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The need to determine scattering amplitudes of few-hadron systems for arbitrary kinematics expands a
broad set of subfields of modern-day nuclear and hadronic physics. In this work, we expand upon previous
explorations on the use of real-time methods, like quantum computing or tensor networks, to determine
few-body scattering amplitudes. Such calculations must be performed in a finite Minkowski spacetime,
where scattering amplitudes are not well defined. Our previous work presented a conjecture of a
systematically improvable estimator for scattering amplitudes constructed from finite-volume correlation
functions. Here we provide further evidence that the prescription works for larger kinematic regions than
previously explored as well as a broader class of scattering amplitudes. Finally, we devise a new method for
estimating the order of magnitude of the error associated with finite time separations needed for such
calculations. In units of the lightest mass of the theory, we find that to constrain amplitudes using real-time
methods within Oð10%Þ, the spacetime volumes must satisfy mL ∼Oð10–102Þ) and mT ∼Oð102–104Þ.
DOI: 10.1103/PhysRevD.110.054503

I. INTRODUCTION

Whether one is interested in hadron spectroscopy [1–3],
hadron and nuclear structure [4,5], or precision electro-
weak processes and beyond the Standard Model (BSM)
searches [6–9], there is a broad set of motivations for
studying scattering amplitudes involving few-hadron sys-
tems. Generally speaking, in each one of these fields most
observables can be reconstructed from two broad classes of
amplitudes: purely hadronic scattering amplitudes and
amplitudes involving initial and final hadronic states that
are coupled via electroweak and/or BSM probes that can be
introduced perturbatively. In some fields, e.g. hadron spec-
troscopy, the goal is to constrain the hadronic amplitude to
search for a signal of excited states, which appear as unstable
resonances in scattering amplitudes. Another example is that
of hadronic weak decays, where the goal is to constrain
quantities such as the Cabibbo-Kobayashi-Maskawa matrix

elements [10], which are generally clouded by dominant
contributions from quantum chromodynamics (QCD).
Given the nonperturbative nature of strong interactions,

any systematic method for constraining few-hadron reac-
tions must treat the theory exactly. To this day, lattice QCD
is the only nonperturbative tool that has provided con-
straints on hadronic scattering amplitudes directly from
QCD [11]. Recent examples of the classes of scattering
amplitudes being determined via lattice QCD include
purely hadronic resonant multichannel [12–15], involving
electromagnetic currents [16–18], and three-particle scat-
tering amplitudes [19].
Since lattice QCD places the theory in a finite discretized

Euclidean spacetime, scattering amplitudes are naively
inaccessible for two reasons. First, the Euclidean nature
of the calculations generally prohibits the usage of the
Lehmann-Symanzik-Zimmermann (LSZ) reduction for-
mula to obtain scattering amplitudes directly from corre-
lation functions. Second, asymptotic states, as required in
the definition of scattering states, cannot be rigorously
defined in a finite volume.
The progress made in the field is in large part due to the

extensive and growing literature [20–64] dedicated to deriv-
ing the relation between finite- and infinite-volume observ-
ables. The most well-known example is the relationship
between two-particle finite-volume energy levels and
infinite-volume purely hadronic scattering amplitudes
[20,21]. Similarly, one can construct relations between
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finite- and infinite-volume matrix elements of external
currents [53]. To use the aforementioned finite-volume
formalism in the analysis of lattice QCD correlation func-
tions, it is also necessary to develop a parallel formalism that
describes the analytic structure of infinite-volume ampli-
tudes, which has motivated various efforts [51,65–68].
Overall, these formalisms require isolating all power-law

finite-volume effects and physical singularities of finite-
and infinite-volume correlators, respectively. Both of these
effects are due to intermediate particles going on their mass
shell. As we consider increasingly higher energies this
methodology becomes impractical due to two primary
reasons. First, as the number of particles that can go on-
shell increases, the derivation of these relations becomes
more challenging. Second, as the energy increases, the
number of singularities and, in general, the number of
degrees of freedom increase. These two issues combined
make the analysis of any scattering observable increasingly
harder and perhaps unsystematic for higher energies.
Given the aforementioned challenges, here we explore an

alternative approach for obtaining scattering amplitudes
nonperturbatively that do not require the finite-volume
formalisms mentioned above. In particular, we consider a
general and simple method for estimating infinite-volume
scattering observables from finite Minkowski spacetime
correlation functions, first introduced in Ref. [69]. This was
inspired by exciting progress on novel computing frame-
works, such as quantum algorithms [70–101] and tensor
networks [102], for studying quantum field theories in a
finite Minkowski spacetime.
The estimators presented in Ref. [69] can be built using

minimal assumptions and could be used to construct any
desired amplitudes. In Sec. II, we give a detailed definition
of these estimators. Generally speaking, the definition of
the estimators stems from the fact that any scattering
amplitude can be constructed from Fourier transforms of
time-dependent matrix elements. As is reviewed in detail in
Sec. II, in a finite volume the resultant functions have the
wrong analytic properties. However, by shifting the argu-
ments of the Fourier transform into the complex plane and
performing simple averaging over different kinematic
points, the resultant functions systematically reproduce
the desired amplitudes using volumes that are 1 to 2 orders
of magnitudes smaller than naively needed.
The main alternative to studying scattering processes via

real-time methods, which requires the formation of wave
packets that are evolved in time, was proposed by Ref. [70].
A major appeal for exploring the “wave packet approach”
is that it allows for an elegant visualization of the evolution
of scattering states. At this stage, it is conceptually clear
how this approach may be used for studying scattering
processes involving two initial wave packets. This means
that it is at least clear how to study purely hadronic
scattering processes involving two-particle states in the
initial and final states. Of course, one or both of these

particles could be a bound state, e.g. a nucleus. In other
words, the wave packet approach can give access to QCD
analogs of experimentally accessible reactions. However, it
is unclear how this procedure would be used to study two
other classes of processes. The first are reactions where the
electroweak orBSMsector can be introduced perturbatively.
The second are experimentally accessible reactions involv-
ing three or more particles in the initial and final state, which
are already being studied via lattice QCD [19]. The major
advantage of the estimators over thewave packet approach is
that they give an exact prescription to obtain any S-matrix
element of the desired theory, including reactions where
external probes can be inserted perturbatively.
Given that most of the progress in real-time methods has

been made in lower-dimensional theories, Ref. [69] focused
on the implication of estimators for amplitudes in 1þ 1D.
Accordingly, in this work, we also focus our attention on
strongly interacting systems in 1þ 1D. As a result, the
remainder of the discussion in this and other sections is
restricted to 1þ 1D, even when it is not explicitly stated.
However, it is worth emphasizing that the definitions of the
estimators do not depend on the dimensions of the
spacetime. While their predictive power can depend on
the dimensionality, in this exploratory study, we do not
consider their implications for higher dimensions.
Reference [69] paid close attention to a class of ampli-

tudes that can be generally described as “Compton-like”
amplitudes. In this type of process, a single-particle state
(φ) and a current (J ) scatter elastically, φþ J → φþ J ,
where the current can serve as a perturbative proxy for an
external field.1 The aforementioned reference showed
analytically and empirically that the finite-volume estima-
tor effectively recovers the infinite-volume amplitude in a
restricted kinematic region, where a single channel com-
posed of two particles is kinematically open.
In this work, we provide further empirical evidence of

the effectiveness of the proposed estimator in two major
ways. First, Ref. [69] explained that purely hadronic two-
particle amplitudes could be obtained from Compton-like
amplitudes using appropriately chosen currents and the
LSZ formalism. In Sec. III, we provide evidence that this is
indeed possible for obtaining not just purely hadronic
amplitudes but also transition amplitudes. Second, we
extend the work done in Ref. [69] by demonstrating that
this technique works when there are multiple channels
kinematically open. This is shown for a few classes of
examples in the same aforementioned section.
In particular, we demonstrate that one can directly

constrain elements of scattering amplitudes in the pres-
ence of any number of kinematically opened channels.

1If the current were the electromagnetic current, the resultant
amplitude would be the Compton scattering amplitude for that
scalar particle. We refer to this as a Compton-like amplitude
because the process is similar to the physical Compton process
but the current is a scalar.
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This is a major advantage over standard methods con-
straining multichannel amplitudes from finite-volume
observables [31,35,56,60,103], where there is no one-
to-one correspondence between finite- and infinite-
volume quantities. In practice, one must resort to using
parametrizations of scattering amplitudes and perform
a global analysis of quantities constrained via lattice
QCD [12–15,104–112], which results in a systematic
error associated with the parametrizations used that is
generally hard to assess.
In addition to giving further evidence to the conjecture

presented in Ref. [69], here we raise an issue that has not
been previously discussed. Although time is no longer
imaginary, the Fourier transform discussed above naively
requires the integration to be performed over all time, but
any realistic calculation can only be done for a finite
number of time separations. In Sec. IV, we use the spectral
decomposition of correlation functions to explore system-
atic errors associated with using a finite extent in time. For
the sake of simplicity, we assume that the time evolution is
continuous, although in general it will not be the case.
Using these assumptions we find that for strongly interact-
ing systems physical volumes of orders mL ∼Oð10–102Þ
and mT ∼Oð102–104Þ suffice to recover the infinite-
volume amplitudes within reasonable error, with m being
the lightest mass of the theory.

II. REVIEW OF FORMALISM

As previously discussed, in this work we show further
evidence that the estimators proposed in Ref. [69] provide a
systematically improvable quantity to access amplitudes
from real-time correlation functions. Furthermore, we use
the spectral decomposition of correlation functions to
provide empirical estimates of the order of magnitude of
the size of volumes and times needed to study scattering
amplitudes.
First, we review the relevant concepts of scattering

theory and the finite-volume formalism. The results pre-
sented in this section, which have been previously derived
in the literature, only assume that the kinematics are such
that only two-particle states can go on shell.

A. Infinite-volume formalism in 1 + 1D

First, we review the analytic properties of purely
hadronic amplitudes (M), transition amplitudes (H), and
Compton-like amplitudes (T ). The results presented here
follow from Refs. [65,66]. The only subtlety in relating the
results here with what is in the literature is the fact that we
only consider 1þ 1D spacetime, while the literature
normally focuses on amplitudes in 3þ 1D spacetime.
This results in the kinematic functions being different,
but these were derived in our previous work [69].
As detailed in Refs. [65,66], in a given kinematic region,

all kinematic singularities in the amplitudes can be isolated

exactly. As a result, one can write amplitudes in terms of
known singular functions and generally unknown real
functions that encode all of the dynamics. We first discuss
the results for kinematics where only one intermediate
channel can go on shell, and we then quickly lift this
assumption to allow any number of channels. For simplic-
ity, we always assume that the channels are composed of
spinless identical bosons.

1. Single-channel case

Consider the center-of-momentum (c.m.) energy region
2m <

ffiffiffi
s

p
<

ffiffiffi
s

p
th, where s is the Mandelstam variable, andffiffiffi

s
p

th is the first unaccounted threshold. This could be a
threshold associated with two or more particles, depending
on the details of the theory and the channel. In this
kinematic region, only the desired two-particle state can
go on shell. Following the steps presented in Ref. [65], one
can write the on-shell representation of the two-particle
scattering amplitude in terms of the two-particle phase
space (ρ), and an unknown real function, referred to as the
K matrix (K),

MðsÞ ¼ 1

KðsÞ−1 − iρðsÞ : ð1Þ

The phase space for two identical particles in 1þ 1D is
given by

ρðsÞ ¼ 1

8
ffiffiffi
s

p
k⋆

; ð2Þ

where k⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

p
is the magnitude of the c.m. frame

relative linear momentum between two identical particles.
The square root in the definition of k⋆ is the one kinematic
singularity present in the amplitude in this c.m. energy
region. All other singularities, e.g. bound states and reso-
nance poles, are dynamically generated by the K matrix.
In this samekinematic region, transition processes between

one- and two-particle states involving a single current
insertion can be described in terms of Eq. (1) and real-valued
energy-dependent form factor function. Following the
Lorentz decomposition of amplitudes, depending on the
current considered, there might be multiple form factors.
In this work, we assume the current is a Lorentz scalar, which
assures that there is only one energy-dependent form factor.
To write a matrix element representation for these

amplitudes, we need to define the current and the states.
Let J ðxÞ be a local scalar current defined at an arbitrary
spacetime point x. The infinite-volume states for a single
particle carrying momentum p ¼ ðωp;pÞ are labeled jpi.
They have the standard relativistic normalization hpjki¼
2ωpð2πÞδðp−kÞ, where ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p
. The two-particle

states, which can be constructed from the one-particle
states, are simply written as jP; 2i, where P ¼ ðE;PÞ is the
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total spacetime momentum of the system, and it is related to
s by s ¼ P2.
With this, we can write the transition amplitude for

this case in terms of M, and an energy-dependent form
factor (A), as [65]

Hðs;Q2Þ ¼ hP; 2jJ ð0Þjpi ¼ Aðs;Q2ÞMðsÞ; ð3Þ

where Q2 ¼ −q2 ¼ −ðP − pÞ2 is the so-called virtuality of
the process and q ¼ P − p is the momentum transfer. The
key point of Eq. (3) is that the physical singularities and
consequently the phases of the transition amplitude are all
encoded in M. Note that this is equivalent to Watson’s
theorem [113].
Similarly, in this same kinematic region, the on-shell

representation for Compton-like scattering amplitudes can
be written in terms of M and purely real and smooth
functions [66]. We only consider processes involving the
previously introduced scalar currents and particles. With
this, we can write the on-shell projection for the Compton-
like amplitude as [66]

T ðs; u;Q2; Q2
ifÞ ¼ wðs; u;Q2; Q2

ifÞ þAðs;Q2ÞMðsÞ
×Aðs;Q2

ifÞ þ ½s ↔ u�; ð4Þ

where w is a new unknown smooth function, pf (pi) is the
momentum of the final (initial) single-particle state, and
q ¼ ðq0;qÞ is the momentum of one of the currents, so
s ¼ ðpf þ qÞ2 and u ¼ ðpi − qÞ2 are the Mandelstam
variables, with Q2 ¼ −q2 and Q2

if ¼ −ðpf þ q − piÞ2
being the virtualities of the two currents. The third term
of Eq. (4), ½s ↔ u� is obtained by reevaluating the second
term on the rhs but with the Mandelstam variable u and
exchanging Q2 ↔ Q2

if. The relation between s and u is
detailed in Sec. IV B.
In what follows it will be necessary to consider a

complementary representation of the Compton-like ampli-
tude in terms of time-dependent matrix elements of the
currents,

T ðs;u;Q2;Q2
ifÞ≡ i

Z
d2xeiq·xhpfjTfJ ðxÞJ ð0Þgjpii; ð5Þ

where the integral runs over all of spacetime and T
indicates the time ordering of the currents. It is worth
emphasizing that it is this presentation that is most
amenable to real-time computations. In principle, one
can envision constructing single-particle states. After doing
so, one can evaluate such matrix elements by repeatedly
inserting currents at different points in spacetime. Formally,
the integral runs over an infinitely large spacetime. The fact
that this is impossible in practice is the main focus of
this work.

In what follows, we will make use of the relationship
between M, H, and T , which follows from the LSZ
reduction formula. In particular, consider a current J that
has the same quantum numbers as the single-particle state.
Amplitudes involving these current insertions must have
poles as functions of their virtuality at the mass of the
particle, i.e. Q2 → −m2.
From LSZ, one can relate the residues of these poles with

other physical amplitudes. For example, the residue of the
H amplitude in the vicinity ofQ2 ∼ −m2, is proportional to
M. In particular,

MðsÞ ¼ lim
Q2→−m2

ðQ2 þm2Þ
h0jJ ð0ÞjpiHðs;Q2Þ ð6Þ

where h0jJ ð0Þjpi is the vacuum–to–one particle matrix
element, or equivalently the decay constant of the single-
particle state. Equation (6), in conjunction with Eq. (3),
implies that the A function satisfies

lim
Q2→−m2

ðQ2 þm2Þ
h0jJ ð0ÞjpiAðs;Q2Þ ¼ 1: ð7Þ

Similarly, one can recover the H function from the T
amplitude,

Hðs;Q2Þ¼ lim
Q2

if→−m2

ðQ2
ifþm2Þ

hpfþq−pijJ ð0Þj0iT ðs;Q2;Q2
ifÞ;

ð8Þ

and consequently also the M amplitudes from T ,

MðsÞ ¼ lim
Q2;Q2

if→−m2

ðQ2 þm2ÞðQ2
if þm2Þ

h0jJ ð0Þjqihpf þ q − pijJ ð0Þj0i
× T ðs;Q2; Q2

ifÞ: ð9Þ

These relations are used in Sec. III B to construct an
estimator for the two-particle scattering amplitude as well
as the transition amplitude.

2. Multiple-channel case

The generalization of these identities to kinematics
where any number of two-particle states can go on shell
is straightforward. For this scenario, we label the masses of
the particles in the ath channel as ma, with the lowest
possible mass being m1. With this, we can define the
kinematic restriction for the following expressions as
2m1 ≤

ffiffiffi
s

p
<

ffiffiffiffiffiffi
sth

p
, where once again

ffiffiffiffiffiffi
sth

p
is the first

unaccounted threshold. In Sec. III, we consider models
where there are only two-particle states. As a result, it will
effectively be the case that

ffiffiffiffiffiffi
sth

p
→ ∞.

The equations above can be easily generalized by
making the different building blocks either matrices or
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vectors in channel space [31,35,56,58]. For example, the
phase space in Eq. (2) is replaced by the diagonal matrix

ρabðsÞ ¼
δab

8
ffiffiffi
s

p
k⋆a

; ð10Þ

where k⋆a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

a

p
. Meanwhile, M and H become a

matrix and vector, respectively,

MabðsÞ ¼ ½KðsÞ−1 − iρðsÞ�−1ab ; ð11Þ

Hbðs;Q2Þ ¼ Aaðs;Q2ÞMabðsÞ; ð12Þ

where in the last equality repeated indices are summed
over. From these equations, it is clear that K andA are also
a matrix and vector, respectively, in channel space. The
elements of M in Eq. (11) describe purely hadronic
scattering between two particles of types “a” and “b.”
Similarly, the elements ofH describe the transition between
a single-particle state coupled with the scalar current into
two particles of type “b.” For simplicity, we fix the single-
particle state to be of type “1.” As we discuss below, this
assumption can be easily lifted to consider arbitrary
scattering amplitudes.
Irrespective of the kinematics, the Compton-like scatter-

ing amplitudes are by definition scalars in channel space.
This is because their external states are fixed as one scans in
energies. That said, the building blocks in Eq. (4) change as
one allows for the kinematics of additional channels to
open. Given Eqs. (11) and (12), it is hopefully evident that
the generalization of Eq. (4) for these kinematics is

T ðs; u;Q2; Q2
ifÞ ¼ wðs; u;Q2; Q2

ifÞ þAaðs;Q2Þ
×MabðsÞAbðs;Q2

ifÞ þ ½s ↔ u�: ð13Þ

Although this expression holds for any external one-
particle states, here we assume that the external particles
are of type “1.” In other words, the matrix-element
representation shown in Eq. (5) holds for arbitrary kin-
ematics. The only restriction is that the momenta of the
external particles satisfy p2

i ¼ p2
f ¼ m2

1.
As in the single-channel case, one can use the LSZ

reduction formula to go from T toH, and fromH toM as
shown above. In what follows wewill fix the current to only
have the quantum number of one of the particles in channel
1. In other words, we give a label “a” to the single-particle
states associated with the type of particle, jk; ai; then

hk; ajJ ð0Þj0i ¼ δa1hk; ajJ ð0Þj0i: ð14Þ

With this, we can write the relevant relations to obtain the
H1 andM11 components of the corresponding amplitudes,

M11ðsÞ ¼ lim
Q2→−m2

1

ðQ2 þm2
1Þ

h0jJ ð0Þjp; 1iH1ðs;Q2Þ; ð15Þ

H1ðs;Q2Þ¼ lim
Q2

if→−m2
1

ðQ2
ifþm2

1Þ
hpfþq−pi;1jJ ð0Þj0iT ðs;Q2;Q2

ifÞ;

ð16Þ

which are simple generalizations of Eqs. (6) and (8),
respectively. This puts tight constraints on the residue of
Ab at the pole. Although Ab is generally a vector, at its
pole, it must satisfy

lim
Q2→−m2

1

ðQ2 þm2
1Þ

h0jJ ð0Þjp; 1iAbðs;Q2Þ ¼ δb1: ð17Þ

One can easily generalize this to obtain any components
of the various amplitudes by choosing the external single-
particle states and currents appearing in Eq. (5) to have the
quantum numbers of the desired external two-particle
states.
More generally, one can use this procedure to construct

scattering amplitudes involving any number of external
legs. For example, if one wants a purely hadronic amplitude
involving n=n0 particles in the initial/final state, one can do
this by evaluating matrix elements of nþ n0 − 2 currents
between an initial and a final single-particle state, where the
currents are defined to have the quantum number of the
desired particle. One would then need to perform nþn0−3
Fourier transforms. From the resultant amplitude, one can
isolate the residues from the nþ n0 − 2 poles, which would
be proportional to the n → n0 hadronic amplitude.

B. Finite-volume formalism in 1 + 1D

Having reviewed the infinite-volume on-shell represen-
tation of the scattering amplitudes, for both single- and
multiple-channel systems, we now proceed to discuss the
analogous finite-volume amplitudes ML, HL, and T L.
Strictly speaking, scattering amplitudes are not well defined
in a finite volume, but these are functions that, in a carefully
defined infinite-volume limit, coincide with physical scat-
tering amplitudes. The literature focuses on finite-volume
amplitudes in 3þ 1D (see for example Refs. [25,60–63]),
but as we showed in Ref. [69], it is straightforward to
rewrite these results in 1þ 1D. The difference amounts to
deriving some geometric functions for the dimensions of
the considered spacetime.
Before going over the existing formalism, it is important

to summarize the key principles behind them. Themain idea
is that one can always isolate the power-law finite-volume
effects exactly. These typically arise from intermediate
multiparticle states going on shell. Generally, power-law
effects of finite-volume amplitudes can be determined
nonperturbatively using an effective field theory represen-
tation skeleton expansion [25]. The resulting expressions are
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correct up to theOðe−mLÞ errors, wherem is the mass of the
lightest particle in the theory andL is the spatial extent of the
volume. Thismeans that for sufficiently largevolumes, these
errors can be safely ignored, and we do so in this work.
Ultimately, the finite-volume amplitudes can be expressed in
terms of finite-volume geometric functions and the infinite-
volume scattering observables associated with the physical
subprocesses, all of which were introduced in the previous
section. Within the class of amplitudes and in the kinematic
regions considered, only one type of these finite-volume
geometric functions is required.

1. Single-channel case

Let us begin by defining the finite-volume amplitudes for
kinematics where only a single channel is open. We use the
same convention for labeling masses of the particle in a
given channel that we introduced in the previous section. In
other words, in the case where there is a single channel like
here, we fix the particles to be identical with mass m.
For the case with an arbitrary number of channels, we label
the mass with the channel number. Similarly, we keep the
same assumption previously imposed on the c.m. energy.
As a result, the only new feature in this section is the
presence of a finite volume of size L. Imposing periodic
boundary conditions, the linear momenta take discrete
values p ¼ 2πd

L , with d being an integer. Here we ignore
effects associated with the temporal extent (T). Finite-T
effects will be covered in Sec. IV.
In this work, all power-law finite-volume effects can be

encoded in a single kinematic function (F), which depends
on the total energy-momentum P ¼ ðE;PÞ and L. This
function is known exactly and can be derived by evaluating
the difference between the finite- and infinite-volume
s-channel two-particle loop. For two spinless identical
bosons in 1þ 1D, this function is given by the sum-
integral difference,

FðE;P;LÞ¼ lim
ϵ→0þ

1

2

�
1

L

X
p

−
Z

dp
2π

�
1

2ωp

1

ðP−pÞ2−m2þ iϵ

¼ iρðsÞþρðsÞcot
�
1

2
ðγLk⋆ −dπÞ

�
; ð18Þ

where γ ¼ E=
ffiffiffi
s

p
, and d ¼ LP

2π . This form of F is equivalent
to Eq. (22) in Ref. [69].2

Given F and M, one can find a closed-form expression
for the finite-volume analog of M; thus

MLðE;PÞ ¼
1

MðsÞ−1 þ FðE;P; LÞ : ð19Þ

One key observation is that the finite-volume function
depends on the energy and momentum of the system, while
the infinite-volume amplitude is a Lorentz scalar depending
only on s. This dependence will be key in what follows. We
choose to emphasize the L dependence in the name of the
function, rather than within its arguments, to clearly
distinguish it from the infinite-volume amplitude.
Similarly, one can define the finite-volume analog of the

transition amplitude. Considering the same scenario pre-
viously discussed, where the current and all the particles
involved are scalars, the finite-volume transition amplitude
can be compactly written as

HLðE;P; Q2Þ ¼ Aðs;Q2ÞMLðE;PÞ: ð20Þ

It is interesting to note that, as shown in Eq. (3) in the
infinite-volume size, the singularities of the transition
amplitude H are given by those of M. In a finite volume,
we see that the power-law finite-volume effects of HL are
given by ML.
Finally, as derived in Ref. [63], the corresponding finite-

volume amplitude for Compton-like scattering is

T Lðpf;q;piÞ¼wðs;u;Q2;Q2
ifÞþAðs;Q2Þ

×MLðEfþq0;pfþqÞAðs;Q2
ifÞþ½s↔u�;

ð21Þ

where the momenta pf, q, and pi and ½s ↔ u� are the same
as in Eq. (4). Once again, there is a close parallel between
the infinite-volume amplitude T , in Eq. (4), and the finite-
volume amplitude counterpart. Basically, one recovers the
latter from the former by making the simple replace-
ments M → ML.
We started this section by stating that in a finite volume,

scattering amplitudes are not well defined. One is naively
tempted to use Eqs. (19)–(21) as a working definition
of finite-volume amplitudes. As discussed in detail in
Ref. [69], the finite-volume amplitudes are purely real
sums of poles. Meanwhile, infinite-volume amplitudes are
complex-valued functions with branch-cut singularities.
This disparity is a manifestation of the previous statement.
Just as in the infinite-volume case, one can write a

matrix-element representation of T L,

T Lðpf;q;piÞ≡ i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpf

ωpi

p
L
Z

T=2

−T=2
dt
Z

L

0

dxeiq·x−jtjϵ

× hpf;LjTfJ ðxÞJ ð0Þgjpi;Lijϵ¼0; ð22Þ

where jp; Li is a single-particle state in a finite volume with
momentum p, normalized as hp;Ljq; Li ¼ δpq. Note that
we have introduced an ϵ to regulate the integral, which is
taken to zero after integration. In Sec. II C, we will make
this ϵ explicit in the definition of the estimators. This is the
same definition presented in Ref. [69], except that we have

2Using the expressions and notation of Eq. (22) in Ref. [69],
the equivalence with Eq. (18) can be seen by first noting that for
identical particles Lγω⋆

q β ¼ LPω⋆
q =E⋆ ¼ πd. One can then use

standard trigonometric identities to show the equality.
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truncated the time extent of the integral. This reflects the
fact that in practice the number of measurements for which
one can evaluate these matrix elements will have to be
finite. As a result, the time will have to be truncated.
The fact that the finite-volume amplitudes are real for

real energies can be seen from the definitions of M and F
from Eqs. (1) and (18). The poles in ML coincide with the
spectrum of the two-particle states in a finite volume. With
this in mind, for a given boost (P) and L, the spectrum of
energies of such states is given by

MðsnÞ−1 þ FðEn;P; LÞ ¼ 0; ð23Þ

where
ffiffiffiffiffi
sn

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n − P2

p
. Equation (23) is the 1þ 1D,

single-channel version of the so-called Lüscher quantiza-
tion condition [69].

2. Multiple-channel case

Having seen in Sec. II A 2 how the analytic expression
for single-channel scattering amplitudes can be easily
generalized to kinematics where an arbitrary number of
channels can go on shell, it is not hard to see how this can
be done for finite-volume amplitudes. In short, this can be
done by upgrading every building block to either a vector or
matrix in the number of open channels.
The only new building block is the finite-volume F

function. When multiple channels are open, the F function
becomes a diagonal matrix over these channels, with matrix
elements

FabðE;P; LÞ ¼ iρabðsÞ þ ρabðsÞ cot
�
1

2
ðγLk⋆a − dπÞ

�
:

ð24Þ

In this case the exponentially suppressed finite-volume
corrections scale, at worst, as Oðe−m1LÞ, with m1 being the
mass of the lightest particle.
With this, we can immediately write the generalization of

the various finite-volume amplitudes, which we summarize
here

MLabðE;PÞ ¼ ½MðsÞ−1 þ FðE;P; LÞ�−1ab ; ð25Þ

HLbðE;P; Q2Þ ¼ Aaðs;Q2ÞMLabðE;PÞ; ð26Þ

T Lðpf;q;piÞ¼wðs;u;Q2;Q2
ifÞþAaðs;Q2Þ

×MLabðEfþω;PÞAbðs;Q2
ifÞþ ½s↔ u�:

ð27Þ

The previous statements made about the singularity of
the finite-volume amplitudes persist even when an arbitrary
number of channels can go on shell. In particular, the
singularities of these are given by the more general form of

the Lüscher quantization condition [31,56],

det ½1þMðsnÞFðEn;P; LÞ� ¼ 0; ð28Þ

where the determinant is taken over the channel space.

C. Review of estimators

In Ref. [69] we presented a proposal for recovering the
infinite-volume Compton-like amplitude from real-time
finite-volume correlation functions. This procedure con-
sists of constructing an estimator for the amplitude ðT̄ Þ
based on three key ingredients, each of which we
describe below:
(1) Finite ϵ prescription.
(2) Lorentz invariance.
(3) Energy binning/averaging.

From this, we use the LSZ formalism to define estimators
for the transition (H̄) and hadronic (M̄) amplitudes.
Parting from the finite-volume matrix elements in

Eq. (22), we can proceed to review the proposed estimator.
First, we need to introduce a small but finite imaginary term
into the integral that dampens the integrand as jtj becomes
large,

T Lðpf; q; pi; ϵÞ≡ i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpf

ωpi

p
L
Z

T=2

−T=2
dt
Z

L

0

dx eiq·x−jtjϵ

× hpf; LjTfJ ðxÞJ ð0Þgjpi; Li: ð29Þ

This is equivalent to shifting the energy of the finite-volume
amplitude slightly away from the real axis, where the finite-
volume poles lie, thereby softening these singularities.3

It is important to emphasize that by accessing time-
dependent matrix elements and performing Fourier trans-
forms, as dictated by Eq. (29), one has complete analytic
control of the values of q that would be accessed, including
time-like values. This is a necessary condition to analyti-
cally continue to the single-particle poles of the amplitudes
and apply the LSZ reduction formula.
Analytically continuing the finite-volume amplitudes

into the complex plane allows for a more direct comparison
between T L and T . In fact, as shown in Ref. [69], the
infinite-volume amplitude can in principle be recovered
from the ordered limits

T ðs; u;Q2; Q2
ifÞ ¼ lim

ϵ→0
lim
L→∞

T Lðpf; q; pi; ϵÞ: ð30Þ

However, implementing this limit would require prohibi-
tively large volumes for reasonable estimates of the infinite-
volume amplitudes.
The next step is to exploit the symmetry of the infinite-

volume amplitude, which is a Lorentz scalar that can only

3Note that in Eqs. (22) and (29) we use the same symbol to
describe the ϵ-independent and ϵ-dependent amplitude.
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depend on kinematic invariants. In contrast, the finite-
volume amplitude is not a Lorentz scalar. However, for a
given volume there is a number of finite-volume momenta
ðpf;q;piÞ that can be mapped to the target invariants (Q2,
Q2

if, s, u) of the desired amplitude. The key observation
presented in Ref. [69], is that by averaging over the finite-
volume kinematics that are approximately close to the
target variables, the finite-volume artifacts are significantly
dampened.
Let us focus our attention on a set of external momenta

that results in the c.m. energy being within the kinematic
region of interest, 2m <

ffiffiffiffi
s0

p
<

ffiffiffi
s

p
th. Within this set, there

is a smaller set that would have virtualities Q02 and Q02
if

close to their targeted values. With this in mind, we average
the finite-volume amplitudes that have momenta within the
set of kinematic points that satisfy the following con-
straints:

jQ2−Q02j<ΔQ2 ; jQ2
if−Q02

ifj<ΔQ2 ; j ffiffiffisp
−

ffiffiffiffi
s0

p
j<Δ ffiffi

s
p ;

ð31Þ

where ΔQ2 and Δ ffiffi
s

p are generally small quantities whose
exact value may in general depend on the dynamics of the
system.
This averaging has two effects. First, it effectively

constructs wave packets with energies centered aroundffiffiffiffi
s0

p
. Second, it enhances the symmetry of the resultant

estimator, which further dampens the finite-volume effects.
Letting N be the total number of kinematic points that

satisfy Eq. (31), the proposed estimator for the Compton-
like amplitude is defined as,

T̄ ðs; u;Q2; Q2
ifÞ ¼

1

N

X
L

X
pf;q;pi

T Lðpf; q; pi; ϵÞ: ð32Þ

As mentioned above, we can use this Compton-like
estimator in conjunction with the LSZ reduction formula to
define estimators for transition and purely hadronic ampli-
tudes, H̄ and M̄, respectively. For the transition amplitude,
we can use Eq. (8) to define its estimator,

H̄ðs;Q2Þ ¼ 1

N

X
L

X
pf;q;pi

ðQ02
if þm2Þ

hpf þ q − pijJ ð0Þj0i
× T Lðpf; q; pi; ϵÞ; ð33Þ

where the average is over the set of kinematic points
close to the on-shell value Q2

if ∼ −m2 within the criteria
defined above.
Similarly, by also fixing the target virtuality of the

outgoing current as Q2 ∼ −m2, an estimator for the purely
hadronic scattering amplitude can be constructed as

M̄ðsÞ ¼ 1

N

X
L

X
pf;q;pi

ðQ02 þm2ÞðQ02
if þm2Þ

h0jJ ð0Þjqihpf þ q − pijJ ð0Þj0i
× T Lðpf; q; pi; ϵÞ: ð34Þ

Notice that in both cases the pole subtraction is made in
terms of the parameters Q02 or Q02

if, determined from given
kinematic variables, and not in terms of the target virtual-
ities. In other words, Q02 and Q02

if are evaluated inside the
sum. Empirically we have found that this definition
improves the estimator for the residue at the pole. This
could be interpreted as each element in the sum having a
well-defined limit as one approaches the pole.

III. NUMERICAL INVESTIGATION
OF ESTIMATORS FOR AMPLITUDES
ASSUMING INFINITE TIME EXTENTS

As reviewed in Sec. II B, the finite-volume Compton-like
scattering amplitude, which is used to construct the
estimators, can be parametrized using a finite number of
real-valued functions,K,A, and w. To provide estimates of
the resources needed for real-time calculations, we resort to
using parametrizations of these functions. This allows us to
compare finite-volume estimators to the infinite-volume
amplitudes.
Section III A presents our parametrization of the kin-

ematic functions. In Sec. III B we test the estimators H̄ and
M̄ for systems with a single coupling channel. Then in
Sec. III C, we test the estimators for systems with multiple
coupling channels. This last case is considered only for T̄
and M̄ since the implementation for H̄ can be thought of as
a middle step in LSZ reducing Compton-like amplitudes to
purely hadronic amplitudes.
Overall, we observe that a numerical implementationof the

LSZ reduction formula in the presence of any number of
coupling channels does not require us to use volumes of a
different order than those considered in Ref. [69] while
keeping a good correspondencewith the physical amplitudes.
Throughout this section, we only consider the s-channel

contribution to the Compton-like scattering amplitude. As
we discuss in Sec. IV, including the u-channel contribution
for these amplitudes is straightforward, and it does not
change the estimates for the resources needed.

A. Parametrization considered

We use different models to test the effectiveness of the
estimators in recovering the infinite-volume amplitudes. To
set these models we use a reasonably flexible parametriza-
tion of the K matrix which is smooth up to a simple pole
singularity,which results in a resonant amplitude. Generally,
the K matrix is a symmetric matrix over channels, and we
consider the following parametrization for each element:
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KabðsÞ ¼ mambk⋆21

�
gagb

m2
R − s

þ hð0Þab ðsÞ
�
; ð35Þ

where ga andmR are constants, and h
ð0Þ
ab is a polynomial in s.

The overall k⋆21 factor in Eq. (35) ensures that the K matrix
vanishes at the first threshold.
For Aa we consider classes of parametrizations of the

form

Aaðs;Q2Þ ¼ 1

hð2Þa ðQ2Þ

 
hð1Þa ðQ2Þ
Q2 þm2

þ hð3Þa ðs;Q2Þ
!
; ð36Þ

where the hðiÞa are polynomials in s and/or Q2. For
simplicity, we consider Q2

if ¼ Q2. In general, one can
choose Q2 and Q2

if to take on any independent values.
Given we are just modeling amplitudes, there is flexi-

bility in the parametrizations that can be considered for the

hðiÞa polynomials. An important condition in what follows is
the fact that Aa must satisfy the limit placed by the LSZ
reduction formula; see Eq. (17). In other words, the residue
at the pole must be proportional to a Kronecker δ function.
Since we only consider the case where the external particles

are of type “1,” this implies that hð1Þa ∝ δa1.
As previously emphasized in Ref. [69], the source of

tension between finite- and infinite-volume amplitudes is
due to the difference between their singular structure. Given
this and the fact that the function w is generally a smooth
function in the kinematic region considered, we fix it to
zero. This condition, along with the parametrizations in
Eqs. (35) and (36) set the models used to test the estimators.
For systems with multiple coupling channels, each of

these is defined through channel-space tuples of coupling
constants g and massesm. If only single values of g and m
are given, then all of the kinematic equations are assumed
to be scalar objects and a single coupling channel is being
considered.

B. Estimators for single-channel systems

In our investigation, we consider a broad class of
examples. Here we show results for H̄ and M̄ for two
illustrative example cases defined as:
(1) Model 1)hð1ÞðQ2Þ ¼ 0.5m2, hð2ÞðQ2Þ ¼ 1, and

hð3Þðs;Q2Þ ¼ 0.
(2) Model 2) hð1ÞðQ2Þ¼m2−Q2, hð2ÞðQ2Þ ¼ 5Q2=m2,

and hð3Þðs;Q2Þ ¼ 1 − 0.2s2=m4.
In both cases, the K matrix is set by g ¼ 2.5, mR ¼ 2.5m,
and hð0Þ ¼ 0. For both cases, the pole of the A function
corresponds to a particle of mass m, which ensures that
both the transition and Compton-like amplitudes have
single-particle poles. This also implies that for these
models, the hadronic amplitudes are the same while the
transition and Compton-like amplitudes are different.

The volumes considered in the boost averaging are
mL ¼ 20, 25, 30. We consider any kinematics capped
within ΔQ2 ¼ 0.05m2 and Δ ffiffi

s
p ¼ 0.05m as in Eq. (31). To

replicate the effect of the infinite-volume limit, Eq. (30), the
ϵ prescription is tied to the volume size by ϵ ¼ 1=ðL ffiffiffiffiffiffiffi

mL
p Þ.

These choices are somewhat arbitrary since there are many
other choices in binning and ϵ that would yield comparable
results.
The numerical results of the estimators for both cases are

presented in Fig. 1. The top panels show the estimator M̄
along with the corresponding infinite-volume amplitude
M. The middle panels show the equivalent result for H̄.
For each quantity, we show the mean value as well as the
error on the mean. The horizontal errors represent the
width of the c.m. energy bins used to define the estimator.
Model 1) is shown in red while Model 2) appears in blue.
Below each panel, we show a measure of the systematic

error of amplitude. For the hadronic amplitude it is defined as

σðsÞ≡ 100 ×
jM̄ðsÞ −MðsÞj

MðsÞ : ð37Þ

Similar definitions are used forH and T . This measures the
systematic deviation of the estimator away from the value of
the target amplitude. In the figures, we also show the
propagated statistical uncertainty onto the definition of σ.
This provides a useful visualization to compare the

systematic versus statistical error of an estimator. For
example, if the error on σ is greater than or equal to its
mean value, one can conclude that the physical amplitude is
being recovered within one standard deviation of the
quoted statistical error. Otherwise, the opposite is true.
The bottom panels show the infinite-volume Compton-

like amplitude for each case. Different values of Q2

approaching the on-shell limit from the left, Q2 → −m2,
are considered across the columns.
Broadly speaking, the results can be summarized as

follows. Away from the singularities of the amplitude, i.e.
the threshold and the dynamical enhancement driven by a
nearby resonance, the estimators reproduce the amplitudes
for the different models relatively well. As the virtuality of
the current gets increasingly close to the pole, the agree-
ment slightly worsens. This is consistent with what was
presented in Ref. [69], where it was shown that at the pole
the hadronic amplitudes will be systematically off. As a
result, we find that the convergence improves if one
averages over a set of points around the single-particle
pole. Finally, as expected, following this procedure we
recover the same hadronic amplitudes for the two models.

C. Estimators for coupled-channel systems

We also consider a broader set of parametrizations
involving coupled-channel systems. The two illustrative
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examples we report involve two and four open channels
set by:
(1) Model 1): m=m1 ¼ ð1; 1.375Þ, g ¼ ð2.5; 1.25Þ, and

hð1ÞðQ2Þ=m2
1 ¼ ð1; 0Þ.

(2) Model 2): m=m1¼ð1;1.3;1.4;1.5Þ, g¼ð2.5;1.5;
1.25;0.985Þ, and hð1ÞðQ2Þ=m2

1 ¼ ð1; 0; 0; 0Þ.
In both cases we have hð2Þa ¼ 2Q2=m2, hð3Þa ¼ 0, hð0Þab ¼ 0.
For simplicity, all other parameters are fixed to be the same
as above, and the incoming and outgoing target virtualities
are kept equal, Q2

if ¼ Q2.
The estimators for purely hadronic and Compton-like

scattering amplitudes in the presence of multiple open
coupling channels are presented in Figs. 2 and 3. Note that
M is now a matrix over channels, and we only show the
results for M11.
The conclusion from these figures is the same as for

the single-channel case. Namely, for the setup considered
the estimators do a reasonable job of reproducing the
amplitudes. The main discrepancy lies near the various
singularities, where the estimator struggles to faithfully
reproduce the amplitudes. In these scenarios, we have

more threshold singularities, and as can be seen from
Figs. 2 and 3, the estimators seem to struggle to resolve
these kinematic singularities.
As in the single-channel case, as one approaches the

single-particle pole in the Compton-like amplitude, there
seems to be a golden window for being able to reasonably
reconstruct the hadronic amplitude. If one gets too far or
too close to the pole, one introduces larger systematic
errors. Nevertheless, the hadronic amplitudes seem to be
well constrained for most kinematic points for the models
considered.
As a result, it is safe to conclude that the proposed

estimators presented in Ref. [69] work equally well
independent of the number of open channels present.

IV. THE ROLE OF FINITE-TIME EFFECTS

So far, we have discussed the estimators built under the
assumption that T → ∞. In this section, we lift this
assumption and show the effects that finite-T conditions
have on the estimator T̄ .

FIG. 1. From top to bottom: purely hadronic, transition, and Compton-like amplitudes. The definition of σ is given in Eq. (37). The
dots represent the numerical results for the estimators while the solid lines are the infinite-volume amplitudes. Model 1 is displayed in
red with a slight offset to the right.Model 2 is displayed in blue with a slight offset to the left. Both cases are detailed in the text. From left
to right, the estimators are computed for virtualities approaching the limit Q2 → −m2, with Q2

if ¼ Q2.
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A. A spectral representation
for Compton-like amplitudes

To investigate the T dependence of the estimators we
begin by rewriting Eq. (29) using the spectral decom-
position of the matrix elements and evaluating the
integral over time analytically. In the models we have

considered the local current exclusively couples the
external single-particle to two-particle states. With
this in mind, we need to insert a complete set of
finite-volume two-particle states between the two cur-
rents. For example, for t > 0, the matrix element takes
the form

FIG. 3. The same quantities as in Fig. 2 for the second coupled-channel model, defined in the text as Model 2. This has four open
kinematic channels with masses defined by m=m1 ¼ ð1; 1.3; 1.4; 1.5Þ.

FIG. 2. Compton-like (top) and hadronicM11 (bottom) amplitudes forModel 1, as described in the text. There are two kinematically
open channels corresponding to masses defined by m=m1 ¼ ð1; 1.375Þ. The different symbols are the same as in Fig. 1. The region
where the second channel opens up is highlighted in the inset. In all cases we fix Q2

if ¼ Q2.
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hpf; LjJ ðxÞJ ð0Þjpi; Li
¼
X
ðEn;PÞ

eiðpf−pnÞ·xhpf; LjJ ð0ÞjPn; L; 2i

× hPn; L; 2jJ ð0Þjpi; Li; ð38Þ

where jPn; L; 2i is a finite-volume state with the quantum
numbers of two particles with total energy-momentum
Pn ¼ ðEn;PÞ. These states are normalized to unity,
hPn; L; 2jP0

n0 ; L; 2i ¼ δn;n0δP;P0 . The sum in Eq. (38) goes
over the energy levels En satisfying the Lüscher quan-
tization condition for a given boost P; see Eq. (23).
UsingEq. (38) for the time-dependentmatrix elements and

inputting it into the t > 0 contribution of the integral
appearing in Eq. (29), one can evaluate the two integrals
to find,

i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpf

ωpi

p
L
Z

T=2

0

dt
Z

L

0

dxeiq·x−tϵhpf;LjJ ðxÞJ ð0Þjpi;Li

¼2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpf

ωpi

p
L2
X
Pn

eiðq
0þωpf

−EnÞT=2−ϵt−1

q0þωpf
−Enþ iϵ

×hpf;LjJ ð0ÞjPn;L;2ihPn;L;2jJ ð0Þjpi;Liδpfþq;P;

ð39Þ
where δpfþq;P is a Kronecker delta that imposes conservation

of linear momenta and fixes P ¼ pf þ q. An equivalent
expression can be written for t < 0.
The matrix elements coupling one- and two-particle

finite-volume states can be written in terms of the infin-
ite-volume transition amplitudes and a multiplicative factor,
generally known as the Lellouch-Lüscher factor [53,58,60],

jhpf; LjJ ð0ÞjPn; L; 2ij

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRðEn;P; LÞj

2ωpf

s
jHðsn;−ðpf − PnÞ2Þj

L
ð40Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRðEn;P; LÞj

2ωpf

s
jAðsn;−ðpf − PnÞ2ÞMðsnÞj

L
; ð41Þ

where in the second equality we have used the definition of
H given in Eq. (3), and R is the Lellouch-Lüscher factor,
defined as

RðEn;P; LÞ≡ lim
E→En

�
E − En

FðE;P; LÞ−1 þMðsÞ
�
: ð42Þ

Applying this identity to the sum of Eq. (39) and repeating
for t < 0 one can find,

T Lðpf;q;pi;ϵÞ

¼
X

ðEn;qþpfÞ

eiðq
0þωpf

−EnÞT=2−ϵT −1

q0þωpf
−Enþ iϵ

jRðEn;qþpf;LÞjA
�
sn;q2−ðEn−ωpf

Þ2�jMðsnÞj2A
�
sn;q2

if−ðEn−ωpi
Þ2�

−
X

ðEn;pi−qÞ

e−iðq
0−ωpi

þEnÞT=2−ϵT −1

q0−ωpi
þEn− iϵ

jRðEn;pi−q;LÞjA�sn;q2
if−ðEn−ωpf

Þ2�jMðsnÞj2A
�
sn;q2−ðEn−ωpi

Þ2�; ð43Þ

where qif ¼ pf þ q − pi.
As was discussed in Sec. II B, the finite-volume

Compton-like amplitudes for T → ∞ are equal to a sum
over poles. This spectral decomposition shows that this is
true for arbitrary values of T.
In the limit ϵ → 0, the pole in the first sum occurs at

sn ¼ ðqþ pfÞ2 ≡ s while the pole in the second sum
occurs at sn ¼ ðpi − qÞ2 ≡ u. This suggests that in the
spectral representation of Eq. (43) the first term is closely
related to the s-channel contribution to the Compton-like
scattering process while the second sum corresponds to the
u-channel contribution.

B. Kinematics in 1 + 1D

Up to this point, we have only considered the s-channel
contribution of the Compton-like amplitude. Given that the

u-channel contribution appears in the spectral representa-
tion of Eq. (43), we now drop our prior kinematic
restrictions to include it in the following analysis. For this,
we write the Mandelstam variable u in terms of s and the
kinematic variables in the c.m. frame of the initial and final
states.
The final (initial) state can be thought of as a stable

particle with mass m and a virtual particle with mass −Q2

(−Q2
if). This way, in the c.m. frame, the momenta are

p⋆
f ¼ðω⋆

kf
;k⋆

f Þ; q⋆ ¼ð ffiffiffi
s

p
−ω⋆

kf
;−k⋆

f Þ;
p⋆
i ¼ðω⋆

ki
;k⋆

i Þ; q⋆if ¼ð ffiffiffi
s

p
−ω⋆

ki
;−k⋆

i Þ; ð44Þ

where k⋆
f and k⋆

i are the relative momenta whose magni-
tudes are given by
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k⋆2f ¼ s
4
þ ðm2 þQ2Þ2

4s
−
m2 −Q2

2
; ð45Þ

k⋆2i ¼ s
4
þ ðm2 þQ2

ifÞ2
4s

−
m2 −Q2

if

2
: ð46Þ

In the limit whenQ2 ¼ Q2
if ¼ −m2, one recovers the result

for scattering between two identical particles of mass
m, k⋆f ¼ k⋆i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

p
.

The Mandelstam variable u can be obtained from the
relation sþ tþ u ¼ 2m2 −Q2 −Q2

if. By evaluating t in
the c.m. frame, one gets two possible solutions for u,

u� ¼ 2ω⋆
kf
ω⋆
ki
� 2k⋆f k

⋆
i − s −Q2 −Q2

if; ð47Þ

where the positive/negative sign corresponds to the c.m.
momenta of the incoming and outgoing particles being

antiparallel/parallel. These expressions simplify a bit fur-
ther when setting Q2

if ¼ Q2, along with Eqs. (45) and (46),

uþ ¼ ðm2 þQ2Þ2
s

; u− ¼ 2m2 − s − 2Q2: ð48Þ

By fixing the values of L andQ2, one can determine a set
of values for ðs; uþÞ and ðs; u−Þ. In Fig. 4, we show two
illustrative examples corresponding to two different vol-
umes. In generating this plot, we fix jQ2 −Q2

ifj < 0.01m2

and the maximal value that we give to jpfj and jpij is 2π.
The ðs; uþÞ kinematic points are illustrated as red points,
while the ðs; u−Þ ones are blue. As one can see, there are
more blue points than red ones. In other words, within this
setup, one constrains more the region in the Mandelstam
plane defined by the ðs; u−Þ curves than the one defined by
ðs; uþÞ lines.

FIG. 4. The Mandelstam variable u as a function of s. The ðs; uþÞ pairs are shown in red while the ðs; u−Þ pairs are shown in blue. The
left panels show these points for a small volume (mL ¼ 20) while the right panels consider a larger volume (mL ¼ 40). The panels on
top correspond to kinematics for which Q2=m2 ¼ 0, 2, 4, while the bottom panels cover Q2=m2 ¼ −1;−2;−3. The solid gray lines in
the top panels indicate the two-particle threshold for identical particles of mass m for both s and u. The value of Q2=m2 is indicated for
the branches of points and we impose jQ2 −Q2

ifj < 0.01m2.
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In general, Eqs. (47) and (48) are useful for parametriz-
ing the u-channel contribution to the Compton-like ampli-
tude. In some limiting cases, the uþ and u− contributions
may be added together. In fact, from Eq. (48) one sees that
uþ ¼ 0 when Q2 ¼ Q2

if ¼ −m2. In this case, the uþ
contribution is a constant that can be absorbed into the
w term of Eq. (13). As a result, one can add the
T ðs; uþ;−m2;−m2Þ and T ðs; u−;−m2;−m2Þ amplitudes
trivially. For the estimator T̄ , this is equivalent to combin-
ing the uþ and u− kinematics, which improves its statistics.
Another case of interest is when Q2; Q2

if > 2m2. For
these kinematics, the uþ-channel contribution can have
intermediate on-shell states, as is evident from the uþ
definition in Eq. (48). Because of this potentially singular
behavior, it cannot be absorbed into the w term, and it can
suffer from larger finite-volume artifacts. And although not
immediately evident, because the uþ contribution arises
from antiparallel momenta, it can be harder to estimate
statistically using the proposed estimators. By isolating it
from the dominant parallel contribution, one can have a
better systematic control of the uþ piece.
From Fig. 4, one can also notice that u ¼ u− goes rapidly

into the u− < 0 region where a left-hand cut is present. This
is due to a

ffiffiffi
u

p
in the phase-space function in Eq. (2). Given

that the scattering amplitudes have been projected on shell
over the two-particle threshold, and thus over the right-
hand cut region, these do not have an analytic handle
outside of it. In other words, the evaluation of these
amplitudes along the left-hand cut region, i.e. in u ¼ u−,
can be absorbed into the w term of Eq. (4).
As an illustration of the singular structure of the u-

channel contribution to T in the complex u plane, given by
Aðu;Q2

ifÞMðuÞAðu;Q2Þ, in Fig. 5 we show this term for a
specific model. In particular, we use the same resonant
K-matrix form for M, and we use a simple pole in Q2 for

A. For this example, the virtualities are fixed to
Q2 ¼ Q2

if ¼ −0.6m2. One can see that for these models,
the only singularities in the u channel are due to the right-
hand branch cut and the nearby resonant pole in Reu ∼m2

R,
which are only accessible for Q2; Q2

if > 2m2, as can be
seen from Eq. (48) and Fig. 4. Although, we show this for a
choice of Q2, with Q2

if ¼ Q2, the same behavior is
observed regardless of these values.

C. Estimators in a finite spacetime

Since the Mandelstam variable u is a multivalued
function of s, the set of kinematics per volume is divided
into the two subsets discussed in the previous section,

fpf;q;pigþ ¼ fpf;q;pijk⋆
f · k⋆

i < 0g;
fpf;q;pig− ¼ fpf;q;pijk⋆

f · k⋆
i ≥ 0g; ð49Þ

where k⋆ represents the c.m. frame linear momentum. In
consequence, we have to consider two cases for the
estimator of the Compton-like amplitude

T̄ ðs;u�;Q2;Q2
ifÞ¼

1

N

X
L

X
fpf;q;pig�

T Lðpf;q;pi;ϵÞ: ð50Þ

Using Eq. (43) in Eq. (50), the estimator can now be tested
under finite-T conditions.
The parametrization of the K matrix in this section is set

by g ¼ 2.5, mR ¼ 2.5m, and hð0Þ ¼ 0. We consider two
models for the parametrization of A: one where it is a
smooth function ofQ2 and one where it has a single particle
pole at Q2 ¼ −m2. For simplicity, we keep Q2

if ¼ Q2. The

ϵ prescription is ϵ ¼ 1=ðL ffiffiffiffiffiffiffi
mL

p Þ for all cases.

FIG. 5. Real and imaginary parts of the u-channel contribution to the Compton-like amplitude in the complex u plane. The virtualities
are fixed to Q2 ¼ Q2

if ¼ −0.6m2.
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The parameters for the boost averaging are given by
ΔQ2 ¼ 0.25m2 andΔ ffiffi

s
p ¼ 0.05m. The choice ofΔQ2 here is

motivated by the behavior of the estimator as a function of
this parameter. Mainly, whenA is a singular function ofQ2,
close to the pole the estimators are increasingly inconsistent
with the infinite-volume amplitude at ΔQ2 ≳ 0.25m2. This
behavior is shown for the estimators at different c.m.
energies in Fig. 6. When A is a smooth function of Q2,
the estimator does not change significantly with ΔQ2 .
Since we are comparing different representations of the

Compton-like amplitude [see Eqs. (4) and (43)], we only
show their imaginaryparts.Byunitarity, both are assured to be
equal thus allowing for a comparison between the estimators
under finite-T conditions and the infinite-volume limit.

1. Model without single-particle singularities

In this case the parametrization ofA is given by hð1Þ ¼ 0,
hð2Þ ¼1, andhð3Þ ¼1−Q2=m2. Figure 7 shows our results for
the estimator T̄ using different values ofmT andQ2∼−m2.
The red points correspond to the estimators using the spectral
representation in Eq. (43). The black line corresponds to the
infinite-volume on-shell representation in Eq. (13).
There are two key observations to be made from these

results. First, as the temporal extent increases, the estimator
recovers the desired amplitude more accurately. This
suggests that one can systematically determine errors
associated with the truncation of T by considering larger
temporal extents. Second, for smaller time extents and
close to the singularities, the estimator fails to reproduce

FIG. 6. Imaginary part of the Compton-like amplitude for various c.m. energies. The red points represent the estimators, the solid line
shows the infinite-volume value, and the band shows the maximum and minimum values of ImT for a wave packet with mean energyffiffiffi
s

p
. For this example the mean values of the virtualities are Q2

if ¼ Q2 ¼ −0.6m2.

FIG. 7. Imaginary part of the Compton-like amplitude. From top to bottom, the temporal extent of the spacetime is decreased from
mT ¼ 103 to 50 as indicated on the right side. The limit Q2 → −m2 is approached from left to right, and Q2

if ¼ Q2. The volumes
employed in all cases are indicated in the top-left panel. The red dots show the estimators and the line shows the infinite-volume
amplitude. Since Q2 ∼ −m2, the subsets of kinematics in Eq. (49) are combined into a single set.
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the amplitude. This is most evident near the peaks of the
amplitudes in Figs. 7 and 8, which are dynamically
generated by pole singularities. This is the same behavior
observed for finite-volume artifacts. Although we only
illustrate this for one representative example, we find the
same conclusion for all models with smooth parametriza-
tions of A.

Another case of interest is when both s and u ¼ uþ are
above the two-particle threshold, which occurs atQ2> 2m2.
In this case, the kinematics of u ¼ uþ and u ¼ u− have to be
treated separately. Figure 8 shows the estimator T̄ under
these conditions. It is observed that the u ¼ uþ contribution
manifests as a second peak in the amplitude. To observe this
behavior, it is necessary to increase the order ofmagnitude of

FIG. 8. Imaginary part of the Compton-like amplitude. The same symbols as in Fig. 7 are used but for large, positive values ofQ2, also
Q2

if ¼ Q2. Since the virtualities are such that Q2 > −2m2, the kinematics described by u ¼ uþ and u ¼ u− are treated separately, as
indicated in each row of panels. The time extension considered in these examples is indicated in the top-left panel.

FIG. 9. Imaginary part of the Compton-like amplitude. The same symbols as in Fig. 7 are used but for a model that admits a single-
particle pole at mass m, we keep Q2

if ¼ Q2. From left to right the virtuality approaches the pole. The volumes mL used in each row are
indicated in the left-most panels and the time extensions mT are indicated on the right side.
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the physical volumes mL, while maintaining the same
temporal extent mT.

2. Model with a single-particle singularity

In this case the parametrization of A has a pole corre-
sponding to a particle of mass m, this is set by making
hð1Þ ¼m2, hð2Þ ¼ 1, and hð3Þ ¼ 0. Figure 9 shows the esti-
mator T̄ for virtualities approaching the pole, Q2 → −m2,
and different combinations of mL and mT. In contrast to
previous results, there is a gap between the estimator and the
infinite-volume amplitude far from the resonant energy atffiffiffi
s

p ¼ mR. As the virtuality approaches the single-particle
pole, this gap decreases more slowly with the physical
volumemL. This behavior in the estimator canbeunderstood
from the sum over the two-particle spectrum in Eq. (43)
which requires evaluating A at points close to its singular
values. Our observations indicate that, to faithfully recover
the amplitude, one may need to consider larger volumes and
time extensions as the single-particle pole is approached.

V. CONCLUSION AND OUTLOOK

We have continued the numerical investigation of
estimators for physical scattering amplitudes based on
correlation functions set in a finite Minkowski spacetime.
These estimators were first introduced in Ref. [69] for
Compton-like scattering processes. In particular, we have
addressed three new features. First, we have tested the
conjecture, made first in Ref. [69], that the LSZ reduction
formula can be used to construct estimators for transition
and purely hadronic scattering amplitudes. Second, we
tested the estimators for systems with multiple coupled
channels. Finally, we have explored the effects that finite
time extensions have on the estimator T̄ .
The results shown here suggest the applicability of these

estimators to energy regions where many two-particle states
may go on shell. We also constrain the order of physical
volumes and time separations necessary to recover ampli-
tudes in 1þ 1D within reasonable error. For the most part,
this is achieved for spatial volumes of ordermL∼Oð10–102Þ,
under either infinite or finite time separations.
For models where the vertex function A of transition

amplitudes is a smooth function of Q2, physical time
separations of order mT ∼Oð102–103Þ suffice to have
an agreement between estimators and amplitudes, within
errors. Still, for models where the current can go on
shell into a particle of mass m, time extents as big as
mT ∼Oð104Þmay be necessary for resolving the scattering
amplitudes. The increment in the order of mT needed for
the latter case is due to the singular behavior of A as one
approaches its single-particle pole.
It is worth emphasizing that the procedure outlined here

provides a straightforward method for estimating the
statistical error. Although assessing systematic errors gen-
erally requires repeating the calculations for different

spacetimes, the procedure is systematically improvable.
In other words, the systematic error on the estimators will
decrease with increasing spacetime volumes.
Although we have shown that the purely hadronic

amplitudes can indeed be obtained following the outlined
procedure, the results are dependent on how close one
chooses to approach the single-particle poles in A.
Ultimately, the amplitudes cannot depend on this. A
possible systematic procedure to resolve this unaccounted
error is the use of Cauchy’s theorem. At this point, it is
unclear how that may be implemented in the current setup.
Our study focused on estimators and amplitudes in

1þ 1D, the case for 3þ 1D can be implemented using
the same expressions presented in Sec. II after replacing the
ρ and F functions with their 3þ 1D analogues. Similarly,
one can adopt the techniques being applied to study three-
particle systems, to further test the conjecture that these
estimators should work independent of the kinematics and/
or the number of intermediate particles that can go on shell.
Further studies are necessary to find optimal values of

some parameters (ϵ; Q2;ΔQ2 ;Δ ffiffi
s

p ) that could improve the
correspondence between estimators and amplitudes. For
example, for mL given, the ϵ prescription has to be large
enough to smoothen the real singularities in the finite-
volume amplitudes and small enough so it does not
suppress the estimator. Likewise, as the estimator struggles
to recover the amplitude near singular points (e.g. poles or
threshold singularities), one could opt for a smaller value of
Δ ffiffi

s
p around these regions. However, since this condition

implies averaging over less kinematics as a result, the
finite-volume effects would be less suppressed.
Finally, although we have presented further empirical

evidence supporting the fact that the finite-volume estima-
tors have reasonable constraints of infinite-volume ampli-
tudes in arbitrary kinematics, a general proof of the
correspondence between estimators and amplitudes is still
missing.
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