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We introduce a block encoding method for mapping discrete subgroups to qubits on a quantum
computer. This method is applicable to general discrete groups, including crystal-like subgroups such as BI
of SUð2Þ and V of SUð3Þ. We detail the construction of primitive gates—the inversion gate, the group
multiplication gate, the trace gate, and the group Fourier gate—utilizing this encoding method for BT and
for the first time BI group. We also provide resource estimations to extract the gluon viscosity. The
inversion gates for BT and BI are benchmarked on the Baiwang quantum computer with estimated
fidelities of 40þ5

−4% and 4þ5
−3%, respectively.
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I. INTRODUCTION

Gauge symmetries play important roles in quantum field
theories, with the SUð3Þ × SUð2Þ × Uð1Þ gauge symmetry
being particularly important as it encapsulates the inter-
actions in the well-established Standard Model for particle
physics. Accurate predictions in the strongly coupled
regime of these interactions require substantial computa-
tional resources. Over the past few decades, Monte Carlo
methods in lattice gauge theory (LGT) have flourished,
benefitting from advances in supercomputing capabilities
and algorithmic innovations. Nevertheless, challenges per-
sist, particularly in scenarios involving dynamic processes
such as transport coefficients of the quark-gluon plasma
[1–3], parton physics in hadron collisions [4–9], and out-
of-equilibrium evolution in the early Universe [10–13] due
to sign problems from the complex-valued nature of the
Boltzmann sampling weight. Quantum computers offer a
promising avenue to circumvent this challenge by enabling

real-time simulations within the Hamiltonian formalism
[14–18].
The Hilbert space of LGT is infinite-dimensional,

requiring digitization methods to facilitate its mapping
onto a finite quantum memory (see Sec VI.b of [17] for
different digitization methods). These include the loop-
string-hadron (LSH) formulations [19–21] where the
Hilbert space is built from gauge-invariant operators,
digitizations of independent Wilson loops [22–27], qubi-
tization formulations of gauge theories [28–30], and the
focus of this paper—the discrete subgroup approximation
[31,32]. Understanding and reducing the theoretical errors
in the digitization is an area of active research [33–39].
LGT calculations are performed at lattice spacing a ¼

aðβÞ which approaches zero for asymptomatic free theories
as the coupling parameter β → ∞. To perform extrapolation
to the continuous spacetime limit, calculations need to be
done in the scaling regime with β > βs. For the discrete
subgroup approximation, gauge links will become “frozen”
to the identity when β > βf, leading to different behaviors
from the continuous groups, which makes the discrete
subgroup approximations to be only valid in the regime
β < βf. Thus to extrapolate to the correct continuous
spacetime limit as the continuous group, the discrete
subgroup approximations need to satisfy the condition
βf > βs. The discrete subgroup approximation has been
explored for the Abelian group Uð1Þ [40,41] and SUðNÞ
gauge theories [35,36,42–49], including fermions [50,51].
For the case of SUð2Þwhich we consider in this work, there
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are three crystal-like subgroups: BT , BO, and BI with
βdf shown in Table I. The smallest group, BT has

β3þ1
f < β3þ1

s ∼ 2.2, while the other two subgroup BI,
βdf ≫ βds as shown in Fig. 1 for both 2þ 1d and 3þ 1d
theories. The larger βf of BI implies that digitization errors
should be smaller in comparison to BT and BO. Other
attempts to increase βf with modified actions are also being
discussed [52].
Though reducing the uncertainties in the extrapolation to

the continuum with larger βf, quantum simulations of
larger discrete group will be more complicated. To simulate
the discrete subgroup theory on a quantum computer, one

need to obtain the mapping between the elements of the
discrete group and the qubits. The usual way is to write the
elements of certain discrete subgroup as an ordered product
of group generators with the exponents mapped to qubits or
qudits on quantum computer [45,53–55]. However, for the
largest crystal-like BI and V subgroups of SUð2Þ and
SUð3Þ theories, the ordered product expression is unknown
yet, and may not be possible. This potential obstacle
motivates the search for other encodings of discrete groups.
In this work, we consider a new encoding—block

encoding—expressing groups as d-dimensional matrices
over a finite field F. According to Cayley’s theorem, any
finite group of order n can be mapped by an injective
homomorphism to the general linear group GLðd;FÞ over
certain finite field F, with dimension d ≤ n. Each matrix
element will be sorted in its own register, and then the
register representing the group element is built from them.
This encoding methods can be applied to generic discrete
subgroups, including the largest discrete crystal-like BI
subgroup of SUð2Þ and V of SUð3Þ. After reviewing the
basics of group representation in Sec. II, we introduce the
block encoding methods. In Sec. III, we review the primary
gates to implement group element operations and basic
logic quantum gates set in constructing the primary gates.
We then present the construction of primary gates based on
the block encoding for the BT , BI in Sec. IV. Resource
requirements are estimated and compared to other digiti-
zation methods in Sec. V. Fidelities for the block encoding
with quantum errors are analyzed in Sec. VI, followed by
the benchmarking of the inverse gates in Sec. VII. In
Sec. VIII, we present the conclusion and outlook.
Appendixes include an alternative constructions based on
two’s complement for block encoding.

II. DISCRETE SUBGROUP ENCODINGS

For any encoding of discrete groups, the group elements
g are mapped to at least as many integers as p¼½0;jGj−1�
where jGj is the group dimension. Previous work focused
on the ordered product encoding which maps onto the
integers the integer exponents fokg of group generators
fλkg in a particular ordering

gfokg ¼
Y
k

λokk ð1Þ

where 0 ≤ ok < Ok. Ok can be as large as the generator’s
order λOk

k ¼ 1 but often lower when redundancies occur
e.g. λO1

1 ¼ λ2. An integer mapping is then defined as

p ¼ ok þOkðok−1 þOk−1ð� � � þO2ðo1 þO1o0ÞÞÞ: ð2Þ

With this, one may consider encoding p onto quantum
memory by decomposing p via Eq. (2) where fOkg are
replaced by the dimensionality of the qudits fDkg avail-
able. Both BT and BO have been formulated in this

FIG. 1. Average plaquette or lattice energy density hE0i of BI as
a function of Wilson coupling parameter β on 8d lattices for (top)
2þ 1d with β2þ1

f ¼ 9.65ð5Þ and (bottom) 3þ 1d with β3þ1
f ¼

5.85ð5Þ. The shaded region corresponds to the phase where
β ≤ βs.

TABLE I. Freezing couplings as a function of spatial dimen-
sion d, βdþ1

f , for crystal-like subgroups of SUð2Þ. For compari-
son, β2þ1d

s ¼ 3 and β2þ1d
s ¼ 2.2.

G β2þ1d
f β3þ1d

f

BT a 3.45(5) 2.25(5)
BOb 5.45(5) 3.25(5)
BI 9.65(5) 5.85(5)

aNumerical results from [45].
bNumerical results from [53].
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way [45,53]. As an example, the group elements of BT can
be represented as

g ¼ ð−1Þminjolp; ð3Þ
where i; j;k are the unit quaternions and l ¼ −ð1þ iþ
jþ kÞ=2. m; n; o are 3 binary variables, while p is tertiary,
and thus can be encoded for example in a (p ¼ 8) quoctit
and (p ¼ 3) qutrit or in 5 qubits with some forbidden states.
A similar construction for BO could be realized with 6
qubits, or a qutrit with either 2 quoctits (p ¼ 4) or a
qudecasexit (p ¼ 16) [54]. The corresponding qubit primi-
tive gates to implement group inverse, product, trace
and Fourier transformation has been worked out recently
[45,53]. While this encoding can be efficient in quantum
memory, it is not a given that all finite groups can be
encoding with ordered products.
Due to the potential limitations of the ordered product

encoding, we consider a different encoding, block encod-
ing, which instead maps the finite fields in the matrices
representing g to a set of qubits. This encoding relies on the
ability to represent the matrix elements themselves as
valued only over a finite field. Here, we will consider
how to encode BT and BI as examples.
The BT group is isomorphic to the special linear group

SLð2; 3Þ—the group of all 2 × 2 matrices with unit
determinant over the three-element finite field F3 (which
can be defined as the ring of integers modulo 3). The
character table for BT is found at the bottom of Table II.
Using the isomorphism, g can be represented by

g∈
��

a b

c d

�����a; b; c; d∈F3; ad − bc≡ 1 mod ð3Þ
�

ð4Þ
This leads to another way of encoding BT group elements
using four ternary variables a; b; c; d ¼ f0; 1; 2g as jgi ¼
jabcdi with a Hilbert space of 34 − 57 ¼ 24 states where
57 states are removed by the determinant constraints.
In this work,we encode eachmatrix element in Eq. (4) as a

binary integer into two qubits, e.g., the non-negtive encoding
with j0i ¼ j00i, j1i ¼ j01i, j2i ¼ j10i and a forbidden
state j11i. Given the redundancy in this encoding, we can
also use the two’s complement encoding as j0i ¼ j00i; j1i ¼
j01i and j2i ¼ j11i. In the BT case, the two’s component
encoding is the same as the gray code [56–59]. Alternatively,
the matrix elements could each be encoding in a (p ¼ 3)
qutrit without forbidden states. In this paper, we adopt the
non-negative encoding, resulting in a 8-qubit group register
while leaving optimizations of quantum resources among
different encoding to the future as considerations to noise is
crucial [54].
The block encoding can be extended to other groups.

The BI group is isomorphic to the special linear group
SLð2; 5Þ—the group of all 2 × 2 matrices over the finite
field F5 with unit determinant. The character table for BI is

found at the bottom of Table II and the group element can
be represented by

g∈
��

a b

c d

�����a; b; c; d∈F5; ad − bc≡ 1 mod ð5Þ
�

ð5Þ

We can encode the BI group elements with four quinary
variables a; b; c; d ¼ f0; 1; 2; 3; 4g, and thus the matrix
elements can be represented with three qubits with for-
bidden states j101i; j110i; j111i, and the group element
with 12 qubits. Alternatively, the matrix elements could
be encoding into (p ¼ 5) ququints without forbidden states.
In this work, we derive the primitive gates of BI with a
12-qubit group register.
It is worth noting that the largest crystal-like subgroup of

SUð3Þ—V—is isomorphic to a subgroup of GLð3; 4Þ and
can be encoded with nine 9 ququarts or 18 qubits, though
further investigations are needed to implement the quantum
gates that can project the Hilbert space to its V subspace.

III. PRIMITIVE GATE OVERVIEWS

Quantum circuits for pure gauge theories can be con-
structed out of a set of primitive gates [60] acting on one or

TABLE II. Character tables of (top) BT and (bottom) BI
including a representative element in the given conjugacy class,
where ω ¼ e2πi=3, τ ¼ ð1þ ffiffiffi

5
p Þ=2, and σ ¼ ð1 − ffiffiffi

5
p Þ=2.

BT C1 C0
1 C4 C0

4 C00
4 C000

4 C6

Order 1 2 3 3 6 6 4

χ1 1 1 1 1 1 1 1
χ10 1 1 ω ω2 ω ω2 1
χ100 1 1 ω2 ω ω2 ω 1
χ2 2 −2 −1 −1 1 1 0
χ20 2 −2 −ω −ω2 ω ω2 0
χ200 2 −2 −ω2 −ω ω2 ω 0
χ3 3 3 0 0 0 0 −1
jgi ð1

0
0
1
Þ ð2

0
0
2
Þ ð1

0
1
1
Þ ð1

0
2
1
Þ ð2

0
2
2
Þ ð2

0
1
2
Þ ð0

2
1
0
Þ

BI C1 C0
1 C30 C20 C0

20 C12 C0
12 C00

12 C000
12

Ord. 1 2 4 3 6 5 10 5 10

χ1 1 1 1 1 1 1 1 1 1
χ2 2 −2 0 −1 1 −τ τ −σ σ
χ20 2 −2 0 −1 1 −σ σ −τ τ
χ3 3 3 −1 0 0 τ τ σ σ
χ30 3 3 −1 0 0 σ σ τ τ
χ4 4 4 0 1 1 −1 −1 −1 −1
χ5 5 5 1 −1 −1 0 0 0 0
χ40 4 −4 0 1 −1 −1 1 −1 1
χ6 6 −6 0 0 0 1 −1 1 −1

jgi ð1
0
0
1
Þ ð4

0
0
4
Þ ð0

4
1
0
Þ ð0

4
1
4
Þ ð0

1
4
1
Þ ð1

0
1
1
Þ ð4

0
4
4
Þ ð1

0
2
1
Þ ð4

0
3
4
Þ
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more group element registers. The necessary gates for
simulation and extraction of observables are

(i) the inverse gate: U−1jgi ¼ jg−1i, which computes
in-place the inverse of a group element,

(ii) the trace gate: UTrðθÞjgi ¼ eiθReTrgjgi, which intro-
duces a phase based on the trace of a group element
in a particular representation and weighted by a
coupling θ which can depend on the Hamiltonian
and approximation used in time evolution,

(iii) the left multiplication gate: U×jgiijgjijanci ¼
jgiijgjijgigji. In this work, we consider a novel
definition of U× which stores the result in an ancilla
group register. The right multiplication gate, if
desired, can be defined via the U−1, and U×,

(iv) the group Fourier gate: UF
P

g fðgÞjgi ¼P
ρ f̂ðρÞijjρ; i; ji with f̂ denoting the Fourier trans-

form of f.
For qubit-based computers, we need 8 qubits to encode a

BT register and 12 qubits for BI. We will present the
primitive gates construction using five entangling gates: the
two qubit CNOT and SWAP, the three qubit CSWAP (known
as the Fredkin gate), and the multicontrolled phase CnPðϕÞ
and CnNOT quantum gates. The special case of C2NOT is
commonly called the Toffoli gate. The first three implement
the operations

CNOTjq1ijq2i ¼ jq1ijq1 ⊕ q2i ð6Þ

SWAPjq1ijq2i ¼ jq2ijq1i ð7Þ

CSWAPjq1ijq2ijq3i ¼ jq1ijq3ijq2i: ð8Þ

For the multicontrolled gates, which apply and operation to
one qubit based on the state of n − 1 others we have

CnPðϕÞjq1i…jqni ¼ jq1i…eiϕq1…qn−1 jqni ð9Þ

CnNOTjq1i…jqni ¼ jq1i…jqn ⊕ q1…qn−1i: ð10Þ

IV. PRIMITIVE GATES FOR BT AND BI

To construct the primitive gates based on block encod-
ings, we adopt the following conventions. We use paren-
theses to denote operations that return values with mod n
applied for SLð2; nÞ group. The values of matrix element
are the remainders mod n. A feature of the block encoding
is that the primitive gates for BT and BI are quite similar,
with the difference mainly arising from the modular
arithmetic. Therefore we will consider the two groups in
parallel as we construct their gates.

A. Inverse gate

For the construction of U−1, we note that the inverse g−1

is given in terms of the matrix elements of g by

g−1 ¼
�

d −b
−c a

�
; ð11Þ

From this, we see that the inverse operation corresponds to
swapping the values of a, d and flipping the sign of b, c.
Using this, theU−1 circuits can be derived and are presented
in the left of Figs. 2 and 3 for BT and BI respectively.

B. Trace gate

Our interest here is in the traces of each group elements
in the faithful representation, which are denoted by χ2 in
Table II. With one representative element in the given
conjugacy class in Table II, one can determine the other
elements in the class. This enables a derivation of the rules
for obtaining TrðgÞ in the blocking encoding. For BT, these
rules are

TrðgÞ ¼

8>>>>>><
>>>>>>:

2 if ðaþ dÞ ¼ 2 & ðc − bÞ ¼ 0

1 if ðaþ dÞ ¼ 1 & ðc − bÞ ≠ 0

0 if ðaþ dÞ ¼ 0

−1 if ðaþ dÞ ¼ 2 & ðc − bÞ ≠ 0

−2 if ðaþ dÞ ¼ 1 & ðc − bÞ ¼ 0

ð12Þ

FIG. 2. Inverse gate U−1 (left) and trace gate UTrðθÞ (right) for BT group.
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While for BI, they are found to be

TrðgÞ ¼

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

0 if ðaþdÞ ¼ 0

1 if ðaþdÞ ¼ 1

−1 if ðaþdÞ ¼ 4

2 if ðaþdÞ ¼ 2& ðc2þb2Þ ¼ 0

−τ if ðaþdÞ ¼ 2& ðc2þb2Þ ¼ 1 or 2

−σ if ðaþdÞ ¼ 2& ðc2þb2Þ ¼ 3or 4

−2 if ðaþdÞ ¼ 3& ðc2þb2Þ ¼ 0

τ if ðaþdÞ ¼ 3& ðc2þb2Þ ¼ 1 or 2

σ if ðaþdÞ ¼ 3& ðc2þb2Þ ¼ 3or 4:

ð13Þ

By inspecting these rules, one notices that to realize
UTrðθÞ, we first implement an addition operation
Uajaijbi ¼ jaijb ⊕ ai. These are constructed for BT
and BI in Fig. 4. In the case of BI, it is useful to further
define subroutines Uþn for n ¼ 1, 2 which increment
the matrix element jai to jaþ ni as shown in Fig. 5.
The operation of (b − a) can be implemented using U†

a .

With Ua, we can construct UTrðθÞ, as shown in the right of
Figs. 2 and 3 where θ depends on couplings and approx-
imations in the time evolution.

C. Multiplication gate

Moving on to U×, the multiplication of two group
elements gi and gj in terms of the matrix elements is
�
ai bi
ci di

��
aj bj
cj dj

�
¼

�
aiaj þ bicj aibj þ bidj
ciaj þ dicj cibj þ didj

�

ð14Þ
The multiplication of group elements can thus be built

from blocks ofUa and a new subroutineUp which calculate
the product of two elements (See Fig. 6). In order to leave
the matrix elements intact, ancillary qubits store the
product. One ancillary register will be required to store
each matrix element in Eq. (14). Nevertheless, to optimize
the parallelization, we actually introduce one ancillary
register for each product in Eq. (14), which doubles the
ancillary qubits required. The group multiplication circuit
U× is subsequently constructed as in Fig. 7.

D. Fourier gate

To reduce the quantum gates required for implementing
Fourier gate, we can project both BT and BI group to the
subspace satisfying the determinate constraints using cir-
cuit Uproj and ancillary qubits, which will reduce the
encoding from8 and 12 qubits to 6 and 9 qubits, respectively.

FIG. 4. Implementation of Ua for BT (left) and BI group (right).

FIG. 3. Inverse gate U−1 (left) and trace gate UTr (right) for BI group.

FIG. 5. Elementary operations Uþ1 and Uþ2 that add one and
two to a single matrix element, respectively for the BI group.
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Uproj is implemented with 4 CNOT gates, 3 CSWAP gates and
8 Tofolli gates forBT group. For theBI group,Uproj requires
8 CNOT gates, 3CSWAPgates, 8 Toffoli gates and 2Up gates.
With such projection, transforming to the Fourier basis can
be decomposed using the QISKIT transpiler. The resource
required for Fourier gate implemented this way for both
groups are shown in Table III.
UF is usually the most costly primitive gate for quantum

simulations. Future direction should consider the fast
Fourier transformation in [61] where subexponential
growth expð ffiffiffiffiffiffiffiffiffiffiffiffiffi

log jGjp Þ of the circuit depth in the group
size is possible. In particular, it should be noticed that the
Fourier transformation of BI group can be built upon that of
BT group using the following natural tower:

BI > BT > Z6 > Z3 > Z1 ¼ f1g: ð15Þ

which could simplify the constructions for the BI group
once the construction for BT is realized. It will be valuable

to realize such fast Fourier transformation and compare the
resources required with our brutal direct decomposition,
which we will leave for the future work.
With these four primitive gates, it is possible to perform a

resource estimate and compare to other implementations of
SUð2Þ. This will be done in Sec. V. Additionally, the
primitive gates for the two’s component encoding are
discussed in the Appendix. There we find that total gate
costs are similar, but given the different distribution of qubit
states, they are anticipated to have different noise robustness.

V. RESOURCE REQUIREMENTS

As T gate counts are known to require costly encodings
for error correction, it is usually used in fault-tolerent
resource analysis [62,63]. We estimate the T gates required
for simulating both BT or BI group with the block encoding
method. The Toffoli gate requires 7 T gates [62]; CnNOT
can be constructed with ð2½log2ðnþ 1Þ� − 1Þ toffoli gates
and n − 2 dirty ancilla qubits for n > 2 [62]. CnSWAP
require the same number of T gates as Cnþ1NOT, as it can
be decomposed to Cnþ1NOT and CNOTs using the sym-
metric decomposition [64]. Approximating RZ gates to the
precision of ϵwill require 1.15log2ð1=ϵÞ T gates [53], while
RX and RY can be implemented with at most three RZ gates.
CPðϕÞ requires 8 T gate and one RZ gate with one clean
ancillary qubit [65], and CnPðθÞ can be decomposed to
2ðn − 1Þ Toffoli gates and one CPðθÞ with n − 1 clean
ancilla [66]. The estimated number of T gates to realize
each primary gates are listed in Table IV.
We compare the resources required for the calculation of

the viscosity as that in [67]. The total T gate count for
certain HamiltonianH is given by NH

T ¼ CH
T × dLdNt for a

d spatial lattice simulated for a time t ¼ Ntδt [53], where
CH
T is the average number of T gates require per link per δt,

and dLd is the total number of links. We first consider the

FIG. 6. Implementation of Up for BT (left) and BI group (right).

FIG. 7. Multiplication gate U× for BT group and BI group.

TABLE III. UF decompositions for BT and BI group.

UF

RX RY RZ CNOT

BT 186 2052 3491 1941
BI 10743 131879 223044 125919

TABLE IV. Number of T gates required to realize the primary
gates.

Gate T (BT ) T (BI)

U−1 0 14
UTr 172þ 4.6 log2ð1=ϵÞ 666þ 9.2 log2ð1=ϵÞ
U× 336 3640
UF 11735.8 log2ð1=ϵÞ 748547 log2ð1=ϵÞ
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simulation of the BT group. With the primitive gates per
link per δt listed in [53], we get

CHKS
T ¼ 2102ðd − 1Þ þ ð23469.2þ 2.3dÞlog2

1

ϵ
ð16Þ

CHI
T ¼ 8994d − 7650þ ð46936.1þ 6.9dÞ log2

1

ϵ
; ð17Þ

using the Kogut-Susskind Hamiltonian HKS and the
improved Hamiltonian HI studied in [68], respectively.
With this, the total synthesis error ϵT can be estimated as
the sum of ϵ from each RZ:

ϵHKS
T ¼ 2ð10204þ dÞdLdNt × ϵ ð18Þ

ϵHI
T ¼ 2ð20407þ 3dÞdLdNt × ϵ: ð19Þ

For simulating the BI, the cost increase moderately:

CHKS
T ¼ 22215ðd − 1Þ þ ð1497090þ 4.6dÞ log2

1

ϵ
ð20Þ

CHI
T ¼ 95793d − 81205þ ð2994170þ 13.8dÞ log2

1

ϵ
;

ð21Þ
and total synthesis errors:

ϵHKS
T ¼ 4ð325454þ dÞdLdNt × ϵ ð22Þ

ϵHI
T ¼ 12ð216969þ dÞdLdNt × ϵ: ð23Þ

To calculate the shear viscosity with the total synthesis
error ϵT ¼ 10−8 on a d ¼ 3 lattice with L3 ¼ 103 for
Nt ¼ 50, finding NHKS

T ¼ 2.1× 1011 and NHI
T ¼4.2×1011.

For the ordered product method in simulating BT group
[45], the total number of T gates are estimated as 1.1 × 1011

for HKS and 4.1 × 1011 for HI. We note that HKS is
inadequate to reach the scaling regime with BT , but for
the case of HI , the T gate cost is only ∼3% higher—and in
both cases dominated by UF. With only 60% higher qubit
costs, we conclude that this encoding is comparable to
ordered product on these simple metrics, and further
analysis of other metrics like noise robustness should be
undertaken. For the larger BI group—where no ordered
product encoding currently exists—the costs increase to
NHKS

T ¼ 1.4 × 1013 and NHI
T ¼ 2.9 × 1013 T gates using

HKS and HI , respectively. But given βf ≫ βs for BI, the
increase in gate costs may be an acceptable trade-off due to
the reduced systematic error from digitization.
We can also compare the block encoding of discrete

subgroups to other digitization methods, such as LSH
formalism, in which the T gate counts has been estimated
for d ¼ 1 in [69]. For comparison, we take the finite
arithmetic precision errors to be smaller than the synthesis
error ϵT ¼ 10−8 by taking minimally n ¼ 7 steps and m ¼
42 bits to evaluate the inverse-square-root functions using

Newton’s method. We choose 5 and 7 qubits to encode one
group register in LSH to match the minimal number of
qubits that can encode BT and BI group, respectively. With
L ¼ 10, LSH will require in trotter step using singular-
value-decomposition roughly 3.9 × 107 and 4.2 × 107 T
gates for the 5 qubits and 7 qubits case, respectively, while
for the blocking encoding, BT and BI requires 1.3 × 107

and 8.0 × 108 T gates. Given this similarity in resource
costs, quantifying the systematic and statistical errors in
digitization methods becomes an important concern. In
the next section, we consider the relative resilience of the
block encoding versus the ordered producted encoding.
Additionally, a comprehensive comparision to other forms
of approximating the time evolution in LGT [33,70] are
desirable, but understanding the theoretical LGT errors
must be understood for a complete comparison.

VI. RESILIENCE TO QUANTUM ERRORS

In this section, we investigate the resilience to errors for a
single register using the block encoding and the ordered
product encoding, considering BT . Given that redundant
degrees of freedom are introduced in both encodings, one
can utilize these redundancies in QEC [54,71–82]. In the
following, we derive the error rate threshold [82] below
which the block encodingwould provide higher fidelity than
the ordered product one for a single register as more
redundancies are introduced in the block encoding. We will
take the bit-flip error as an example and consider the fidelity
as the one averagingover all group elements. Errormitigation
using post-selection remove trials affected by detectable
errors. For the error channel with only one bit-flip error N i
affecting qubit i at an error rate of ϵ, we count the number of
N i that transform the group element into forbidden state,
which are detectable errors. Using the ordered product
encoding, there are in total 16 detectableN i for all 24 group
elements, while for the block encoding, 160 N i. The lower
bound for the fidelity is the probability of no errors after
removing trials affected by these detectable one bit-flip errors

F ps
BE ≥

ð1 − ϵÞ8
1 − 160=24ð1 − ϵÞ7ϵ ;

F ps
OPE ≥

ð1 − ϵÞ5
1 − 16=24ð1 − ϵÞ4ϵ : ð24Þ

For logical error rates ϵ≲ 0.1, we found the lower bound of
the fidelity for the current encoding methods can be higher.
As postselections require resources that are exponential [83]
in system size, we also consider correcting one bit-flip error
to reduce the effects of quantum errors. The correctable one
bit-flip errors transform the group element to a forbidden
state that cannot be transformed fromother group element via
any one bit-flip error (Knill-Laflamme condition [84]).
Under this condition, when a forbidden state is seen, the
error channel can be inferred and corrected. Using the ordered
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product encoding, there are in total 0 correctableN i for all 24
group elements, while for the block encoding, 80 N i.
Correcting trials affected by correctable N i, we obtain the
lower boundof the averaged fidelity as the probabilitywith no
errors or only correctable one bit-flip errors

F cor
BE ≥ ð1 − ϵÞ8 þ 80

24
ð1 − ϵÞ7ϵ;

F cor
OPE ≥ ð1 − ϵÞ5: ð25Þ

We observe that in this situation for ϵ≲ 0.1, the lower bound
of the fidelity for the current encoding methods can bemildly
higher.

VII. EXPERIMENTAL RESULTS

Using the block encoding method, we benchmark the
fidelity of the inverse gate forBT andBI group on the Quafu
platform [85]. Given the availability, we used the Baiwang
quantum real machine on Quafu which has 144 qubits and
136 available. The qubits are arranged in a 12 × 12 lattice,
where qubits in each row are connected adjacently and
adjacent rows are connected by only 2-4 qubit connections
[85]. 8 qubits and 12 qubits are selected for the simulation of
BT and BI group, respectively, with their positions and
connectivity shown in Fig. 8. Starting from state jψ0i ¼
j0i⊗nq with nq ¼ 8ð12Þ for BTðBIÞ group, we can prepare
the initial state jgi with circuitUg: jgi ¼ Ugjψ0i. For single
states, Ug is simply a tensor product of X gates used to
initialize some qubits to j1i. Adapting to the connectivity of
the qubits chosen onBaiwang quantumchip,U−1 requiring

12 (29) CNOT gates1) is transpiled to Utrans
−1 with 18 (31–43)

CNOTs for BTðBIÞ where the number of CNOTs is counted
from the transpiled circuits. We subsequently applyUtrans

−1 to
jgi, resulting in the final state jg0i. The fidelity is defined as

F ¼ jhg−1jg0ij2 ¼ jhg−1jUtrans
−1 Ugjψ0ij2; ð26Þ

which is the probability of measuring the correct jg−1i.
We show the fidelity for each g in Fig. 8 for both BT and

BI group calculated from 5 runs, with N ¼ 5000 shots for
each run. The group element are labeled by the lexico-
graphic order in the range f0; jGj − 1g on the x-axis. We
also present the average fidelity F̄ over all group elements
in Fig. 8. The fidelity of an X gate is found to be ∼97% on
Baiwang, and CNOT gate to be around ∼95%. For the BT
case, different X gates are needed to prepare state, which
are denoted with different shapes in the upper plot of Fig. 8.
This variance in state preparation causes noticeable varia-
tions in F observed in Fig. 8.
We found that for jgi in BT , the error rate grows slightly

with number of X gates in Utrans
−1 . We can achieve F̄ ¼

40þ5
−4% for BT. These results, using 8 qubits and 18 CNOTs,

can be compared to previous ones from a 5-qubit ordered
product encoding of U−1 [45]. In that work, the transmon-
based ibm_nairobi was used, which had higher con-
nectivity and Pauli twirling was used for error mitigation.
While fewer qubits were required, the order produce

FIG. 8. Fidelity of Utrans
−1 gate of Baiwang for each group element jgi ¼ jabcdi of BT and BI, which is labeled by the lexicographic

order in the range f0; jGj − 1g. The averaged fidelity F̄ over all group elements are also shown. On the top right, the qubit graph on
Baiwang used to represent jgi for (left) BT and (right) BI respectively.

1We have decomposed the Fredkin gate to 7 CNOTs [64].
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encoding required ∼30 CNOTs. Despite these striking
differences, a fidelity of F̄ ¼ 37.0þ8

−8% was achieved. This
suggests that simplistic comparisons of digitizations on qubit
and gate counts alone are insufficient and that factors related
to available quantum hardware could be decisive in the
search for efficient digitizations.
For BI, Utrans

−1 can require varying numbers of CNOTs

depending on the transpilation, including the orders of
mappingmatrix elements to the qubits.We show the fidelities
for each group element of BI in Fig. 8 (bottom) with shapes
indicating the number of CNOTs in the transpiled circuits. As
more than 30 CNOT gates are involved, noises from CNOT

gates contribute mostly to the quantum errors which reduce
the average fidelity to only F̄ ¼ 4%. This low fidelity could
be improved by improving transpilation that reduces CNOT

counts and implementing error mitigation strategies such as
Pauli twirling which have proven effective in the past for
LGT [45,68,86–90].

VIII. CONCLUSIONS AND OUTLOOK

In this work, we introduced the block encoding
method—the general method for digitizing discrete
groups on quantum computers and developed the primi-
tive gate set for the two important discrete subgroup of
SUð2Þ, including the first implementation ever of BI. The
realization of quantum circuits for this largest crystal-like
subgroup of SUð2Þ allows simulating physics of SUð2Þ
deep into the scaling regime. Applying this digitization to
a smaller subgroup of SUð2Þ within which other digi-
tizations are also feasible, we have shown that the qubit
and T costs as well as robustness to noise are compa-
rable. By comparing experimental demonstrations of U−1
on quantum devices for different encodings, we found
that naive comparisons between digitizations based on
qubits and gates alone are insufficient, and that true
performance on a given quantum architecture must be
taken into account. Given this observation about the
importance of hardware, block encodings might favor
qudit-based quantum computer, and its quantum algo-
rithms deserve future explorations.

A number of directions for research exist following these
results. Primary is that given its predominance in the gate
costs, determination of a quantum Fourier transformation
gate within the block encoding method would be invalu-
able, as it could radically improve the resources costs.
Further, given the block encoding method separates group
registers into registers of finite fields, it may greatly benefit
from formulations on qudit-based devices similar to
[9,55,91–98]. Finally, the outstanding goal of the discrete
group approximation is the largest crystal-like subgroup of
SUð3Þ—V—which similar to BI faces obstacles in the
order product encoding. Given it is isomorphic to a
subgroup of GLð3; 4Þ, the block encoding method provides
an avenue for encoding it onto nine 9 ququarts or 18 qubits.
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APPENDIX: PRIMITIVE GATES FOR BT GROUP
WITH TWO’S COMPONENT ENCODING

In this section, we present the primitive gates for BT
group with two’s component encoding, e.g. ja ¼ 0i ¼
j00i; ja ¼ 1i ¼ j01i and ja ¼ −1i ¼ j11i. Given the

FIG. 9. Quantum circuit implementing matrix element additions and productions in F5.
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addition and multiplication table in Tables V and VI,
the quantum circuit to implement matrix element
additions Ua and productions Up are shown in Fig. 9.
The construction of the group multiplication circuit U×

is similar as Fig. 7 in the main text. The inverse and
trace operations follow the same rules as Eqs. (11) and
(12) in the main text, but with different quantum circuits
given in Fig. 10.
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