
Bell nonlocality and entanglement in e+ e − → YȲ at BESIII
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The Bell nonlocality and entanglement are two kinds of quantum correlations in quantum systems. Due to
the recent upgrade in the Beijing Spectrometer III (BESIII) experiment, it is possible to explore the
nonlocality and entanglement in hyperon-antihyperon systems produced in electron-positron annihilation
with high precision data. We provide a systematic method for studying quantum correlations in spin-1=2
hyperon-antihyperon systems through the measures for the nonlocality and entanglement. We find that with
nonvanishing polarizations of the hyperon and its antihyperon, the kinematic region of nonlocality in the
hyperon-antihyperon system is more restricted than the τþτ− system in which polarizations of τ leptons
are vanishing. We also present an experimental proposal to probe the nonlocality and entanglement in
hyperon-antihyperon systems at BSEIII.
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I. INTRODUCTION

Quantum mechanics, as a foundational pillar for modern
physics, governs the properties of fundamental particles and
their interactions. In this context, quantum information
properties of fundamental particles can offer a novel
perspective on understanding quantum mechanics. The
Bell nonlocality, characterized by the violation of Bell-type
inequalities [1–3], is a distinctive quantum property with
significant implications for quantum mechanics. Closely
related to the Bell nonlocality, the quantum entanglement is
an invisible link between two particles that allows one to
instantly affect the other regardless of their distance. The
entanglement has practical applications in quantum infor-
mation processing, including quantum computing [4],
quantum metrology [5], and quantum communication [6].
In the research area of quantum information theory, theo-
retical details of the Bell nonlocality and entanglement
have been thoroughly discussed (see, e.g., Refs. [7,8] for
recent reviews). Historically, the Bell nonlocality and

entanglement have been widely studied in photonic and
atomic systems [9,10].
High-energy colliders provide an alternative test ground

for the nonlocality and entanglement [11]. The significant
improvement in collider and detector technology has led to a
large collection of high precision data, thereby enabling the
possibility of observing the quantum correlation in high
energy processes. Recently quantum correlations in elemen-
tary particle systems, e.g., top quark pairs at Large Hadron
Collider (LHC) [12–16], leptons pairs [17,18], gauge
bosons from Higgs decay [19–22], have been investigated.
In contrast to elementary particles, the use of hadronic

final states to test quantum correlations has a relatively
long history, dating back to early 1980s [23]. Subsequent
studies came up in the past decades aiming at probing
quantum correlations in hyperon systems [24–30]. The
hyperon’s weak decay can serve as its own polarimeter and
make it possible to extract spin observable in the hyperon-
antihyperon system, including polarization and correla-
tion, in experiments. With the recent upgrade of Beijing
Spectrometer III (BESIII) at Beijing electron-positron
collider, there is considerable potential to explore quantum
correlations in hyperon-antihyperon production processes
in electron-positron annihilation [31–33].
In this paper, we investigate the Bell nonlocality and

entanglement in eþe− → γ�=ψ → YȲ processes at BESIII,
where Y and Ȳ denote the spin-1=2 hyperon and its
antihyperon respectively. Our study is based on the two-
qubit density operator [34,35] for YȲ. Unlike elementary
particle systems such as τþτ− at Belle II and tt̄ at LHC, the

*Contact author: shwu@mail.ustc.edu.cn
†Contact author: qianchen@baqis.ac.cn
‡Contact author: qunwang@ustc.edu.cn
§Contact author: zxrong@ustc.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 054012 (2024)

2470-0010=2024=110(5)=054012(10) 054012-1 Published by the American Physical Society

https://orcid.org/0000-0002-3851-7713
https://orcid.org/0000-0003-4410-703X
https://ror.org/04c4dkn09
https://ror.org/04nqf9k60
https://ror.org/00q9atg80
https://ror.org/04c4dkn09
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.054012&domain=pdf&date_stamp=2024-09-11
https://doi.org/10.1103/PhysRevD.110.054012
https://doi.org/10.1103/PhysRevD.110.054012
https://doi.org/10.1103/PhysRevD.110.054012
https://doi.org/10.1103/PhysRevD.110.054012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


existence of electromagnetic form factors (EMFFs) in a
polarized YȲ state at BESIII [36] makes the YȲ system
different from elementary particle systems [15,18].
Recognizing that the final YȲ state is local unitary equiv-
alent to the two-qubit X state, we will derive the analytical
expressions of nonlocality and entanglement for YȲ. At the
end of this paper, we will discuss the effect of EMFFs in
quantum correlation and also give a proposal to probe the
nonlocality and entanglement at BESIII.
This paper is organized as follows. We will introduce the

two-qubit density operator for YȲ produced in electron-
positron annihilation in Sec. II. In Sec. III, we will discuss
the two-qubit X state and investigate the Bell nonlocality
for YȲ. The quantum entanglement in YȲ will be addressed
in Sec. IV. The relation between the Bell nonlocality and
entanglement will be discussed in Sec. V. In Sec. VI, we
will give a proposal to probe the nonlocality and entangle-
ment at BESIII. The final section, Sec. VII, presents a
summary of main results and outlook for future directions
of study.

II. PRELIMINARIES

Hyperon-antihyperon pairs can be produced in electron-
positron annihilation either through the virtual photon
exchange eþe− → γ� → YȲ or through vector charmonium
decays, e.g., eþe− → J=ψ → YȲ, where Y denotes a
ground-state octet hyperon Λ, Σþ, Ξ−, or Ξ0. In BESIII
experiments, a huge number of events for vector charmonia
J=ψ and ψð2SÞ have been collected. These vector charmo-
nia can decay into hyperon-antihyperon pairs. A YȲ pair
made of two spin-1=2 particles forms a massive two-qubit
system. Due to momentum conservation, in the center of
mass (CM) frame, the outgoing hyperon and antihyperon
are back-to-back in momentum. Their spin states can be
characterized by a two-qubit density operator

ρYȲ ¼ 1

4

�
1 ⊗ 1þ Pþ · σ ⊗ 1þ 1 ⊗ P− · σ

þ
X
i;j

Cijσi ⊗ σj

�
; ð1Þ

with σ ¼ ðσ1; σ2; σ3Þ being Pauli matrices, P� the polari-
zation or Bloch vectors of hyperon/antihyperon, and Cij

their correlation matrix. The two-qubit density operator
Eq. (1) can also be put into a more compact form: ρYȲ ¼
ð1=4ÞΘμνσμ ⊗ σν with Θ00 ¼ 1, Θi0 ¼ Pþ

i , Θ0j ¼ P−
j , and

Θij ¼ Cij. Here, σ0 is defined as the 2 × 2 identity matrix 1.
In ρYȲ there are 15 real parameters for the spin configuration
of the YȲ pair.
The 4 × 4 matrix Θμν is frame-dependent. For the

hyperon Y, we choose its helicity rest frame as

ŷ ¼ p̂e × p̂Y

jp̂e × p̂Y j
; ẑ ¼ p̂Y; x̂ ¼ ŷ × ẑ; ð2Þ

which is shown in Fig. 1. While for the antihyperon Ȳ, we
also adopt its rest frame, but three axes are chosen to be the
same as the hyperon’s: fx̂Ȳ ; ŷȲ ; ẑȲg ¼ fx̂; ŷ; ẑg. The three
axes we choose are different from Refs. [34,35], resulting
in slightly different entries of Θμν. Adopting this coordinate
system is convenient since the rest frames of Y and Ȳ differ
only by a pure boost along their momenta without rotation.
In the rest frames of Y and Ȳ with three axes in Eq. (2),

through virtual photon exchange Θμν has the form [34,35]

Θμν ¼
1

1þ αψcos2ϑ

2
666664
1þ αψcos2ϑ 0 βψ sin ϑ cosϑ 0

0 sin2ϑ 0 γψ sin ϑ cosϑ

βψ sinϑ cosϑ 0 −αψsin2ϑ 0

0 γψ sinϑ cos ϑ 0 αψ þ cos2ϑ

3
777775; ð3Þ

where ϑ is the angle between the incoming electron’s and outgoing hyperon’s momenta with cos ϑ ¼ p̂e · p̂Y . Here p̂e and
p̂Y are momentum directions of the electron and hyperon respectively. In Eq. (3), αψ ∈ ½−1;þ1� is the decay parameter of
the vector charmonium ψðcc̄Þ, and βψ and γψ are defined as

FIG. 1. The coordinate system used in the analysis with
fx̂; ŷ; ẑg being three directions in the rest frame of Y as well
as that of Ȳ.
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βψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− α2ψ

q
sinðΔΦÞ; γψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− α2ψ

q
cosðΔΦÞ; ð4Þ

where ΔΦ∈ ð−π;þπ� is the relative form factor phase.
The polarization and correlation can be read out from

Θμν in Eq. (3)

Pþ
y ¼ P−

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2ψ

q
sinðΔΦÞ sinϑ cos ϑ

1þ αψcos2ϑ
; ð5Þ

and

Cxx ¼
sin2ϑ

1þ αψcos2ϑ
; Cyy ¼

−αψsin2ϑ
1þ αψcos2ϑ

;

Czz ¼
αψ þ cos2ϑ

1þ αψcos2ϑ
;

Cxz ¼ Czx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2ψ

q
cosðΔΦÞ sinϑ cosϑ

1þ αψcos2ϑ
: ð6Þ

Here Pþ
y and P−

y are the polarization of Y and Ȳ along the
direction ŷ (the normal direction of the production plane),
respectively. The symmetry property of the polarization and
correlation arises from the invariance under parity trans-
formation and charge conjugation. We do not consider CP
violation in our analysis.

III. BELL NONLOCALITY

In this section, we will use the hyperon-antihyperon spin
density operator to investigate Bell nonlocality in the YȲ
system.

A. Local unitary equivalence and X states

Before our investigation of Bell nonlocality, it is con-
venient to transform the two-qubit state in Eqs. (1) and (3)
to the X state. First, we swap the ŷ and ẑ axes in Y and Ȳ’s
rest frame. Then we diagonalize Cij for Y and Ȳ. The
transformed spin density operator can be written in terms of
Pauli matrices as

ρXYȲ ¼ 1

4

�
1 ⊗ 1þ aσz ⊗ 1þ 1 ⊗ aσz

þ
X
i

tiσi ⊗ σi

�
; ð7Þ

which is in the standard form of a symmetric two-qubit X
state [37]. Thus we place the superscript “X” to ρYȲ . The
corresponding Θμν becomes

ΘX
μν ¼

2
66664
1 0 0 a

0 t1 0 0

0 0 t2 0

a 0 0 t3

3
77775; ð8Þ

where the elements a and ti (i ¼ 1; 2; 3) are given by

a ¼ βψ sin ϑ cosϑ

1þ αψcos2ϑ
;

t1;2 ¼
1þ αψ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αψ cos 2ϑÞ2 − β2ψsin22ϑ

q
2ð1þ αψcos2ϑÞ

;

t3 ¼
−αψsin2ϑ

1þ αψcos2ϑ
: ð9Þ

We note that a ¼ P�
y , t3 ¼ Cyy, and t1;2 come from

diagonalizing the block matrix of Cij with i; j ¼ x, z
in Θμν.
We note that the swapping of ŷ and ẑ axes and

diagonalizing Cij can be obtained by a local unitary
transformation:

ρXYȲ ¼ ðUY ⊗ UȲÞρYȲðUY ⊗ UȲÞ†; ð10Þ

where UY and UȲ are two unitary operators acting inde-
pendently in Y and Ȳ’s Hilbert space respectively [38]. The
states described by ρYȲ and ρXYȲ are said to be local unitary
equivalent in the sense that they have same quantum
correlation properties such as Bell nonlocality and entan-
glement [39]. In the remainder of this paper, all analyses are
based on the X state in Eqs. (7) and (8).

B. Bell nonlocality

The nonlocal property in a quantum entangled system
can be tested by the violation of Bell inequality [1].
The most widely used Bell-type inequality is the CHSH
inequality [40]

jhA1 ⊗ B1i þ hA1 ⊗ B2i þ hA2 ⊗ B1i − hA2 ⊗ B2ij ≤ 2;

ð11Þ

where Ai ¼ ai · σ, Bi ¼ bi · σ, and hAi ⊗ Bji≡
Tr½ρðai · σ ⊗ bj · σÞ� with i; j ¼ 1; 2. Here a1, a2, b1,
and b2 are four directions (unit vectors) along which the
spin polarization is measured. Then the inequality can be
rewritten in a simpler form

jaT1Cðb1 þ b2Þ þ aT2Cðb1 − b2Þj ≤ 2; ð12Þ

with C being the correlation matrix Cij in Eq. (1). Those
quantum states that violate the CHSH inequality are called
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Bell nonlocal states. The maximum of the left-hand side of
Eq. (12) can be obtained by tuning a1, a2, b1, and b2 as

B½ρ�≡ max
a1;a2;b1;b2

jaT1Cðb1 þ b2Þ þ aT2Cðb1 − b2Þj

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þm2

p
; ð13Þ

where m1 and m2 are two largest eigenvalues of CTC [41].
Therefore, the CHSH inequality can be violated iff (if and
only if) m1 þm2 > 1, and the maximum possible violation
of the CHSH inequality is the upper bound value 2

ffiffiffi
2

p
. For

convenience, we define a function of two-qubit density
operator m12½ρ�≡m1 þm2 ∈ ½0; 2� to be a measure of the
Bell nonlocality [16,18].
Since we have put the density operator into the X form in

(8), the correlation matrix is diagonal: t ¼ diagft1; t2; t3g.
The three eigenvalues of CTC or tTt are t21, t

2
2, and t

2
3. Then,

according to Eq. (13), one needs to select the largest two
values among them.
As we can see from Eq. (9) that t1;2;3 are functions of

three parameters αψ , ΔΦ and ϑ. Since t21 ≥ t22 always holds
for any values of αψ , ΔΦ and ϑ, t21 should not be the
smallest one. Then, one needs to compare t22 and t23. If
αψ ≥ 0, we always have t22 ≥ t23. Therefore, the measure of
nonlocality becomes m12½ρXYȲ � ¼ t21 þ t22. However, for
αψ < 0, one cannot judge which is larger t22 or t23, since
it depends on the specific values of three parameters. In this
case the measure of nonlocality can be expressed as
m12½ρXYȲ � ¼ max ft21 þ t22; t

2
1 þ t23g. In summary, the mea-

sure of the Bell nonlocality reads

m12½ρXYȲ � ¼
(
t21 þ t22; αψ ≥ 0

max ft21 þ t22; t
2
1 þ t23g; αψ < 0

ð14Þ

where t21 þ t22 and t21 þ t23 are given by

t21þ t22 ¼ 1þ
�

αψ sin2ϑ

1þαψcos2ϑ

�
2

−2

�
βψ sinϑcosϑ

1þαψcos2ϑ

�
2

; ð15Þ

t21 þ t23 ¼

0
BB@1þ αψ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αψ cos 2ϑÞ2 − β2ψsin22ϑ

q
2ð1þ αψcos2ϑÞ

1
CCA

2

þ α2ψð1 − cos 2ϑÞ2
4ð1þ αψcos2ϑÞ2

: ð16Þ

In Table I are listed the values of αψ and ΔΦ for J=ψ’s
decays into a pair of octet hyperons in electron-positron
annihilation. According to these parameters, we plotm12 as
a function of the scattering angle ϑ in Fig. 2 for different
decay channels. From Fig. 2, we find that m12 is a
symmetric function of ϑ relative to ϑ ¼ π=2 in the range
ϑ∈ ½0; π�, and it reaches the maximum value 1þ α2ψ at
ϑ ¼ π=2. Thus we obtain

max
ϑ

B½ρXYȲ � ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2ψ

q
: ð17Þ

By solving m12 > 1 in Eq. (14) with fixed αψ and ΔΦ, we
obtain the nonlocality range of the scattering angle as
ðϑ�; π − ϑ�Þ. For αψ ≥ 0, we can have an analytical
expression for the critical angle ϑ�

ϑ� ¼ arctan

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2α2ψ

q sinΔΦ
αψ

����; for αψ ≥ 0: ð18Þ

–1.0 –0.5 0.0 0.5 1.0

0.9

1.0

1.1

1.2

1.3

FIG. 2. The measure of the Bell nonlocality m12½ρXYȲ �
as functions of cosϑ (ϑ is the scattering angle) in eþe− →
J=ψ → YȲ with Y ¼ Λ, Σþ, Ξ− and Ξ0 corresponding to curves
in black solid, blue dash-dotted, green dashed, and red dotted
lines respectively. The black horizontal line is the nonlocality
bound m12 ¼ 1. The CHSH inequality is violated iff m12 > 1.

TABLE I. Some parameters in eþe− → J=ψ → YȲ, where YȲ
is a pair of ground-state octet hyperons.

Bð×10−4Þ αψ ΔΦ=rad References

ΛΛ̄ 19.43(33) 0.475(4) 0.752(8) [31,42]
ΣþΣ̄− 15.0(24) −0.508ð7Þ −0.270ð15Þ [43,44]
Ξ−Ξ̄þ 9.7(8) 0.586(16) 1.213(49) [32,45]
Ξ0Ξ̄0 11.65(4) 0.514(16) 1.168(26) [46,47]

TABLE II. The maximum violation Bmax in Eq. (17) and critical
angles ϑ� for the CHSH inequality in eþe− → J=ψ → YȲ.

ΛΛ̄ ΣþΣ̄− Ξ−Ξ̄þ Ξ0Ξ̄0

Bmax 2.214 2.243 2.318 2.249
ϑ� 60.81° 30.29° 61.37° 65.27°
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The maximum violation in Eq. (17) and critical angles in
different decay channels are listed in Table II.

IV. QUANTUM ENTANGLEMENT

In this section we will discuss the quantum entanglement
in the YȲ system and its relation to the Bell nonlocality.

A. Entanglement measure and concurrence

For a bipartite quantum system living in the combined
Hilbert space ρAB ∈H A ⊗ H B, the state is said to be
separable iff the following decomposition holds

ρAB ¼
X
k

pkρ
k
A ⊗ ρkB; ð19Þ

where pk ≥ 0 and
P

k pk ¼ 1, and ρkA and ρkB are the
density operator of the corresponding subsystem A and B,
respectively. A state that cannot be decomposed into the
above form is called nonseparable or entangled.
For two-qubit and qubit-qutrit systems (2 × 2 and 2 × 3

respectively), the Peres-Horodecki criterion provides a
sufficient and necessary condition for separability [48,49]:
a state ρAB is separable iff its partial transpose ρTB

AB with
respect to the second subsystem is positive semi-definite.
The Peres-Horodecki criterion is also called Positive
Partial Transpose (PPT) criterion.
The concurrence is an entanglement monotone, and it has

a direct relationship with entanglement of formation [50].
In this work, we utilize the concurrence as a measure of the
entanglement. In Ref. [51], Wootters derived the two-qubit
concurrence as

C½ρ�≡max f0; μ1 − μ2 − μ3 − μ4g; ð20Þ

where μi with i ¼ 1; 2; 3; 4 are the eigenvalues of the
Hermitian matrix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
ρ̃

ffiffiffi
ρ

pp
with ρ̃ ¼ ðσy ⊗ σyÞρ�ðσy ⊗

σyÞ in the decreasing order, and ρ� denotes the complex
conjugate of ρ in the spin basis of σz. Wootters’ concurrence
is a function in the range [0, 1]. A state is separable for
C½ρ� ¼ 0 and is entangled for C½ρ� > 0. When C½ρ� ¼ 1, the
state is said to be maximally entangled.
We rewrite the spin density operator for the hyperon-

antihyperon system in the σz basis

ρXYȲ ¼
1

4

2
66664
1þ2aþ t3 0 0 t1− t2

0 1− t3 t1þ t2 0

0 t1þ t2 1− t3 0

t1− t2 0 0 1−2aþ t3

3
77775; ð21Þ

where a and t1;2;3 are defined in Eq. (9). The above
expression can be directly obtained by expanding Pauli
operators in Eq. (7) into a 2 × 2 matrix form. The name X
state comes from its resemblance to the letter X.

The Peres-Horodecki criterion for a general X state
claims that the state is entangled iff either ρX22ρ

X
33 <

jρX14j2 or ρX11ρ
X
44 < jρX23j2 holds [52], but both conditions

cannot be satisfied simultaneously [53]. The Wootters’
concurrence for the X state is given by [37]

C½ρX� ¼ 2max

�
0; jρX14j −

ffiffiffiffiffiffiffiffiffiffiffiffi
ρX22ρ

X
33

q
; jρX23j −

ffiffiffiffiffiffiffiffiffiffiffiffi
ρX11ρ

X
44

q �
;

ð22Þ

with ρXij being given in (21). We see that the Peres-
Horodecki criterion for the X state is compatible with
the concurrence.
With Eqs. (21) and (22), we derive the concurrence for

the hyperon-antihyperon system as

C½ρXYȲ � ¼ jt2j

¼

���1þαψ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þαψ cos2ϑÞ2− β2ψ sin22ϑ

q ���
2ð1þαψcos2ϑÞ

: ð23Þ

The results for the concurrence as functions of ϑ for octet
hyperons listed in Table I are shown in Fig. 3. We see that
the entanglement of YȲ pairs exists in the whole range of
the scattering angle ϑ except at two collinear limits ϑ ¼ 0
or π. However, unlike the Bell nonlocality, the maximum
value of the concurrence (or maximum entanglement) does
not necessarily take place at ϑ ¼ π=2. Instead, it can occur
at other angles such as the ones for Ξ−Ξ̄þ and Ξ0Ξ̄0 shown
in Table III.
In summary, the outgoing hyperon-antihyperon pairs are

entangled in the full range of the scattering angle except at
two boundaries.

–1.0 –0.5 0.0 0.5 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 3. Wootters’ concurrence C½ρXYȲ � as functions of cos ϑ (ϑ is
the scattering angle), where Y ¼ Λ, Σþ, Ξ−, and Ξ0 correspond-
ing to curves in black solid, blue dash-dotted, green dashed, and
red dotted lines, respectively. The black horizontal line is the
entanglement bound. The YȲ system is entangled iff C > 0.
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V. DISCUSSIONS ON BELL NONLOCALITY
AND ENTANGLEMENT

In this section, we will discuss the relation between Bell
nonlocality and entanglement, the eigenvalue decomposi-
tion of the spin density matrix, the role of electromagnetic
form factors in quantum correlation of the hyperon-
antihyperon system.

A. Bell nonlocality versus entanglement

Given that both Bell nonlocality and quantum entangle-
ment characterize quantum properties of a system, we try to
look for the relationship between them.
For a two-qubit density operator ρ with Wootters’

concurrence C½ρ�, the maximum violation of the CHSH
inequality B½ρ� has an upper bound [54]

B½ρ� ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2½ρ�

q
; ð24Þ

with B½ρ�≡ 2
ffiffiffiffiffiffiffiffi
m12

p
defined in Eq. (13). In Fig. 4 we plot

B and 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
as functions of cosϑ. We see in Fig. 4

that the inequality (24) is always satisfied and the equality
B ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
(or equivalently m12 ¼ 1þ C2) holds at

ϑ ¼ π=2. At this transverse scattering angle, Y’s and Ȳ’s
polarizations vanish from Eq. (5), then the spin density
operator ρXYȲ reduces to a very special subclass of the X
state: T state or Bell diagonal state (BDS). The upper
bound of B in (24) is attained for rank-2 BDSs [54].
From Fig. 4, both measures for the Bell nonlocality and

entanglement are symmetric with respect to ϑ ¼ π=2.
However, even if hyperon-antihyperon pairs are entangled
in the full range of scattering angle except at ϑ ¼ 0 or
π, the Bell nonlocality only appears in the range
ϑ∈ ðϑ�; π − ϑ�Þ. This corresponds to the range where
orange dot-dashed lines lie above the black line in
Fig. 4. This indicates the relation between the Bell
nonlocality and entanglement in the hierarchy of quan-
tumness

Bell nonlocality ⊂ entanglement:

Any nonlocal state must be entangled, but not all
entangled states can have nonlocal correlation [55].

Another interesting behavior of the entanglement and
nonlocality appears in the panels (c) and (d) in Fig. 4 for
Ξ−Ξ̄þ and Ξ0Ξ̄0: the entanglement in the range from the
maximum concurrence angle ϑmax (see Table III) to π=2
shows a decreasing trend while the Bell nonlocality is still
increasing. This phenomenon, where less entanglement
corresponds to more nonlocality, sometimes referred to as
an anomaly of nonlocality [56]. It can be explained by the
quantum resource theory that the entanglement and non-
locality may be inequivalent resources [57]. The subtle
relationship between the entanglement and nonlocality is
still an active topic in this field [58].

B. Eigenvalue decomposition

Any two-qubit density operator can be decomposed as
ρ ¼ P

4
i¼1 λijλiihλij, with λi being the eigenvalue and jλii

the corresponding eigenstate. According to Eq. (21), the
spin density operator has only two nonzero eigenvalues

λ1;2 ¼
1

2

�
1 ∓ αψsin2ϑ

1þ αψcos2ϑ

�
; ð25Þ

for the corresponding eigenstates

(a)

–1.0 –0.5 0.0 0.5 1.0
1.90

1.95

2.00

2.05

2.10

2.15

2.20 (b)

–1.0 –0.5 0.0 0.5 1.0
1.95

2.00

2.05

2.10

2.15

2.20

2.25

(c)

–1.0 –0.5 0.0 0.5 1.0

1.9

2.0

2.1

2.2

2.3 (d)

–1.0 –0.5 0.0 0.5 1.0

1.9

2.0

2.1

2.2

2.3

FIG. 4. The measures B ¼ 2
ffiffiffiffiffiffiffiffi
m12

p
and 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
for the Bell

nonlocality and quantum entanglement as functions of cos ϑ
(ϑ is the scattering angle). The four panels (a)–(d) correspond
to four decay channels of J=ψ to YȲ with Y ¼ Λ,
Σþ, Ξ−, and Ξ0, respectively. Solid blue lines are curves of
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
for the entanglement, while orange dot-dashed lines

are curves of B. The red dotted lines are curves by setting ΔΦ ¼
0 which will be explained in Sec. V C. The black solid horizontal
line is the value 2. The YȲ system is nonlocal or entangled iff
B > 2 or 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
> 2.

TABLE III. The maximum concurrence Cmax in Eq. (23) and
their corresponding angles ϑmax in eþe− → J=ψ → YȲ.

ΛΛ̄ ΣþΣ̄− Ξ−Ξ̄þ Ξ0Ξ̄0

Cmax 0.475 0.508 0.623 0.562
ϑmax 90° 90° 68.60°, 111.40° 66.26°, 113.74°
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jλ1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αψ cos 2ϑþ βψ sin 2ϑ

2ð1þ αψ cos 2ϑÞ

s
j00i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αψ cos 2ϑ − βψ sin 2ϑ

2ð1þ αψ cos 2ϑÞ

s
j11i;

jλ2i ¼
1ffiffiffi
2

p ðj01i þ j10iÞ; ð26Þ

where we adopt the notation for spin states: j0i≡ j↑zi,
j1i≡ j↓zi. Through the eigenvalue decomposition, the spin
configuration can be clearly shown in Eqs. (25) and (26)
that ρXYȲ can be treated as an ensemble of two pure states
fjλ1i; jλ2ig with probabilities fλ1; λ2g.
The eigenstate jλ1i is a superposition of two spin

triplet states: j00i ¼ jS ¼ 1; Sz ¼ 1i and j11i ¼ jS ¼ 1;
Sz ¼ −1i, and jλ2i is another spin triplet state:
jS ¼ 1; Sz ¼ 0i. We see that there is no spin singlet
component in the YȲ system. This is the result of the
angular momentum conversation in J=ψ’s decay, and it
coincides with the partial wave analysis that the outgoing
YȲ only has contributions from 3S1 and 3D1 waves [59].
The lack of spin singlet component can also be seen by

imposing the spin projection operator FS ¼ ð1 − σY · σȲÞ=4
on the spin density matrix [60] as

TrfρXYȲFSg ¼ Trt ¼ TrC ¼ 0; ð27Þ

with t and C being the correlation matrix in Eqs. (3) and (7)
respectively.

C. Electromagnetic form factors

In this subsection, we will look into the timelike electro-
magnetic form factors (EMFFs) in eþe− → YȲ and inves-
tigate their effects on nonlocality and entanglement.
The electromagnetic current of the spin-1=2 hyperon can

be expressed in terms of the Dirac form factor F1 and Pauli
form factor F2 as [36]

Γμ ¼ γμF1ðq2Þ þ i
σμνqν
2M

F2ðq2Þ; ð28Þ

where q ¼ p1 þ p2 with p1 and p2 being the four-
momentum of the hyperon and antihyperon respectively,
and M is the hyperon mass. With s ¼ q2, the electric
and magnetic form factorsGE andGM are related to F1 and
F2 by

GEðsÞ ¼ F1 þ
s

4M2
F2; GMðsÞ ¼ F1 þ F2: ð29Þ

Two parameters αψ and ΔΦ in the process eþe− → YȲ are
related to GE and GM by

αψ ¼ s − 4M2jGE=GMj2
sþ 4M2jGE=GMj2

∈ ½−1; 1�;

ΔΦ ¼ arg fGE=GMg∈ ð−π; π�: ð30Þ

From Eq. (5), nonvanishing polarizations of Y and Ȳ
produced in annihilation of unpolarized electron and
positron require ΔΦ ≠ 0 and π. At the limit ΔΦ ¼ 0 or
π, however, there is only the spin correlation part in ρXYȲ and
without polarizations part from Eq. (7). This indicates that
ρYȲ is reduced to a BDS form as

ρBDSYȲ ¼ 1

4

�
1 ⊗ 1þ

X
i

tiσi ⊗ σi

�
; ð31Þ

where t22 ¼ t23. We note that a BDS is also a X state but
without polarization.
Following Eqs. (14) and (15), the measure of the Bell

nonlocality becomes

m12½ρBDSYȲ � ¼ 1þ
�

αψsin2ϑ

1þ αψcos2ϑ

�
2

≥ 1: ð32Þ

We see in this circumstance the violation of the CHSH
inequality occurs in the full range of the scattering angle
ϑ∈ ð0; πÞ for any αψ ≠ 0. This result is different from what
we discussed in Sec. III, where the Bell nonlocality is
violated in a restricted angle range ðϑ�; π − ϑ�Þ. However,
the maximal violation of the CHSH inequality also takes
place at ϑ ¼ π=2 with the value in (17).
The concurrence in Eq. (23) for a BDS is reduced to

C½ρBDSYȲ � ¼ jαψ j sin2 ϑ
1þ αψ cos2 ϑ

: ð33Þ

Comparing Eq. (32) and (33), one can see that the inequality
in Eq. (24) becomes an equality B ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
(or equiv-

alently m12 ¼ 1þ C2) in the whole range of the scattering
angle (not only at ϑ ¼ π=2). This effect is shown in Fig. 4,
where the nonlocality B (orange dash-dotted line) and
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
(blue solid line) converge to the red dotted line

in the limit ΔΦ ¼ 0. It is not a surprise since the property
B ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
is valid for any rank-2 BDS [54] with the

fact that both jλ1i and jλ2i become two Bell states ðj00i þ
j11iÞ= ffiffiffi

2
p

and ðj01i þ j10iÞ= ffiffiffi
2

p
with βψ ¼ 0.

In other words, nonzero relative phase ΔΦ leads to a
splitting of B and 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
. For Λ, Ξ− and Ξ0, Bell

nonlocality is suppressed by nonzero ΔΦ, while the
entanglement is enhanced. However, for Σþ, both the
nonlocality and entanglement are slightly suppressed.
From Eq. (30) we see that ΔΦ is the relative phase

between GE and GM. Let us take an example for the
limit case ΔΦ ¼ 0; π by assuming GE ¼ �GM. As a
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consequence, the measures for the nonlocality and
Wootters’ concurrence are given by

m12 ¼ 1þ
� ðs − 4M2Þsin2ϑ
4M2sin2ϑþ sðcos2ϑþ 1Þ

	
2

;

C ¼ ðs − 4M2Þsin2ϑ
4M2sin2ϑþ sðcos2ϑþ 1Þ : ð34Þ

The above expressions coincide with Eqs. (3.4) and (3.7) in
Ref. [18] for eþe− → τþτ−. This is reasonable since the
vertex Eq. (28) in eþe− → τþτ− is simply γμ indicat-
ing GE ¼ GM.
In the process eþe− → YȲ, the existence of EMFFs

manifests in a polarized final state, even if the colliding
beams are unpolarized [61]. And this polarization effect
leads to the YȲ spin correlation different from that in
processes eþe− → τþτ− and pp → tt̄ pairs [13,15,18].

VI. QUANTUM TOMOGRAPHY IN EXPERIMENTS

The spin polarization of the hyperon and antihyperon
can be measured through their weak decays [32,62,63]
Y → BM and Ȳ → B̄ M̄. The spin correlation in YȲ can
also be extracted from the joint decay YȲ → BB̄ðMM̄Þ
through the joint angular distribution of BB̄ [64]

Iðϑ; θ; θ̄Þ ¼ 1

ð4πÞ2
�
1þ αY

X
i

Pþ
i ðϑÞ cos θi

þ αȲ
X
j

P−
j ðϑÞ cos θ̄j

þ αYαȲ
X
i;j

CijðϑÞ cos θi cos θ̄j
	
; ð35Þ

where i; j ¼ 1; 2; 3 or x, y, z denote three directions in the
rest frame of Y and Ȳ respectively, cos θi and cos θ̄j are
projections of B and B̄’s momentum directions onto the
axis i and j respectively, and αY and αȲ are the decay
parameters in Y → BM and Ȳ → B̄ M̄ respectively, see
Table IV for their values.
By adopting the idea of the quantum tomography [13,65]

and the method of moments, the spin polarization and
correlation in the hyperon-antihyperon system can be
extracted from the joint distribution (35) as

Pþ
i ðϑÞ ¼

3

αY
hcos θii; P−

j ¼ 3

αȲ
hcos θ̄ji;

CijðϑÞ ¼
9

αYαȲ
hcos θi cos θ̄ji: ð36Þ

In this way, 15 real parameters P� and Cij in ρYȲ in Eq. (1)
can be constructed from experiment data.
Furthermore, due to parity and charge conjugation

invariance, these 15 parameters are not all independent:
the only nonzero polarization is perpendicular to the
production plane (i.e., in ŷ direction) and Pþ

y ¼ P−
y .

The correlation is a symmetric matrix Cij ¼ Cji with
Cxy ¼ Cyz ¼ 0. Then the 4 × 4 matrix Θμν reads

ΘμνðϑÞ ¼

2
666664

1 0 Py 0

0 Cxx 0 Cxz

Py 0 Cyy 0

0 Cxz 0 Czz

3
777775; ð37Þ

where all elements are functions of the scattering angle ϑ.
Obviously, Eq. (37) is local unitary equivalent to the
standard X state.
The Bell nonlocality measurem12 is given by the sum of

two largest eigenvalues CTC whose three eigenvalues of
CTC are

C2
yy;

1

4

�
Cxx þ Czz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2

xz þ ðCxx − CzzÞ2
q 	

2

: ð38Þ

The concurrence C is given by

C ¼ 1

2
max

�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2

xz þ ðCxx − CzzÞ2
q

− j1 − Cyyj;

jCxx þ Czzj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ CyyÞ2 − 4P2

y

q �
: ð39Þ

Since Py and Cxx, Cyy, Czz and Cxz can all be constructed
from data, the Bell nonlocality and entanglement can be
tested in experiments.
The above probe to quantum correlation in eþe−

annihilation at BESIII can also be extended to pp̄ → YȲ
at PANDA [66], in which the spin-parity of the intermediate
resonance is not necessarily 1−.

VII. SUMMARY AND OUTLOOK

In this work, we present the study of the Bell nonlocality
and entanglement in eþe− → YȲ, with Y being the spin-
1=2 octet hyperon. We begin with the spin density operator
for YȲ and convert it into that for the standard two-qubit X
state. Using properties of X states, we derive analytical
formulas for the Bell nonlocality and entanglement in

TABLE IV. Decay parameters for ground-state octet hyperons.
In our analysis, we neglect the CP violation effect so we have
αȲ ¼ −αY .

Y Bð%Þ αY References

Λ → pπ− 064 0.755(3) [32,69]
Σþ → pπ0 052 −0.994ð4Þ [44]
Ξ− → Λπ− 100 −0.379ð4Þ [32,45]
Ξ0 → Λπ0 96 −0.375ð3Þ [45,47]
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various YȲ systems, based on two intrinsic parameters, αψ
and ΔΦ, along with a kinematic variable, the scattering
angle ϑ. We explore the relation between the Bell non-
locality and entanglement and present the experimental
proposal to test the nonlocality and entanglement at
BESIII.
In eþe− → YȲ, the relative phase between the electric

and magnetic form factors of hyperons lead to their
polarizations in the spin density operator. With nonvanish-
ing polarizations of Y and Ȳ, the kinematic region of
nonlocality in the YȲ system is more restricted than
τþτ− [17,18] and tt̄ systems [13–16] where polarizations
of tau leptons and top quarks are vanishing. The entangle-
ment in the YȲ system can also be influenced by the
polarization effect in comparison with τþτ− and tt̄ systems.
This is the main result of our work.
Our work offers a theoretical framework for probing the

nonlocality and entanglement in hyperon-antihyperon sys-
tems at BESIII. Our method can also be applied to other
collision processes with X-form final states such as pp̄ →
YȲ at PANDA [66]. A modified CHSH inequality and

related entanglement measures were proposed to quantify
the quantum entanglement and spin correlation of ΛΛ̄ in
string fragmentation [29]. Our method can also be gener-
alized to describe the nonlocality and entanglement of such
hyperon-antihyperon systems in many-body states.
Note added in the second version of this paper: we

noticed that a new article appeared in the arXiv addressing
similar problems but in a different angle [67]. We also
noticed that a new article was posted by the BESIII
collaboration about J=ψ → Σ0Σ̄0 [68]. There are no exper-
imental data available for J=ψ → Σ−Σ̄þ yet. We will
address the nonlocality and entanglement of Σ0Σ̄0 and
Σ−Σ̄þ in a future study.
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