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We use the leading-order contact interactions and one-pion-exchange potentials to investigate the newly
observed double-charm state Tþ

cc. We employ the complex scaling method to search for the poles on the
first Riemann sheet with respect to the DD� threshold and the second Riemann sheet with respect to the
DDπ threshold. The DDπ three-body effect is important in this system since the intermediate states can go
on shell. We involve the three-body effect through an energy-dependent one-pion-exchange potential,
which results in a unitary cut at the DDπ three-body threshold. We find a pole corresponding to the Tþ

cc on
the physical Riemann sheet. Its width is around 80 keVand nearly independent of the choice of the cutoff.
Assuming theDD̄π andDD̄� channels as the main decay channels, we apply the similar calculations to the
χc1ð3872Þ, and find its width is even smaller. The isospin breaking effect is so significant for the χc1ð3872Þ
that it is mainly a molecular state of D0D̄�0. Furthermore, we introduce a revised Schrödinger equation for
unstable particles to include the contribution of theD� width, which is also revised by the three-body effect.

DOI: 10.1103/PhysRevD.110.054008

I. INTRODUCTION

Recently, the LHCb collaboration observed a double-
charm exotic hadron with JP ¼ 1þ named as Tþ

cc in the
D0D0πþ mass spectrum, and its mass and width are [1]

δmBW¼−273�61 keV; ΓBW¼ 410�165 keV; ð1Þ

where δmBW is the Tþ
cc mass shift with respect to the

D0D�þ threshold and Γ denotes its width. This result is
extracted from a relativistic P-wave two-body Breit-Wigner
parametrization and is only a rough description of the state.
Since the state is rather close to the D0D�þ threshold, a
further study is carried out using a unitarized Breit-Wigner
parametrization, which gives [2]

δmU ¼−359�40 keV; ΓU¼ 47.8�1.9 keV: ð2Þ

The pole position is also derived from the same unitarized
Breit-Wigner parametrization,

δmpole¼−360�40 keV; Γpole ¼ 48�2 keV: ð3Þ

The pole position is directly related to theoretical calcu-
lations based on dynamical models and the Schrödinger
equation.
Another important feature of the Tþ

cc is the absence of
signals in theDþD�þ andDþD0πþ mass spectra. It implies
that the Tþ

cc is an isoscalar rather than an isovector, which is
similar to the charmoniumlike exotic state χc1ð3872Þ
[Xð3872Þ] first observed in 2003 [3], with the spin-parity
quantum number JPC ¼ 1þþ and isospin I ¼ 0. Since the
χc1ð3872Þ lies so close to the D0D̄�0 threshold, the LHCb
collaboration made a more precise investigation of its line
shape in 2020 [4]. The generic Breit-Wigner mass and
width are

mχc1ð3872Þ ¼ 3871.695�0.067�0.068�0.010MeV;

ΓBW¼ 1.39�0.24�0.10MeV: ð4Þ

A fit with the Flatté line shape, which better describes near-
threshold resonances, is also carried out, and the peak
position and the full width of the half maximum is

mode ¼ 3871.69þ0.00þ0.05
−0.04−0.13 MeV;

FWHM ¼ 0.22þ0.07þ0.11
−0.06−0.13 MeV: ð5Þ

The pole search is also done, and a pole on the first
(physical) Riemann sheet with respect to the D0D̄�0

threshold is preferred. At the best estimate of the Flatté
parameters, the pole position is found to be

E ¼ 0.06 − 0.13i keV; ð6Þ
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where the imaginary part of the pole position corresponds to
the opposite of half the width. Notice that the generic Breit-
Wigner parametrization does not work for near-threshold
states. (See the review “Resonances” in Ref. [5].) Hereinafter
we always focus on the pole positions.
Avariety of works studied the double-charm and hidden-

charm tetraquarks. There are several theoretical interpreta-
tions for the double-charm tetraquarks: the molecular state
picture [6–17], the compact tetraquark picture [18–25], the
QCD sum rule [26], and the lattice QCD simulation [27,28].
As for the hidden-charm χc1ð3872Þ, see Refs. [29–34] for a
detailed review.
In this work, we regard the Tþ

cc [χc1ð3872Þ] as a loosely
bound DD�ðDD̄�Þ molecular state. The chiral effective
field theory (ChEFT) serves as a helpful tool to study this
system since the momenta of the charmed mesons are
small. Based on Weinberg’s power counting [35,36], the
calculations can be organized by the powers of the small
external momenta and pion mass. In the ChEFT, the one-
pion-exchange (OPE) potential provides the long-range
attraction. Together with the intermediate-range inter-
actions from the two-pion-exchange (TPE) and short-range
interactions from the contact terms, the ChEFT provides a
successful description of the nucleon systems [37–39].
Similar to the heavy baryon chiral effective field theory
used in the nucleon systems [40], the heavy meson chiral
effective field theory (HMChEFT) is performed to deal
with the charmed mesons [41]. For a review of the ChEFT
for heavy hadronic molecules, see Ref. [42].
However, the DD� system is somehow extraordinary

because the mass splitting between the pseudoscalar meson
D and the vector meson D� is slightly larger than the pion
mass inmost cases except for theD�0 andDþ. Therefore, the
exchanged pion can go on shell, which calls for a calculation
satisfying the three-body unitarity. According to the optical
theorem, the on-shellDDπ intermediate state introduces an
imaginary part to the potential, leading to a nonvanishing
width ofDD� bound states above theDDπ threshold. As we
will see, the Hamiltonian is no longer Hermitian, which
results in the complex energy eigenvalues.
Given DDπ is the only kinematically permitted strong

decay mode of Tþ
cc, the three-body unitarity is very

important in describing the property of Tþ
cc, especially

its extremely narrow width. In a nonperturbative calcula-
tion, three-body states should be included in the two-body

iterative equations. As depicted in Fig. 1, there are two
Feynman diagrams for the Tþ

cc decay at tree level due to the
final-state identical bosons.1 The interference of the two
diagrams gives rise to the OPE in theDD� scattering, while
the square of modulus of a single diagram gives rise to the
D� self-energy. One can expect that these two three-body
effects, arising from the OPE and the D� width, respec-
tively, are comparable. Notably, the imaginary part of the
potential is proportional to the three-body decay width,
which scales as two-body phase space rather than three-
body phase space because the diagrams in Fig. 1 are
cascade decays without final-state interactions. The D�
propagator in the three-body decay amplitude constrains
the momenta of the final state Dπ.
In the literature, the three-body effects have been

discussed via the time-ordered perturbation theory in the
framework of quantum mechanics [43–45]. A nonrelativ-
istic propagator ðE −H0 þ iϵÞ−1 introduces the three-body
unitary cut, where the E denotes the center-of-mass energy,
and the H0 denotes the total kinetic energy of the
intermediate DDπ states. Thus the OPE potentials become
energy dependent. It was found that the static pion
approximation with a constant D� width, overestimates
the width of Tþ

cc. As we will see, the energy dependence of
the potential is directly related to the three-body component
of Tþ

cc.
Though a nonrelativistic treatment for pions may be

appropriate for loosely bound states, whose relative
momenta are small, we shall keep the relativistic form
of pions in the spirit of the ChEFT. Thus we keep the
relativistic pion propagators but introduce the energy
dependence in the zeroth component of the exchanged
pion momentum. Then the three-body threshold effect and
the width of Tþ

cc appear naturally. In this work, we treat the
D and D� mesons nonrelativistically, while the heavy
meson recoil corrections are investigated. One can antici-
pate that the recoil effects are suppressed by 1=MDð�Þ and
the pion dynamics matters.

FIG. 1. Tþ
cc decaying to DDπ. There are two diagrams due to the identical particles. The interference contributes to the three-body

effect in the OPE.

1If the final-state particles are fermions, then there will be an
extra (-1) between the two diagrams. This implies the imaginary
part of the OPE may be positive, which reduces the width induced
by the self-energy. This does not contradict the optical theorem
since the final-state fermions with the same momenta (which is
required in the forward scattering amplitude) are forbidden.
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The on-shell pionmanifests as a pole in theOPEpotential,
or a logarithmic singularity in the partial-wave OPE poten-
tial. In this case, Tþ

cc is actually a DDπ resonance, and the
conventional Schrödinger equation fails to derive such a
resonance. To avoid this singularity, we use the complex
scaling method (CSM). The CSM is a similarity trans-
formation of the Schrödinger equation [46,47],which allows
us to obtain the bound states and resonances in the complex
plane simultaneously. For a review of applications of the
CSM in the nucleus systems, see Ref. [48]. As a tool of
analytical continuation, the CSM can help deal with the
singularity of the potential and study the property of
resonance wave functions.
This paper is organized as follows. In Sec. II, we

introduce the chiral Lagrangians, the complex scaling
method and the classification of the poles related to the
CSM. We explain why we revise the OPE potential and
how to handle the analytical continuation correctly. In
Sec. III, we present the effective potentials explicitly, with
the isospin breaking effect. In Sec. IVA, we start from the
simple isospin conservation case to show how our scheme
interacts with the three-body threshold. In Secs. IV B
and IV C, we include the isospin breaking effect and present
the results of the Tþ

cc and χc1ð3872Þ. In Sec. IV D, we study
the corrections from the heavy meson kinetic energies and
summarize the numerical results. In Sec. IV E, we inves-
tigate the influence of theD� width on the widths of the Tþ

cc
and χc1ð3872Þ. In Sec. V, we make a summary.

II. FORMALISM

A. Chiral Lagrangian

In the HMChEFT, the Lagrangians, together with the
scattering amplitudes, can be organized in the powers of
small external momenta q over a large energy scale
Λχ ∼ 1 GeV. The Λχ represents the chiral breaking scale.
Up to the Oðp2Þ amplitudes, we need only the leading-
order (LO) Lagrangian for the Hϕ interaction

Lð1Þ
Hϕ ¼ −hðiv · ∂HÞH̄i þ hHv · ΓH̄i

þ ghH=uγ5H̄i − 1

8
δhHσμνH̄σμνi; ð7Þ

where ϕ denotes the Goldstone bosons, and H denotes
the heavy meson doublet under the heavy quark spin
symmetry [41], which is defined as

H ¼ 1þ =v
2

ðP�
μγ

μ þ iPγ5Þ;

H̄ ¼ γ0H†γ0 ¼ ðP�†
μ γμ þ iP†γ5Þ

1þ =v
2

;

P ¼ ðD0; DþÞ; P�
μ ¼ ðD�0; D�þÞ: ð8Þ

The last term in Eq. (7) introduces the mass splitting
between heavy pseudoscalar and vector mesons, and

v ¼ ð1; 0⃗Þ is the four velocity of the heavy mesons. The
chiral connection Γμ and the axial current uμ contain an
even and odd number of the Goldstone bosons, respec-
tively, which read

Γμ ¼
i
2
½ξ†; ∂μξ� ¼ −

1

4f2π
ϵabcτcðϕa

∂μϕ
bÞ þ � � � ;

uμ ¼
i
2
fξ†; ∂μξg ¼ −

1

2fπ
τa∂μϕ

a þ � � � ;

ξ ¼ expðiϕ=2fπÞ;

ϕ ¼ ϕaτa ¼
ffiffiffi
2

p  π0ffiffi
2

p πþ

π− − π0ffiffi
2

p

!
; ð9Þ

where λa denotes the Pauli matrices, and fπ represents the
decay constant of the Goldstone bosons.

The next-to LO Hϕ Lagrangian Lð2Þ
Hϕ contains at least

two light mesons, which only appears in the TPE diagrams
and thus does not contribute to the Oðp2Þ amplitudes.
To mimic the short-range interactions between the heavy

mesons, we need the contact Lagrangian with low-energy
constants (LEC)

Lð0Þ
4H ¼ DaTr½HγμH̄�Tr½HγμH̄�

þDbTr½Hγμγ5H̄�Tr½Hγμγ5H̄�
þ EaTr½Hγμτ

aH̄�Tr½HγμτaH̄�
þ EbTr½Hγμγ5τ

aH̄�Tr½Hγμγ5τ
aH̄�: ð10Þ

For the DD̄� system, the Lagrangian is constructed as
follows:

Lð0Þ
4H ¼ 2D̃aTr½ ¯̃HγμH̃�Tr½HγμH̄�

þ 2D̃bTr½ ¯̃Hγμγ5H̃�Tr½Hγμγ5H̄�
þ 2ẼaTr½ ¯̃Hγμτ

aH̃�Tr½HγμτaH̄�
þ 2ẼbTr½ ¯̃Hγμγ5τ

aH̃�Tr½Hγμγ5τ
aH̄�; ð11Þ

Lð1Þ
H̃ϕ

¼ −hðiv · ∂ ¯̃HÞH̃i þ h ¯̃Hv · ΓH̃i

þ gh ¯̃H=uγ5H̃i − 1

8
δh ¯̃HσμνH̃σμνi; ð12Þ

where H̃ stands for the heavy antimeson fields

H̃ ¼ ðP̃�
μγ

μ þ iP̃γ5Þ
1 − =v
2

;

¯̃H ¼ γ0H†γ0 ¼ 1 − =v
2

ðP̃�†
μ γμ þ iP̃†γ5Þ;

P̃ ¼
�
D̄0

D−

�
; P̃�

μ ¼
�
D̄�0

D�−

�
: ð13Þ
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Note that the heavy meson scheme spoils the crossing
symmetry, so the LECs in Eqs. (10) and (11) are not exactly
the same. In Eqs. (10)–(11), we have merged terms like
Tr½HH̄�Tr½HH̄� and Tr½HγμH̄�Tr½HγμH̄�, since they are not
independent after the heavy meson reduction. However,
they do get an extra opposite sign under the charge
conjugation, which accounts for the differences between
the LECs for DD� and DD̄� systems.
Besides, we could introduce an imaginary part to the

LECs in Eq. (11) to involve the annihilation effects and
contributions from the inelastic channels.

In principle, the higher order contact terms Lð2Þ
4H should

be included to cancel the divergences of the loop integrals.
Although these terms do contribute to the Oðp2Þ ampli-
tudes, we ignore their finite part due to the lack of the
experimental data.
Due to proximity to the DDπ three-body threshold, the

heavy meson kinetic energies may have a considerable
contribution which reduces phase space. In this work, we
first calculate the effective potentials under the heavy
meson limit in the framework of HMChEFT. Then we
include the 1=MDð�Þ corrections to evaluate the recoil
corrections of the heavy meson.

B. Effects of the three-body threshold

As explained in Fig. 1, there are two aspects of three-
body effects which influence the width of the Tþ

cc or
χc1ð3872Þ: the OPE potential and the D� width.
It is noteworthy that what we are discussing is in fact a

three-body “kinematic” effect since the three-body force is
not considered. The intermediate three-body states are
treated to be free, and they can only interact through their
coupling to two-body states.
In the following, we take the OPE potential for example

to involve the three-body effect by retaining the energy
dependence. A typical OPE potential has the form of

V1π ¼ C
ðϵ · pÞðϵ0 · pÞ
p2 −m2

π þ i0þ ;

¼ C
ðϵ · pÞðϵ0 · pÞ

p2
0 − p2 −m2

π þ i0þ ; ð14Þ

where p represents the transferred momentum, C is a
constant related to the isospin and coupling constants, and
ϵ; ϵ0 represent the polarization vectors of the initial and final
D� mesons, respectively.
In early works, the instantaneous approximation, namely

taking p0 ¼ 0, is performed. This will lead to a Yukawa
interaction similar to the nucleon case. Nonetheless, it is
inappropriate in the DD� system, since δ ¼ mD� −mD is
comparable to and even larger than the pion mass. If we
keep a static pion energy p0 ≈mD� −mD instead, then the
OPE potential becomes

V1π ¼ −C
ðϵ · pÞðϵ0 · pÞ

p2 −m2
eff − i0þ ; ð15Þ

ImV1π ¼ −πCðϵ · pÞðϵ0 · pÞδðp2 −m2
effÞ: ð16Þ

where the effective mass is defined as m2
eff ¼ δ2 −m2

π > 0.
A pole singularity shows up in the OPE potential, which

brings a nonvanishing imaginary part to the potential and
makes the potential non-Hermitian. Some of the previous
works [49,50] kept the nonvanishing p0 above but dropped
the imaginary part of the potential through a principal
integral when performing the Fourier transformation to the
coordinate space. The potential in coordinate space oscil-
lates after the Fourier transformation [51,52]. This
approach can only derive the approximate binding energy
but cannot derive the width.
Even if one retains the imaginary part of the potential,

the behavior near the three-body threshold is still not
correct. Compared with the instantaneous approximation,
the OPE potential with a nonzero imaginary part will lead
to a nonzero width of the bound state. However, the pole
would have a nonvanishing imaginary part even below the
three-body threshold.
So here we need to keep both the imaginary part and the

energy dependence of the OPE potential to involve the
DDπ three-body effect. According to the optical theorem,
the imaginary part of the OPE potential is related to the
three-body final state DDπ and the width arises from the
decay mode DDπ, as depicted in Fig. 2. So we revise
the OPE potential as

V1π ¼ C
ðϵ · pÞðϵ0 · pÞ

ðEþ δÞ2 − p2 −m2
π þ i0þ ; ð17Þ

where δ is the mass splitting between theD� andDmesons,
and E is the energy with respect to the DD� threshold,
which is shifted compared with the notation in Fig. 2.
The imaginary part of Eq. (17) is proportional to the

three-body decay width, and consistent with Refs. [43–45]
under the nonrelativistic limit. This potential is coincident

FIG. 2. The one-pion-exchange diagram. The on-shell inter-
mediate state contributes to the imaginary part of the potential.
E denotes the center-of-mass energy.
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with a reduced coupled-channel calculation. In the coupled-
channel cases, the coupling to a lower channel will bring in
an extra imaginary part to the effective potential of the
higher channel. For a review of the potential with a reduced
channel, see Ref. [53].
Since δ > mπ , we will encounter logarithmic divergen-

ces if performing the integral along the real axis. A unitary
cut is introduced to the potential from E ¼ −δþmπ to
þ∞. As shown in Fig. 3, the integral over jpj is defined
along the positive real axis. When E changes, the pole at
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ δÞ2 −m2

π

p
may cross the positive real axis

and cause discontinuity. The discontinuity exists only
when Reð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ δÞ2 −m2

π

p
Þ > 0. This is the origin why

the potential has a branch point at the lower threshold
E ¼ −δþmπ . As indicated in Ref. [2], the pole of the Tþ

cc
state lies on the second Riemann sheet with respect to the
DDπ threshold. To correctly put the potential onto the
second Riemann sheet, we use the brown line as the integral
path in Fig. 3 instead of the blue one.
Similarly, the other aspect of the three-body effect is

introduced via a dynamical D� width [45,54], which is in
principle derived from the D� self-energy. The imaginary
part of the D� self-energy is finite but its real part diverges.
Therefore, its real part depends on the regularization
method. For resonances, the real part of D� self-energy
ΣðEÞ may also influence the width of the Tþ

cc, since E is a
complex number.
Assuming the variation of its real part is small, the

dynamical D� width ΓðEÞ is proportional to the Dπ two-
body phase space

ΓD�þðEÞ ¼ g2mD0

12πf2πmD�þ
k3
D0πþ þ g2mDþ

24πf2πmD�þ
k3
Dþπ0 ;

ΓD�0ðEÞ ¼ g2mD0

24πf2πmD�0
k3
D0π0

; ð18Þ

where E is the total energy of the system. Note that the D�
is off shell and its width is dependent on E.
The final state momenta kD0πþ , kDþπ0 , and kD0π0 can be

expressed by the off-shell energy of D� in its rest frame,

k2ij ¼
 
E2
D� −m2

i −m2
j

2ED�

!
2

−
m2

i m
2
j

E2
D�

⟶
nonrelativistic

2
mimj

mi þmj
ðED� −mi −mjÞ; ð19Þ

where i ¼ Dþ; D0, j ¼ πþ; π0, and ED� is the energy of

D� in its rest frame, ED� ¼ ½ðE −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

D

p
Þ2 − p2�1=2 ≈

E −mD − p2

2μ where μ ¼ mDmD�
mDþmD� . At the leading order,

kij ∝ ðE −mi −mjÞ3=2.

C. Complex scaling method

Once deriving the effective potentials, we can search for
the possible bound states or resonances using the CSM. We
consider the Schrödinger equation in momentum space

EϕlðpÞ ¼
p2

2μ
ϕlðpÞ þ

Z
p02dp0

ð2πÞ3 Vl;l0 ðp; p0Þϕl0 ðp0Þ; ð20Þ

and perform the complex scaling operation

p→pe−iθ; ϕ̃lðpÞ¼ϕlðpe−iθÞ: ð21Þ

Then we derive the complex scaled Schrödinger equa-
tion with a scaling angle θ

Eϕ̃lðpÞ¼
p2e−2iθ

2μ
ϕ̃lðpÞ

þ
Z

p02e−3iθdp0

ð2πÞ3 Vl;l0 ðpe−iθ;p0e−iθÞϕ̃l0 ðp0Þ; ð22Þ

where l, l0 are the orbital angular momenta, and p denotes
the momentum in the center-of-mass frame.
The eigenenergy remains unchanged after the variable

substitution in Eq. (21), but with the rotation operation
shown above, the poles of the T matrix on the second
Riemann sheet can be revealed by solving the complex
scaled Schrödinger equation directly. This can be roughly
shown using the asymptotic solution in coordinate space

ψðrÞ⟶r→∞
fþl ðkÞe−ikr þ f−l ðkÞeikr: ð23Þ

FIG. 3. The integral path from 0 to ∞ in the complex p plane.
The red point denotes the pole of the potential located at
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ δÞ2 −m2

π

p
. When the pole passes across the positive

real axis, we need to change the integral path to maintain the
analytical continuity (blue solid curve). Instead, we can carry
out a complex scaled integral (brown dashed curve) to deal with
the pole.
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With the complex scaling operation in coordinate space
r → reiθ, the asymptotic wave function becomes

ψ̃ðrÞ⟶r→∞
fþl ðkÞe−ikre

iθ þ f−l ðkÞeikre
iθ
: ð24Þ

The first term vanishes at the zeros of the Jost function
fþl ðkÞ which correspond to the poles of the T matrix. We
can solve the eigenstates as long as ψ̃ðrÞ converges at
r → ∞, i.e., Im keiθ > 0 or Arg k > −θ.
A typical distribution of the poles solved by the CSM is

shown in Fig. 4. The continuum states line up while the
resonances and bound states lie above and below the
continuum states, respectively. In the usual cases when
the Hamiltonian is Hermitian, the bound states lie accu-
rately on the negative real axis and resonances lie on the

fourth quadrant. However, the Hamiltonians are no longer
Hermitian when we encounter the decay processes. As we
will see in Sec. II B, the coupled-channel effects of a lower
threshold may introduce a complex potential with a non-
vanishing imaginary part, which moves the bound state to
the third quadrant. For a precise classification of the poles,
see Ref. [53]. These states are called the unstable bound
states (or quasibound state in some references). The Tþ

cc and
χc1ð3872Þ locate on the first Riemann sheet with respect to
the DD� threshold, and on the second Riemann sheet with
respect to the DDπ threshold. Thus it can be regarded as a
DDπ resonance and DD� bound state.
To keep the analytical continuity, one should ensure that

the pole in the potential does not cross the integral path
during rotation, which demands θ > 0.
The complex scaling method is equivalent to the

Lippmann-Schwinger equation. However, it provides a
more efficient way to obtain the bound states and reso-
nances simultaneously with no need to calculate the T
matrix. Furthermore, we can use CSM to bypass the poles
on the real axis when dealing with the OPE potentials.

D. Schrödinger equation for unstable particles

Since D� decays to Dπ, the influence of the D� width on
the width of the DD� bound state is non-negligible. To
include this effect, we first introduce the Schrödinger
equation for the bound states of unstable particles, which
reads

EϕlðpÞ ¼
�
p2

2μ
−
i
2
ΓðEÞ

�
ϕlðpÞ

þ
Z

p02dp0

ð2πÞ3 Vl;l0 ðp; p0Þϕl0 ðp0Þ: ð25Þ

The decay width of particles has hardly been included in
the Schrödinger equation before. However, the Lippmann-
Schwinger equation has been widely used. Equation (25) is
established on its equivalence to the following Lippmann-
Schwinger equation

Tðk0;k;EÞ¼Vðk0;kÞþ
Z

∞

0

p2dp
ð2πÞ3

Vðk0;pÞTðp;k;k0Þ
E−p2=2μþ iΓðEÞ=2 ;

ð26Þ

in which the Green’s function Gðp;EÞ ¼ 1
E−p2=2μþiΓðEÞ=2

corresponds to the kinetic energy terms H0 ¼ p2

2μ −
i
2
ΓðEÞ

in Eq. (25). The equivalence of the two equations is briefly
explained in Appendix A. In order to involve the three-
body effect in theD� width, ΓðEÞ is treated as a function of
the energy rather than a constant.
In Eq. (25), the D meson is treated as a stable particle,

and ΓðEÞ denotes the width of D�, which arises from
the self-energy diagram of the D�. One can make the

FIG. 4. A typical solution of the complex scaled Schrödinger
equation. The green, orange, blue, and red points represent the
sets of eigenenergies solved with different complex scaling
angles θ ¼ 5°; 10°; 15°; 20°, respectively. The continuum states
line up due to the same arguments ArgðEÞ ¼ −2θ, while the
bound states and resonances are isolated from the line of
continuum states and remain static as θ varies. With a Hermitian
Hamiltonian, the bound states lie on the negative real axis, while
the resonances lie on the fourth quadrant, and can be seen only
when jArgðEÞj < 2θ. The lower figure shows the Riemann sheets
in the energy plane in multichannel cases. For different channels,
one can choose different rotation angles. The region enclosed by
the rotated integral path and the real axis corresponds to the
second Riemann sheet rather than the first Riemann sheet.
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replacement iΓðEÞ → −ΣðEÞ to include the influence of the
real part of the self-energy. The detailed discussion can be
found in Sec. IV E. In multichannel cases, threshold
energies must be added to the kinetic term.

III. EFFECTIVE POTENTIAL

Compared with the Born approximation in the scattering,
all two-particle-irreducible (2PI) diagrams yield the effec-
tive potential

V ¼ −
1

4
M2PI; ð27Þ

where the factor − 1
4
differs from the usual −

Q
i

1ffiffiffiffiffiffi
2Mi

p
because of the normalization of the heavy meson fields.
Since the ChEFT only works at the small momentum

regions, we perform a Gaussian cutoff to regularize the
effective potential V, which reads

F ðp; p0Þ ¼ exp ½−ðp2 þ p02Þ=Λ2Þ�: ð28Þ

We demand F ðp; p0Þ → 0 when p; p0 → ∞ before and
after the rotation in the complex plane to ensure that the
Schrödinger equation can be solved numerically, which
constrains the rotation angle θ < π=4.
With the isospin symmetry, the potentials in the DD̄�

system can be obtained through a G-parity transformation.
The result is summarized in Table I, where the transferred
momentum p ¼ p1 − p4; q ¼ p1 − p3. p1 and p3 denote
the momenta of the initial and final DðD̄Þ mesons, and p2

and p4 stand for the momenta of the initial and final
D�ðD̄�Þmesons, respectively. It is interesting to see that the
OPE and TPE potentials of Tþ

cc and χc1ð3872Þ are almost
the same.
To simplify the derivation, we only consider the LO

potentials, namely the OPE potentials and the LO contact
terms. The OPE potential has a generic form

Vi
1π ¼ −

g2

4f2π

ðϵ · pÞðϵ0 · pÞ
ðEþ δiÞ2 − p2 −m2

π þ i0þ ; ð29Þ

where E stands for the energy with respect to the lowest
two-body threshold and δi stands for the mass difference in

the ith channel. We have the exchanged pion energy p0 ¼
Eþmth −mD;i −mD;f from the description in Fig. 2,
where mth represents the mass of the threshold. mD;i and
mD;j stand for the masses of the initial and final D mesons.
For the one-eta-exchange diagrams, the subscript should be
changed accordingly.
With the isospin breaking effect included, the coupled-

channel potentials are shown as follows. For the DD�
system, we choose mth ¼ mD0 þmD�þ , and the OPE
potentials are

VDþD�0→DþD�0 ¼ −2V1π� ;

δDþD�0→DþD�0 ¼ mD0 þmD�þ − 2mDþ ;

VDþD�0→D0D�þ ¼ V1π0 ;

δDþD�0→D0D�þ ¼ mD�þ −mDþ ;

VD0D�þ→D0D�þ ¼ −2V1π� ;

δD0D�þ→D0D�þ ¼ mD�þ −mD0 : ð30Þ

For the DD̄� system, we choose the states with the
positive C parity

j½DþD�−�i ¼ 1ffiffiffi
2

p ðjDþD�−i − jD−D�þiÞ;

j½D0D̄�0�i ¼ 1ffiffiffi
2

p ðjD0D̄�0i − jD̄0D�0iÞ; ð31Þ

where ½DþD�−� and ½D0D�0� are the shorthand notations of
the C ¼ þ states.
We choose mth ¼ mD0 þmD�0 and then the OPE poten-

tials read

V ½DþD�−�→½DþD�−� ¼ −V1π0 ;

δ½DþD�−�→½DþD�−� ¼ mD0 þmD�0 − 2mDþ ;

V½DþD�−�→½D0D̄�0� ¼ −2V1π� ;

δ½DþD�−�→½D0D̄�0� ¼ mD�0 −mDþ ;

V ½D0D̄�0�→½D0D̄�0� ¼ −V1π0 ;

δ½D0D̄�0�→½D0D̄�0� ¼ mD�0 −mD0 : ð32Þ

The contribution of the one-eta-exchange potential is quite
small and has little influence on the result.
Since we consider only the S-wave interactions, we

perform the substitution ðϵ · pÞðϵ0 · pÞ → 1
3
p2ðϵ · ϵ0Þ.

The TPE diagrams are provided in the Appendix C.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we first demonstrate the three-body effect
on the pole position in a simple isospin conserved case.
Then we successively take into account the isospin break-
ing effects and the recoil correction to show these effects in

TABLE I. The pion-exchange potentials in the DD� and DD̄�
system are related by the G-parity transformation. “þ” means the
potential of the DD̄� is the same as that of its partner in the DD�
system with the same isospin, and “−” means an inverse in sign.

Transfer momentum G ¼ þ G ¼ −

OPE p þ −
TPE q þ þ

p − þ

Tþ
cc AND χc1ð3872Þ WITH THE COMPLEX SCALING … PHYS. REV. D 110, 054008 (2024)

054008-7



quantity. We leave the D� width to the last part due to the
uncertainty in introducing the D� self-energy.
We find that the higher order potentials from the TPE

diagrams violate the unitarity, and thus are not suitable in
this framework. We show the impact of the TPE in the
Appendix C.

A. Possible bound states
with the Oðp1Þ DD� potential

We first use the LO effective potentials only, i.e., the
contact andOPEpotentials, to showhow theCSMworks and
clarify the Tþ

cc pole trajectory near the DDπ threshold. We
choose the average value for the masses: mD¼ 1.867GeV,
mD� ¼ 2.009 GeV,mπ ¼ 0.139 GeV. The pion decay con-
stant fπ is chosen as 0.086 GeV and the DD�π coupling
constant g is chosen as 0.65 [55]. The isospin conservation
is assumed.
In some previous works, the LECs are estimated by the

resonance saturation model and quark models, as shown in
Table II. For more details on the LECs, see Appendix B.
Note that the LECs are dependent on the regulator and the
models, which only apply for a limited range of regulators.
In this work, we choose the regulator and cutoff in prior and
then fix the LECs by fitting the experimental data. Figure 5
shows the pole trajectory as the LEC Cs ¼ −2Da þ 6Ea
varies. According to Table II, when we shift Cs from −35 to
−19 GeV−2, the pole always lies on the physical Riemann
sheet of DD�, manifesting as a DD� bound state. When the
potential is attractive enough, the pole corresponds to a
DDπ bound state. But when Cs increases, the potential
becomes less attractive. The pole moves above the DDπ
threshold and into the unphysical Riemann sheet of the
DDπ threshold. It becomes a DDπ resonance with a
nonvanishing imaginary part. The imaginary part of the
pole corresponds to the width decaying to the DDπ final
state. We stress that it is still an unstable bound state of the
DD� whose width arises from its coupling to a lower open

channel. When fixing the real part of the pole to be
−0.36 MeV, we have Cs ¼ −22.3 GeV−2 and the half
width is determined to be Γ=2 ¼ 0.021 MeV.
In general, the LECs depend on the cutoff Λ in Eq. (28)

due to the renormalization. But the physical observables are
independent of the cutoff chosen. Ifwe change the cutoff and
revise Cs accordingly, then it is interesting to see that the
width is nearly unchanged, as shown in Table III. The width
of the bound state is of the same order of magnitude as the
width of theD� meson. As expected, it is smaller than theD�
width due to the smaller phase space. In addition, no other
resonances are found under this set of parameters.

B. Isospin breaking effects

The isospin breaking effect needs to be included carefully
because the characteristic energy scale δ −mπ is only several
MeV, comparable to the isospin splitting. For example, the
mass difference between theDþ andD�0 is 135.8MeV. They
can not exchange the on shell πþ under the heavy quark limit.
Thus the potential in this channel has no singularity.
We perform the coupled-channel calculation involving the

DþD�0 andD0D�þ with the parameters listed as follows [5]:

mπ� ¼ 0.13957 GeV; mπ0 ¼ 0.13498 GeV;

mD� ¼ 1.86966 GeV; mD0 ¼ 1.86484 GeV;

mD�� ¼ 2.01026 GeV; mD�0 ¼ 2.00685 GeV: ð33Þ

FIG. 5. The pole positions of the bound state in the I ¼ 0 S-wave
DD� system with the OPE and contact terms only. When we shift
Cs from −35 to −19 GeV−2, the pole moves in the positive real
axis direction. With the parameters chosen, the DDπ threshold is
located at −3 MeV. The cutoff Λ is fixed to be 0.5 GeV.

TABLE II. Estimations of LECs with meson-exchange models
and quark models (GeV−2). The derivation of LECs are shown in
Appendix B.

Model Ia Model IIb

Da −4.4 −2.0
Db 0 0
Ea −5.7 −5.9
Eb 0 0

D̃a −6.7 −4.0
D̃b 0 0
Ẽa −5.7 −12.1
Ẽb 0 0

aResonance saturation model [55,56].
bShort-range quark-quark interactions via the fictitious scalar

field and axial-vector field [10,57].

TABLE III. The dependence of the I ¼ 0 DD� contact inter-
action Cs on the cutoff Λ when the binding energy is fixed to the
experimental value. Then the width is calculated using the
determined Cs.

Λ (GeV) Cs (GeV−2) Γ=2 (MeV)

0.5 −22.3 0.021
0.6 −15.7 0.019
0.7 −11.1 0.019
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The contact terms can be written as a matrix

Vct ¼
�

VDþD�0 VDþD�0→D0D�þ

VD0D�þ→DþD�0 VD0D�þ

�
; ð34Þ

which are related to

VDþD�0 ¼ VD0D�þ ¼ 1

2
ðVI¼1 þ VI¼0Þ;

VDþD�0−D0D�þ ¼ 1

2
ðVI¼1 − VI¼0Þ; ð35Þ

whereVI¼0 andVI¼1 stand for the LOLECs of the I ¼ 0 and
I ¼ 1 channels, respectively.
Since there are two undetermined LECs, we can no

longer give a prediction of the width. But we find the result
is hardly sensitive to VI¼1, which implies the state is
dominated by the I ¼ 0 channel. According to the quark
model estimation, VI¼1 ≈ 20 GeV−2. Then VI¼0 is fixed to
be −25.3 GeV−2, which is in accordance with the simple
calculation in Sec. IVA. Now the width is nearly doubled
and rises up to around 78 keV. It is mainly a result of the
variation of mass parameters, which increases the phase
space, rather than the result of isospin breaking.

C. Possible bound states in the DD̄� system

Then we turn to the DD̄� system, which is related to the
χc1ð3872Þ. With the exact isospin symmetry, the OPE
potentials are exactly the same as their partners in the DD�
system due to their positive G parity (see Table I). The only
difference is the LECs in the contact Lagrangians. As we
can see from Fig. 5, the width of the χc1ð3872Þ is of the
order of 10 keV assuming its decay is dominated by the
DD̄π decay channel.
However, the isospin breaking effect is significant for the

χc1ð3872Þ, since the mass difference between the D0D̄�0
andDþD�− is up to 8 MeV. The decay mode of the charged
pions and D mesons is kinematically forbidden. Thus the
only possible on-shell pion is in the D0D̄�0 channel.

With the LECs in Table II, we derive VI¼0 ¼ 2D̃a þ
6Ẽa ≈ −47 GeV−2 and VI¼1 ¼ 2D̃a − 2Ẽa ≈ −2 GeV−2

from the resonance saturation model. The pole position
is determined mainly by the VI¼0, but VI¼1 has a consid-
erable contribution, implying a large isospin breaking
compared with the Tþ

cc. Figure 6 shows the complex scaled
wave function with VI¼0 ¼ −30 GeV−2, VI¼1 ¼ 5 GeV−2.
The pole lies at E ¼ ð−0.114 − 0.017iÞ MeV. It is mainly a
bound state of D0D̄�0. Figure 7 shows the corresponding
result of CSM. The binding energy with respect to the
D0D̄�0 threshold is so small that the distribution of the wave
function in momentum space is quite narrow in momentum

0.008

0.004

0.4

0.4

0.3

(Gev) (Gev) momentum

0.4 0.8 4 80.8

FIG. 6. The complex scaled wave function ϕ̃lðqÞ ¼ ϕlðqe−iθÞ solved in Eq. (22). The first two graphs stand for theD0D̄�0 (red dashed
curve), D�D̄�∓ (blue solid curve) channels, respectively. The third graph shows the complex scaled wave function ϕ̃lðrÞ ¼ ϕlðre−iθÞ in
coordinate space.

E

E

FIG. 7. Positions of the bound state corresponding to the
χc1ð3872Þ found in the DD̄� system. Dots with different colors
represent the continuum states with the rotation angle
θ ¼ 5°; 10°; 15°; 20°; 25°; 30°. The dots on the left represent the
D0D̄�0 continuum and the dots on the right represent the DþD̄�−
continuum. The lines always start from one of the thresholds. The
unstable bound state lies below the line of the continuum states
and stays static when θ varies.
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space and quite wide in coordinate space. The wave
functions seem comparable at small r, but the wave
function of D0D̄�0 declines slowly as r increases. The
D0D̄�0 channel takes up 94% of the state,DD̄π takes up 1%
and D�D̄�∓ takes up the rest. If the state is closer to the
threshold, then the isospin breaking will become larger.
The probability of three-body components is calculated

by [58,59]

P3b ¼
ðϕj − ∂V

∂E jϕÞ
ðϕjϕÞ ; ð36Þ

where the inner product is defined by the so-called c
product

ðϕjϕÞ ¼
Z

ϕðpÞ2 d3p
ð2πÞ3 : ð37Þ

The wave function takes the place of its complex conjugate
compared with the normal inner product.
When VI¼0 and VI¼1 vary, we find the width Γ is always

of the order of 10 keV, even smaller than the width of the
Tþ
cc, as shown in Table V. So if we assume the D0D0π0 and

D0D�0 as the dominant decay channels, the width of the
χc1ð3872Þwill be only of the order of 10 keV. Although this
width looks too narrow, it is still within a standard deviation
compared with the result of the pole search in Ref. [4]. The
binding is so loose that the bound state may disappear if the
potential is a little less attractive. The bound state pole can
move above theD0D̄�0 threshold with some specific sets of
parameters, but we still recognize it as a (quasi)bound state
because it locates at the physical Riemann sheet.
By analogy with the nucleon antinucleon (NN̄) annihi-

lation effects, we can introduce a complex C̃s, according to
the optical theorem, to take into account the inelastic
channels, including the hidden-charm final states. This is
based on the consideration that these processes usually
include final states with large momenta and are related to
the short-ranged physics. Though we have little knowledge
of how large the imaginary parts should be, we let them be
of the same order of magnitude of their real parts, as we can
see in the nucleon systems [60]. Due to the unitarity

constraints, the imaginary part of the Feynman amplitudes
satisfies ImM > 0. Then we demand ImC̃s < 0. One can
refer to Ref. [61] for an example of this kind of complex
potential.
If we introduce the imaginary parts to the contact terms,

then the width of the χc1ð3872Þ will increase rapidly. For
example, the pole will move to 0.10–0.39i MeV if we set
VI¼0 ¼ −30 − 3i GeV−2 and VI¼1 ¼ 5 GeV−2. The partial
width of the χc1ð3872Þ decaying to the DD̄π final states is
small due to the limited phase space. If the total width is
much larger than the order of magnitude of 10 keV, then it
cannot be explained by the DD̄π decay, and other decay
channels including the hidden-charm decay modes are
important.

D. Corrections from heavy meson kinetic energies

In the framework of HMChEFT, the kinetic energies of
heavy mesons are ignored. It is a reasonable approximation
since the kinetic energies are small compared to the meson
masses. However, the characteristic energy considered here
is δ −mπ ≈ 3 MeV, and the kinetic energy terms have a
considerable contribution to the width of the state.
To evaluate the corrections from heavy meson kinetic

energies, we revise Eq. (29) to its relativistic form. A
relativistic kinetic energy term is introduced2

δi ⟶ mD þmD� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þm2

D;i

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þm2

D;f

q
: ð38Þ

A comparison of results with or without isospin con-
servation and 1=mD corrections is summarized in Table VI.
According to Tables IV and V, the widths of the Tþ

cc and
χc1ð3872Þ are stable as the LECs vary, especially when we
keep the binding energy fixed, so we only list the widths in
Table VI. The binding energies are set to 360 and 100 keV
for the Tþ

cc and χc1ð3872Þ, respectively. We find the
width drops by half when the kinetic energies included.

TABLE IV. Variation of the pole position E ¼ δm − iΓ=2 (MeV) with respect to the D0D�þ threshold with the
contact terms. It is sensitive to VI¼0 rather than VI¼1, which implies the pole is related to the I ¼ 0 state with a small
isospin breaking effect. VI¼0 refers to Cs in Table III.

VI¼0 (GeV−2)
−26 −25 −24 −23

VI¼1 (GeV−2)

−10 −0.537–0.039i −0.348–0.040i −0.190–0.041i −0.075–0.035i
0 −0.515–0.039i −0.325–0.040i −0.166–0.040i −0.054–0.033i

10 −0.502–0.039i −0.311–0.040i −0.153–0.040i −0.043–0.031i
20 −0.494–0.038i −0.303–0.039i −0.145–0.040i −0.037–0.030i
30 −0.488–0.038i −0.297–0.039i −0.139–0.039i −0.032–0.029i
40 −0.484–0.038i −0.292–0.039i −0.135–0.039i −0.029–0.029i

2Apart from the Lagrangians and the Feynman diagrams,
Eq. (27) should be revised because of the normalization factor
−
Q

i
1ffiffiffiffiffiffi
2Mi

p → −
Q

i
1ffiffiffiffiffi
2Ei

p .
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This result is consistent with Ref. [45]. Additionally, we
find the relativistic form and the nonrelativistic form of the
kinetic energy show no difference.
The contribution of the D� width is not included here.

Since the analytical form of the D� self-energy is regulator
dependent and may involve an extra parameter, we will
include this important aspect of the three-body effect in
several different ways and present the results in a separate
section.

E. Effects of the D� width

Inserting Eq. (18) into Eq. (25), we make a full
calculation involving the effect of the D� width. The
isospin breaking effects in Secs. IV B and IV C, together
with the heavy meson recoil corrections in Sec. IV D, are
included. The numerical results are stable with different
complex scaling angles. The results are shown in Table VII.
The first column is adapted from Table VI. The second
column includes the effect of the D� width but omit heavy
meson kinetic terms in theD� width and the OPE potential.
The third column includes the effect of the D� width and
the heavy meson recoil corrections. Similar to Table VI,
only widths are listed.
For the Tþ

cc, the influence of the D� width is of the same
order of magnitude as the OPE potential, which is con-
sistent with the naive intuition from Fig. 1. But for
χc1ð3872Þ, the effect of the D� width is relatively small
because of the small phase space. The only allowed decay
is D�0 → D0π0.

The inclusion of the D� width nearly doubles the widths,
indicating the two aspects of the three-body effect, namely
the D� width and the three-body cut in the OPE potential,
are of similar significance. It is natural since they follow
the same mechanism in Fig. 1. Consistent with Ref. [45],
the width declines significantly once the corrections of the
heavy meson kinetic terms are included. This is because
the two-body phase space of the D� decay is related to
E − p2=2μ, as shown in Eq. (19). It is sensitive to the heavy
meson recoil energy since the phase space (E ∼mD� −
mD −mπ) is very small. If we artificially increase the mass
difference of D and D�, then the recoil corrections will
become negligible.
We further investigate the systematic errors of omitting

the real part of the D� self-energy. The real part is not
constrained by the unitarity, so we calculate the self-energy
using the HMChEFT and MS scheme. Equation (25)
becomes

EϕlðpÞ ¼
�
p2

2μ
þ 1

2
ðΣðEÞ − ΣðE0ÞÞ

�
ϕlðpÞ

þ
Z

p02dp0

ð2πÞ3 Vl;l0 ðp; p0Þϕl0 ðp0Þ; ð39Þ

where the subtraction of ΣðE0Þ is the result of the on-shell
renormalization. Here E0 corresponds to the “physical”
pole mass of D�.3 If we choose the threshold mth ¼
mD� − i

2
ΓD� þmD, then E0 ¼ 0. Another approximate

way is ignoring the width and choosing a real-valued
E0. Then we have mth ¼ mD� þmD and E0 ¼ 0, and only
the real part of the self-energy ReΣðE0Þ is subtracted. Note
that E0 is the energy with respect to the DD� threshold.
The self-energies read

ΣD�þðEÞ¼ 2ΣðED� −mD0 ;mπþÞþΣðED� −mDþ ;mπ0Þ;
ΣD�0ðEÞ¼ 2ΣðED� −mDþ ;mπ−ÞþΣðED� −mD0 ;mπ0Þ;

ð40Þ

TABLE V. The variation of the pole position E ¼ δm − iΓ=2
(MeV) corresponding to the D0D̄�0 with the contact terms. It is
sensitive to both VI¼0 and VI¼1, which implies the isospin
breaking effect is significant. The symbols are the same as in
Table IV.

VI¼1 (GeV−2)
−5 5 15

VI¼0

(GeV−2)

−36 −1.591–0.014i −1.498–0.014i −1.430–0.014i
−34 −0.995–0.017i −0.902–0.017i −0.834–0.017i
−32 −0.517–0.020i −0.431–0.019i −0.370–0.019i
−30 −0.178–0.019i −0.114–0.017i −0.074–0.016i
−28 −0.008–0.012i 0.015–0.009i � � �

TABLE VII. The widths of the Tþ
cc and χc1ð3872Þ when the

effect of the D� width is included (unit: keV).

Without
D� width

With
D� width

With D� width
and 1=mD corrections

Tþ
cc 78 138 79

χc1ð3872Þ 34 66 45

TABLE VI. The width (unit: keV) of the pole found in theDD�

and DD̄� systems. The isospin conserved condition in the DD̄�
system is not included since the isospin breaking effect is large.

Isospin
conserving

Isospin
breaking

Isospin breaking
and 1=mD corrections

DD� 42 78 36
DD̄� � � � 34 15

3The “physical” and “bare” mass and width are related by
m0 − i

2
Γ0 þ 1

2
ΣðE0Þ ¼ E0. The “bare” Γ0 arises from the decays

other than the decay to Dπ channels, and its energy dependence
can be ignored.
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where ED� is the energy of D� in its rest frame, and

Σðω; mÞ ¼ −
g2

2f2π
Ja22ðm;ωÞ: ð41Þ

Its imaginary part gives Eq. (18) under the heavy quark
limit mD

mD� → 1. ΣðED� −mDþ ; mπ−Þ is real valued when ED�

is real valued, since D�0 decaying to Dþπ− is kinetically
forbidden. But when ED� is complex valued, it does affect
the imaginary part of the pole position.
The definition of the loop integral Ja22 can be found in

Ref. [62],

Ja22ðm;ωÞ¼ i
Z

d4l
ð2πÞ4

−1
3
l2

ðv · lþωþ iϵÞðl2−m2þ iϵÞ : ð42Þ

Considering the complete form of self-energies, as well
as the recoil corrections for ED� and OPE, we find

ΓTþ
cc
¼ 72 keV; Γχc1ð3872Þ ¼ 50 keV; ð43Þ

which shows little difference with the last column in
Table VII.

V. SUMMARY

In summary, we perform a CSM calculation with the LO
chiral interaction involving three-body effects in S-wave
DD� and DD̄� systems, to investigate the molecular
properties of Tþ

cc and χc1ð3872Þ. We have included the
isospin breaking, the recoil correction, the effect of D�
width and quantitatively analyzed their influence. The
widths of the above two bound states are derived naturally
via the three-body effect.
In our calculation, the complex scaling method turns out

to be a useful tool to deal with the singularity in the
potential. And it helps solve the resonances and unstable
bound states which are beyond the reach of the traditional
Schrödinger equation. With a non-Hermitian Hamiltonian,
the eigenenergy gains a negative imaginary part, indicating
that the state decays.
At the very heart of this work is the three-body effect.

The accidental comparability between the pion mass and
the D� −D mass splitting makes on-shell intermediate
three-body state very important. We have proposed a
revised OPE potential with pions treated relativistically,
to satisfy the three-body unitarity. With the energy of the
exchanged pion retained, the OPE potential is dependent on
the DD�=DD̄� center-of-mass energy, which is somehow
equivalent to a coupled-channel analysis involving both the
three-body DDπ channel and two-body DD� channel. The
revised OPE potential introduces a unitary cut at the DDπ
three-body threshold. Its energy dependence gives the ratio
of three-body components in Tþ

cc and χc1ð3872Þ.

For the DD� system, we find only one pole in the first
Riemann sheet with respect to the DD� threshold, corre-
sponding to the Tþ

cc. It is a DD� bound state and DDπ
resonance. Its width arises from the decay to DDπ, which
has been included nonperturbatively. The width gradually
goes to zero when the pole moves towards the DDπ
threshold. But if we fix the real part of the pole position
(binding energy) to the experiment value, the imaginary
part (width) is nearly independent of the cutoff or the
contact term of the I ¼ 1 channel, which allows us to make
a powerful prediction on the width based on the binding
energy. After considering the isospin breaking effect, the
recoil correction and the D� width, we find the width of the
Tþ
cc to be 72 keV.
As for the χc1ð3872Þ, the isospin symmetry breaking

effect is significant, so there are too many independent
LECs to make a prediction. But using estimations of the
LECs from the quark model, we do find a pole correspond-
ing to the χc1ð3872Þ. Considering the recoil correction and
the D� width, we find the width of the χc1ð3872Þ to be
50 keV, which is much smaller than the experimental value
obtained either with the Breit-Wigner or Flatté models, but
is within one standard deviation of the pole search. Because
the phase space of the open-charm decay of the χc1ð3872Þ
is so limited, the partial decay width to DD̄π ought to be
small. The possible cc̄ components may explain the
deviation of widths. The hidden-charm decay and electro-
magnetic decay in theoretic calculations, together with
more precise measurements in experiments, are called for
in further study.
Furthermore, we investigate the influence of the recoil

correction and D� width, which is important in the three-
body kinetics. We find the recoil correction notably reduces
the width of Tþ

cc and χc1ð3872Þ. It is mainly because the
small phase space amplifies the effect of recoil corrections,
which is supposed to be suppressed by 1=mDð�Þ. Then we
introduce a Schrödinger equation for unstable particles to
involve the D� width. We find the widths of the Tþ

cc and
χc1ð3872Þ are nearly doubled when considering the D�
width, and are significantly reduced when considering the
heavy meson kinetic energy corrections. This formalism is
equivalent to the Lippmann-Schwinger equation for unsta-
ble particles and can be extended to other systems where
the width of particles are non-negligible.
Besides, we find the two-pion-exchange potentials in

HMChEFT violate the three-body unitarity and might lead
to a potential with a positive imaginary part in some cases.
This implies they should not be directly included in the
iterative equations before a proper treatment satisfying the
unitarity has been done, which needs further investigations.
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APPENDIX A: THE EQUIVALENCE FOR
THE SCHRÖDINGER EQUATION AND

THE LIPPMANN-SCHWINGER EQUATION
FOR UNSTABLE PARTICLES

Equation (26) can bewritten as T ¼ V þ VGT, where the
Green’s function or propagatorG ¼ 1

E−p2=2μþiΓðEÞ=2 includes
the width of the unstable particle. Then the poles of the T
matrix are searched for via the zeros of the Fredholm
determinant of ð1−VGÞ. Det½1−VG� ¼ 0 implies ð1−VGÞ
has at least one eigenvalue equal to 0. Let ϕ denote the
corresponding eigenvector, namely ð1 − VGÞϕ ¼ 0. Note
that the Green’s function is invertible G ¼ ðE −H0Þ−1,
where H0 ¼ p2=2μ − iΓðEÞ=2. Then one can derive
ðG−1−VÞðGϕÞ¼ 0 or ðE−H0−VÞϕ̃¼ 0, where ϕ̃¼Gϕ.
It is exactly Eq. (25).
In fact, in quantum mechanics, the propagator in the LS

equation comes from the H0 in the interaction picture,
which corresponds to the kinetic terms in the Schrödinger
equation. This simply gives the equivalence of Eqs. (26)
and (25).

APPENDIX B: ESTIMATIONS OF LECs

We use two models to estimate the LECs in theDD�ðD̄�Þ
system in Table II. In the single-channel case (Sec. IVA),
there is only one independent LEC and it can be determined
by the mass of Tþ

cc. The fitted value is consistent with the
estimated value. In coupled-channel cases, the number of
LECs exceeds the number of observables. Therefore, we
use the estimated LECs to give predictions. In principle, the
LECs depend on the cutoff Λ. We fix the cutoff Λ and let
the LECs vary around the estimated values.

1. Model I

In line with Ref. [55], the resonance saturation model is
performed to determine the LECs. In this model, the
contact interactions arise from meson changes including
the ρ, ω, σ, and other scalar or axial-vector mesons. The
masses of mesons are relatively large, which results in a
short-range interaction. We take the following substitution
in propagators to generate contact interactions

q2 ⟶ 0: ðB1Þ

In the one-boson-exchange model, the Lagrangian for
the vector mesons reads

LHHV ¼ −iβhHvμρμH̄i þ iλhHσμνFμνH̄i; ðB2Þ

where Fμν stands for the field-strength tensor Fμν ¼
∂μρν − ∂νρμ − ½ρμ; ρν�. ρμ ¼ igvffiffi

2
p ρ̂μ includes ρ and ω mesons

under Uð2Þ symmetry

ρ̂μ ¼
 ρ0ffiffi

2
p þ ωffiffi

2
p ρþ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p

!
μ

: ðB3Þ

The Lagrangians for the scalar and axial-vector mesons
read

LHHS ¼ gHHShHSH̄i;
LHHAv

¼ gHHAv
hHγμγ5A

μ
vH̄i; ðB4Þ

where S is the scalar field operator, and Av is the axial-
vector field operator.
They contribute to the Da and Ea terms according to the

Lorentz structure and isospin. For the DD� system,

Da ¼−
β2g2v
8m2

ω
þ g2s
2m2

σ
þ g2s0
12m2

f0

; Ea¼−
β2g2v
8m2

ρ
−

g2s0
4m2

a0

;

Db ¼
g2HHA

8m2
a1
; Eb ¼

g2HHA

8m2
f1

; ðB5Þ

where βgv, gs, gs0, gHHA are coupling constants for ρðωÞ, σ
and f0ða0Þ, respectively. We take β ¼ 0.9, gv ¼ 5.8,
gs ¼ 0.76, and gs0 ¼

ffiffiffi
3

p
gs [63,64].

For the DD̄� system, the ω=a0=a1 exchange changes
the sign,

D̃a ¼−
β2g2v
8m2

ω
−

g2s
2m2

σ
−

g2s0
12m2

f0

; Ẽa ¼−
β2g2v
8m2

ρ
þ g2s0
4m2

a0

;

D̃b ¼
g2HHA

8m2
a1
; Ẽb ¼

g2HHA

8m2
f1

: ðB6Þ

Assuming LECs are saturated by the resonances below
800 MeV, we estimated the LECs including the contribu-
tions of the ρ, ω, and σ mesons,

Da ≈ −4.4 GeV−2; Ea ≈ −5.7 GeV−2;

D̃a ≈ −6.7 GeV−2; Ẽa ≈ −5.7 GeV−2: ðB7Þ

2. Model II

In model II, we estimate LECs using quark-level
Lagrangians. In Refs. [10,57], the interactions between
quarks are induced by the exchange of the fictitious scalar
field S and axial-vector field A,

L ¼ gsq̄Sqþ gaq̄γμγ5Aμq: ðB8Þ

The scalar field S and axial-vector fieldA are assumed to
form a SUð3Þ octet in flavor space. In SUð2Þ case, they can
be decomposed into isospin triplets and singlets,
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S ¼ S3τ
i þ 1ffiffiffi

3
p S1τ

0;

Aμ ¼ Aμ
3τ

i þ 1ffiffiffi
3

p Aμ
1τ

0; ðB9Þ

where τ0 denotes the identity matrix. The
ffiffiffi
3

p
factor arises

from the Gell-Mann matrix λ8.
Again the exchanged particles are assumed to be heavy.

Then we obtain the contact interactions between the light
quarks,

Vqq ¼ csð1þ 3τ1 · τ2Þ þ ctð1þ 3τ1 · τ2Þσ1 · σ2;
Vqq̄ ¼ c̃sð1 − 3τ1 · τ2Þ þ c̃tð1 − 3τ1 · τ2Þσ1 · σ2: ðB10Þ

The coefficients cs and ct stand for the central potential and
the spin-spin interaction, respectively. They are to be
determined in the NNðN̄Þ systems.
At the hadron level, the potential can be written in the

form of the hadron spin and isospin,

VDD� ¼ csð1þ3τ1 · τ2Þ;
VDD̄� ¼ c̃sð1−3τ1 · τ2Þ;

VNN ¼ csð9þ3τ1 · τ2Þþct

�
1þ25

3
τ1 · τ2

�
σ1 ·σ2;

VNN̄ ¼ csð9−3τ1 · τ2Þþct

�
1−

25

3
τ1 · τ2

�
σ1 ·σ2: ðB11Þ

In Ref. [10], the qq interactions are determined by the
experimental mass of the Pc states,

cs¼ 3.9GeV−2; ct¼−0.95GeV−2: ðB12Þ

In Ref. [57], the qq̄ interactions are determined by the
scattering of NN̄,

c̃s¼−8.1GeV−2; c̃t ¼ 0.65GeV−2: ðB13Þ

APPENDIX C: TWO-PION
EXCHANGE POTENTIALS

The imaginary part of the TPE potential naturally shows
up in the loop integral. We include the TPE contributions
and investigate its influence on the width of the Tþ

cc and
χc1ð3872Þ. Its influence on the binding energy can be
compensated by the adjustment of LECs.
Since we calculate the TPE potentials under HMChEFT,

namely all 1=M corrections are dropped, the kinetic energy
corrections in OPE are not considered.
The TPE diagrams are shown in Fig. 8. The specific

expressions can be found in Refs. [55,62]. For the fifth
diagram, in which the intermediate DD� are on shell, a
direct calculation in the heavy meson scheme leads to an
infrared divergence, or a mDð�Þ=p enhancement if we retain
the 1=mD corrections. It violates the naive power counting
rule, and hence needs to be subtracted according to
Weinberg’s power counting scheme. Only 2PI parts of
the diagrams contribute to the effective potential. In
previous subtraction schemes, however, the fifth diagram
has a large imaginary part after subtraction, which violates
the unitarity condition. To avoid the potential ambiguity of
being unphysical, we drop the fifth diagram instead of
subtracting its two-particle-reducible (2PR) part. For other
planar box diagrams, we subtract the 2PR parts in line with
the scheme in the appendix of Ref. [65].
Figure 9 shows the TPE potential versus the transferred

momentum q. In S-wave cases, it is equivalent to replace p
with q, so we simply plot the potential as a function of q.
There is a pole on the real axis at jqj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 −m2

π

p
. We

avoid the pole in the integral by rotating in the complex
momentum plane. The imaginary part arises from the cut in
Fig. 10. For the subdiagrams Gi in Fig. 10, we use MGi

to
denote their amplitudes. The unitarity is guaranteed since
the imaginary part (discontinuity) of the forward scattering
amplitude is proportional to the total cross section

discM ∝
�X

Gi

MGi

��X
Gi

MGi

��
> 0: ðC1Þ

However, in a perturbative calculation, all these diagrams
are not included. For instance, up to Oðp2Þ, we include
only jMG1

j2 (the OPE and the D� width) and M�
G1
MG2

(the

FIG. 8. TPE diagrams. The thick, thin, and dashed lines represent D�, D, π, respectively. The second, fifth, and eighth diagrams have
imaginary parts corresponding to on-shell intermediate states.
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left diagram in Fig. 10). jMG2
j2 is not included since it is of

higher order. So the unitarity is not guaranteed, which may
result in a positive imaginary part of the potential. In
Weinberg’s scheme, the 2PR part of the right diagram in
Fig. 10 must be subtracted, but the previous subtraction
scheme leads to an unphysically large imaginary part. So
we exclude the corresponding diagram to protect unitarity.

For similar reasons, one-loop corrections to the OPE
potential are not included.
Figure 11 shows the pole position of the Tþ

cc in I ¼ 0

channel as Cs varies from −41 to −32 GeV−2. It seems the
width declines and the pole can move to the upper half
plane. But it is a result of the breaking of the unitarity,
which is unphysical. In the framework of HMChEFT, one
must be careful about the TPE when dealing with widths.
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