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The SU(3) gauge theory with Nf ¼ 8 nearly massless Dirac fermions has long been of theoretical and
phenomenological interest due to the near-conformality arising from its proximity to the conformal
window. One particularly interesting feature is the emergence of a relatively light, stable flavor-singlet
scalar meson σðJPC ¼ 0þþÞ in contrast to the Nf ¼ 2 theory QCD. In this work, we study the finite-
volume dependence of the σ meson correlation function computed in lattice gauge theory and determine the
σ meson mass and decay constant extrapolated to the infinite-volume limit. We also determine the infinite-
volume mass and decay constant of the flavor-nonsinglet scalar meson a0.

DOI: 10.1103/PhysRevD.110.054501

I. INTRODUCTION

SU(3) gauge theory with Nf flavors of massless Dirac
fermions has a conformal window for Nfc ≤ Nf ≤ 16

[1,2]. See [3] for a review of the early history of con-
straining Nfc and see [4] for the most recent review. While
it is not known with certainty whether the massless Nf ¼ 8

theory is inside or outside the conformal window [5–7],
our collaboration has previously published results [8,9]
indicating the massless Nf ¼ 10 theory is likely inside the
conformal window, and for the rest of this paper we will
assume the massless Nf ¼ 8 theory is very close to the
edge of the conformal window. If it is inside the conformal
window, it is most likely a very strongly coupled conformal
field theory (CFT) [10]. If it is outside the conformal
window, spontaneous chiral symmetry breaking and con-
finement produce massless Nambu-Goldstone bosons and a
spectrum of other hadronic states which may be different
relative to QCD due to the proximity of the conformal
window.
The continuum SU(3) gauge theory with Nf ¼ 8 Dirac

fermions with small vectorlike mass terms is not an IR
conformal theory. The small mass terms explicitly break
chiral symmetry, confinement occurs, and a massive
spectrum of hadronic states is generated. Another scenario
may be possible at stronger lattice coupling, but we do not
consider that here [10].
In our previous papers [11–13], we identified two

specific features of the low-energy spectrum which were
different from QCD. First, the pion decay constant Fπ

strongly depends on the fermion mass unlike QCD, where
Fπ is nearly constant with a small, linear correction in
the fermion mass. Second, the flavor-singlet scalar meson
σðJPC ¼ 0þþÞ has a light massMσ < 1.5Mπ in the fermion
mass region where we compute it, well below the energy
threshold for decay to two pions, whereas in QCD it is
somewhat heavier Mσ > 1.9Mπ [14–22], remaining just
below decay threshold across in an equivalent fermion mass
range. The QCD picture is somewhat consistent with our
earlier Nf ¼ 4 calculation [12]. However, we also identi-
fied several features of the Nf ¼ 8 theory which appeared
similar to QCD calculations in an equivalent range of
fermion masses: The ratiosMρ=Fπ andMnucleon=Fπ and the

decay constants Fπ , Fρ, and Fa1 appear consistent with
QCD Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin rela-
tions [23,24], and the I ¼ 2 ππ scattering length aππ
appears to agree with QCD.
In this paper, we focus on larger volume calculations

at the various fermion masses (Appendix A) which will
allow us to extrapolate our results to the infinite-volume
limit, removing one potential source of systematic error
(Sec. II E). We also introduce an improved method for
analyzing σ meson correlation functions with a new
subtraction scheme in the rest frame combined with simul-
taneous analysis in several moving frames (Secs. II B and
II C). We rely heavily on the method of Bayesian model
averaging [25] (Sec. III). We present new calculations of
the flavor-singlet scalar decay constant FS and the flavor-
nonsinglet scalar meson a0 mass and decay constant Fa0
(Sec. II D). We also comment briefly on the chiral con-
densate and its contribution to the Gell-Mann-Oakes-
Renner (GMOR) relation and its generalizations (Sec. II F).
As described in our earlier paper [12], we have chosen

the bare lattice parameter β ¼ 4.8 such that the lattice
spacing a is as coarse as possible given our current action,
so that we can get as close to the chiral limit amq → 0 as
possible with available computing resources. We are work-
ing on calculations at amq ¼ 0.00056 which may provide
further insights in the near future. If the massless Nf ¼ 8

theory is conformal and sufficiently strongly coupled [10],
then it is likely a new lattice action that allows for even
coarser lattice spacings will be necessary to make further
progress.
Phenomenologically, theories that exhibit approximate

conformal behavior at strong coupling are anticipated to
produce large anomalous dimensions over a wide interval
of scales, which can make them attractive as candidate
composite Higgs models [26–30]. In particular, the
SUð3ÞNf ¼ 8 theory has been used to build composite
Higgs models in [31–33]. The construction of a low-energy
effective field theory (EFT) for the lightest composites, to
which the rest of the Standard Model can be coupled, is a
crucial intermediate step in the creation of these models. In
a separate paper [34], we discuss various effective models
that can be fit to our data.
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II. STAGGERED TWO-POINT CORRELATION
FUNCTION CONSTRUCTION AND MODELING

A. Staggered two-point correlation function
construction

The continuum Nf ¼ 8 theory is approximated on a
finite lattice by an SU(2) doublet of staggered fermion
fields ðχ1χ2Þ that carry only an SU(3) color index at each
lattice site. Each component of the doublet represents
four nondegenerate Dirac fermion “tastes” with spin and
taste degrees of freedom spread out over 24 sites of local
hypercubes. In the continuum limit where the bare gauge
coupling g20 → 0, these tastes become degenerate and
equivalent to four Dirac flavors. Hence, the doublet of
staggered fields becomes a degenerate Nf ¼ 8 theory in
this continuum limit. Staggered fermions have a remnant
of chiral symmetry that can lead to ðNf=4Þ2 Nambu-
Goldstone bosons when taking the massless chiral limit
at finite lattice spacing, assuming the chiral symmetry is
spontaneously broken by the gauge interactions. However,
to recover the full flavor symmetry, it is essential to take the
g20 → 0 continuum limit prior to the mq → 0 chiral limit.
In general, a staggered meson two-point correlation

function where source and sink operators have the same
quantum numbers Q is (schematically)

CQðp⃗; jt− t0jÞ ¼
*X

x⃗

eip⃗·ðx⃗−x⃗0Þχ̄
�
x⃗þ δ⃗0; t

�
ΓQðx⃗; δ⃗0Þτχðx⃗; tÞ

× χ̄
�
x⃗0 þ δ⃗; t0

�
ΓQðx⃗0; δ⃗Þτχðx⃗; tÞ

+
; ð1Þ

where ΓQðx⃗; δ⃗Þ are phases which refer to the spin-taste
structure of the interpolating operators with quantum
numbers Q and τ is either an SU(2) generator for a
nonsinglet correlator or a 2 × 2 identity matrix for a singlet
correlator under the SU(2) staggered doublet symmetry.
There are various phase conventions possible; one common
choice is [35]. Not shown are gauge matrices required to
make the whole thing gauge invariant, e.g., connecting sites
ðx⃗; tÞ and ðx⃗þ δ⃗0; tÞ. Also, translation invariance of the
ensemble average h·i guarantees the correlation function
depends on only the distance jt − t0j and not the source
position ðx⃗0; t0Þ.
In our earlier paper [12], the LSD Collaboration con-

structed correlation functions with p⃗ ¼ 0 for local and
point-split operators. In this study, we focused on con-
structing singlet and nonsinglet correlation functions of
local operators at several different momenta p⃗ with
much higher statistics. On each gauge configuration, we
generate a unique set of N random source points ðx⃗0; t0Þn
and construct a primitive staggered meson “connected”
correlator

Cðx⃗; tÞ ¼ 1

N

X
n

T nTrcolor
�
GFðx⃗0; t0; x⃗; tÞG†

Fðx⃗; t; x⃗0; t0Þ
�
;

ð2Þ

where GFðx⃗0; t0; x⃗; tÞ is a 3 × 3 color matrix of single
staggered fermion propagator from the site ðx⃗0; t0Þ to the
site ðx⃗; tÞ and T n represents the translation of the nth source
location ðx⃗0; t0Þn to the origin ð0⃗; 0Þ. Then, we record the
value of this averaged primitive correlator for every sink
point ðx⃗; tÞ in the lattice volume. We refer to this as a
connected correlator, because valence fermion lines con-
nect the source and sink points. With postprocessing, we
can project this primitive correlator into eight different
nonsinglet staggered meson quantum number channels of
different momenta p⃗ using Fourier transform

CQðp⃗; tÞ ¼
X
x⃗

eip⃗·x⃗Cðx⃗; tÞϕQðx⃗Þ: ð3Þ

For example, if we choose the phase ϕQðx⃗Þ ¼ 1, we get the
correlation function for the π5 meson, which is the pseudo-
Nambu-Goldstone boson.
Also in our earlier work, we explained in detail how

we construct a “disconnected” correlator, where valence
fermion lines do not connect the source and sink points:

Dðp⃗; jt− t0jÞ ¼
X
x⃗

X
x⃗0

eiðx⃗−x⃗0Þ·p⃗Tr
�
GFðx⃗0; t0; x⃗0; t0Þ

�
×Tr

�
GFðx⃗; t; x⃗; tÞ

� ð4Þ

using a diluted noisy estimator to compute the trace at each
site on the lattice for each gauge configuration, which is
again recorded as a single value per site in the lattice
volume. With postprocessing, we can compute the dis-
connected correlator for any spatial momentum p⃗ using
FFT and the fast convolution algorithm:

Õðp⃗;ωÞ ¼
X
x⃗;t

eiðp⃗·x⃗þωtÞTr
�
GFðx⃗; t; x⃗; tÞ

�
; ð5Þ

Dðp⃗; tÞ ¼
X
ω

e−iωtjÕðp⃗;ωÞj2; ð6Þ

where the result is automatically invariant under any lattice
translation. In an Nf-flavor theory, the flavor-singlet scalar
correlator for the σ meson is then

Cσðp⃗; tÞ ¼
�
Nf

4

�
2

Dðp⃗; tÞ − Nf

4
Ca0;1ðp⃗; tÞ ð7Þ

and where Ca0;1ðp⃗; tÞ is the flavor-nonsinglet scalar meson
correlator constructed from Eq. (3) with the appropriate
choice of phases. Note this normalization is different
from [12], where we dropped an overall factor of Nf=4.
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Regarding the naming convention of mesons, we note
that the continuum SU(8) flavor representation is broken
by lattice artifacts to a subgroup SUð2Þ×taste, a discrete
subgroup of SU(4). Meson names will follow the PDG
convention for two-flavor mesons: π; a0; ρ;… plus an
additional subscript to indicate the representation under
the discrete taste group: π5; a0;1; ρi;…. There is only one
scalar meson which is a singlet over the whole flavor group
which we name σ and no subscript is required. The effects
of taste breaking were discussed previously [12] and we
will not expand on it, so the taste index does not play
a significant role here with one important exception. In
the continuum two-flavor theory, the decay a0 → ππ is
forbidden by isospin symmetry. However, in our staggered
Nf ¼ 8 theory, the decay a0;1 → π5π5 is allowed because
the π5 and the a0;1 are not in the same SU(2) flavor
subgroup, as indicated by the different taste indices. It is
analogous to the decay of a0 → KK in continuum three-
flavor theory.

B. Model for staggered meson correlation functions

We will consider three different types of models for
staggered meson two-point correlation functions in this
paper. As we are employing Bayesian model averaging,
further discussed in Sec. III, we do not have to choose a
particular model but rely on the computed model proba-
bilities to distinguish the most likely models for a given
correlation function. Within each model type, the number
of free parameters in each specific instance of the model
will depend upon the number of oscillating and non-
oscillating states included.
The model we will use for the staggered meson corre-

lation function in the time domain (model A) is

Cðp⃗; tÞ ¼ c0δp⃗;0 þ
X
n

cn
2
�
1 − e−EnNt

�
sinhðEnÞ

×
�
e−Ent þ e−EnðNt−tÞ�

þ ð−1Þt
X
j

c0j
2
�
1 − e−E

0
jNt

�
sinhðE0

jÞ
×
�
e−E

0
jt þ e−E

0
jðNt−tÞ�; ð8Þ

where we have chosen to use a particular “relativistic”
normalization for the amplitudes. As is typical for the
staggered fermions, there are a set of states labeled by n
whose contributions do not oscillate in time and another set
of states labeled by j, with different quantum numbers, that
oscillate in time with a factor ð−1Þt. The energies En and E0

j

are understood to depend implicitly on the spatial momen-
tum p⃗. We also allow for the possibility of a t-independent
contribution to the correlation function, c0, which is
generally not present for flavor-nonsinglet correlation
functions due to translation invariance of the ensemble

average. But, it is the dominant contribution to the
flavor-singlet σ correlation function and must be treated
carefully in order to extract reliable estimates of model
parameters. Note that the constant contributes only to the
p⃗ ¼ 0 correlator, so one method of dealing with this
constant is to work with p⃗ ≠ 0 correlators. Given that
we are interested in the energy of the σ meson in the
rest frame, limp⃗→0 Eσðp⃗Þ ¼ Mσ , this approach requires
a good understanding of the dispersion relation on the
lattice.
To motivate the normalization of amplitudes cn and c0j

in Eq. (8), we can perform the discrete cosine transform
(DCT-I) of the time-domain correlation function into the
frequency domain analytically:

C̃ðp⃗; kÞ ¼ c0δp⃗;0δk;0 þ
1

Nt

X
n

cn
Ê2
n þ ω̂2

k

þ 1

Nt

X
j

c0j
Ê02
j þ ω̂02

k

;

ð9Þ

where

Ên ¼ 2 sinh
En

2
; ω̂k ¼ 2 sin

2πk
2Nt

;

ω̂0
k ¼ 2 sin

�
π

2
−
2πk
2Nt

�
: ð10Þ

Comparing the expression for two different spatial
momenta p⃗, the energies En and E0

j will be different,
defining some lattice dispersion relation. But the ampli-
tudes cn and c0j are momentum independent as normalized
and, therefore, frame independent as expected in a Lorentz-
invariant theory, hence a “relativistic” normalization.
In our previous work, we considered another method of

dealing with the constant c0 which was to analyze the finite
difference correlation function for the p⃗ ¼ 0 σ meson:

ΔσðtÞ ¼ Cσðtþ 1Þ − CσðtÞ: ð11Þ

In the model, the cancellation of c0 is exact, but in our
lattice calculation there is inherent statistical noise con-
tributing to each time slice, so the cancellation is not exact.
In this work, we propose an improved subtraction scheme
for p⃗ ¼ 0 correlation functions:

C̄ðtÞ ¼ CðtÞ − 1

Nt

XNt−1

t0¼0

Cðt0Þ ð12Þ

for states that have a time-independent part, like the σ
meson. Given our frequency analysis above, we can see the
subtraction is the zero-frequency component of the corre-
lation function C̄ðtÞ ¼ CðtÞ − C̃ð0Þ. Furthermore, we know
explicitly the functional form of the residual constant that
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comes from the integral of the t-dependent part of the
correlation function:

c0 − C̃ð0Þ ¼ −
1

Nt

X∞
n¼1

cn
M̂2

n
−

1

Nt

X∞
j¼1

c0j
4þ M̂02

j

: ð13Þ

Because some of the fit parameters appear in the residual
constant, we will include that part in the fit and shift the
constant (model B):

C̄ðtÞ ¼ c̄0 þ
Xnmax

n

cn
2
�
1 − e−MnNt

�
sinhðMnÞ

×
�
e−Mnt þ e−MnðNt−tÞ� − cn

NtM̂
2
n

þ
Xjmax

j

ð−1Þtc0j
2ð1 − e−M

0
jNtÞ sinhðM0

jÞ

×
�
e−M

0
jt þ e−M

0
jðNt−tÞ� − c0j

Ntð4þ M̂02
j Þ

;

c̄0 ¼ −
1

Nt

X∞
n¼nmaxþ1

cn
M̂2

n
−

1

Nt

X∞
j¼jmaxþ1

c0j
4þ M̂02

j

: ð14Þ

In counting free parameters, model B will have one more
free parameter than model A, and the interpretation of the
value of this parameter, c̄0, will depend strongly on the
choice of nmax and jmax. In particular, we expect c̄0 → 0
within statistical uncertainties as the number of states
included in a particular model instance approaches the
limit of available statistics to properly constrain them.
We will also consider a modification of model B

(model C) where we constrain c̄0 ¼ 0. It will have the
same number of free parameters as model A in an instance
where they include the same number of states. In the
context of Bayesian model averaging, we expect that model
B will have a higher relative probability than model C
in instances where c̄0 is statistically nonzero. But with
increasing numbers of states eventually model C should
become more probable, also indicating the limit in which
the power of the available statistics to constrain parameters
has been exhausted.

C. Staggered meson dispersion relation

The functional momentum dependence of energies
EQðp⃗Þ extracted from analysis of two-point correlation
functions CQðp⃗; tÞ is a complicated, nonperturbative prob-
lem, because Lorentz symmetry is broken by the lattice
discretization, so the theory is not invariant under boosts.
Still, Lorentz symmetry is fully recovered in the continuum
limit. Naively, we can expect

a2E2
Qðp⃗Þ ¼ a2M2

Q þ a2p2 þOða4p4Þ; ð15Þ

where we explicitly show the lattice spacing a in this
dimensionless relation and define the spatial momentum
components pi ¼ 2πni=ðaNsÞ and ni ∈ f−Ns=2þ 1;…;
0;…; Ns=2g and Ns is the number of lattice sites in the
spatial directions.
To improve upon this estimate, one would have to

understand the dynamics on the lattice of the eigenstates
corresponding to these energies. This is a challenging
problem, since the eigenstates are not simple single-hadron
excitations, in general, but are more likely strongly inter-
acting multihadron states. But the lowest-energy state with
given quantum numbers Q may reasonably be expected to
behave like a single-hadron state, particularly if its energy
is well below the nearest multihadron threshold. In this
case, we can approximate the dispersion relation with that
of a noninteracting boson on the lattice [36]:

Ê2
Q ¼ M̂2

Q þ p̂2 þOðp̂4Þ; ð16Þ

ÊQ ¼ 2 sinh
aEQ

2
; M̂Q ¼ 2 sinh

aMQ

2
;

p̂i ¼ 2 sin
api

2
: ð17Þ

In the second equation, we have explicitly put in the lattice
spacing dependence a. Both lattice dispersion relations
correspond to the same continuum relation as a → 0.
In either of these models, Eqs. (15) or (17), the finite size

of the lattice along spatial directions Ns directly controls
the spacing between the discrete momenta but is not
expected to appear explicitly in the finite lattice spacing
corrections Oða4p4Þ or Oðp̂4Þ. When we fit our lattice data
on two or more volumes at the same value of the bare
coupling and mass, we will parametrize our fits so that the
same lattice corrections are used on all volumes.

D. Staggered meson decay constants

The normalization in Eq. (8) was chosen such that
cn → jh0jOjn; p⃗ ¼ 0ij2 in the continuum limit with the
usual continuum relativistic normalization. Following
Eq. (7.5) of [37], we define the pion decay constant

ffiffiffi
2

p
F̂π5ðÊ2

π5 − p̂2Þ ¼ 2mq
1ffiffiffiffiffiffi
Nf

p h0jP5jπ5ðp⃗Þi ⇒ F̂π5

¼ 1ffiffiffi
2

p mq

ffiffiffiffiffiffiffiffiffijcπ5 j
p

Ê2
π5 − p̂2

; ð18Þ

where Nf in this equation is the number of continuum
flavors of a single staggered fermion, i.e., Nf ¼ 4. Note we
put the hat on the symbol for F̂π5 to indicate the form of the
lattice dispersion relation used. We could have just as
easily used the other form of the lattice dispersion relation,
which would lead to a slight different definition of the
decay constant. Both definitions should converge to the
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continuum one in the limit of zero lattice spacing. This
definition is slightly different than ones previously used by
the LSD Collaboration for the pion decay constant [12,13],
but the difference is not statistically significant.
For the isotriplet scalar form factor, there does not seem

to be a conventional normalization [38,39] for the decay
constant in QCD, as it is an unstable resonance. See the
review “Scalar mesons below 1 GeV” in [40]. In our
Nf ¼ 8 theory over the range of fermion masses we have
studied, the nonsinglet scalar meson appears to be stable,
although close in energy to its decay threshold. We choose
to normalize it analogously with the pion decay constant

F̂a0;1 ¼
1ffiffiffi
2

p
mq

ffiffiffiffiffiffiffiffiffiffiffi
jca0;1 j

q
Ê2
a0;1 − p̂2

; ð19Þ

where ca0;1 is the residue of the first pole in the frequency
domain representation of the nonsinglet scalar two-point
correlation function, Eq. (9).
For the isosinglet scalar decay constant, we use the

normalization defined in Eq. (72) of [41]:

F̂SðÊ2
σ − p̂2Þ ¼ mqh0jSð0; 0Þjσðp⃗Þi; ð20Þ

where the scalar current is defined as Sðx⃗; tÞ ¼PNf=4
i¼1 χ̄iðx⃗; tÞχiðx⃗; tÞ. The two-point correlation function

of this scalar current is defined in Eq. (7), and, in terms of
this correlation function, the decay constant is defined

F̂S ¼
mq

ffiffiffiffiffiffiffijcσj
p

Ê2
σ − p̂2

: ð21Þ

In particular, the normalization used in Eq. (7) is essential
to correctly normalizing the decay constant.

E. Finite-volume corrections

In QCD, finite-volume corrections to the pion mass and
pion decay constant extracted from a two-point correlation
function calculated on a periodic torus of spatial size L
can be computed in chiral perturbation theory provided
MπL ≫ 1 and FπL ≫ 1. See Eq. (6.15) of [42], for
example. In Nf ¼ 8 over the range of fermion masses for
which we have relevant lattice calculations, chiral pertur-
bation theory is unlikely to be a good effective description
for two reasons: the strong fermion mass dependence of Fπ

and the stable σ meson with Mσ ≪ 4πFπ . So it is not
expected that finite-volume corrections computed in chiral
perturbation theory (ChiPT) will exactly match the numeri-
cal calculations. Still, it seems likely that whatever low-
energy effective theory replaces ChiPT will have much the
same structure, as these arise from contributions of virtual
pion degrees of freedom that probe the finite volume by
wrapping the spatial cycles of the torus, and the pion still is

the lightest hadron in the eight-flavor theory. There may be
additional contributions from σ-meson degrees of freedom,
but they are expected to be subleading due to the somewhat
heavier mass.
We will follow the approach used in [13] and use ChiPT-

inspired forms to model our finite-volume corrections:

MQðLÞ ¼ MQð∞Þ
	
1þ αQ

M2
π

ð4πFπÞ2
X∞
n¼1

4κðnÞffiffiffi
n

p
MπL

× K1

� ffiffiffi
n

p
MπL

�

; ð22Þ

FQðLÞ ¼ FQð∞Þ
	
1þ βQ

M2
π

ð4πFπÞ2
X∞
n¼1

4κðnÞffiffiffi
n

p
MπL

× K1

� ffiffiffi
n

p
MπL

�

: ð23Þ

The function κðnÞ counts the number of lattice vectors n⃗
with integer-valued components of length

ffiffiffi
n

p
, see Table I.

In QCD, it is common to expand the sum over modified
Bessel functions K1, assuming MπL ≫ 1, and keep only
the leading term, particularly if MπL≳ 4 in all, leading to

X∞
n¼1

4kðnÞffiffiffi
n

p
MπL

K1ð
ffiffiffi
n

p
MπLÞ ≈

12
ffiffiffiffiffiffi
2π

p

ðMπLÞ3=2
e−MπL: ð24Þ

In an earlier paper [13], we also used this approximation for
the finite-volume extrapolation of Mπ and Fπ . We did not
observe any significant change in the result if we included
more terms in the expansion. In this analysis, we will be
conservative and not expand the modified Bessel functions
and truncate the sum only after the first eight terms (up to
n ¼ 8), although we expect it will not make a significant
difference relative to keeping just the leading term.

TABLE I. The number of lattice vectors n⃗ with integer-valued
components of length

ffiffiffi
n

p
. Note there are no vectors of length

ffiffiffi
7

p
and, starting at length 3, there may be multiple inequivalent sets
of vectors under the cubic group.

n n⃗ jn⃗j κðnÞ
0 (0, 0, 0) 0 1
1 (1, 0, 0) 1 6
2 (1, 1, 0)

ffiffiffi
2

p
12

3 (1, 1, 1)
ffiffiffi
3

p
8

4 (2, 0, 0) 2 6
5 (2, 1, 0)

ffiffiffi
5

p
24

6 (2, 1, 1)
ffiffiffi
6

p
24

7 � � � � � � 0
8 (2, 2, 0)

ffiffiffi
8

p
12

9 (2, 2, 1) 3 24
90 (3, 0, 0) 3 6
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Since the infinite-volume extrapolation described in
this section implicitly assumes that the pion is a pseudo-
Nambu-Goldstone boson, one should use caution when
modeling the extrapolated data provided later in this paper,
particularly if one wants to explore other finite-volume
corrections, e.g., due to a light isosinglet scalar. If one
assumes that the massless limit of the theory approaches a
conformal fixed point, possible finite-volume corrections
were discussed in [43]. In either case, one should use the
finite-volume data provided in Supplemental Material [44]
when performing further analysis.

F. The GMOR relation and near-conformality

As a guide to constructing low-energy effective descrip-
tions Nf ¼ 8 theory, it would be useful to characterize
the extent to which one or a few light states dominates the
low-energy dynamics. An important phenomenological
tool for characterizing the degree to which the dynamics
of the Nambu-Goldstone pions dominates low-energy
phenomena in QCD was first described by Gell-Mann,
Oakes, and Renner (GMOR) [45]. In their original deri-
vation, they a priori assumed pion-pole dominance and
derived the GMOR relation as a consequence. Our deri-
vation will not initially assume pole dominance but start
with the integral of the axial Ward-Takahashi identity. In
our notation, this can be written

XNt−1

t¼0

Cπ5ð0⃗; tÞ ¼
1

mq
Trcolor

�
GF

�
0⃗; 0; 0⃗; 0

��
; ð25Þ

which is an exact spectral identity on each gauge configu-
ration, not just in the ensemble average. In the chiral limit
mq → 0 of a theory with spontaneous chiral symmetry
breaking, the trace on the right-hand side will approach
a constant following the Banks-Casher relation [46,47]
and the integrated pion correlation function will diverge
due to the massless Nambu-Goldstone pion. Using Eqs. (9)
and (18), we can identify the rate of this divergence with
parameters in our fit functions:

XNt−1

t¼0

Cπ5ð0⃗; tÞ →
cπ5
M̂2

π5

¼ 2
F̂2
π5M̂

2
π5

m2
q

as mq → 0: ð26Þ

Using the normalization of the isosinglet scalar current in
Eq. (20) leads to a generalization of the GMOR relation for
general Nf:

mqhSi ¼ mq
Nf

4
hχ̄χi ≥ Nf

2
F̂2
π5M̂

2
π5 : ð27Þ

Now, if we assume spontaneous symmetry breaking and
pion pole dominance, the inequality becomes an equality in
the limit mq → 0 and hSi approaches a well-defined low-
energy constant, which is the usual GMOR relation.
Patella [48] has noted that Eq. (27) should also be true in

a mass-deformed CFT with a large mass anomalous
dimension ð1 < γ� < 2Þ due to a large contribution to the
pion correlation function generated by the running of the
mass. They propose examining the GMOR ratio

RGðmqÞ≡ mqhχ̄χi
2F̂2

π5M̂
2
π5

¼

8><>:
1; ðnear-conformalÞ
1 < RGð0Þ < ∞; ðCFT; 1 < γ� < 2Þ
∞; ðCFT; 0 < γ� < 1Þ

as mq → 0 ð28Þ

for an indication of whether the theory is near-conformal or
conformal in the chiral limit. In a near-conformal scenario,
it is not clear at what fermion massmq one would expect to
see the transition from the approximately hyperscaling
regime where RGðmqÞ > 1 to the spontaneously broken
regime where RGðmqÞ → 1 as mq → 0. Just observing
RGðmqÞ > 1 at some finite fermion mass is not sufficient
to establish IR conformality. In particular, one must follow
the correct order of limits: volume to infinity, lattice
spacing to zero, and then fermion mass to zero.

III. BAYESIAN MODEL AVERAGING

A. General setup

One of the challenges observed in our previous analysis
of the light meson spectrum in the Nf ¼ 8 theory [12] were
large systematic errors due to fit parameters varying

significantly over a range of different fits while χ2=d:o:f:
did not. We define logpðDjMÞ by the usual chi-squared
prescription

logpðDjMÞ∝−
1

2

X
t;t0∈T1

�
CðtÞ−fMðtÞ

�
Σ−1
tt0
�
Cðt0Þ−fMðt0Þ

�
;

ð29Þ

where CðtÞ is correlation function computed from our
lattice ensembleD, fMðtÞ is the function for modelM to be
fitted by minimizing the log-likelihood, T1 is the subset of
times selected for fitting, and Σtt0 is the covariance of the
correlation function CðtÞ on the subset T1. Assuming all
the quantities are properly estimated from the ensemble,
the log-likelihood is expected to sample the chi-squared
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distribution for degrees of freedom equal to the number of
times in T1 minus the number of free parameters in M.
Subsequent to our earlier analysis, Jay and Neil proposed

[25] a Bayesian model-averaging analysis framework
which estimates logpðMjDÞ, the probability that a model
M is a good representation of the data selection D. One
suggested estimator of the model probability is based on the
Akaike information criterion (AIC), provided nuisance
model parameters are assigned to account for data subsets
not included in the fit. For example, let M be a model with
NM free parameters, and the maximal dataset has NT times
available to be fit. If we perform the fit only on a subset of
times T1 of size N1, then the number of data points not
included N0 ¼ NT − N1 must be assigned nuisance param-
eters. Thus, for the AIC, the number of relevant parameters
is NM þ N0, and the model probability [49] is

logpðMjDÞ ∝ logpðDjMÞ − ðNM þ N0Þ: ð30Þ

After the model probability has been estimated for the full
set of models fMg to be considered for the analysis, we
normalize this set of probabilities:

P
fMg pðMjDÞ ¼ 1.

In Appendix B, we provide some details how we perform
this sum accurately given the potential for widely varying
values of logpðMjDÞ.
With an reasonable estimate of the model probability,

it seems straightforward to construct expectation values
and variances of model parameters over the set of possible
models considered. For example, the expected value of a
model parameter is

EðaÞ ¼ 1

Σ1

X
fMja∈Mg

aMpðMjDÞΘ�pðMjDÞ − pcut

�
Σ1 ¼

X
fMja∈Mg

pðMjDÞΘ�pðMjDÞ − pcut

�
; ð31Þ

where, to make sure the notation is clear, we compute a
weighted average over only the subset of models that
contain the parameter fMja∈Mg and further consider only
models where the model weight is greater than some pre-
determined minimum pcut, as enforced by the Heaviside
function Θ.
The variance of the model-averaged expectation value

has two contributions. The first, and usually dominant,
contribution is the weighted average over models of the
square of the error estimate σa;M for the parameter aM in a
given model M:

Eðσ2aÞ ¼
1

Σ1

X
fMja∈Mg

σ2a;MpðMjDÞΘ�pðMjDÞ − pcut

�
: ð32Þ

The second, usually subdominant, contribution is the
weighted variance of the model estimates of parameters
aM, relative to the model-averaged expectation EðaÞ:

VarðaÞ ¼ Σ1

Σ2
1 − Σ2

X
fMja∈Mg

�
aM − EðaÞ�2pðMjDÞ

× Θ
�
pðMjDÞ − pcut

�
Σ2 ¼

X
fMja∈Mg

pðMjDÞ2Θ�pðMjDÞ − pcut

�
: ð33Þ

The final error estimate for the model average of a
parameter is to add the two contributions in quadrature:

σa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðσ2aÞ þ VarðaÞ

q
: ð34Þ

Now we can discuss the motivation behind the proba-
bility cut pcut. In our experience, the model-averaged
EðaÞ tend to be dominated by a few choices whose
pðMjDÞ ∼Oð1Þ. It seems reasonable to expect that
Eðσ2aÞ should be similarly dominated by choices whose
pðMjDÞ ∼Oð1Þ and not pðMjDÞ ∼OðpcutÞ. However, we
have observed cases of overfitting for certain models
where, as the data selection changes such that pðMjDÞ
decreases, σ2a;M increases at a faster rate, leading to those
very unlikely model choices to dominate the model average
of the squared error Eðσ2aÞ. pcut can be adjusted to minimize
the impact of this scenario.
To understand how this can happen, we recall that

uncertainty of a two-point meson correlation function
grows exponentially in Euclidean time [50]:

Var½CQðp⃗; tÞ� ∼ exp
�
2
�
EQðp⃗Þ −Mπ5

�
t
�
: ð35Þ

Now, for a given model function M with its fixed number
of exponential terms, there is a certain tmin for which
−χ2=2 ∼ ðNM − tmax þ tmin − 1Þ=2, indicating a good fit
using the usual chi-squared criteria χ2=d:o:f: ∼ 1. For fits
on the interval ½t; tmax�; t < tmin, there will be no good fits
according to chi-squared, whereas for fits on the interval
½t; tmax�; t > tmin, −χ2=2 will approximately increase by
ðt − tminÞ=2 indicating continued goodness of fit. However,
as the minimum t increases in a given fit, the number of
times not included in the fit also increases: ΔN0 ¼ t − tmin.
The net effect of increasing t > tmin is to decrease
pðMjDÞ ∝ expð−ðt − tminÞ=2Þ. If EQðp⃗Þ −Mπ5 > 1=4,
we expect that the uncertainties in model parameters will
grow faster than the model probability decreases as
t > tmin. Based on these considerations, we have found
pcut ¼ 10−3 is a reasonable choice for this analysis, and we
adopt it throughout. While this analysis was nearing
completion, an alternate approach to dealing with these
challenges was proposed [51]. It would be interesting to
compare these two approaches in future analyses.
In our analysis of I ¼ 2 π5π5 scattering [13], we

implemented Bayesian model averaging. As we had hoped,
the systematic uncertainties for π5-related observables were
greatly reduced in that paper relative to earlier paper [12].
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Also, the problem with uncertainties increasing for t > tmin
was not apparent, because we were considering primarily
π5-related observables. We expect this will not be the case
for σ and a0;1-related observables.

B. Shrinkage estimator of covariance

Suppose one wants to estimate from a multivariate
sample a particular element of the covariance matrix; then
one usually uses the standard unbiased sample estimator

Σij ¼
1

N − 1

XN
n¼1

�
xðnÞi − x̄i

��
xðnÞj − x̄j

�
; ð36Þ

which is derived from the maximum likelihood estimate
(MLE) of covariance of a multivariate Gaussian distribu-
tion. By the central limit theorem, as N → ∞ the standard
estimator approaches the MLE for any distribution.
To estimate a full RK×K covariance matrix, there are
KðK þ 1Þ=2 independent matrix elements that must be
estimated, requiring N independent samples for each one.
Furthermore, accurate estimation of the covariance is
crucial when using the chi-squared prescription in Eq. (29),
since the inverse of the covariance matrix is used and the
consequence of poorly estimated small eigenmodes is
amplified. Empirically, it has been found that approxi-
mately 50KðK þ 1Þ=2 samples are needed in lattice QCD
calculations for the standard estimator to be sufficiently
accurate for chi-squared fitting [52,53].
If you care about only this particular matrix element, or

perhaps one more, then this is the optimal estimator to use.
However, if you want to simultaneously estimate three
or more elements of the covariance matrix, Stein [54]
proved that this was not the optimal estimator in the sense
of minimizing the combined mean square error, i.e.,P

ijðΣij − Σ�
ijÞ2, where Σ�

ij is the true but unknown covari-
ance. This was so counterintuitive at the time, it was called
Stein’s paradox.
For our purposes, Stein’s improved estimator will take

the form of the linear shrinkage estimator of covariance:

σijðλÞ ¼ λΣiiδij þ ð1 − λÞΣij; λ∈ ½0; 1�; ð37Þ
and, for a given sample ensemble, there exists some optimal
λ� that minimizes the mean squared error (MSE) and
λ� → 0 as N → ∞. Since we do not know the true
covariance Σ�, we must estimate the optimal value.
Based on work by Ledoit and Wolf [55], Schäfer and
Strimmer [56] gave a fairly straightforward estimator for
the optimal value of λ:

λ̂� ¼
P

i≤j
dVarðΣijÞP
i≠jΣ2

ij
: ð38Þ

In Appendix C, we show a one-pass algorithm to compute
the sample estimate of dVarðΣijÞ.

The shrinkage estimator of covariance has been sug-
gested for use in lattice quantum field theory applications
for some time [57,58]. Only recently has the shrinkage
estimator been actually employed for use in published
lattice QCD analyses [59–62]. Recent work by Ledoit and
Wolf [63,64] have proposed an improved nonlinear shrink-
age estimator. Burda and Jarosz [65] have also developed
an improved shrinkage estimator and have developed an
open-source PYTHON library called shrinkage to assist in
calculations. In this analysis, we have conservatively
chosen to use linear shrinkage rather than one of the newer
alternatives.

IV. DETAILED EXAMPLE OF
MODEL-AVERAGING ANALYSIS

ON A SINGLE ENSEMBLE

We will discuss in detail our analysis of the 963 × 192,
β ¼ 4.8,m ¼ 0.00125 ensemble which is the larger volume
companion to the 643 × 128 ensembles discussed in our
previous work [12,13]. It will also serve as a detailed
example of how we implemented our model-averaging
analysis.

A. Data selection

In order to compare models fit to different data subsets,
we need to first identify the maximal dataset T which could
be considered for any model. Although our staggered
meson two-point correlation function data are computed
from t ¼ 0 to t ¼ Nt − 1 ¼ 191, the data are first sym-
metrized: ðCðtÞ þ CðNt − tÞÞ=2 → CðtÞ and now the larg-
est possible dataset is from t ¼ 0 to t ¼ Nt=2 ¼ 96. As
already mentioned [50], the signal to noise decreases
exponentially at large times, so for most correlators,
particularly at nonzero momenta p⃗ ≠ 0, there is insufficient
signal to reasonably include those data points in the
analysis, particularly since this will exacerbate the problem
of reliable covariance estimation. We will not use data for
t ¼ 0, 1 given the difficulties of interpreting a staggered
correlation function separated by one unit in time in terms
of a transfer matrix [37]. We compute the jackknife ratio
CQðp⃗; tÞ=CQðp⃗; 1Þ and choose a minimum value for this
quantity for each state Q where there is still good signal to
noise for all p⃗. This defines tmax for each Q and p⃗.
Figure 1 shows examples of our procedure. On the left,

for the π5 meson, we see good signal for all momenta to the
middle of the lattice, and we also see nice straight lines on
the log plot, indicating clear signal of a single decaying
exponential. On the right, for the a0;1 meson, the situation is
somewhat different. There does seem to be pretty good
signal to the middle of the lattice, but the nature of the
signal changes at large times, with an apparent change
of slope and an oscillating signal becoming dominant.
We use a rough model to guide our choice of where to
draw a horizontal line based on the dispersion relation
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E2
Q ¼ M2

Q þ p2 and assuming that a single exponential
dominates the correlation function at times tc where it
crosses the line

CQðp⃗; tcÞ
CQðp⃗; 1Þ

¼ e−
ffiffiffiffiffiffiffiffiffiffiffiffi
M2

Qþp2
p

ðtc−1Þ ¼ const ⇒ tcðp⃗Þ

∝
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
eff þ p2

p : ð39Þ

We compare the computed values to this model, and we see
good agreement along the shown cut line. If we lower the
cut line, the observed values deviate from the prediction,
particularly for p2 ¼ 4, so we conservatively set the cut
line at 3 × 10−6. Note that this model will not work well
as tc → Nt=2, since it does not include the additional
contribution due to periodic boundary conditions which
becomes important in that region. A modified expression

involving hyperbolic cosines can be derived, but we did not
need it here.
The situation for the σ meson correlator is more

complicated. In Fig. 2 on the left is the unsubtracted
correlator Cσðp⃗ ¼ 0; tÞ. It should be clear that just sub-
tracting some constant value around c0 ¼ 262.08… in an
uncorrelated way, following Eq. (8), would be unsatisfac-
tory because the signal to noise would fall below one in a
few time units. The center panel shows C̄σðp⃗ ¼ 0; tÞ and,
following Eq. (14), the previously large positive constant
has been replaced with a 3 orders of magnitude smaller
negative constant and greatly enhanced signal to noise.
However, we still need to figure out at what time tc the
signal to noise of the exponentially decaying part of the
correlator falls below an acceptable level. We cannot judge
this from the central panel, since the large time behavior is
dominated by the integral of the correlation function.
Instead, we compute the ratio Cσðp⃗; tÞ=Cσðp⃗; 1Þ for p⃗ ≠ 0

FIG. 1. Two-point correlation functions for π5 and a0;1 mesons. In the right panel, data points below the horizontal line at 3 × 10−6

were not included in any fits.

FIG. 2. Two-point correlation functions for σ meson. The left panel shows the unsubtracted p⃗ ¼ 0 correlator. The center panel shows
the p⃗ ¼ 0 subtracted correlator. The right panel data points below the horizontal line for p⃗ ≠ 0 not included in fits. The data from the
central panel are included on the right by shifting upward by a sufficiently large constant C̄ðp⃗ ¼ 0; tÞ þ 0.045 so that the result is
positive and can be displayed on a log plot. The shifted data cannot be used in the data selection analysis.
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and rely on our crude model Eq. (39) to extrapolate to
p⃗ ¼ 0, shown in the right panel. The results in the data
selection procedure are summarized in Table II.

B. Model averaging

As previously discussed, this analysis will use model
averaging [25]. In Fig. 3, we show how varying the fitting
range t∈ ½tmin; tmax� affects the relative model probabilities
pðMjDÞ. We focus on the p⃗ ¼ 0 mesons, since those states
are most susceptible to the presence of t-invariant constant
contribution to the correlation function. This is true even in
the case of the a0;1 meson, where the expected constant
contribution should vanish in the infinite statistics limit.
The π5 meson is much less affected by any such constant as
can be seen by the preference for model A fits in the model
averaging.

C. Dispersive analysis

Once the model parameters and their errors have been
computed for each correlation function computed on a
given volume, at a given fermion mass, and at a given
spatial momentum p⃗, the results from various momenta can
be used to constrain the values of the parameters in the
rest frame using the dispersion relations outlined in
Eqs. (15)–(17) for the rest mass MQ and Eqs. (18)–(21)
for the decay constants F̂Q. Parameter estimation is done
using least-squared fitting with possible finite lattice
spacing corrections included in even powers of p̂2 or

ðapÞ2, as appropriate. Since the number of lattice correc-
tion terms needed is unknown a priori, we use model
averaging to average over the different model choices.
This procedure is probably of marginal benefit for the π5

rest mass and decay constant, since those quantities are
already very accurately determined directly in the p⃗ ¼ 0
frame and the other momentum frames do not add signifi-
cant additional information, as shown in Fig. 4. However,
these fits also show how the momentum dependence is
consistent with the expected dispersion relations up to
small lattice artifacts.
For the isosinglet scalar σ in Fig. 5 and isotriplet scalar

a0;1 in Fig. 6, we see similar consistency with the expected
dispersion relations. Now, the information from the non-
zero momentum frames provides additional significant
constraints on the rest mass and decay constant resulting
in overall smaller uncertainties than if only the p⃗ ¼ 0
results alone were used. This is particularly important for
the σ channel, where the correlation function in the p⃗ ¼ 0
frame has a difficult to subtract constant which is not
present in nonzero momentum frames.

V. INFINITE-VOLUME EXTRAPOLATION

We repeat the steps described in detail for one ensemble
in Sec. IV for all ensembles in this study. We would like to
compare the results of our calculations with various models
but those models usually apply to the system only in an
infinite volume. We will extrapolate our data to the infinite-
volume limit using the model described in Sec. II E.

TABLE II. Summary of maximum allowed time ranges for fitting in model-averaging procedure for the
963 × 192, β ¼ 4.8, m ¼ 0.00125 ensemble.

p⃗ ¼ ð0; 0; 0Þ p⃗ ¼ ð1; 0; 0Þ p⃗ ¼ ð1; 1; 0Þ p⃗ ¼ ð1; 1; 1Þ p⃗ ¼ ð2; 0; 0Þ
π5 [2, 96] [2, 96] [2, 96] [2, 96] [2, 96]
a0;1 [2, 70] [2, 63] [2, 58] [2, 53] [2, 50]
σ [2, 52] [2, 41] [2, 34] [2, 30] [2, 27]

0 5 10
tmin

0.001

0.01

0.1

1

p(
M

|D
)

A(3,0)
A(4,0)
B(3,0)
C(3,0)
C(4,0)

963�192, m=0.00125, �5 meson

0 5 10
tmin

0.001

0.01

0.1

1

p(
M

|D
)

B(2,0)
C(2,0)
C(3,0)

963�192, m=0.00125, � meson

0 5 10
tmin

0.001

0.01

0.1

1

p(
M

|D
)

B(3,1)
B(4,1)
C(4,1)

963�192, m=0.00125, a0,1 meson (p=0)

FIG. 3. Relative model probabilities for the p⃗ ¼ 0 π5 σ and a0;1 mesons. The different models are labeled by a letter A, B, C, and
integers ðnmax; jmaxÞ, the number of nonoscillating and oscillating states, as described in Sec. II B. The range of time values in each fit
½tmin; tmax� are shown in the figures. The uppermost curves correspond to tmax as the maximum value in Table II, and the lower curves
correspond to decreasing tmax by one.
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FIG. 4. Momentum dependence of the energy Êπ5 and decay constant F̂π5 . Fits to polynomials in p̂2 up to quadratic order are shown.

FIG. 5. Momentum dependence of the energy Êσ and decay constant F̂S. Fits to polynomials in p̂2 up to quadratic order are shown.

FIG. 6. Momentum dependence of the energy Êa0;1 and decay constant F̂a0;1 .
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At each volume and fermion mass, we compute the
quantity

ξðmq; LÞ≡ M2
π5�

4πF̂π5

�
2

X8
n¼1

4κðnÞffiffiffi
n

p
Mπ5L

K1

� ffiffiffi
n

p
Mπ5L

�
; ð40Þ

where themq dependence is implicit in the relevant infinite-
volume quantities Mπ5 and F̂π5 . With this computed
quantity, the analysis becomes a simple linear fit.
If we focus just on Mπ5 and F̂π5 , we know in chiral

perturbation theory the quantities απ5 and βπ5 defined in
Eqs. (22) and (23) appear at a specific order in the chiral
expansion and have no implicit fermion mass dependence.
We use the same finite-volume model for other masses and
decay constants, and we will similarly assume the param-
eters αQ and βQ are mass independent as a model choice.
This means that αQ and βQ are determined by a simulta-
neous fit to the data at all fermion masses and volumes.
The choice of the expansion parameter ξðmq; LÞ being

defined in terms of infinite-volume quantities might pose a

chicken-and-egg problem when attempting to extrapolate
π5 data since the infinite-volume values are not known
a priori. In this case, we start by using the values on the
largest volume and then iterate a few times, and the result
converges quickly.
An earlier version of the finite-volume extrapolation

for Mπ5 and Fπ5 were published previously [13], where it
was observed to be a relatively minor correction on our
volumes. Our current results are consistent with them, so
we focus here on the σ channel. The fit of Mσðmq; LÞ is
shown in Fig. 7, and the fit of F̂Sðmq; LÞ is shown in Fig. 8.
αQ and βQ for various channels studied in this work are
summarized in Table III. Both from the figures and from the
uncertainties on ασ and βσ in the table, it is clear that the
uncertainties in our σ meson observables are still too large
to reliably extract the sign and magnitude of these finite-
volume corrections. We hope to return to this issue in a
future publication.
Studying the other parameters in Table III reveals

relationships between parameters which are generated by
the strong dynamics and which are qualitatively similar

FIG. 7. Infinite-volume extrapolation of the rest masses MσðmqÞ. ασ ¼ 1.9� 16.7 and χ2=d:o:f: ¼ 2.05 with 4 d.o.f.
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to QCD. First, sgnðαQÞ ¼ −sgnðβQÞ is a well-known
feature in QCD. Second, the fact that sgnðαπ5Þ ¼
−sgnðαa0;1Þ is also observed in earlier studies [3] and
was previously misinterpreted as an indication of “parity
doubling” in near-conformal gauge theories, because finite-
volume effects would push the masses and decay constants
of parity partners π5 and a0;1 toward degeneracy. We also
note that, without a proper infinite-volume extrapolation,
if the mass of the a0;1 meson were observed to be stable
but just below decay threshold, one could wonder whether
the state might become unstable in a larger volume. In our

calculations, the a0;1 meson remains stable even after
infinite-volume extrapolation as can be seen in Table IV.

VI. SYSTEMATIC ERROR ANALYSIS

In our previous I ¼ 2; ππ scattering paper [13], we
made a crude estimate of the relative systematic errors
affecting our statistical determinations of the π5 meson
mass Mπ5ðmqÞ and decay constant Fπ5ðmqÞ. Our current
statistical-only estimate of uncertainties for quantities like
Mπ5ðmqÞ and F̂π5ðmqÞ as shown in Table IV are likely
underestimates due to various factors: a small number of
independent samples; various modeling choices regarding
dispersion relations and finite-volume effects; data quality
cuts and model probability cuts in the model-averaging
procedure; plus the interplay between the amount of
independent data and choices made in the rest of the
analysis through the reliability of the shrinkage estimator of
covariance.
We would like to estimate how large these effects might

be in terms of a single relative systematic error parameter ρ
across all the ensembles. We will estimate ρ using a number

FIG. 8. Infinite-volume extrapolation of the decay constants F̂SðmqÞ. βσ ¼ −1.9� 32.0 and χ2=d:o:f: ¼ 0.15 with 4 d.o.f.

TABLE III. Summary of finite-volume corrections αQ and βQ.
All fits have 4 d.o.f. Multiply these parameters by 3=ð2

ffiffiffiffiffiffiffi
2π3

p
Þ ≈

0.19 to compare with [13].

αQ χ2=d:o:f: βQ χ2=d:o:f:

π5 6.53(29) 3.12 −9.3ð1.3Þ 0.65
σ 2(17) 2.05 −2ð32Þ 0.15
a0;1 −27.4ð4.6Þ 2.88 11(11) 0.29
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of different observables and then combine those estimates
to get an average value for ρ. For example, if σM is the
statistical-only estimate of the uncertainty of a given
mass M, we would like to estimate a relative systematic
uncertainty ρM such that the total uncertainty is

MðmqÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2MðmqÞ þMðmqÞ2ρ2M

q
: ð41Þ

We assume that the systematic effect is similar across all the
different ensembles labeled by different fermion massesmq

so that the parameter ρM does not depend on mq.
To estimate ρM, we do not want to assume any explicit

functional dependence for MðmqÞ, in particular, that we
would expect to be valid for smallmq including asmq → 0.
Instead, we imagine that whatever the correct function,
it is relatively smooth and slowly varying and can be
approximated by a Taylor series expansion around the mid-
point m0 ¼ 0.00507 of our range of mq and jmq −m0j ≤
Δm ¼ 0.00382. We can fit the data to a polynomial

MðmqÞ ≈
Xnmax

n¼0

anðmq −m0Þn: ð42Þ

Given that we have only five different mq values, we will
compare the χ2 and AIC values for nmax ¼ 2 and nmax ¼ 3
and use those comparisons to estimate ρM. We will also use
the ratio test to check for convergence of the series on
m0 � Δm:

janþ1Δnþ1j
janΔnj < 1; ∀ n: ð43Þ

Actually, the ratio test requires only the ratio< 1 as n → ∞
for convergence, but we will assume convergence if its true
term by term up to the largest nwe can fit. For this analysis,
we will use the data in Table IV.

A. Fits using statistical-only data

In this section, in Table V we show fits of Eq. (42) to the
statistical-only data from Table IV for nmax ¼ 2, 3. We then

TABLE IV. Final summary of infinite-volume ground -state rest masses and decay constants in lattice units. Only statistical
uncertainties are shown. Data forMρi copied from [12] for convenience. See Table IX for results with systematic uncertainties included.
Supplemental results for all fit parameters are available [44].

mq 0.00125 0.00222 0.00500 0.00750 0.00889

Mπ5 0.081082(32) 0.10870(12) 0.165691(73) 0.205711(33) 0.22534(13)
F̂π5

0.021677(40) 0.02794(12) 0.03982(10) 0.048314(66) 0.05262(15)
Mσ 0.1174(44) 0.1545(79) 0.2408(77) 0.2744(71) 0.301(11)
F̂S 0.0254(17) 0.0361(37) 0.0536(32) 0.0711(36) 0.0787(59)
Ma0;1 0.1536(10) 0.2070(53) 0.3119(28) 0.3773(18) 0.4193(32)

F̂a0;1
0.00691(14) 0.00944(43) 0.1480(27) 0.01829(24) 0.02047(42)

Mρi [12] 0.1709(65) 0.2197(37) 0.3024(63) 0.36962(77) 0.4093(21)

TABLE V. Basic fits using statistical-only data from Table IV to model function in Eq. (42). Bolded entries indicate observables where
model probabilities are higher for nmax ¼ 2 than nmax ¼ 3.

Observable nmax χ2 logpðMjDÞ a0 a1 a2 a3

Mπ5 2 1052.0 −528.0 0.166768(60) 18.563(11) −1000.9ð6.4Þ
3 159.5 −83.8 0.167345(63) 17.472(38) −950.4ð6.6Þ 100500(3400)

F̂π5
2 76.0 −41.0 0.040144(82) 3.967(15) −222.3ð8.4Þ
3 14.3 −11.2 0.040275(84) 3.581(51) −207.4ð8.6Þ 33600(4200)

Mσ 2 1.6 −3.8 0.2382(64) 22.9(1.3) −2250ð640Þ
3 0.8 −4.4 0.2384(64) 19.5(4.1) −2122ð657Þ 29ð33Þ × 104

F̂S 2 0.6 −3.3 0.0551(28) 6.93(62) −200ð290Þ
3 0.4 −4.2 0.0550(28) 6.1(2.0) −160ð300Þ 6ð16Þ × 104

Ma0;1 2 14.7 −10.4 0.3097(22) 33.82(36) −1820ð210Þ
3 0.0 −4.0 0.3136(25) 28.0(1.5) −1870ð210Þ 46ð12Þ × 104

F̂a0;1
2 1.9 −3.9 0.01483(23) 1.726(46) −89ð23Þ
3 0.0 −4.0 0.01489(23) 1.50(17) −82ð23Þ 19ð14Þ × 103
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test for convergence by computing the ratios in Eq. (43) and
collect the results in Table VI.
If we first look at the model probabilities, we see when

the fit is highly constrained, indicated by large χ2 values,
then the fit with nmax ¼ 3 is preferred relative to nmax ¼ 2.
This is the expected behavior, since adding extra fit para-
meters in a highly constrained fit usually reduces the χ2 by
a sufficient amount to increase the model probability. How-
ever, if the fit is poorly constrained, indicated by a small χ2,
adding extra parameters may not increase the model
probability. Observables where this occurs are highlighted
in Table V, and those observables are probably too noisy to
help constrain the systematic error parameter ρ.
Looking at the convergence test in Table VI, again we

highlight examples where data were too noisy to pass the
test with confidence. Again, we will not use those observ-
ables to help constrain ρ. Note also the strong overlap in the
lists of rejected observables from both tables. Finally, we do
not expect that the functions will have extremal points in
the region where it approximates the data. The zeros of the
derivatives are shown in Table VII.

B. Estimating relative systematic error

To estimate the relative systematic error parameter ρ,
from Eq. (41) as ρ increases the error bars will increase
and the corresponding χ2 will decrease. What value of χ2

should we choose to determine ρ? A priori, two interesting
values come to mind: (I) the mean value of the chi-squared
distribution for k degrees of freedom, i.e., χ2kðρðIÞÞ ¼ k;
(II) the value of χ2k such that one expects 68% of the
time a random sample of the chi-squared distribution

should be less than or equal to that value, i.e., χ21ðρÞ ¼ 1,
χ22ðρðIIÞÞ ≈ 2.3.
A posteriori, we noticed that from a model-averaging

perspective, the four-parameter cubic polynomial fit has
the higher model probability at ρ ¼ 0 in cases where the
statistical error is small compared to the expected system-
atic error. In the ρ → ∞ limit, χ2 → 0 and the most likely
model is the one with the smallest nmax. As ρ increases,
there is a point where the quadratic and cubic polynomial
fits have equal probability. We define

AICðρ; nmaxÞ ¼
1

2
χ25−nmax

þ nmax þ 1 ð44Þ

and choose a third interesting value of ρ: (III)
AICðρðIIIÞ; 2Þ ¼ AICðρðIIIÞ; 3Þ. Note that this does not
always have a solution, particularly if the quadratic fit
has a lower AIC at ρ ¼ 0. A posteriori, we can rationalize
this choice as the point where the quadratic and cubic
descriptions of the data are equally good (or bad) from an
information-theoretic perspective.

C. Summary of systematic error analysis

From Table VIII, we can see there are eight unique ρ
values from approximately 0.007 to 0.021. Rather than pick

TABLE VI. Ratios for convergence testing of fits in Table V.
The fit parameter covariance matrix (not shown) was used to
compute these uncertainties. Bolded entries indicate observables
where the convergence test may fail due to large values or
uncertainties.

Observable nmax Δmj a1a0 j Δmj a2a1 j Δmj a3a2 j
Mπ5 2 0.42521(36) 0.2060(14)

3 0.39884(95) 0.2078(15) 0.404(15)

F̂π5
2 0.3775(19) 0.2141(86)
3 0.3397(56) 0.2212(97) 0.618(88)

Mσ 2 0.368(24) 0.37(12)
3 0.312(68) 0.42(15) 0.52ð66Þ

F̂S 2 0.481(54) 0.11(16)
3 0.43(14) 0.10(19) 1.6ð5.9Þ

Ma0;1 2 0.4171(64) 0.206(26)
3 0.342(20) 0.254(35) 0.94ð26Þ

F̂a0;1
2 0.445(15) 0.197(54)

3 0.358(46) 0.211(64) 0.86ð72Þ

TABLE VII. Zeros of the derivatives of fits in Table V.

Observable nmax f0ðmqÞ ¼ 0 f00ðmqÞ ¼ 0

Mπ5 2 0.013
3 0.0070� 0.0069i 0.0070

F̂π5
2 0.013
3 0.0059� 0.0056i 0.0059

Mσ 2 0.0089
3 0.0062� 0.0040i 0.0062

F̂S 2 0.021
3 0.0046� 0.0054i 0.0046

Ma0;1 2 0.0131
3 0.0052� 0.0043i 0.0052

F̂a0;1
2 0.0135

3 0.0053� 0.0050i 0.0053

TABLE VIII. Various estimates of the systematic error para-
meter ρ as determined by methods described in the text.

Observable nmax ρðIÞ ρðIIÞ ρðIIIÞ

Mπ 2 0.0169 0.0158 0.0162
3 0.0068 0.0068 0.0162

Fπ 2 0.0210 0.0196 0.0197
3 0.0098 0.0098 0.0197
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just one, we consider a few summary statistics: the
arithmetic mean ρa ¼ 0.0157, the median ρm ¼ 0.0165,
or the geometric mean ρg ¼ 0.0148. All give relatively
similar values close to the central grouping. We make a
conservative choice and choose the largest of the three
ρ ¼ ρm ¼ 0.0165. If we compare this estimate to the
previous rough guess of 0.01 quoted in [13], it is nice to
see they are not too different and that 0.01 falls within the
range of estimated values. A final summary of our results
with the relative systematic error included is given in
Table IX.
In Fig. 9, we compare the previously computed results

for Mσ with combined statistical and systematic errors as
described in [12] with the new results of Table IX for Mσ

and Mπ5 . The values for
ffiffiffiffiffiffi
8t0

p
=a are taken from Table I

of [12], and the plot style is similar to Fig. 10 of [12]. The
conclusion we draw from this comparison was that the
previous analysis method for computing Mσ led to sys-
tematically lower mass values and that the method used
previously to estimate systematic errors was sufficiently
conservative as to cover the downward shift of the result.

VII. COMMENTS ON CHIRAL EXPANSIONS

While the SU(3) Nf ¼ 8 theory with massive Dirac
fermions is a potentially interesting theory on its own,
being a possible candidate for composite dark matter [66],
the theory closer to the chiral limit mq → 0 might also be
relevant for composite Higgs phenomenology. As stated in
Sec. I, our results alone are not sufficient to establish with
certainty whether the massless Nf ¼ 8 theory is inside or
outside the conformal window. But, the low-energy content
of the two scenarios is quite different: in one case a very
strongly coupled conformal field theory and in the other
case massless Nambu-Goldstone bosons and possible light
flavor-singlet scalar resonance with a mass of the order of
Fπ . Specific models will appear quite different depending
on the scenario, and when fitted to our data, those models
will, in general, be an expansion in some small parameter
which vanishes in the chiral limit. We will discuss different
specific extrapolations in detail in a companion paper [34].
Here we note that, based on one’s a priori expectation for

the nature of the low-energy theory in the chiral limit, the
choice of expansion parameter can lead to very different
presentations of the data. One could naively plot results
versus the fermion mass mq, or some power of the fermion

mass m1=ð1þγ�Þ
q , 0 ≤ γ� ≤ 2 motivated by assuming con-

formal symmetry in the chiral limit, or χ ≡M2
π5=ð4πF̂π5Þ2

by assuming spontaneous chiral symmetry breaking in the
chiral limit. In theory like SU(3) Nf ¼ 2 (QCD), these
choices often do not make any appreciable difference in the
presentation of the data. But in this theory, if the chiral limit
is conformal, the expansion parameter χ does not vanish as
mq → 0. Visually, we can see the difference in Fig. 10.
Since the value of γ� is a dynamical parameter that can be
determined only through a careful extrapolation, we plot
three representative values that cover weakly and strongly
coupled CFTs plus an intermediate value. Regardless of
which value of γ� is chosen, χ varies significantly over the
range of mq with a fair degree of curvature which makes it
difficult to estimate how small mq must be before the
constant term in χ dominates the leading mq-dependent
term. Of course, if χ vanishes in the chiral limit, then the

TABLE IX. Final summary of infinite-volume ground-state rest masses and decay constants with relative systematic error of ρ ¼
0.0165 included following Eq. (41). Data for Mρi derived from [12] for convenience. Results with only statistical errors in Table IV.

mq 0.00125 0.00222 0.00500 0.00750 0.00889

Mπ5 0.0811(13) 0.1087(18) 0.1657(27) 0.2057(34) 0.2253(37)
F̂π5

0.02168(36) 0.02794(47) 0.03982(66) 0.04831(80) 0.05262(88)
Mσ 0.1174(48) 0.1545(83) 0.2408(87) 0.2744(85) 0.301(12)
F̂S 0.0254(17) 0.0361(37) 0.0536(33) 0.0711(38) 0.0787(60)
Ma0;1 0.1536(27) 0.2070(63) 0.3119(58) 0.3773(65) 0.4193(76)

F̂a0;1
0.00691(17) 0.00944(45) 0.1480(36) 0.01829(39) 0.02047(54)

Mρi [12] 0.1709(71) 0.2197(52) 0.3024(80) 0.3696(61) 0.4093(71)

FIG. 9. A comparison ofMσ computed previously [12] with the
results from Table IX.
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constant term will never dominate. This suggests it will be
difficult to distinguish with much certainty given our
current results whether or not χ vanishes in the chiral
limit. Calculations at smaller fermion masses are needed.
We can now present the results for the spectrum in two

different ways. In Fig. 11, on the left is a presentation
appropriate when assuming the theory is conformal in the
chiral limit with a mass anomalous dimension γ� ≈ 1. In
units of the lattice spacing a, the masses of all the hadrons
are expected to extrapolate to zero, since any nonzero
hadron mass would break conformal symmetry. On the
right is a presentation assuming the chiral symmetry is
spontaneously broken in the chiral limit, and the relevant
scale of chiral symmetry breaking is set by 4πF̂π5. All the
hadron masses except the pion should be nonzero in the
chiral limit. Plotted this way, the pion is shown as a simple

curve since Mπ5=4πF̂π5 ¼
ffiffiffi
χ

p
. This also makes it easy to

display the energy threshold as a dotted line for decay to
two pions. In the current dataset, both the flavor-singlet and
nonsinglet scalar mesons appear to be unable to decay to
two pions.
Focusing solely on the data presented in this section, it is

still far from clear whether or not the chiral parameter χ
vanishes in the chiral limit. On the other hand, χ varies
significantly with the fermion mass, which also suggests
we are far from the hyperscaling limit where χ should be a
nonzero constant. Recent numerical studies with improved
gauge action [10] suggest that the SU(3) Nf ¼ 8 system
could be at the opening of the conformal window or at least
very close to it. There are indications of an infrared fixed
point at much stronger couplings than what is probed by
our data in this paper. This is so even ifNf ¼ 8 is below the
conformal window. Therefore, corrections to scaling in the
gauge coupling could be significant. This can explain our
inability to distinguish between the conformal and chirally
broken scenarios.

VIII. GMOR RATIO RESULTS

As discussed in Sec. II F, numerical studies of the
GMOR ratio can shed light on the low-energy behavior
of the Nf ¼ 8 theory by measuring how much the ground-
state pion pole contributes the pseudoscalar two-point
correlation function. A value close to unity indicates pion
pole dominance. Table X shows the computed values for
the chiral condensate and the integrated pseudoscalar
correlation function. Although computed by two different
techniques, the results agree extremely well with Eq. (25).
Using the largest volume data at each fermion mass for the
condensate and the statistical-only data in Table IV, we
compute the GMOR ratio in Eq. (28) and propagate the
statistical-only errors. We then apply the relative systematic

FIG. 10. Chiral expansion parameter χ ¼ M2
π5=ð4πF̂π5Þ2 versus

other chiral expansion parameters m1=ð1þγ�Þ
q . If the theory is

conformal, χ should be nonzero in the chiral limit. If the theory is
spontaneously broken, χ should be zero in the chiral limit.
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FIG. 11. Two different presentations of the spectrum from Table IX. On the left, in units of the lattice spacing a versus a chiral
expansion parameter assuming conformal symmetry and γ� ≈ 1. On the right, in units of the chiral breaking scale 4πF̂π5 versus a chiral
expansion parameter assuming spontaneous chiral symmetry breaking. The dotted line on the right indicates the energy threshold for
decays to two pions.
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error correction estimated in Sec. VI. The results are shown
in the rightmost column in Table X. The lowest pole does
not fully dominate the pion correlation function in our
fermion mass range, as the result is larger than one. If we
assume a mass-deformed CFT is the correct low-energy
description, then the lowest pion pole will never dominate
the pseudoscalar correlation function at any fermion
mass, as it is not a pseudo-Nambu-Goldstone boson, as
in Eq. (28).
In the case the Nf ¼ 8 theory is outside the conformal

window, one of the poles contributing to the pion corre-
lation function would have a pole position at Mπ5 þMσ

and a residue proportional to g2ππσ which we will assume
is OðF̂2

π5Þ. For the leading pion pole to dominate,
M2

π5=ðMπ5 þMσÞ2 ≪ 1. In this work, the ratio varies from
0.167(8) to 0.183(9), which in this scenario is interpreted as
not small enough to ensure pion pole dominance. A direct
calculation of the coupling gππσ and/or further calculations
at lighter fermion masses should shed light on this issue.
We did not perform an infinite volume extrapolation of

the condensate data in Table X similar to the ones described
in Sec. II E. The systematic effect of this correction might
be significant on the scale of the uncertainties shown for the
GMOR ratio. But the effect is unlikely to be significant
relative to the deviation of the ratio from unity. In the future,
if a detailed model is to be fit to these data, the modeler
should consider including these neglected corrections.

IX. DISCUSSION

In this investigation, we have made many methodologi-
cal improvements with respect to our earlier lattice study of
the Nf ¼ 8 theory [12]. In particular, we have employed
two different methods for dealing with time-independent

contributions to the flavor-singlet scalar correlator, first by
using the subtraction scheme developed in Sec. II A and
then by working with moving frames and applying the
dispersion relation described in Sec. II C. We were able to
substantially reduce the systematic uncertainties of our fit
results using the Bayesian model-averaging approach.
Additionally, we used improved “linear” shrinkage estima-
tors for data covariance which we found were more
reliable given the amount of statistics. There was an open
question in our previous paper whether finite-volume
effects could be significant even when Mπ5L≳ 5.3.
Now, we can see that the finite-volume effects are mild
and do not play a significant role in the final result. We find
that Mσ=Mπ5 ranges from 1.45 to 1.34 as Mπ5=Mρi
increases from 0.47 to 0.55.
We computed a new observable, the scalar decay

constant F̂S, which, as we show in a companion paper [34],
provides useful independent constraints on various low-
energy effective theories. We also computed the flavor-
nonsinglet scalar meson mass Ma0;1 and decay constant

F̂a0;1 . The proximity of the a0;1 to the decay threshold
suggests that a careful elastic scattering analysis might be
warranted in the future if more accurate results are desired.
In this work, we have focused on the SU(3) Nf ¼ 8

theory with small, but nonzero, fermion masses and have
discussed in general terms in Secs. VII and VIII what hints
these results might give us regarding the chiral limit of the
theory without appealing to a specific low-energy EFT. In a
companion paper [34], we took an alternate approach
assuming the results of Table IX as definitive and attempted
to match the results to two EFTs, a dilaton EFTand a mass-
deformed CFT, which both assume that the underlying
gauge theory is near-conformal and strongly influenced
by a nearby conformal fixed point. The main difference
between the two EFTs is whether or not the theory actually
becomes conformal in the chiral limit. The reader should
refer to the companion paper for the details, but it should
perhaps not be surprising given the general discussion
above that the conclusion is the current data does not reach
light enough fermion masses to be definitive.
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APPENDIX A: ENSEMBLES

A summary of the ensembles used in this paper is shown
in Tables XI and XII.

APPENDIX B: NORMALIZATION
OF MODEL PROBABILITIES

When performing an aggressive model-averaging analy-
sis by considering a wide range of models fMg and a wide
range of data subset selections T1 for each model, the
resulting set of logpðMjDÞ can vary by several orders of
magnitude, making it numerically challenging to perform
an accurate calculation of

P
fMg pðMjDÞ. In particular,

exponentiating each logpðMjDÞ and then performing the
sum seems like a bad idea. So, we work directly with
logpðMjDÞ to compute the log of the sum. Let ln be a
sorted list of the logpðMjDÞ: l1 ≤ l2 ≤ � � � ≤ lN . We can
construct the partial sums recursively:

s1 ¼ l1; sn ¼ sn−1 þ log
�
1þ eln−sn−1

� ðn > 1Þ:
ðB1Þ

The final sum over model probabilities is
P

fMg pðMjDÞ ¼
exp sN . The key observation is that sorting the list ensures
that two wildly different numbers are not combined at any
step with accompanying large loss of precision.

TABLE XI. Ensembles, or Markov chains, used in this study with 0.005 ≤ mq ≤ 0.00889. “Try” assigns a label to
each Markov chain and the label “C” indicates the combined summary for all chains at a given mass and volume.
“Period” indicates how often the correlation functions were computed.

Volume Mass Try Traj Period (Traj) Block (Traj) Nblk

243 × 48 0.00889 1 [250, 25000] 10 100 247

323 × 64 1 [1040, 7000] 40 80 75
2 [1040, 7000] 40 80 75
3 [1040, 7000] 40 80 75
4 [1040, 7000] 40 80 75

C 80 300

243 × 48 0.0075 1 [350, 10000] 10 90 107

323 × 64 1 [255, 1395] 10 100
[1400, 25160] 5 100 249

483 × 96 1 [250, 9990] 10 70 139
2 [250, 9990] 10 70 139

C 70 278

323 × 64 0.005 1 [251, 29641] 5 100 293
2 [20011, 22815] 2 100 28
3 [29001, 31653] 2 100 26
4 [10001, 13293] 2 100 32

C 100 379

483 × 96 1 [250, 4200] 10 50 79
2 [250, 3390] 10 50 63

C 50 142
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APPENDIX C: UNBIASED SAMPLE ESTIMATOR FOR THE VARIANCE OF THE COVARIANCE

Using Mathematica’s MomentConvert[] functionality, it is a few lines of code to express the unbiased sample estimator
for dVarðΣijÞ in terms of raw moments:

centMom11Est = MomentConvert[CentralMoment[{1, 1}], “SampleEstimator”];
bias = MomentConvert[centMom11Est, {Moment, n}];
MomentConvert[(centMom11Est - bias)^2, {Moment, n}].

The result is

n3

n − 1
dVarðCovðx; yÞÞ ¼ ðn − 1Þμ2;2 − 2ðn − 1Þðμ2;1μ0;1 þ μ1;0μ1;2Þ þ μ2;0μ0;2 þ ðn − 2Þðμ2;0μ20;1 þ μ21;0μ0;2Þ

− ðn − 2Þμ21;1 þ 2ð3n − 4Þμ1;1μ1;0μ0;1 − 2ð2n − 3Þμ21;0μ20;1; ðC1Þ

TABLE XII. Ensembles, or Markov chains, used in this study with 0.00125 ≤ mq ≤ 0.00222. “Try” assigns a
label to each Markov chain and the label “C” indicates the combined summary for all chains at a given mass and
volume. “Period” indicates how often the correlation functions were computed.

Volume Mass Try Traj. Period (Traj.) Block (Traj.) Nblk

483 × 96 0.00222 1 [250, 11190] 2 120 91
2 [1000, 9930] 2 120 74
3 [210, 1450] 10 120 10
4 [210, 1410] 10 120 10
5 [210, 1360] 10 120 9
6 [210, 1290] 10 120 9
7 [210, 1350] 10 120 9

C 120 212

643 × 128 0.00125 r0 [200, 2060] 10 120 15
r1 [200, 1990] 10 120 15
r2 [200, 2010] 10 120 15
r3 [200, 2070] 10 120 15
s0 [8436, 17088] 12 120 72
s1 [7644, 17472] 12 120 82
s2 [7212, 17412] 12 120 86

C 120 300

963 × 128 2 [500, 3144] 2 80 34
3 [500, 3282] 2 80 35

C 80 69

where we use Mathematica’s convention for raw moments:

μi;j;S ¼ 1

n

X
ðx;yÞ∈S

xiyj: ðC2Þ

Following Pébay [67], we would like to construct a one-
pass, parallelizable computation. To explain the notation,
S is a set of n samples that can be partitioned into two
subsets S1 and S2 of n1 and n2 samples, respectively, so
n1 þ n2 ¼ n. The computation can be parallelized by
performing computations on the subsets and combining
the results. In the special case where n1 ¼ n − 1 and

n2 ¼ 1, the results simplify and can be used as a one-pass
algorithm:

μi;j;S ¼ n1
n
μi;j;S1

þ n2
n
μi;j;S2

¼ μi;j;S1
þ n2

n

�
μi;j;S2

− μi;j;S1

�
; ðC3Þ

where the first form is symmetric and more useful when S1

and S2 are of comparable size and the second form is better
suited when S2 is a single sample ðx; yÞ:

μi;j;S ¼ μi;j;S1
þ 1

n
ðxiyj − μi;j;S1

Þ: ðC4Þ
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