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The recent Belle II observation of B → KEmiss challenges theoretical interpretations in terms of Standard
Model neutrino final states. Instead, we consider new physics scenarios where up to two new light-invisible
particles of spin 0 up to 3=2 are present in the final state. We identify viable scenarios by reconstructing the
(binned) likelihoods of the relevant B → Kð�ÞEmiss and also Bs → Emiss experimental analyses and present
preferred regions of couplings and masses. In particular, we find that the current data prefer two-body decay
kinematics involving the emission of a single massive scalar or a vector particle or, alternatively, three-body
decays involving pairs of massive scalars or spin 1=2 fermions. When applicable, we compare our findings
with existing literature and briefly discuss some model-building implications.
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I. INTRODUCTION

Historically, rare decays of (heavy) flavored mesons
have been important probes and harbingers of new physics
(NP). In the last decade, the LHCb and B-factory experi-
ments have produced several intriguing results on rare
semileptonic B meson decays, including the charged
current mediated B → Dð�Þτν and the flavor-changing
neutral current (FCNC) mediated B → Kð�Þμþμ− (see,
e.g., Refs. [1,2]), that challenge explanations within the
Standard Model (SM).
Most recently, the Belle II experiment has measured

the branching ratio BðB → KEmissÞ ¼ ð2.3� 0.7Þ × 10−5.
Assuming that the missing energy Emiss is carried away by a
pair of massless SM neutrinos, the result lies 2.9σ above
the SM prediction for BðB → Kνν̄Þ [3]. The quark-level

transition b → sνν̄ is also probed by the complementary
mode B → K�Emiss, with current experimental upper
bounds on the branching ratio of the order BðB →
K�EmissÞ < 11 × 10−5 [4]. Finally, an upper limit on the
branching fraction of invisible Bs decays, BðBs → EmissÞ <
5.4 × 10−4 (90% CL), has been recently derived in Ref. [5]
using a recast of ALEPH data [6]. While innocuous in the
SM, we show that this mode can put competitive bounds on
particular NP interpretations of the Belle II result.
Undetected particles (neutrinos) in the final state make

these FCNC processes experimentally more challenging
compared to those producing charged leptons. On the other
hand, they are theoretically cleaner [7,8]. In particular, the
relevant hadronicmatrix elements arewell understoodwithin
existing theoretical frameworks [9–11]. A variety of NP
models aiming to resolve the Belle II excess have been
proposed in the literature [11–26]. In some scenarios, the SM
neutrinos still carry away all of the observed missing energy
[11–14],while in others, novel undetected decay products are
also present in the final state [21–23,26]. Restricting the
outgoing invisible states to SM neutrinos only, there are two
possibilities for the associated NP; either it couples univer-
sally to all three lepton generations [11,13], or it prefers some
(e.g., ντ) neutrino flavors [12,13], leading to the violation of
lepton flavor universality (LFU). A general analysis of LFU
and non-LFU NP, coupling to both left- and right-handed
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quark current operators and contributing to the decays B →
Kð�Þlþl− and B → Kð�Þνν̄, was presented in Ref. [27]. It
showed that enhancing the B → Kνν̄ branching ratio while
simultaneously satisfying existing constraints on BðB →
K�νν̄Þ necessitates a significant contribution from right-
handed quark current operators. In the LFU limit, however,
these operators induce large contributions to theC0

9;10Wilson
coefficients, present in the b → slþl− effective
Hamiltonian, which are already ruled out by existing
measurements of B → Kð�Þμþμ− and Bs → μþμ− decays
[2]. Thus, the only remaining phenomenologically viable
option is LFU-violating NP, which couples both left- and
right-handed quark currents predominantly to τ neutrinos
[12,13]. On the other hand, the presence of additional
invisible final states would circumvent the need for LFU-
violating NP by decoupling the B → KEmiss measurement
from the constraints imposed by b → slþl− transitions.
Motivated by the remarkable Belle II measurement of

B → KEmiss and the phenomenological difficulties in
accommodating the observed excess exclusively with
SM neutrinos, we turn to the interesting scenario that
additional light-invisible states are present in the final state.
We systematically consider both single scalar and vector
particle final states, as well as pairs of scalars, spin 1=2 and
3=2 fermions, and vectors, following Ref. [28]. Since
several of these possibilities significantly alter the phase
space and kinematic distributions of events in the experi-
ments, we consider not only the total branching ratios
BðB → Kð�ÞEmissÞ, but also all available distributions
presented in the Belle II and BABAR analyses. Finally,
interactions producing two invisible particles in the final
state of B → KEmiss can induce the invisible Bs decay Bs →
Emiss whose larger phase space can probe massive invisible
states beyond the kinematical limit of B → K�Emiss. The
experimental upper bound from ALEPH [5,6] can thus be
considered as complementary.
Using these data, we construct our likelihoods for the

possible invisible final states, discerning which scenarios

are favored (and, if so, what masses and couplings are
implied).
We note that partial analyses of some of the scenarios

considered in this work have already been performed in the
literature [15–22]. However, a comprehensive study of all
possibilities taking into account all available decay dis-
tributions has not been implemented to date. When appli-
cable, we compare our results and findings with the
previously published results.
The remainder of this work is structured as follows. In

Sec. II, we introduce the NP fields describing the invisible
final states, outlining their different (effective) couplings to
the quark currents relevant to Bmeson decays. We describe
some features of the kinematic distributions of the decays,
while explicit expressions for the branching ratios are given
in Appendix B. In Sec. III, we give an overview of how
Belle II and BABAR data are used to construct likelihoods
for the different NP scenarios.
In Sec. IV, we then discuss the results of minimizing

these (negative) log-likelihoods as a function of the
invisible particle masses and couplings. First, we show
that certain scenarios are immediately disfavored. Of the
scenarios that remain, we explore what masses and cou-
plings are implied by the Belle II excess and are at the same
time compatible with existing constraints from BABAR and
ALEPH.We also compare our findings to existing results in
the literature and briefly discuss some model-building
implications before concluding in Sec. V.

II. MODEL CONSIDERATIONS

As depicted in Fig. 1, we consider the contribution of
additional invisible final states, denoted as

P
X, to

B → Kð�ÞEmiss. This is alongside the SM neutrinos,P
X ¼Pα ναν̄α ≡ νν̄, with α∈ fe; μ; τg. Any number of

invisible final states may be present; however, to avoid
phase space suppression we will consider only one or two
invisible final state particles. With this requirement, there
are now only a few possible scenarios. Considering fields
X∈ fϕ;ψ ; Vμ;Ψμg, corresponding to (massive) particles of
spin J ¼ f0; 1=2; 1; 3=2g, respectively, leads to the follow-
ing possible final states:X

X∈ fϕ; V;ϕϕ̄;ψψ̄ ; VV̄;ΨΨ̄g: ð1Þ

Thus, two-body decays can only involve scalar and vector
bosons, B → Kð�Þϕ=V. Three-body decays can proceed to
pairs of scalars, vectors, and also spin 1=2 and 3=2
fermions, B → Kð�Þϕϕ̄=ψψ̄=VV̄=ΨΨ̄.
We assume that the invisible state is a singlet under the SM

gauge group SUð3Þc × SUð2ÞL × Uð1ÞY , but leave open the
possibility that it is charged under a dark gauge or global
symmetry. As a result, any observable effect of the invisible
states or hidden sectormust come from interactions involving
gauge-invariant combinations of SM fields. Of these

FIG. 1. Upper: the process Bþ → Kð�ÞþPX, resulting in the
B → KEmiss signal. In the SM,

P
X ¼ νν̄, but additional light-

invisible particles (for example, a pair of heavy Majorana
fermions,

P
X ¼ NN̄) may be present in the final state. Lower:

the same invisible final states with the same couplings induce the
decay Bs →

P
X, leading to the Bs → Emiss signal.
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interactions, those that are renormalizable, i.e., dimension-
four operators, are sometimes referred to as “portals.” For
example, the generic fermion field ψ may correspond to a
right-handed gauge singlet fermionNR, with thewell-known
mixing portal −Yνl̄ H̃ NR and also a Majorana mass term
− 1

2
MRN̄c

RNR if lepton number is not conserved. These terms
result in the type-I seesawmechanism, generatingmasses for
the light neutrinos. A generic vector field Vμ may instead
exhibit kinetic mixing with the SM hypercharge, e.g.,
− ε

4
BμνVμν, with Vμν ¼ ∂μVν − ∂νVμ. Recently [29,30], it

has been shown that new massive vector fields may also
couple directly to SM currents as J μVμ, even if J is not
conserved. Finally, the so-called Higgs portal, with the terms
μ0ðH†HÞϕ and λ0ðH†HÞϕ†ϕ, is another possible window to
NP in the form of a scalar ϕ.
However, heavy NP may also mediate the interactions

between new light-invisible particles and the SM. At
energies below the associated NP scale Λ, these then
manifest as higher-dimensional effective operators, i.e.,

L ¼ LSMþX þ
X
i

CðdÞ
i OðdÞ

i : ð2Þ

Here, LSMþX is the dimension-four SM Lagrangian
extended with the gauge singlet field(s) X, while the
sum denotes a tower of dimension-d SM gauge-invariant

operators OðdÞ
i . In the standard dimensional analysis, the

Wilson coefficientsCðdÞ
i are proportional to 4 − d powers of

the heavy NP scale Λ.
At energies below the weak scale, the X-extended SM

gauge-invariant effective field theory (EFT) is no longer
appropriate. Instead, the weak effective theory in the
broken phase of the SM, i.e., operators invariant under
SUð3Þc × Uð1ÞQ, should be used. Since, in this EFT, the
left- and right-handed chiral fermion fields carry identical
charges, we can consider the parity basis for the quark
fields, i.e., either P-even or P-odd quark currents. In the
context of B meson decays, the expressions for the
branching ratios are simplified considerably.
Using the parity basis for b → s transition quark cur-

rents, the interactions of the generic invisible fields
X∈ fϕ;ψ ; Vμ;Ψμg in the weak effective theory (including
operators up to dimension d ¼ 6) are as follows. Starting
with the P-even quark currents, the coupling of the vector
quark current to invisible states is described by the effective
Hamiltonian

HV
eff ⊃ s̄γμb

�
hVVμ þ gVV

Λ2
iϕ†

∂
μ

↔
ϕ

þ fVV
Λ2

ψ̄γμψ þ fVA
Λ2

ψ̄γμγ5ψ

þ FVV

Λ2
Ψ̄ργμΨρ þ

FVA

Λ2
Ψ̄ργμγ5Ψρ

�
; ð3Þ

where the corresponding Hermitian conjugate terms are
implicit in all our Hamiltonians. Note that we have omitted
the operator gVðs̄γμbÞ∂μϕ=Λ, because it can be rewritten
using the quark field equations of motion as gSðs̄bÞϕ, with
gS ¼ imbgV=Λ. This leads us to the general effective
Hamiltonian of the scalar quark current,

HS
eff ⊃ s̄b

�
gSϕþ gSS

Λ
ϕ†ϕþ hS

Λ
V†
μVμ

þ fSS
Λ2

ψ̄ψ þ fSP
Λ2

ψ̄γ5ψ

þ FSS

Λ2
Ψ̄ρΨρ þ

FSP

Λ2
Ψ̄ργ5Ψρ

�
: ð4Þ

Finally, the effective Hamiltonian for the tensor quark
current is

HT
eff ⊃ s̄σμνb

�
hT
Λ

Vμν þ fTT
Λ2

ψ̄σμνψ þ FTT

Λ2
Ψ̄ρσμνΨρ

þ FTS

Λ2
Ψ̄½μΨν� þ FTP

Λ2
Ψ̄½μγ5Ψν�

�
; ð5Þ

with Ψ̄½μΓΨν� ¼ iðΨ̄μΓΨν − Ψ̄νΓΨμÞ=2. For the P-odd
quark currents, the effective Hamiltonians are similar to
the expressions above. In particular, for the axial vector
quark current, the couplings to invisible states can be found
by replacing s̄γμb → s̄γμγ5b and V → A in Eq. (3), e.g.,
hV → hA and fVV → fAV . Likewise, the couplings for the
pseudoscalar and axial tensor quark currents are found with
the replacements s̄b → s̄γ5b (S → P) and s̄σμνb → s̄σμνγ5b
(T → T̃) in Eqs. (4) and (5), respectively.
For completeness, in Appendix A, we give the matching

relations between the coefficients of the weak EFT oper-
ators in Eqs. (3)–(5), written in the parity basis, and the
coefficients of SM gauge-invariant operators, necessary in
the chiral basis for the quark fields, as defined in Ref. [28].
For example, the scalar and pseudoscalar operators gSðs̄bÞϕ
and gPðs̄γ5bÞϕ are induced by the SM gauge-invariant
operators CS;L

dϕ d̄RH
†qϕ=Λ and CS;R

dϕ q̄HdRϕ=Λ, with the

matching gSðPÞ ¼ v=
ffiffiffi
2

p
Λ × ðCS;R

dϕ � CS;L
dϕ Þ=2.

We now comment on some interesting formal details
regarding the possible invisible final states. If the generic
scalar ϕ or vector Vμ is charged under a dark, possibly non-
Abelian, gauge group, the operators gSðPÞ½s̄ðγ5Þb�ϕ and
hVðAÞ½s̄γμðγ5Þb�Vμ must vanish and it is forbidden to emit a
single or vector scalar boson. If the scalar field is neutral,

i.e., a real scalar field, the operator gVVðs̄γμbÞiϕ�
∂
μ

↔
ϕ=Λ2

vanishes instead.
The generic fermion field ψ , if massive, may either be a

Dirac or Majorana fermion. In the latter scenario (ψ ¼ ψc),
only viable if ψ is a singlet under a dark gauge group, the
vector and tensor fermion bilinears vanish identically,
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ψ̄γμψ ¼ ψ̄σμνψ ¼ 0. For the other fermion bilinears, two
possible contractions are possible for the Majorana fields,
so the amplitudes for Majorana fermions are a factor of 2
larger than those for Dirac fermions. On the other hand, the
final phase space integration has to take two identical
particles into account, reducing the rate by a factor of 2.
Similar observations apply to all scenarios with two
identical particles in the final state (if ϕ ¼ ϕ†, V ¼ V†,
or Ψ ¼ Ψc).
Finally, decay rates derived from the operators

hVðAÞ½s̄γμðγ5Þb�Vμ and hSðPÞ½s̄ðγ5Þb�V†
μVμ=Λ diverge in

the limit where the generic vector field Vμ is massless,
mV → 0. This is an expected behavior because the massless
limit can only be consistently defined when Vμ is a gauge
field. It could be the case that Vμ gets its mass from a dark
Higgs-like mechanism, such that mV is proportional to
some power of the couplings hVðAÞ multiplied by the
vacuum expectation value of the dark Higgs field. Then,
the massless limit implies that the couplings hVðAÞ vanish,
avoiding the divergence. Alternatively, operators can be
constructed solely from the manifestly dark gauge-invariant
field strength tensor Vμν. Then, the operators with cou-
plings hV and hA are generated by applying the equations of
motion for Vμ to such gauge-invariant operators, i.e.,
ðs̄γμbÞ∂νVμν=Λ2 → m2

Vðs̄γμbÞVμ=Λ2, and consequently
the 1=m2

V divergences in decay rates are tamed via the
replacement 1=m2

V → 1=Λ2. The situation is analogous for
the spin 3=2 fermions.
With these details in mind, we derive the branching ratios

for the two-body processes B → Kð�Þϕ=V and differential
branching ratios in the momentum transfer q2 for the three-
body processes B → Kð�Þϕϕ̄=ψψ̄=VV̄=ΨΨ̄, given in full in
Appendix B. We do not list the differential branching ratios

for B → K�VV̄=ΨΨ̄ because we find that nonzero values of
the couplings hS;P;T and FXY are not favored by the Belle II
results [3]. This result is foreshadowed by Fig. 2, where we
display the normalized differential branching fractions for
the three-body decays, for the SM neutrinos

P
X ¼ νν̄

(blue) and the light NP states
P

X ¼ ϕϕ̄;ψψ̄ ; VV̄;ΨΨ̄
(orange, green, red, and purple, respectively), with the
choice mX ¼ 0.6 GeV. The bands illustrate the theoretical
uncertainties from the B → K form factors, implemented as
outlined in Appendix C. It can be seen that the differential
B → Kψψ̄ rate peaks close to the ψψ̄ threshold, while B →
KVV̄ and B → KΨΨ̄ peak closer to the end point. The
distribution of the scalar final states exhibits a relatively flat
q2 distribution. Since most of the signal observed by Belle
II peaks at low q2, see Fig. 3, this generically disfavors the
three-body decay scenarios with spin 1 and 3=2 final states.

III. METHODOLOGY

Next, we summarize how a possible NP contribution to
the B → Kð�ÞEmiss decay translates to a signal in the Belle II
and BABAR experiments. We also describe how the
expected SM plus NP signal is used to construct likelihoods
for the different NP scenarios, given the distribution of
events seen in each experiment. Finally, we briefly describe
the recast of the upper limit on Bs → Emiss decays from
ALEPH [5,6].
The Belle II experiment conducted a search for the SM

process Bþ → Kþνν̄ using eþe− → BþB− at the ϒð4SÞ
resonance with an integrated luminosity of L ¼ 362 fb−1

[3]. The collaboration used two methods: an inclusive

FIG. 2. Normalized differential branching fraction of the three-
body decay B → K

P
X as a function of the momentum transfer

q2 for SM neutrinos and additional NP light states,P
X ¼ νν̄;ϕϕ̄;ψψ̄ ; VV̄;ΨΨ̄.

FIG. 3. The number of Bþ → KþEmiss events in q2rec in the
ηðBDT2Þ > 0.92 Belle II signal region, with the total background
subtracted (black dots, with error bars showing the total statistical
uncertainty). Shown for comparison is the predicted SM dis-
tribution, before (blue, solid) and after (blue, dashed) rescaling by
the best-fit signal strength and also after adding the distribution
for Bþ → Kþψ̄ψ (green) for mψ ¼ 0.6 GeV and fVV=Λ2 ¼
1.7 × 10−2 TeV−2 and for Bþ → KþV (red) for mV ¼
2.1 GeV and hV ¼ 7.1 × 10−9.
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(ITA) and hadronic (HTA) tagging analysis. The former
exploits inclusive properties of the BþB− pair, while the
latter uses an explicit reconstruction of the partner Bmeson
via its hadronic decay. Thus, the former method trades a
higher signal efficiency for an increased background. The
known backgrounds, separated as BþB−, B0B̄0, and con-
tinuum components, were suppressed by utilizing the
kinematic properties of the decay in a multivariate classi-
fier, i.e., training a boosted decision tree (BDT). Cuts are
then placed on the classifier used for final event selection
BDT2 to optimize the signal region. Using the lower purity
signal region ηðBDT2Þ > 0.92, where ηðBDT2Þ is defined
in Eq. (4) of Ref. [3], Belle II observed a signal corre-
sponding to a branching ratio 2.9σ or a factor of 4 above the
SM prediction. The observed events minus the back-
grounds are shown in bins of the reconstructed momentum
transfer, q2rec, in Fig. 3.
The BABAR experiment has also performed a search for

the B → Kð�Þνν̄ process [4]. Using eþe− collisions, again at
the ϒð4SÞ resonance and with an integrated luminosity of
L ¼ 429 fb−1, BABAR used the HTA method to search for
both neutral and charged invisible B decays. Using cuts to
define a signal region minimizes the BþB− and continuum
backgrounds, separated as those that are correctly recon-
structed (peak) and those that are not (combinatorial). Their
results were consistent with the SM, and no significant
signal was observed, resulting in upper bounds between 6
and 12 times the SM rates.
For the SM or invisible final state(s),

P
X, we determine

the distribution of Belle II and BABAR events in the
reconstructed momentum transfer q2rec as

dNSMðXÞ
dq2rec

¼ NB

Z
dq2fq2recðq2Þϵðq2Þ

dBSMðXÞ
dq2

; ð6Þ

where NB is the number of BþB− or B0B̄0 pairs, fq2recðq2Þ
corresponds to the smearing of q2rec with respect to the true
momentum transfer q2, and ϵðq2Þ is the detector efficiency
as a function of momentum transfer. The kinematic range is
ðPmXÞ2 < q2 < ðmB −mKð�Þ Þ2. We provide details on
how we obtained fq2recðq2Þ and ϵðq2Þ for the Belle II and
BABAR analyses in Appendix D.
We obtain the expected SM (X) signal siSMðXÞ for the bin

i, ½q2rec;i; q2rec;iþ1�, as

siSMðXÞ ¼
Z

q2rec;iþ1

q2rec;i

dq2rec
dNSMðXÞ
dq2rec

; ð7Þ

and the total expected event count in bin i is

niexp ¼ μð1þ θiSMÞsiSM þ ð1þ θiXÞsiXðmX; cXÞ
þ
X
b

τbð1þ θibÞbi; ð8Þ

where μ is a signal strength parameter allowing one to
rescale the SM signal siSM, the NP signal siX depends on the
invisible particle massmX and coupling cX, bi is the binned
expected signal for the background b, and τb is an overall
normalization. We account for systematic and Monte Carlo
statistical uncertainties via the nuisance parameters θx.
The combined likelihood then takes the following form:

LSMþX ¼
YNbins

i

Poiss½niobs; niexpðμ; mX; cX; θx; τbÞ�

×
Y

x¼SM;X;b

N ðθx; 0;ΣxÞ
Y
b

N ðτb; 0; σ2bÞ; ð9Þ

where the event counts in each bin ni are Poissonian (Poiss)
distributed, while we sample the nuisance parameters θx
from a multinormal (N ) distribution centered at 0 and of
covariance Σx. Finally, the overall normalizations of the
backgrounds are sampled from a univariate normal dis-
tribution, centered at 0 and with standard deviation σb.
The covariance for the SM signal ΣSM is found by

performing a Monte Carlo simulation of the SM signal siSM
including the uncertainties on the efficiency and B → Kð�Þ

form factors in Eq. (7). The q2 smearing introduces
correlations among the q2rec bins. The covariances for the
background components, separated in the Belle II and
BABAR analyses as discussed above Eq. (7), are found by
simply rescaling ΣSM to the relative size of the background.
Finally, for the covariance for the NP signal, we take
ðΣXÞij ¼ siXδij, i.e., Poissonian uncertainties and neglect-
ing correlations between bins. This speeds up considerably
the following analysis, and we find that including the
correlations has a negligible impact on the results.
In the following, we consider three types of signal

hypothesis, corresponding to (i) the SM-only scenario,
where μ ¼ 1 and siX ¼ 0, (ii) the rescaled SM scenario,
where μ is treated as free nuisance parameter and siX ¼ 0,
and finally (iii) the SM plus various NP scenarios, with
μ ¼ 1 and siX ≠ 0, considering separately each NP final
state

P
X and its possible couplings cX. On the one hand,

the first two hypotheses serve to cross-check the validity of
our likelihood recast, see Appendix D for details. On the
other hand, they represent important likelihood bench-
marks against which we compare all of the NP scenarios.
For the SMþ NP hypothesis, we define for convenience

the log-likelihood ratio

tX ¼ −2 ln
LSMþX

LSM
; ð10Þ

where LSM is the likelihood for the SM-only hypothesis. In
the next section, we will use tXjmin [in which LSMþX and
LSM are minimized with respect to the nuisance parameters
ðθx; τbÞ and the NP couplings or μ, respectively] to see
which invisible final states provide a better fit to the Belle II
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excess compared to the (rescaled) SM. We then examine
the profile likelihoods t̂X ¼ tX − tXjmin, where tX is not
minimized with respect to the NP couplings, to infer what
NP couplings are implied by the data.
Finally, we take into account the recent recast [5] of the

ALEPH search for b → τ−ν̄τX at LEP [6] in terms of an
upper limit on invisible Bs decays, BðBs → EmissÞ < 5.4 ×
10−4 (90% CL). For

P
X ¼ ϕϕ̄=ψψ̄=VV̄=ΨΨ̄ the decays

Bs →
P

X depend on some of the same couplings as the
B → Kð�ÞPX processes. We thus include this constraint in
the likelihood for these scenarios as follows. Reference [5]
provides the upper limit on the number of signal events at
two confidence levels; from this information, the mean and
standard deviation of the signal and thus branching fraction
can be determined, which in turn can be used to construct a
simple Gaussian log-likelihood with the NP prediction for
the branching ratio, given in Appendix B.

IV. RESULTS

In the following, we present the results of minimizing the
binned log-likelihood ratio tX, defined in Eq. (10), with
respect to the model and nuisance parameters. To gain a
better understanding of which NP scenarios are favored by
the excess seen by Belle II, in each case, we find tXjmin for
different values of the light-invisible particle masses mX,
using only the Belle II data. For the scenarios that provide a
better fit to the Belle II data compared to the rescaled SM
prediction, we next profile over tX in the parameter space of
effective couplings cX, also including the BABAR and

ALEPH data. In this way, we identify ranges of couplings
compatible with both the Belle II excess as well as the
BABAR and ALEPH upper limits on BðB → K�EmissÞ and
BðBs → EmissÞ, respectively. In the following, all minimi-
zation is performed using the IMINUIT interface to the
MINUIT2 package [31,32].
In Fig. 4, we first show the outcome of minimizing the

binned likelihood ratio tϕ=V for the two-body decay
scenarios

P
X ¼ ϕ=V. For different values of the masses

mϕ=V , the minimization is performed with respect to the
nuisance parameters (θx; τb) and the NP couplings: gS for
the scalar boson and hV or hT=Λ for the vector boson. First,
we see that the minimized likelihoods in the three scenarios
overlap because the likelihood is independent of the spin
and coupling of single-particle

P
X; the likelihood is

constructed in bins of q2rec, while the two-body scenario
only depends on q2rec through the smearing at the true
momentum transfer q2 ¼ m2

ϕ=V. For masses in the range
1.7≲mϕ=V ≲ 2.4 GeV, the SM plus an invisible scalar or
vector provides a better fit than the rescaled SM prediction,
shown as a blue dotted line. The value mϕ=V ¼ ð2.1�
0.1Þ GeV provides the best fit to the data, with a signifi-
cance of 4.5σ over the SM.
In Fig. 5 (top), we show tψ jmin for the scenario of the SM

plus an invisible fermion pair,
P

X ¼ ψψ̄ . Again, for
different values of the fermion mass mψ , tψ is minimized
with respect to ðθx; τbÞ and one fXY coupling, with the
others set to zero. For masses mψ ≲ 0.85 GeV, the vector
couplings fVV and fVA provide an improved fit compared
to the rescaled SM, with mψ ¼ 0.60þ0.11

−0.14 GeV giving a
highest significance of 3.7σ. While still yielding an
improvement over the SM-only hypothesis, the scalar
and tensor couplings are not as competitive. In Fig. 5
(bottom), we show tXjmin for the other three-body decay
scenarios; the SM plus pairs of scalars, vectors, or spin 3=2
fermions,

P
X ¼ ϕϕ̄; VV̄;ΨΨ̄. For the scalar pair, both of

the couplings gSS (orange, solid) and gVV (orange, dashed)
provide a better fit than the rescaled SM for masses in the
ranges 0.05≲mϕ ≲ 0.76 and mϕ ≲ 0.63 GeV, respec-
tively. The scalar masses mϕ ¼ 0.52þ0.11

−0.14 and mϕ ¼
0.38þ0.13

−0.15 GeV provide the best fits at 3.4σ. It is clear from
Fig. 5 that the three-body vector (red, solid) and spin 3=2
(purple, solid) scenarios do not provide a good fit to the
Belle II excess, as expected from the q2 distributions
in Fig. 2.
From Figs. 4 and 5, we see that only the two-body B →

Kϕ=V and three-body B → Kϕϕ̄=ψψ̄ scenarios provide
good fits to the Belle II excess. For these cases, we now
investigate which couplings are favored. To do so, we turn
on two couplings at a time and calculate the profile log-
likelihood, t̂X ¼ tX − tXjmin, where tX is calculated with the
couplings at a particular point in the parameter space
(minimizing over the nuisance parameters) and tXjmin is
the likelihood at the global minimum, i.e., minimized with

FIG. 4. Minimized log-likelihood ratio of the SM plus ϕ=V
scenario with respect to the SM-only hypothesis as a function of
the scalar/vector mass mϕ=V . The log-likelihood ratio tϕ=V for
single effective coupling contributions gS, hV , and hT=Λ to B →
Kϕ=V is minimized over the coupling and nuisance parameters
ðθx; τbÞ for each mϕ=V . As the likelihood is independent of the
nature of the light NP state and the coupling in two-body decays,
the three lines overlap. The blue dashed line corresponds to
the minimum of the log-likelihood ratio of the rescaled SM
hypothesis.
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respect to all parameters. However, in both cases, we keep
the SM contribution fixed, μ ¼ 1.
Starting with the B → Kϕ mode, we show in Fig. 6 the

constraints in the ðgS; gPÞ parameter space, with the scalar
mass fixed to mϕ ¼ 2.1 GeV. The separate Belle II and
BABAR 1-σ regions are shown as gray dotted and dashed
lines, respectively. The 1-, 2-, and 3-σ combined confidence
regions are depicted as dark, medium, and light orange-
shaded contours. Belle II favors the coupling jgSj ¼
ð1.6� 0.2Þ × 10−8, while BABAR imposes the upper limit
jgPj < 2.5 × 10−8 (90% CL). In Fig. 7, we instead show the
favored region in the ðgSS; gPSÞ and ðgVV; gAVÞ parameter
spaces, relevant for B → Kð�Þϕϕ̄ and Bs → ϕϕ̄ processes.
ForΛ ¼ 10 TeV and the scalarmass fixed tomϕ ¼ 0.52 and
0.38 GeV for the scalar and vector couplings, respectively,
the Belle II data favor the coupling values jgSSj ¼ ð9.3�
1.4Þ × 10−4 and jgVV j ¼ ð3.6� 0.5Þ, while BABAR and
ALEPH put upper bounds on the couplings gPS and gAV ;
ALEPH places a stronger bound on the former,

jgPSj < 2.1 × 10−3, and BABAR on the latter, jgAV j < 7.2,
both at 90% CL.
In Fig. 8, we show the constraints on the parameter space

ðfVV; fVA; fAV; fAAÞ which enter the decay rates for B →
Kð�Þψψ̄ and Bs → ψψ̄ . We show planes for each of the six
combinations of the couplings, with the others set to zero,
for the choices mψ ¼ 0.6 GeV and Λ ¼ 10 TeV. Again,
the dashed and dotted gray lines show the 1-σ regions from
Belle II and BABAR on the invisible Dirac fermion
scenario, with the dark, medium, and light green regions
the 1-, 2-, and 3-σ combined confidence regions. As seen in
the lower left plot of Fig. 8, the Belle II data suggest the

FIG. 6. Favored regions in the parameter space ðgS; gPÞ relevant
to the two-body decay B → Kð�Þϕ, with the mass of ϕ fixed to a
value close to the best-fit point, mϕ ¼ 2.1 GeV. Dashed and
dotted gray lines correspond to 1-σ confidence regions for the
Belle II and BABAR analyses, respectively. Solid dark, medium,
and light orange lines correspond to the 1-, 2-, and 3-σ combined
confidence regions. Diagonal gray dashed lines denote the chiral
combinations of couplings gS ¼ �gP.

FIG. 7. Favored regions in the parameter space ðgPS; gSSÞ (left)
and ðgVV; gAVÞ (right) relevant to the three-body decay
B → Kð�Þϕϕ̄, with the mass of ϕ fixed to a value close to the
respective best-fit point,mϕ ¼ 0.52 andmϕ ¼ 0.38 GeV, and the
heavy NP scale fixed at Λ ¼ 10 TeV. Color coding is the same as
Fig. 6. The red dotted lines indicate the 1-σ confidence regions
from ALEPH.

FIG. 5. Minimized log-likelihood ratios of the SM plus three-
body

P
X scenarios with respect to the SM-only hypothesis as a

function of the new particle X mass mX for
P

X ¼ ψψ̄ (top) andP
X ¼ ϕϕ̄=VV̄ (bottom). The log-likelihood ratio tX for single

effective coupling contributions cX to B → K
P

X is minimized
over the coupling and nuisance parameters ðθx; τbÞ for each mX.
The blue dashed line again corresponds to the rescaled SM
hypothesis.

SIGNATURES OF LIGHT NEW PARTICLES IN B → Kð�ÞEmiss PHYS. REV. D 110, 055001 (2024)

055001-7



values jfVV j2 þ jfVAj2 ¼ ð3.0� 0.8Þ for fAV ¼ fAA ¼ 0,
while the center plot shows the BABAR upper bounds
jfAV j < 2.8 and jfAAj < 3.0 for fVV ¼ fVA ¼ 0 (90% CL).
The ALEPH bound on BðBs → ψψ̄Þ translates to the upper
limit jfAAj < 13.8 (90% CL), and so BABAR provides more
stringent constraints. In Fig. 8, we also show the 1-σ
combined region for the invisible Majorana fermion sce-
nario (cyan shaded). These constraints do not depend on the
couplings fVV and fAV , which vanish.
Finally, in Fig. 9, we show the favored regions in the

ðhV; hAÞ and ðhT; hT̃Þ parameter spaces, which are probed
by B → Kð�ÞV, for mV ¼ 2.1 GeV and Λ ¼ 10 TeV. The
color coding for the Belle II and BABAR 1-σ regions is the
same as before, and the dark, medium, and light red-shaded
contours again show the 1-, 2-, and 3-σ combined con-
fidence regions. Belle II favors the coupling values jhV j ¼
ð7.1� 0.7Þ × 10−9 and jhT j ¼ ð4.7� 0.5Þ × 10−5, while
BABAR enforces the upper bounds hA < 7.6 × 10−9 (for hV
at the best-fit point) and jhT j2 þ jhT̃ j2 < 2.8 × 10−10

(90% CL). In this case, the BABAR data disfavor the hT
value preferred by Belle II.
Several studies have previously considered the Belle II ex-

cess in terms of new invisible particles [14,15,17,19,21,33].
However, most derive their results solely from B →
Kð�ÞEmiss integrated branching fractions and only one study

considered also the decayBs → Emiss [15]. Only in Ref. [22]
was a binned likelihood analysis of B → KEmiss performed
within different new physics scenarios relying on both Belle
II andBABAR data.We observe that the preferredmassmϕ=V

and mψ obtained from the two- and three-body decay fits,
respectively, are compatiblewithRefs. [21,22]. Additionally,
our constraint on the hV and hA couplings is compatible with
the results from Ref. [21].1 On the other hand, our estimated
significances of NP scenarios over the SM differ somewhat
from those given in Ref. [22]. In particular, we find that two-
body decay kinematics seems to give a better fit to Belle II
data than three-body decay spectra.

V. CONCLUSIONS

In the present work, we have explored the interesting
possibility that the signal of B → KEmiss recently observed
by Belle II arises not only from the SM neutrinos but from
new undetected particles in the final state. By taking into
account available experimental data on the total event
yields, as well as on the differential B → Kð�ÞEmiss dis-
tributions presented in Belle II and BABAR analyses, we
were able to construct the likelihood for different NP
scenarios using experimental information from both proc-
esses. In addition, we considered constraints on the
branching ratio Bs → Emiss obtained from the ALEPH data.
We considered possible decay channels involving one

new invisible scalar or vector state as well as decays to two
invisible states, either scalars, spin 1=2 fermions, vectors,
or even spin 3=2 states.
The two-body B → Kð�ÞX topology with an invisible

particle mass of mX ¼ 2.1 GeV can accommodate all data
much better than the (rescaled) SM. In particular, the Belle
II data prefer these scenarios by (3.5σ) 4.5σ, respectively.

FIG. 8. Two-dimensional favored regions in the parameter
space ðfVV; fVA; fAV; fAAÞ relevant to the three-body decay
B → Kð�Þψψ̄ , with the mass of ψ fixed to a value close to the
best-fit point, mψ ¼ 0.6 GeV and the heavy NP scale fixed at
Λ ¼ 10 TeV. Color coding is the same as Fig. 6, with green lines
denoting the 1-, 2-, and 3-σ combined confidence regions instead.
Additionally, the cyan dashed region corresponds to the 1-σ
combined confidence region in the case that ψ is a Majorana
fermion.

FIG. 9. Favored regions in the parameter space ðhV; hAÞ (left)
and ðhT; hT̃Þ (right) relevant to the two-body decay B → Kð�ÞV,
with the mass of V fixed to a value close to the best-fit point,
mV ¼ 2.1 GeV and the heavy NP scale fixed at Λ ¼ 10 TeV.
Color coding is the same as Fig. 6.

1The normalization of Ref. [21] differs by a factor of 2,
obtaining gð4ÞVðAÞ ¼ 2hVðAÞ.
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This conclusion seems to differ somewhat from the results
of Ref. [22].
In the case of two invisible new particles in the final

state, i.e., B → Kð�ÞXX̄, we find that two scalars or two spin
1=2 fermions can also accommodate all data with the most
favored masses in the range mX ¼ 0.4–0.6 GeV, depend-
ing on the X spin and couplings considered. Conversely,
scenarios with pairs of vectors or spin 3=2 fermions in the
final state cannot improve the SM fit of Belle II and are thus
disfavored irrespective of their mass or couplings.
In the parity basis of effective operators, we find that

scenarios with spin 1=2 fermions coupled to the vector
quark current are preferred over those coupling to scalar or
tensor quark currents. On the other hand, scenarios with
pairs of scalar particles coupled to vector or scalar quark
currents are equally likely.
The results of the BABAR search for B → K�Emiss are

consistent with most scenarios preferred by Belle II data. In
the parameter space of possible couplings, they yield
predominantly orthogonal constraints. One notable excep-
tion is a single massive vector field coupled to the tensor
(dipole) quark current. The Belle II and BABAR results
cannot be accommodated simultaneously in this scenario.
Finally, the ALEPH data on Bs → Emiss currently provide
the strongest constraint on a pair of scalars coupled to a
pseudoscalar quark bilinear operator (s̄γ5b).
The impact of B → K�Emiss (and Bs → Emiss) constraints

is somewhat more interesting in the chiral basis of quark
operators (see also Appendix A), which is often preferred
for UV model building respecting the SM chiral gauge
symmetry. Interestingly, we find that purely chiral cou-
plings still lie within the combined 68% CL region of both
Belle II and BABAR (ALEPH) results. However, a future
improvement on B → K�Emiss by Belle II could soon put
most chiral scenarios under pressure.
We also note that coupling ranges implied by our fit are

mostly consistent with NP scales even above our bench-
mark Λ ¼ 10 TeV. Consequently, new degrees of freedom
associated with higher-dimensional operator terms in
Eqs. (3)–(5) could lie above the LHC reach. Notable
exceptions are pairs of invisible scalars or fermions coupled
to the quark vector current (s̄γμb), where the fit to Belle II
signal points to NP below few TeV.
While we only considered b → s transitions in this work,

in more complete NP scenarios, other phenomenology
could become relevant. In particular, NP flavor construc-
tions (see, e.g., [33–36]) would relate these decays to
K → πEmiss, D → πEmiss, and monojet/monotop produc-
tion at high pT , leading to possibly strong constraints from
NA62 [37], KOTO [38], BESSIII [39], and LHC [40,41]
experiments. The results of our Belle II likelihood fit,
however, indicate that, for the preferred masses of invisible
states, they could be kinematically forbidden from being
produced in rare kaon and possibly even D meson decays.
Finally, in UV complete models, constraints from Bs meson

oscillations2 as well as electroweak precision data could be
relevant. We leave these considerations for future work.
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APPENDIX A: CHIRAL OPERATOR BASIS

To convert from the parity basis [Eqs. (3)–(5)] to the
chiral basis (defined in Ref. [28]) for the operators
involving the fields X∈ fϕ;ψ ; Vμ;Ψμg, it is convenient
to define the following matrices:

P¼ 1

2

�
1 1

−1 1

�
; Q¼ 1

4

0
BBB@

1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1

1
CCCA: ðA1Þ

For the operators containing the dark scalar field ϕ in
Eqs. (3)–(5), we then have the matching relations,

�
gSðSÞ
gPðSÞ

�
¼ P

vffiffiffi
2

p
Λ

 
CS;L
dϕðϕÞ

CS;R
dϕðϕÞ

!
;

�
gVV
gAV

�
¼ P

 
CV;L
dϕϕ

CV;R
dϕϕ

!
: ðA2Þ

For the four-fermion operators involving the invisible
fermion field ψ , we have

2In scenarios with a single scalar or vector, these arise at the
tree level, but have been found in Ref. [42] to be negligible, a
result which we have also verified explicitly.
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0
BBB@
fVV
fVA
fAV
fAA

1
CCCA¼Q

0
BBBBB@

CV;LL
dψ

CV;LR
dψ

CV;RL
dψ

CV;RR
dψ

1
CCCCCA;

0
BBB@

fSS
fSP
fPS
fPP

1
CCCA¼Q

vffiffiffi
2

p
Λ

0
BBBBB@

CS;LL
dψ

CS;LR
dψ

CS;RL
dψ

CS;RR
dψ

1
CCCCCA;

�
fTT
fT̃T

�
¼P

vffiffiffi
2

p
Λ

�CT;LL
dψ

CT;RR
dψ

�
: ðA3Þ

The same relations hold for the effective couplings of the
spin 3=2 field Ψμ, with the replacements fXY → FXY and
ψ → Ψ. Additionally, the couplings FTS, FTP, FT̃S, and
FT̃P are related to chiral basis coefficients in a similar
manner as the scalar and pseudoscalar couplings. Finally,
the operators coupling the vector field Vμ to the relevant
quark couplings are rotated to the chiral basis as

�
hV
hA

�
¼ P

 
CV;L
dV

CV;R
dV

!
;

�
hT
hT̃

�
¼ P

vffiffiffi
2

p
Λ

 
CT;L
dV

CT;R
dV

!
;

�
hS
hP

�
¼ P

vffiffiffi
2

p
Λ

 
CS;L
dVV

CS;R
dVV

!
: ðA4Þ

In Figs. 6, 7, and 9, the constraints on the chiral basis
couplings can be inferred from the light gray dashed lines,
which show, for example, gS ¼ gP and gS ¼ −gP (which
equivalently depict CS;L

dϕ ¼ 0 and CS;R
dϕ ¼ 0, respectively).

The transformation to the chiral basis for the constraints
on the fermion couplings in Fig. 8 is slightly less trivial than
a rotation because two of couplings ðfVV; fVA; fAV; fAAÞ
are taken to be zero in each of the six plots. We instead
perform an additional fit for the chiral couplings
ðCLL

dψ ; C
LR
dψ ; C

RL
dψ ; C

RR
dψ Þ, with the favored regions shown in

Fig. 10. The dashed and dotted gray lines again show the
1-σ regions from Belle II and BABAR, while the dark,
medium, and light green contours show the 1-, 2-, and 3-σ
combined confidence regions.

APPENDIX B: ANALYTIC EXPRESSIONS
OF DECAY RATES

In this appendix, we give explicit expressions for the
relevant two- and three-body B decays to Kð�Þ and the
invisible final states X∈ fϕ;ψ ; V;Ψg, first explored in
Ref. [28]. We also give the decay rates for invisible two-
body Bs decays. The results make use of the form factors
and decay constants defined in Appendix C.

1. B → K two-body decays

The two-body decay rates for B → Kð�Þϕ are

ΓðB → KϕÞ ¼ jgSj2
8π

jp⃗Kjm2
Bδ

2
K

ðmb −msÞ2
f20ðm2

ϕÞ; ðB1Þ

ΓðB → K�ϕÞ ¼ jgPj2
2π

jp⃗K� j3
ðmb þmsÞ2

A2
0ðm2

ϕÞ; ðB2Þ

where δKð�Þ ≡ ð1 −m2
Kð�Þ=m2

BÞ, gS (gP) is the scalar (pseu-
doscalar) coupling of the scalar field ϕ to the flavor-
changing quark current s̄b (s̄γ5b), and the three-momentum
of Kð�Þ is

jp⃗Kð�Þ j ¼ λ1=2ðm2
B;m

2
ϕ; m

2
Kð�Þ Þ

2mB
; ðB3Þ

with λðx; y; zÞ ¼ ðx − y − zÞ2 − 4yz. Note that the above
rates also apply to the operators ðs̄γμbÞ∂μϕ=Λ and
ðs̄γμγ5bÞ∂μϕ=Λ if one makes the replacement gSðPÞ →
imbgVðAÞ=Λ.
The two-body decay rates for B → Kð�ÞV are instead

given by

FIG. 10. Two-dimensional favored regions in the parameter
space ðCLL

dψ ; C
LR
dψ ; C

RL
dψ ; C

RR
dψ Þ relevant to the three-body decay

B → Kð�Þψψ̄ , with the mass of ψ fixed to a value close to the best-
fit point, mψ ¼ 0.6 GeV and the heavy NP scale fixed at
Λ ¼ 10 TeV. Color coding is the same as Fig. 6, with green
lines denoting the 1-, 2-, and 3-σ combined confidence regions.
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ΓðB → KVÞ ¼ jp⃗Kj
2π

�
jhV j2

jp⃗Kj2
m2

V
f2þðm2

VÞ þ 4jhT j2
jp⃗Kj2
Λ2

m2
V

ðmB þmKÞ2
f2Tðm2

VÞ

− 4ℜ½hVh�T �
jp⃗Kj2

ðmB þmKÞΛ
fþðm2

VÞfTðm2
VÞ
�
; ðB4Þ

ΓðB → K�VÞ ¼ jp⃗K� j
2π

�
2jhV j2

jp⃗K� j2
ðmB þmK� Þ2 V

2ðm2
VÞ þ jhAj2

�ðmB þmK� Þ2
2m2

B
A2
1ðm2

VÞ þ
16m2

K�

m2
V

A2
12ðm2

VÞ
�

þ 8jhT j2
jpK� j2
Λ2

T2
1ðm2

VÞ þ 2jhT̃ j2
m2

V

Λ2

�
m2

Bδ
2
K�

m2
V

T2
2ðm2

VÞ þ
8m2

K�

ðmB þmK� Þ2 T
2
23ðm2

VÞ
�

þ 8ℜ½hVh�T �
jp⃗K� j2

ðmB þmK� ÞΛVðm2
VÞT1ðm2

VÞ

þ 2ℜ½hAh�̃T �
mB þmK�

Λ

�
δK�A1ðm2

VÞT2ðm2
VÞ þ

16m2
K�

ðmB þmK� Þ2 A12ðm2
VÞT23ðm2

VÞ
��

; ðB5Þ

where hV (hA) is the (axial) vector coupling of the vector field Vμ to the flavor-changing quark current s̄γμb (s̄γμγ5b) and hT
(hT̃) is the magnetic (electric) dipolelike coupling of the field strength tensor Vμν to the flavor-changing quark current s̄σμνb
(s̄σμνγ5b). The three-momentum of Kð�Þ is given by Eq. (B3) with the replacement mϕ → mV .

2. B → K three-body decays

First, the three-body differential decay rates in q2 for B → Kð�Þϕϕ̄ are given by

dΓðB → Kϕϕ̄Þ
dq2

¼ βϕ
96π3

jp⃗Kj
Λ2

�
3

4
jgSSj2

m2
Bδ

2
K

ðmb −msÞ2
f20ðq2Þ þ jgVV j2

jp⃗Kj2
Λ2

β2ϕf
2þðq2Þ

�
; ðB6Þ

dΓðB → K�ϕϕ̄Þ
dq2

¼ βϕ
96π3

jp⃗K� j
Λ2

�
3jgPSj2

jp⃗K� j2
ðmb þmsÞ2

A2
0ðq2Þ

þ jgAV j2
q2

Λ2
β2ϕ

�ðmB þmK� Þ2
2m2

B
A2
1ðq2Þ þ

16m2
K�

q2
A2
12ðq2Þ

��
; ðB7Þ

where βX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

X=q
2

p
and the three-momentum of Kð�Þ is given by Eq. (B3) with the replacement m2

ϕ → q2. In the

scenario of a real scalar field, where ϕ ¼ ϕ̄, the contributions from gVV and gAV vanish, and the remaining contributions
from gSS and gSP are a factor of 2 larger at the amplitude level; hence, the replacements gSS → 2gSS and gPS → 2gPS can be
made in Eq. (B6). The rate must also be multiplied by factor of 1=2 to account for identical outgoing states.
The differential decay rate for B → Kψψ̄ is

dΓðB → Kψψ̄Þ
dq2

¼ βψ
24π3

jp⃗Kjq2
Λ4

��
ðjfVV j2β02ψ þ jfVAj2β2ψÞfþðq2Þ þ 12ℜ½fVVf�TT �

mψ

mB þmK
fTðq2Þ

� jp⃗Kj2
q2

fþðq2Þ

þ 3

8

�
4jfVAj2

m2
ψ ðmb −msÞ2

q4
þ jfSSj2β2ψ þ jfSPj2 þ 4ℜ½fVAf�SP�

mψ ðmb −msÞ
q2

�
m2

Bδ
2
K

ðmb −msÞ2
f20ðq2Þ

þ 2ðjfTT j2β002ψ þ jfT̃T j2β2ψÞ
jp⃗Kj2

ðmB þmKÞ2
f2Tðq2Þ

�
; ðB8Þ

where we have defined β02ψ ¼ ð3 − β2ψÞ=2 ¼ ð1þ 2m2
ψ=q2Þ and β002ψ ¼ ð3 − 2β2ψ Þ ¼ ð1þ 8m2

ψ=q2Þ. Likewise, the decay rate
for B → K�ψψ̄ is
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dΓðB → K�ψψ̄Þ
dq2

¼ βψ
24π3

jp⃗K� jq2
Λ4

�
2ðjfVV j2β02ψ þ jfVAj2β2ψÞ

jp⃗K� j2
ðmB þmK�Þ2 V

2ðq2Þ

þ ðjfAV j2β02ψ þ jfAAj2β2ψ Þ
�ðmB þmK� Þ2

2m2
B

A2
1ðq2Þ þ

16m2
K�

q2
A2
12ðq2Þ

�

þ 3

2

�
4jfAAj2

m2
ψ ðmb þmsÞ2

q4
þ jfPSj2β2ψ þ jfPPj2 − 4ℜ½fAAf�PP�

mψðmb þmsÞ
q2

� jp⃗K� j2
ðmb þmsÞ2

A2
0ðq2Þ

þ 4

�
ðjfTT j2β002ψ þ jfT̃T j2β2ψ ÞT1ðq2Þ− 6ℜ½fVVf�TT �

mψ

mB þmK�
Vðq2Þ

� jp⃗K� j2
q2

T1ðq2Þ

þ ðjfTT j2β2ψ þ jfT̃T j2β002ψ Þ
�
m2

Bδ
2
K�

q2
T2
2ðq2Þ þ

8m2
K�

ðmB þmK� Þ2 T
2
23ðq2Þ

�

− 6ℜ½fAVf�̃TT �
mψ ðmB þmK� Þ

q2

�
δK�A1ðq2ÞT2ðq2Þ þ

16m2
K�

ðmB þmK� Þ2 A12ðq2ÞT23ðq2Þ
��

: ðB9Þ

The differential decay rates in Eqs. (B8) and (B9) are valid for a pair of invisible Dirac fermions in the final state. However,
the result for Majorana fermions (ψ ¼ ψc) can be obtained from Eqs. (B8) and (B9) with the replacements
fVV; fAV; fTT; fT̃T → 0, and fXY → 2fXY for the remaining couplings. Additionally, a factor of 1=2 is required to
account for identical outgoing states.
The differential decay rate for the process B → KVV̄ is

dΓðB → KVV̄Þ
dq2

¼ βV jhSj2
512π3

jp⃗Kjq4
m2

VΛ2
J V

m2
Bδ

2
K

ðmb −msÞ2
f20ðq2Þ; ðB10Þ

where J V ¼ ð3 − 2β2V þ 3β4VÞ=4. Again, for V ¼ V̄, the replacement hS → 2hS must be made and the rate multiplied by
1=2 for the reduction in phase space.
Finally, the differential decay rate for the process B → KΨΨ̄ is

dΓðB → KΨΨ̄Þ
dq2

¼ βΨ
216π3

jp⃗Kjq6
m4

ΨΛ4

��
ðjFVV j2J VV þ jFVAj2β2ΨJ VAÞfþðq2Þ

þ 2ℜ½FVVð6F�
TTJ VV;TT þ 2F�

TSβ
4
Ψ þ F�̃

TP
J VV;T̃PÞ�

mΨ

mB þmK
fTðq2Þ

� jp⃗Kj2
q2

fþðq2Þ

þ 3

8

�
jFVAj2ð1 − β2ΨÞJ Ψ

ðmb −msÞ2
q2

þ jFSSj2β2ΨJ 0
Ψ þ jFSPj2J Ψ þ 4ℜ½FVAF�

SP�J Ψ
mΨðmb −msÞ

q2

�
m2

Bδ
2
K

ðmb −msÞ2
f20ðq2Þ

þ 2

�
jFTT j2J TT þ 1

4
jFTSj2β4ΨJ TS þ

1

4
jFTPj2β2ΨJ TP

þ jFT̃T j2β2ΨJ Ψ þ 3

16
jFT̃Sj2β2Ψð1 − β2ΨÞJ T̃S þ

5

16
jFT̃Pj2β02Ψð1 − β2ΨÞ

þℜ

�
FTT

�
F�
TSβ

4
ΨJ TT;TS þ

5

4
F�̃
TP
β02Ψð1 − β2ΨÞ

�
−
1

2
FTPF�̃

TS
β2Ψð1 − β2ΨÞ

þ FT̃T

�
F�
TPβ

2
ΨJ T̃T;TP −

1

4
F�̃
TS
β2Ψð1 − β2ΨÞJ T̃T;T̃S

��� jp⃗Kj2
ðmB þmKÞ2

f2Tðq2Þ
�
; ðB11Þ

where we have defined for convenience the factors J Ψ ¼ ð9 − 6β2Ψ þ 5β4ΨÞ=8, J 0
Ψ ¼ ð5 − 6β2Ψ þ 9β4ΨÞ=8, and
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J VV ¼ ð15 − 15β2Ψ þ 25β4Ψ − 9β6ΨÞ=16;
J VA ¼ ð5 − 2β2Ψ þ 5β4ΨÞ=8;
J TT ¼ ð15 − 20β2Ψ þ 23β4Ψ − 10β6ΨÞ=8;
J TS ¼ J TT;TS ¼ ð9 − 5β2ΨÞ=4;
J TP ¼ ð7 − 3β2ΨÞ=4; J T̃S ¼ ð11 − 5β2ΨÞ=6;

J VV;TT ¼ ð15 − 10β2Ψ þ 19β4ΨÞ=24;
J VV;T̃P ¼ ð15 − 10β2Ψ þ 3β4ΨÞ=8;
J T̃T;TP ¼ ð3þ β2ΨÞ=4;
J T̃T;T̃S ¼ ð−3þ 5β2ΨÞ=2: ðB12Þ

For Ψ ¼ Ψc, we get the decay rate from Eq. (B11) with
FVV; FAV; FTT; FT̃T → 0, and FXY → 2FXY for the remain-
ingcouplings.Equation (B11)must also bemultiplied by1=2.

3. Invisible Bs decays

In the presence of light hidden states X∈ fϕ;ψ ; V;Ψg,
invisible Bs decays Bs →

P
X can also occur via the same

operators that trigger B → K�PX. Here, we give expres-
sions for the induced decay rates, which are used to recast the
upper bound onBðBs → invÞ fromALEPHonto the effective
coupling parameter space. In the following, we make use of
the Bs decay matrix elements defined in Appendix C 3.

The decay rate for a pair of outgoing invisible scalars is

ΓðBs → ϕϕ̄Þ ¼ βϕ
16π

f2Bs
mBs

Λ2

�
jgPSj2

m2
Bs

ðmb þmsÞ2
þ 1

4
jgAV j2

m2
Bs

Λ2

�
; ðB13Þ

where βX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

X=m
2
Bs

q
. Again, gAV vanishes if ϕ ¼ ϕ̄.

The decay rate for outgoing invisible fermions is given by

ΓðBs → ψψ̄Þ ¼ βψ
8π

f2Bs
m3

Bs

Λ4

�
4jfAAj2

m2
ψðmb þmsÞ2

m4
Bs

þ jfPSj2β2ψ þ jfPPj2 − 4ℜ½fAAf�PP�
mψ ðmb þmsÞ

m2
Bs

�
m2

Bs

ðmb þmsÞ2
:

ðB14Þ

Likewise, for a pair of outgoing vector bosons, the decay rate is

ΓðBs → VV̄Þ ¼ βV jhPj2
64π

f2Bs
m5

Bs

m4
VΛ2

J V

m2
Bs

ðmb þmsÞ2
; ðB15Þ

with J V ¼ ð3 − 2β2V þ 3β4VÞ=4.
Finally, the decay rate for a pair of final state spin 3=2 fermions is

ΓðBs → ΨΨ̄Þ ¼ βΨ
72π

f2Bs
m7

Bs

m4
ΨΛ4

�
4jFAAj2J Ψ

m2
Ψðmb þmsÞ2

m4
Bs

þ jFPSj2β2ΨJ 0
Ψ þ jFPPj2J Ψ

− 4ℜ½FAAF�
PP�J Ψ

mΨðmb þmsÞ
m2

Bs

�
m2

Bs

ðmb þmsÞ2
; ðB16Þ

where the J Ψ and J 0
Ψ factors are the same as those below Eq. (B11). Again, all of the rates above must be multiplied by a

factor 1=2 in the case of identical outgoing states (ϕ ¼ ϕ†, ψ ¼ ψc, V ¼ V†, Ψ ¼ Ψc) and the couplings rescaled in the
same way as the previous subsection.

4. Standard model rates

In the SM, the signal B → Kð�ÞEmiss is induced by the process B → Kð�Þνν̄, with the effective Hamiltonian,

HSM
eff ¼ −

4GFffiffiffi
2

p λtCSM
L OL þ H:c:; ðB17Þ
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where λt ¼ VtbV�
ts and CSM

L ¼ −Xt=s2w, with the factor
Xt ¼ 1.469� 0.017 accounting for next-to-leading-order
QCD [43–45] and two-loop electroweak [46] corrections,
and the left-handed operator is

OL ¼ e2

16π2
ðb̄γμPLsÞðν̄αγμð1 − γ5ÞναÞ: ðB18Þ

In the operator basis of this work, this corresponds to

CV;LL
dν
sbαβ

¼ 4GFλtffiffiffi
2

p α

2π

Xt

s2w
δαβ; ðB19Þ

which can be inserted into Eqs. (A3), (B8), and (B9) to
obtain the differential rates

dΓSM

dq2
¼ G2

Fα
2jλtj2X2

t

32π5s4w
jp⃗Kð�Þ jq2f2

Kð�Þ ðq2Þ; ðB20Þ

where the Kð�Þ three-momentum is given by Eq. (B3) with
m2

ϕ → q2. In Eq. (B20), we have defined the relevant
hadronic form factor combinations

f2Kðq2Þ≡ jp⃗Kj2
q2

f2þðq2Þ; ðB21Þ

f2K� ðq2Þ≡ 2jp⃗K� j2
ðmB þmK�Þ2 V

2ðq2Þ þ ðmB þmK�Þ2
2m2

B
A2
1ðq2Þ

þ 16m2
K�

q2
A2
12ðq2Þ; ðB22Þ

where the form factors fþðq2Þ, Vðq2Þ, A1ðq2Þ, and A12ðq2Þ
are defined in Appendix C.
On the other hand, the invisible Bs decay width is

negligible in the SM. The two-body Bs → νν̄ rate is
suppressed by tiny neutrino masses, so the total invisible
width is dominated by the four-body decay Bs → νν̄νν̄,
yielding BðBs → EmissÞ ≃ 5 × 10−15 [47].

APPENDIX C: HADRONIC MATRIX ELEMENTS

The latest form factors for both the B → K and B → K�
transitions can be found in Ref. [10], where the authors

perform a dispersive analysis of both sets of form factors.
The most up-to-date results for the B → K form factors
coming from the lattice are in Ref. [48], while in the case of
B → K� a determination on the lattice of the full set of form
factors can be found in Refs. [49,50], which can be
complemented by the light-cone sum rule determination
in Ref. [51].

1. B → P form factors

The relevant hadronic matrix elements for the decay of a
B meson to a pseudoscalar meson P, i.e., BðpÞ → PðkÞ,
can be written as follows:

hPjq̄bjBi ¼ m2
B −m2

P

mb −mq
f0ðq2Þ; ðC1Þ

hPjq̄γμbjBi ¼
�
Pμ −

m2
B −m2

P

q2
qμ

�
fþðq2Þ

þm2
B −m2

P

q2
qμf0ðq2Þ; ðC2Þ

hPjq̄σμνbjBi ¼
iðPμqν − PνqμÞ

mB þmP
fTðq2Þ; ðC3Þ

where Pμ ¼ pμ þ kμ, qμ ¼ pμ − kμ, and the relation
fþð0Þ ¼ f0ð0Þ holds. The form factors for the quark
currents q̄γ5b and q̄γμγ5b vanish identically, while the
form factor for q̄σμνγ5b can be obtained from the tensor
form factor in Eq. (C3) via the identity σμνγ5 ¼ i

2
εμναβσ

αβ.

2. B → V form factors

The relevant hadronic matrix elements for B meson
decay to a vector meson V, i.e., BðpÞ → Vðk; ϵ�Þ, can be
expressed as

hVjq̄γ5bjBi ¼ −
2imVϵ

�
μqμ

mb þmq
A0ðq2Þ; ðC4Þ

hVjq̄γμbjBi ¼
2εμναβϵ

�νpαkβ

mB þmV
Vðq2Þ; ðC5Þ

hVjq̄γμγ5bjBi ¼ iϵ�ν
�
2mVqμqν

q2
ðA0ðq2Þ − A3ðq2ÞÞ þ ðmB þmVÞgμνA1ðq2Þ −

Pμqν
mB þmV

A2ðq2Þ
�
; ðC6Þ

hVjq̄σμνbjBi ¼ −iεμναβϵ�ρ
��

Pα −
m2

B −m2
V

q2
qα
�
gβρT1ðq2Þ þ

m2
B −m2

V

q2
qαgβρT2ðq2Þ þ

qαPβ

q2
qρðT1ðq2Þ − T̃3ðq2ÞÞ

�
; ðC7Þ

where A0ð0Þ ¼ A3ð0Þ, T1ð0Þ ¼ T2ð0Þ, and
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T̃3ðq2Þ≡ T2ðq2Þ þ
q2

m2
B −m2

V
T3ðq2Þ: ðC8Þ

The form factor for the scalar quark current b̄q vanishes
identically, while the form factor for b̄σμνγ5q can again be
obtained from Eq. (C7) via σμνγ5 ¼ i

2
εμναβσ

αβ.

The form factorA3ðq2Þ can be eliminated using the relation

A3ðq2Þ ¼
mB þmV

2mV
A1ðq2Þ −

mB −mV

2mV
A2ðq2Þ: ðC9Þ

The form factors A2ðq2Þ and T3ðq2Þ can likewise be
eliminated in favor of the so-called helicity form factors,

A12ðq2Þ≡ ðmB þmVÞ2ðm2
B −m2

V − q2ÞA1ðq2Þ − λðm2
B; q

2; m2
VÞA2ðq2Þ

16mBm2
VðmB þmVÞ

; ðC10Þ

T23ðq2Þ≡ ðm2
B −m2

VÞðm2
B þ 3m2

V − q2ÞT2ðq2Þ − λðm2
B; q

2; m2
VÞT3ðq2Þ

8mBm2
VðmB −mVÞ

; ðC11Þ

which appear in decay rates for the longitudinal polariza-
tion of the vector meson.
The required form factors for B → Kð�Þ decays are

therefore fþ, f0, fT , V, A0, A1, A12, T1, T2, and T23.
For these, we use the Bharucha-Straub-Zwicky parametri-
zation [52] results of Ref. [10].

3. Bs decay matrix elements

The relevant matrix elements for Bs decay, which are
used to derive the decay rates Bs → ϕϕ̄=ψψ̄=VV̄=ΨΨ̄ in
Appendix B, are

h0js̄γμγ5bjBsi ¼ ifBs
Pμ;

h0js̄γ5bjBsi ¼ −i
m2

Bs
fBs

mb þms
; ðC12Þ

where Pμ is the four-momentum of Bs and we take the value
fBs

¼ 230.3ð1.3Þ MeV for the Bs decay constant [53].

APPENDIX D: EXPERIMENTAL LIKELIHOOD
RECONSTRUCTION

In this appendix, we give further details on the
reconstruction of the likelihoods for the Belle II and
BABAR analyses [3,4].
The Belle II [3] analysis measured the differential decay

width for the charged channel Bþ → KþEmiss with both
inclusive and hadronic tag methods. In order to calculate
the expected signal events using Eq. (6), we have been
provided with the smearing fq2recðq2Þ of the reconstructed
momentum transfer q2rec for the ITA analysis and with the
efficiencies for both ITA and HTA analyses [54]. We
computed the Monte Carlo statistical errors for each
background component (BþB−, B0B̄0, and continuum)
as σib;stat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bi=FMC

p
, where bi corresponds to the number

of background events in the bin i and FMC is a bin

independent Monte Carlo factor that reproduces the sim-
ulation statistical uncertainties in Fig. 17 of Ref. [3]. As
discussed in the main text, we performed a Monte Carlo
simulation of the expected SM signal including uncertain-
ties on the efficiencies and form factors to find the
covariance ΣSM, including correlations between bins.
The covariances for the background components were then
found by rescaling ΣSM according to the background
statistical errors σib;stat. We furthermore introduce a sys-
tematic uncertainty for the normalization of the
backgrounds, which are fitted to reproduce the profile
log-likelihood ratio as a function of the signal strength
given in Fig. 16 of Ref. [3].
The BABAR [4] analysis performed a search for both the

neutral and charged channels B0ðþÞ → K�0ðþÞEmiss, com-
bining two different final states for each channel (Kþπ−,
KSπ

0, Kþπ0, and KSπ
þ) and using a hadronic tag method.

We extract the different background contributions and their
q2 dependence from Fig. 5 of Ref. [4], while we extract the
efficiencies ϵðq2Þ from Fig. 6 of the same reference in their
binned forms. We compute the statistical errors similar to
the Belle II analysis, fitting the Monte Carlo factor to
reproduce the values in Table IV of Ref. [4]. We obtained
the systematic uncertainties from Tables II and III of
Ref. [4], taking into account the correlation between the
systematic uncertainties in the background and efficiency.
Since no information is available on the smearing fq2recðq2Þ

of the reconstructed momentum transfer q2rec, we exclude the
constraints obtained from Bþ → K�þEmiss, as both final
states contain neutral particles leading to non-negligible and
asymmetrical smearing. In the case B0 → K�0Emiss we
assume that the K�0 dominantly decays to Kþπ− (as there
is a factor of 10 in the efficiency) andwe therefore neglect the
smearing.
Finally, we have verified that our likelihoods reproduce

correctly the confidence intervals and limits given in both
Refs. [3,4].
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