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It is fascinating to predict the mass and width of the ordinary and exotic mesons solely based on their
quark content and quantum numbers. Such prediction goes beyond conventional methodologies tradi-
tionally employed in hadron physics for calculating or estimating these quantities. The relation between the
quantum numbers and the properties of the mesons, such as the mass and width, is complicated in the world
of particle physics. However, the deep neural network (DNN) as a subfield of machine learning techniques
provides a solution to this problem. By analyzing large datasets, deep learning algorithms can automatically
identify complex patterns among the particles’ quantum numbers, and their mass and width, that would
otherwise require complex calculations. In this study, we present two approaches using the DNNs to
estimate the mass of some ordinary and exotic mesons. Also for the first time, the DNNs are trained to
predict the width of ordinary and exotic mesons, whose widths have not been experimentally known. Our
predictions obtained through the DNNs, will be useful for future experimental searches.
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I. INTRODUCTION

Nature suggests that hadrons are composite subatomic
particles containing two or more quarks binding together via
strong interaction. The realm of hadrons is divided into
baryons andmesons. Baryons are composed of three valence-
quarks and mesons are created as valence quark-antiquark
bound states [1–3]. Aswe know, the true structure of a hadron
may be more complex than a simple composition of two or
three quarks [4,5]. Obtaining the quantum numbers and
physical structures of these hadronic subatomic particles
provides us with important pieces of information. Also, the
mass and width are two determinative quantities for theorists
and experimentalists’ researches. The origin of the hadron
mass has been a challenging topic in particle physics for a
long time. The mass of a hadron is influenced by not only the
quark content but also the dynamics within the particle.
Indeed, the creation and annihilation of virtual quark-anti-
quark pairs and virtual gluons and their interactions with the
quantum chromodynamics (QCD) vacuum (condensations)

contribute to the hadronic compositions [6,7]. According to
the quark model, the hadrons going beyond qq̄ and qqq
compositions are called exotic hadrons. For instance, the four-
quark mesons or tetraquarks are composed of qq̄qq̄. These
exotic states have been explored by theorists [8–17] and
observed by the LHCb and other Collaborations [18–28].
In recent years, various kinds of exotic particles have
been studied through theoretical methods such as QCD
sum rules [29–32], potential models and lattice QCD [33,34].
ATLAS experiment has presented results on exotic resonan-
ces from the proton-proton collision [35].
To date, the Particle Data Group (PDG) [36] has

documented hundreds mesonic and baryonic states. After
all, it is still a hot topic to probe structures of the hadrons
and exotic states, since the internal hadronic configurations
of quark and gluons can be obtained in high-energy
reactions [37], thanks to the progresses made at different
hadron colliders. Moreover, it is important to highlight that
the new exotic particles reveal our limited knowledge of the
hadronic systems due to the gap between the theory and
experiment [38].
Artificial intelligence and the machine learning (AI/ML)

techniques have the potential to bridge this gap and aid the
theory and experiment for improved performance and
accuracy [39,40]. The traditional AI and ML methods
have been used in high-energy physics (HEP) since the
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1990s [39–42]. Afterward, the ML approaches were mostly
applied in particle and event identification as well as
reconstruction in the 2010s, and consequently played a
role in discovery of the Higgs boson at the Large Hadron
Collider (LHC) in 2012 [39–46].
The recent breakthroughs in the modern ML have been

transfiguring particle physics studies in both phenomeno-
logical and experimental areas. In other words, the modern
ML facilitates collaboration between LHC experimental-
ists, phenomenologists, and the data science community
[39–55]. Some established ML algorithms, such as boosted
decision trees and neural networks (NNs), have a long and
successful history in many experimental analyses. These
powerful methods are now considered standard tools and
are extensively implemented by the ATLAS, CMS, and
LHCb Collaborations [54–67]. In the first observation of
the Higgs boson, the ATLAS Collaboration successfully
leveraged the NN techniques [46,61]. Similarly, the LHCb
Collaboration used the ML tools for the first observations
of the exotic structures referring to charmonium-
pentaquark states [19,61].
The NNs are a branch of the MLmodels that use learning

algorithms inspired by the human brain to recognize
complex relations between various parameters based on
large numbers of examples and make intelligent decisions.
The NNs receive raw input data in the first layer (input
layer), process it through at least one hidden layer, and then
present the result in the last layer (output layer). The
simplest form of a NN consists of an input layer, a hidden
layer, and an output layer. Deep neural networks (DNNs)
are more advanced, with several hidden layers. These
networks are capable of solving more complex problems
[68,69]. Application of the NNs to the HEP experiments
and phenomenology has been very successful [41,70–80].
The DNNs are becoming indispensable tools in searching
and unraveling dark matter nature [81–83]. Graph neural
network (GNN) models are a further extension of NNs, able
to process data in graph structures. The GNNs show great
promise in particle reconstruction problems [75]. One of
the most powerful types of deep learning models is
generative adversarial network (GAN). A GAN is a type
of artificial intelligence framework that consists of two
NNs, a generator and a discriminator which compete with
each other via deep learning algorithms. They are
trained simultaneously through adversarial training. The
generator network generates new data samples, while the
discriminator network tries to distinguish between real data
samples and fake ones generated by the generator. Event
generation, anomaly detection, data augmentation, and
background subtraction are just a few examples of how
the GANs can be applied in the field of particle physics to
empower data analysis, simulation, and detection capabil-
ities [55,84–88].
The DNNs are standard tools for solving classification

and regression problems [70–80]. In the classification

tasks, the output of the algorithm is restricted to specific
values, or classes, such as “signal” or “background”
[51,55]. An innovative DNN method has been represented
for jet identification in the CMS experiment at the
LHC [70]. Reference [71] trained and developed the
DNNs to judge whether the exotic states of the Xð3872Þ,
Xð4260Þ, and Zcð3900Þ can be considered as hadronic
molecules of special channels. In addition, the nature of
hidden charm pentaquarks with a NN approach was studied
[73]. As previously explained, the NNs have the potential
to perform the regression analysis and predict continuous
numerical values. The regression algorithms can be imple-
mented for reconstruction techniques in the HEP, e.g.,
precise calculations of continuous quantities like, hit
positions and track momenta or the jet energies
[51,55,56,59,89,90]. The ATLAS collaboration has
employed a regression DNN on a sample of simulated tt̄
events to reconstruct the top pair system invariant mass
[91]. Also, the NNs can be utilized to compute the mass of
the exotic hadrons, doubly charmed and bottom baryons.
For this purpose, the original data was extended by using
artificial data augmentation methods [76]. Interestingly,
Ref. [77] uses basic information of the mesons spectrum to
predict the masses of the baryons, pentaquarks and other
exotic hadrons. Inspired by these applications and based on
the search strategies performed in [77], it is a fortunate time
to extend this scheme and design the DNNs to precisely
compute the mass and width of some ordinary and exotic
mesons. The quark content of some famous mesons are still
unclear and their identification has remained a complicated
experimental task. We estimate the mass of these challeng-
ing mesons through the DNNs, considering the ordinary
and exotic structures for their quark contents separately.
Furthermore, we examine the power of our designed DNNs
in prediction of the mass of some light and exotic mesons.
Moreover, the DNNs are implemented to predict the decay
width of some ordinary and exotic mesons whose decay
widths have not been permanently confirmed by the
PDG [36].
In our study, the DNNs are trained based on two effective

approaches in organizing the dataset, according to the
quark contents and global quantum numbers of the meson
such as the angular momentum, parity, isospin and charge
conjugation. The obtained results regarding the mass
spectra of the normal and exotic mesons are found to be
in good agreement with the experimental results. For the
first time, we are able to predict the decay width of the
mesonic states with a good approximation based on their
quark contents and the other quantum numbers like the
angular momentum, parity, etc. and also mass a new input,
through the deep learning algorithms. In this analysis, the
encoded data of the mesons are given to the DNNs. The
DNN recognizes the mesons in terms of their quark
contents and the other global quantum numbers. The data
structure is examined in each hidden layer. Each layers’
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output is a new description of the input data for the next
layer. Improving this process, layer by layer, until the final
predictions of the mass and width are presented. At last, the
DNN converts the encoded data into the practical output.
Learning by example and transferring data at each layer

are known as the most powerful aspects of neural network.
Despite the broad deployment of the NNs in strongly
correlated systems and pattern recognition tasks, it has not
been clarified how the individual neurons work together to
reach the final output. The DNNs are typically considered
as one of the most famous black box algorithms in
extracting knowledge from data. We have designed the
DNNs which are able to predict the mesons’ mass spectra
and widths, whereas, most mesons listed in the PDG are
unstable and determination of their mass and total decay
width requires various complex methods in the theory and
experiment. This is the point that makes our research more
attractive.
The structure of this paper is in the following form. In

Sec. II, the DNN is briefly introduced. The details of the
data preprocessing is described in Sec. III. In Sec. IV, we
present and discuss the results of our analyses. Lastly, the
Sec. V is reserved for our concluding notes.

II. NEURAL NETWORKS

The ML models aim to automatically learn to recognize
complicated patterns and make intelligent decisions based
on data. The NNs, also known as artificial NNs (ANNs) are
famous framework to perform ML goals. In fact, the NN
uses a series of learning algorithms to analyse and function
in a manner inspired by the human brain to find patterns
among vast amounts of data.
A typical NN is composed of highly interconnected

processing elements called neurons or nodes, organized in
several layers. Indeed, the most fundamental component of
the NN is the neuron, which takes incoming information
from the neurons of the previous layer or directly from
the input features. After processing the information
through some mathematical functions, the neuron transmits
the output value to the neurons of the next layer, i.e., the
outputs of the neurons in one layer will be the inputs for the
next layer. There exist three types of layers in the NN. An
input layer, at least one hidden layer and one output layer.
The input layer is not responsible for any computation or
transformation. It just passes the data features to the next
layers. The process of passing input data through the NN in
a forward direction, from the input layer through any
hidden layers and finally to the output layer is called
feedforward. A feedforward NN is one of the most
common and successful learning algorithms where infor-
mation moves only in one direction. Consider a feedfor-
ward NN with L layers, so we have one input layer, one
output layer, and L − 2 hidden layer. A neuron transforms
the input values x into the output y,

x → x1 → x2… → xL ≡ y; ð1Þ

where xl refers to the vector of x in layer l. The weights
between neurons in a NN are represented as a weight matrix
W, where each element wij represents the weight between
neuron i in the previous layer and neuron j in the current
layer. A bias vector can be defined as an essential
component that enables the model to fit data more
effectively. The bias vector is a set of constant values
(one for each neuron) appended to the weighted input. The
bias term for each neuron is denoted as a vector b, where
each element bi indicates the bias for neuron i in the current
layer. It should be noted that the number of neurons may be
chosen different for each layer.
The output of a neuron in a layer can be calculated with

the input vector dimension n, as follows:

xðlÞj ¼
Xn
i¼1

ðwðlÞ
ij x

ðl−1Þ
i þ bðlÞj Þ: ð2Þ

Then, the output of the neuron is passed through an
activation function σ to produce the neuron of the next layer

xðl−1Þ → xðlÞ ≔ σðWðlÞxðl−1Þ þ bðlÞÞ: ð3Þ

An activation function is a mathematical function that
calculates the weighted sum of inputs and biases.
Selection of the activation function depend on the type
of prediction problem and nature of the data. It can be
linear or nonlinear. Common activation functions include
sigmoid: σðxÞ ¼ 1=ðex þ 1Þ, ReLU: σðxÞ ¼ maxf0; xg,
softmax: σðxiÞ ¼ exi =ð

P
j e

x
j þ 1Þ, and hyperbolic tangent:

σðxÞ ¼ tanhðxÞ.
Each layer in the network performs mathematical oper-

ations on the input data, transforming it into a more useful
representation for the next layer. This process iterates over
hidden layers, and continues until the output layer produces
a final result. During the training, weights and biases are
updated. In order to get the optimal set of weight and bias,
we need to calculate the error between the predicted output
and the desired outcome and minimize it. Thus, an
optimization procedure is implemented to modify the
weights and biases iteratively in order to reduce the error.
This process is called backpropagation which is a crucial
step in training the NN. A schematic of a neural network
architecture including input, hidden, and output layers is
illustrated in Fig. 1.
Training a NN with a great performance to new (unseen)

data can be a challenging problem. A model with too small
and limited training data cannot learn the problem. In
contrast, a model with too much capacity of training dataset
can learn it too well and lead to overfitting. Specialized
techniques are needed to avoid them. The goal of a NN is to
design a final model to fit the training data and make
reliable predictions on the new data (test data).
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Validation is an effective technique in the ML to estimate
performance of the model during learning. It is done by
splitting the input dataset into the training and validating
sets and then evaluating the predictive power of the model
(DNN in this case) on the validation sets. In this study, the
input data is randomly separated into two subsets as 90.0%
and 10.0% for training and validation data respectively.
It is obvious that there is no universal rule for the NN

architecture to get the best performance. Obtaining the
appropriate number of neurons and the hidden layers as
well as choosing the sufficient activation functions depend
on the problem to be solved.
In this work, to prevent the overfitting, and to train the

DNN in a reasonable time, the number of hidden layers and
nodes should not be too large. We found good performance
considering the following points. In fact, number of
the neurons on the hidden layers approximately equal to
the average number of the input and output layers. Also, the
number of hidden neurons keep on decreasing in sub-
sequent layers.

A. Loss function and training the DNN

When we train a DNN, we feed the data to the network,
make predictions, compare them with the actual output (the
targets) and then calculate what is known as a loss. A loss
function plays a key role to evaluate the performance of the
NN model. It indicates how well the algorithm is learning
the patterns in the training data. The higher the loss the
worse our model is performing. Minimizing the loss
function directly causes the model to make more

accurate predictions. The average, or expected loss is then
given by

E½L� ¼
Z Z

Lðŷ; yðxÞÞpðx; ŷÞdxdŷ; ð4Þ

where a specific estimate yðxÞ of the value of ŷ for each
input x, and pðx; ŷÞ is a joint distribution over x and ŷ. We
are not required to know the exact form of the distribution.
If we approximate it with the sum over the samples in the
training dataset

E½L� ≈ 1

N

XN
i¼1

Lðŷ; yðxÞÞ; ð5Þ

where N is the sample size.
As mentioned above, one way to determine the network

parameters is minimizing the loss function. Weights at the
iteration step t are changed and updated along the direction
of the derivative of the loss function with respect to the
parameters

θðtþ1Þ
j ¼ θðtÞj − η

∂LðtÞ

∂θj
with θj ∈ fb;Wg; ð6Þ

where η is the learning rate, and the minus sign implies that
our optimization algorithm is navigating down the gradient.
Optimization algorithm is in charge of reducing the
losses. This naive form has some advantages and disad-
vantages. For example, this form is easy for computing,

FIG. 1. Schematic illustration of a feedforward NN architecture.
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implementing, and understanding but may trap at local
minima. Weights and biases are changed and updated after
calculating the gradient over the entire training dataset.
Thus, if the dataset is too large, then it may take a lot of time
to converge to the minima.
Optimizer algorithms plays a crucial role in facilitating

the training phase in a DNN model. In practice, optimizers
are supposed to modify each epoch’s weights and reduce
the loss function during the learning process. Different
optimizers are used in the DL algorithms such as, Adam,
SGD, AdaDelta and AdaGrad. The choice of an optimizer
depends on many factors such as the model structure, size
and configuration of the dataset. We implemented the
Adam optimizer in our DNN model. In our study, as it
is shown in Fig. 2 Adam yields better training loss and the
NN model learns efficiently much better compared to the
other optimizers.
An epoch can be explained as one complete passing of

the training data through the algorithm. The number of
epochs is an important hyperparameter for the training
process. We realized that a range between 500 to 1500
epochs is appropriate to balance between underfitting and
overfitting in various analyses of this project.
Dropout method is generally used to reduce the over-

fitting of the NNs. Besides, batch normalization technique
accelerates the training process and in some cases may
improve the model performance. However, these methods
were not efficient for our codes structure.
Generally, choosing the loss function is related to the

activation function used in the output layer of the DNN. In
other words, these two main functions are connected. For
our setup, Tanh and Relu activation functions are consid-
ered in hidden layers and the linear activation function
y ¼ x for the output layer. Mean squared logarithmic error
(MSLE) and mean squared error (MSE) are employed as

the loss function and the metric respectively. MSLE
function measures the average of the squared differences
between the logarithms of the predicted and actual values.
It can be practical when the range of target values is large.

MSLEðy; ŷÞ ¼ 1

N

XN−1

i¼0

ðlogeð1þ yiÞ − logeð1þ ŷiÞÞ2; ð7Þ

where yi is the actual value, ŷi is the predicted value, and N
is the sample data size. Also, MSE is one of the most
commonly used metric for evaluation in ML models. MSE
calculates the average squared difference between predicted
and observed values. It is determined as the sum of the
squared differences between the predictions and the obser-
vations, divided by the number of sample data. The formula
for MSE is as follow,

MSE ¼ 1

n

Xn
i¼1

ðyi − ŷiÞ2: ð8Þ

Figure 3 as a sample, demonstrates the stability of the
DNN model. It illustrates the behavior of the loss function
on both training and validation datasets per epochs through
a learning process, regarding the width prediction. We have
used a Python library, Keras [92] with TensorFlow [93].

III. DATA PREPROCESSING STRATEGY

Data preparation for the ML techniques including NN,
starts with data collection. It is a crucial step in every ML
project, since it directly affects the model’s performance
and accuracy. In this paper, the dataset has been collected
from the PDG [36]. Indeed, information of 376 mesons as
well as exotic mesons has been precisely extracted. It must
be emphasized that our dataset is more completed than
those prepared in previous study [77]. At first approach,
according to the Ref. [77], the dataset includes the quark
content of mesons, their isospin (I), angular momentum
(J), and parity (P) quantum numbers. The variable I can be
0; 1=2 and 1. J varies from 0 through 6 in positive integers.
P only takes −1 or 1 values. It should be noted that, the
mesons with the same quark structure and the identical
quantum numbers but different masses may cause ambi-
guity in the NN performance. So, as to modify the input
data and resolve ambiguities, another feature is defined as
higher state (h). Notice that h is not a real quantum number.
This is a new parameter that just distinguishes the particles
with the same properties and various masses. For instance,
f0ð980Þ and f0ð1370Þ have the identical features in the
input data and different masses. Consequently, they are
given the h values of 0 and 1 respectively to be distinguish-
able as two separate entities for the DNN algorithm. The
range of h can be changed from 0 to 10 depending to
numbers of similar mesons. The value of h for mesons with
unique properties is 0. Furthermore, G-parity, C-parity as

FIG. 2. The performance of Adam in the loss function in
comparison with the other optimizers (SGD, AdaDelta, and
AdaGrad).
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well as the mass and the decay width of the particles in
units of MeV has been extracted. Finally, we have the
following input vector,

v⃗ ¼ ðd; d̄; u; ū; s; s̄; c; c̄; b; b̄; I; J; P; h; G; CÞ: ð9Þ

To determine the valence quarks of the mesons with
linear combinations of pairs of quarks and antiquarks
(qq̄), we have implemented conventions recommended
in Ref. [77]. For instance, the feature values of
valence quarks of isotriplet mesons like π0 and ρ0 are
ð1; 1; 0⃗8; I; J; P; h;G; CÞ. The values of G or C will be zero
if a meson is not a G-parity or C-parity eigenstate. It is
noteworthy that, the mass and the width values of the input
mesons are scaled through common scaling techniques in
data science to constrain the range of possible outputs.
Since the mass and width parameters are dimensionful, it is
divided by 1 MeV before scaling. Finally, the preparation
of the dataset is completely done.
First and foremost, we are going to compute the mass of

some ordinary and exotic mesons, whose mass values have
been confirmed by the PDG [36]. The results can demon-
strate the strength of our designed DNNs in prediction of
the mass. The input dataset containing information of 341
mesons is randomly splitted into two subsets as 90.0% and
10.0% for the training and validation data respectively. As
mentioned in Sec. II, the performances during learning
processes are monitored by the validation test. At the first
step of calculation, the input data including thirteen feature
columns, (the number of valence quarks, I, J, and P) is fed
into the DNN. The DNN processes the data from the input
node to the output node and returns the outputs (particles’

mass) through deep learning algorithms. In the next step, to
be more accurate, the variable h as the fourteenth feature, is
added to the data and the deep learning algorithms are
implemented again. Last step is allocated to examine
the influence of adding the G and C parities to the data
features. The numerical results are demonstrated in
Tables II to XVII. Our predictions based on the first
approach, for the mass along with a comparison to the
experiment [36] and the other NN estimation [77] are
illustrated in Tables II, V, and VIII. Interestingly, the
Tables II and III draw attention to the performance of
the DNN on predicting the mass of conventional mesons vs
corresponding tetraquarks. Section IV interprets the results
in details. Accordingly, we aim to predict the width of the
normal and exotic mesons whose widths have not been
confirmed by the PDG. For this purpose, the mass of
particles is appended to the feature columns in the dataset
and the same procedure mentioned above, is performed.
Our results for the width predictions, based on the first
approach, are given in Tables XI and XIII, and discussed
in Sec. IV.
The architecture of the dataset indicates how the infor-

mation is accessed and organized. Namely, designing an
efficient and appropriate data structure, significantly
improves the DNN algorithm’s performance. In the first
approach, the data structure was categorized according to
the way proposed in Ref. [77]. In fact, first ten columns of
the dataset belong to the number of valence quarks of each
meson. Although, this procedure of organizing the data,
looks to be straightforward, works well just for mesons
with qq̄ structure. There exist troubles in specifying the
number of valence quarks of the mesons with linear

FIG. 3. The loss curves over the epochs for the training and validation datasets regarding the width prediction. The model presents
comparable behavior on the training and validation data.
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combinations of qq̄ pairs in the dataset. For instance, the
flavor wave functions of the mesons of π0 and η are,

π0 ¼
ðuū − dd̄Þffiffiffi

2
p ;

η ¼ ðuūþ dd̄ − 2ss̄Þffiffiffi
6

p : ð10Þ

As mentioned before, in the first approach the procedure
recommended in the Ref. [77] were applied. For instance,
the isotriplet mesons such as π0 are encoded as
ð1; 1; 0⃗8; I; J; PÞ, and η which is included in the category
of the lighter isosinglet mesons, encoded as
ð0⃗2; 1; 1; 0⃗6; I; J; PÞ. Although this approach is not exactly
describing the quark content of all kinds of mesons, the
DNNs have proven to be strong enough to predict the mass
and width of particles with a fair approximation. To protect
the credibility and reliability of the data as well as
enhancing the accuracy, we propose a novel idea for
preprocessing the dataset. In this procedure, the quark
content of mesons in association with the values of
corresponding Clebsch-Gordan coefficients will be con-
sidered. So the first twenty five entries of the dataset are
devoted to possible qq̄ states constructing the mesons’
structure, like dd̄, dū, cd̄, and etc. Consequently, every
meson with linear combinations of pairs of quarks and
antiquarks, gets the corresponding Clebsch-Gordan coef-
ficient of qq̄ state as the feature value, unlike the previous
approach that the number of valence quarks of a given type
were counted. The rest columns of the dataset is not
changed and will be the same as the first approach.
Consequently, the dataset is optimized and becomes a
more effective framework. For example, the input vector of
η, [IGðJPCÞ ¼ 0þð0−þÞ] considering all features
ðq⃗q̄25; I; J; P; h; C;GÞ has the following form,

η ¼
�

1ffiffiffi
6

p ; 0⃗4;
1ffiffiffi
6

p ; 0⃗6;
−2ffiffiffi
6

p ; 0⃗12; 0; 0;−1; 0; 1; 1
�
: ð11Þ

Now, the modified dataset is ready for analyses. Same as
the previous approach, the DNN evaluates the input data to
make predictions on the test data in three levels. First, the
input data contains the Clebsch-Gordan coefficient of qq̄
states of the mesons in association with the I, J, and P as
the features. In the second level, the higher state of h is
appended to the data features. Third, the C and G variables
are considered too. Our predictions based on the second
approach, for the mass compared to the experiment [36]
and the other NN estimation [77] are illustrated in
Tables III, VI, and IX. It should be emphasized that the
main network architecture, including the number of layers,
scaling methods, setting the optimizer, loss functions and
metric remains unchanged. Certainly, increasing the nodes
of each layer is inevitable due to the enhancing the features.

Besides, by adding the mass as another feature to the
dataset, we repeat this procedure to predict the mesons
width values. For instance, the details of our designed DNN
for prediction of the mass considering all the sixteen
features based on the first approach (A1) is summarized
in Table I. Practically, similar DNN configurations are
proposed for other predictions of the mass and width based
on the A1 and A2. Note that, size of the input layer is equal
to the number of feature columns. All the numerical results
are discussed in Sec. IV completely.

IV. INTERPRETATIONS OF THE RESULTS

In this section, we present and discuss our numerical
results determined by the DNNs. As pointed out above, we
adopt two distinct approaches to construct the dataset. In
the both approaches, the data features are being completed
in three steps. So the data is fed into the DNN with three
sets of input vectors. For prediction of the mass, at the first
step, the data are classified based on the mesons’ quark
content and their quantum numbers I, J, and P (base data).
Next, the variable h is appended to the base data (base
data þh). At last, the quantum numbers G and C are added
to the features (base data þhGC). Important to underline
that, in the first approach (A1), the number of valence
quarks of each meson are entered in the first ten columns of
the dataset. Therefore, the input vector (9) denotes the most
complete version of the data features. In contrast, the
second approach (A2) considers the Clebsch-Gordan coef-
ficients of all possible qq̄ structures in the quark content of
a typical meson, leading to a 25-dimensional vector in
the dataset. Correspondingly, for prediction of the width,
the mass of particles is appended to the features in the
dataset and the same procedure mentioned above, are
implemented.
We aim to predict the mass of some well-known, light

and exotic mesons, as well as the width of mesons that have
not been experimentally determined. The numerical results
for prediction of the mass and decay width as well
as the corresponding mean errors are demonstrated in
Tables II–XVII. Tables II–X show the predicted mass
and Tables XI–XIV illustrate the estimated width results.
We also estimate the mass and width of four new
tetraquarks, through the DNNs, summarized in
Tables XV–XVII.

TABLE I. The DNN architecture designed for prediction of the
mass considering all the sixteen features based on the first
approach (A1).

Layer (type) Number of neurons Activation function

Dense 16 Tanh
Dense 12 Tanh
Dense 8 Tanh
Dense 4 Relu
Dense 1 Linear
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A. qq̄ versus qq̄qq̄

The structure of some famous mesons have been actively
discussing for years. The question is whether the a0ð980Þ,
f0ð980Þ, D�

s0ð2317Þ�, and Ds1ð2460Þ are grouped in the
ordinary mesons or they belong to the exotic states. We
intend to predict the mass of these challenging mesons
using the DNN, based on two assumptions. We first
suppose the qq̄ state and then examine the qq̄qq̄ state
for their quark contents. Tables II and III show the
numerical results considering both quark contents, obtained
according to A1 and A2 respectively. The DNNs are
supposed to predict the mass considering three sets of
dataset (base data, base data þh and base data þhGC). As
previously stated, the data features become more complete
step by step. Entirely, the predicted results for the mass,
assuming two different structures, based on two
approaches, are found to be comparable with the

experimental data. Let us compare the obtained results
according to the quark content, the approach and the dataset
features. We calculated the mean error of the predicted
masses with the observed ones too, shown in Table IV. One
can observe that the mean error with respect to the observed
results for the qq̄ structure is much lower than the
tetraquark qq̄qq̄ one, suggesting the qq̄ structure for the
corresponding mesons.
In the case of the a0ð980Þ meson, pursuant to A1,

the DNN predictions for the mass, are getting close to the
experimental value (980� 20 MeV) with completing the
data features. More precisely, when the qq̄ configuration is
considered, the DNN, forecasts a mass of 998� 94 MeV
by importing the base data þhGC. While the a0ð980Þ with
qq̄qq̄ structure is given to the DNN, the mass is relatively
well estimated at 1069� 224 MeV, in the most complete
version of the data. Similarly, if we notice the results based

TABLE III. Our DNN predictions for the mass of four well-known conventional mesons vs corresponding tetraquarks structures (in
units of MeV), based on the A2, in comparison with the experimental [36] and the other NN results in Ref. [77].

Meson IGðJPCÞ Experiment mass (MeV) [36] Quark content Reference [77] Base data Base data þh Base data þhGC

a0ð980Þ 1−ð0þþÞ 980� 20 uū 1277� 246 1079� 91 987� 12 989� 93

us̄ ū s ðKK̄Þ 2172� 466 1490� 108 1041� 200 1152� 97

f0ð980Þ 0þð0þþÞ 990� 20 dd̄ 921� 117 1793� 276 1051� 175 1111� 40

ds̄ d̄ s ðKK̄Þ 1592� 401 1792� 250 1251� 226 1216� 216

D�
s0ð2317Þ� 0ð0þÞ 2317.8� 0.5 cs̄ 2640� 433 2975� 79 2456� 107 2308� 112

cūus̄ ðDKÞ 4326� 925 3997� 314 3912� 184 3819� 210

Ds1ð2460Þ� 0ð1þÞ 2459.5� 0.6 cs̄ 2547� 39 2537� 84 2432� 87 2490� 81
cūus̄ ðD�KÞ 3431� 544 3779� 250 3466� 274 3386� 253

TABLE II. Our DNN predictions for the mass of four well-known conventional mesons vs corresponding tetraquark structures (in
units of MeV), based on the A1, in comparison with the experimental [36] and the other NN results in Ref. [77].

Meson IGðJPCÞ Experiment mass (MeV) [36] Quark content Reference [77] Base data Base data þh Base data þhGC

a0ð980Þ 1−ð0þþÞ 980� 20 uū 1277� 246 1312� 54 1020� 69 998� 94

us̄ ū s ðKK̄Þ 2172� 466 1340� 104 1100� 104 1069� 224

f0ð980Þ 0þð0þþÞ 990� 20 dd̄ 921� 117 1457� 63 966� 51 883� 45

ds̄ d̄ s ðKK̄Þ 1592� 401 1723� 125 1155� 104 1086� 68

D�
s0ð2317Þ� 0ð0þÞ 2317.8� 0.5 cs̄ 2640� 433 2289� 183 2322� 142 2343� 169

cūus̄ ðDKÞ 4326� 925 3091� 361 2471� 284 2511� 334

Ds1ð2460Þ� 0ð1þÞ 2459.5� 0.6 cs̄ 2547� 39 2356� 121 2453� 128 2442� 218
cūus̄ ðD�KÞ 3431� 544 2845� 251 2527� 289 2748� 504

TABLE IV. The mean errors of the predicted mass of four well-known mesons based on the A1 and A2, in comparison with Ref. [77].

qq̄ vs qq̄qq̄ qq̄ A1% qq̄ A2% qq̄ Reference [77] % qq̄qq̄ A1% qq̄qq̄ A2% qq̄qq̄ Reference [77] %

Base 21.63 30.68 13.68 39.95 64.78 77.15
baseþ h 1.74 3.44 28.70 35.57
baseþ hGC 3.61 3.70 9.71 35.70
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on A2, the DNN predictions for the a0ð980Þ mass, are
improving step by step with enhancing the data features.
Supposing the qq̄ picture, the predicted mass is
989� 93 MeV, and considering a0ð980Þ as the tetraquark,
the mass is obtained 1152� 97 MeV, in the most complete
version of the data features. These observations highlight
critical importance of the model selection in theoretical
predictions and underscore the need for empirical valida-
tion to refine these models further. According to the PDG
[36], the mass of the f0ð980Þ is 990� 20 MeV. Whenever
the f0ð980Þ is supposed to be an ordinary meson, the
predicted mass via our DNN is more compatible with the
experimental data, per the A1 and A2. Best prediction for
the mass value is obtained 966� 51 MeV, when the base
data þh, according to the A1, is fed into the DNN. This
assertion holds true for the mesons D�

s0ð2317Þ� and
Ds1ð2460Þ�. Our DNNs mass predictions exhibit dimin-
ished discrepancies when juxtaposed with experimental
measurements, surpassing the precision of the estimates
presented in Ref. [77]. This confluence of accuracy across
multiple mesonic cases not only bolsters the credibility of
our DNNs performance, but also provides compelling
evidence for its superiority in capturing the nuances of
mesonic mass spectra.
Furthermore, incorporating the parameter h into the

dataset (base data þh) markedly reduces the mean error
more substantially than the base data alone, while the
inclusion of C and G quantum numbers does not enhance
the model’s accuracy. The minimal mean error achieved is
1.74%, realized through the A1 within the base data þh
dataset. The A2 also serves as a competent predictor, yields
a mean error of 3.49%. These results underscore the

efficacy of integrating higher states into the dataset for
precision modeling in particle physics.
Lastly, we find that, our DNN predictions for the mass of

these controversial mesons are more compatible to the
experimental ones, when they are classed as the ordinary
qq̄ mesons for both approaches. Nevertheless, the actual
quark content of these mesons still has remained
ambiguous.
We considered the error estimate based on the n subset

cross-validation technique. This technique splits the train-
ing data into n subsets, and trains the NN algorithm, n
times, each time using n − 1 subsets for training and the
remaining subset for validation. So we can calculate the
error (e.g., mean squared error) on the validation set and
the average error across all n subsets to estimate the model’s
performance. The final average error obtained from the n
subset cross-validation process can be used to calculate the
model’s generalization error on new, unseen data.

B. Light mesons

We present predictions for the mass of some light
mesons with qq̄ structure per A1 and A2, in Tables V
and VI respectively, which have not been predicted in
Ref. [77]. The mass of the f0ð500Þ meson has not been
exactly determined and the PDG [36] only gives a range of
possible values. Firstly, we feed the dataset prepared
accordance with the A1 into the DNN. Using only the
base data, the DNNs prediction falls outside the exper-
imental range. However, when we include the effects of the
higher state h and the quantum numbers C and G, our
prediction agrees with the PDG range. This shows the
importance of taking into account these symmetries in the

TABLE V. Our DNN predictions for the mass of some light mesons (in units of MeV), based on the A1, in comparison with the
experimental [36] and the other NN results in Ref. [77].

Meson IGðJPCÞ Experiment mass (MeV) [36] Quark content Base data Base data þh Base data þhGC

f0ð500Þ 0þð0þþÞ 400 − 800 dd̄ 1748� 16 668� 61 759� 134

K4ð2500Þ0; K4ð2500Þ0 1=2ð4−Þ 2490� 20 ds̄; sd̄ 2232� 60 2278� 57 2308� 35

K�
4 ð2500Þ 1=2ð4−Þ 2490� 20 us̄; sū 2206� 28 2283� 51 2298� 25

K2ð1580Þ0; K2ð1580Þ0 1=2ð2−Þ 1580 ds̄; sd̄ 1787� 31 1645� 25 1646� 20

K�
2 ð1580Þ 1=2ð2−Þ 1580 us̄ 1661� 28 1687� 31 1653� 23

TABLE VI. Our DNN predictions for the mass of some light mesons (in units of MeV), based on the A2, in comparison with the
experimental [36] and the other NN results in Ref. [77].

Meson IGðJPCÞ Experiment mass (MeV) [36] Quark content Base data Base data þh Base data þhGC

f0ð500Þ 0þð0þþÞ 400 − 800 dd̄ 754� 278 448� 285 554� 128

K4ð2500Þ0; K4ð2500Þ0 1=2ð4−Þ 2490� 20 ds̄; sd̄ 2185� 125 2445� 135 2510� 112

K�
4 ð2500Þ 1=2ð4−Þ 2490� 20 us̄; sū 2286� 114 2459� 135 2558� 128

K2ð1580Þ0; K2ð1580Þ0 1=2ð2−Þ 1580 ds̄; sd̄ 1754� 78 1696� 66 1676� 57

K�
2 ð1580Þ 1=2ð2−Þ 1580 us̄ 1789� 83 1662� 42 1634� 52
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mass spectrum of light mesons [94,95]. Subsequently,
when the data features are modified based on the A2,
considering each set of dataset (base data, base dataþh and
base data þhGC), the DNNs exhibit remarkable perfor-
mance in estimating the mass of the f0ð500Þ.
For the K4ð2500Þmeson, predictions based solely on the

base data per two approaches, are close and slightly smaller
than the expected value, considering the range of uncer-
tainties. Once the data features are optimized based on the
A2, considering the base data þh or the base data þhGC,
the predictions coincide fairly well with the observed mass
values within the uncertainty range. In fact, involving the
Clebsch-Gordan coefficients in the data features, yielding
more consistent results across the experimental values.
In 1979, the K2ð1580Þ meson was detected via a partial-

wave analysis of the K−πþπ− system. The mass spectrum
of this meson was empirically approximated to be in the
vicinity of 1580 MeV Ref. [96]. However, this estimation
has yet to receive confirmation from the PDG [36]. Our
DNNs provide a reasonable estimation for the mass of the
K2ð1580Þ meson as well. Employing the modified dataset
based on the A2, which includes the base data þhGC, the
DNNs forecast a mass of 1634� 52 MeV for theK2ð1580Þ
meson. This prediction align closely with the experimental
findings within the margin of uncertainty. Moreover,
alternative mass estimations for the K2ð1580Þ, particularly
those based on the base data within the A2, are in
concordance with theoretical projections. Reference [97]

notably cites a mass of approximately 1.75 GeV for
this meson.
We calculate the mean errors of the predicted mass of

these light mesons with qq̄ structure relative to their
experimental values. For the f0ð500Þ, we use mean of
the mass range as the input. The results are shown in
Table VII. We observe that, the contribution of the Clebsch-
Gordan coefficients in the quark content, gives a better
agreement with the experimental data than the A1. This
demonstrates the significance of the Clebsch-Gordan coef-
ficients in the mass formula of light mesons. The best fit is
obtained when we also consider the higher state number h
and the quantum numbers C and G. In this case, the mean
error of the masses is reduced to 4.14%.

C. Exotic mesons

The DNN are trained to predict the mass of some exotic
mesons with qq̄qq̄ structure, whose masses are confirmed
by the PDG [36]. The DNN predictions regarding the A1
and A2 are presented in Tables VIII and IX respectively. We
compare the DNN output values with the experimental ones
and calculate the mean errors, which are shown in Table X.
We find that our deep learning algorithms outperforms the
previous model of Ref. [77] in terms of accuracy. We also
observe that the A2 gives better results than the A1. This
implies the significance of considering the Clebsch-Gordan
coefficients in the quark content of ordinary mesons, which
enhance the performance of the model even for the
prediction of mass values of exotic states. The best fit
will be achieved, when we include the effects of the higher
state number h and the quantum numbers C and G. In this
case, the mean error of the masses is reduced to 16.01%.
Overall, our DNNs exhibit a higher precision in predict-

ing the mass of the ordinary mesons relative to the exotics,
compared to the current experimental data, as evidenced by
the errors detailed in Tables IV, VII, and X. This outcome is

TABLE VII. The mean errors of the predicted masses of the
light mesons, based on the A1 and A2.

Light meson A1% A2%

Base 46.27 14.07
Base þh 7.81 8.18
Base þhGC 10.06 4.14

TABLE VIII. Our DNN predictions for the mass of some exotic mesons (in units of MeV), based on the A1, compared to the
experimental [36] and the other NN results in Ref. [77].

Meson IGðJPCÞExperiment mass (MeV) [36] Quark content Reference [77] Base data Base data þhBase data þhGC

χc1ð3872Þ 0þð1þþÞ 3871.65� 0.06 cū c̄ u ðD0D̄�0Þ 4815� 786 3309� 174 2949� 159 2944� 177

ψð4230Þ 0−ð1−−Þ 4222.5� 2.4 cs̄ c̄ s ðDsD̄sÞ ð5.4� 1.1Þ × 103 3200� 176 3358� 246 3303� 175

ψð4360Þ 0−ð1−−Þ 4374� 7 cū c̄ u ðD1D̄�Þ 4940� 903 3442� 137 3422� 240 3190� 184

ψð4660Þ 0−ð1−−Þ 4630� 6 cū c̄ u ðf0ð980Þψ 0Þ 3480� 253 3300� 79

Zcð3900Þ� 1þð1þ−Þ 3887.1� 2.6 c̄ucd̄ ðDD̄�Þ 4991� 815 3574� 113 3304� 164 3676� 183

Zcð4200Þ� 1þð1þ−Þ 4196þ35
−32 c̄ucd̄ 3494� 136 3981� 195

Zcð4430Þ� 1þð1þ−Þ 4478þ15
−18 c̄ucd̄

ðD1D�; D0
1D

�Þ
3611� 126 4052� 197

Zbð10610Þ�1þð1þ−Þ 10607.2� 2.0 bd̄ b̄ u ðBB̄�Þ ð1.47� 0.17Þ × 1048693� 293 8481� 380 8918� 447

Zbð10650Þ�1þð1þ−Þ 10652.2� 1.5 bd̄ b̄ u ðB�B̄�Þ 8550� 271 9103� 159

Zcsð4220Þþ 1=2ð1þÞ 4216þ50
−40 uc̄ s̄ c � � � 3408� 234 3267� 136 3054� 182

Rc0ð4240Þ 1þð0−−Þ 4239þ50
−21 cū c̄ u � � � 2790� 271 3379� 471 3760� 469
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anticipated, given that our training dataset is exclusively
composed of ordinary mesons.
The enhancement of DNN performance through the

integration of internal structures and quantum numbers into
the dataset is a testament to the intricate relationship between
detailed physical attributes and machine learning efficacy.
By embedding these fundamental aspects, our model can
achieve a more nuanced understanding and prediction,
leading to more accurate and insightful outcomes. For

instance, in the case of the ψð4660Þ meson, which has an
experimentally observed mass of ð4630� 6Þ MeV, our
initial approach (A1) using only the base data predicts a
mass of ð3442� 137Þ MeV, deviating from the observed
value. However, by incorporating the higher state h into the
dataset based on the A2, the predicted mass improves to
ð4186� 671Þ MeV, aligning within the experimental
uncertainty range. Once more, this underscores the impor-
tance of involving the Clebsch-Gordan coefficients in the
data features as well as contribution of higher state h in
raising the accuracy of mass predictions for exotic mesons.
In the analysis of certain exotic mesons such as

Rc0ð4240Þ, importing the base data þhGC, based on the
A1, yields predictions that concur with the observed mass
valueswithin their uncertainty bounds. Conversely, themass
predictions for Rc0ð4240Þ, based on the A2, lied lower than
the experimental ones, despite the inclusion of the higher
state h and quantum numbers C and G. This discrepancy

TABLE X. The mean errors of the predicted mass of the exotic
mesons based on the A1 and A2 in comparison with Ref. [77].

Exotic A1% A2% Reference [77] %

Base 19.87 22.43 23.03
Base þh 20.42 16.76
Base þhGC 17.36 16.01

TABLE IX. Our DNN predictions for the mass of some exotic mesons (in units of MeV), based on the A2, compared to the
experimental [36] and the other NN results in Ref. [77].

Meson IGðJPCÞExperiment mass (MeV) [36] Quark content Reference [77] Base data Base data þhBase data þhGC

χc1ð3872Þ 0þð1þþÞ 3871.65� 0.06 cū c̄ u ðD0D̄�0Þ 4815� 786 3004� 540 3466� 673 3345� 629

ψð4230Þ 0−ð1−−Þ 4222.5� 2.4 cs̄ c̄ s ðDsD̄sÞ ð5.4� 1.1Þ × 103 3613� 294 3313� 280 3277� 379

ψð4360Þ 0−ð1−−Þ 4374� 7 cū c̄ u ðD1D̄�Þ 4940� 903 3740� 609 3831� 681 3659� 606

ψð4660Þ 0−ð1−−Þ 4630� 6 cū c̄ u ðf0ð980Þψ 0Þ 4186� 671 3767� 701

Zcð3900Þ� 1þð1þ−Þ 3887.1� 2.6 c̄ucd̄ ðDD̄�Þ 4991� 815 2754� 316 2969� 108 3455� 340

Zcð4200Þ� 1þð1þ−Þ 4196þ35
−32 c̄ucd̄ 3012� 228 3587� 315

Zcð4430Þ� 1þð1þ−Þ 4478þ15
−18 c̄ucd̄

ðD1D�; D0
1D

�Þ
3280� 367 3666� 732

Zbð10610Þ�1þð1þ−Þ 10607.2� 2.0 bd̄ b̄ u ðBB̄�Þ ð1.47� 0.17Þ × 1049548� 554 9634� 526 9541� 417

Zbð10650Þ�1þð1þ−Þ 10652.2� 1.5 bd̄ b̄ u ðB�B̄�Þ 9856� 500 9494� 484

Zcsð4220Þþ 1=2ð1þÞ 4216þ50
−40 uc̄ s̄ c � � � 3610� 227 3975� 198 3927� 201

Rc0ð4240Þ 1þð0−−Þ 4239þ50
−21 cū c̄ u � � � 2568� 436 2994� 554 2816� 553

TABLE XI. Our DNN predictions for the width of some mesons (in units of MeV), based on the A1, compared to the experimental
results.

Meson IðJPCÞ Width (MeV) Base data Base data þh Base data þhGC

a0ð980Þ 1−ð0þþÞ 97� 1.9� 5.7 [98] 158� 48 106� 34 113� 28
a0ð980Þexotic 1−ð0þþÞ 97� 1.9� 5.7 [98] 371� 90 320� 40 179� 84
f0ð980Þ 0þð0þþÞ 10–100 [36] 114� 29 122� 30 105� 34
f0ð980Þexotic 0þð0þþÞ 10–100 [36] 253� 72 288� 70 120� 58
f0ð1370Þ 0þð0þþÞ 200–500 [36] 144� 24 132� 36 107� 40

D�ð2007Þ0 1=2ð1−Þ <2.1 (CL ¼ 90%) [99] 1.6� 0.8 4.4� 1.8 4.6� 1.2
D�

s0ð2317Þ� 0ð0þÞ <3.8 (CL ¼ 95%) [100] 4.2� 2 3.4� 1.5 3.1� 1.7
D�

s0ð2317Þ�exotic 0ð0þÞ <3.8 (CL ¼ 95%) [100] 100� 46 23� 11 47� 23

Ds1ð2460Þ� 0ð1þÞ <3.5 (CL ¼ 95%) [100] 3.4� 2.1 3.4� 2.1 3.4� 1.6
Ds1ð2460Þ�exotic 0ð1þÞ <3.5 (CL ¼ 95%) [100] 85� 39 25� 14 31� 21

ψ2ð3823Þ 0ð2−−Þ <2.9 (CL ¼ 90%) [101] 5.9� 2 3.7� 2 6� 4
ηbð2sÞ 0þð0−þÞ <24ðCL ¼ 90%Þ [102] 40� 18 38� 21 54� 24
K�

0ð700Þ 1=2ð0þÞ 468� 30 [36] 177� 52 363� 120 328� 140

K�
0ð1430Þ 1=2ð0þÞ 270� 80 [36] 191� 40 247� 48 254� 84
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indeed emphasizes the intricate challenges inherent in
modeling exotic mesons. It raises the intriguing possibility
that alternative structures, such as sexaquarks, may be more
appropriate assignments for these mesons. Consequently,
there is a pressing need to refine the training set with data
specific to exotic mesons. Such targeted data enrichment
would enable themodels tomore accurately encapsulate and
reflect the unique properties of these mesons, thereby
enhancing the fidelity of theoretical predictions within the
quantum chromodynamics framework.

D. Meson width

We have trained the well-built DNNs to estimate the
mass of various mesons, both the ordinary and exotic,
based on their quark content and quantum numbers. Our

DNNs have achieved noticeable results in prediction of the
mass. Now, we are going to estimate the decay width of
mesons and tetraquarks whose widths have not been
experimentally verified or measured. For this goal, the
mesons’ mass will be appended to the feature columns in
the dataset and the same procedure mentioned above, are
performed. Tables XI–XIV present the predicted widths of
some selected mesons according to the A1 and A2
respectively, along with the available experimental data
for comparison.
As mentioned earlier, the quark content of the a0ð980Þ,

f0ð980Þ, D�
s0ð2317Þ�, and Ds1ð2460Þ mesons have turned

out to be mysterious. The DNN is designed to predict the
decay width of these challenging mesons too. We first
suppose the qq̄ structure and then examine the qq̄qq̄

TABLE XII. Our DNN predictions for the width of some mesons (in units of MeV), based on the A2, compared to the experimental
results.

Meson IðJPCÞ Width (MeV) Base data Base data þh Base data þhGC

a0ð980Þ 1−ð0þþÞ 97� 1.9� 5.7 [98] 112� 68 99� 44 101� 26
a0ð980Þexotic 1−ð0þþÞ 97� 1.9� 5.7 [98] 389� 115 552� 300 234� 97
f0ð980Þ 0þð0þþÞ 10–100 [36] 115� 37 124� 42 72� 44
f0ð980Þexotic 0þð0þþÞ 10–100 [36] 303� 83 545� 285 315� 185
f0ð1370Þ 0þð0þþÞ 200–500 [36] 116� 16 119� 20 95� 49

D�ð2007Þ0 1=2ð1−Þ <2.1 (CL ¼ 90%) [99] 4.8� 1.4 4.9� 1.3 4.3� 1.7
D�

s0ð2317Þ� 0ð0þÞ <3.8 (CL ¼ 95%) [100] 0.6� 0.4 1.75� 1 1.9� 1.1
D�

s0ð2317Þ�exotic 0ð0þÞ <3.8 (CL ¼ 95%) [100] 185� 80 99� 52 140� 73

Ds1ð2460Þ� 0ð1þÞ <3.5 (CL ¼ 95%) [100] 0.94� 0.3 3.7� 1.9 6.1� 4.6
Ds1ð2460Þ�exotic 0ð1þÞ <3.5 (CL ¼ 95%) [100] 83� 34 37� 19 43� 20

ψ2ð3823Þ 0ð2−−Þ <2.9 (CL ¼ 90%) [101] 2.4� 1.5 0.8� 0.5 0.6� 0.1
ηbð2sÞ 0þð0−þÞ <24ðCL ¼ 90%Þ [102] 10� 0.9 7.8� 2.7 11� 3
K�

0ð700Þ 1=2ð0þÞ 468� 30 [36] 318� 38 404� 44 446� 34

K�
0ð1430Þ 1=2ð0þÞ 270� 80 [36] 239� 50 242� 31 270� 40

TABLE XIII. Our DNN predictions for the width of some mesons (in units of MeV), whose widths have not been experimentally
known, based on the A1.

Meson IðJPCÞ Base data Base data þh Base data þhGC

B� 1=2ð1−Þ ð2.3� 1.5Þ × 10−2 5.8� 4.4 0.84� 0.56
B�
s0 0ð1−Þ 1.39� ×10−2 2.8� 1 0.63� 0.2

Bcð2sÞ� 0ð0−Þ 0.02� 0.014 2.3� 0.8 2.4� 1

χb0ð1pÞ 0þð0þþÞ 49� 22 40� 19 45� 20

χb0ð2pÞ 0þð0þþÞ 61� 34 30� 23 50� 28

χb1ð1pÞ 0þð1þþÞ 39� 19 19� 10 16� 9

χb1ð2pÞ 0þð1þþÞ 47� 25 15� 6 20� 10

χb1ð3pÞ 0þð1þþÞ 51� 23 16� 6 29� 19

χb2ð1pÞ 0þð2þþÞ 32� 19 21� 11 21� 7

χb2ð2pÞ 0þð2þþÞ 48� 20 16� 12 23� 11

χb2ð3pÞ 0þð2þþÞ 42� 22 17� 6 39� 19

hbð1pÞ 0−ð1þ−Þ 44� 12 19� 10 33� 16
hbð2pÞ 0−ð1þ−Þ 52� 15 15� 6 34� 12

K0; K̄0 1=2ð0−Þ ð2.5� 1.2Þ × 10−5 ð2.24� 1.7Þ × 10−6 ð3.34� 1.8Þ × 10−6

ϒ2ð1DÞ 0−ð2−−Þ 41� 8 34� 14 47� 21
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structure for their quark contents. The predicted widths are
shown in Tables XI and XII for the A1 and A2 respectively.
The enhanced accuracy in estimating the width of the
a0ð980Þ meson, in both the A1 and A2, when modeled as
an ordinary meson rather than an exotic state, lends
credence to the conventional qq̄ structure over the more
complex tetraquark configuration. The DNN offers that, the
a0ð980Þ meson is more aptly described within the tradi-
tional mesonic framework, highlighting the importance of
structure in determining meson characteristics.
The PDG estimates a range from 10 to 100 MeV for the

f0ð980Þ width. The peak width in ππ is reported about
50 MeV, but it might be much larger. The predicted width

of f0ð980Þ by our DNN, coincides nicely with the
estimated range in the PDG, if we regard it the ordinary
meson as well. Likewise, The width estimations for the
mesons D�

s0ð2317Þ and Ds1ð2460Þ, which align with the
conventional qq̄ structure, fall within the experimentally
reported upper bounds. In contrast, the predictions based on
exotic structures significantly exceed these bounds. Just
find it interesting that, our DNNs strongly predict these
mesons’ decay width values close to expected ones when
the qq̄ configuration is considered. This disparity suggests
that the qq̄ structure might be more plausible for these
mesons, reinforcing the traditional mesonic framework
over exotic configurations.

FIG. 4. The mass and width of some mesons and tetraquarks. Colorful values with their gray uncertainties belong to our DNN
predictions and gray ones (having the same symbols with colorful ones for corresponding particles) are taken from the PDG [36]. Left
panel (Right panel) corresponds to the results, based on the A1 (A2). The uncertainties for our predictions as well as the experimental
data are all shown by the gray color to make the figure more readable.

TABLE XIV. Our DNNs predictions for the width of some mesons (in units of MeV), whose widths have not been experimentally
known, based on the A2.

Meson IðJPCÞ Base data Base data þh Base data þhGC

B� 1=2ð1−Þ 1.7� 0.9 2.4� 0.8 2.0� 0.5
B�
s0 0ð1−Þ 0.14� 0.06 0.058� 0.025 0.18� 0.05

Bcð2sÞ� 0ð0−Þ 1.79� 0.6 1.8� 0.5 2.5� 0.9
χb0ð1pÞ 0þð0þþÞ 35� 12 39� 10 23� 9

χb0ð2pÞ 0þð0þþÞ 37� 11 37� 8 21� 11

χb1ð1pÞ 0þð1þþÞ 57� 20 4724� 57� 38

χb1ð2pÞ 0þð1þþÞ 52� 17 48� 27 65� 34

χb1ð3pÞ 0þð1þþÞ 49� 19 42� 20 48� 17

χb2ð1pÞ 0þð2þþÞ 81� 37 49� 18 43� 17

χb2ð2pÞ 0þð2þþÞ 79� 34 43� 22 41� 23

χb2ð3pÞ 0þð2þþÞ 75� 31 75� 24 40� 30

hbð1pÞ 0−ð1þ−Þ 57� 19 47� 12 33� 15
hbð2pÞ 0−ð1þ−Þ 52� 17 43� 14 20� 10

K0; K̄0 1=2ð0−Þ 1.4� 0.9 0.7� 0.3 0.6� 0.4
ϒ2ð1DÞ 0−ð2−−Þ 92� 17 83� 16 63� 30
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The enhanced precision of the second approach in
predicting the widths of mesons, such as K�

0ð700Þ and
K�

0ð1430Þ, whose measurements have been experimentally
confirmed, is noteworthy. The predictions align most
closely with the observed data when the model incorporates
the higher state h and the quantum numbers C and G. This
suggests that a comprehensive model that includes these
factors is crucial for accurate theoretical estimations of the
meson properties.
The mass and the decay width spectra of some mesons

and tetraquarks as well as corresponding uncertainty
regions estimated through the DNNs compared to the
current review of the PDG [36] are illustrated in Fig. 4.
Left and right panels are based on the A1 and A2,
respectively. It seems obvious that our results are found
to be in fairly good agreement with the experimental data
reported by PDG [36]. Especially, when the Clebsch-
Gordan coefficients contribute in modifying the dataset
(A2), the DNNs predict more accurate results for the mass
and width of mesons. As a consequence, the dataset is
optimized in an effective way in the A2.
Besides, Tables XIII and XIV display the DNN pre-

dictions for the width of some mesons, whose widths have
not been experimentally known, based on the A1 and A2
respectively. These results may help experimental groups in
the course of their search for the corresponding resonances
and measure their width.

At the end, Tables XV and XVI demonstrate the
predicted mass and width for some new tetraquark states
compared to the experiment. The congruence of both
approaches with the experimentally confirmed masses
and widths for the mesons Taþþ and Ta0 underscores
the reliability of the predictive models within the bounds of
uncertainty. Similarly, the consistency of the mass and
width predictions for the Zþ

V meson with the theoretical
calculations presented in Ref. [103], despite the lack of
experimental observation, further validates the robustness
of these approaches in the field of particle physics. This
alignment between theory and experiment, or calculation in
the case of Zþ

V , is crucial for the ongoing refinement and
validation of mesonic models. The second approach again
provides a better estimation for the mass and the width. The
mean error determined, 4.35% and 36.36%, respectively for
the mass and width in the second approach compared to the
first approach with 8.60% and 40.70% for the errors of
mass and width is depicted in Table XVII.

V. SUMMARY AND CONCLUSIONS

Deep learning algorithms have created a unique oppor-
tunity of cooperation between the ML and the particle
physics communities. The application of the DNN in the
hadronic physics is progressing well.
In this study, the DNNs have been trained to predict the

mass and width of some ordinary and exotic mesons based
on their quark contents and corresponding quantum num-
bers. The quark content of some famous mesons are still
controversial, whether they are ordinary mesons or exotic
states. We tried to estimate their mass through the DNN,
considering the qq̄ structure and then the qq̄qq̄ one for their
quark contents separately. We found that when the ordinary
structure of qq̄ is employed, our DNN predictions for these

TABLE XV. Our DNN predictions for the mass and width of four new tetraquarks based on A1. The asterisk (*) signifies that the data
is derived from theoretical calculations in the absence of experimental results.

Meson IGðJPCÞ Quark content Experiment mass (MeV) Experiment width (MeV) Mass Width

Zþþ
V 1ð1−Þ cd̄us̄ 3515� 125 [103]* 156þ56

−30 [103]* 2925� 269 190� 90

Taþþ 1ð0þÞ cd̄us̄ðD�þK�þÞ 2921� 17� 20 [22] 137� 32� 17 [22] 2788� 390 176� 81

Ta0 1ð0þÞ cūds̄ðK0D0Þ 2892� 14� 15 [22] 119� 26� 13 [22] 2526� 419 182� 82

Taþ 1ð0þÞ cd̄ds̄ðK0DþÞ � � � � � � 2446� 2601 186� 79

TABLE XVI. Our DNN predictions for the mass and width of four new tetraquarks based on the A2. The asterisk (*) signifies that the
data is derived from theoretical calculations in the absence of experimental results.

Meson IGðJPCÞ Quark content Experiment mass (MeV) Experiment width (MeV) Mass Width

Zþþ
V 1ð1−Þ cd̄us̄ 3515� 125 [103]* 156þ56

−30 [103]* 3195� 280 187� 89

Taþþ 1ð0þÞ cd̄us̄ðD�þK�þÞ 2921� 17� 20 [22] 137� 32� 17 [22] 3158� 415 171� 77

Ta0 1ð0þÞ cūds̄ðK0D0Þ 2892� 14� 15 [22] 119� 26� 13 [22] 2875� 536 176� 78

Taþ 1ð0þÞ cd̄ds̄ðK0DþÞ � � � � � � 2704� 338 182� 77

TABLE XVII. The mean errors of the predicted mass and width
of the new tetraquarks based on the A1 and A2.

New exotic A1% A2%

Mass 8.60 4.35
Width 40.35 36.36
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challenging mesons’ mass are more consistent with the
experimental values. Furthermore, we evaluated the power
of our designed DNNs in computing the mass of some light
and exotic mesons.
For the first time, the DNNs are implemented to predict

the width of some ordinary and exotic mesons whose
widths have not been permanently confirmed by the
PDG [36]. We precisely extracted the dataset containing
the light and heavy mesons as well as some tetraquarks.
The mesons have been categorized based on their quark
content structures and quantum numbers like the angular
momentum, charge conjugation, isospin and parity. It is
important to stress that, we have presented and tested two
approaches for organizing the dataset. In general, the
obtained results are in reasonable agreement with the
experimental values verified by the PDG. Especially, when
the Clebsch-Gordan coefficients contribute in modifying
the dataset in the second approach, the DNNs predict more
accurate results for the mass and decay width spectra of the
mesons and tetraquarks. As a consequence, the dataset has
been optimized in an effective way in the second approach.
The DNN performance seems to be more stable com-

pared to the common fitting methods, particularly, for low-
statistic data. This presented work has the potential to be

upgraded in order to accurately predict the mass spectra and
decay widths of other tetraquarks as well as hybrid mesons.
A next important step will be to explore prominent features
of the baryons, pentaquarks and possible molecular dibary-
ons through deep learning techniques. Recently, many new
exotic hadrons have been discovered by the experiments.
Comprehensive studies have been made to specify their
properties and structures and it is still a hot topic and an
active area of research. It would be a worthwhile idea to
probe and predict the quantum numbers of exotic hadronic
states via constructing appropriate DNNs.
Ultimately, calculation and prediction of basic properties

of particles including the mass, width, and the quantum
numbers, using the statistical learning algorithms, create
new path forward toward robust and reliable methods for
discovering the fundamental structure of nature.
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