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We compute the h̄c (pseudo)scalar, (axial-)vector and (axial-)tensor susceptibilities as a function of
u ¼ mc=mh between u ¼ mc=mb and u ¼ 0.8 using fully relativistic lattice QCD, employing non-
perturbative current renormalization and using the second generation 2þ 1þ 1 MILC HISQ gluon field
configurations. We include ensembles with a ≈ 0.09, 0.06, 0.045, and 0.033 fm and we are able to reach the
physical b-quark on the two finest ensembles. At the physical mh ¼ mb point we find m2

bχ1þ ¼
0.720ð34Þ × 10−2, m2

bχ1− ¼ 1.161ð54Þ × 10−2, χ0− ¼ 2.374ð33Þ × 10−2, and χ0þ ¼ 0.609ð14Þ × 10−2.
Our results for the (pseudo)scalar, vector, and axial vector are compatible with the expected small size
of nonperturbative effects at u ¼ mc=mb. We also give the first nonperturbative determination of the tensor
susceptibilities, findingm2

bχT ¼ 0.891ð44Þ × 10−2 and m2
bχAT ¼ 0.441ð33Þ × 10−2. Our value of m2

bχAT is
in good agreement with the OðαsÞ perturbation theory, while our result for m2

bχT is in tension with the
OðαsÞ perturbation theory at the level of 2σ. These results will allow for dispersively bounded
parametrizations to be employed using lattice inputs for the full set of h → c semileptonic form factors
in future calculations, for heavy-quark masses in the range 1.25 ×mc ≤ mh ≤ mb.

DOI: 10.1103/PhysRevD.110.054506

I. INTRODUCTION

Lattice QCD studies of the semileptonic decays of Bðs;cÞ
mesons to vector mesons via the b → clν̄ weak transition
have progressed significantly in recent years, with lattice
form factor results becoming available away from zero

recoil for B → D�lν̄ [1–3], Bs → Dð�Þ
s lν̄ [4,5], and Bc →

J=ψlν̄ [6]. However, lattice predictions for the differen-
tial decay rate for B → D�lν̄ have been found to be in
tension with that measured by the Belle experiment [7].
Moreover, predictions for the ratios of form factors
obtained by combining earlier zero-recoil lattice results
with light-cone sum rules (LCSR) and QCD sum rules
(QCDSR) using the heavy-quark expansion (HQE) through
order Oð1=mb; 1=m2

cÞ [8] show some disagreement with
the more recent lattice-only results.
For fully relativistic lattice calculations, it is typical to

compute form factors at multiple heavy-quark masses, mh,
below and ranging up to mb, in order to control discretiza-
tion effects appearing as powers of ðamhÞ2 [2–6]. The
lattice data is then fit using a function chosen to describe
both the physical heavy mass dependence and kinematics,

as well as discretization and quark mass mistuning effects.
The choice of this fit function is one potential origin of
the discrepancy seen between lattice-only results and the
results combining LCSR, zero-recoil lattice and HQE
for B → D�.
In the continuum, the B → Dð�Þ form factors obey

dispersive bounds and may be described using the
Boyd-Grinstein-Lebed (BGL) parametrization [9], which
we briefly describe below. This parametrization is formu-
lated using the variable

zðq2; tþ; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð1Þ

where tþ is the b̄c two particle production threshold for the
relevant current and t0 is a free parameter which may be
chosen between tþ and −∞. z maps the physical q2 region
to within the unit circle and the branch cut q2 ≥ tþ to the
unit circle. The susceptibilities, χJP , are defined in terms of
the two point correlation functions of b̄c currents with
quantum numbers JP (see Sec. II), and are typically
computed using perturbation theory. The susceptibilities
can then be related via the optical theorem and crossing
symmetry to a sum over the squared magnitudes of
exclusive hadronic matrix elements. Because each contri-
bution in this sum is positive semidefinite, the sum may be
restricted to just the lowest two particle contribution,
corresponding to B → Dð�Þ. This results in inequalities
involving the helicity-basis form factors, F, integrated over
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the unit circle in z. These inequalities take the form

Z
C
jPðzÞϕðzÞFðzÞj2 ≤ 1; ð2Þ

where ϕðzÞ, referred to as outer functions, are analytic
functions on the open unit disk, which also absorb a factor
of 1=

ffiffiffiffiffiffiffi
χJP

p
in order to set the right-hand side of Eq. (2) to

unity. The Blashke factors, PðzÞ, have magnitude 1 on the
unit circle, and remove subthreshold poles appearing in the
form factor. PðzÞϕðzÞFðzÞ can then be analytically con-
tinued to real z corresponding to the physical semileptonic
region of q2. Because PðzÞϕðzÞFðzÞ is analytic on the open
unit disc, it may be expanded as a polynomial in z as

PðzÞϕðzÞFðzÞ ¼
X∞
n¼0

anzn; ð3Þ

resulting in the standard BGL parametrization for the form
factor,

FðzÞ ¼ 1

PðzÞϕðzÞ
X∞
n¼0

anzn; ð4Þ

where from Eq. (2) the coefficients satisfy the inequality

X∞
n¼0

janj2 ≤ 1: ð5Þ

Note that stronger dispersive bounds than those of the
original BGL approach may be formulated by decomposing
the polarization tensor for a given current in terms of a full
set of virtual vector boson polarization vectors [10]. Also
note that the BGL parametrization corresponds to the
special case where the lowest two particle threshold, tþ,
corresponds to the production threshold, tΓ, of the initial
and final state mesons for the form factors of interest. In the
more general case where tΓ ≥ tþ, the integral in Eq. (2) is
restricted to an arc on the unit circle, and instead of a simple
sum of powers of z as in Eq. (4), one finds a sum over
polynomials in z constructed to be orthonormal on the
corresponding arc [10].
On the lattice, the HPQCD Collaboration has previously

employed two different fit functions to reach the physical
continuum. Earlier works on Bs → D�

s and Bc → J=ψ used
a “pseudo-BGL” fit [4,6], where a power series in the
conformal variable z was used to describe the kinematic
dependence of the form factors in the QCD basis, together
with a term describing the b̄c subthreshold poles. However,
these fits omitted the outer functions of the full BGL
parametrization Eq. (4). More recently, for a combined
analysis of B → D� and Bs → D�

s , the HPQCD Colla-
boration used a fit to the HQET form factors using a simple
power series in w − 1, choosing priors to ensure the
continuum BGL coefficients were not significantly

constrained relative to the unitarity bounds [2]. In both
cases, coefficients included ðΛ=mhÞi corrections encoding
the physical heavy mass dependence.
Neither of these fit functions is ideal. The pseudo-BGL fit

neglects the dependence on the heavy-quark mass of the
outer functions, as well as losing the ability to choose prior
widths informed by the unitarity constraints. On the other
hand, the HQET fit includes limited information about the
known pole structure of the form factors with varying heavy
quark mass. Ideally a full BGL fit would be used to fit lattice
data, augmenting the BGL coefficients with Λ=mh terms to
describe the dependence of the lattice data on heavy-quark
mass while using lattice inputs to describe the subthreshold
pole masses and susceptibilities. This approach is compli-
cated by the susceptibilities, which determine the overall
normalization of the outer functions [9]. The susceptibilities
for the b̄c (pseudo)scalar and (axial-)vector currents are
known perturbatively for the physical b-quark to three loops
[11,12], with nonperturbative condensate contributions
expected to be extremely small. These susceptibilities have
also recently been computed nonperturbatively using lattice
QCD [13], where surprising tension at the level of ≈2σ was
found between the lattice andperturbation theory at themh ¼
mb point. The tension is particularly surprising because of the
good consistency seen between the continuum perturbation
theory and the equivalent heavyonium quantities [14,15].
Recently, lattice form factor calculations have also been

extended to include the tensor form factors needed to analyze
and constrain new physics [2,16]. Dispersive parametriza-
tions of the tensor form factors require tensor susceptibilities
computed from the polarization tensor of the corresponding
tensor currents. For b̄c currents, these are currently only
available from perturbation theory to OðαsÞ [17].
In this work, we compute the full set of (pseudo)scalar,

(axial-)vector, and (axial-)tensor susceptibilities as a func-
tion of u ¼ mc=mh between uphys ¼ mc=mb and ≈0.8
using the a ≈ 0.09, 0.06, 0.045, and 0.03 fm second
generation MILC HISQ 2þ 1þ 1 gauge field ensembles.
This will provide an additional check of the perturbation
theory and lattice results [13] for the (pseudo)scalar and
(axial-)vector susceptibilities, as well as providing new
lattice results for the b̄c (axial-)tensor susceptibilities.
These new (axial-)tensor susceptibilities will allow future
heavy-HISQ calculations of form factors for exclusive
b → c processes to use the full dispersive parametrization
for all form factors, while using lattice results for all inputs.
This calculation will also lead to a future calculation of the
heavy-light susceptibilities, where nonperturbative conden-
sate contributions are expected to be more sizeable.

II. THEORETICAL BACKGROUND

A. (Pseudo)scalar and (axial-)vector currents

The susceptibilities are related to polarization functions,
which are decomposed according to Lorentz structure, and
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are defined in terms of current-current correlators by

ð−q2gμν þ qμqνÞΠδðq2Þ þ qμqνΠδ
Lðq2Þ

¼ i
Z

dxeiqxh0jTjδμðxÞjδ†ν ð0Þj0i; ð6Þ

for the vector and axial-vector currents jVμ ¼ ψ̄hγμψc, jAμ ¼
ψ̄hγμγ

5ψc and by

q2Πδðq2Þ ¼ i
Z

dx4eiqxh0jTjδðxÞjδ†ð0Þj0i; ð7Þ

for the scalar and pseudoscalar currents jS ¼ ψ̄hψc and
jP ¼ iψ̄hγ

5ψc. Moments of the heavy-light current corre-
lators were computed up to three loops in perturbation
theory in [11,12] in the MS scheme. The three-loop MS
results for the limit q2 → 0 are expressed as

Π̄δðq2Þ ¼ 3

16π2
X
n≥−1

C̄δ
nðuÞzn ð8Þ

where u ¼ mc=mh and z ¼ q2=m2
h. The susceptibilities are

then defined at the point q2 ¼ 0 by

χ1þðq2 ¼ 0Þ≡ 1

2

∂
2

∂
2q2

ðq2ΠAðq2ÞÞjq2¼0;

χ1−ðq2 ¼ 0Þ≡ 1

2

∂
2

∂
2q2

ðq2ΠVðq2ÞÞjq2¼0;

χ0−ðq2 ¼ 0Þ≡ ðmh þmcÞ2
2

∂
2

∂
2q2

ðq2ΠPðq2ÞÞjq2¼0;

χ0þðq2 ¼ 0Þ≡ ðmh −mcÞ2
2

∂
2

∂
2q2

ðq2ΠSðq2ÞÞjq2¼0; ð9Þ

where in the final two lines we have used the partially con-
served axial-vector and vector current relations. Inserting
Eq. (8) into Eq. (9) gives the susceptibilities in terms of the
perturbatively computed moments of [11,12] as

χ1þðq2 ¼ 0Þ ¼ 3

m2
h16π

2
C̄A
1 ðuÞ;

χ1−ðq2 ¼ 0Þ ¼ 3

m2
h16π

2
C̄V
1 ðuÞ;

χ0−ðq2 ¼ 0Þ ¼ ð1þ uÞ2 3

16π2
C̄P
1 ðuÞ;

χ0þðq2 ¼ 0Þ ¼ ð1 − uÞ2 3

16π2
C̄S
1ðuÞ; ð10Þ

where the C̄δ
1 are given by [11,12]

C̄δ
1ðuÞ ¼ C̄ð0Þ;δ

1 ðuÞ þ αs
π
C̄ð1Þ;δ
1 ðuÞ þ

�
αs
π

�
2

C̄ð2Þ;δ
1 ðuÞ ð11Þ

with αs ¼ αsðμÞ and μ ¼ mhðmhÞ. Note that Eq. (11) does
not include nonperturbative condensate contributions. To
setmh we usemcð3 GeVÞ ¼ 0.9858ð51Þ GeV from [18] to
compute mhð3 GeVÞ ¼ mcð3 GeVÞ=u, which we then run
to mhðmhÞ. We use αMSð5 GeV; nf ¼ 4Þ ¼ 0.2128ð25Þ
from [15], together with the four-loop running [19]. We
use uphys ¼ 1=4.578ð12Þ computed in pure QCD from [20].
We include an uncertainty for the three-loop result of

σ3ðαs=πÞ3 where σ3 is the root mean square of C̄ð0Þ;δ
1 ðuÞ,

C̄ð1Þ;δ
1 ðuÞ and C̄ð2Þ;δ

1 ðuÞ.

B. (Axial-)tensor currents

The susceptibilities are defined analogously for the
tensor and axial-tensor currents, with one of the tensor
indices contracted with qα

jTμ ¼ ψ̄hσμαqαψc; jATμ ¼ ψ̄hσμαγ
5qαψc: ð12Þ

The polarization functions for the (axial-)tensor currents
given in Eq. (12) are defined by

ðqμqα −q2gμνÞΠTðq2Þ ¼ i
Z

dxeiqxh0jTjTμ ðxÞjT†ν ð0Þj0i;

ðqμqν −q2gμνÞΠATðq2Þ ¼ i
Z

dxeiqxh0jTjATμ ðxÞjAT†ν ð0Þj0i:

ð13Þ

Note that because σμν is antisymmetric, there is no
longitudinal piece proportional to the projector qμqν=q2.
The (axial-)tensor polarization functions require three
subtractions [17], and the susceptibilities are defined by

χJ¼1
ðAÞTðq2 ¼ 0Þ≡ 1

6

∂
3

∂
3q2

ðq2ΠðAÞTðq2ÞÞjq2¼0: ð14Þ

Since the J ¼ 0 components of the polarization tensors are
identically zero, we will omit the J ¼ 1 label from the
susceptibilities and write χðAÞT ≡ χJ¼1

ðAÞT from now on. The

tensor currents also require renormalization in the con-
tinuum. This is typically performed in the MS scheme, and
the tensor susceptibilities are dependent upon the renorm-
alization scale μ.

III. LATTICE CALCULATION

Following [13], the continuum Euclidean correlation
functions that we wish to compute are
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CAðtÞ ¼
Z2
V

3

X3
j¼1

Z
dx3h0jTh̄γEj γE5 cðxÞc̄γEj γE5hð0Þj0i;

CVðtÞ ¼
Z2
V

3

X3
j¼1

Z
dx3h0jTh̄γEj cðxÞc̄γEj hð0Þj0i;

CPðtÞ ¼
Z

dx3h0jTh̄γE5 cðxÞc̄γE5hð0Þj0i;

CSðtÞ ¼
Z

dx3h0jTh̄cðxÞc̄hð0Þj0i;

CTðtÞ ¼
Z2
T

3

X3
j¼1

Z
dx3h0jTh̄σEj0cðxÞc̄σEj0hð0Þj0i;

CATðtÞ ¼
Z2
T

3

X3
j¼1

Z
dx3h0jTh̄σEj0γE5 cðxÞc̄σEj0γE5hð0Þj0i;

ð15Þ

where γEj and γE5 are Euclidean gamma matrices and for the
(axial-)vector and (axial-)tensor currents we require the
additional current renormalization factors ZV and ZT
respectively.
Using the definitions of the susceptibilities, together with

the definitions of the polarization functions, the suscep-
tibilities may be expressed in terms of these correlation
functions as [13]

χ1þðq2 ¼ 0Þ ¼ 1

12

Z
dt t4CAðtÞ;

χ1−ðq2 ¼ 0Þ ¼ 1

12

Z
dt t4CVðtÞ;

χ0−ðq2 ¼ 0Þ ¼ 1

12
ðmh þmcÞ2

Z
dt t4CPðtÞ;

χ0þðq2 ¼ 0Þ ¼ 1

12
ðmh −mcÞ2

Z
dt t4CSðtÞ;

χðAÞTðq2 ¼ 0Þ ¼ 1

12

Z
dt t4CðAÞTðtÞ: ð16Þ

We compute the required correlation functions using the
HISQ [21] formalism for the h and c quarks on the MILC
2þ 1þ 1 HISQ gluon field configurations detailed in
Table I. We use the local spin-taste operators 1 ⊗ 1,
γ5 ⊗ γ5, γj ⊗ γj and γjγ5 ⊗ γjγ5 for the S, P, V, and A
currents respectively. For the tensor currents T and AT we
use γjγ0 ⊗ γjγ0 and γiγk ⊗ γiγk respectively, with i and k
chosen as spatial directions and i ≠ k. Note that we use the
local currents to avoid tree-level discretization errors. The
valence charm and heavy-quark masses used in this work
are given in Table II, with amh ¼ 0.9 ≈ amb on set 3 and
amh ¼ 0.625 ≈ amb on set 4. Note that because we use the
HISQ formalism for both heavy and charm quarks, we can
use u ¼ mval

c =mval
h directly. The ensembles we use include

physically tuned charm and strange quarks in the sea, as

TABLE I. Details of the gauge field configurations used in our calculation [22,23]. We use the Wilson flow
parameter [24], w0, to fix the lattice spacing given in column 2. The physical value of w0 was determined in [25] to
be 0.1715(9) fm and the values of w0=a, which are used together with w0 to compute a, were taken from [15,18,26].
In these works, the unimproved Wilson flow was used in combination with the unimproved clover observable. Set 1
is referred to as “fine,” set 2 as “superfine,” set 3 as “ultrafine,” set 4 as “exafine,” and set 5 as “physical fine.” ncfg is
the number of configurations that we use here. aml0, ams0, and amc0 are the masses of the sea up/down, strange and
charm quarks in lattice units. We also include the approximate mass of the Goldstone pion, computed in [27].

Set a (fm) w0=a Lx × Lt aml0 ams0 amc0 Mπ (MeV) ncfg

1 0.0902 1.9006(20) 32 × 96 0.0074 0.037 0.440 316 1000
2 0.0592 2.896(6) 48 × 144 0.0048 0.024 0.286 329 500
3 0.0441 3.892(12) 64 × 192 0.00316 0.0158 0.188 315 375
4 0.0327 5.243(16) 96 × 288 0.00223 0.01115 0.1316 309 100
5 0.0879 1.9518(7) 64 × 96 0.0012 0.0363 0.432 129 500

TABLE II. Details of the charm and heavy valence masses.

Set amval
h amval

c

1 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8 0.449
2 0.427, 0.525, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8 0.274
3 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 0.194
4 0.2, 0.25, 0.3, 0.45, 0.625 0.137
5 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8 0.433
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well as unphysically heavy light sea quarks on sets 1–4.
While the effect of using heavier-than-physical light quarks
is expected to be very small, we also include a single
ensemble, set 5, with physically tuned light quarks, in order
to constrain these effects.
The ZV factors for the local vector current were computed

in [18,28], extrapolated to zero valence quark mass. For the
tensor, we use the results of [29], which used an intermediate
RI-SMOM scheme to match the lattice tensor current to the
continuum tensor current in the MS scheme. We use the
values computed using a matching scale of μ ¼ 2 GeV
which we subsequently run to mhðmhÞ using the three-loop
anomalous dimension [30]. For HISQ, chiral symmetry
means that the local vector and tensor currents used here
have the same renormalization factors in the zero valence
quark mass limit as their axial counterparts to all orders in
perturbation theory [31]. It was shown in [28] that ZV
computed using the RI-SMOM scheme is free from con-
densate contamination, while ZT includes a correction to
remove condensate contributions explicitly [29]. We may
therefore useZA ¼ ZV andZAT ¼ ZT , which will differ only
by discretization effects, and so give the correct continuum
limit. The values of ZV and ZT used here are given in
Table III. For each value ofamh on each ensemble,we runZT

to the MS mass mhðμ ¼ mhÞ which we determine using the
physical value ofmcð3 GeVÞ ¼ 0.9858ð51Þ GeV from [18]
together with the ratio of lattice masses

mhð3 GeVÞ ¼ mcð3 GeVÞ=u ¼ mcð3 GeVÞ=ðamc=amhÞ:
ð17Þ

Note that since [29] did not include set 4, we use a value here
obtained by extrapolating the other values. Following [18],
we fit the condensate-corrected tensor renormalization fac-
tors, at scale μ ¼ 2 GeV, using the simple fit function

ZTða;μ¼ 2 GeVÞ ¼
Xi¼4

i¼0

�
ciþ

Xj¼3

j¼1

bij

�
aμ
π

�
2j
�
αsðπ=aÞi

ð18Þ

taking priors of 0� 2 for the coefficients ci and bij. Varying
either μ or the lattice scale, π=a, by �50% has a negligible
effect on the extrapolated value, as does increasing the
maximum order that we sum to in i or j. Note that we
neglect the statistical correlations betweenZV andZT as well
as between the current renormalization factors and the lattice
data generated in this work.
We use random wall sources to increase statistical

precision. The arrangement of propagators appearing in
the correlation functions which we compute are shown in
Fig. 1. In terms of the staggered fields they are given by

Clatt
δ ¼ 1

L3
x

X
x;y;y0

βδðxÞgcabðt; x; 0; yÞβδðyÞξbcðyÞ

× ðghadðt; x; 0; y0Þξdcðy0ÞÞ� ð19Þ

where gq is the staggered propagator for flavor q and the
randomwall ξ satisfies ξacðyÞξ�bcðy0Þ ¼ δy;y0δab. βδðxÞ is the
x-dependent phase factor corresponding to the local spin-
taste operator in the staggered formalism.
The correlation functions we compute are periodic in

time, and so we average ClattðtÞ and ClattðLt − tÞ for
0 < t < Lt=2. We compute the time moments in
Eq. (16) on the lattice as

χlatt
1þ ðq2 ¼ 0Þ ¼ 1

12

XLT=2

t¼0

t4Clatt
A ðtÞ;

χlatt1− ðq2 ¼ 0Þ ¼ 1

12

XLT=2

t¼0

t4Clatt
V ðtÞ;

χlatt0− ðq2 ¼ 0Þ ¼ 1

12
ðmh þmcÞ2

XLT=2

t¼0

t4Clatt
P ðtÞ;

χlatt
0þ ðq2 ¼ 0Þ ¼ 1

12
ðmh −mcÞ2

XLT=2

t¼0

t4Clatt
S ðtÞ;

χlattðAÞTðq2 ¼ 0Þ ¼ 1

12

XLT=2

t¼0

t4Clatt
ðAÞTðtÞ: ð20Þ

The resulting values of χlattδ ðq2 ¼ 0Þ for the (pseudo)scalar,
(axial-)vector, and (axial-)tensor susceptibilities are given
in Appendix A. The susceptibilities on a given ensemble
are computed including all statistical correlations, which

TABLE III. The second column gives the values of ZVðμ ¼
2 GeVÞ at zero valence quark mass computed in [18,28] in the
RI-SMOM scheme. Note that ZV on set 5 is equal to that on set 1.
The third column gives the values of ZTðμ ¼ 4.8 GeVÞ from [29]
for the tensor operators used in this work. Note that since [29] did
not include set 4, we use a value here obtained by extrapolating
the other values in a2 as described in the text.

Set ZVðμ ¼ 2 GeVÞ ZTðμ ¼ 4.8 GeVÞ
1 0.98445(11) 1.0029(43)
2 0.99090(36) 1.0342(43)
3 0.99203(108) 1.0476(42)
4 0.99296(21) 1.0570(50)
5 0.98445(11) 1.0029(43)

FIG. 1. Arrangement of heavy and charm quark propagators for
currents J ¼ jS; jP; jVμ ; jAμ ; jTμ ; jATμ defined in Sec. II.
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are then included in our subsequent chiral continuum
extrapolation. We use the GVAR [32] Python package to
propagate uncertainties from our correlation functions
to the susceptibilities and masses while maintaining
correlations.

IV. CONTINUUM EXTRAPOLATION

In order to reach the continuum we fit the lattice
susceptibilities against a form including dependence on
u, amh, amc and the quark mass mistunings. We use the fit
functions

χlatt
1� ¼ 1

mhðmhÞ2
X12
n¼0

ā1
�

n ð1 − uÞnΔ1�
n N 1�

n ;

χlattðAÞT ¼ 1

mhðmhÞ2
X12
n¼0

āðAÞTn ð1 − uÞnΔðAÞT
n N ðAÞT

n ;

χlatt0∓ ¼ ð1� uÞ2
X12
n¼0

ā0
∓

n ð1 − uÞnΔ0∓
n N 0∓

n ; ð21Þ

where as well as including constant terms, āδn also allows
for scale dependence through αs, as well as condensate
contributions,

āδn ¼ aδn ×

�
1þ βδnαsðmhÞ þ κδn

hαsπ G2i
m3

hmc

�
ð22Þ

where the m3
hmc factor was chosen to interpolate the

expected quark mass dependence in both the mh → mb

andmh → mc limits. We take hαsπ G2i ¼ 0.02 GeV4 and use
Gaussian priors of 0(2) for βδn and κδn.
Δδ

n parametrizes discretization effects as

Δδ
n ¼ 1þ

X6
j¼1

bδj;nðamhÞ2j þ
X6
j¼1

cδj;nðamcÞ2j

þ b̃δnðamhÞ2 logðamhÞ þ c̃δnðamcÞ2 logðamcÞ: ð23Þ

We include terms accounting for log-enhanced discretiza-
tion effects which, due to the tree-level improvement of the
HISQ action, are expected to enter at OðαsÞ [33]. We take
Gaussian priors of 0(2) for b̃δn and c̃δn.
Because our simulation is done using staggered quarks,

the correlation functions contain a time-oscillating contri-
bution from time-doubled states with opposite parity [21],
with

Clatt
δ ðtÞ ¼

X
n

jλδnj2e−Eδ
nt − ð−1Þtjλδ;oscn j2e−Eδ;osc

n t: ð24Þ

When we perform the sums over t in Eq. (20), the
oscillating state contribution gives zero up to discretization
effects. For the JP ¼ 0−, 1− and tensor currents, we expect

the oscillating states to have Eosc
n > En. In this case, the

discretization effects due to the oscillating state contribu-
tion are highly suppressed relative to the nonoscillating
ground state. For the JP ¼ 0þ, 1þ, and axial-tensor
currents, however, we expect Eosc

n < En. In this case we

can use the ground state parameters λðoscÞ0 and EðoscÞ
0 ,

extracted from fits to Eq. (24) using the Python package
CORRFITTER [34], to estimate the size of the discretization
effects from the oscillating state contribution to Eq. (20)
relative to the nonoscillating ground state contribution. We
find that this discretization effect is expected to be largest
on sets 1 and 5, at the level of approximately −15%, −5%,
and −10% for χlatt

1þ , χ
latt
0þ , and χlattAT respectively. We therefore

use a power series in amq¼h;c, as opposed to the more
usual amq=π, to capture these large discretization effects,
including up to ðamqÞ12. For bδj;n and cδj;n, we use Gaussian
priors of 0(2).
In [11] it is observed that the expansion up to

Oðð1 − uÞ8Þ is indistinguishable from the full expressions

for the leading order terms C̄ð0Þ;δ
1 ðuÞ from u ¼ 0.8 down to

u ¼ uphys. The expansion up to Oðð1 − uÞ9Þ is also seen to
reproduce the NLO and NNLO results well across the
range 0.3 ≤ u ≤ 0.8 with deviations of ≈10% close to
u ¼ uphys. Motivated by these observations, we include up
to ð1 − uÞ12 in our fit function. We have confirmed that this
fit function reproduces the perturbative continuum results
of [12] to 1 part in 106 across the range uphys ≤ u ≤ 0.8,
with all jaδnj < 0.01. As such we use conservative Gaussian
priors of 0.0(0.05) for each aδn for terms with n ≤ 8 and
0.0(0.025) for terms with n > 8, reflecting that these terms
are only needed to capture the NLO and NNLO u
dependence of the perturbative results. N δ accounts for
valence and quark mass mistuning effects,

N δ¼1�;ðAÞT
n ¼ ð1þ Aδδvalmc

Þð1þ Bδ
nδ

sea
mc

þ Cδ
nδ

sea
ms

þDδ
nδ

sea
ml
Þ;

N δ¼0�
n ¼ ð1þ Bδ

nδ
sea
mc

þ Cδ
nδ

sea
ms

þDδ
nδ

sea
ml
Þ ð25Þ

with

δvalmc
¼ ðamval

c − amtuned
c Þ=amtuned

c ;

δseamc
¼ ðamsea

c − amval
c Þ=amval

c ;

δseams
¼ ðamsea

s − amtuned
s Þ=ð10amtuned

s Þ;
δseaml

¼ ðamsea
l − amtuned

s =½ms=ml�physÞ=ð10amtuned
s Þ; ð26Þ

and with ½ms=ml�phys ¼ 27.18ð10Þ from [27]. Whenmval
c ¼

msea
c the perturbative expressions for the susceptibilities are

functions of only u, mh and αsðmhÞ. Charm quark mistun-
ing effects thus enter our calculation through the determi-
nation of mhðmhÞ using the physical value of mcð3 GeVÞ,
as well as indirectly through the scale μ ¼ mh. The valence
charm masses used here are well tuned, and the effect of the
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small mistuning on mhðmhÞ leads to a negligible change in
αsðmhÞ. Since the nonperturbative condensate contribu-
tions are expected to be small relative to the perturbative
expressions, we also neglect their variation with the small
valence charm mass mistunings. The only remaining place
where mistuning effects may have a significant effect is the
overall 1=m2

h appearing for the cases δ ¼ 1�; ðAÞT. For
these cases, we take N δ¼1�;ðAÞT

n to contain only a single
overall δvalmc

factor. The relevant sea charm quark mistuning,
which we denote δseamc

, is then the mistuning of the sea charm
quark mass from the valence mass mval

c .
The tuned values of the quark masses are given by

amtuned
c ¼ amval

c
Mphys;QCD

ηc

Mηc

; ð27Þ

where we use the pure QCD result Mphys;QCD
ηc ¼

2.9783ð11Þ GeV, computed using the results of [18] for
the J=ψ hyperfine splitting in pure QCD and neglecting
disconnected diagrams as we do here. To determine Mηc ,
we generate ηc correlation functions using local γ5 ⊗ γ5

spin-taste operators, using the valence charm masses given
in Table II. We fit these correlation functions to

Clatt
ηc ðtÞ ¼

XNexp¼8

n¼0

jλnj2e−Mnt; ð28Þ

taking heuristic Gaussian priors of 0(0.75) for λn>0,
0.25(0.125) for λ0, 0.75(0.6) GeV for Mnþ1 −Mn, and
3.0(0.75) GeV for M0 ¼ Mηc. The values of Mηc resulting
from this fit are given in lattice units in Table IV, where we
see excellent agreement with the values determined in [18],
allowing for the small differences in valence masses on
sets 1 and 4.
We take

amtuned
s ¼ amval

s

�
Mphys

ηs

Mηs

�2

; ð29Þ

where we use the values of Mηs given in [35]. Since these
values are very precise, and since we expect sea quark mass
mistuning effects to be small, we neglect their correlations
with our other data. We take priors of 0(2) for each

Aδ¼1�;ðAÞT , and 0.0(0.5) for Cn and Dn to reflect the fact
that the corresponding sea quark mistuning effects appear
at next-to-leading order in αs. We take a prior of 0(0.1) for
Bn, to reflect the results of the analysis of sea charm quark
mistuning effects on w0 in [15].

V. RESULTS

We use the Python package LSQFIT [36] to perform the
fit to Eq. (21). Our lattice data points and continuum
extrapolated susceptibilities for the (pseudo)scalar and
(axial-)vector susceptibilities are plotted in Figs. 2 and 3.
Our lattice data points for the tensor susceptibilities are
shown in Fig. 4, together with the result of our chiral
continuum extrapolation. The fit has χ2=dof ¼ 0.89, which
we estimate using singular value decomposition and prior
noise [37], and a corresponding Q-value of Q ¼ 0.89. We
see that the discretization effects are visibly larger for χ1þ as
expected (see Sec. IV).
We find, for the physical b-quark,

m2
b × χ1þ ¼ 0.720ð34Þ × 10−2;

m2
b × χ1− ¼ 1.161ð54Þ × 10−2;

χ0− ¼ 2.374ð33Þ × 10−2;

χ0þ ¼ 0.609ð14Þ × 10−2; ð30Þ

and for the tensor susceptibilities,

TABLE IV. ηc masses in lattice units, used to determine
amtuned

c .

Set aMηc

1 1.364965(66)
2 0.896644(80)
3 0.666886(75)
4 0.49423(16)
5 1.33045(97)

FIG. 2. Plot showing our lattice data points for the (pseudo)
scalar susceptibilities, together with the result of our chiral
continuum extrapolation (gray band) as a function of mc=mh
for the (pseudo)scalar susceptibilities.
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m2
b × χT ¼ 0.891ð44Þ × 10−2;

m2
b × χAT ¼ 0.441ð33Þ × 10−2: ð31Þ

For ease of comparison to other results, we also give the
(axial-)vector and (axial-)tensor susceptibilities with the
factor of 1=m2

b included. We find

χ1þ ¼ 4.06ð20Þ × 10−4 GeV−2;

χ1− ¼ 6.55ð31Þ × 10−4 GeV−2;

χT ¼ 5.03ð25Þ × 10−4 GeV−2;

χAT ¼ 2.49ð19Þ × 10−4 GeV−2: ð32Þ
In order to provide self-contained results, we generate

synthetic data across the full range of u between 0.8 and
mc=mb and fit this data using a simple power series in 1 − u
up to ð1 − uÞ12, as in Eq. (21), without any factors of αs and
hαsπ G2i. We find that the susceptibilities computed from the
results of this fit are indistinguishable from our full results,
and we provide the posterior distributions for the coef-
ficients in the file susceptibilities_u12.pydat in the
Supplemental Material [38], as well as the Python script
load_chi_u12.py, which loads the correlated parameters

FIG. 3. Plot showing our lattice data points for the
(axial-)vector susceptibilities, together with the result of our
chiral continuum extrapolation (gray band) as a function of
mc=mh for the (axial-)vector susceptibilities.

FIG. 4. Plot showing our lattice data points together with the
result of our chiral continuum extrapolation (gray band) as a
function ofmc=mh for the (axial-)tensor susceptibilities. Note that
the discretization effects appearing in the axial-tensor suscep-
tibility are somewhat larger than expected from the estimate using
ground state parameters extracted from correlator fits.

FIG. 5. Our chiral continuum fit results for the (pseudo)scalar
susceptibilities (blue band) compared to the perturbative result at
tree level (black line),OðαsÞ (green line) andOðα2sÞ (red line). We
add the leading condensate contribution from [9] to the Oðα2sÞ
result in red, though this has a very small effect. The red band
showing the uncertainty on the Oðα2sÞ result is equal to ðαs=πÞ3
multiplied by the root mean square of the three known coef-
ficients. We also include the results of [13] for comparison. We
see that our results are very close to the perturbation theory across
the full range of mc=mh considered.
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from susceptibilities_u12.pydat and computes the con-
tinuum susceptibilities.

A. Tests of the stability of the analysis

In order to demonstrate the robustness of our results to
changes in the chiral continuum fit function Eq. (21), we
repeat the above analysis for several variations of the fit
function. We show results obtaining using fits with higher
orders of 1 − u included, with higher orders in amq¼h;c

included, as well as a fit including only up to ð1 − uÞ8 and
ðamq¼h;cÞ8. In addition to these variations, we also show the
results of fits excluding the a2 logðaÞ terms from Eq. (23), as
well as excluding the termsproportional toαsðmhÞ and hαsπ G2i
in Eq. (22). The results of these fits are shown for u ¼ 0.2184,
u ¼ 0.5, and u ¼ 0.8 in Figs. 8–10 in Appendix B, where
we see that our results vary only very slightly at each point for
each different chiral continuum fitting strategy.
We also check that the effect of autocorrelations in

simulation time is negligible by repeating our analysis
using correlation functions which have been binned over
every two configurations, as well as over every four
configurations, on all ensembles. We find that in each case

the mean values of our results for the susceptibilities at
u ¼ 0.2184, u ¼ 0.5, and u ¼ 0.8 change by no more than
0.1σ, and the uncertainties change by at most 7%.

B. Comparison to existing results

The b̄c susceptibilities are expected to receive only
extremely small nonperturbative condensate corrections,
at the level of ≈0.05% for the physical b-quark mass [9].
As such, we expect that there should be good agreement
between our lattice results for the (pseudo)scalar and
(axial-)vector susceptibilities and those determined using
the results of [12].
Our continuum results for the (axial-)vector and

(pseudo)scalar susceptibilities are plotted in Figs. 5 and 6,
together with the LO, NLO, and NNLO results determined
using the results of [12] that we describe in Sec. II. In addi-
tion to the NNLO perturbative result, we include the
leading-order condensate contribution given in [9]. To
evaluate these expressions, which are given in terms of the
pole masses, we use the two-loop matching between the
MS and pole masses from [39], allowing a 10% uncertainty
for renormalon effects. We see that our lattice results,
plotted as the blue band, arevery close to the result including
NNLO perturbation theory and leading condensate terms
across the full range of u values considered. Taking each
susceptibility in isolation, we find reasonable agreement
between our results and the perturbation theory for the

FIG. 6. Our chiral continuum fit results for the (axial-)vector
susceptibilities (blue band) compared to the perturbative result at
tree level (black line), OðαsÞ (green line), and Oðα2sÞ (red line).
We add the leading condensate contribution from [9] to theOðα2sÞ
result in red, though this has a very small effect. The red band
showing the uncertainty on the Oðα2sÞ result is equal to ðαs=πÞ3
multiplied by the root mean square of the three known coef-
ficients. We also include the results of [13] for comparison. We
see that our results are very close to the perturbation theory across
the full range of mc=mh considered.

FIG. 7. Our chiral continuum fit results for the (axial-)tensor
susceptibilities (blue band) compared to the perturbative result at
tree level (black line) and OðαsÞ (green line) computed in [17].
The green band showing the uncertainty on the OðαsÞ result is
equal to α2s multiplied by the root mean square of the two known
coefficients. We see that our results are in reasonable agreement
for the axial-tensor susceptibility, but disagree for the tensor
susceptibility.
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vector, axial-vector, and pseudoscalar cases across the full
range of u. Our result for the scalar susceptibility is in slight
disagreement with the perturbative result in the region
where u ≈ 0.3.
The lattice results from [13] are also plotted in Figs. 5

and 6. We see good agreement between our results and
those of [13] for χ1−, but disagreement at the level of 1 − 2σ
for χ1þ, χ0− , and χ0þ . Note that we see good agreement
between our results for χ0−, χ0þ , χ1− , and χ1þ and the
preliminary results shown in [40].
For the (axial-)tensor cases, the susceptibilities have

been computed perturbatively to OðαsÞ [17]. We plot our
continuum results for the (axial-)tensor together with the
perturbative results in Fig. 7. We see good agreement
between our results and the perturbation theory for the
axial-tensor susceptibility for mh → mb, but poor agree-
ment for mh → mc. For the tensor susceptibility, we find
significant disagreement with the NLO perturbative result
across the full range of u.

VI. CONCLUSION

We have computed the full set of (pseudo)scalar,
(axial-)vector, and (axial-)tensor susceptibilities, χ1− , χ1þ ,
χ0− , χ0þ , χT , and χAT , between u ¼ uphys and u ¼ 0.8, using
the heavy-HISQ method, including up/down quarks, and
physically tuned strange and charm quarks in the sea.
Importantly, we include here a gauge field ensemble with
a ≈ 0.03 fm, sufficiently small for the physical b-quark
mass to be reached, with amb ≈ 0.625.
We find that our results for the pseudoscalar and

(axial-)vector susceptibilities are in agreement with the
three-loop perturbation theory results [12], while the scalar
susceptibility exhibits some tension. Our results demon-
strate the reliability of this method of computing suscep-
tibilities on the lattice. We find that the tensor and
axial-tensor susceptibilities at the physical b-quark mass
are roughly 1=3 smaller than the vector and axial-vector
susceptibilities respectively. This is to be expected from the
similar size difference seen in the OPE results for the b̄s
tensor and axial tensor in [17] together with the observation
that the fourth moments of the h̄s and h̄c correlators
computed in [41] differ by only a few percent for the largest
values of amh. We find reasonable agreement with the NLO
perturbation theory for the axial-tensor susceptibility, but
for the tensor our results are in disagreement with the
perturbative result, as seen in Fig. 7.
The results of this work will allow future lattice

calculations of b → c form factors, for both mesonic and
baryonic decays, to use dispersively bounded parametriza-
tions for all form factors, for varying heavy quark mass
between 1.25 ×mc and mb, using lattice results for all
inputs. This work will also lead to future lattice calculations
of less well-known quantities entering the dispersive
bounds for other hadronic form factors, such as those
needed for b → s decays [10] where perturbative

calculations of the susceptibilities are less reliable due to
the much more sizeable condensate contributions.
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APPENDIX A: LATTICE DATA

Here we give our raw lattice results for the susceptibil-
ities χlattδ ðq2 ¼ 0Þ on each ensemble. Results for the
(pseudo)scalar and (axial-)vector susceptibilities are given
in Tables V–IX, while those for the (axial-)tensor currents
are given in Tables X–XIV.

TABLE V. Susceptibilities χδ, defined in Eq. (20), for each
value of amh used on set 1.

amh χ1þ × 104 GeV2 χ1− × 104 GeV2 χ0− × 102 χ0þ × 103

0.55 28.99(44) 78.0(1.2) 3.2153(4) 0.13762(2)
0.6 30.02(44) 81.7(1.2) 3.1777(4) 0.27640(3)
0.65 30.90(45) 84.8(1.2) 3.1360(4) 0.44133(4)
0.7 31.63(45) 87.5(1.2) 3.0910(3) 0.62176(6)
0.75 32.23(45) 89.8(1.3) 3.0436(3) 0.80977(7)
0.8 32.72(45) 91.7(1.3) 2.9944(3) 0.99950(8)

TABLE VI. Susceptibilities χδ, defined in Eq. (20), for each
value of amh used on set 2.

amh χ1þ × 104 GeV2 χ1− × 104 GeV2 χ0− × 102 χ0þ × 103

0.427 38.34(56) 88.1(1.3) 3.1158(5) 0.69297(9)
0.525 42.42(61) 96.1(1.4) 3.0050(4) 1.4349(1)
0.55 43.28(62) 97.7(1.4) 2.9763(4) 1.6290(2)
0.6 44.80(63) 100.4(1.4) 2.9190(4) 2.0113(2)
0.65 46.08(65) 102.5(1.4) 2.8623(4) 2.3793(2)
0.7 47.13(66) 104.2(1.5) 2.8063(3) 2.7275(2)
0.75 47.99(68) 105.5(1.5) 2.7512(3) 3.0527(2)
0.8 48.67(69) 106.5(1.5) 2.6971(3) 3.3532(2)
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TABLE VII. Susceptibilities χδ, defined in Eq. (20), for each
value of amh used on set 3.

amh χ1þ × 104 GeV2 χ1− × 104 GeV2 χ0− × 102 χ0þ × 103

0.25 35.19(57) 79.2(1.3) 3.1833(8) 0.23015(5)
0.3 39.45(61) 87.2(1.4) 3.1088(7) 0.6733(1)
0.35 43.16(66) 93.4(1.4) 3.0306(6) 1.2119(2)
0.4 46.36(70) 98.3(1.5) 2.9534(5) 1.7818(2)
0.45 49.12(74) 102.1(1.5) 2.8792(4) 2.3478(3)
0.5 51.46(77) 105.0(1.6) 2.8087(4) 2.8909(3)
0.55 53.45(80) 107.2(1.6) 2.7420(4) 3.4008(3)
0.6 55.11(83) 108.9(1.6) 2.6789(3) 3.8724(3)
0.65 56.48(85) 110.1(1.7) 2.6192(3) 4.3037(3)
0.7 57.60(87) 110.9(1.7) 2.5623(3) 4.6945(3)
0.75 58.49(88) 111.4(1.7) 2.5080(2) 5.0460(3)
0.8 59.18(90) 111.6(1.7) 2.4560(2) 5.3597(3)
0.85 59.70(91) 111.5(1.7) 2.4060(2) 5.6379(3)
0.9 60.06(92) 111.3(1.7) 2.3578(2) 5.8829(3)

TABLE VIII. Susceptibilities χδ, defined in Eq. (20), for each
value of amh used on set 4.

amh χ1þ × 104 GeV2 χ1− × 104 GeV2 χ0− × 102 χ0þ × 103

0.2 38.37(59) 84.6(1.3) 3.138(1) 0.5065(1)
0.25 44.04(66) 93.8(1.4) 3.0231(9) 1.2515(3)
0.3 48.84(72) 100.4(1.5) 2.9122(8) 2.0614(4)
0.45 59.18(88) 110.8(1.6) 2.6354(5) 4.2698(6)
0.625 65.92(99) 114.3(1.7) 2.4031(3) 6.1319(5)

TABLE IX. Susceptibilities χδ, defined in Eq. (20), for each
value of amh used on set 5.

amh χ1þ × 104 GeV2 χ1− × 104 GeV2 χ0− × 102 χ0þ × 103

0.55 29.97(44) 80.0(1.2) 3.2141(2) 0.19143(1)
0.6 31.06(45) 83.6(1.2) 3.1742(2) 0.35010(2)
0.65 31.98(45) 86.8(1.2) 3.1306(2) 0.53221(3)
0.7 32.74(46) 89.5(1.2) 3.0841(2) 0.72738(3)
0.75 33.38(46) 91.7(1.3) 3.0355(2) 0.92792(4)
0.8 33.89(46) 93.6(1.3) 2.9853(2) 1.12822(5)

TABLE X. Tensor and axial-tensor susceptibilities χδ, defined
in Eq. (20), for each value of amh used on set 1.

amh χT × 104 GeV2 χAT × 104 GeV2

0.55 67.1(1.2) 13.31(23)
0.6 69.6(1.2) 13.45(23)
0.65 71.7(1.2) 13.57(23)
0.7 73.5(1.2) 13.70(23)
0.75 75.1(1.2) 13.84(23)
0.8 76.4(1.2) 13.99(23)

TABLE XI. Tensor and axial-tensor susceptibilities χδ, defined
in Eq. (20), for each value of amh used on set 2.

amh χT × 104 GeV2 χAT × 104 GeV2

0.427 73.9(1.2) 20.24(34)
0.525 78.6(1.3) 21.70(35)
0.55 79.5(1.3) 22.02(36)
0.6 81.1(1.3) 22.61(36)
0.65 82.3(1.3) 23.13(37)
0.7 83.2(1.3) 23.60(38)
0.75 83.9(1.3) 24.03(39)
0.8 84.4(1.4) 24.42(39)

TABLE XII. Tensor and axial-tensor susceptibilities χδ, defined
in Eq. (20), for each value of amh used on set 3.

amh χT × 104 GeV2 χAT × 104 GeV2

0.25 68.6(1.2) 20.57(37)
0.3 73.5(1.3) 22.39(38)
0.35 77.2(1.3) 24.01(40)
0.4 79.9(1.3) 25.43(42)
0.45 81.9(1.4) 26.68(44)
0.5 83.3(1.4) 27.76(46)
0.55 84.3(1.4) 28.70(47)
0.6 84.9(1.4) 29.52(49)
0.65 85.3(1.4) 30.23(50)
0.7 85.4(1.4) 30.86(51)
0.75 85.5(1.4) 31.41(52)
0.8 85.4(1.4) 31.90(53)
0.85 85.2(1.4) 32.34(54)
0.9 84.9(1.4) 32.74(55)

TABLE XIII. Tensor and axial-tensor susceptibilities χδ, de-
fined in Eq. (20), for each value of amh used on set 4.

amh χT × 104 GeV2 χAT × 104 GeV2

0.2 71.8(1.3) 22.64(41)
0.25 77.3(1.4) 25.40(45)
0.3 81.0(1.4) 27.81(48)
0.45 85.5(1.5) 33.17(57)
0.625 85.6(1.5) 36.87(64)

TABLE XIV. Tensor and axial-tensor susceptibilities χδ, de-
fined in Eq. (20), for each value of amh used on set 5.

amh χT × 104 GeV2 χAT × 104 GeV2

0.55 68.1(1.2) 13.78(23)
0.6 70.6(1.2) 13.95(23)
0.65 72.7(1.2) 14.11(23)
0.7 74.5(1.2) 14.26(23)
0.75 76.0(1.2) 14.42(23)
0.8 77.3(1.2) 14.59(23)
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APPENDIX B: STABILITY PLOTS

Figures 8–10 show the values of the susceptibilities at u ¼ 0.2184, u ¼ 0.5, and u ¼ 0.8 computed using the variations
of the fit described in Sec. VA. We see that our results are insensitive to such variations in fitting strategy.

FIG. 8. Comparison of χ1−ðuÞ (left) and χ1þðuÞ (right) at u ¼ 0.2184 (red), u ¼ 0.5 (blue), and u ¼ 0.8 (green) computed using the
variations of the fit described in Sec. VA, indicated on the vertical axis. The topmost value and filled band correspond to our final results.
We see that our results vary only very slightly for these different methods of performing the extrapolation.

FIG. 9. Comparison of χ0−ðuÞ (left) and χ0þðuÞ (right) at u ¼ 0.2184 (red), u ¼ 0.5 (blue), and u ¼ 0.8 (green) computed using the
variations of the fit described in Sec. VA, indicated on the vertical axis. The topmost value and filled band correspond to our final results.
We see that our results vary only very slightly for these different methods of performing the extrapolation.

FIG. 10. Comparison of χTðuÞ (left) and χATðuÞ (right) at u ¼ 0.2184 (red), u ¼ 0.5 (blue), and u ¼ 0.8 (green) computed using the
variations of the fit described in Sec. VA, indicated on the vertical axis. The topmost value and filled band correspond to our final results.
We see that our results vary only very slightly for these different methods of performing the extrapolation.
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