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We adopt the effective Lagrangian approach to study the strong decays of the 1−ð0þþÞD�D̄� molecular
state [denoted as Ta

ψ0ð4010Þ according to the LHCb naming convention] through triangle diagrams. The

decay channels include the open-charm DD̄, and the hidden-charm ηcπ, J=ψρ, and χc1π. The coupling
between the Ta

ψ0ð4010Þ and its constituents D�D̄� is obtained by solving for the residue of the scattering

T-matrix at the pole. Our calculations yield a total width of few tens MeV for the Ta
ψ0ð4010Þ state using

three different form factors, with its main decay channels being ηcπ and χc1π. The Xð4100Þ and Xð4050Þ
have similar masses and widths, with both masses being close to the D�D̄� threshold. Additionally, their
decay final states are consistent with those of the Ta

ψ0ð4010Þ. Therefore, it is likely that they represent the

same state and both potentially correspond to the Ta
ψ0ð4010Þ. We suggest that future experiments focus on

searching for the Ta
ψ0ð4010Þ signal in the final states ηcπ

−, χc1π−, and D0D− of the B0 → ηcπ
−Kþ,

χc1π
−Kþ, and D0D−Kþ processes, respectively, as well as further investigating its resonance parameters

with Flatté-like formula.

DOI: 10.1103/PhysRevD.110.054014

I. INTRODUCTION

In 2018, the LHCb Collaboration reported a resonance
state, denoted as Xð4100Þ− [1], in the invariant mass
spectrum of ηcπ− through the process B0 → ηcπ

−Kþ with
a significance exceeding three standard deviations [2]. The
measured mass and width of the resonance arem ¼ 4096�
20þ18

−22 MeV and Γ ¼ 152� 58þ60
−35 MeV, respectively.

However, the current data sample is insufficient to determine
whether its spin-parity quantum numbers JP are 0þ or 1−. It
can be inferred that this charged structure is an isovector
state, with quark composition cc̄dū. Like the well-estab-
lished states such as Zcð3900Þ [3] and Zcð4020Þ [4], the
Xð4100Þ is also evidently an exotic charmoniumlike state.
Several studies have explored the properties of the

Xð4100Þ resonance. For instance, Wang employed the
QCD sum rule calculations, supporting the interpretation
thatXð4100Þ is a scalar tetraquark [5]. Wu et al. also favored
the assignment of Xð4100Þ as a 0þþ tetraquark based
on calculations using the chromomagnetic interaction

model [6]. In contrast, Voloshin proposed that Xð4100Þ is
a hadrocharmonium—a structure formed by a compact
charmonium ηc coupled to light quark excitations with pion
quantum number through a QCD analogue of van der Waals
force [7]. In Ref. [8], Zhao proposed two possible inter-
pretations for the Xð4100Þ: (i) arising from the rescattering
effect of the S-waveD�D̄�, (ii) a genuine P-wave resonance
of the D�D̄� system. Cao and Dai [9], on the other hand,
proposed that the Xð4100Þ− is the charge conjugate of the
Xð4050Þþ [with mass and width m ¼ 4051� 14þ20

−41 MeV
and Γ ¼ 82þ21þ47

−17−22 MeV] previously observed by the Belle
Collaboration in the invariantmass spectrumof χc1πþ via the
decay B̄0 → χc1π

þK− [10]. Chen also indicated that the
Xð4100Þ− and Xð4050Þþ could be the same state [11]. For
the other related works, see Refs. [12,13].
The proximity of the Xð4100Þ resonance to the D�D̄�

threshold naturally raises question about its potential
connections with other resonances near the DD̄� and
D�D̄� thresholds. These resonances include the well-
established Xð3872Þ and Zcð3900Þ near theDD̄� threshold,
and the Zcð4020Þ near the D�D̄� threshold. Despite
ongoing debates regarding their exact nature, with inter-
pretations ranging from hadronic molecules to compact
tetraquarks and kinematic effects, the molecular picture has
emerged as the most prevalent framework for understand-
ing these states [14]. Within the molecular paradigm, their

*Contact author: wangbo@hbu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 054014 (2024)

2470-0010=2024=110(5)=054014(12) 054014-1 Published by the American Physical Society

https://orcid.org/0000-0003-0985-2958
https://ror.org/01p884a79
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.054014&domain=pdf&date_stamp=2024-09-13
https://doi.org/10.1103/PhysRevD.110.054014
https://doi.org/10.1103/PhysRevD.110.054014
https://doi.org/10.1103/PhysRevD.110.054014
https://doi.org/10.1103/PhysRevD.110.054014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


existence is tightly linked to the interactions of the D�D̄ð�Þ
systems with different quantum numbers.
Since the discovery of Xð3872Þ [15], a series of studies

have been conducted to investigate the interactions of the
D�D̄ð�Þ systems and explore the possible molecular states
[16–29]. Inspired by the recent observation of the
Tcs0ð2900Þ [30] and Ta

cs̄0ð2900Þ [31], we proposed to
connect different hadronic molecules from the quark-level
perspective in our recent works [32–34]. If Xð3872Þ and
Zcð3900Þ are the bound and virtual states of the isoscalar
and isovector DD̄� system, respectively, we can obtain a
virtual state in the 1ð0þÞD�K� system [32], which is very
likely to correspond to the newly observed Ta

cs̄0ð2900Þ by
the LHCb [31]. At the same time, we found that the
interaction of the 1−ð0þþÞD�D̄� system is equal to that of the
1ð0þÞD�K� system, and its interaction strength is about
twice that of the 1þð1þ−ÞD�D̄ð�Þ system (see Table IV of
Ref. [32], in which the interaction is dominated by the c̃a
term). That is to say, if Zcð3900Þ=Zcð4020Þ are molecular
states of the 1þð1þ−Þ DD̄�=D�D̄� systems, then there must
also exist a 1−ð0þþÞD�D̄� molecular state. Since its inter-
action is stronger, it corresponds to a bound state rather than a
virtual state. The mass range of the 1−ð0þþÞD�D̄� state we
obtain is (4007.2–4016.7) MeV [32].
The D�D̄� molecule with 1−ð0þþÞ will decay into the

open-charm DD̄, and hidden-charm ηcπ, J=ψρ, and χc1π
channels. Therefore, further experimental measurements of
the mass and width of Xð4100Þ=Xð4050Þ with higher
precision, as well as its partial decay widths to the DD̄,
ηcπ, J=ψρ, and χc1π channels, will be very helpful to
distinguish whether Xð4100Þ [2] and Xð4050Þ [10] are the
same state, and whether they are both the 1−ð0þþÞD�D̄�
molecule. In this work, we employ the triangle diagram
approach to calculate its strong decays, providing useful
information such as totalwidth, partialwidths, andbranching
fractions/ratios. The coupling constant to its constituents
D�D̄�will be determined from the residue of the scatteringT-
matrix at the pole [35]. The triangle diagram approach, also
known as the hadron loop mechanism, has been widely
applied to deal with the strong transitions of highly excited
charmonium (bottomonium) states via the dipion (η, ϕ, and
ω) emissions [36–41], as well as the decays [42,43] and
productions [44,45] of hadronic molecules.
The structure of this article is arranged as follows: In

Sec. II, we will present the effective Lagrangians, coupling
constants, and decay amplitudes. In Sec. III, we will
provide our results and related discussions. In Sec. IV,
we will summarize this work.

II. EFFECTIVE LAGRANGIANS, COUPLING
CONSTANTS, AND DECAY AMPLITUDES

A. Effective Lagrangians

Following the recent LHCb naming convention [46], the
D�D̄� molecule with 1−ð0þþÞ quantum numbers should be

named Ta
ψ0ð4010Þ, with the mass in parentheses coming

from our prediction [32]. Throughout the subsequent
sections, we will refer to it simply as Ta

ψ0. The decay
processes of this state to DD̄, ηcπ, J=ψρ and χc1π are
shown in Fig. 1, from which it can be seen that we need the
following effective Lagrangians.

(i) The Lagrangians for Ta
ψ0D

�D̄� coupling—The Ta
ψ0

couples to D�D̄� via the S-wave interaction, thus
their Lagrangian can be written as

L0 ¼ g0P̃
�†
μ Ta

ψ0P
�†μ þ H:c:; ð1Þ

where P̃�†
μ ¼ ðD̄�0†; D�−†Þμ, P�†

μ ¼ ðD�0†; D�þ†ÞTμ .
The Ta

ψ0 here denotes its isospin triplet,

Ta
ψ0 ¼

" 1ffiffi
2

p Ta0
ψ0 Taþ

ψ0

Ta−
ψ0 − 1ffiffi

2
p Ta0

ψ0

#
: ð2Þ

The extraction of the coupling constant g0 from the
residual of D�D̄� scattering T-matrix will be dem-
onstrated in Sec. II B.

(ii) The Lagrangians for D�Dð�Þπ and D�Dð�Þρ cou-
plings—The corresponding Lagrangians within the
superfield representations are given by [14,47]

Lπ ¼ gbhHγμγ5uμH̄i þ gbh ¯̃Hγμγ5uμH̃i; ð3Þ

Lρ ¼ iβhHvμðΓμ− ρμÞH̄iþ iλhHσμνFμνH̄i
þ iβh ¯̃HvμðΓμ− ρμÞH̃iþ iλh ¯̃HσμνFμνH̃i; ð4Þ

where the notation hxi denotes the trace of x in
spinor space, and

(a)

(c)

(b)

(d)

FIG. 1. The triangle loop diagrams for the strong decays of the
Ta
ψ0ð4010Þ state. Figures (a), (b), (c), and (d) represent the

processes of Ta
ψ0ð4010Þ decaying into DD̄, ηcπ, J=ψρ, and

χc1π, respectively. The double line, single line, and dashed line
denote the Ta

ψ0ð4010Þ, the D=D�, and the light mesons π=ρ,
respectively, while the charmonia ηc, J=ψ and χc1 are denoted by
the thick lines. The contributions arising from the G-parity
transformation are implied in figures (b), (c), and (d).
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H ¼ 1þ =v
2

ðP�
μγ

μ þ iPγ5Þ; ð5Þ

H̃ ¼ ðP̃�
μγ

μ þ iP̃γ5Þ 1 − =v
2

; ð6Þ

with H̄ ¼ γ0H†γ0, ¯̃H ¼ γ0H̃†γ0. The Pð�Þ and P̃ð�Þ

are respectively given by Pð�Þ ¼ ðDð�Þ0; Dð�ÞþÞ and
P̃ð�Þ ¼ ðD̄ð�Þ0; Dð�Þ−ÞT . vμ denotes the four velocity
of heavy mesons. The coupling constant jgbj ¼ 0.59
is extracted from the partial decay width of the D�

meson, e.g., the process D�þ → D0πþ [1]. Mean-
while, the axial-vector current uμ and chiral con-
nection Γμ are defined as

uμ ¼
i
2
fξ†; ∂μξg; Γμ ¼

1

2
½ξ†; ∂μξ�; ð7Þ

with

ξ2 ¼ U ¼ exp

�
iφ
fπ

�
; φ ¼

�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
;

ð8Þ
and the pion decay constant fπ ¼ 92.4 MeV. The
antisymmetric tensors σμν and Fμν are given by

σμν ¼ i
2
½γμ; γν�; ð9Þ

Fμν ¼ ∂μρν − ∂νρμ þ ½ρμ; ρν�; ð10Þ

with

ρμ ¼ i
gVffiffiffi
2

p Vμ; Vμ ¼

2
64

ωþρ0ffiffi
2

p ρþ

ρ− ω−ρ0ffiffi
2

p

3
75
μ

; ð11Þ

and the constants gV ¼ mρ=ð
ffiffiffi
2

p
fπÞ ¼ 5.9, β ¼ 0.9,

and λ ¼ 0.56 GeV−1 [47].
(iii) The Lagrangians for ηcDð�ÞD̄�, J=ψDð�ÞD̄�, and

χc1DD̄� couplings.—For heavy quarkonium, such
as charmonium, the heavy quark flavor symmetry
is badly broken, while the heavy quark spin sym-
metry still holds. Therefore, charmonia with the
same orbital angular momentum L but different
spins S form multiplets. For example, the S-wave
(L ¼ 0) spin doublet J containing the J=ψ and ηc
are given by

J ¼ 1þ =v
2

ðψμγμ þ iηcγ5Þ
1 − =v
2

; ð12Þ

while the P-wave quartet J 0μ including the χc2, χc1,
χc0 and hc are

J 0μ ¼ 1þ =v
2

�
χμαc2γα þ

1ffiffiffi
2

p ϵμαβδvαγβχc1δ

þ 1ffiffiffi
3

p ðγμ − vμÞχc0 þ hμcγ5

�
1 − =v
2

: ð13Þ

Then the corresponding Lagrangians are given
by [48]

L1 ¼ g1hJ 0μ ¯̃HγμH̄i þ H:c:; ð14Þ

L2 ¼ g2hJ ¯̃H =∂
↔

H̄i þ H:c:; ð15Þ
in which the coupling constants g1 and g2 are res-
pectively related to the decay constants of χc0 and J=ψ
with the vector meson dominance model [48].

g1 ¼ −
ffiffiffiffiffiffiffiffiffi
mχc0

3

r
1

fχc0
; g2 ¼

ffiffiffiffiffiffiffimψ
p
2mDfψ

; ð16Þ

with fχc0 ¼ 510� 40 MeV being estimated from the
QCD sum rule [49], while the fψ can be determined
through the electromagnetic decay of J=ψ , i.e., with
the decay width of J=ψ → eþe− [1]

Γ½J=ψ → eþe−� ¼ Cψ
4π

3

α2

mψ
f2ψ ; ð17Þ

where Cψ ¼ 4
9
is the charge square of charm quark,

α ¼ 1
137

is the fine-structure constant. One can obtain
that fψ ¼ 415 MeV.

B. Determination of the coupling constant g0
In this section, we will demonstrate how to determine

the coupling constant g0 in Eq. (1) using the residue of the
scattering T-matrix at the pole. To begin, we consider the
scattering of particles A and B (with masses m1 and m2,
respectively) within the framework of field theory.
Assuming that their interaction is strong enough, allowing
for the formation of bound states, we must treat their
scattering in a nonperturbative manner, which means using
the Bethe-Salpeter (BS) equation,

TFT ¼ VFT þ VFTGFTTFT; ð18Þ

where the superscript “FT” means that we are working in a
relativistic field theoretical approach. The two-body rela-
tivistic propagator GFT reads

GFT ¼ i
Z

d4q
ð2πÞ4

1

q2 −m2
1 þ iϵ

1

ðP − qÞ2 −m2
2 þ iϵ

¼
Z

q2dq
ð2πÞ2

ω1 þ ω2

ω1ω2

1

P2
0 − ðω1 þ ω2Þ2 þ iϵ

; ð19Þ
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where P ¼ p1 þ p2, with p1 and p2 the momentum of A
and B particles, respectively, and P0 denotes the center of
mass energy of AB system. The result in the second line of
Eq. (19) is obtained with the residue theorem. The ω1 and
ω2 are given by

ω2
1 ¼ q2 þm2

1; ω2
2 ¼ q2 þm2

2: ð20Þ

Then, we perform a nonrelativistic reduction

ωi ¼ mi þ
q2

2mi
þ…; ði ¼ 1; 2Þ; ð21Þ

ω1 þ ω2

ω1ω2

≈
1

m1

þ 1

m2

¼ 1

μ
; ð22Þ

and

1

P2
0 − ðω1 þ ω2Þ2

¼ 1

P0 − ðω1 þ ω2Þ
1

P0 þ ðω1 þ ω2Þ
≃

1

P0 −m1 −m2 −
q2

2μ

1

2P0

: ð23Þ

With the nonrelativistic reduction, the GFT becomes

GFT ¼ π

μ
ffiffiffi
s

p G; ð24Þ

where

G ¼
Z

q2dq
ð2πÞ3

1ffiffiffi
s

p
−m1 −m2 −

q2

2μ

ð25Þ

represents the nonrelativistic two-body propagator. Note
that we have replaced the P0 with

ffiffiffi
s

p
, where s ¼

ðp1 þ p2Þ2 is the invariant mass of the AB system, and
it equals to the P2

0 in the center of mass frame.
For nonrelativistic scattering, such as the interaction of

the AB system near the threshold energy, we can use the
Lippmann-Schwinger (LS) equation to handle it, i.e.,

t ¼ vþ vGt; ð26Þ

where G is given in Eq. (25).
The integral equation in Eqs. (18) and (26) can be

transformed into algebraic equations with, e.g., the on-shell
factorization approach [50],

TFT ¼ ð1 − VFTGFTÞ−1VFT; ð27Þ

t ¼ ð1 − vGÞ−1v: ð28Þ

It can be seen that the position of the pole in the T-matrix
is determined by the product of VFT (v) and GFT (G).

The following condition ensures that the pole position
remains unchanged after the reduction,

VFTGFT ¼ vG: ð29Þ

With the relation in Eq. (24), one can obtain that

VFT ¼ μ
ffiffi
s

p
π V. Similarly, the TFT and t will satisfy the same

relationship, i.e.,

TFT ¼ μ
ffiffiffi
s

p
π

t: ð30Þ

Now, we assume that there exists a pole with the squared
mass sR in the T-matrix, e.g., corresponding to a bound
state. Then, in the vicinity of this pole, the T-matrix can be
approximately written as

TFT ¼ ðgFTÞ2
s − sR

; ð31Þ

where gFT represents the coupling constant of the bound state
R to its component AB. The relation in Eq. (31) allows us to
extract the coupling constant from the residue of T-matrix,

ðgFTÞ2 ¼ lim
s→sR

ðs − sRÞTFT

¼ lim
s→sR

ð ffiffiffi
s

p þ ffiffiffiffiffi
sR

p Þ μ
ffiffiffi
s

p
π

ð ffiffiffi
s

p
−

ffiffiffiffiffi
sR

p Þt

¼ 2μsR
π

lim
s→sR

ð ffiffiffi
s

p
−

ffiffiffiffiffi
sR

p Þt; ð32Þ

and

lim
s→sR

ð ffiffiffi
s

p
−

ffiffiffiffiffi
sR

p Þt ¼ lim
s→sR

�
d

d
ffiffiffi
s

p t−1ð ffiffiffi
s

p Þ
�
−1
; ð33Þ

where we have used the l’Hôpital rule.
We adopt sharp cutoff to regularize the integral in

Eq. (25). For the bound state case, i.e.,
ffiffiffi
s

p
< m1 þm2,

its expression reads

GΛð
ffiffiffi
s

p Þ ¼ μ

4π3

�
γb arctan

�
Λ
γb

�
− Λ

�
; ð34Þ

where γb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðm1 þm2 −

ffiffiffi
s

p Þ
p

denotes the binding
momentum, and Λ is the cutoff parameter.
If the effective potential v does not depend on energy, as in

the case given in Ref. [32]. Then the Eq. (33) will equal to

g02 ¼ lim
s→sR

�
−

d
d

ffiffiffi
s

p GΛð
ffiffiffi
s

p Þ
�
−1

¼ γb
μ2

4π3

h
arctan

�
Λ
γb

�
− γbΛ

γ2bþΛ2

i : ð35Þ
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The gFT is obtained by combining the results in Eqs. (32)–
(35). For the small binding case γb → 0 and using Λ → ∞,
one can get gFT ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πγbsR=μ

p
. This is consistent with the

relation used in Ref. [35].
To obtain the g0 in Lagrangian (1), we still need to

perform one final step: We constructed the Lagrangian (1)
to describe the coupling between the bound state Ta

ψ0 and
its components D�D̄�. Using this Lagrangian, we can
describe the elastic scattering process shown in Fig. 2
(replacing A, B, and R with D�, D̄�, and Ta

ψ0, respectively).
The form of the scattering amplitude after nonrelativistic
reduction is

iM ¼ −i
g20

s − sR
ðε1 · ε2Þðε†1 · ε†2Þ; ð36Þ

where the sR here denotes the squared mass of Ta
ψ0, and ε1

(ε†1) and ε2 (ε†2) represent the polarization vectors of the
initial (final) stateD� and D̄�, respectively. Equation (31) is
also equivalent to an elastic scattering process shown in
Fig. 2. The scattering T-matrix is obtained in the partial
wave basis. To match Eq. (36) with Eq. (31) equivalently,
the scattering amplitude in Eq. (36) should also be
projected onto the partial wave basis (S-wave). With the
spin transition operators [51], the ðε1 · ε2Þðε†1 · ε†2Þ equals to
ðS1 · S2Þ2 − 1, with S1 (S2) the spin operator of the vector
meson D� (D̄�). Then the Eq. (36) in the partial wave basis
for the 1S0 case is given by

iM1S0 ¼ −i
3g20

s − sR
: ð37Þ

Finally, the matching condition

M1S0 ¼ −
ðgFTÞ2
s − sR

ð38Þ

yields

g20 ¼
2μD�D̄�m2

Ta
ψ0

3π
g02; ð39Þ

where μD�D̄� and mTa
ψ0

denote the reduced mass of D�D̄�

and the mass of Ta
ψ0, respectively. The expression for g02 is

given in Eq. (35). The range of g0 is

g0 ∈ ½2.9; 8.0� GeV; ð40Þ

where we have used
ffiffiffiffiffi
sR

p ¼ mTa
ψ0
∈ ½4007.2; 4016.7� MeV,

and Λ ¼ 0.4 GeV [32].

C. Decay amplitudes and form factors

By expanding the Lagrangians in Eqs. (1), (3), (4), (14),
and (15), we can obtain the vertices required for each
Feynmann diagram shown in Fig. 1. Considering the decay
of Ta

ψ0 to the final states f2f1 through the process

Ta
ψ0 → D�ðp1 þ qÞD̄�ðp2 − qÞ½MðqÞ� → f2ðp2Þf1ðp1Þ;

where the quantity in parenthesis represents the momentum
of each particle, and the notation [M] means that the D�D̄�
transitions to f2f1 via exchanging the meson M. The
amplitudes for each process from the diagrams in Fig. 1 are

iM½π�
ðaÞ ¼ C½π�

ðaÞ

Z
d4q
ð2πÞ4

gαμ − ðp1 þ qÞμðp1 þ qÞα=m2
D�

ðp1 þ qÞ2 −m2
D� þ iϵ

gμβ − ðp2 − qÞμðp2 − qÞβ=m2
D�

ðp2 − qÞ2 −m2
D� þ iϵ

qαqβ
q2 −m2

π þ iϵ
; ð41Þ

iM½D�
ðbÞ ¼ iC½D�

ðbÞ

Z
d4q
ð2πÞ4

gνα − ðp1 þ qÞαðp1 þ qÞν=m2
D�

ðp1 þ qÞ2 −m2
D� þ iϵ

gαμ − ðp2 − qÞαðp2 − qÞμ=m2
D�

ðp2 − qÞ2 −m2
D� þ iϵ

ðp2 − 2qÞμp1ν

q2 −m2
D þ iϵ

; ð42Þ

iM½D��
ðbÞ ¼ iC½D��

ðbÞ

Z
d4q
ð2πÞ4

gδω − ðp1 þ qÞδðp1 þ qÞω=m2
D�

ðp1 þ qÞ2 −m2
D� þ iϵ

gδα − ðp2 − qÞδðp2 − qÞα=m2
D�

ðp2 − qÞ2 −m2
D� þ iϵ

gγν − qγqν=m2
D�

q2 −m2
D� þ iϵ

× ½ϵμναβϵρωγλqλðp2 − 2qÞμp1ρp2β�; ð43Þ

iM½D�
ðcÞ ¼ iC½D�

ðcÞ

Z
d4q
ð2πÞ4

gγδ − ðp1 þ qÞγðp1 þ qÞδ=m2
D�

ðp1 þ qÞ2 −m2
D� þ iϵ

gδα − ðp2 − qÞδðp2 − qÞα=m2
D�

ðp2 − qÞ2 −m2
D� þ iϵ

1

q2 −m2
D þ iϵ

× ½ϵμναβϵκωγλqλð2q − p2Þμp1κp2βε
†
ψνε

†
ρω�; ð44Þ

FIG. 2. The elastic scattering of A and B particles, where the s-
channel is saturated with their bound state R.
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iM½D��
ðcÞ ¼ iC½D��

ðcÞ

Z
d4q
ð2πÞ4

ðp2 − 2qÞμ
½ðp1 þ qÞ2 −m2

D� þ iϵ�½ðp2 − qÞ2 −m2
D� þ iϵ�ðq2 −m2

D� þ iϵÞ
×

X
λ1;λ2;λ3

ε†1δðλ1Þε†δ2 ðλ2Þ½ε2αðλ2Þε†μ3 ðλ3Þε†αψ þ εμ2ðλ2Þε†3αðλ3Þε†αψ − ε2αðλ2Þε†α3 ðλ3Þε†μψ �

× fβqκε1ωðλ1Þεω3 ðλ3Þε†κρ þ 2λmD�p1κε
†ω
ρ ½εκ1ðλ1Þε3ωðλ3Þ − ε1ωðλ1Þεκ3ðλ3Þ�g; ð45Þ

iM½D�
ðdÞ ¼ C½D�

ðdÞ

Z
d4q
ð2πÞ4

gαμ − ðp1 þ qÞαðp1 þ qÞμ=m2
D�

ðp1 þ qÞ2 −m2
D� þ iϵ

gαν − ðp2 − qÞαðp2 − qÞν=m2
D�

ðp2 − qÞ2 −m2
D� þ iϵ

p1με
†ν
χc1

q2 −m2
D þ iϵ

; ð46Þ

in which we used the notations, such as M½π�
ðaÞ, where the subscript represents the label of diagram in Fig. 1, and the

superscript means the exchanged particle is pion. The εψ , ερ, and εχc1
denote the polarization vectors of J=ψ , ρ, and χc1 in

order. The corresponding coupling constants from three vertices are packed into the coefficients, such as C½π�
ðaÞ, and their

expressions are given in the following,

C½π�
ðaÞ ¼

g0g2b
f2π

mDmD� ; C½D�
ðbÞ ¼

2
ffiffiffi
2

p
g0g2gb
fπ

mDmD�
ffiffiffiffiffiffiffi
mηc

p
;

C½D��
ðbÞ ¼ 2

ffiffiffi
2

p
g0g2gb
fπ

mD�ffiffiffiffiffiffiffimηc
p ; C½D�

ðcÞ ¼ 4
ffiffiffi
2

p
g0g2λgV

mDffiffiffiffiffiffiffimψ
p ;

C½D��
ðcÞ ¼ 2

ffiffiffi
2

p
g0g2gVmD�

ffiffiffiffiffiffiffi
mψ

p
; C½D�

ðdÞ ¼ −
4g0g1gb

fπ
mDmD�

ffiffiffiffiffiffiffiffiffi
mχc1

p
: ð47Þ

The expression forM½D��
ðcÞ is lengthy, so we have written it in the form of Eq. (45), where its specific form can be obtained by

expanding the numerator and then summing over the polarization vectors in the following manner,

X
λ1¼−1;0;1

ε†1μðp1 þ q; λ1Þε1νðp1 þ q; λ1Þ ¼ −gμν þ
ðp1 þ qÞμðp1 þ qÞν

m2
D�

; ð48Þ

X
λ2¼−1;0;1

ε†2μðp2 − q; λ2Þε2νðp2 − q; λ2Þ ¼ −gμν þ
ðp2 − qÞμðp2 − qÞν

m2
D̄�

; ð49Þ

X
λ3¼−1;0;1

ε†3μðq; λ3Þε3νðq; λ3Þ ¼ −gμν þ
qμqν
m2

D�
: ð50Þ

The decay amplitudes for Ta
ψ0 → DD̄, ηcπ, J=ψρ, and χc1π

are respectively given by

MDD̄ ¼ M½π�
ðaÞ; ð51Þ

Mηcπ ¼ 2ðM½D�
ðbÞ þM½D��

ðbÞ Þ; ð52Þ

MJ=ψρ ¼ 2ðM½D�
ðcÞ þM½D��

ðcÞ Þ; ð53Þ

Mχc1π ¼ 2M½D�
ðdÞ: ð54Þ

With the amplitudes, the partial decay width of Ta
ψ0 can be

expressed as

Γf2f1 ¼
1

8π

jp1j
m2

Ta
ψ0

jMf2f1 j2; ð55Þ

where

jp1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðm2

Ta
ψ0
; m2

f1
; m2

f2
Þ

q
2mTa

ψ0

; ð56Þ

Kðα; β; γÞ ¼ α2 þ β2 þ γ2 − 2αβ − 2αγ − 2βγ; ð57Þ

and the overline represents a sum over the polarization(s) of
the χc1 (J=ψρ) in the final states.
To ensure that the loop integrals in Eqs. (41)–(46)

converge and yield finite results, we employ different form
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factors to regularize the integrals. Theoretically, the most
commonly used form factors can be categorized into three
types: (i) the Heaviside form factor (step function), (ii) the
Gaussian form factor, and (iii) the multipole form factor.
Their expressions are respectively given as

Heaviside form factor∶ F1ðjpjÞ ¼ ΘðΛ1 − jpjÞ; ð58Þ

Gaussian form factor∶ F2ðp2Þ ¼ exp

�
−
p2

Λ2
2

�
; ð59Þ

Multipole form factor∶ F3ðp2Þ ¼
�
m2

M − Λ2
3

p2 − Λ2
3

�
n

; ð60Þ

where mM denotes the mass of the exchanged particle,
and Λ3 ¼ mM þ αΛΛQCD, with ΛQCD ¼ 220 MeV. αΛ is a
dimensionless phenomenological parameter, typically
taken to be around 1 [40].
We then demonstrate how to regularize the loop integrals

in Eqs. (41)–(46) using these three form factors, beginning
with the Heaviside and Gaussian form factors as examples.
Since we are dealing with the decays of a bound state, the
constituent particles D� and D̄� are off-shell, meaning that
there are no right-hand cuts in the loop integrals. Thus, for
instance, for a scalar integral with the following form,

I ¼
Z

d4q
ð2πÞ4

1

ðp1 þ qÞ2 −m2
D�

1

ðp2 − qÞ2 −m2
D̄�

1

q2 −m2
M
;

ð61Þ

it can be regularized as

I iðΛiÞ ¼ −
3i

16π2

Z
1

0

dx
Z

1−x

0

dyI iðΛiÞ: ð62Þ

The integrands I iðΛiÞ respectively read

I 1ðΛ1Þ ¼
Z

∞

0

dl
l2ΘðΛ1− jljÞ
ðl2þΔÞ5=2 ¼ Λ3

1

3ΔðΔþΛ2
1Þ3=2

; ð63Þ

I 2ðΛ2Þ ¼
Z

∞

0

dl
l2e−l

2=Λ2
2

ðl2 þ ΔÞ5=2 ¼
ffiffiffi
π

p
4Δ

U

�
3

2
; 0;

Δ
Λ2
2

�
: ð64Þ

We have used the Feynman parameterization to com-
bine the denominators of the propagators, and employed
the residue theorem to integrate out the l0 com-
ponent. The l ¼ qþ xp1 − yp2, and Δ ¼ xm2

D� þ
yðm2

D̄� −m2
f2
Þ þ xyðm2

f1
þm2

f2
−m2

Ta
ψ0
Þ þ x2m2

f1
− xm2

f1
þ

y2m2
f2
− ðxþ y − 1Þm2

M (where mM, mf1 , and mf2 denote
the masses of the exchanged particles, the final states f1
and f2, respectively). Uða; b; zÞ represents the Tricomi’s
(confluent hypergeometric) function. It can be easily
proven that when Λ1;2 tends to infinity, the result of

I iðΛiÞ is equivalent to that obtained within the dimensional
regularization.
Using the Heaviside and Gaussian form factors ensures

that all integral terms are convergent. However, when
employing multipole form factors, it is necessary to set
the power n to at least 4 to guarantee the convergence of all
terms in the integral. This choice, however, significantly
suppresses the contribution of lower-order terms in q.
Therefore, we adopt a strategy of incrementally increasing
n as the power of q in the numerator increases. For
example, we multiply the integrand similar to that in
Eq. (61) by the multipole form factor, and then, by using
the Feynman parametrization, we can obtain an integral in
the following form,

ðm2
M − Λ2

3Þn
Γð3þ nÞ
ΓðnÞ

Z
1

0

dxdydzdwδðxþ yþ zþ w − 1Þ

×
wn−1ðl2Þn0
ðl2 − Δ0Þ3þn ; ð65Þ

where

	
n ¼ 1; n0 ¼ 0; 1

n ¼ n0; n0 ∈N; n0 ≥ 2
; ð66Þ

and Δ0 ¼−xyðm2
Ta
ψ0
−m2

f1
−m2

f2
Þþm2

D�xþm2
D̄�yþm2

Mzþ
m2

f1
x2−m2

f1
xþm2

f2
y2−m2

f2
yþΛ2

3w.
In Sec. III, we will demonstrate the effects of these three

form factors on the results.

III. NUMERICAL RESULTS AND DISCUSSIONS

With the aforementioned preparations, we can now
proceed to discuss the dependence of the (partial) decay
width of the Ta

ψ0ð4010Þ state on the parameters Λ1;2 and αΛ
in the loop integrals, as well as compare the total width
with the current experimental data. In Ref. [32], the mass of
the D�D̄� molecular state with quantum numbers 1−ð0þþÞ
was obtained using Λ ¼ 0.4 GeV. In order to maintain
consistency with Ref. [32], we also use Λ ¼ 0.4 GeV in
Eq. (35) to calculate the coupling constant g0. The cutoff
parameter Λ typically reflects the interaction radius R
(R ∼ 1=Λ) of a loosely bound molecular system.
Therefore, in principle, the value of Λ1;2 used in the loop
integrals should be consistent with the one used in
calculating the mass spectrum. Here, we will vary the
value of Λ1;2 within the range of 0.4 to 0.7 GeV to study the
dependence of the width on the cutoff, while the αΛ is taken
to be in the range of 0.5 to 1.5.
In Fig. 3, we present the dependence of the total width on

Λ1;2 and αΛ, and also plot the widths of the Xð4100Þ
reported by LHCb [2] and the Xð4050Þ observed by Belle
[10]. These two states have similar masses and widths, and
the observed decay channels are precisely the decay modes
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of Ta
ψ0ð4010Þ. Therefore, it is possible that they are the

same state, serving as candidate for the 1−ð0þþÞD�D̄�
molecular state. From Fig. 3, it can be observed that the
total width increases with increasing Λ1;2 and αΛ. For
example, when the mass of Ta

ψ0 is respectively fixed at
4007.2 and 4016.7 MeV, the dependence of the total width
on the cutoff parameter can be respectively inferred from
the upper and lower boundary curves of the band we
calculated. When Λ1;2 and αΛ respectively reach around
0.6 GeVand 1.2, the theoretically calculated width overlaps
with the experimental widths obtained by LHCb and Belle.
However, it is worth noting that the widths measured by

both experiments are obtained using the Breit-Wigner
parameterization, which is known to be insufficient in
describing the near-threshold states. In such cases, a Flatté-
like formula is needed to fit the line shape and extract the
pole width. A typical example is the case of Zcð3900Þ [3]
and Tccð3875Þ [52], where the width obtained using the
Flatté-like formula is much smaller than the values obtained
using the Breit-Wigner parameterization. Therefore, we
suggest that after accumulating more data, the experimental
widths be remeasured using the Flatté-like formula in the
ηcπ and χc1π decay channels. Our theoretical estimation for
the total width of Ta

ψ0ð4010Þ will be provided at Λ1;2 ¼
0.4 GeV and αΛ ¼ 1.0, and the results are shown in Table I.
From Table I, one can see that the width is of similar size

with those of its partners, Zcð3900Þ and Zcð4020Þ [1].
In Fig. 4, we present the dependence of each partial

width on Λ1;2 and αΛ, and it can be seen that the partial
widths also increase with increasing Λ1;2 and αΛ. Similarly,

when Λ1;2 and αΛ are respectively set to 0.4 GeV and 1.0,
the range of each partial width is predicted in Table II.
The dependence of the branching fractions Bi and

branching ratios Ri on Λ1;2 (αΛ) are shown in Figs. 5
and 6, respectively (The definitions of Bi and Ri can be
found in the first columns of Tables III and IV, respec-
tively). From these plots, it can be read that although each
partial width is sensitive to the variation of Λ1;2 (αΛ), the
dependence of each Bi and Ri on Λ1;2 (αΛ) is very weak.
Therefore, in addition to the total width, measuring the Bi
and Ri experimentally will be very helpful in determining
whether Xð4100Þ and Xð4050Þ are the same state and
whether they correspond to the D�D̄� molecular state in
reality. The predictions for branching fractions and branch-
ing ratios are given in Tables III and IV, respectively, in
which we use the average values within the parameter range
considering their values exhibit low sensitivity to parameter
dependence.
As shown in Tables II–IV, the results obtained using the

Heaviside and Gaussian form factors are very similar. In
contrast, when using the multipole form factor, the width of
theDD̄ channel is significantly smaller than in the previous
two cases, while the widths of the other channels remain
relatively close. It is evident that the ηcπ channel is the
dominant decay mode of the Ta

ψ0 state, with a decay width
approximately twice that of the χc1π channel. However, the
width of χc1π channel is still larger than the remaining two
channels, namely DD̄ and J=ψρ. Therefore, ηcπ and χc1π
are considered the golden channels for detecting the Ta

ψ0

state. Furthermore, these two channels respectively corre-
spond to the final states in which the Xð4100Þ and Xð4050Þ
resonances were observed, which may suggest, to some
extent, that Xð4100Þ and Xð4050Þ are molecular state of the
1−ð0þþÞD�D̄� system.
The future experiments can also explore the charged Ta

ψ0

state by studying the invariant mass spectrum of
DþD̄0 þ c:c:. For example, with the weak decay pro-
cesses B0 → D−D0Kþ, and B̄0 → DþD̄0K−. The angular
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FIG. 3. The dependence of the total decay width of Ta
ψ0ð4010Þ on the cutoff parameters. The gray and blue shaded areas represent the

widths of Xð4100Þ [2] and Xð4050Þ [10], respectively. The red/orange/yellow bands in the left/middle/right figures represent our results
calculated with the Heaviside/Gaussian/multipole form factors. The range of the band is given by the range of the coupling constant g0
in Eq. (40).

TABLE I. Predictions of the total width of Ta
ψ0ð4010Þ within

different form factors.

Form factor With F1 With F2 With F3

ΓTa
ψ0

(MeV) 12.0–35.4 9.0–27.8 10.5–61.0
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distribution of DþD̄0 þ c:c: will exhibit the characteristic
of a flat S-wave distribution. The DþD̄0 þ c:c: channel can
effectively exclude contributions from conventional char-
monia, such as the ψð4040Þ. Therefore, the signal observed

in the DþD̄0 þ c:c: channel may be cleaner and provide a
clearer indication of the presence of the Ta

ψ0 state. This
makes the DþD̄0 þ c:c: channel a promising avenue for
studying the Ta

ψ0 state and distinguishing it from other
resonances.
Lastly, it is important to note that our calculations are

based on the configuration that Ta
ψ0 is a bound state of

D�D̄�. This primarily stems from our previous work [32],
which employed an energy-independent contact potential,
where Zcð3900Þ is treated as a virtual state. If an energy-
dependent contact potential were used, resonance solutions
could be obtained [53]. However, the current experimental
data is insufficient to definitively determine whether
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FIG. 4. The dependence of the partial decay widths of Ta
ψ0ð4010Þ on the cutoff parameters. The results in the figures of the first/

second/third rows represent the calculations with the Heaviside/Gaussian/multipole form factors.

TABLE II. Predictions of the partial decay width of Ta
ψ0ð4010Þ

within different form factors.

Form factor (MeV) With F1 With F2 With F3

ΓDD̄ 2.0–6.6 1.6–5.2 0.2–1.0
Γηcπ 5.8–17.2 4.5–13.8 6.2–38.5
ΓJ=ψρ 1.2–3.4 0.8–2.8 1.1–6.2
Γχc1π 3.0–8.2 2.1–6.0 3.0–15.3
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Zcð3900Þ is a virtual state or a resonance [14]. If Ta
ψ0

becomes a resonance state of D�D̄�, the approaches out-
lined in this paper could still apply, but the conclusions
would change accordingly. For instance, while the coupling

constant g0 could still be extracted from the residue of the
T-matrix at the pole, it would now have an imaginary part
due to the resonance mass lying above the D�D̄� threshold.
Consequently, the D�D̄� in the loop diagram could be on-
shell, and the small imaginary part iϵ in the denominator of
the propagator cannot be discarded. The resulting scattering
amplitude would also contain an imaginary part. In addition
to the decay channels listed in this paper, a resonance state
could also decay into its constituents, specifically D�D̄�.
Therefore, the width might be larger than that obtained in
the bound state scenario. Moreover, it is very likely that the
dominant decay channel is into D�D̄� rather than the
hidden-charm decay channel ηcπ, as the decay into
D�D̄� can occur via tree-level process.

IV. SUMMARY

Recently, we investigated the interactions of theDð�ÞD̄ð�Þ
systems based on a quark-level potential model [32]. We
found that if Xð3872Þ and Zcð3900Þ are the isoscalar and
isovector molecular states of the DD̄� system, respectively,
then there must exist a bound state in the 1−ð0þþÞD�D̄�
system, denoted as Ta

ψ0ð4010Þ. This state would decay into
theDD̄, ηcπ, J=ψρ, and χc1π channels. It is noteworthy that
the LHCb and Belle Collaborations have observed the
Xð4100Þ [2] and Xð4050Þ [10] in the final states of ηcπ and
χc1π, respectively. The masses and widths of these two
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FIG. 5. The dependence of the branching fractions Bi on the cutoff parameters. The results in the left/middle/right figures represent the
calculations with the Heaviside/Gaussian/multipole form factors.
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FIG. 6. The dependence of the branching ratios Ri on the cutoff parameters. The results in the left/middle/right figures represent the
calculations with the Heaviside/Gaussian/multipole form factors.

TABLE III. Predictions of the branching fractions of
Ta
ψ0ð4010Þ within different form factors.

Form factor With F1 With F2 With F3

B1 ≡ ΓDD̄=ΓTa
ψ0

0.18 0.19 0.02

B2 ≡ Γηcπ=ΓTa
ψ0

0.50 0.51 0.61

B3 ≡ ΓJ=ψρ=ΓTa
ψ0

0.10 0.10 0.10

B4 ≡ Γχc1π=ΓTa
ψ0

0.22 0.20 0.27

TABLE IV. Predictions of the branching ratios of Ta
ψ0ð4010Þ

within different form factors.

Form factor With F1 With F2 With F3

R1 ≡ Γηcπ=ΓDD̄ 2.7 2.7 35.4
R2 ≡ Γηcπ=ΓJ=ψρ 4.9 5.0 6.2
R3 ≡ Γηcπ=Γχc1π 2.3 2.6 2.3
R4 ≡ ΓDD̄=ΓJ=ψρ 1.8 1.8 0.19
R5 ≡ ΓDD̄=Γχc1π 0.85 0.96 0.07
R5 ≡ ΓJ=ψρ=Γχc1π 0.47 0.51 0.37
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states are of similar size within the experimental uncer-
tainties, and their masses are close to the D�D̄� threshold.
Furthermore, the final states of their decays are consistent
with the decay channels of Ta

ψ0ð4010Þ. Therefore, it is
significant to investigate whether these two states are the
same one and whether they correspond to the molecular
state of D�D̄�.
In this work, we used the effective Lagrangian approach

to investigate the strong decays of the Ta
ψ0ð4010Þ state

through triangle loop diagrams. We found that its main
decay channels are ηcπ and χc1π, which may explain why
the LHCb and Belle Collaborations reported the signals of
Xð4100Þ and Xð4050Þ in these two channels, respectively.
This also suggests that Xð4100Þ and Xð4050Þ might be
identified as the Ta

ψ0ð4010Þ state. We also investigated the
dependence of the total (partial) width(s) and branching
fractions (ratios) on the cutoff parameters in the loop
integrals. We noticed that the width shows a strong
dependence on the cutoff, while the branching fractions
(ratios) exhibit a very weak dependence. Therefore, exper-
imental measurements of the branching fractions (ratios)
would help to identify the properties of Xð4100Þ and

Xð4050Þ and their relationship with the Ta
ψ0ð4010Þ. Our

calculations predict a total width of few tens MeV for the
Ta
ψ0ð4010Þ within three different form factors, which is

consistent with the experimentally measured widths of its
partners Zcð3900Þ and Zcð4020Þ.
We propose that future experiments focus on the study of

the resonance parameters of the Ta
ψ0ð4010Þ state in the

ηcπ
−, χc1π

−, and D0D− invariant mass spectra of the
B0 → ηcπ

−Kþ, χc1π
−Kþ, and D0D−Kþ processes (or

the charge conjugate channels). This would be crucial
for constructing the mass spectrum of the hadronic mol-
ecules in the Dð�ÞD̄ð�Þ systems and, in turn, understanding
the properties of the exotic hadrons such as Xð3872Þ
and Zcð3900Þ.

ACKNOWLEDGMENTS

B.W. is very grateful to Dr. Lu Meng for helpful dis-
cussions. This work is supported by the National Natural
Science Foundation of China under Grant No. 12105072.
B.W. is also supported by the Start-up Funds for Young
Talents of Hebei University (No. 521100221021).

[1] R. L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083C01
(2022).

[2] R. Aaij et al. (LHCb Collaboration), Evidence for an
ηcð1SÞπ− resonance in B0 → ηcð1SÞKþπ− decays, Eur.
Phys. J. C 78, 1019 (2018).

[3] M. Ablikim et al. (BESIII Collaboration), Observation
of a charged charmoniumlike structure in eþe− →
πþπ−J=ψ at

ffiffiffi
s

p ¼ 4.26 GeV, Phys. Rev. Lett. 110,
252001 (2013).

[4] M. Ablikim et al. (BESIII Collaboration), Observation of a
charged charmoniumlike structure Zcð4020Þ and search for
the Zcð3900Þ in eþe− → πþπ−hc, Phys. Rev. Lett. 111,
242001 (2013).

[5] Z.-G. Wang, Lowest vector tetraquark states: Yð4260=4220Þ
or Zcð4100Þ, Eur. Phys. J. C 78, 933 (2018).

[6] J. Wu, X. Liu, Y.-R. Liu, and S.-L. Zhu, Systematic studies
of charmonium-, bottomonium-, and Bc-like tetraquark
states, Phys. Rev. D 99, 014037 (2019).

[7] M. B. Voloshin, Zcð4100Þ and Zcð4200Þ as hadrocharmo-
nium, Phys. Rev. D 98, 094028 (2018).

[8] Q. Zhao, Some insights into the newly observed Zcð4100Þ
in B0 → ηcKþπ− by LHCb, arXiv:1811.05357.

[9] X. Cao and J.-P. Dai, Spin parity of Z−
c ð4100Þ, Zþ

1 ð4050Þ
and Zþ

2 ð4250Þ, Phys. Rev. D 100, 054004 (2019).
[10] R. Mizuk et al. (Belle Collaboration), Observation of

two resonance-like structures in the πþχc1 mass distribution
in exclusive B̄0 → K−πþχc1 decays, Phys. Rev. D 78,
072004 (2008).

[11] K. Chen, SU(3) breaking effect in the Zc and Zcs states,
Phys. Rev. D 109, 034010 (2024).

[12] H. Sundu, S. S. Agaev, and K. Azizi, New charged reso-
nance Z−

c ð4100Þ: The spectroscopic parameters and width,
Eur. Phys. J. C 79, 215 (2019).

[13] B. Mohammadi, Exotic resonance of Zcð4100Þ− in B0 →
ηcKþπ− decay, Nucl. Phys. A1028, 122541 (2022).

[14] L. Meng, B. Wang, G.-J. Wang, and S.-L. Zhu, Chiral
perturbation theory for heavy hadrons and chiral effective
field theory for heavy hadronic molecules, Phys. Rep. 1019,
1 (2023).

[15] S. K. Choi et al. (Belle Collaboration), Observation
of a narrow charmonium-like state in exclusive B� →
K�πþπ−J=ψ decays, Phys. Rev. Lett. 91, 262001 (2003).

[16] X. Liu, Z.-G. Luo, Y.-R. Liu, and S.-L. Zhu, Xð3872Þ and
other possible heavy molecular states, Eur. Phys. J. C 61,
411 (2009).

[17] J. Nieves and M. P. Valderrama, The heavy quark spin
symmetry partners of the Xð3872Þ, Phys. Rev. D 86, 056004
(2012).

[18] C. Hidalgo-Duque, J. Nieves, and M. P. Valderrama, Light
flavor and heavy quark spin symmetry in heavy meson
molecules, Phys. Rev. D 87, 076006 (2013).

[19] Z.-F. Sun, Z.-G. Luo, J. He, X. Liu, and S.-L. Zhu, A note
on the B�B̄, B�B̄�, D�D̄ and D�D̄� molecular states,
Chin. Phys. C 36, 194 (2012).

[20] N. Li and S.-L. Zhu, Isospin breaking, coupled-channel
effects and diagnosis of X(3872), Phys. Rev. D 86, 074022
(2012).

STRONG DECAYS OF THE ISOVECTOR-SCALAR … PHYS. REV. D 110, 054014 (2024)

054014-11

https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1140/epjc/s10052-018-6447-z
https://doi.org/10.1140/epjc/s10052-018-6447-z
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.111.242001
https://doi.org/10.1103/PhysRevLett.111.242001
https://doi.org/10.1140/epjc/s10052-018-6417-5
https://doi.org/10.1103/PhysRevD.99.014037
https://doi.org/10.1103/PhysRevD.98.094028
https://arXiv.org/abs/1811.05357
https://doi.org/10.1103/PhysRevD.100.054004
https://doi.org/10.1103/PhysRevD.78.072004
https://doi.org/10.1103/PhysRevD.78.072004
https://doi.org/10.1103/PhysRevD.109.034010
https://doi.org/10.1140/epjc/s10052-019-6737-0
https://doi.org/10.1016/j.nuclphysa.2022.122541
https://doi.org/10.1016/j.physrep.2023.04.003
https://doi.org/10.1016/j.physrep.2023.04.003
https://doi.org/10.1103/PhysRevLett.91.262001
https://doi.org/10.1140/epjc/s10052-009-1020-4
https://doi.org/10.1140/epjc/s10052-009-1020-4
https://doi.org/10.1103/PhysRevD.86.056004
https://doi.org/10.1103/PhysRevD.86.056004
https://doi.org/10.1103/PhysRevD.87.076006
https://doi.org/10.1088/1674-1137/36/3/002
https://doi.org/10.1103/PhysRevD.86.074022
https://doi.org/10.1103/PhysRevD.86.074022


[21] F.-K. Guo, C. Hidalgo-Duque, J. Nieves, and M. P.
Valderrama, Consequences of heavy quark symmetries
for hadronic molecules, Phys. Rev. D 88, 054007 (2013).

[22] F. Aceti, M. Bayar, E. Oset, A. Martinez Torres, K. P.
Khemchandani, J. M. Dias, F. S. Navarra, and M. Nielsen,
Prediction of an I ¼ 1 DD̄� state and relationship to the
claimed Zcð3900Þ, Zcð3885Þ, Phys. Rev. D 90, 016003
(2014).

[23] M. Albaladejo, F. K. Guo, C. Hidalgo-Duque, J. Nieves, and
M. P. Valderrama, Decay widths of the spin-2 partners of the
Xð3872Þ, Eur. Phys. J. C 75, 547 (2015).

[24] V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, U.-G.
Meißner, and A. V. Nefediev, Heavy-quark spin symmetry
partners of the Xð3872Þ revisited, Phys. Lett. B 763, 20
(2016).

[25] M.-Z. Liu, T.-W. Wu, M. Pavon Valderrama, J.-J. Xie, and
L.-S. Geng, Heavy-quark spin and flavor symmetry partners
of the Xð3872Þ revisited: What can we learn from the one
boson exchange model?, Phys. Rev. D 99, 094018 (2019).

[26] B. Wang, L. Meng, and S.-L. Zhu, Deciphering the charged
heavy quarkoniumlike states in chiral effective field theory,
Phys. Rev. D 102, 114019 (2020).

[27] Z.-G. Wang, Analysis of the hidden-charm tetraquark
molecule mass spectrum with the QCD sum rules, Int. J.
Mod. Phys. A 36, 2150107 (2021).

[28] Q. Xin, Z.-G. Wang, and X.-S. Yang, Analysis of the
Xð3960Þ and related tetraquark molecular states via the
QCD sum rules, AAPPS Bull. 32, 37 (2022).

[29] F.-Z. Peng, M.-J. Yan, and M. Pavon Valderrama, Heavy-
and light-flavor symmetry partners of the Tþ

ccð3875Þ, the
Xð3872Þ, and the Xð3960Þ from light-meson exchange
saturation, Phys. Rev. D 108, 114001 (2023).

[30] R. Aaij et al. (LHCb Collaboration), A model-independent
study of resonant structure in Bþ → DþD−Kþ decays,
Phys. Rev. Lett. 125, 242001 (2020).

[31] R. Aaij et al. (LHCb Collaboration), First observation of a
doubly charged tetraquark and its neutral partner, Phys. Rev.
Lett. 131, 041902 (2023).

[32] B. Wang, K. Chen, L. Meng, and S.-L. Zhu, Spectrum of the
molecular tetraquarks: Unraveling the Tcs0ð2900Þ and
Ta
cs̄0ð2900Þ, Phys. Rev. D 109, 034027 (2024).

[33] B. Wang, K. Chen, L. Meng, and S.-L. Zhu, Spectrum of the
molecular pentaquarks, Phys. Rev. D 109, 074035 (2024).

[34] B. Wang, K. Chen, L. Meng, and S.-L. Zhu, Spectrum of
molecular hexaquarks, Phys. Rev. D 110, 014038 (2024).

[35] L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Probing the
long-range structure of the Tþ

cc with the strong and electro-
magnetic decays, Phys. Rev. D 104, 051502 (2021).

[36] F.-K. Guo, C. Hanhart, G. Li, U.-G. Meissner, and Q. Zhao,
Effect of charmed meson loops on charmonium transitions,
Phys. Rev. D 83, 034013 (2011).

[37] D.-Y. Chen, J. He, X.-Q. Li, and X. Liu, Dipion invariant
mass distribution of the anomalous ϒð1SÞπþπ− and

ϒð2SÞπþπ− production near the peak of ϒð10860Þ, Phys.
Rev. D 84, 074006 (2011).

[38] D.-Y. Chen, X. Liu, and S.-L. Zhu, Charged bottomonium-
like states Zbð10610Þ and Zbð10650Þ and the ϒð5SÞ →
ϒð2SÞπþπ− decay, Phys. Rev. D 84, 074016 (2011).

[39] B. Wang, H. Xu, X. Liu, D.-Y. Chen, S. Coito, and
E. Eichten, Using Xð3823Þ → J=ψπþπ− to identify
coupled-channel effects, Front. Phys.(Beijing) 11, 111402
(2016).

[40] B. Wang, X. Liu, and D.-Y. Chen, Prediction of anomalous
ϒð5SÞ → ϒð13DJÞη transitions, Phys. Rev. D 94, 094039
(2016).

[41] Q. Huang, B. Wang, X. Liu, D.-Y. Chen, and T. Matsuki,
Exploring the ϒð6SÞ → χbJϕ and ϒð6SÞ → χbJω hidden-
bottom hadronic transitions, Eur. Phys. J. C 77, 165 (2017).

[42] C.-J. Xiao, Y. Huang, Y.-B. Dong, L.-S. Geng, and
D.-Y. Chen, Exploring the molecular scenario of
Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ, Phys. Rev. D 100,
014022 (2019).

[43] Y.-H. Lin and B.-S. Zou, Strong decays of the latest
LHCb pentaquark candidates in hadronic molecule pictures,
Phys. Rev. D 100, 056005 (2019).

[44] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, and Q.
Zhao, Production of the Xð3872Þ in charmonia radiative
decays, Phys. Lett. B 725, 127 (2013).

[45] Q. Wu, M.-Z. Liu, and L.-S. Geng, Productions of X(3872),
Zcð3900Þ, X2ð4013Þ, and Zcð4020Þ in BðsÞ decays offer
strong clues on their molecular nature, Eur. Phys. J. C 84,
147 (2024).

[46] T. Gershon (LHCb Collaboration), Exotic hadron naming
convention, 10.17181/CERN.7XZO.HPH7 (2022).

[47] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F.
Feruglio, and G. Nardulli, Phenomenology of heavy meson
chiral Lagrangians, Phys. Rep. 281, 145 (1997).

[48] P. Colangelo, F. De Fazio, and T. N. Pham, Nonfactorizable
contributions in B decays to charmonium: The case of
B− → K−hc, Phys. Rev. D 69, 054023 (2004).

[49] P. Colangelo, F. De Fazio, and T. N. Pham, B− → K−χc0
decay from charmed meson rescattering, Phys. Lett. B 542,
71 (2002).

[50] J. A. Oller and E. Oset, Chiral symmetry amplitudes in
the S wave isoscalar and isovector channels and the σ,
f0ð908Þ, a0ð980Þ scalar mesons, Nucl. Phys. A620, 438
(1997); A652, 407(E) (1999).

[51] B. Wang, L. Meng, and S.-L. Zhu, Hidden-charm and
hidden-bottom molecular pentaquarks in chiral effective
field theory, J. High Energy Phys. 11 (2019) 108.

[52] R. Aaij et al. (LHCb Collaboration), Study of the
doubly charmed tetraquark Tþ

cc, Nat. Commun. 13, 3351
(2022).

[53] M. Albaladejo, F.-K. Guo, C. Hidalgo-Duque, and J.
Nieves, Zcð3900Þ: What has been really seen?, Phys. Lett.
B 755, 337 (2016).

JIN-CHENG DENG and BO WANG PHYS. REV. D 110, 054014 (2024)

054014-12

https://doi.org/10.1103/PhysRevD.88.054007
https://doi.org/10.1103/PhysRevD.90.016003
https://doi.org/10.1103/PhysRevD.90.016003
https://doi.org/10.1140/epjc/s10052-015-3753-6
https://doi.org/10.1016/j.physletb.2016.10.008
https://doi.org/10.1016/j.physletb.2016.10.008
https://doi.org/10.1103/PhysRevD.99.094018
https://doi.org/10.1103/PhysRevD.102.114019
https://doi.org/10.1142/S0217751X21501074
https://doi.org/10.1142/S0217751X21501074
https://doi.org/10.1007/s43673-022-00070-3
https://doi.org/10.1103/PhysRevD.108.114001
https://doi.org/10.1103/PhysRevLett.125.242001
https://doi.org/10.1103/PhysRevLett.131.041902
https://doi.org/10.1103/PhysRevLett.131.041902
https://doi.org/10.1103/PhysRevD.109.034027
https://doi.org/10.1103/PhysRevD.109.074035
https://doi.org/10.1103/PhysRevD.110.014038
https://doi.org/10.1103/PhysRevD.104.L051502
https://doi.org/10.1103/PhysRevD.83.034013
https://doi.org/10.1103/PhysRevD.84.074006
https://doi.org/10.1103/PhysRevD.84.074006
https://doi.org/10.1103/PhysRevD.84.074016
https://doi.org/10.1007/s11467-016-0564-7
https://doi.org/10.1007/s11467-016-0564-7
https://doi.org/10.1103/PhysRevD.94.094039
https://doi.org/10.1103/PhysRevD.94.094039
https://doi.org/10.1140/epjc/s10052-017-4726-8
https://doi.org/10.1103/PhysRevD.100.014022
https://doi.org/10.1103/PhysRevD.100.014022
https://doi.org/10.1103/PhysRevD.100.056005
https://doi.org/10.1016/j.physletb.2013.06.053
https://doi.org/10.1140/epjc/s10052-024-12501-6
https://doi.org/10.1140/epjc/s10052-024-12501-6
https://doi.org/10.17181/CERN.7XZO.HPH7
https://doi.org/10.1016/S0370-1573(96)00027-0
https://doi.org/10.1103/PhysRevD.69.054023
https://doi.org/10.1016/S0370-2693(02)02306-7
https://doi.org/10.1016/S0370-2693(02)02306-7
https://doi.org/10.1016/S0375-9474(97)00160-7
https://doi.org/10.1016/S0375-9474(97)00160-7
https://doi.org/10.1016/S0375-9474(99)00427-3
https://doi.org/10.1007/JHEP11(2019)108
https://doi.org/10.1038/s41467-022-30206-w
https://doi.org/10.1038/s41467-022-30206-w
https://doi.org/10.1016/j.physletb.2016.02.025
https://doi.org/10.1016/j.physletb.2016.02.025

