalization of the Higgs field.
We studied the impact of such operators in the renormal-
ization group improved one-loop effective potential in
addition to temperature-dependent corrections. As
expected, OH has the most pronounced impact as far as
the thermal potential and nucleation temperature are con-
cerned. It is to be noted that a lower nucleation temperature,
in comparison to the electroweak scale, is preferred from
the perspective of ultrarelativistic bubbles. We found that
such a possibility can only be accommodated in a narrow
region of CH. The primary reason can be attributed to the
fact that, for lower values of CH, the potential barrier
becomes too high. Whereas, in the opposite limit, the
barrier disappears. This is interesting as the usual global fit
constraints on CH are rather weak and the strongest
constraints can be obtained by assuming ultrarelativistic
bubbles. In addition, such a range for CH would also leave
its fingerprint in the gravitational wave spectrum. It is
worth mentioning that the usual criterion of strong FOPT,
i.e., ϕc=Tc ≳ 1, should be carefully analyzed when com-
menting on the successful completion of the phase tran-
sition. In our analysis, we found that this ratio only falls
between the values 1.66 and 2.51 in cases where bubble
nucleation is possible, which is, again, mainly controlled by
the height of the barrier. It must be emphasized that there is

FIG. 6. Stochastic gravitational wave spectra as a function of frequency for different benchmark points, plotted against the projected
power law integrated sensitivities of LISA [15–17], DECIGO [18], BBO [19,20], Einstein Telescope [21], and Cosmic Explorer [22]
experiments. The benchmark points corresponding to the case with a dimension 8 term in the Lagrangian yield similar values for (Tnucl,
γTw, α, and β=H�). Therefore, the gravitational wave spectra do not present any noticeable changes.
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a quantifiable impact of the RG evolution of running
parameters on nucleation temperatures for different bench-
mark points as well as on the corresponding bubble wall
velocities. We noted changes of the order of 4–20% in the
nucleation temperature when varying the renormalization
scale. In fact, some previously allowed parameter choices
are ruled out once the running parameters are brought down
to a lower scale.
Our results on the ranges of CH can also be translated to

the new physics scale Λ, which in turn helps us to
understand the specifics of the UV completions that could
lead to distinct characteristics of FOPT. The requirement of
a successful phase transition sets the scale Λ to be in the
range of 563.57–627.88 GeV for the Oð1ÞCH coefficient,
We also found that this gets shifted to the slightly higher
range of 619.16 GeV ≤ Λ ≤ 708.58 GeV when taking into
account a dimension 8 term in the Lagrangian as well. We
notice that, within these ranges, the phase transition can
actually lead to ultrarelativistic bubbles only when Λ falls
between a small interval of 563.57–564.57 GeV for the
dimension 6 only case and within 619.16–622.40 GeV for
the case with a dimension 8 term. Such fine-tuned values
obviously require proper UV completion, and this can be
achieved with scalar extensions of the SM. For example,
the real singlet scalar extension would generate CH ∼
A2κ=M4 and CH□ ∼ A2=M4, where A and κ are the
couplings of jHj2ϕ and jHj2ϕ2, respectively, and M is
the mass of the additional scalar. Therefore, using these
matching relations, the constraints for successful bubble
nucleation can be easily translated onto the UV model
parameters. It is also noteworthy that the requirement for
bubble nucleation poses a more sensitive bound on the
parameter spaces of those UV models that produce at least
OH at tree level, compared to those that generate it at one
loop (e.g., SM extension with a complex singlet scalar).
However, it must be noted that although the main character-
istics of a phase transition, informed by different UV
models, can be encoded within an EFT, one must be
cautious while establishing one-to-one correspondences
between the predictions of the full theory versus those
of the corresponding EFT.
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APPENDIX: COMMENTS ON PNLOðTÞ
CALCULATION

We have closely followed the calculation for PNLOðTÞ as
outlined in [44,124]. By comparing Eq. (28) of [44] and
Eq. (43) in this paper, we can ascertain that, in the absence
of EFT operators (i.e. with only SM contributions), κ will
have the following form:

κ ∼ 8α

�
7þ 14cw

s2w
−
7 − 15s2w

c2w

�
; ðA1Þ

where swðcwÞ≡ sin θwðcos θwÞ and θw is the weak mixing
angle. If we take cos θw ¼ mW=mZ, κ → 5, which is the
value quoted in Eq. (43) without the SMEFT Wilson
coefficients. The factor within the parentheses in Eq. (A1)
comes from SM interactions which get modified due to the
effective operators. As previously mentioned, the relevant
processes involving h splitting are hhZ and hhW.
Incorporation of the SMEFT operators introduces the field
redefinitions, h → Z−1

h h and G0 → Z−1
G G0 [98,128], where

Zh ¼
�
1 − CH□v2 þ

1

4
CHDv2

�
;

ZG ¼
�
1þ 1

4
CHDv2

�
: ðA2Þ

This affects the following vertices, G0G�W∓; hG�W∓;
G0hZ, and consequently, the expression in the parentheses
in Eq. (A1) gets modified. It must be noted however that
another relevant vertex GþG−Z does not get any EFT
contribution. The process hhW for which the SM contri-
bution was 2cw=s2w changes to cwðZ−2

h þ Z−2
G Þ=s2w ∼

2cwð1þ CH□v2 − 0.5CHDv2Þ=s2w. Similarly, for the hhZ
process, the hG0Z vertex is modified by the Z−1

h Z−1
G factor.

After suitable modifications to Eq. (A1), we obtain the
coefficient of CHDv2 as −4αðcws−2w þ 0.5c−2w s−2w Þ and the
coefficient of CH□v2 as 4αð2cws−2w þ c−2w s−2w Þ. Their
numerical values are shown in Eq. (43).
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