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The recent Belle II observation of B — KE, ;. challenges theoretical interpretations in terms of Standard
Model neutrino final states. Instead, we consider new physics scenarios where up to two new light-invisible
particles of spin O up to 3/2 are present in the final state. We identify viable scenarios by reconstructing the
(binned) likelihoods of the relevant B — K*) E, . and also B; — E,;, experimental analyses and present
preferred regions of couplings and masses. In particular, we find that the current data prefer two-body decay
kinematics involving the emission of a single massive scalar or a vector particle or, alternatively, three-body
decays involving pairs of massive scalars or spin 1/2 fermions. When applicable, we compare our findings

with existing literature and briefly discuss some model-building implications.
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I. INTRODUCTION

Historically, rare decays of (heavy) flavored mesons
have been important probes and harbingers of new physics
(NP). In the last decade, the LHCb and B-factory experi-
ments have produced several intriguing results on rare
semileptonic B meson decays, including the charged
current mediated B — D"zv and the flavor-changing
neutral current (FCNC) mediated B — K™ utpu~ (see,
e.g., Refs. [1,2]), that challenge explanations within the
Standard Model (SM).

Most recently, the Belle II experiment has measured
the branching ratio B(B — KE ) = (2.3 £0.7) x 107,
Assuming that the missing energy E,; is carried away by a
pair of massless SM neutrinos, the result lies 2.90 above
the SM prediction for B(B — Kvv) [3]. The quark-level
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transition b — svv is also probed by the complementary
mode B — K*E,;,, With current experimental upper
bounds on the branching ratio of the order B(B —
K*Epies) < 11 x 107> [4]. Finally, an upper limit on the
branching fraction of invisible B, decays, B(B; = E i) <
5.4 x 107 (90% CL), has been recently derived in Ref. [5]
using a recast of ALEPH data [6]. While innocuous in the
SM, we show that this mode can put competitive bounds on
particular NP interpretations of the Belle II result.
Undetected particles (neutrinos) in the final state make
these FCNC processes experimentally more challenging
compared to those producing charged leptons. On the other
hand, they are theoretically cleaner [7,8]. In particular, the
relevant hadronic matrix elements are well understood within
existing theoretical frameworks [9-11]. A variety of NP
models aiming to resolve the Belle II excess have been
proposed in the literature [ 1 1-26]. In some scenarios, the SM
neutrinos still carry away all of the observed missing energy
[11-14], while in others, novel undetected decay products are
also present in the final state [21-23,26]. Restricting the
outgoing invisible states to SM neutrinos only, there are two
possibilities for the associated NP; either it couples univer-
sally to all three lepton generations [11,13], or it prefers some
(e.g., v;) neutrino flavors [12,13], leading to the violation of
lepton flavor universality (LFU). A general analysis of LFU
and non-LFU NP, coupling to both left- and right-handed

Published by the American Physical Society
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FIG. 1. Upper: the process B — K*)* 3" X, resulting in the
B — KE, signal. In the SM, Y X = v, but additional light-
invisible particles (for example, a pair of heavy Majorana
fermions, >_ X = NN) may be present in the final state. Lower:
the same invisible final states with the same couplings induce the
decay B; — Y X, leading to the B, — E; signal.

quark current operators and contributing to the decays B —
K®¢gt¢~ and B > KMup, was presented in Ref. [27]. It
showed that enhancing the B — Kvv branching ratio while
simultaneously satisfying existing constraints on B(B —
K*up) necessitates a significant contribution from right-
handed quark current operators. In the LFU limit, however,
these operators induce large contributions to the Cy, ;, Wilson
coefficients, present in the b — s£t¢~  effective
Hamiltonian, which are already ruled out by existing
measurements of B — K"ty and B, — u*u~ decays
[2]. Thus, the only remaining phenomenologically viable
option is LFU-violating NP, which couples both left- and
right-handed quark currents predominantly to 7 neutrinos
[12,13]. On the other hand, the presence of additional
invisible final states would circumvent the need for LFU-
violating NP by decoupling the B — KE;,, measurement
from the constraints imposed by b — s£7 £~ transitions.

Motivated by the remarkable Belle I measurement of
B — KE,;, and the phenomenological difficulties in
accommodating the observed excess exclusively with
SM neutrinos, we turn to the interesting scenario that
additional light-invisible states are present in the final state.
We systematically consider both single scalar and vector
particle final states, as well as pairs of scalars, spin 1/2 and
3/2 fermions, and vectors, following Ref. [28]. Since
several of these possibilities significantly alter the phase
space and kinematic distributions of events in the experi-
ments, we consider not only the total branching ratios
B(B - KME,;), but also all available distributions
presented in the Belle II and BABAR analyses. Finally,
interactions producing two invisible particles in the final
state of B — KE,,; can induce the invisible B decay B; —
E iss Whose larger phase space can probe massive invisible
states beyond the kinematical limit of B — K*E ;. The
experimental upper bound from ALEPH [5,6] can thus be
considered as complementary.

Using these data, we construct our likelihoods for the
possible invisible final states, discerning which scenarios

are favored (and, if so, what masses and couplings are
implied).

We note that partial analyses of some of the scenarios
considered in this work have already been performed in the
literature [15-22]. However, a comprehensive study of all
possibilities taking into account all available decay dis-
tributions has not been implemented to date. When appli-
cable, we compare our results and findings with the
previously published results.

The remainder of this work is structured as follows. In
Sec. II, we introduce the NP fields describing the invisible
final states, outlining their different (effective) couplings to
the quark currents relevant to B meson decays. We describe
some features of the kinematic distributions of the decays,
while explicit expressions for the branching ratios are given
in Appendix B. In Sec. III, we give an overview of how
Belle II and BABAR data are used to construct likelihoods
for the different NP scenarios.

In Sec. IV, we then discuss the results of minimizing
these (negative) log-likelihoods as a function of the
invisible particle masses and couplings. First, we show
that certain scenarios are immediately disfavored. Of the
scenarios that remain, we explore what masses and cou-
plings are implied by the Belle II excess and are at the same
time compatible with existing constraints from BABAR and
ALEPH. We also compare our findings to existing results in
the literature and briefly discuss some model-building
implications before concluding in Sec. V.

II. MODEL CONSIDERATIONS

As depicted in Fig. 1, we consider the contribution of
additional invisible final states, denoted as > X, to
B — KWE, . This is alongside the SM neutrinos,
DX =) 4 Valy = v, with a € {e, u,7}. Any number of
invisible final states may be present; however, to avoid
phase space suppression we will consider only one or two
invisible final state particles. With this requirement, there
are now only a few possible scenarios. Considering fields
Xe{¢.y.V,. ¥,}, corresponding to (massive) particles of
spin J = {0, 1/2,1,3/2}, respectively, leads to the follow-
ing possible final states:

> XE{h.V.pb.yip. VV. PP}, (1)

Thus, two-body decays can only involve scalar and vector
bosons, B — K*)¢/V. Three-body decays can proceed to
pairs of scalars, vectors, and also spin 1/2 and 3/2
fermions, B — K" /yipr/VV /PY.

We assume that the invisible state is a singlet under the SM
gauge group SU(3),. x SU(2), x U(1)y, but leave open the
possibility that it is charged under a dark gauge or global
symmetry. As a result, any observable effect of the invisible
states or hidden sector must come from interactions involving
gauge-invariant combinations of SM fields. Of these
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interactions, those that are renormalizable, i.e., dimension-
four operators, are sometimes referred to as “portals.” For
example, the generic fermion field y may correspond to a
right-handed gauge singlet fermion N, with the well-known
mixing portal —Y,I H N and also a Majorana mass term
- %M #INGNp if lepton number is not conserved. These terms
result in the type-I seesaw mechanism, generating masses for
the light neutrinos. A generic vector field V,, may instead
exhibit kinetic mixing with the SM hypercharge, e.g.,
- 4B, V¥, with V,, =9,V, —9d,V,. Recently [29,30], it
has been shown that new massive vector fields may also
couple directly to SM currents as J u V¥ even if J is not
conserved. Finally, the so-called Higgs portal, with the terms
W (H'H)¢ and )’ (H"H)¢' ¢, is another possible window to
NP in the form of a scalar ¢.

However, heavy NP may also mediate the interactions
between new light-invisible particles and the SM. At
energies below the associated NP scale A, these then
manifest as higher-dimensional effective operators, i.e.,

L=Loyix+ Y CPO0. (2)

Here, Lqy.x is the dimension-four SM Lagrangian
extended with the gauge singlet field(s) X, while the
sum denotes a tower of dimension-d SM gauge-invariant

operators o§d>. In the standard dimensional analysis, the

Wilson coefficients C Sd)

the heavy NP scale A.

At energies below the weak scale, the X-extended SM
gauge-invariant effective field theory (EFT) is no longer
appropriate. Instead, the weak effective theory in the
broken phase of the SM, i.e., operators invariant under
SU(3). x U(1)y, should be used. Since, in this EFT, the
left- and right-handed chiral fermion fields carry identical
charges, we can consider the parity basis for the quark
fields, i.e., either P-even or P-odd quark currents. In the
context of B meson decays, the expressions for the
branching ratios are simplified considerably.

Using the parity basis for b — s transition quark cur-
rents, the interactions of the generic invisible fields
Xe{p.y.V,, ¥,} in the weak effective theory (including
operators up to dimension d = 6) are as follows. Starting
with the P-even quark currents, the coupling of the vector
quark current to invisible states is described by the effective
Hamiltonian

are proportional to 4 — d powers of

MY > 5y,b| hy V¥ +9VV it Hep

f _ Sfva

XZV 'y + 55 Lty sy

F Fua

+ 5 W, S, L (3)

where the corresponding Hermitian conjugate terms are
implicit in all our Hamiltonians. Note that we have omitted
the operator gy (5y,b)0"¢/A, because it can be rewritten
using the quark field equations of motion as gg(5b)¢, with
gs = impgy/A. This leads us to the general effective
Hamiltonian of the scalar quark current,

hs

- gss
Hiy D 5b|gsg +T¢T¢ +—= A
@ _ Sfsp
Az l//l//+ A2 Yysy

vive

Fqo - Fgp -
+%‘I’/"Pp+%‘l’”y5‘1’p . (4)

Finally, the effective Hamiltonian for the tensor quark
current is

hr ht fTT_ oy +%qmaﬂyq,

T —_
Hie D saﬂ,,b A2

Frs

LS gl + ey | (5)

with PP = i(P T — PT'P#) /2. For the P-odd
quark currents, the effective Hamiltonians are similar to
the expressions above. In particular, for the axial vector
quark current, the couplings to invisible states can be found
by replacing 5y,b — Sy,ysb and V — A in Eq. (3), e.g.,
hy — hy and fyy — fay. Likewise, the couplings for the
pseudoscalar and axial tensor quark currents are found with
the replacements 5b — Sysb (S — P) and 56,,b — 50,75
(T > T)in Egs. (4) and (5), respectively.

For completeness, in Appendix A, we give the matching
relations between the coefficients of the weak EFT oper-
ators in Eqs. (3)—(5), written in the parity basis, and the
coefficients of SM gauge-invariant operators, necessary in
the chiral basis for the quark fields, as defined in Ref. [28].
For example, the scalar and pseudoscalar operators gs(3b)¢
and gp(Sysh)¢ are induced by the SM gauge-invariant
operators CSLdRHrng/A and CSRquR(,b/A with the

matching ggp) = = v/V2A x (Cd(/) d¢ L2

We now comment on some interesting formal details
regarding the possible invisible final states. If the generic
scalar ¢ or vector V, is charged under a dark, possibly non-
Abelian, gauge group, the operators ggp[5(y5)b]¢p and
hy(a)[57,(7s)b] V¥ must vanish and it is forbldden to emit a
single or vector scalar boson. If the scalar field is neutral,

i.e., a real scalar field, the operator gyy (5y,b)id*0"¢/A*
vanishes instead.

The generic fermion field v, if massive, may either be a
Dirac or Majorana fermion. In the latter scenario (y = y°),
only viable if y is a singlet under a dark gauge group, the
vector and tensor fermion bilinears vanish identically,
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vy = wo,y = 0. For the other fermion bilinears, two
possible contractions are possible for the Majorana fields,
so the amplitudes for Majorana fermions are a factor of 2
larger than those for Dirac fermions. On the other hand, the
final phase space integration has to take two identical
particles into account, reducing the rate by a factor of 2.
Similar observations apply to all scenarios with two
identical particles in the final state (if ¢ = ¢, V = VT,
or ¥ = ¥).

Finally, decay rates derived from the operators
hya)[57,(7s)b]V¥ and hgp)[5(ys)b]ViV#/A diverge in
the limit where the generic vector field V, is massless,
my — 0. This is an expected behavior because the massless
limit can only be consistently defined when V, is a gauge
field. It could be the case that V, gets its mass from a dark
Higgs-like mechanism, such that my is proportional to
some power of the couplings hy() multiplied by the
vacuum expectation value of the dark Higgs field. Then,
the massless limit implies that the couplings Ay 4 vanish,
avoiding the divergence. Alternatively, operators can be
constructed solely from the manifestly dark gauge-invariant
field strength tensor V. Then, the operators with cou-
plings hy and &, are generated by applying the equations of
motion for V, to such gauge-invariant operators, i.e.,
(57,0)0,V* | N* — m3,(5y,b)V# /A%, and consequently
the 1/m? divergences in decay rates are tamed via the
replacement 1/m?, — 1/AZ%. The situation is analogous for
the spin 3/2 fermions.

With these details in mind, we derive the branching ratios
for the two-body processes B — K*)¢/V and differential
branching ratios in the momentum transfer ¢> for the three-
body processes B — K ¢pp /iy /VV /PP, given in full in
Appendix B. We do not list the differential branching ratios

15 x1071
— v (SM)

CTT — 99, gss
% v, fov
O 1.01
o
=
~
e}
=
X 0.51
Q
=

0.0

FIG. 2. Normalized differential branching fraction of the three-
body decay B — K 3 X as a function of the momentum transfer

g*> for SM neutrinos and additional NP light states,

SoX = vb, g, VV, VY.

— SM
o4 Yy T SM re-scaled

— Y, fyv

0 5 10 15 2

FIG. 3. The number of BT — KTE,; events in g2, in the
n(BDT,) > 0.92 Belle II signal region, with the total background
subtracted (black dots, with error bars showing the total statistical
uncertainty). Shown for comparison is the predicted SM dis-
tribution, before (blue, solid) and after (blue, dashed) rescaling by
the best-fit signal strength and also after adding the distribution
for Bt - K™y (green) for m, = 0.6 GeV and fyy/A* =
1.7x102TeV2 and for B' - KtV (red) for
2.1 GeV and hy = 7.1 x 107,

my =

for B — K*VV /¥W¥ because we find that nonzero values of
the couplings Ag p r and Fy are not favored by the Belle II
results [3]. This result is foreshadowed by Fig. 2, where we
display the normalized differential branching fractions for
the three-body decays, for the SM neutrinos ) X = vo
(blue) and the light NP states > X = ¢, yipr, VV, PP
(orange, green, red, and purple, respectively), with the
choice my = 0.6 GeV. The bands illustrate the theoretical
uncertainties from the B — K form factors, implemented as
outlined in Appendix C. It can be seen that the differential
B — Ky rate peaks close to the yy threshold, while B —
KVV and B — KW¥ peak closer to the end point. The
distribution of the scalar final states exhibits a relatively flat
g* distribution. Since most of the signal observed by Belle
II peaks at low g2, see Fig. 3, this generically disfavors the
three-body decay scenarios with spin 1 and 3/2 final states.

II1I. METHODOLOGY

Next, we summarize how a possible NP contribution to
the B > KME,_ . decay translates to a signal in the Belle 11
and BABAR experiments. We also describe how the
expected SM plus NP signal is used to construct likelihoods
for the different NP scenarios, given the distribution of
events seen in each experiment. Finally, we briefly describe
the recast of the upper limit on B, — E,;, decays from
ALEPH [5,6].

The Belle IT experiment conducted a search for the SM
process Bt — K'vp using ete™ — BYB™ at the YT (4S)
resonance with an integrated luminosity of £ = 362 fb~!
[3]. The collaboration used two methods: an inclusive
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(ITA) and hadronic (HTA) tagging analysis. The former
exploits inclusive properties of the BT B~ pair, while the
latter uses an explicit reconstruction of the partner B meson
via its hadronic decay. Thus, the former method trades a
higher signal efficiency for an increased background. The
known backgrounds, separated as B¥B~, B°B’, and con-
tinuum components, were suppressed by utilizing the
kinematic properties of the decay in a multivariate classi-
fier, i.e., training a boosted decision tree (BDT). Cuts are
then placed on the classifier used for final event selection
BDT, to optimize the signal region. Using the lower purity
signal region #(BDT,) > 0.92, where (BDT,) is defined
in Eq. (4) of Ref. [3], Belle II observed a signal corre-
sponding to a branching ratio 2.9¢ or a factor of 4 above the
SM prediction. The observed events minus the back-
grounds are shown in bins of the reconstructed momentum
transfer, g%., in Fig. 3.

The BABAR experiment has also performed a search for
the B — K™)up process [4]. Using e* e~ collisions, again at
the Y'(4S) resonance and with an integrated luminosity of
L = 429 fb~!, BABAR used the HTA method to search for
both neutral and charged invisible B decays. Using cuts to
define a signal region minimizes the B™ B~ and continuum
backgrounds, separated as those that are correctly recon-
structed (peak) and those that are not (combinatorial). Their
results were consistent with the SM, and no significant
signal was observed, resulting in upper bounds between 6
and 12 times the SM rates.

For the SM or invisible final state(s), > X, we determine
the distribution of Belle I and BABAR events in the
reconstructed momentum transfer gZ. as

dBswm(x)
dq?

dNswmx)
dqrec

=Ny [ 4t (el (©
where N is the number of B*B~ or B’B® pairs, f,» (¢%)
corresponds to the smearing of ¢2,. with respect to the true
momentum transfer g%, and ¢(g?) is the detector efficiency
as a function of momentum transfer. The kinematic range is
(> my)? < ¢* < (mp —mg»)*. We provide details on
how we obtained f > (¢*) and e(q*) for the Belle II and
BABAR analyses in Appendix D.

We obtain the expected SM (X) signal ng( X) for the bin

: 2 2
L [Qrec,i’ qrec,iJrl]’ as

; q?cc.iJr dNSM X
Ssm(x) = / dgi d—z()’ (7)
q Grec

2
rec,i

and the total expected event count in bin i is

néxp = (14 Oy sy + (14 0%) sk (my, cx)
+) 1 (1+6))b, (8)
b

where p is a signal strength parameter allowing one to
rescale the SM signal s&,,, the NP signal s’ depends on the
invisible particle mass my and coupling cy, b’ is the binned
expected signal for the background b, and 7, is an overall
normalization. We account for systematic and Monte Carlo
statistical uncertainties via the nuisance parameters 6,.
The combined likelihood then takes the following form:

Nhins
Lsmix = H Poiss[n{y . nix, (1. my. cx. 0y, 7,)]

1

x ] NO:0.Z)][[N(5:0.05).  (9)
b

x=SM.X.,b

where the event counts in each bin n; are Poissonian (Poiss)
distributed, while we sample the nuisance parameters 6,
from a multinormal (J\') distribution centered at 0 and of
covariance X,. Finally, the overall normalizations of the
backgrounds are sampled from a univariate normal dis-
tribution, centered at 0 and with standard deviation o,,.

The covariance for the SM signal Xgy is found by
performing a Monte Carlo simulation of the SM signal s&,,
including the uncertainties on the efficiency and B — K*)
form factors in Eq. (7). The ¢? smearing introduces
correlations among the gZ. bins. The covariances for the
background components, separated in the Belle II and
BABAR analyses as discussed above Eq. (7), are found by
simply rescaling Xq; to the relative size of the background.
Finally, for the covariance for the NP signal, we take
(Xx);j = s%8;, i.e., Poissonian uncertainties and neglect-
ing correlations between bins. This speeds up considerably
the following analysis, and we find that including the
correlations has a negligible impact on the results.

In the following, we consider three types of signal
hypothesis, corresponding to (i) the SM-only scenario,
where 4 =1 and sg( = 0, (ii) the rescaled SM scenario,
where y is treated as free nuisance parameter and s = 0,
and finally (iii) the SM plus various NP scenarios, with
=1 and s # 0, considering separately each NP final
state > _ X and its possible couplings cy. On the one hand,
the first two hypotheses serve to cross-check the validity of
our likelihood recast, see Appendix D for details. On the
other hand, they represent important likelihood bench-
marks against which we compare all of the NP scenarios.

For the SM + NP hypothesis, we define for convenience
the log-likelihood ratio

L
ty = —2In MK (10)
SM

where Lgy is the likelihood for the SM-only hypothesis. In
the next section, we will use x|, [in which Lgy x and
Ly are minimized with respect to the nuisance parameters
(0,,7,) and the NP couplings or u, respectively] to see
which invisible final states provide a better fit to the Belle 11

055001-5



BOLTON, FAJFER, KAMENIK, and NOVOA-BRUNET

PHYS. REV. D 110, 055001 (2024)

excess compared to the (rescaled) SM. We then examine
the profile likelihoods 7y = rx — fx|nin» Where 7x is not
minimized with respect to the NP couplings, to infer what
NP couplings are implied by the data.

Finally, we take into account the recent recast [5] of the
ALEPH search for b — z7v,X at LEP [6] in terms of an
upper limit on invisible B, decays, B(B; — Es) < 5.4 X
10=* (90% CL). For >_ X = ¢¢/yipr/VV /P¥ the decays
B; — > X depend on some of the same couplings as the
B — K™ 3" X processes. We thus include this constraint in
the likelihood for these scenarios as follows. Reference [5]
provides the upper limit on the number of signal events at
two confidence levels; from this information, the mean and
standard deviation of the signal and thus branching fraction
can be determined, which in turn can be used to construct a
simple Gaussian log-likelihood with the NP prediction for
the branching ratio, given in Appendix B.

IV. RESULTS

In the following, we present the results of minimizing the
binned log-likelihood ratio fy, defined in Eq. (10), with
respect to the model and nuisance parameters. To gain a
better understanding of which NP scenarios are favored by
the excess seen by Belle I, in each case, we find x|, for
different values of the light-invisible particle masses my,
using only the Belle IT data. For the scenarios that provide a
better fit to the Belle II data compared to the rescaled SM
prediction, we next profile over 7y in the parameter space of
effective couplings cy, also including the BABAR and

1 Belle I, BY — K*¢/V

= 0 ~

~

~

>

&N ]

=

x —101

3 0

=

o - QZ), gs

| — SM — V, hy

—201 ---- SM re-scaled -—-= V., hp

00 10 20 30 40

mx [GCV]

FIG. 4. Minimized log-likelihood ratio of the SM plus ¢/V
scenario with respect to the SM-only hypothesis as a function of
the scalar/vector mass mg,y. The log-likelihood ratio 74, for
single effective coupling contributions g, hy, and hy/A to B —
K¢/V is minimized over the coupling and nuisance parameters
(0., 7,) for each my,y,. As the likelihood is independent of the
nature of the light NP state and the coupling in two-body decays,
the three lines overlap. The blue dashed line corresponds to
the minimum of the log-likelihood ratio of the rescaled SM
hypothesis.

ALEPH data. In this way, we identify ranges of couplings
compatible with both the Belle II excess as well as the
BABAR and ALEPH upper limits on B(B - K*E;) and
B(B; — Es ), respectively. In the following, all minimi-
zation is performed using the IMINUIT interface to the
MINUIT2 package [31,32].

In Fig. 4, we first show the outcome of minimizing the
binned likelihood ratio 74,y for the two-body decay
scenarios » , X = ¢/ V. For different values of the masses
my,y, the minimization is performed with respect to the
nuisance parameters (6,,7;,) and the NP couplings: gg for
the scalar boson and /4y, or iz /A for the vector boson. First,
we see that the minimized likelihoods in the three scenarios
overlap because the likelihood is independent of the spin
and coupling of single-particle >  X; the likelihood is
constructed in bins of ¢Z., while the two-body scenario
only depends on gZ. through the smearing at the true
momentum transfer ¢> = m; sv- For masses in the range
1.7 <myy <24 GeV, the SM plus an invisible scalar or
vector provides a better fit than the rescaled SM prediction,
shown as a blue dotted line. The value my,, = (2.1 £
0.1) GeV provides the best fit to the data, with a signifi-
cance of 4.5¢ over the SM.

In Fig. 5 (top), we show #,,| ., for the scenario of the SM
plus an invisible fermion pair, Y X = yy. Again, for
different values of the fermion mass m,,, f,, is minimized
with respect to (6,,7,) and one fxy coupling, with the
others set to zero. For masses m,, < 0.85 GeV, the vector
couplings fyy and fy, provide an improved fit compared
to the rescaled SM, with m,, = 0.60701; GeV giving a
highest significance of 3.7¢. While still yielding an
improvement over the SM-only hypothesis, the scalar
and tensor couplings are not as competitive. In Fig. 5
(bottom), we show 7y|.;, for the other three-body decay
scenarios; the SM plus pairs of scalars, vectors, or spin 3/2
fermions, Y > X = gbg;ﬁ, VV,¥W¥. For the scalar pair, both of
the couplings ggg (orange, solid) and gy (orange, dashed)
provide a better fit than the rescaled SM for masses in the

ranges 0.05 <my <0.76 and my < 0.63 GeV, respec-

tively. The scalar masses my =052} and my =

0.381013 GeV provide the best fits at 3.46. It is clear from
Fig. 5 that the three-body vector (red, solid) and spin 3/2
(purple, solid) scenarios do not provide a good fit to the
Belle II excess, as expected from the ¢> distributions
in Fig. 2.

From Figs. 4 and 5, we see that only the two-body B —
K¢/V and three-body B — K¢¢d/yp scenarios provide
good fits to the Belle II excess. For these cases, we now
investigate which couplings are favored. To do so, we turn
on two couplings at a time and calculate the profile log-
likelihood, 7y = ty — fx|,n» Where 7y is calculated with the
couplings at a particular point in the parameter space
(minimizing over the nuisance parameters) and fy|,;, iS
the likelihood at the global minimum, i.e., minimized with
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s

n
~
~

b

L

@
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g c
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— UV, Fyy
_15 . .
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FIG. 5. Minimized log-likelihood ratios of the SM plus three-
body > X scenarios with respect to the SM-only hypothesis as a
function of the new particle X mass my for Y . X = yy (top) and
X = ¢¢/VV (bottom). The log-likelihood ratio ty for single
effective coupling contributions ¢y to B — K Y X is minimized
over the coupling and nuisance parameters (0., 7;,) for each my.
The blue dashed line again corresponds to the rescaled SM
hypothesis.

respect to all parameters. However, in both cases, we keep
the SM contribution fixed, u = 1.

Starting with the B — K¢ mode, we show in Fig. 6 the
constraints in the (gg, gp) parameter space, with the scalar
mass fixed to my, = 2.1 GeV. The separate Belle II and
BABAR 1-0 regions are shown as gray dotted and dashed
lines, respectively. The 1-, 2-, and 3-0 combined confidence
regions are depicted as dark, medium, and light orange-
shaded contours. Belle II favors the coupling |gg| =
(1.6 £0.2) x 1078, while BABAR imposes the upper limit
lgp| < 2.5 x 1078 (90% CL). In Fig. 7, we instead show the
favored region in the (gss, gps) and (gyy, gsy) parameter
spaces, relevant for B — K¢ and B, — ¢¢ processes.
For A = 10 TeV and the scalar mass fixed to m, = 0.52 and
0.38 GeV for the scalar and vector couplings, respectively,
the Belle II data favor the coupling values |ggg| = (9.3 £
1.4) x 10™* and |gyy| = (3.6 +-0.5), while BABAR and
ALEPH put upper bounds on the couplings gpg and g4y;
ALEPH places a stronger bound on the former,

15 x1077 . rX=9¢

’ i i my = 2.1 GeV
1.0 i b
0.51 i -
05 .@ M
—1.04 === Bellell i i
T [ BABAR P
~———  Combined i i
—1.5 S - L

—4 —2 0 2 4

gs x1078

FIG. 6. Favored regions in the parameter space (g, gp) relevant
to the two-body decay B — K*)¢, with the mass of ¢ fixed to a
value close to the best-fit point, my = 2.1 GeV. Dashed and
dotted gray lines correspond to 1-o confidence regions for the
Belle II and BABAR analyses, respectively. Solid dark, medium,
and light orange lines correspond to the 1-, 2-, and 3-¢ combined
confidence regions. Diagonal gray dashed lines denote the chiral
combinations of couplings g¢ = £gp.

-3 X =do
x10 — 20 —
mg = 0.52 GeV my = 0.38 GeV
5 A =10 TeV A =10 TeV
10
a i
£ 0 = 0
& b 3
N
== Belle It 10
- BABAR
- ALEPH
—— Combined
: —20 - b
—2 0 2 —10 -5 0 5 10
—3
gss x10 gvv

FIG. 7. Favored regions in the parameter space (gps, gss) (left)
and (gyy.gay) (right) relevant to the three-body decay
B — K¥ ¢, with the mass of ¢ fixed to a value close to the
respective best-fit point, my = 0.52 and my = 0.38 GeV, and the
heavy NP scale fixed at A = 10 TeV. Color coding is the same as
Fig. 6. The red dotted lines indicate the 1-o confidence regions
from ALEPH.

lgps| < 2.1 x 1073, and BABAR on the latter, |g4y| < 7.2,
both at 90% CL.

In Fig. 8, we show the constraints on the parameter space
(fvvsfva»fav,faa) which enter the decay rates for B —
K®ynp and B, — yap. We show planes for each of the six
combinations of the couplings, with the others set to zero,
for the choices m,, = 0.6 GeV and A = 10 TeV. Again,
the dashed and dotted gray lines show the 1-o regions from
Belle I and BABAR on the invisible Dirac fermion
scenario, with the dark, medium, and light green regions
the 1-, 2-, and 3-0 combined confidence regions. As seen in
the lower left plot of Fig. 8, the Belle II data suggest the
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FIG. 8. Two-dimensional favored regions in the parameter
space (fvv,fvasfav.faa) relevant to the three-body decay
B — K®ynp, with the mass of y fixed to a value close to the
best-fit point, m,, = 0.6 GeV and the heavy NP scale fixed at
A =10 TeV. Color coding is the same as Fig. 6, with green lines
denoting the 1-, 2-, and 3-6 combined confidence regions instead.
Additionally, the cyan dashed region corresponds to the 1-o
combined confidence region in the case that y is a Majorana
fermion.

values |fyy|> + |fyal*> = (3.0 £0.8) for fay = fas =0,
while the center plot shows the BABAR upper bounds
[fav] < 2.8 and |fa4| < 3.0 for fyy = fya = 0(90% CL).
The ALEPH bound on B(B, — y) translates to the upper
limit |f44] < 13.8 (90% CL), and so BABAR provides more
stringent constraints. In Fig. 8, we also show the 1-¢
combined region for the invisible Majorana fermion sce-
nario (cyan shaded). These constraints do not depend on the
couplings fyy and f,y, which vanish.

Finally, in Fig. 9, we show the favored regions in the
(hy, hy) and (hy, hy) parameter spaces, which are probed
by B = K*V, for my, =2.1 GeV and A = 10 TeV. The
color coding for the Belle II and BABAR 1-¢ regions is the
same as before, and the dark, medium, and light red-shaded
contours again show the 1-, 2-, and 3-0 combined con-
fidence regions. Belle II favors the coupling values |y | =
(7.1 £0.7) x 107 and |hy| = (4.7 £0.5) x 107>, while
BABAR enforces the upper bounds i, < 7.6 x 107 (for hy,
at the best-fit point) and |hy|*> + |hz|* < 2.8 x 10710
(90% CL). In this case, the BABAR data disfavor the hy
value preferred by Belle II.

Several studies have previously considered the Belle II ex-
cess in terms of new invisible particles [14,15,17,19,21,33].
However, most derive their results solely from B —
K™ E, integrated branching fractions and only one study

x107% 10 x10~* _xx=v
' ’ my =21 GeV
4 ' Ao 10TV
i 0.5 i
2 i |
Y N\ '
B A N [ o
0 0.0 H :
= \ ) = . i f
N I, o [l k a ;
--=- Belle II —0.5 i
- BABAR :
—41 — Combined i
—_— : ~1.0 ~ ~ -
—1 0 1 —-1.0 =05 0.0 0.5 1.0
hy %1078 hr %1074

FIG. 9. Favored regions in the parameter space (hy, hy) (left)
and (hy, hy) (right) relevant to the two-body decay B — KV,
with the mass of V fixed to a value close to the best-fit point,
my = 2.1 GeV and the heavy NP scale fixed at A = 10 TeV.
Color coding is the same as Fig. 6.

considered also the decay B, — E ;s [15]. Only in Ref. [22]
was a binned likelihood analysis of B — KE,;,; performed
within different new physics scenarios relying on both Belle
ITand BABAR data. We observe that the preferred mass my
and m,, obtained from the two- and three-body decay fits,
respectively, are compatible with Refs. [21,22]. Additionally,
our constraint on the 4y and /4 couplings is compatible with
the results from Ref. [21].l On the other hand, our estimated
significances of NP scenarios over the SM differ somewhat
from those given in Ref. [22]. In particular, we find that two-
body decay kinematics seems to give a better fit to Belle 11
data than three-body decay spectra.

V. CONCLUSIONS

In the present work, we have explored the interesting
possibility that the signal of B - KE,;, recently observed
by Belle II arises not only from the SM neutrinos but from
new undetected particles in the final state. By taking into
account available experimental data on the total event
yields, as well as on the differential B —» KWE, ;. dis-
tributions presented in Belle Il and BABAR analyses, we
were able to construct the likelihood for different NP
scenarios using experimental information from both proc-
esses. In addition, we considered constraints on the
branching ratio B; — E,,; obtained from the ALEPH data.

We considered possible decay channels involving one
new invisible scalar or vector state as well as decays to two
invisible states, either scalars, spin 1/2 fermions, vectors,
or even spin 3/2 states.

The two-body B — K*)X topology with an invisible
particle mass of my = 2.1 GeV can accommodate all data
much better than the (rescaled) SM. In particular, the Belle
II data prefer these scenarios by (3.56) 4.50, respectively.

"The normalization of Ref. [21] differs by a factor of 2,

obtaining ging) = 2hya).
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This conclusion seems to differ somewhat from the results
of Ref. [22].

In the case of two invisible new particles in the final
state, i.e., B —» K" XX, we find that two scalars or two spin
1/2 fermions can also accommodate all data with the most
favored masses in the range my = 0.4-0.6 GeV, depend-
ing on the X spin and couplings considered. Conversely,
scenarios with pairs of vectors or spin 3/2 fermions in the
final state cannot improve the SM fit of Belle II and are thus
disfavored irrespective of their mass or couplings.

In the parity basis of effective operators, we find that
scenarios with spin 1/2 fermions coupled to the vector
quark current are preferred over those coupling to scalar or
tensor quark currents. On the other hand, scenarios with
pairs of scalar particles coupled to vector or scalar quark
currents are equally likely.

The results of the BABAR search for B —» K*E; are
consistent with most scenarios preferred by Belle II data. In
the parameter space of possible couplings, they yield
predominantly orthogonal constraints. One notable excep-
tion is a single massive vector field coupled to the tensor
(dipole) quark current. The Belle II and BABAR results
cannot be accommodated simultaneously in this scenario.
Finally, the ALEPH data on B, — E; currently provide
the strongest constraint on a pair of scalars coupled to a
pseudoscalar quark bilinear operator (5ysb).

The impactof B —» K*E ;i (and By, — E ;) constraints
is somewhat more interesting in the chiral basis of quark
operators (see also Appendix A), which is often preferred
for UV model building respecting the SM chiral gauge
symmetry. Interestingly, we find that purely chiral cou-
plings still lie within the combined 68% CL region of both
Belle II and BABAR (ALEPH) results. However, a future
improvement on B — K*E ;. by Belle II could soon put
most chiral scenarios under pressure.

We also note that coupling ranges implied by our fit are
mostly consistent with NP scales even above our bench-
mark A = 10 TeV. Consequently, new degrees of freedom
associated with higher-dimensional operator terms in
Egs. (3)—(5) could lie above the LHC reach. Notable
exceptions are pairs of invisible scalars or fermions coupled
to the quark vector current (5y,b), where the fit to Belle II
signal points to NP below few TeV.

While we only considered b — s transitions in this work,
in more complete NP scenarios, other phenomenology
could become relevant. In particular, NP flavor construc-
tions (see, e.g., [33-36]) would relate these decays to
K — 7E i, D — nE,;, and monojet/monotop produc-
tion at high pr, leading to possibly strong constraints from
NAG62 [37], KOTO [38], BESSIII [39], and LHC [40,41]
experiments. The results of our Belle II likelihood fit,
however, indicate that, for the preferred masses of invisible
states, they could be kinematically forbidden from being
produced in rare kaon and possibly even D meson decays.
Finally, in UV complete models, constraints from B, meson

oscillations” as well as electroweak precision data could be
relevant. We leave these considerations for future work.

ACKNOWLEDGMENTS

We thank Luka Santelj and Peter Krizan for multiple
illuminating discussions regarding the details of the Belle II
experimental analysis and, in particular, Luka Santelj for
providing the relevant smearing and efficiency maps of the
Belle I1ITA tagging analysis. We also thank Damir Becirevi¢
and Olcyr Sumensari for providing useful information on the
relevant B — K**) form factors. P.D.B., S.F, and J.F. K.
acknowledge financial support from the Slovenian Research
Agency (research core funding No. P1-0035, No. J1-3013,
and No.N1-0321). M. N. acknowledges the financial support
by the Spanish Government (Agencia Estatal de
Investigacion MCIN/AEI/10.13039/501100011033) and
the European Union NextGenerationEU/PRTR through
the “Juan de la Cierva” program (Grant No. JDC2022-
048787-1) and Grant No. PID2020-114473GB-100. M. N.
also acknowledges the support of the Generalitat Valenciana
through Grant No. PROMETEO/2021/071. This study has
been partially carried out within the INFN project (Iniziativa
Specifica) QFT-HEP.

APPENDIX A: CHIRAL OPERATOR BASIS

To convert from the parity basis [Eqgs. (3)—(5)] to the
chiral basis (defined in Ref. [28]) for the operators
involving the fields X € {¢p,y,V,.¥,}, it is convenient
to define the following matrices:

(A1)
-1 -1

For the operators containing the dark scalar field ¢ in
Egs. (3)-(5), we then have the matching relations,

S,L
<QS<S>) _pV (Czlf/)(rﬁ))
o S.R >
gp(s) V2A Canie)
V.L
gvv Cd¢¢
g =P cVR |
AV diep

For the four-fermion operators involving the invisible
fermion field y, we have

(A2)

2. . . . .

In scenarios with a single scalar or vector, these arise at the
tree level, but have been found in Ref. [42] to be negligible, a
result which we have also verified explicitly.
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V.LL S.LL
Svv Cay fss Cay
V.LR S.LR
Sfva —0 Cdy) fsp —0 v Cdl//
Sfav CZ,;,RL ’ fps V2A CifL '
V.RR :
faa Cuy fep Cj ifR
T.LL
(f”>_1> v <C""” ) (A3)
frr) " VANl

The same relations hold for the effective couplings of the
spin 3/2 field ¥, with the replacements fyy — Fxy and
yw — Y. Additionally, the couplings Fyg, Frp, F7g, and
F7p are related to chiral basis coefficients in a similar
manner as the scalar and pseudoscalar couplings. Finally,
the operators coupling the vector field V, to the relevant
quark couplings are rotated to the chiral basis as

<hv> ol G (hT):P v (Ca
i Cw' ) \h/ o VAACGE )

<hs> _p v [ Ci
hp \/EA Czifv

10
& | N\: | Belle I1
%% o s ) BABAR
——  Combined
—10
10
Sx- i
%g 0 my = 0.6 GeV
A=10TeV
—10
10
3
S
Q
—10

10 —10 0 10

FIG. 10. Two-dimensional favored regions in the parameter
space (Cho, Chl, Cil, ChFY) relevant to the three-body decay
B — Ky, with the mass of y fixed to a value close to the best-
fit point, m, = 0.6 GeV and the heavy NP scale fixed at
A =10 TeV. Color coding is the same as Fig. 6, with green

lines denoting the 1-, 2-, and 3-6 combined confidence regions.

In Figs. 6, 7, and 9, the constraints on the chiral basis
couplings can be inferred from the light gray dashed lines,
which show, for example, gg = gp and g¢ = —gp (Which
equivalently depict Cié‘ =0 and Ci;f = 0, respectively).

The transformation to the chiral basis for the constraints
on the fermion couplings in Fig. 8 is slightly less trivial than
a rotation because two of couplings (fyy, fvas fav,faa)
are taken to be zero in each of the six plots. We instead
perform an additional fit for the chiral couplings
(ngf, Cg”f , Csyf, C§y’f ), with the favored regions shown in
Fig. 10. The dashed and dotted gray lines again show the
1-0 regions from Belle II and BABAR, while the dark,
medium, and light green contours show the 1-, 2-, and 3-¢
combined confidence regions.

APPENDIX B: ANALYTIC EXPRESSIONS
OF DECAY RATES

In this appendix, we give explicit expressions for the
relevant two- and three-body B decays to K*) and the
invisible final states X € {¢,y,V, ¥}, first explored in
Ref. [28]. We also give the decay rates for invisible two-
body B, decays. The results make use of the form factors
and decay constants defined in Appendix C.

1. B —» K two-body decays
The two-body decay rates for B — K*)¢ are

_lgsP |Pxlmiox

OB = Kp) =S EZs ). (B1)
* _ |9P|2 |1_5K* 3 2 2
DB~ K§) =) - Ao, (B2)

where &) = (1 —m? ., /my), gs (gp) is the scalar (pseu-
doscalar) coupling of the scalar field ¢ to the flavor-
changing quark current sb (5y5b), and the three-momentum
of K™ is

-

|Pge —ll/z(m%’mé’mz )

K®)
= , B3
T (B3)

with A(x,y,z) = (x —y — z)> —4yz. Note that the above
rates also apply to the operators (5y,b)d"¢/A and
(57,7sb)0"¢/A if one makes the replacement ggp) —
imygya)/ A

The two-body decay rates for B — K*)V are instead
given by
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2 2
v~ kv) = 28 1, P ) P EE 2
212
S %ﬁm%mmé)} , (34)

. e 1Pk ? (mg + mg)? 16m>.
I'(B— K'V) = o 2|h V|2(m—f7mK)ZV2(m%/) + |hA|2 BzmizKA%(m%/) + mzK A%z(m%/)
* B 1%

2 22 2
p my, [ mzdz- 8m.
w8l 2L 2 ) 4 2, 22 ( 5% 13 v>+7KT%3<m2v>)

my (mp + mg-)?
Pl
+ 8NR|hy by ——————V T
[hy 7] (mp + mg)A (my)T (my)
, mg + mg- 16m2.
2N (A ()T 02) + T AT . (B)

where hy (hy) is the (axial) vector coupling of the vector field V, to the flavor-changing quark current 5y,,b (5y,ysb) and hy
(hz) is the magnetic (electric) dipolelike coupling of the field strength tensor V#* to the flavor-changing quark current 56,0
(56,,75b). The three-momentum of K () is given by Eq. (B3) with the replacement my — my.

2. B - K three-body decays
First, the three-body differential decay rates in g2 for B — K*)¢p¢ are given by

dl'(B — Ko¢d B 25%
B0 Do PR g 5 )+ o 2 ) (B0

dF<B - K*¢<;5> _ ﬁqﬁ |15K*| 3| ‘2 |15K*|2 Az(qz)
dq* 9673 A2 PSU my 4+ my)2 0
mg + mg-)? 16m>.
o Sy (P 2P ) + 10 ). (®7)

where iy = /1 —4my/q* and the three-momentum of K is given by Eq. (B3) with the replacement mj — ¢*. In the

scenario of a real scalar field, where ¢ = ¢, the contributions from g and g,, vanish, and the remaining contributions
from ggg and ggp are a factor of 2 larger at the amplitude level; hence, the replacements ggg — 2955 and gpg — 2gpg can be
made in Eq. (B6). The rate must also be multiplied by factor of 1/2 to account for identical outgoing states.

The differential decay rate for B — Ky is

dI'(B — Ky B la? 5
B ) e PO (w02 + Lrua A ) + 120 il () ) P )
3 m2 (my, — my)? Ly, (my, — my mo%
‘f‘g <4|fVA|2W(l;—4+ \fssI*By 4 |fspl> + 4R[fvafsp) i qbz )) (mp — )zfo( )
291 g P )
+2(Ifrr By + | f71] ﬁl”)i(mlg +mK)2fT(q )| (B8)

where we have defined g = (3 - f2)/2 = (1 +2m}/q*) and B,? = (3 — 2f3;) = (1 + 8m /4*). Likewise, the decay rate
for B - K*yiy is
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dr(B — K*yy) _ By |prld’
dq? 2455 A

mg + mg-)? 16m>.
+ ([ avBy + |faal?By) (%A%(qz) + TKA%2(42)>
B

e ; 2
2058+ P P v

3 m2 (my, + my)? m,, (my, + my) |Pr|?
2(4 2 My s 242 2 _4m X W 5 A2( 2
3 (AP B - i) ") L g

- y 2
<(|frr|2ﬁ”2 +1F2r PAITI () = 60 [f oy ] LW)) ”q—’T (¢?)

Mg + my-

26%. 8m>.
(P + |fTT|2ﬂ"2>( T >+L2T%3<q2>)

(mpg +mg-~)

— R [favf7,] mWT <5K*A1 (¢*)T2(q%) +

The differential decay rates in Egs. (B8) and (B9) are valid for a pair of invisible Dirac fermions in the final state. However,
the result for Majorana fermions (y = w¢) can be obtained from Eqgs. (B8) and (B9) with the replacements
fvvs favs frrs for = 0, and fyy — 2fxy for the remaining couplings. Additionally, a factor of 1/2 is required to
account for identical outgoing states.

The differential decay rate for the process B — KVV is

dU'(B— KVV) _ Pylhs? |l_51<|q4j mp%

dq? 51248 m%,A2 V( my, — )2f0( 7). (B10)

where Jy = (3 — 2% + 3p1)/4. Again, for V = V, the replacement g — 2hg must be made and the rate multiplied by
1/2 for the reduction in phase space. B
Finally, the differential decay rate for the process B — KWW is

ar(B = KY%) _ py_ [peld’
dq? 2167° myA*

[<(|FVV|2~7VV + |FyalPBeTva)f+(q?)

2
+ 2R [Fyy (6F 7T yv.ar + 2F 5By + F3oT vy, TP)] fT( )) |qu| f(d?)

3 p — Ity 2
+3 <|FVA|2(1 —ﬁ@)jw%

my(my, — my m%
PSSP BTy + PP Ty + AN Fua P T ™ ‘)) T i)
1 1
+ 2<|FTT|2s7TT + = |Frs|*BeTrs + 1 |Frp|* B8 T rp
5
+ |Fir B8 T w + |FTs|zﬁw( —Be) T s + 16 |Frpl?BE(1 = B3)

5 1
+ N |:FTT <F;Sﬁ<¥pu7TT,TS +4 Fip ¢(1 —ﬂq:)> 5 FrpFs ﬁ?y(l - %)

= |12
Pk )], (B11)

+ Fr (F*TPﬂ\zlleT,TP 2 Fr py(1 ﬁlzp)jirisﬂ > (g + mp)?

where we have defined for convenience the factors Jy = (9 — 683 + 54%)/8, T4 = (5 — 6% + 9p%,)/8, and
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Tvy = (15 = 158% + 2584 — 965)/ 16, For ¥ = ¥¢, we get the decay rate from Eq. (B11) with
Fyy, Fay, Frr, F5p — 0, and Fyy — 2Fyy for the remain-
— (5 _ 2 4 v Pavs Frr Fyp ) XY XY
Tva = (5 =20y +553)/8, ing couplings. Equation (B11) mustalso be multiplied by 1/2.
Trr = (15— 20ﬂl21, + 23,36], - IOﬂ%)/S,

Trs = Trrrs = (9=56%)/4, 3. Invisible B, decays

Tre = (7=3B3)/4, Trs = (11 =5p3)/6, . I'n'the presence of light hidden states X € {q?,l//, V, ¥},
5 " invisible B, decays B, — »_ X can also occur via the same
Tyvrr = (15— 108y + 194y)/24, operators that trigger B — K* > X. Here, we give expres-

Tyyvip=(15- 1()ﬂ\2y + 3ﬂ¢) /8, sions for the induced decay rates, which are used to recast the
) upper bound on B(B, — inv) from ALEPH onto the effective

Trrrp = 3+ Fy)/4, coupling parameter space. In the following, we make use of

Ttris = (=3 + 56%)/2. (B12) the B, decay matrix elements defined in Appendix C 3.

The decay rate for a pair of outgoing invisible scalars is

Py fam mp, 1 mp
B, 2= 4 e , B13
(B, —» ¢¢) 167 A2 |9Ps| (my + ms) |9AV| Az ( )
where iy = /1 —4mg/mj . Again, g,y vanishes if ¢ = ¢.
The decay rate for outgoing invisible fermions is given by
ﬁy/fB my, (my, 4+ m)* my, (my, + m) my
I'(By 4 2 My \Mp T )" 2432 2 _ 4% * w s 3
(By = yy) = Py A |faal mﬁx + | fesl*By + |fpel [faafpp] m%S (my + m,)
(B14)
Likewise, for a pair of outgoing vector bosons, the decay rate is
o Bylhp2 fBmi, mi
I'B, - VV) = : , B15
(By = VV) 64r  mHA2 7Y (my + m,)? (B15)
with 7y = (3 =243 + 38})/4.
Finally, the decay rate for a pair of final state spin 3/2 fermions is
Py frm my, + my)?
(B, v) = DT [y g, M S\ 7 P
72 AN mg.
L AR[F Fp] T e 1 1) s, (B16)
SO g Ly m)?

where the 7y and 7, factors are the same as those below Eq. (B11). Again, all of the rates above must be multiplied by a

factor 1/2 in the case of identical outgoing states (¢p = ¢', w = w¢, V = VI, ¥ = ¥¢) and the couplings rescaled in the
same way as the previous subsection.

4. Standard model rates
In the SM, the signal B — KE, . is induced by the process B — K*)up, with the effective Hamiltonian,

_4Gr

Heff = \/5

—2,C3MO; +H.c., (B17)
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where 1, =V, V; and CM = —X,/s2, with the factor
X, =1.469 £ 0.017 accounting for next-to-leading-order
QCD [43-45] and two-loop electroweak [46] corrections,
and the left-handed operator is

2

O = 1672

(by,Prs)(@ar* (1 —ys)v,).  (B18)

In the operator basis of this work, this corresponds to

4GF/’{ a X
V2 2rst

which can be inserted into Egs. (A3), (B8), and (B9Y) to
obtain the differential rates

V.LL

dv
shaf

(B19)

dar 2|/1|2X2
i e S B4 (a7). (B20)

where the K*) three-momentum is given by Eq. (B3) with
mé — ¢*. In Eq. (B20), we have defined the relevant
hadronic form factor combinations

|PK|2 2
%(@*) ="—"5-11(q%), (B21)
2|pi|? (mg + mg)?
2 (2) = V2 (2 A2(2
K (q ) (mB +mK*)2 (q )+ 2m% l(q )
16m2.
10 ), (522

where the form factors £, (¢%), V(¢?), A;(¢*), and A}, (¢?)
are defined in Appendix C.

On the other hand, the invisible B, decay width is
negligible in the SM. The two-body B, — v rate is
suppressed by tiny neutrino masses, so the total invisible
width is dominated by the four-body decay B; — vivi,
~5x 10715 [47].

perform a dispersive analysis of both sets of form factors.
The most up-to-date results for the B — K form factors
coming from the lattice are in Ref. [48], while in the case of
B — K* a determination on the lattice of the full set of form
factors can be found in Refs. [49,50], which can be
complemented by the light-cone sum rule determination
in Ref. [51].

1. B — P form factors

The relevant hadronic matrix elements for the decay of a
B meson to a pseudoscalar meson P, i.e., B(p) — P(k),
can be written as follows:

2 2
my — mp

P|gb|B) = ), Cl
(Plab|B) =8 fola?) (1)
_ m% — m?
PlarolB) = |2, =" g, | ()
2 — ma

+ =g, fo(4), (C2)

_ i(P,q,— P,q,)
P|go,,b|B) = —~ £ 2), C3
(P|go,,b|B) po— fr(g®).  (C3)
where P, =p,+k, q,=p,—k, and the relation

f+(0) = fo(0) holds. The form factors for the quark
currents gysb and gy,ysb vanish identically, while the
form factor for go,,ysb can be obtained from the tensor

form factor in Eq. (C3) via the identity 6,75 = £ €,,,30".

2. B — V form factors

The relevant hadronic matrix elements for B meson
decay to a vector meson V, i.e., B(p) = V(k,¢*), can be
expressed as

yleldlng B(B? e d Emiss) 2imver gt
_ q
V|gysb|B) = — T A (%), C4
(Viarsplp) = =R o). ()
APPENDIX C: HADRONIC MATRIX ELEMENTS
*U A L
Th.e. latest form factors fpr both the B — K and B — K* (V|gy,b|B) = 2uap” DK V(g?), (C5)
transitions can be found in Ref. [10], where the authors mg + my
|
- o |PMvaudy 2 2 2 Puq, 2
(Vlarursb|B) = ie™ | ——=—(Ao(q") — A3(q°)) + (mp + my)guAi(q) —————Ax(q") | (Co)
mp -+ my
_ : my — m} my — m? q°PP .
(VIa0,0b1B) = —ieegy | (P =250 40 ) T ) + P2V o) + L 1) - Tt (00
where Ay(0) = A3(0), T1(0) = T,(0), and
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2

T3(¢) = Ta(q) + T Ta(q). (CB)

B — My

The form factor for the scalar quark current bg vanishes
identically, while the form factor for Eam,ysq can again be
obtained from Eq. (C7) via 6,75 = £€,,,50".

|

2

(mg + my)*(my —mj — q

The form factor A3(g?*) can be eliminated using the relation

_m3+mv

mpg —m
M) =" - mes

A(q?) A (q?).  (CY)

2mV

The form factors A,(¢*) and T3(g?) can likewise be
eliminated in favor of the so-called helicity form factors,

A (%) = A(mp. %, my) Ay (¢?)

Alz(‘lz)

(m} — m})(my + 3m}, — ¢*)Ta(q%) — A(m%. q* m3)T5(q%)

16mgm3,(mg + my)

, (C10)

T23(q2) =-F

which appear in decay rates for the longitudinal polariza-
tion of the vector meson.

The required form factors for B — K*) decays are
therefore f+, f(), f’]‘, V, Ao, A], A12$ Tl’ T2, and T23.
For these, we use the Bharucha-Straub-Zwicky parametri-
zation [52] results of Ref. [10].

3. B, decay matrix elements

The relevant matrix elements for B, decay, Which_ are
used to derive the decay rates B, — ¢p¢/yy/VV /P in
Appendix B, are

<0|§yyy5b|B\> = ifBA.P;u
m%zszs

0|3ysb|B,) = —i ,
(OfsrsblB.) = =i P

(C12)

where P, is the four-momentum of B and we take the value
fp, = 230.3(1.3) MeV for the B, decay constant [53].

APPENDIX D: EXPERIMENTAL LIKELIHOOD
RECONSTRUCTION

In this appendix, we give further details on the
reconstruction of the likelihoods for the Belle II and
BABAR analyses [3,4].

The Belle II [3] analysis measured the differential decay
width for the charged channel BT — K*E,;, with both
inclusive and hadronic tag methods. In order to calculate
the expected signal events using Eq. (6), we have been
provided with the smearing f,. (¢*) of the reconstructed
momentum transfer gZ. for the ITA analysis and with the
efficiencies for both ITA and HTA analyses [54]. We
computed the Monte Carlo statistical errors for each
background component (B*B~, B°B°, and continuum)

as o}, . =/ b'/Fyc, where b corresponds to the number
of background events in the bin i and Fyc is a bin

2

8m3mv(m8 - mv)

, (C11)

|

independent Monte Carlo factor that reproduces the sim-
ulation statistical uncertainties in Fig. 17 of Ref. [3]. As
discussed in the main text, we performed a Monte Carlo
simulation of the expected SM signal including uncertain-
ties on the efficiencies and form factors to find the
covariance ZXgy, including correlations between bins.
The covariances for the background components were then
found by rescaling Xgy; according to the background
statistical errors of, .. We furthermore introduce a sys-
tematic uncertainty for the normalization of the
backgrounds, which are fitted to reproduce the profile
log-likelihood ratio as a function of the signal strength
given in Fig. 16 of Ref. [3].

The BABAR [4] analysis performed a search for both the
neutral and charged channels B — K*(HE . com-
bining two different final states for each channel (K7™,
K¢n°, K*7°, and K¢nt) and using a hadronic tag method.
We extract the different background contributions and their
g* dependence from Fig. 5 of Ref. [4], while we extract the
efficiencies €(g?) from Fig. 6 of the same reference in their
binned forms. We compute the statistical errors similar to
the Belle II analysis, fitting the Monte Carlo factor to
reproduce the values in Table IV of Ref. [4]. We obtained
the systematic uncertainties from Tables II and III of
Ref. [4], taking into account the correlation between the
systematic uncertainties in the background and efficiency.

Since no information is available on the smearing f > (q%)
of the reconstructed momentum transfer g2, we exclude the
constraints obtained from BT — K*TE,;, as both final
states contain neutral particles leading to non-negligible and
asymmetrical smearing. In the case B’ — K*E, ;. we
assume that the K*° dominantly decays to K*z~ (as there
is a factor of 10 in the efficiency) and we therefore neglect the
smearing.

Finally, we have verified that our likelihoods reproduce
correctly the confidence intervals and limits given in both
Refs. [3.4].
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