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Glue in hadrons at medium resolution and the QCD instanton vacuum
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We discuss a general framework for the evaluation of the gluonic form factors in light hadrons at low
momentum transfer, in the QCD instanton vacuum. At medium resolution of the order of the inverse mean
instanton size, the glue is mostly localized in single or pairs of pseudoparticles and globally constrained by
the fluctuations of their topological charges. These pseudoparticles trap light quarks, giving rise to emerging
multiflavor "t Hooft interactions. We explicitly evaluate the gluonic scalar, pseudoscalar, energy-momentum
tensor (EMT), and the leading C-odd and C-even three-gluon hadronic form factors, at next to leading order
in the instanton density, including molecular clusters of like and unlike instantons. We use the results for the
EMT to address the contribution of the gluons in Ji’s mass and spin sum rules, at low resolution. When
evolved, our results for the mass and spin composition of the nucleon are shown to be in good agreement
with the recently reported lattice results at higher resolution.
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I. INTRODUCTION

We will start by explaining the title and by recalling the
terminology to be used. In general, form factors are Fourier
transforms of distributions of certain charges. The standard
example is the electromagnetic form factors describing the
electromagnetic charge and current distributions of nucle-
ons and nuclei. However, form factors can be defined for
any operator, and we will focus below on gluonic probes,
like G2,.

The form factors are functions of the (spacelike) momen-
tum transfer Q and reflect on what the probe “sees,” if it has
spatial resolution ~1/Q. In Fig. 1, we schematically
identify three resolution regimes for QCD probes: hard,
semihard, and soft. We now recall the meaning of this
terminology.

The hard regime is given by perturbative Feynman
diagrams with a number of gluon propagators (1/Q?)".
Physically, it corresponds to a hadron in a very compressed
form, so that the quarks are inside the perturbative Coulomb
fields of each other. In this regime, there are no dimensional
quantities involved, as QCD is asymptotically free, and the
power n can be obtained just by dimensional considerations

“Contact author: wei-yang.liu@stonybrook.edu
"Contact author: edward.shuryak @stonybrook.edu
*Contact author: ismail.zahed @stonybrook.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/110(5)/054005(52)

054005-1

(except for certain special cases, e.g., spin flipping ampli-
tudes, where quark masses must also appear).

This paper is about the semihard regime dominated by
nonperturbative vacuum fluctuations.The latter are assumed
to be semiclassical pseudoparticles, instantons, or their
pairs. The ensuing form factors are generically of the form
B:(0p) - Q" with p being a typical instanton size. At large
Qp > 1, the form factors decrease exponentially, but they
have different shapes in the Op ~ O(1) region.

In the soft regime, the resolution is too poor to resolve
individual instantons. This regime is dominated by “chi-
ral” phenomena related to the appearance of a quark
condensate and a “pion cloud” surrounding most hadrons.
These chiral properties can be described either by sum-
ming multi-instanton chains or by phenomenological
chiral Lagrangians. In this regime, the form factors are
related to hadronic parameters, e.g., for the scalar channel
with the 2m, threshold or the ¢ meson mass.

Different QCD operators naturally see different distri-
butions. However, because of the self-duality of the
instantons, the scalar Og = Gﬁu and the pseudoscalar Op =
GWGW operators see the same well-localized spherical ball
of the shape

1192t
(Gist)* = prra (1)

if an instanton is alone or a similar but more complicated
instanton is paired. It is important to note that it is a spot of
rather strong field, of a quite small size.
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FIG. 1. The soft, semihard, and hard Q? regions characterizing
different regimes of the hadronic form factors.

Today, the mainstream of a first-principle theory of
nonperturbative phenomena is lattice QCD. Therefore, it is
important from the start to recall how these three regimes
are revealed on the lattice as well. Gauge lattice configu-
rations are dominated by “gluons,” waves with wavelength
~a, the lattice UV cutoff. Yet, e.g., the gradient flow
procedure (cooling) can be used to remove these gluons
and reveal genuine nonperturbative fields. After a few
coolings, the gluonic landscape looks like a (rather dense)
ensemble of strongly correlated instanton—anti-instanton
pairs. After further flow time or cooling, these pairs get
annihilated, leading to a (rather dilute) ensemble of
individual instantons and anti-instantons, which can with-
stand even “deep cooling.” For a detailed description of
this procedure, see, e.g., [1].

For completeness, we briefly recall the history of the
“instanton vacuum.” The QCD vacuum consists of semi-
classical and topological instantons and anti-instantons
(pseudoparticles) [2], that are described by a gluon moduli
(quenched) with additional determinantal interactions
(unquenched) [3,4]. In the “instanton liquid model”
(ILM), one of us suggested that these pseudoparticles
have mean size and density [5]

P Ngfm, Npipa~ 1 fm_4, (2)

which gives the dimensionless packing fraction k =
npan*p* ~0.1. This view of the QCD vacuum is sup-
ported by a large body of analytical and numerical results
related to chiral symmetry breakings, including many
aspects of the pions and the anomalous #' mesons; for a
review, see, e.g., [6].

The QCD instanton vacuum does not strictly confine at
large distances, although the instanton-induced central
potential between heavy quarks is linear within a fem-
tometer [7], before turning to a constant at large distances.
However, it breaks spontaneously chiral symmetry by
trapping and delocalizing massless left-handed or right-
handed quarks, in a narrow zero-mode zone of about
100 MeV around the zero virtuality line. This mechanism
is at the origin of mass from no mass and plays a central
role in the composition and structure of light hadrons.

0 5 10 15 20

FIG.2. Spectral function in coordinate space in units of GeV~!,
with the perturbative contribution (black solid line), the scalar
glueball contribution (blue solid line), the scalar meson contri-
bution (red solid line), and their sum (dashed blue line).

Earlier studies involving gluonic operators in the
ILM included studies of their vacuum point-to-point
correlators [8—10]. In particular, the scalar wa and
pseudoscalar GWG/w operators were found to receive large
nonperturbative contributions. In contrast, the stress tensor
correlator (also quadratic in the gauge field) was observed
to be not affected.

In Fig. 2, we show the ratio of the vacuum correlator of
two scalar G operators separated by (Euclidean) distance x
(in GeV~'), normalized by the leading perturbative con-
tribution

Mg (x) = — 5 (3)

In the coordinate representation, the ‘“hard,” “semihard,”
and “soft” regimes appear in the opposite order (left to
right) in comparison to momentum representation in Fig. 1.
Using estimates from the spectral representation, we show
the scalar glueball contribution (blue solid line), the scalar
sigma contribution (red solid line), the perturbative con-
tribution (black solid line), and their sum (blue dashed
line). The glueball mass and coupling are my++ = 1.5 GeV
and Ay++ = 17.2 GeV? [8], respectively, while the sigma
mass and mixing are, respectively, m,= 0.6 GeV and
Ao/ Ao+ = 0.066 [11].

In Fig. 2, all three regimes are on display, with the full
spectral function (blue dashed line) versus the distance in
GeV~! units where 5 is 1 fm. The hard regime is dominant
at short distances (black solid line) with a plateau, where
perturbation theory holds. The rise in the spectral function
for separations x = 2-5 GeV~! ~ 0.41-1 fm correspond to
the semihard regime. The “sigma halo” at large separation
x > 5 GeV~! &~ 1 fm corresponds to the soft regime, famil-
iar from, e.g., nuclear forces at large distances. In fact, the
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transition between the hard and semihard regimes is even
stronger in the ILM [6], as we will briefly review below.

Unlike chiral effects, phenomena related to the gauge
fields are due not only to well-separated pseudoparticles in
the dilute ILM, but also to fields in “incomplete tunneling”
or instanton—anti-instanton molecules. In our papers such
as [12] (devoted to the electromagnetic pion form factor)
and the first paper of these series [7] (potentials in
quarkonia), we have found that the “molecular” effects
can even be dominant. In this respect, we reformulated the
instanton vacuum to that of a “dense instanton ensemble,”
where this contribution was included.

In this paper, we will evaluate gauge-invariant matrix
elements of select gluonic operators in hadrons. Naturally,
their definitions follow from QCD factorization, of inclu-
sive processes [e.g., deep inelastic scattering (DIS)] or
semi-inclusive processes (e.g., heavy quark pair produc-
tion). They also emerge in the effective description of
heavy quarkonia and in the standard model when the
electroweak and heavy degrees of freedom are integrated
out. Physically, they describe how the glue is distributed
inside hadrons, mesons, or baryons and, therefore, carry
important insights into their structure.

Unfortunately, such gluonic matrix elements are notori-
ously hard to measure experimentally, owing to the con-
fining character of QCD in the infrared. For a recent
investigation of the importance of the glue in semi-inclusive
heavy meson production at threshold, see [13,14] (and
references therein). So far, most of the evaluations are
theoretical. First principle QCD lattice simulations provide a
useful framework for their evaluation, but the intricacies of
renormalization with operator mixing proves often to be
quite formidable.

While the glueball spectra in gluodynamics are known
rather well, there are no appropriate ‘“constituent gluon
models.” This is not surprising, given the intermittent
nature of the vacuum gauge fields. Therefore, the explicit
glue will not be treated as separate degrees of freedom
(gluons) but as solitonic gauge fields or pseudoparticles of
semiclassical nature. The QCD instanton vacuum captures
the essentials of these pseudoparticles and provides a well-
defined framework for the derivation of the gluonic matrix
elements, in vacuum and in hadrons.

The matrix elements of the glue in hadrons using the
QCD instanton vacuum was first used in [15] for a few
gluonic operators in forward hadronic matrix elements and
in [9] for both fermionic and gluonic form factors. We will
show below how the methods of [15] can be generalized for
nonforward matrix elements, in agreement with [9]. In the
process, we will analyze a large class of gluonic operators,
some of which are of relevance to select semi-inclusive
processes, following factorization. Last but not least, we
will show how to include the contributions from pairs of
like and unlike instanton molecules.

All matrix elements should be understood as normalized
at the “intermediate scale” u fixed by the instanton size

2

1
U~ —

pe ~ (0.6 GeV)-. (4)

Sometimes, this scale appears with numerical factors,
reaching p> ~ 1 GeV2. It should not be confused with
the smaller “chiral” scales associated with the pion mass or
the much higher scale > > 4 GeV? at which perturbative
evolution can be used.

The organization of the paper is as follows: In Sec. II, we
summarize our results for a number of gluonic form factors.
In Sec. III, we review some aspects of the QCD instanton
vacuum and the role played by the zero modes in the
spontaneous breaking of chiral symmetry. We briefly note
the possible interplay of the P vortices with the topological
pseudoparticles in the QCD vacuum. In Sec. IV, we detail
the emergence of the effective quark and gluon interactions
in the QCD instanton vacuum, in the single-instanton
approximation. In Sec. V, we show how to use the sum
ansatz in general, to evaluate the pertinent hadronic form
factors at low momentum transfer. In Sec. VI, we detail the
derivation of the gluonic scalar form factor at next-to-
leading order (NLO) in the instanton density and including
instanton molecular configurations. In Sec. VII, we derive
the pseudoscalar gluonic form factor at NLO in the
instanton density, where the fluctuations in the topological
charge are also included. In Sec. IX, we derive the form
factor for a general C-odd and dimension-6 gluonic
operator, which appears as a leading twist-3 operator in
diffractive production of heavy pseudoscalar mesons. Its
C-even and dimension-6 gluonic operator form factor is
also analyzed in Sec. IX. In Sec. X, we analyze the QCD
gravitational form factor (GFF) in a hadronic state, in the
context of the QCD instanton vacuum. The GFF is split into
a traceless and traceful part, each of which are evaluated at
NLO in the instanton density. In Sec. XI, we show that all
hadronic squared masses satisfy the scale anomaly identity
in the QCD instanton vacuum. In Sec. XI, we use Ji’s mass
sum rule, to detail the various contributions of the quark
and gluons in the QCD instanton vacuum at low resolution.
In Sec. XII, we extend this budget analysis to Ji’s spin sum
rule for the nucleon. Our conclusions are in Sec. XIV. In
Appendix A, we outline the general structure of the
emergent multiflavor effective Lagrangian with constitutive
gluons. In Appendix B, we show how the multiflavor
interactions yield a massive #' and a massless pion for the
case of two light flavors and extract the scalar and
pseudoscalar singlet couplings to the emerging constituent
quarks. In Appendix C, we briefly go over the instanton
field and field strength in singular gauge and detail its color
moduli. In Appendix D, we detail how the color averaging
is performed for the instanton pairs and molecules. In
Appendix E, we suggest that the emergent effective vertices
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with Lehmann-Symanzik-Zimmermann (LSZ) reduced
gluons can be used in Feynman graphs that include small
size instantons only. In Appendix F, we briefly show how
the canonical ensemble of pseudoparticles can be extended
to a grand canonical ensemble, to account for the fluctua-
tions in their number which captures globally the scale and
U(1) anomalies. In Appendix G, we summarize some
useful identities for averaging over the color moduli.

II. SUMMARY OF THE RESULTS

The theory of semi-inclusive and exclusive QCD proc-
esses with large momentum transfer Q7 is rooted in two
assumptions (see [16,17] for early work): (i) the factori-
zation of a soft and hard parts of the processes, appearing
when Q7 is larger than any nonperturbative scale, and
(i1) the hard part, after it is appropriately “factored out,” can
be treated using perturbative QCD.

Unfortunately, there are big discrepancies between such
an asymptotic theory and existing experimental data,
which remain in the semihard regime (as illustrated in
Fig. 1). This is particularly clear from current JLab data on
the nucleon electromagnetic form factors [18] and lattice
simulations [19]. The measured mesonic and baryonic
form factors are well above the predictions of the
perturbative QCD scaling laws, even when taken with
maximally favorable assumptions (flat distributions and
twist corrections included). This is not surprising, since
there is a drastic difference between the scales in DIS and
jet physics, on one hand, and exclusive processes, on
the other. The former are well defined above the scale
u?> ~ 100 GeV? (hard regime), while the exclusive proc-
esses are defined at a much smaller scale, within
1-10 GeV? (semihard regime).

In this paper, we evaluate a number of gluonic form
factors, e.g., GG, GG, fGGG, dGGG, and T’ , in the QCD
instanton vacuum at medium resolution, within the semi-
hard regime. At this resolution, the gluons are described by

TG () IG5 (X)

semiclassical pseudoparticles, with the large gauge space
reduced solely to the bosonic and fermionic moduli of these
pseudoparticles. Their contribution in a given hadron is
amenable to pertinent matrix elements of the collectivized
fermionic zero modes in the moduli.

The calculation are carried out to next order in the
instanton density in the QCD instanton vacuum, where the
contributions of like and unlike pairs of instantons are
retained. There are many technical details associated to
these calculations, most of which can be found in the
subsequent sections and appendixes. Therefore, we decided
to present our results first, while leaving their derivations to
the rest of the paper.

A. GG vacuum form factor

The gluonic scalar vacuum form factor captures impor-
tant aspects of the gluonic correlation function in the QCD
vacuum. Since it also shows up as part of the glue in the
nucleon scalar form factor, we will start by recalling and
then extending some of the results [6,9]. The gluonic scalar
vacuum form factor is

Moole) = [ dae (GG (x)GG0). = (322 1

(5)

with TI;(x) the point-to-point correlator of the scalar
source Og = G,zw. Equation (5) was discussed in the
bosonized ILM in [9] and in the full ILM in [6], with
the latter study focusing on the transition between the
semihard and the hard or free regime.

In Fig. 3, we show the x-space point-to-point correlator
normalized to the perturbative (two gluon) version. The
x-space spectral function (dashed line) accounts for the
scalar sigma, plus the scalar 0™ glueball, plus the soft two-
pion cut and the hard two-parton cut:

o  Interacting ensemble
————— spectral parameterization (o included)

spectral parameterization

0** glueball dipole model

s x (fm)

0.5 1.0 1.5

FIG. 3.

Spectral function from the ILM (open red circles) [8], normalized by the perturbative contribution 14(c) in coordinate space.

The comparison is to the empirical spectral parametrization (6) with the scalar sigma (blue dashed line) and without the scalar sigma
(orange dashed line) and the 0™ glueball dipole parametrization (8) (green solid line).
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Hggu) (x) = /1§++D(m0++ ,x) +A2D(m, x)
A 3 4m?2 313
—|—Am% ds?ﬂ2 1- . (s —2m2)*D(y/s,x)
2g* [
+25 | T dss*D(V/s,x). (6)
n

50

The parameters used in the spectral parametrization are
Ao+ = 15.6 GeV3, 1, =2.6 GeV?, my+ = 1.25 GeV,
and m, = 683.1 MeV to be consistent with the interacting
ensemble calculation [8]. The perturbative threshold is set
to so = 2.4 GeV [8], and the chiral symmetry-breaking
scale range is A, = 1.1 GeV. Note that we have reinstated
the gauge coupling with a value ¢?/4z = 0.3, when
accounting for the perturbative contributions.

To account for the dominance of the 0 glueball at low
Q?, and the free two-parton cut at large O, we use instead a
dipole approximation for the vacuum form factor:

(7)

or
or(q) zm

where mg++ = 1.25 GeV [8]. When translated to x space
plus the free contribution, it reads

ipole),  _ 384g* 12822
n === G
GG (x) P b < >
d*q 1 ,
x —iax (8
[eraram e ®
|
1 1 or (27)* _
— 5 (P'S|G2,|PS) = — |- M) ST 2200 g8 P)uy(P
o PS1PGRIPS) == T 5 )|, (P )

p=0313 fm

\

Bag (PQ)
1

()
— B
0.100 | e
)
Byg
(IA)
— B,
0.010 | %s

0.001

...........

FIG. 4. Induced pseudoparticle form factors ﬁglg) , [}<21gl>, and ﬁgIgA)

versus Qp, from lower to upper, respectively.

In Fig. 3, we show (8) (green solid line), which lies between
the full spectral representation with the sigma meson
(dashed blue line) and without the sigma meson (dashed
orange line).

B. GG nucleon form factor

The nucleon gluonic scalar form factor following
from the trace of the energy-momentum tensor (EMT) is
defined as

b
— s (PSIPGLIPS) = MyGy(02)a, (P)u(P)  (9)

with in and out momenta P and P’ = P + Q. Our main
result for (9) in the ILM is

1 2K I 1 2% \2 y )

pm

1 2k 2 phm? (IA) ol 2 1 <
+2NC(N%—1) ) 9 T[Aﬁzg (PQ)%%<P S|l// Y(Mlap)—zgm,ld W'PS>7

where packing fraction x is the dimensionless vacuum
parameter defined as
K = nppmpt. (11)
Here, the dependence on Q7 is given via induced
nonlocal form factors, normalized to 1 and derived from
certain instanton-based diagrams. Their analytic form is
defined in (87) and their specific form illustrated in Fig. 4.
The quark hopping integral is defined in (88).
At large x or small Q?, the scalar point-to-point corre-
lator captures the fluctuations of the number of pseudo-
particles in the ILM, and its value at Q2 = (O is related to the

(10)

|
scale anomaly relation, which we will discuss in Sec. IIT A.
It allows us to fix the normalization of the form factor. This
effect can be included in (10) via the substitution

N Vv

or (2”)4 54(q) N O-T(Q> , (12)

which shows how the glue in the scalar vacuum form factor
exports to the nucleon scalar form factor.

In Fig. 5, we show the result for the gluonic contribution
to the trace of the EMT in the nucleon (9) and (10) prior to
the substitution (12) (red solid line), and after the sub-
stitution (green solid line). The comparison is to the recent
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p=0313fm, m" =110.7MeV

o T, Lattice dipole fit, m, = 170 MeV
= G? Lattice, m, = 300 MeV
— ILM
e JLM*
0** threshold (my++ = 1.25-1.75 GeV)

o}
o]
© 0 0 o & o

-0.5F

FIG. 5. Nucleon gluonic scalar form factor (9) (red solid line) and after the substitution (12) (green solid line) versus the lattice results
(blue data points) [20]. The lattice dipole fits to the A, D EMT form factors from [21] are used to reconstruct the nucleon gluonic scalar
form factor (gray open circles), along with the 0" dipole form factor (12) (dashed brown line) with the glueball mass band m:+
ranging from 1.25 to 1.75 GeV based on the various lattice calculations on the glueball mass [8,22,23]. The upper band corresponds to
mgy++ = 1.75 GeV, and lower band represents my++ = 1.25 GeV.

lattice results (blue squares) from [20]. The lattice results
for the nucleon A- and D-form factors from [21] can be
used to reconstruct the gluonic contribution to the trace of
the EMT in the nucleon (gray open circles). As expected,
our results in the semihard region (red solid curve) when
supplemented with the 0% -dipole glueball contribution in
the soft region (dashed brown line) yield a good account of
the reported and reconstructed lattice results in both the soft
and semihard regions (green solid line).

C. GG nucleon form factor

The gluonic pseudoscalar form factor in a hadron state is
defined as

1
3272

<P/S|92G/ADG/41/|PS> - MNGN(Qz)ﬁs(P/)iysus(P)'
(13)

In the ILM at NLO in the instanton density, the result is

1  Fa X (2m)* N
122 PS8l GuGLlPS) = [Mq(O)ﬁt 0 (@) |y (P)irus(P)
L[ 2 \a 1 26 \?2 2 am Hli) s
' {Fe (pzmﬂ)ﬂ% P+ 5N w2 = ) (,)2,"*2) Ty )| (P SimpiryiPS)
1 2 \? S(IA) N _
TN (N - 1) <p2m*2> p*mTiapsy (0q)iq,(P'S|wy,r w|PS), (14)

where the nonlocal form factors are given in (107) and the
hopping between pseudoparticles is defined in (88). The first
contribution in (14) captures the fluctuations of the topo-
logical charge of the pseudoparticles in the ILM in (37) in
the large volume limit, which we can recast as

ao_ | d4xe_iq.x<ﬁgg(x)#cc<o>> (1)

c

with y,(0) ~ y, in the zero momentum limit. In Fig. 6, we
show the result (14) (red solid line) for the gluonic
pseudoscalar form factor in the nucleon state where the
gluonic pseudoscalar form factor is defined in (13).

The expected behavior in the soft regime, near Q = 0,
now stems from the screened topological charge fluctua-
tions in the large volume limit, in the leading order in the

) p=0313fm, m' =110.7 MeV
Gv (@)

0.04} — ILM

— ILM* (m, = 681.6 MeV )

0.03

0.02f

0.01F

0.‘2 0.‘4 0.‘6 0.‘8 1.‘0 Qz (GeV2 )
FIG. 6. Nucleon gluonic pseudoscalar form factor (14) in the
QCD instanton vacuum (red solid line) and after the substitution
(17) (green solid line).
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pseudoparticle density. One expects this screening to be In Fig. 5, we show the result for the topological form
less singular than in the scalar case. Neglecting the three-  factor (green solid line) following from (14) after the
pion continuum, its range is related with the (significantly  substitution
heavier) ' meson
2
)(t( ”) 54( ) = )(t(('I). (17)

p N V N

t

)(t(Q)z1+Q2/m2 . (16)
" D. dGGG nucleon form factor

The result for the C-odd gluonic operator d**°G*G*G¢
[For consistency of the setting, we use m,y % 681.6 MeV  in a hadronic state at NLO in the instanton density is
for two flavors (B8).] given by

N,.—-2 2K 2 871'2171 1l 1 _
(P'|gd"" Gyl Ghu G, |P) = — 55 (p *2> PPmPT By (09) 5 428, (P 56,,w|P)

2N2(N?2 —1) \ p? 2

N.-2 2k \28z*m
22 (1) -
+ ZN%(;\’% _ 1) (pzm*z) p-m Tllﬂ?ag <pQ><5/mLI/)’Q1/ - 5an/3qll)5p/l<P/|l//Gaﬂl//|P>

N.-2 2k \? , > 47’
- T
2N%(N% _ 1) (pzm*2> pPrm=L ﬂ%g ( )
1 . ©
X |:€ﬁylo'q0qu5/4p - €ﬁyan0Q25ﬂp - Eeﬂy/luqzéﬂp + (,0 <~ l) - (ﬂ <~ U) <Pl|l//y[ﬁl ay]y5W|P>
N,.-2 2k \?
_ ¢ 2 2T
2NZ(NZ-1) (pzm”) T ﬂ3g a1
« e eV Pyi 0w P)
€pyucdoqy prve9e9u 2€ﬂy;wq YYipt o vy

N.-2 2 \? 5, 5. 87
- T
2NZ(N2 - 1) (pzm*2> P Tia s Py (pd)

1 e
X |:€;wpa<5/}/1qua - 5/3(1qu/1) - Eeuvpyqzéﬂl + (ﬂ <~ )“):| <P/|l//7/[/il ay]ysl//|P>v (18)

where the form factors normalized to unity are given in (118). The details of the derivation of (18) can be found in Sec. IX.

E. fGGG nucleon form factor

The general result for the C-even gluonic form factor f?**G*G’G¢ in a hadronic state at NLO in the instanton
density reads

1 2
<PS| 3facha Gt G¢ |PS>: |: M( )UT( ”)

4 GilPS) == | M O34 0) e (P )

384 2

1 2K 1 2k \%, , , ~ el
~ N\ ) Tan =) ) T P3g(pa) (P'S|myry|PS),  (19)

where the instanton-induced form factors are given in (135), with the details of the derivation given in Sec. IX. The fGGG
form factor is defined as

(P'S|g* f** Gl Gy Gy | PS) = MYAS (Q)its (P)us(P). (20)

In Fig. 7, we show the behavior of the C-even three-gluon form factor (19) using the QCD instanton vacuum
parameter (red solid curve). The jump at Q = 0 follows from the additional contribution stemming from the fluctuations
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p=0313fm, m" =110.7MeV
4, 0H

20

101

— ILM

.6 0.8

-10F

-20

-30

FIG. 7.

L L% O (GeV? — LM

)

0 0** threshold (mg++ = 1.25-1.75 GeV)

C-even form factor in (19) (red solid curve) and after the substitution (Sec. IX) (green solid curve), along with the 0™

dipole form substitution (12) (dashed brown line) where the glueball mass band mg++ ranges from 1.25 to 1.75 GeV based on the
various lattice calculations on the glueball mass [8,22,23]. The upper band corresponds to mgy++ = 1.75 GeV, and the lower

band represents mg++ = 1.25 GeV.

of the pseudoparticles number in the large volume limit
in leading order in the density. It is screened by higher-
order corrections (green solid curve) following the
substitution (12).

F. T%" nucleon form factor

The hadronic form factor related to the tensor combi-
nation of gluonic field strengths is a very special case, since
|

(P'S|¢PT}|PS) =

2NC(N% - 1) pZm
_ 47[2P2ﬂ(m)
9

the semiclassical instanton fields have a vanishing stress
tensor. This implies a behavior that is very different from
the previous cases, as seen already in vacuum point-to-
point correlators [8].

The gluon energy-momentum form factor in a hadron
state appears only due to instanton—anti-instanton “mole-
cules.” In the pseudoparticle moduli, this form factor is
amenable to quark-based observables

1 2% 2 1672 N
< *2> pzszzA{?ﬂ(Tl_ff(MKP’Sw(y(ﬂ10y> —Zgﬂylf?)wlPS)

<>

4

1 _ ) | I
r,2(P4) (qﬂq,)gyz + 4,9,9 — Egﬂyq,)qz> (P'S|y <7<pl 05—~ 9pid ) w|PS)

A 1 _ < 1 -<—>
— 42%p*B7")(pq) (q,,qy -2 ngﬂy) q,9,(P' S| <y(,,z 0 = 790l a) w|PS) }
! 2 )2 8a%p? s 1 ]
TN V=) ( pzm*z> p*m*Ty—g—Ppr, (pq) (q,,qu -7 ngﬂy) (P'S|mypy|PS).  (21)

The induced pseudoparticle form factors normalized to 1
are given in (149). The details regarding the derivation
of (21) in the QCD instanton vacuum can be found in
Sec. X with the supporting appendixes. Figure 14(c) can
be used to analyze the gluonic energy-momentum form
factors of the nucleon, in terms of the nucleon quark form
factors. These form factors constrain the nucleon gener-
alized parton distributions at zero skewness. They will be
discussed elsewhere. Here, we will make use of (21) to
budget the mass and spin content of the nucleon in the
QCD instanton vacuum as we now summarize.

G. Ji’s mass sum rule

How the nucleon mass may be assigned to the quarks
and gluons is resolution dependent. The QCD instanton
vacuum at low resolution provides for a budgeting based
on semiclassics. Using Ji’s mass decomposition, whereby
the nucleon mass is split to

My = My + Mg + MY + M), (22)
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u=2GeV

42.9%

Quark energy

— 6.4%

1
b Trace Anomaly

Gluon energy 234
4%

27.3%

(a)

Lattice (yQCD Collaboration)

Quark energy

i Trace Anomaly
23%

Gluon energy

32%

(b)

FIG. 8. Mass decomposition using Ji’s nucleon mass sum rule,
in the QCD instanton vacuum after DGLAP evolution at a
resolution 4 =2 GeV (a) and the lattice results at the same
resolution from [26].

with the quark and gluon contributions identified in (167),
in particular, at NLO in the instanton density and a
resolution of u~ 1/p ~ 600 MeV, we obtain

MY 3 o

0 N
—L_—(A,00)-22) ~69.1
M 4( ,(0) MN> 69.19%,
MYy 3
—¢ =24,(0)~ 1.01%,
My 4
My 1
PA (197 x23.40%,
My 4 My
MN
Lm _ N 1 6.39% (23)
My My

with all the details given in Sec. XI. Fixing the pion-
nucleon sigma term [24,25] shows that 69% of the nucleon
mass is in the valence quarks (hopping zero modes), 23.4%
in the condensate (displaced vacuum instanton field), and
1% in the moduli gluons. This budgeting evolves with the
resolution. Using Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution to u~?2 GeV yields a redis-
tribution of the mass in favor of the gluons, with

N
— 2 4291%,
N
N
Me

~27.29%. (24)
N

There is no change in the anomalous and mass contribu-
tions. In Fig. 8, we show comparative pie charts for the
evolved ILM results (170) and (171) at the resolution of
u=~2 GeV, with the lattice results in [26] at the same
resolution.

H. Ji’s spin sum rule

Similarly to the mass decomposition, the spin decom-
position can be addressed using Ji’s spin sum rule

1
Sy =3%q Ly +Jy (25)

where the quark angular momentum contribution is split
into the intrinsic quark spin X, plus orbital momentum L,,.
In the QCD instanton vacuum, the leading LO contribution
to the intrinsic quark spin is mostly from the vacuum
topological susceptibility. In the QCD instanton vacuum

with two flavors at a resolution u ~ 1/p ~ 600 MeV, the
budgeting is

1y 92
29— AG——L-N,Ag~10.5%,
Sy 4T gpatRd ’
1

Lo _ A (0) + B, (0) - 22 n 88.2%

q q ’
Sy Sy
J
ﬁ = A,(0) + B,(0) ~ 1.4% (26)

with most of the derivation given in Sec. XII. Here, we
assumed B, ,(0) = 0 [27]. Again, these assignments are
resolution dependent and change with increasing u. In
particular, for u ~ 2 GeV, we obtain

1
B
279 5 10.5%,
Sy 7

Ly 53.1%
SN ~ 170,

J
29 ~36.4%. (27)
Sy

In Fig. 9(a), we show the histograms for the spin assign-
ments (195), in the QCD instanton vacuum with two flavors
before evolution at ¢ = 0.56 GeV and after evolution at
# = 2 GeV. They are to be compared to the lattice results in
Fig. 9(b) from the yQCD Collaboration [28] and the ETMC
Collaboration [29], both at the resolution of y = 2 GeV.
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ILM (QCD with 2 flavors)
88.2 %

80

601 53.1%

40} 36.4 %

20

[10.5% 10.5%

1.4 %
1 =0.56 GeV

u=2GeV
X, nl;,mJ,

(a)

Lattice QCD with 2+1 flavors
46.%

40. %

382% 37.5%

28.8%

14. %

XQCD ETMC

mX;nl,mJ,
(b)

FIG.9. (a)Nucleon spin decomposition using Ji’s spin sum rule,
in the QCD instanton vacuum with two flavors at y = 0.56 GeV
(left) and u = 2 GeV (right). (b) The same decomposition from
the yQCD Lattice Collaboration [28] (left) and the ETMC Lattice
Collaboration [29] (right), at a resolution of y = 2 GeV.

III. SEMICLASSICAL GLUE
IN THE QCD VACUUM

Understanding of any quantum system starts with under-
standing of its ground state and predefining its excitations.
Similarly, understanding hadrons requires an understanding
of the QCD vacuum. The central aspects of the QCD
vacuum are twofold: the quantum breaking of conformal
symmetry and the spontaneous breaking of chiral sym-
metry, both of which are tied to the topological nature of the
gauge configurations at low resolution.

The size distribution of the pseudoparticles is well
captured semiempirically by the original ILM [5], con-
firmed then by various mean-field studies [30,31] and
statistical simulations of the ensemble [6]. This distribution
can be written as

1
n(p) ~ p_5 (pAQCD)be_#pZ/RZ (28)

FIG. 10. Visualization of the vacuum in gluodynamics, before
cooling at a resolution of about ll—ofm (top) and after “deep
cooling” at a resolution of about %fm (bottom) [35], where the
pseudoparticles emerge.

with b =11N./3 —=2N;/3 (one loop). The small size
distribution follows from the conformal nature of the
instanton moduli and perturbation theory. The large size
distribution is nonperturbative but cut off by R the mean
separation of the instantons (anti-instantons) in the vac-
uum. Detailed lattice simulations using the gradient flow
method [32,33] find that the mean tunneling rate and
quasiparticle size are

—_—

Npp = Foladt %zg (29)

This distribution, as well as values of the size and
density, has been many times confirmed by lattice works,
using various versions of “deep cooling” of configurations.
In Fig. 10, we show, e.g., results from lattice simulations by
Leinweber and his collaborators [34], using the gradient
flow (cooling) method. At high resolution as illustrated in
Fig. 10 (top), the vacuum is dominated by quantum or zero
point motion, but as the resolution is decreased, as
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illustrated in Fig. 10 (bottom), a much smoother landscape
emerges, composed essentially of instantons and anti-
instantons. These are tunneling pseudoparticles, between
vacua with different Chern-Simons numbers.

Most of the hadronic correlation functions in the QCD
vacuum are little affected by the removal of the quantum
gluons by gradient flow, an indication of the central role
played by these pseudoparticles [6,36]. The dimensional
parameters (29) combine in the dimensionless parameter
packing fraction x = z°p*n; 4 ~0.1, a small emerging
parameter that allows for a many-body analysis.

A. Scale anomaly

The quantum breaking of conformal symmetry is best
captured by the anomalous part of the trace of the energy-
momentum tensor

TH

Q

b _
u _WGZ”GOW + myy. (30)

Throughout, we will use the rescaling ¢G — G for oper-
ators in the instanton or anti-instanton gauge fields. In the
QCD instanton vacuum, the gluonic operators

G?/(327%) - (N, + N_)/V =N/V,
GG/(322%) - (N, —=N_)/V = AN/V (31)

count the number-sum (first) and number-difference (sec-
ond) of instantons plus anti-instantons in the 4-volume V.
In the canonical ensemble with zero theta angle, the former
is fixed by the mean instanton density with N, /V — N/2V
and AN = 0. As a result, the expectation value of (30) in
the Yang-Mills vacuum illustrated in Fig. 10 is

T ) & —bny, &~ —10 fm™ 32
" +

in leading order in the packing fraction and chiral limit. The
emerging gluon condensate (G?), which is positive, is at the
origin of most hadronic mass in the Universe [37].

B. Fluctuating pseudoparticles

In Fig. 10, the tunneling quasiparticles fluctuate in
numbers. Remarkably, these fluctuations are universally
captured by the distributions [9,15,31]

with mean N, in agreement with low-energy theorems [38].
The dominant second moments are

or = <(N_N)2>IP”
X ={((Ny =N_))p. (34)

The variance in N or vacuum compressibility,

or = V/d4x<321ﬂ2 GG(X)#GG(O)%), (35)
vanishes in the large N limit:
or = 47N (36)
The large volume topological susceptibility is
4 1 ~ 1 ~
X = V/d x<32ﬂzGG(x)32”2GG(O)>P. (37)

In quenched QCD, y, —>)(§0)

Veneziano formula [39,40]

is given by the Witten-

(0) 2 2112
AN=(V M
Vv V-0 \% 2Nf
with M, the quenched singlet mass,
M3 = my, + my — 2mg, (39)

and Egs. (38) and (39) hold in the QCD instanton
vacuum [6,30,31]. In the unquenched QCD instanton
vacuum, (38) is very sensitive to the presence of light
quarks with the substitution M? — m?2 (see below) and
vanishes in the chiral limit [9,15].

C. Light quarks and zero modes

When a light quark crosses a tunneling configuration, it
develops a zero mode that is single handed [41], an amazing
phenomenon protected by topology and the Atiyah-Singer
theorem. It is the delocalization of these zero modes and
their interactions that is at the origin of the spontaneous
breaking of chiral symmetry and the emergence of the light
hadronic spectrum. Remarkably, this topological mecha-
nism for mass generation leaves behind a distinct finger-
print: universal conductancelike fluctuations in the quark
spectrum, predicted by random matrix theory [42] and
confirmed by lattice simulations [43].

7+3=0 F+d=0
7 (D 5 5
B SR B A =
2 2 7 P
ur, UR UR urL

FIG. 11. A quark zero mode propagating through an instanton
enters left handed ﬁand exits right handed, to maintain a null
quasispin 7 + ¢ = 0 (left). The opposite takes place through an
anti-instanton (right).
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In Fig. 11, we show how a light up-quark helicity in a zero mode is flipped when crossing an instanton (left) or anti-
instanton (right). (In the zero mode, the quark spin ¢ is locked to the color 7, in a hedgehoglike configuration with

6+7= 6.) This flipping is captured by the 't Hooft vertex for a single quark flavor [41]. Specifically, the LSZ reduced
forward scattering matrix for the zero mode in Fig. 11 is in Euclidean signature

n,<w;<p>p Ml (PP - ocU) L ol (p)(p - 0€U) ] 'owL<p>>

m

+(I,L) < (I,R) (40)

with the Weyl notation subsumed (p - ¢ = p,0,), where 6, = (—ic. 1), and the normalized quark zero mode

w(p) = ¢ (p)(p-0eU)}, = [mp*(10Ko(2) = 11K (2)).._,, /o) (P - 6€U)},. (41)

Here, the matrix element (eU), = €', U, carries spin i and color a, with €', a real antisymmetric tensor (hedgehog in spin
color) and U an SU(N,.) valued color matrix. The averaging in (41) is carried over U. Equation (40) can be recast in the form

N AN

M,(p) (T v (Pw(p) =20 rup)

N N

with the running constituent quark mass [44,45]
[k = k/(22°N,)]
_lpe'(p)P  VE |pe(p)
v,(p) = €270 PP

e .
mp V20? llgg™||

The singular 1/m effect is removed by disordering, with
M, (0) = 383 £ 39 MeV [45], which is comparable to the
numerical result M ,(0) =~ 300 MeV [6,46]. In the QCD
instanton vacuum, the running quark mass is fixed by the
same scale as the gluon condensate or M, (0) ~ 1/R, since
p ~ R/3, with the size distribution (28) still controlled by R.
This ensures the renormalization group invariance of all
mass scales.

The emergent quark mass (43) in the QCD instanton
vacuum may remind us of the constituent quark mass from
the Nambu-Jona-Lasinio (NJL)model [47,48] (and refer-
ences therein). However, it is important to stress that the
latter is a pre-QCD model, while the former is rooted in
QCD and is now supported by even numerical QCD lattice
visualizations as in Fig. 10. The canonical NJL model,
although useful, does not explain the vacuum gluon
condensate, the running quark mass, the 7’ mass (unless
modified), and the universal spectral conductance fluctua-
tions [42]. More importantly, the gluonic operators, their
correlations, and mixing with the quarks are readily
described in the QCD instanton vacuum. For complete-
ness, we note the nontopological approach to the hadronic
mass scale in [49] (and references therein), where also a
running quark mass emerges by resumming gluon rainbow
diagrams.

) = v |y (157 ) o @)

D. Center P vortices

The topologically active quasiparticles give rise to a
linearly rising central potential till about 1 fm, before the
potential flattens out at larger distances [7]. Strong lattice
evidence for the disordering of large Wilson loops, points to
the center-projected vortices (center P vortices) [S0-52].
Center P vortices can link with large Wilson loops through
Zy, fluxes, leading to an emergent string tension o7 fixed by

the planar density of Ny /+/V of center P vortices. More
specifically, 67 = 1/(2x12) with a string length [, ~ 0.2 fm,
so that Ny, /\/V ~ 4/fm?,

The center P vortices are characterized by a number of
branching points (monopoles), which are likely anchors
of topological structures or quasiparticles. Yet the latter
carry much stronger chromoelectric and -magnetic fields
VE=+vB=~25/p~15 GeV, in comparison to orp ~
0.3 GeV carried by a center P vortex. This suggests that
the quantum breaking of conformal and chiral symmetry is
strongly mediated by the quasiparticles for the low-lying
hadrons in their ground state. The radial and orbitally
excited states have larger sizes and, hence, are more
susceptible to piercing by Zy fluxes threading the center
P vortices. Throughout, we will focus on the pseudopar-
ticles for the low-lying hadrons.

IV. EFFECTIVE THEORY OF INSTANTON
ENSEMBLE

For a more quantitative description of the QCD vacuum
at low resolution, we will focus on the pseudoparticles
illustrated in Fig. 10. We designate by N the number of
pseudoparticles and by N_ the number of pseudoparticles
with opposite charges. For fixed numbers N, the canonical
partition function Zy is
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| N +N_
Zy, :m / H dQI”O(/’I)P/ S
X HDet(D =+ mf)low7 (44)
f

where dQ; = dp,;d*z;dU, is the conformal measure
(size p;, center z;, and color orientation U;) for each single
(anti-)instanton. The mean tunneling rate is

no(p) = C,(1/p%)(872/ ) Ne &737/5° )

to lowest order in the current quark masses m . The gluonic
field strength Gy, follows from the LSZ reduction of
pseudoparticle field strength and is sourced by the color-
magnetic moment [54,55]. The rigid color rotation R (U)
is defined as

1 .
R (U) = ETr(TaUrbU').

With this in mind, the ensuing canonical partition
function Zy, in (44) reads

N, +N_ )Nf
ZN _ZNt/ H d4 IdU]

x / DyDy DA, (ﬂ@,H®A>
=1 =

xewp |- [atxtvim + (G| (9

© 1 N, N
ZNi:N+!N_! </dpn+(p)V> </dpn_(p)v> e~ Sint.

(47)

Here, ny(p) is the effective instanton size distribution,
including the pseudoparticle binary interaction S;,,, which
can be estimated by Feynman variational principle [15,56].

1 1 Ara v Tl_
)U]E 1+ZT 77””0 U] 2

f
1 ]aa v 1+75 _LZﬂbAba
1;[{ 02 + ”//f (X)Ua 5 (1 +ZT N 0" )UI\ > Wf(x):| P’ R (U ), Gy (45)

with Cy_is the number dependent on color number N,
and the gauge interaction between instantons and anti-
instantons is Sj;.

A. Emergent ’t Hooft vertices

The fermion determinant receives contribution from the
high-momentum modes as well as the low-momentum
modes. The contribution of the higher modes are localized
on the pseudoparticles. They renormalize the mean-density
rate, with an additional factor of p"/. The low-momentum
modes, in the form of quasizero modes, are delocalized
among the pseudoparticles. The chief result of the delo-
calization is the emerging constituent mass (42) and (43)
and 't Hooft vertices [6,15,30,53]:

5 2
Y l//f(x):| PR UDTLG

B. Single-instanton approximation

Since most of the gluonic matrix elements will be
assessed in hadronic states, we can ignore S’im, and each
emerging vertex ®; 4 in (46) can be randomly averaged
over the single-pseudoparticle moduli with mean size fixed:

0, = /d4ZI,AdU1.A®1.A- (48)

The explicit form of the vertices in the single-instanton
approximation (SIA) can be found in Appendix A. In the
large volume limit with fixed pseudoparticle density, the
emergent vertices 6, exponentiate, giving

Zy, = 21(\5,’1 / Dy/Dw"'DA,, exp (—Sefr). (49)

where the effective action in Euclidean space reads

Sa(VooN) = [ a [ Wi = i+ (G

—G(1+8)0, —G(1-5)0_. (50)

The emergent parameters G and ¢ are fixed by the saddle
point approximation. The effective coupling G

_ N @z
G =W, (o) G1)
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TABLE 1. Emergent parameters.

Covariant Light front [60]
G 610.3 GeV~2 567.8 GeV~2
m 12.2 MeV 16.17 MeV
m* 110.70 MeV 114.76 MeV
M,(0) 395.17 MeV 398.17 MeV
(Wpw ) —(208.39 MeV)3 —(208.58 MeV)3

is tied to the mean instanton size p, density N/V, and
determinantal mass m; [7,57,58]

2”2 ,02
N,

my=my =

). (52)

It follows from the mean-field approximation to the
effective action in the SIA summarized in Appendix A.

We note that the determinantal mass m} does not run
with momentum and is much smaller than the running
constituent quark mass M, (0) used in [59,60] (and refer-
ences therein). The latter resums all pseudoparticle con-
tributions (close and far) to the quark propagator in leading
order in the packing fraction.

The determinantal mass follows from the SIA, by
retaining only the closest pseudoparticle in the inverted
quark propagator, for a given zero mode [see [58] and
Egs. (72)—(74) in [7] ]. It is appropriate for the description
of the hopping of fermions at distances |x—y|<
R~ 1 fm, e.g., in the local clustering of the zero modes
in the effective 't Hooft vertices and pairing of pseudo-
particles in molecules. The larger constituent quark mass
M ,(0) describes long-range propagation of the emerging
quarks for |x —y| > R~ 1 fm and is more appropriate in
the description of long-range hadronic correlators.

The screened topological charge 6 is fixed to

AN —mj
6=—- —. 53

For a canonical ensemble of pseudoparticles, the instanton
number sum N and difference AN are fixed to N = Vi,
and AN = 0, respectively. In a grand canonical ensemble,
the instanton number sum and difference are allowed to
fluctuate.

Using (49), the mean values of the instanton determi-
nantal vertices (6,) are

0.) =11 (4;;) V. (54)

!

The effective instanton vertices are composed of the
2Ns-quark ’t Hooft interaction and the emission of
multiple gluons. The effective action can be decomposed

into the fermionic instanton-induced interactions ("t Hooft
Lagrangian), with or without multigluon tail emission.
The corresponding effective Lagrangian is given in
Appendix A. Note that multigluon tail emissions are
further suppressed by the small instanton size p.

The vacuum parameters are fixed to p = 0.313 fm and
n s = 1 fm™. The table for the parameters used in ILM is
shown in Table 1.

The determinantal mass is to be compared to the heavier
constituent quark mass M,(0) ~ 395 MeV. Both masses
are close those used in [7,58—60]. The quark condensate
(py) is also close to the one given in [61]. The values of the
current quark mass and quark condensate can also be
compared to the FLAG lattice calculation by renormaliza-
tion group evolution. At y =2 GeV, the current mass is
m=~69 MeV, and the quark condensate is (W) =~
—(251.7 MeV)? comparable to the result in FLAG lattice
N;=2+1+1 calculation [62]. For completeness, we
refer to [6,15], for more details regarding the phenomenol-
ogy of the QCD instanton vacuum.

C. Pseudoparticle form factors

The emergent vertices (45) can be generalized to include
further finite size effects of the pseudoparticles. More
specifically, each quark field in the interaction vertices
0©; 4 gets dressed:

(k) =/ Flpk)w (k) (55)

with
f(k)=Zdiz[lo@)lfo(Z)—11(Z)K1<Z)] . (56)

which is essentially the profiling of the instanton by the
quark zero mode.

Also, each emitted gluon gets dressed by an induced
nonlocal form factor. For that, we recall that the Belavin-
Polyakov-Schwartz-Tyupkin instanton in singular gauge is
given by

1 20,x,p0°
Afl(x) =—— 5, (57)
TR )
which is seen to satisfy both fixed-point and covariant
gauge. In momentum space, it reads

u o My
gAﬂ(Q) = l4ﬂ22—2~7:g(pq) (58)

with the gluonic form factor induced by the finite instanton
size [63,64]
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Folq) = %— 265 (g). (59)

As aresult, each instanton in the interaction vertices ®, 4 is
regulated by

272 272
?ﬂﬁu - 7’7;3117:;;(!?61)7 (60)

which follows from (58) by LSZ reduction.

The use of the gluonic vertices ®; 4 is justified in
momentum space diagrams, when the exchange “tail”
gluons carry energies below the sphaleron mass (the top
of the tunneling barrier)

3
dap

1
M = /d3x§G,2w(O, %) = (61)

Using the above vacuum parameters, we have 87%/¢*(p) =
10-15 [6]. This fixes the sphaleron mass Mg ~ 2.5 GeV,
for a,(1/p) ~ 0.42-0.7.

V. HADRONIC FORM FACTORS

The hadronic form factors are characterized by several
regimes: (i) a soft energy regime with Q? < 1 GeV?, where
meson exchanges induced by the emerging vacuum inter-
actions are dominant; (i) a semihard regime with 1 < Q% <
10 GeV?, where scaling is still largely violated, where
nonperturbative vacuum fields are still important [65];
and (iii) a hard regime Q? > 10 GeV? where perturbative
scaling ultimately takes place. Here, we will focus on the soft
energy regime, where the emergent multiflavor interactions
in the QCD vacuum at low resolution are dominant and
manifest in the form of effective meson exchanges.

With this in mind, and to evaluate the pertinent hadronic
form factors with gluonic operators in the QCD instanton
vacuum, we will trade matrix elements of the gluonic
operators for effective fermionic operators. This can be
done in two ways, either by averaging the gluonic operators

|

N, +N_

(W, =2
+

The evaluation of the gluonic operators from the instanton
vacuum is twofold. When the operator probes the gluonic
content inside the hadronic state with a momentum transfer,
the contribution can be calculated by replacing the gluonic
field in the operator by the semiclassical background of the
instantons [15,66]. The averages over the operators and the
quark-instantonic vertices convert the gluonic operator into

in the presence of the zero modes for forward matrix
elements [66] or by using the semiclassical bosonization for
forward and off-forward matrix elements [9]. This trading
was shown to be exact in two-dimensional QCD in the large
N. limitin [67] [see Egs. (91) and (92)]. Here, we will show
how to generalize [66], by showing how it can be extended
to off-forward matrix elements, and also at NLO in the
mean instanton density to account for like and unlike
instanton molecules. The latter play a dominant role in the
gluonic contribution to the energy-momentum tensor and,
in general, most gluonic operators on the light front.

A. Sum ansatz

Let O[A] be a generic gluonic operator, sourced by a
multipseudoparticle gluon field given by the sum ansatz

Ax) = Z Aj(x). (62)

The ensuing gluonic operator O[A] is seen to split into a
sum of multi-instanton contributions

ZOA,+Z(’)A,,AJ . (63)

I#]

of increasing complexity. In the QCD instanton vacuum,
the gauge fields and their quark zero modes are reduced to
a quantum moduli. The vacuum averaging over the
quantum moduli in the absence of source is the effective
Lagrangian given in Appendix A. In the presence of the
split form of the gluonic source (63), the averaging over
the quantum moduli trades the gluonic source for multi-
flavored fermionic vertices.

B. Vacuum averages

The vacuum averages of local gluonic operators using
(46) for fixed-N. configurations (canonical ensemble)
follow from

4 I(a
ZIdUI T ,0 /DI/IDI//*DA O (H @1 H ®A> e fd“x(_l//ll?{//sz(Gpp)Z)' (64)

|
the corresponding effective quark operator. Thus, in the
instanton ensemble, the gluonic operators are mapped into
some effective fermionic operators associated with the
multi-instanton configuration in the instanton vacuum.
Using (63), the vacuum expectation value of O[A] in the
instanton ensemble can be organized in diluteness contri-
butions using the instanton density 7, 4:
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>eff
o N

I
=

)=
(O N2 (O4 e
2 (0,

> eff

e [Z< Y
©

>k

(O Jar | N2 (O Jun
2

eff
+ N_N_
1000

(65)

where the effective fermionic operator O, .. _ is obtained by simultaneously connecting O[A] to the n instantons by sharing

the classical fields:

O++ _ /d4ZI]dU1| d4zlndU1nO[All,A12,...,Aln]®11...®1n.

Now the canonical ensemble average effectively
reduces to the path integral of the effective field theory.
The calculations become the vacuum expectation values of
a bunch of effective multi-instanton fermionic operators
over the effective Lagrangian L. This is the conse-
quences of the diluteness of the instanton vacuum.
The calculations now can be done order by order in the
framework of the instanton density expansion. As
the same idea of the diluteness, the correlation between
the instantons becomes irrelevant. Therefore, the fermion
and gluon exchanges among the instanton vertices &; will
be neglected. The extension to a grand canonical ensemble

o =3 35 (6) (@

N.

"
N, N_
(6.)(0-)

(P'|OLIP)esr +

+

The form factors following from (67) can be expanded
systematically, in terms of the instanton density, which is
commensurate with a bookkeeping in 1/N . Translational
symmetry relates the hadronic matrix element of O[A] to
the momentum transfer between the hadronic states:

PIOWIP) =, [ dxPOAEIPE (68)

The recoiling hadron momentum is defined as P/ = P + g,
and the forward limit follows from g — 0. Equation (67)
generalizes the arguments in [66] to off-forward and multi-
instanton contributions.

N_
ICB)

(66)

of pseudoparticles with varying N, will follow by
inspection (see below).

C. Form factors

The preceding arguments for the vacuum averages can be
extended to hadronic matrix elements, provided that the
resulting effective vertices are localized within the hadronic
size. This is true for most light hadrons, since the instanton
size is comparable to even to the pion, the smallest of all
light hadrons. With this in mind, the transition matrix
element of the gluon operator O[A] in a hadron state will be
given by an ensemble average similar to (65) with in-out
on-shell hadronic states:

)n—k <<];___>)k<P/|O++,.._|P>eff

1 N2

<P |O |P>eff+2<6+> <

PO |P)esy

5 (P|O__|Pegr + - (67)

N?
2(0-)2

Graphically, the color averaging in (66) connects O[A]
to n instantons through the classical field backgrounds.
Each matrix element in (67) is evaluated by the effective
Lagrangian L., with only the connected diagrams
retained. The hadronic matrix element effectively reduces
to the path integral of the effective field theory, thanks to
the diluteness of the pseudoparticles in the vacuum state.
The calculations can be carried order by order in the
instanton density expansion.

More specifically, each of the external fermion (anti-
fermion) lines in the diagram contributes a pair of UUT in
the color group integral. Each of the UUT pair gives a 1/N,
factor in the large N, limit. Therefore, the 1/N . counting of

each diagramis 1/N ffv", where N r is the external unattached
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(a)

(b)

FIG. 12. (a) The diagrams of O[/] in the multi-instanton expansion of the two-gluon operator O,, and @29. Each dashed line connected
to the instanton represents the classical background field. (b) The diagrams of O[A;, A;] in the multi-instanton expansion of the two-
gluon operator O,, and @zg. Each line connected to the instantons / and J represents the gluon fields in the operator. Each of the ring
dots in the diagrams represents the insertion of the non-Abelian cross term G, [A;,A;] in (C5).

fermion number [the number of the external (anti-)fermion
line unattached to the operator]. Note that in some cases the
leading 1/N .. contribution gives the disconnected diagrams
in the matrix element [15]. In this case, the fluctuation in
the instanton numbers comes into play, and the ensemble
formulation has to be generalized to the grand canonical
ensemble.

VI. GLUONIC SCALAR FORM FACTORS

We will start our analysis by illustrating how this
averaging carries for the simplest two-gluon scalar operator

OyA] = G (). (69)

A. One-instanton contribution
In leading order in the density expansion, the effective
fermionic operator for O, is obtained by averaging the

leading expansion of O,, with one instanton vertex:
|

*

OZg:l:(x) = / d4Z1dUIO2g[AI}®1 (70)

with O, [A;] = G2,[A;]. The classical field of the single
instanton plays an important role in the expectation value of
the gluonic operators, due to its strong and localized nature.

The calculations are illustrated by the diagrammatic
contribution in Fig. 12(a), where each of the dashed lines
denotes the replacement of the instanton classical fields
into the gluon field in the operator. In the Feynman
diagram, each of the external fermion flavors N, contrib-
utes a pair of UU" in the color group integral, giving a
1/N, factor. The 1/N,. counting of each diagram is 1/ N
Hence, we consider only the one-flavor contribution at each
order of the instanton density expansion.

In leading order in the instanton density, the 1/N,
expansion of the result in (123) gives

1 —iq-x 1 (1.4) —ipq-x m Ny 1 m’ Ny=1 - IZF}/S —ig-
V/d“x(?zgi(x)e q :V/d4XF29 (x)e~ra pppe (2ﬂ)454(q)—N—C PRy d*zip(z) 5 w(z)e 7|,

z°p

where the profile function for the single (anti-)instanton /
(A) is defined as

(1.4) 192

Fy, 7 (x) = W.

(72)

The leading-order contribution of the 1/N, expansion
comes from the diagrams where all of the N flavors looped

(71)

|
up. These diagrams do not have any contribution in the
canonical ensemble, as they are disconnected from the
hadronic source. Similar to the calculation of the Gf”,
operator in [15], we have to consider the fluctuations in the
instanton vacuum. However, this part will contribute only
to the forward matrix element. In the off-forward matrix
element, the nontrivial contribution has to be connected to
the hadronic source and, therefore, is down by 1/N..
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B. Two-instanton contribution

At next-to-leading order of the instanton density expan-
sion, the effective fermionic operator for O,, can be
obtained by averaging the leading expansion of O,, with
a two-instanton vertex

Ong:j: (x)

_/d4Z[d4Zde1dU102g[A1,A]}@]@J (73)

with

OZg[AI’AJ} = ZGZU [I]GZI/[J] + ZGZH[J]GZH[I’J]
+2GZu[I]GZy[IvJ] +Gﬁy[1,J]Gzy[1,J]. (74)
|

*

1 m

Here, G, [I] is short for G,,[A;], the single-instanton field
strength.

In Fig. 12(b), we also show the diagrams that contribute
to the gluonic scalar operator O, at the second order in the
instanton density. Each diagram corresponds to each term
of the terms given in (142). Each of the dashed lines
denotes the replacement of the instanton classical fields by
the gluon field in the operator. In the case of a two-instanton
cluster, at the leading order in the 1/N, contribution, each
instanton with the N — 1 flavors contracted will dominate
the contribution in the hadronic matrix element. The
effective operator produces two types of coupling due to
the chirality. The operator produced by I/ or AA clusters
corresponds to a chiral-flipping process

1 . 2N;=2 1
V/ d4XO2g++,——(x)e % = 2N (N2 - 1) <4ﬂ2p2> /d411d4218tf{5(21 -z}

iy [ atse e 22 o) v @) o) @) 09)
where the profile function for the /7 cluster is defined as
Fglg’) (x—z5.x —z25) = 2G% (x — 2)G% (x — z;) + 4€““UGS, (x — 2))Ad(x — 2;) Al (x — z;)
+ 4€a6dGﬁu(x - ZJ)Aff(x —27)AY(x — z4) (76)
and the profile function for the AA cluster is equal
Fg}’)(x—z,,x—zj) :Fg;A)(x—z,,x—z,). (77)
The operator produced by /A molecules corresponds to a chiral-conserving process:
g [ Ot == (47’;;)2) T [ s -z
oy [ atse et - zpx -2 o v w5 v 09

where the profile function for the /A molecule is defined as

FUA)

2g,pA 2

1_
(x =z, x = 27) = S 755135 2G10, (x — 2) Gl (x = 27) + 4€““I Gy, (x = 21 Afl(x — 2)) AL (x = 2;)

+ 4€P1G, (x — 2))Ad(x — z)Al(x — z7)]. (79)

Generally, the operators induced by the instanton clusters
are nonlocal. However, as a result of the diluteness in the
instanton ensemble, the highly localized nature of the
instantons allows us to approximate the nonlocal quark
operators by local operators, using the expansion in terms
of the relative distance between the instanton pairs
R = z; —z;. The relevant contribution to those matrix

|

elements at higher order of the instanton density comes
from the close clusters. Therefore, we can extract the leading
contribution by the R expansion (the local approximation)

<>

w(z)w(zy) 2 w(2w(z) = Rap(2) 0, (2) + -+
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Note that the quark line connecting the instanton / and J
produces the Euclidean quark propagator with a determi-
nantal mass m* in the SIA, as opposed to the constituent
quark mass in the mean-field approximation, i.e.,

S(x—y)~/

1 (PS|¢g*GZ,|PS)

d*k if +m*
(27)* k> + m*?

F(pk)e~ =) (80)

C. Forward matrix element

To make the physics more transparent, we properly
normalize the hadronic matrix element in the forward limit
q — 0. With the consideration of the instanton fluctuations,
the hadronic matrix element reads

2K

UTl (0)
Vi
N4

1 2K
Nc p2m*2

The first term comes from the instanton number fluctuation,
and the second term comes from the quark-instanton
interaction in the SIA. The topological compressibility
or can be estimated by the QCD low-energy theorem
[15,38]. The value is given by

3272 2My

or =((N=N)*)p =_N. (82)

Sl

where b = 171 N, is the one-loop beta function in 1/N, limit
(quenched QCD).

In QCD, the gluonic scalar operator is tied to the
nucleon mass due by the conformal anomaly. In the chiral
limit, the nucleon mass is saturated by the contribution
from the anomalous mass (invariant mass M;,,) induced by
the spontaneous breaking of chiral symmetry:

b (PS|g*GZ,|PS)

M O=M,, =-
N(m_) ) nv 3271_2 2MN

(83)

In the large N, limit, the invariant mass follows by
dimension

N 1/4
Cl—= .
(¥

As in quenched QCD (N, — o0), the instanton density is
the only scale in the QCD instanton vacuum. It is the
analog of Agcp for the gauge configurations in the QCD

My _

inv

(84)

1

3272

1
P'S|?G2,|PS) = — |~ M\ “LAZ2
< |g ,Ul/‘ > |:4 myv N V

(PS|myy|PS)

ST (81)

1
TN (VE=T) (pzm*z

2
) ﬂzszu}
[

vacuum, after cooling through gradient flow. Beyond the
quenched limit, quarks start to contribute. The invariant
mass will start to run due to the mixing between the gluon
scalar and the quark scalar operator, induced by the quark-
instanton interaction. The result to second order in the
instanton density is

o (b 2 b
M, = M. —
inv inv + (Nc <p2m*2> +2NC(N% _ 1)
2k 2 (PS|myy|PS)
- | 3p?m?T | —————L. 85
X (pzm*2> p-m 11) ZMN ( )

The invariant mass is renormalized by the quark mixing, in
the instanton density expansion. With the invariant mass
renormalized, the generalization to the off-forward matrix
element is now straightforward, as we now detail.

D. Off-forward matrix element

In the small size limit with momenta pg <« 1, the
detailed instanton structure is not probed. In this case,
the gluonic operators are reduced to effective quark
operators, and the momentum transfer dependence is
dominated by quarks. However, when the momentum
transfer becomes large enough to probe the instanton size,
the momentum transfer dependence will be corrected by the
instanton profiles. Hence, the off-forward hadronic matrix
element

2K

L2\ 1
ch (pzm”)ﬂ 20 P4 N =)
. 1 2k \2p*m?
2N (N2 = 1) \ p*’m*? 9

_ < 1 =<
TmﬁZ,A)(ﬂq)qﬂqu’Slw<7/<,410u> - Zg,ml) w|PS),

2
() 3T )| (P Sl )

(86)
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where the nonlocal form factors induced by the finite instanton size effect are defined as

ey L = 24x? J
ﬂZg (q) q/)' 'x(xz + 1)4 l(qx)
(11) 1 C) 8(2 — Xz)
ﬁzg (q) q[) x(l +x2)4 l(qx)
576x%  J3(gx)

and are normalized to unity in the forward limit. We plotted
them in Fig. 4.

The quark hopping integral between the instanton and
anti-instanton T4 (pm*) is defined as

/ 'R / Ak ( )Jl(kR)'lk -

A
4
/ <R / dKKF (k) J(kR)

(88)
R<p\7+1?
With the vacuum parameters,
and T, = 0.5834.

It is clear that the universal fluctuation dominates the
gluonic scalar form factor at the leading order of the 1/N..
expansion. The 5*(g) contribution reflects on the scalar
glueball decorrelator with the glueballs sourced solely by
the localized and semiclassical instanton and anti-instanton
fields:

we have T, = 1.666

or (2m)* B 1
© 3272%(G?)

/d4xe_i"‘x<G2(x)G2(0))C.
(89)

At nonzero momentum transfer, (86) shows that the
gluonic G? in a hadron mixes with the scalar meson (o)
and tensor meson (¢) in the hadron. The mixing with the
quark traceless tensor operator is penalized further by the
instanton size.

x(l T2 P
+ ¢*(768 +72¢* + q*)Ko(q) + 124(128 + 284> + ¢*)K(q)]/4°

2

= q—Kz(CI)’

2

=g Kal) + 2Ki(0),

= 12[48(=32 + ¢?)

(87)

[
VII. GLUONIC PSEUDOSCALAR FORM FACTOR

The preceding calculation can be straightforwardly
extended to the gluonic pseudoscalar operator, which enters
the spin sum rule in hadrons through the U(1) anomaly
(see below)

@Zg[A} = qu(x)GZu(x)’ (90)
where the dual field strength is defined as

> 1

G;w<x) = ieuupllG/;,l( ) (91)

A. One-instanton contribution

At leading order in the instanton density, the effective
quark operator for O,, can be obtained using

Oy (x) = /d4ZJdUJ@29[AJ]®J7 (92)

where

O2g[AJ] = GZU[AJ]GZU[AJ]' (93)
The evaluation of (92) is also illustrated by the same
diagrammatic contributions in Fig. 12(a). The profile
function for the single (anti-)instanton / (A) in the gluonic
pseudoscalar operator can be deduced from the scalar by
using the identity G¢,[I,A] = £G4, [I, A]. More specifi-
cally, we have

1 4 —igx _ 4 A) —ipgx m* \Ns 454 L/ ome ANt o FP —ig-
3 0=y [aarfwere () earota - (s) [ S w@en].

(94)

where the profile function for the single (anti-)instanton I (A) is defined as

FZg (x)

192
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Again, the contribution is dominated by the disconnected
diagrams where all of the N flavors looped up. The LO
contribution for the pseudoscalar follows from the instan-
ton vacuum fluctuations in the forward limit.

B. Two-instanton contribution

The contribution at the NLO instanton density c is
given as

©2gj:i(x) :/d4zld4ZJdU1dUJ©2g[AI’AJ]G)I@J (96)

1 - .
V/d4xozg++,——(x)€_lq'x =

2N (N2 = 1) \47p?

1 I 1
% ‘—//d“xe_’q'ng;['AA)(x — 7, X - Zj) |:I/_I(Z1)

with

(7)2g[AIvAJ] = 2GZU[I]GZV[J] + 2Gﬁv[1]éﬁv[1"l]
+2G4,[J1G4,[1,J)+ G4, [1,J)G4,[1,J].  (97)

The instanton pair contribution is similar to the one
illustrated in Fig. 12(b). The effective operator produces
two types of coupling due to the chirality. The one
produced by the II or AA clusters corresponds to a
chiral-flipping process:

1 * O\ 2N;-2 1
( m > /d421d421§tr{S(Z1—Zj)}

Ty (o) + iz

L ] o)

where the profile functions for the /7 and AA clusters are, respectively,

F(221>(x—z,,x—z,) :Fg;[)(X—Zl’x—ZJ) (99)
and
FéﬁA)(x -z x-z) = —Fglgl) (x—zp,x—2z). (100)
The operator produced by the /A molecules corresponds to a chiral-conserving process:
x %/ d'xe ) (x = 21,5 = 7)) {W(a)n 1 Zys w(z) - W(Zx)h#w(m) . (101)
where the profile function for the /A molecule is defined as
PR (x = 2.3 = 25) = 200, [e%4G, (x — 21) Al(x = 2)AL (x = 2) = €7°0GE, (x — 7)) Al (x — 2))AL(x — 2)]. (102)

Again, we approximate the nonlocal quark operators by
local operators, by expanding in terms of the relative
distance between the instanton pairs R = z; — z,.

C. Forward matrix element

For the gluonic pseudoscalar, the naive forward limit of
the hadronic matrix element vanishes due to the parity
selection rule. To extract the forward form factor, we
choose a different normalization for the forward matrix
element by tilting the hadron slightly off forward and
properly normalizing the matrix element with spin, before

taking the forward limit. Without loss of generality, we
assume that the initial state of the nucleon is in the rest
frame. Now, we can rewrite the nucleon spinor product as

ﬁs(P/)iysus(P> = 2MNSU

with the helicity defined as s, = —y1 £ - Uy, where the
final state nucleon carries a small recoiled velocity
U~ ¢q/My. Thus, the forward limit of the matrix element
can be defined as
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(PS|O|PS)
ZMNSU

P's|O|P
_(Psiofps).

P'—P

103
ZMNSL, ( )

With the proper normalization to the matrix element, the result of the hadronic matrix element in the forward limit reads

1 (PS|g*G4,G4,|PS)

3212 2Mys,

1 2K
16N (N2 = 1) \ p*>m*?

where M, (0) ~ 395 MeV is the constituent quark mass
in (43) and the value is estimated in [59,60]. Here, we
assumed the nucleon as a quark-scalar-diquark composite,
to capture part of the correlations in the nucleon but not
all [57,68], e.g., (uud), ~ uy[ud], for a spin-up proton. It
follows that the mixing of the proton spin with the axial
charge is mostly through the unpaired u quark.

The result parallels the gluonic scalar matrix element.
The first term stems from the fluctuation of the number
difference in the ensemble, and the second term stems from
the quark-instanton interaction. The topological suscep-
tibility y, can be estimated by the QCD low-energy
theorem [9,15,38]. When recast in terms of the determi-
nantal mass, the result is

1 ~
22 (PSIPGLGAIPS) = |, 0%

e 1 2K
=M,(0)%=+ |—
q( )N+ |:Nc <p2m*2) +2Nc(

1 2k 23 22T (PS|mpiy’>w|PS)
2 3 2 ) Pl
NZ—1)\ p*m 2Mys,,
2  AP'Slgy,rw|PS)
) pzszIAlq# 21‘4’“ s , (104)
N v

In quenched QCD or gluodynamics, the value in (105) is
about N (Poisson), a result supported by quenched lattice
simulations [69]. A similar estimate follows from the
Witten-Veneziano formula in (38) and (39) with )(50)/ N~
1.95/N  for a singlet mass M ~ 0.85 GeV. In unquenched
QCD, (105) is significantly screened by the quarks and
vanishes in the chiral limit y,/N ~m/N m*. This result
holds in the QCD instanton vacuum [9,15,70,71] and is in
agreement with chiral perturbation theory [72-74] and
random matrix theory [75].

The gluonic pseudoscalar operator is tied to the quark
intrinsic spin by the Adler-Bell-Jackiw (ABJ) anomaly. In
the chiral limit, the quark intrinsic spin in the nucleon is
saturated by the gluonic helicity induced by the ABJ
anomaly. This point will be detailed below.

D. Off-forward matrix element

The generalization to the off-forward matrix element is
straightforward, with the result

54<q>} iy (P)iruy (P)

prm

1 2k - 1 27 \2 _ B
1

2 \? > . _
- _1)< ; *2> PPmT By, (pq)ia, (P'Slir,rw|PS),

where the nonlocal form factors induced by the finite
instanton size effect are defined as

~ 1 [o 24x?
ﬁg;)(f]) :—A dxﬁjl(qx)v

q X2+ 1)
~(IT) - 1 C 8(2—x2)
By (@) —5/0 dxmh(qx),
~(IA) 1 o 192x2 JZ(q.x)
=— dx—— 107
@ = [T a2 o

(106)

and are normalized to unity in the forward limit. The quark
hopping integral between the instanton and anti-instanton
T4 (pm*) is defined in (88). Note that the ultralocal 5*(g)
contribution can be written as

@@54( ) !

T q = 322060 / d*xe™ (GG (x)GG(0)).

(108)

054005-22



GLUE IN HADRONS AT MEDIUM RESOLUTION AND THE QCD ...

PHYS. REV. D 110, 054005 (2024)

The nonzero momentum transfer induces emergent meson-
nucleon couplings in (106), with the pseudoscalar mesons
(7") and axial vector mesons (f).

VIII. C-ODD THREE-GLUON FORM FACTOR

Another class of gluonic operator of interest is the C-odd
three-gluon operator
O, [A] = d Gl (1) Gla(x) G, (). (109)
which is found to be the leading operator in the photo-
production process of heavy pseudoscalar mesons [76]. A
similar but not identical operator was considered recently
in [66], to estimate Weinberg’s CP-odd contribution to the
nucleon matrix element. We now proceed to evaluate it in the

QCD instanton vacuum, through the substitution of the sum
ansatz (62) and the ensuing averaging over the moduli.

A. One-instanton contribution

Since d?° is a symmetric SU(3) structure constant
which with no support on the SU(2) subgroup, in LO of
the instanton density, it follows that all associated color
orientations of the gluonic fields rotate congruently in the
moduli. Therefore, the structure constant d“*¢ would reduce
to tr(z?{z%,7¢}) = 0, with zero contribution.

B. Two-instanton contribution

In NLO in the instanton density expansion, some of the
two-instanton terms in O;,[A] involve the nontrivial relative
color rotation U} U, = U, between 7% and 1, in the SU(2)
subgroup, with nonzero net color structure

(U n*U{U 2 U, U e USY) = w(z*UTU,1,U5 U, )8
(110)

This means contributions from the single-instanton fields
G, [A;]and G, [A,], as well as the overlap between pairs of
instanton fields G, [A;,A;], a consequence of the non-
Abelian gauge nature. (See Appendix C.) The evaluation of
the latter appears involved. Fortunately, the calculation can
be simplified, as the d**¢ color structure has support only
when two different SU(2) subgroups in SU(N,.) overlap
through their relative color orientations. To obtain a non-
trivial relative color rotation, the crossing term G, [I, J] has
to be combined with both G,,[I] and G,,[J] to carry the
same color rotation along either / or J:

O3gii(x) = /d4Z1dU1d4ZJdUJO3g[A1,AJ]@[@J, (111)

where

O3lAr Aj] = d** (Gﬁu[l}GﬁaU]Giam + Giull|Gpal1G, 1] + G l1GRal|G, 1] + Gl [T1Gal1GE, 1)

+ G VNG G5, ] + Gl |Gall|Gi, 1] + Gl|Gl TGS, T] + GlT1GRal11Gi, 1. ]

+ G NGl TGS, [T] + G Gl |G, 1] + Gy, [1. TG 1G] + G 1. J]Gﬁa[J]Gﬁa[l])-

(112)

Here, G,,[I] is short for G,,[A;]. In the case of a two-instanton cluster and in LO in 1/N, counting, each instanton with
N — 1 flavors looped up dominates the contribution in the hadronic matrix element. The effective operator produces two
types of coupling due to the chirality. The operator produced by /7 or AA clusters corresponds to a chiral-flipping process:

1 . N, -2 m* O\ 2N;=2 1
V/ dxe™ Oy __(x) = “ININTZT) <4n2p2> /d4Z[d4Z]§tr{S(Z[ -z)}
1 0y o LFy _ 15y
iy [ AR 5= 2052 ) S gta) + 902 S )|

where the profile function for the 7 or AA pairs is defined as

1
11 aa a a
F_gg_;wpwy(x —z5,Xx—7y) = Enﬁy[Gf},,(x —21)Ghy(x—27)GS (x — 2) + Ghy (x — 2/) Gl (x — 25)GE(x — 2)
+ Gy (x = 2;)Go(x = 2) G (x = z/)] + (I <> )
1_
+5’1§ym [€aCdew(x - z;)[A;‘f(x —2))Ab(x—zy) = Ag(x — Z1)A;Z§ (x=2)]Gh,(x = 2,)

+elGs, (x — ) [A] (x — 21)AG(x — 7)) —AG(x — 21) A} (x — 2))] G (x — 2))

+e"IGy, (x = 2) Al (x = 2)AY (x = 2;) = AL (x = 2 )AL (x = 2)|GRe(x = 2)) + (p < A)]. - (114)
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The operator produced by /A clusters corresponds to a chiral-conserving process:

1 o N.—2 [ m* \22 i
V/ d*xe " O34, _(x) = TONZNZ =) <4ﬂ2p2) /d411d411 Ztr{S(zl —2;)Va}

1 o _ 1+9 _ 11—y
XV/d“ B F'ggy)up/la/i( —25,X—2y) |:V/(ZI)7ﬂ 2 w(zy) +w(z0)vp > w(z)|, (115)

where the profile function for the instanton clusters is defined as

1A 1_ll a a
Fgg.”)ypiyﬁy(x—zhx—zj) =371}, [G” (x=21)Ghy(x = 2/) G4, (x —25) + Go (x = 27) Gy (x — 2/) GE (x — 2)
Gty (¥ = 2))Ghal = 2) Gl x = 20)| = (1 1)

l—a 1 ac C
Eﬂﬁym[e dG (X = ZI)[A/)(X 2) AL (x —z) = AG(x — ZI)A/)(X ZJ)]G,}fa(X—ZJ)

+€aCdGCa(x_Zl)[A (x _ZI)A (x—z/) = Ad( Z1)A€(X—ZJ)]G51/(X—ZJ)
+ UGS, (x = 2) [Af (x = 2))AY (x = 27) = AL (x = 2)) A (x = 2))|GPa(x — 2) + (p < /1)} - (116)

+

In the SIA, these correlation functions can be simplified as single-point profile functions. The renormalization-group
invariant result for the hadronic matrix element is

N.-2 2k \287’m 1
(P'lg’d* Gy, GpoGS,|P) = — 1)( *2> PP TS (0q) = 678, (P 0,1 |P)

2N%(N2 - prm 9 2

NL. -2 2K 2 87[21’11 1l _
+ 2N2<N2 _ 1) (pzm*2> 9 szlelﬁgg)<P‘1)(5ua51/}qu - 5yaQ[)’QM)5pﬂ<Pl|W6aﬂW|P>

N.-2
2NZ(N2 - 1)

2k
(pZm*2> '02 2T1A _ﬂ3g ( )
1 2 /1,7, 3 5
X €ﬂylo’erQu5;4p - eﬂyDGQ(JQA(S;lp - Eeﬂy/lvq 5;!/) + (,0 hid /1) - (# <~ V) <P |W7/Lﬂl ay]}/ W|P>

N.-2 2k \?
_2N2(N2 _ 1) (,02 ) P szIA_/} ( )5

1 _ o
X <€[7'yﬂﬂqn'qy ~ €969y — Eeﬂyﬂvq2> <Pl‘l//y[[)‘l ()},])/Sl//|P>

N.-2 2k \?
T2NI(NZ- 1) (pzm“) o 2T’A_ﬂ3g )

1 .
X |:€;w/)a(5/)’/1Qy‘Ia - 5/311‘]yq}») - Eeﬂy/)yqzaﬂ/l + (ﬂ <~ l):| <P/|WY[/}1 ay]y5W|P>v (1 17)

where

4
1Dy = 1 [ g2 040X J3(gx)
B3y (pq) CIA x2(1+x2>6 P

(1A) B 1 o0 2880x4 J3(q)C)
ﬂ?ag (pq)_gl dx(1+x2>6 qzxz s (118)

which is seen to vanish in the forward direction.
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1. Light front twist-3

This operator is of special interest on the light front as a leading twist-3 that sources the coherent photoproduction of 17~
heavy mesons off the nucleon state [76]. In light front signature, it contributes

N, -2

<P/|g3dacha+i(x)Gb+j (X)Gc+j()€> |p>

where

4p? [
B3, (Pq) ZCIA dx

T 8NA(NZ-1)(N, +2)

) o ‘
X <6"’q+qa —0"q'q, - 3 qza*’) w|PS),

2k \? _
() o Tula P o) P'sl

(119)

512x*  Js(gx)

—— - 120
(14 x%)° g*x* (120)

2. Gravity dual twist-5
The gluonic C-odd operator d“”"G“,,Gﬁj ,G7, as a twist-5 boundary operator is argued to be dual of the supergravity B field

u

in diffractive hadron-hadron scattering with odderon exchange [77]. In particular, its off-forward matrix element is

(P'gd Gy, G, G, |P) =

CONE(NE-1) \ PP

L N2 2% \2 o g 32
oy, 327
INI(NZ— 1)\ pPm2) P

N,-2 2k \2
' ( > pPm?T

C2NA(NZ-1)\ pPm?

N.-2 2k \? 16
< > p*m*Ty

2

q*(P'|myo,,w|P)
2

9 (5/405‘]/1%/_5yaQﬂqﬂ)<P/|ml/_/o-aﬂW‘P>

27‘[2 (1A)
45 ﬁ3g (,061)

1 . ©
X <€ﬂy;m('I(;CIp ~ €959y _Eeﬂmuqz) <P’|mtl/}/wl ay]y5W|P>

N.-2

2K 2 5
- T
INA(NZ-1) (pzm*2> i

IX. C-EVEN THREE-GLUON FORM FACTOR

As a parity check on the preceding calculation, we now
consider the C-odd analog of (109):

@35}[‘4] = fachzv(x)Glljp(x)G;y (x)

Equation (122) can again be evaluated semiclassically
through the substitution of the gluonic field in (62).

A rerun of the preceding steps gives

p

3272
45

1A 1 _ =
/}j(ig )(pq) (€puﬂaQyQa _Zeﬂvﬂyqz) <P,|ml//]/[ﬁlay]]/51//|P>

(121)

A. One-instanton contribution

In LO in the density expansion, the effective fermionic
operator for @3g follows from the modular averaging

12) Oge(x) = / d*z;dU,05,[A[]©, (123)
with
O3,[A)] = Gy, [A)GY,[A/)Gy,[A)]. (124)
|
1 - ‘ 1 ~ . m* \ Ny
V/d“x(%gi(x)e—tquc _Z_V/d4ngIg-A)(x)e—tpq-x[<4ﬂ2p2> (27T)454(q)
1 [ m* \N-! NS »

- (4,,2p2) / d*aip(z) — Ly (2)e } (125)
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where the profile function for the single (anti-)instanton / expansion of @3q with a two-instanton vertex:
(A) is defined as ‘

_(14) 1536

=—. 126
) (x* +1)8 (126) > 4 1 %
O3gj::|:(x> = d Z[d ZJdU[dUJO3g[A1,AJ]®I®J (127)

B. Two-instanton contribution

At NLO in the density expansion, the effective fermionic

operator for (7)39 is obtained by averaging the leading with

Oslr, As] = e (G 11GE[11GS, 1) + G Gh G, 1] + G IGENNGS 1] + Gl Ghal1GE, ]
+ Giul|GEl11G3, ) + G ] GLal1)GE 1)) (128)
Here, we dropped the contributions associated to G, [/, J] as they are subleading in power counting.

The emerging fermionic operators are twofold: chiral conserving and flipping. The chiral-flipping operators are produced
by II or AA clusters:

1 P —ig-x 1 m
\7/ Ty (4,,2,)2

*

2N;-2 1
> /d4Z1d4Zj§tr{S(Z1 -27)}

5 5
L)t S )| (129)

2

1 .
X V/d“xe—lq-ng;I’AA) (x=2z5.x=2) [‘/_/(Zl)

where the profile function for the I/ cluster is defined as

F{D(x = zp.x = 7)) = 360G, (x — 2)) Gl (x = 2) Gy (x = 27) + 36 G, (x — 2)Gl(x — )G (x = 2;)  (130)

and the profile function for the AA cluster is

FgIgI)(X—ZhX—ZJ) :Fg/;A)(X—th—ZJ)- (131)

The chiral-preserving operators are produced by the /A molecules:

1 4 .7 —iq-x 1 m* N2 4 4 1
v d*xO3,,_(x)e = _ZNC(Nf 1) \ap? d'z;d ZJZU{S(ZI = 27)1u}
1 —igx [ - 1+ }/5 - - }/5
xv/dd'xe e FN (x =z x—2)) {w(z[)n 5 w(z) =~z ——w(z)|.  (132)

where the profile function for the /A molecule is defined as

(14)

1 Sa ac C C a C
Fyy o (x = 21,x = 25) = S8, [36 ‘G (x = 25)G5, (x = 21) Gl (x = 21) 43”4 Gyl, (x = 21) GE p (x = 27) Gl (x — ZJ)} =0

2
(133)

and is seen to vanish. We again approximated the nonlocal quark operators by local operators, by expanding in the relative
distance between close instanton pairs R = z; — z;.
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C. Off-forward matrix element

The general off-forward hadronic matrix element of the C-even three-gluon operator is

5p°

38472 vy

2k \2 ~ _
x (pzm*z> 3/’2’"2T11]ﬂsg(PCI)<P’S|mll/1//|PS>’

where the nonlocal form factors induced by the finite
instanton size effect are defined as

80x2

- 1 [
ﬁ3g(Q)=5A dxmh(qx) (135)

with the normalization to 1 in the forward limit.

X. GLUONIC GRAVITATIONAL FORM FACTORS

Another gluonic operator of interest is the gluonic tensor
tied to the QCD EMT. To evaluate the QCD energy-
momentum tensor using local or nonlocal effective for-
mulations is subtle; for a recent discussion, see [78]. In the
present approach, it follows the same reasoning as that for
the scalar and pseudoscalar operators discussed above.

With this in mind, the EMT in QCD is given by

Ty =T+ Th, (136)
where TZ,, is the gluonic EMT and TZL, is the quark EMT.
All issues of operator renormalization are understood in the
sense of a gradient flow cooling to the semiclassical point
with fixed topological charge per 4-volume, with the
instanton density as the sole scale. The energy-momentum
tensor can be decomposed as the sum of a traceless and
traceful part [79,80]:

- 1
T/w = T/w + _g/wTaav

Z (137)

where the traceless part includes the gluonic tensor

- 1
Ty = Zgﬂl/G%p -GGy, (138)
and
N -
Tl“/ =y Y(ﬂlDl/) - Zg/wm 4 (139)

and the traceful part 7, is given by the trace anomaly
in (30). Both contributions belong to different irreducible
representations of the Lorentz group. Thus, they do not mix
in the renormalization.

. 1 or (27)* _ 1 2K 1
(P8I r ™G Gl GilPS) = = [ M 57 Ol oo [ma PP = [ () = 5

N\ p*>m*? N2-1)

(134)

In the chiral limit, the traceful part is related to the
gluonic scalar by the conformal anomaly, and in 1/N,
counting rule, it is independent of the quarks. We note that
this decomposition is commensurate with the analysis of
the energy-momentum tensor in holographic QCD, through
dual gravitons in bulk [81]. (Holography is a good example
of a strong coupling description of a gauge theory via its
gravity dual, where the partonic structure is elusive.) The
traceful and traceless parts of the energy-momentum tensor
correspond to the spin-2 and spin-0 representations of the
Lorentz group, respectively, and do not mix under renorm-
alization by symmetry.

The calculation of the gluonic scalar form factor can be
easily generalized to the gluonic gravitational form factor.
The matrix element vanishes in leading order of the
instanton density expansion, due to self-duality. Purely
tunneling vacuum configurations do not carry energy-
momentum. This is best seen in light front signature with

. 1= = Za . Ray  Ra B
GoriGre, = — (B B4 422 (B x BY) + B BL).

(140)

Since the instanton and anti-instanton are self-dual, it
means the tunneling configuration of the field strength
in Minkowski space satisfies E* =F iB® for all I =
1,...,N,. Therefore, the instanton contribution at the
leading order of the instanton density in (63) vanishes.
The nontrivial instanton contribution starts from the
higher orders of instanton density and, thus, is penalized
by an extra factor denoted by x = 7%p*n,, ,, the packing
fraction of the instanton vacuum.

A. Two-instanton contribution

At NLO in the instanton density expansion, the effective
fermionic operator for O,, can be obtained by averaging
the leading expansion of O,, with a two-instanton vertex:

Tyys(x) :/d4ZId4ZJdUIdUJTZV[AI9AJ]®I®J (141)

with
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- 1
TZ”[AIvAJ} = Gﬁa[l]Gﬁa[‘]] + GZ(I[]]Gg(l[]’ J] + Gza[I? J]Gltja[l] + (I < J) + G;Lja[]? J]Gsa[I’ J] _ZéﬂvOZg[AI’AJ]' (142)

The effective operator produces two types of coupling due to the chirality. The operator produced by /7 or AA clusters
corresponds to a chiral-flipping process:

l d4 T!J ( ) —iqx _— 1 m’ 2Np=2 d4 d4 ltl‘{S( _ )}
y | @O TN (N2 = 1) \dn2p? GETI g T

1 ) I Fy o LFy
Xv/dW ! Fg{:-fﬁ/A)(x_Zl’x_ZJ) [W(ZI) 5 wl(z) + () —5—wlz)|,  (143)

where the profile function for /7 cluster is defined as

1
P (= 200 = 27) = Gla(x = 20) Gl = ) = 8 Glplx = 1) Glpx = 7))

+ UGG, (x = 2))[AL (x — 2))AG(x — 2)) — Al(x = 2)AY (x — 2)]
+ UG (x — 7)) [Af (x — 2)AG(x — z/) — AG(x — z/) Al (x — )]
= 8 UGey(x = 27)[AG(x — 2)AR(x — 2))| + (I < J) + O(1/N,) (144)

and the profile function for AA cluster is equal

(1)

FT_q,/w

(x—z,,x—zj):F(T/Zi)y(x—z,,x—zj). (145)

Here, we dropped the contributions associated to Gy, (I, J]G{,[1, J] as they are subleading in power counting.
The operator produced by /A molecules corresponds to a chiral-conserving process:

1 d*xT9,, _(x)e 4% = — ! e\ d*z,d* ltr{S( —21)7,}
% pt= T TN, (V1) \dn2p? L@ g I = 2T,
1 o ) 1+ _ 1—9°
Xy / dixe! F(Tl_flzupa(x—zhx—zf) {V/(ZI)HTV/@J)_V/(ZJ)H 5 w(z)|.  (146)

where the profile function for /A molecule is defined as

Py

1 na a 1 a
Tg,/u/pj,('x - X—7)) = —77,;/;’72/; [G,m(x —2)Gl(x—z)) = Z(S/U/Gaﬂ(x - ZI)Gzﬂ(x )

2

+ €9UG i, (x — 2)[AL (x — 2) AL (x — 2;) — AG(x — 2)AD(x — 25)]

+ €aCdG5a(X - 11)[A,il(x - Zl)Agz(x - ZJ) - Ag(x - Z1)AZ(X - ZJ)]
I < J

_5”D€acd(;gﬂ(x—z,)Ag(x—ZI)AZ(x—ZJ) + ( ] + O(1/N,). (147)
a <
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B. Off-forward matrix element

The off-forward hadronic matrix element of the traceless gluonic energy-momentum tensor reads

= 1 2K 2 1672 (1A) _ g 1 e
(P'S|g°Ti|PS) = NN 1) <p2m*2) szleA{ 3 ﬂTg,l(pQ)<P/S|W(Y(ylau) —4g,wl¢>wlPS>

4*p* 1 1 _ < 1 =
- T,2 Pa)\ 4u9p9vs T 4v9p9us — 5 Guwdp4a Y7 (pl0n — 5 9pal "4
5 Prapa) + : (P8 7,102 = 3 99 w|PS)

1 [ e 1 =
- 4,;2,045;’?3) (pq) (q,,qy - ng,w> 4,9, (P' Sl (W ) = 4 9mi 9 > w|PS) }

4

1 2K 2 871'2[)2 11 1 _
N V=) <p2m*2) Ty =g :B(Tg)(PLI)<%%_ZLIQQW> (P'S|mipy|PS). (148)

where the nonlocal form factors are defined as and are normalized to 1. For the quark traceless EMT, the
matching is even simpler and straightforward at the leading

order of the instanton density expansion

1 [ 24 24x2
/}(T[:l)(Q) = 5A dx {(174]1(%) +mJ3(W)

. _ <o 1=
U99) - (psiTilps) = <P’S|l//<7/<ul@u> —Zgﬂyza>w|1>s>

+ O(ny14). (153)

The traceless gluonic and quark EMT now is matched to
the effective traceless quark energy-momentum tensor
derived from the effective field theory (50). It is expected,
(1) 1 [ 256x*  Js(gx) as they are quer 'the same Lorentz irreducible' representa-

(9) / ( (151) tion. The finite-sized instanton profile also induces the
0 mixing of the scalar quark operator.
In the nucleon states, we can parametrize the matrix

512 h(qx)} (150)

(1+X2)3 q3x3

X7 b
W 4 1+ 227 ¢

o 2

ﬂ(TII) (q) = 1 / dx%% (152) element for the effective quark traceless EMT operator and
I qJo (I+x%)* g°x the scalar operator
|
<P'S|Tng|PS> =10 /(P') A (q> 7/(ppy) _ lg;wMN +B (q) iP<l‘av)aqa g qz
g * 9 4 9 2M 16My
1 1

+ Cq,g(*‘]) M—N <61”qu - Zg”"q2>>us(P) (154)

and the scalar form factor
(P'S|mipy|PS) = o(q)ity (P')u,(P). (155)

The gluonic gravitational form factors are related to the effective quark form factors as

1 2k )2 1622

10 =gy o= 17 ) PP Tualom) S5 L8 ) (156
1 2K 2 " 1671’2 (IA)

B,0) = 17 (s ) PP Tl AL B o), (157
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1 2k \* 5 5 o [ 1677 1) 22p% ) 2.2
Cyla) = 5y oD\ m2) Ta(pm*) Tﬁr " (pq)C,(q )+TM T z(ﬂ‘])+ 14 qﬂ " (pq)
q* 3q¢° 1 2k 2 4 p*’M% o(q)
Ag+ By = Cy oo 2m2T LN B () A0 1
|
C. Gravitational charges: A ,(0) d A,(0) a —'?6CF %Nf A,(0)
In the forward limit ¢ — 0, the gluonic traceless part H du \ A,(0) 4z \ lo¢, _% N, A,(0) ’
(154) is H u
(161)
1 A 47°p*\ 2 *
(PS|g*T}|PS) = 2N, (N2 - 1) ( 2 m P*Tialpm*)  where Cr= AéN_l , is given by
the solution at y — oo:
167z

—— (PS|T4,|PS). (159)

and the quark traceless part dominates the matrix element at
the LO in the density expansion:

- 1
(eS[TeS) = 2( PP~ 0005 4,0 (160

Poincaré symmetry guarantees the energy-momentum con-
servation of the A-form factor in the zero momentum limit

A,(0)+A4,(0) =1

with
1 2k \2167%p*m?
A, (0) = T *
O =N =) (pzm*> 3 Lulm)
X 1.*.;
2N.(N?-1)
2k \2167°p*m? N
(S ]

The gluonic contribution to the nucleon gravitational
charge A,(0) receives a contribution from the instanton—
anti-instanton molecules at NLO. Using the QCD instanton
vacuum parameters [59,60] (and references therein), we
have at the resolution u =~ 1/p

A,(0) =09865,  A,(0) = 0.0135.

These estimates are consistent with those given in [37].

To compare with other results, we can evolve the result
from py = 0.56 GeV =~ 1/p, where the evolution starts
to resolve the instanton vacuum [59,60] with DGLAP
equation [82]

Ny
A (0)=————
q() 4Cp + Ny
and
4Cr
A0) = ————.
g<) 4Cp + Ny

At p =2 GeV, the results are shown in the table below.

4,4(0) A,(0)
ILM (this work) 0.560 0.364
Asymptotic [83,84] 0.529 0.471
Skyrmion [85] 0.5 0.5
Lattice (dipole, 2018) [86] 0.46(8) 0.54(8)
Lattice (dipole, 2023) [21] 0.510(25) 0.501(27)
Lattice (tripole) [87] 0.57(4) 0.429(39)
Lattice (Extended Twisted Mass 0.618(60) 0.427(92)

Collaboration) [29]

Global analysis [88] 0.58(1) 0.414(8)

In the second and fourth lattice results, A, (0) is obtained
by imposing the momentum conservation A,(0) = 1—
A,(0). Extended Twisted Mass Collaboration is using
physical pion mass.

D. Gravitational charges:

C,.(0)

The C-form factor at zero momentum transfer is given by

1 2k \%, ,
“oan. vy \pr2) P T

167
M%VA¢,<0>}

x{_z

3

Cy(0)

27T2p2

Cy(0) +—5
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The estimate follows by saturating the scalar and flavor-
singlet nucleon form factor, by the ¢ exchange, with the
result

7 M,(0)¢2,,/G
<PS|mWV/|PS> —3m x q( )gﬂqq/z c ) (

163
ZMN MN mg )

OzN =
The overall factor of 3 counts the three constituent quarks
in the nucleon. Equation (163) yields a nucleon sigma term
of about 6,= 11.5 MeV with our value of m = 12.2 MeV
in Table I and consistently the model estimation on the
parameters m, = 683.1 MeV and g,,,, = 3.841 with G, =

42.32 GeV~? in Appendix B. This is small in comparison
to the empirical value o,= 60 MeV [89] (and references
therein). Additional contributions to the simple mean-field
estimate with only o exchange, and beyond the constituent
quark description for the nucleon, are expected to narrow
the difference. For the mass budget to follow, we will make
use of the empirical value

The gluon C-form factor at zero momentum requires the
explicit nucleon wave function in the QCD instanton
vacuum which we plan to construct. For an estimate, we
will use the results from topological models of the nucleon
[85,90,91] which are about —1 (see the table below) at the
low resolution of 1/p. The chiral quark soliton model
(rQSM) in [90] is usually argued to emerge from the QCD
instanton vacuum in the large N, limit [92], at the same
resolution.

c,(0) CIFM(0) (this work)
zpw soliton [85] —1.006 -0.0117
Skyrme [91] —0.896 —0.0102
¥QSM [90] -0.97 —0.0112

C,(0) C,(0)

ILM (this work) —0.617 —0.365
Lattice (dipole, 2018) [86] . -2.5
Lattice (dipole, 2023) [21] —0.325(12) —0.643(21)
Lattice (tripole) [87] e —0.485
Measurement —0.408 4+ 0.028 4+ 0.033

(6 GeV) [93]

To compare with other results, again we can evolve the
result from py = 0.56 GeV =~ 1/p. For C-form factor, they
obey the same DGLAP equation in (161). Thus, their
asymptotic form is given by

Ny
c,00)=C——F—
q() 4Cp + Ny
and
4Cy
cC,0)=C—————,
g() 4Cp + Ny

where C = C(0) = D/4 is the intrinsic charge related to
the mechanical property inside the nucleon, also known as
D term [94]. Here, we choose the result estimated from
xQSM [90] for C, (0). Evolved to u = 2 GeV, the results
are shown in the table.

XI. HADRON MASS IDENTITY

In QCD, the breaking of conformal symmetry is captured
by the trace anomaly (30). By Poincaré symmetry, all
squared hadron masses satisfy the mass identity

1

M3 = 3 (PS|T,,|PS), (164)

which is distinct from the mass budgeting sum rule to be
discussed below. In particular, (30) gives

b
+ % (PS|gw|PS). (165)
Thus, all hadron masses are composed of
My =My + 6n (166)

of the “invariant” mass (fixed by Agcp) and the chiral
breaking mass (sigma term) at some resolution. In quenched
QCD (gluodynamics), the hadron mass is the quenched

. . 0
invariant mass M-( )

iy induced solely by the spontaneous
breaking of chiral symmetry and/or confinement from
gluons. In QCD, quarks contribute even in the chiral limit.
Away from the quenched and chiral limit, the hadronic mass
receives additional contributions from the o, term [24,95].
In the QCD instanton vacuum Agcp at low resolution is
played by the mean instanton density at LO. Recall that
even the constituent quark mass is fixed by this density, as
the mean instanton size is also fixed by this density
implicitly through modular interactions. In the QCD
instanton vacuum, the mass-breaking terms are of the order
of O(mR) and small for light quarks. At this low resolution,
it is possible to budget the mass carried by the emerging
quarks, and the semiclassical gluons that permeate the
vacuum, as we now detail.

XII. NUCLEON MASS SUM RULE

The trace identity (165) reflects on the general fact that
all hadron masses in QCD are tied to the quantum breaking
of conformal symmetry as we noted earlier and should be
enforced by any nonperturbative quantum description,
whether numerical such as the lattice or semiclassical such
as the QCD instanton vacuum. However, it does not
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specifically budget this mass breaking in terms of the
emerging constituents in hadrons.

In a strongly interacting theory, the concept of con-
stituents is subtle and resolution dependent. Fortunately,
the QCD instanton vacuum emerging from cooled lattice
simulations allows for a quantitative description, all within
the well-defined framework of semiclassics. In this
spirit, a physically motivated proposal to budget the
mass was put forth by Ji in [80,96] and since revisited
by many [97-99] (and references therein). The ensuing
mass composition involves the sum of partonic contribu-
tions, some of which may be measurable using DIS
experiments. The proposal relies on an invariant decom-
position of the energy-momentum tensor (137).

The traceful and traceless part of the energy-momentum
tensor (137) correspond to the spin-2 and spin-O repre-
sentations of the Lorentz group, respectively, and do not
mix under renormalization by symmetry, as we noted
earlier. Their renormalization at the instanton size scale p =~
0.3 fm is achieved by cooling through gradient flow, under
the constraint of a fixed topological susceptibility. Note that
this renormalization scale is softer than the one used in
currently fine lattices with 1/u ~ 0.1 fm (MS scheme) [26].

With this in mind, the corresponding Hamiltonian in
Minkowski signature follows from the 00 component
of (137):

- 1
H; = / T, = / d3x§(E2+Bz),
s (70 3, - 3 D)
Hy= [ d&x TOO—Zml/n// = | d’xyy - iDy,
1 (g b
Hy= | dx— G*~— °G? ),
A / x4<492 /

32722
H, = /d3xmz/71//.

(167)

We rearranged the quark mass term so that the nucleon
mass budget is then

(P|Hg + Hg + Hy + H,|P)
(PIP)

MN:

=My + My + MY + M), (168)
with the identification
My = Mg + M + M. (169)

Using (156), we note that the forward matrix element of
the gluonic H; contribution in (167) vanishes at NLO in
the QCD instanton vacuum. Hence, at the resolution of the
order of the inverse instanton size, we have

N

3 o
Y] N
0 2 (A,(0) =" ) ~69.1
R 4( ,(0) MN> 69.19%,
MY 3
—¢ =24,(0)~ 1.01%,
My 4
MY 1
Pa _ 2 (1297 x23.40%,
My 4\ "M,
MN
Zm 0N o 6.39% (170)
My My

using the empirical pion-nucleon sigma term [24,25].
Equation (170) shows that, in the QCD instanton vacuum,
about 69% of the nucleon mass stems from the valence
quarks (hopping zero modes), 23.4% from the gluon
condensate (displaced vacuum instanton field), and 1%

=560 MeV

69.2%
Quark energy

Gluon energy

1
3 Trace Anomaly

23.4%
6.4%

(a)

u=2GeV

42.9%
Quark energy

Quark mass — 6.4%

1
I Trace Anomaly

Gluon energy 234
4%

273%

(b)

Lattice (yQCD Collaboration)

Quark energy

‘l‘ Trace Anomaly

23%
Gluon energy

32%

(©

FIG. 13. Mass decomposition using Ji’s nucleon mass sum rule,
in the QCD instanton vacuum at the resolution ¢ = 560 MeV ~
1/p (a) and after DGLAP evolution at a resolution y = 2 GeV
(b). (c) Mass decomposition using Ji’s nucleon mass sum rule, at
a resolution of 4 =2 GeV from the lattice collaboration [26].

054005-32



GLUE IN HADRONS AT MEDIUM RESOLUTION AND THE QCD ...

PHYS. REV. D 110, 054005 (2024)

from emerging valence gluons. This is illustrated in
Fig. 13(a). The nucleon is composed mostly of quark
constituents hopping and scooping the vacuum gluon
fields. This result is consistent with the one observed
in [37].

The budgeting of the nucleon mass evolves as the energy
scale varies. At u =2 GeV, the valence quark and gluon
energy contribution redistributes as illustrated in Fig. 13(b).
The budgeting of the nucleon mass in (171) from the QCD
instanton vacuum is consistent with the one reported on the
lattice in [26] as illustrated in Fig. 13(c). Under DGLAP
evolution, the gluons carry a larger energy fraction at the
expense of the quarks:

N
— 2 4291%,
N
N
Me

~27.29%. (171)

N

XIII. NUCLEON SPIN SUM RULE

The spin structure of the nucleon has been addressed
both empirically and theoretically by many, and we refer to
the review in [100] for an exhaustive account and refer-
ences. Here, we will address it in the QCD instanton
vacuum following recent estimates by one of us [37], using
Ji’s nucleon spin decomposition [101]:

captures the isoscalar axial charge inside the nucleon,
which is best described by the hadronic matrix element
of the flavor-singlet axial current:
(PS|@y,r’w|PS) = 2%,S,,. (174)

Here, S, is the spin vector of the nucleon with the
normalization S = —M3, and P- S = 0.

The quark intrinsic spin %, is tied to the pseudoscalar
gluon operator by the ABJ anomaly [102]

Ny

0
1672

,41,7’7,4751// =

PGo,Ga, + 2mipiydy.  (175)
The quark intrinsic spin consists of the anomalous gluonic

contribution plus the explicit breaking of the U(1) axial
symmetry by the quark current mass m:

<PS|0M/_/7,LJJ/5V/|PS> —OIMS — Nf <PS|92G/31/GZU‘PS>
2Mys, N=4 ™ 1672 2Mys,
PS|piySy|PS
o \PSWwiry|PS) (176)
ZMNSU

Thus, the intrinsic quark spin can be decomposed into [68]
(and references therein)

X, =Ag—NsAg, (177)
1
Sy zzZq+Lq+Jg, (172)  where
where Sy = 1/2 is the nucleon spin. (PS|mipiy>y|PS) — MyAG (178)
2MNS1; N
A. Intrinsic quark spin X, and
The quark intrinsic spin
Ag = ~Gy(0) (179)
5, = [ ¢suiry (173)
Z‘I
ILM (quenched, 2 GeV) 0.65
ILM (unquenched with two flavors, 2 GeV) 0.105
EMC (1987) [103-105] 0.12+0.17

COMPASS (v/3 GeV) [106]

HERMES (v/5 GeV) [107]

Lattice (2 GeV, helicity quasi-PDF) [108]
Lattice (2 GeV, axial form factor) [109]
Lattice (2 GeV, spin decomposition) [29]
Lattice [110]

0.35 + 0.03(stat) & 0.05(syst)
0.33 £ 0.011(theo) £ 0.025(exp) = 0.028 (evol)
0.467(58)
0.392(26)
0.382(30)
0.30(6)
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In the quenched and LO in the instanton density, the
intrinsic spin is saturated by the ABJ anomaly contribution.
This is achieved in the QCD instanton vacuum at LO in the

pseudoparticle density, with the intrinsic quark spin fixed

by the quenched topological susceptibility ;(50):

M,(0) 5

My N

_ M,(0) frm3
MN 2n1+7

=) = —N,Ag= N, — 0.65.

(180)

The singlet squared mass follows from the Witten-

Veneziano relation (39). The rightmost result uses M, (0)/

My ~ 1/3 [68] and the Witten-Veneziano relation (39).
In the unquenched and NLO instanton density, there is

mixing with the emergent constituent quarks. As a result,

the intrinsic spin gets modified:

Y, =Nj——=+ [1

N N N, p2m*2 2NC(N%_1)
2k \?2 N
X <W) BpZmZTU} Ag

1 2k \%, ,
~ 3N N=1) \ 2 prm-T %, — 0.1048

Mq<0))(t

(181)

with the unquenched and large volume topological sus-
ceptibility y, given in (105). The rightmost estimate follows
by saturating the pseudoscalar and flavor-singlet nucleon
form factor, by the # exchange. In the QCD instanton
vacuum, the exchange is given by

PS|myiydy|P M,(0)9%,.,/Gy
2Mys, My m,

(182)

The overall factor of 3 counts the three constituent quarks
in the nucleon. Equation (182) yields a value of explicit
chiral symmetry breaking about Ag = 0.0119. Here, we
used the empirical value m = 0.122 MeV in Table I and the
consistent model parameters m,, = 681.6 MeV and g,/,, =
1.686 with G,, = 8.417 GeV~2 in Appendix B.

Note that if we were to use a quark-diquark description
of the proton or neutron as a strongly correlated quark-
diquark state, with a tight scalar-isoscalar diquark [ud]¢ and
weaker axial-vector flavor-triplet diquark [ud], [6], then
the proton SU(6) wave functions can be repacked in quark-
diquark contributions as [111]

1 = = (Sludl gt + 2l ) = V2l

—V2[ud|{ul + [ud]%u?). (183)
This would suggest that for the proton the u-quark and d-
quark spin are opposite, with a ratio

1

=2 (184)

Zg
Z

and, in particular, £, = 0.0286 and X, = —0.0071, with
X, =2, +2%;,=0.0215 In this SU(6) repacking, the
discrepancy with (181) stems from the left out diquarks.
A more realistic diquark wave function for the nucleon in
the ILM will be addressed elsewhere.

At this stage, it is worth noting that, while the topo-
logical charge fluctuations in the 4-volume are screened in
the QCD instanton vacuum as per our discussion, the
topological charge fluctuations in small subvolumes are
finite; see [71] for a definition. In the QCD instanton
vacuum with light quarks, they were found to be numeri-
cally Poissonian [71]:

L (AN (V)

V=0 Vv (185)

= Ni+aA
with the unquenched singlet pseudoscalar mass M, now
given by
2
M3 —>2—]\;flim7<AN V) :Z#n,%, (186)
f5 v-0 \%4 f
which is finite even in the chiral limit and in agreement
with the result in [70,112]. This is supported by the fact
that the #' mass is large in nature, which is unquenched
QCD. Since the world volume of a hadron in the QCD
instanton vacuum can be considered as a vanishingly small
subvolume, it is plausible to use (186) in our analysis of the
intrinsic spin. This leads to the result that the quenched and
unquenched results for the intrinsic spin are mostly
unchanged.

Jy Jy
ILM (this work, 2 GeV) 0.318 0.182
Lattice (ETMC) [29] 0.285(45) 0.187(46)
Lattice (yQCD) [28] 0.265(32) 0.230(25)

B. Quark and gluon orbital momenta
The quark orbital angular momentum (OAM) is given by

L, = / PE "% x iDy. (187)
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Combined with the intrinsic quark spin (173), we have the
quark total angular momentum

1
g =55+ L,

J R

(188)

The quark total angular momentum J, is calculated by

the forward hadronic matrix element of the traceless part of
the quark 0j EMT:

_(PS| [ %X T |PS)
e (PS|PS)
(P'S|T¢'|PS)

(PS|PS)

J

_ 3ij:qi
= e’io,

(189)

where dg refers to the derivative with respect to the
momentum transfer, followed by the zero momentum
transfer limit. Similarly, the angular momentum carried
by the gluons is

-

J, = /d%?fx(ﬁ:“ x B%), (190)

which translates to the forward hadronic matrix element:

_ (PS| [ %X T | PS)
I (PS|PS)
(P'S|T}/|PS)

(PS|PS)

J

_ 3ijiqi
=€ qu

(191)

Using (156), it follows that (191) is penalized by the
instanton density in the forward limit, at NLO in the
instanton density expansion. Hence, at the resolution of
the order of the inverse instanton size, Ji’s spin sum rule is
given by

1y 92

279 — AGg——2-N,Ag~65%,

Sy a7 N RImeYwe

L i1y

2L =4,0)+B,0)-2"2~33.7%,
Sn Sy

J

“9 = 4,(0) + B,(0) ~ 1.3%.

(192)

In the case of the unquenched QCD in the instanton
vacuum with two flavors, we have the topological suscep-
tibility screened:

1y e
279 — AGg——2_-N,Ag~10.5%,

SN a4 871'2 f g 7

L iy

—1 =A,(0)+B,(0) -2~ 88.2%,
S Sy

J
S—g =A,(0) + B,(0) ~ 1.4%

N

(193)
at the low resolution of 1/p ~ 560 MeV. Here, we assumed
B,(0) = 0 [27]; hence, B, (0) = 0 from (157).

Equation (192) shows that, in the QCD instanton
vacuum, about 65% of the nucleon spin stems from the
spin of the valence quarks as they hop and mix with the
vacuum topological charge fluctuations, 34% stems from
their OAM, and only 1% stems from the emerging valence
gluons as the topological charge fluctuates in small
subvolumes.

The budgeting of the nucleon spin evolves as the energy
scale varies. For the quenched QCD instanton vacuum at
u =2 GeV, the valence quark OAM and gluon angular
momentum redistributes as

1
13
2~ 65%,
Sy

L‘I
L —1.4%,
Sy

J
9~ 36.4%. (194)
Sy

For the QCD instanton vacuum with two flavors, we have

1

229 5 10.5%.
Sy ?

Lq
1% 53.1%,
Sy

Yo 36.4%
SN ~ B 0.

(195)

In the QCD instanton vacuum, the intrinsic spin does not
renormalize, as it captures the vacuum topological suscep-
tibility scooped by the nucleon, in the small volume limit.
As a result, DGLAP evolution enhances the gluon con-
tribution at the sole expense of the quark orbital contribu-
tion, both of which are not topological in our analysis.

The results for Ji’s spin decomposition in the QCD
instanton vacuum are illustrated in Figs. 14(a) (quenched)
and 14(b) (unquenched) at y = 0.64 GeV (left) and at y =
2 GeV after DGLAP evolution (right). They are compared
to the reported results from the y-QCD Collaboration [28]
in Fig. 14(c) (left) and from the ETMC Collaboration [29]
in Fig. 14(b) (right).

While the gluonic contributions are comparable to the
one reported by both lattice collaborations, there is a
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ILM (gluodynamics)
65.%

33.7% 36.4%

1.3% -1.4%
p=0.56 GeV u=2 GeV
e, ol;mJ;

(@)

ILM (QCD with 2 flavors)
88.2%

80

60r 53.1%

40+ 36.4 %

f 1059 10.5%
1.4 %
1 =056GeV u=2GeV

el ol;mJg

(b)

Lattice QCD with 2+1 flavors
46.%

40. %

382% 37.5%

28.8%

14. %

xQCD ETMC

X, o0Ll;mJg
(©)

FIG. 14. (a) Spin decomposition using Ji’s sum rule, in the
quenched QCD instanton vacuum at u = 0.56 GeV (left) and u =
2 GeV (right). (b) Spin decomposition using Ji’s sum rule, in
the Ny =2 QCD instanton vacuum at y = 0.56 GeV (left) and
1 =2 GeV (right). (¢) Spin decomposition using Ji’s sum rule
at a resolution of y =2 GeV, from the Lattice Collaboration
xQCD [28] (left) and the ETMC [29] (right).

difference in the way the quarks are carrying the spin. In the
lattice, the intrinsic spin to OAM ratio is about 3: 1 (yQCD)
and 2:1 (ETMC), which is to be compared to 1:1 in the
QCD instanton vacuum with two flavors. The origin is the

substantial depletion of the intrinsic spin at low resolution,
owing to the strong screening of the large volume topo-
logical susceptibility. Although we suggested earlier that
the small volume topological susceptibility remains large
and may cause the intrinsic spin to be larger even in the
unquenched case, our analysis shows that it would lead to a
considerably large ratio for the intrinsic spin to OAM as
illustrated in Fig. 14(a) (left). This shows the importance
of studying and reporting on both the large and small
volume topological susceptibilities, when reporting the
results for the spin composition of hadrons, using QCD
lattice simulations.

XIV. CONCLUSION

The QCD instanton vacuum is well supported by current
lattice QCD simulations. When the zero-point gauge
fluctuations are removed numerically by cooling using
the gradient flow method [113,114], the QCD vacuum is
found to be populated by topological lumps of gauge
fields. These lumps are tunneling gauge configurations
describing instanton and anti-instanton pseudoparticles
or failed tunneling gauge molecules made of instanton—
anti-instanton pairs.

Deep in the cooling procedure, the corresponding gauge
fields are strong and localized, with a mean size of p = %fm

and a mean density n;,, = 1 fm™. Confinement is likely
caused by center vortices through percolating long Zy.

strings of about 4 fm~2, with topologically active branch
points, the likely anchors of the pseudoparticles.

Hadrons in the QCD vacuum are small ripples propa-
gating in the QCD vacuum. At the resolution of p = %fm,
the composition and properties of the low-lying hadrons
can be fairly approximated in the QCD instanton vacuum,
where their bound state structure and small sizes make
them less prone to disordering by the long center vortices.
This is less so for their excited states, which are larger in
size and more prone to flux piercing and the string tension.
Throughout, we have assumed that this is the case and
pursued all the analyses of the gluons in hadrons solely in
the context of the QCD instanton vacuum.

At medium resolution and in LO in the instanton density,
the pseudoparticle strong gauge fields dominate the gluonic
content of the forward matrix elements. The scalar and
pseudoscalar gluon matrix elements receive contributions
from their number fluctuations at LO and from pairs of
pseudoparticles at NLO. We have shown that the off-
forward gluonic scalar and pseudoscalar matrix elements
are readily expressed in terms of the pseudoparticle moduli,
essentially the fermionic zero modes in the form of multi-
flavor effective vertices after averaging over the core
moduli. The same carries to higher-dimensional gluonic
operators, as we have shown for the C-even and C-odd
dimension-6 gluon operators. The latter map on leading
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twist contributions in diffractive C-even and C-odd vector
meson production.

The self-dual character of the pseudoparticles shows that
only pairs of pseudoparticles or molecules can contribute at
NLO to the traceless part of the QCD energy-momentum
tensor. The trace part is anomalous and receives contribu-
tions in LO from the pseudoparticles. We have shown how
they contribute to the gluonic form factors in hadrons, in
the form of effective fermionic operators, once the modular
integration is carried out. The results allow for a detailed
budgeting of the quark and gluon contributions to the
nucleon mass and spin, at low resolution. Their evolution at
higher resolution is in good agreement with the current
lattice simulations. The comparison would be enhanced if
the lattice collaboration [28,29] could also report their large
and small volume topological susceptibilities, along with
their nucleon spin results.
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APPENDIX A: EMERGENT EFFECTIVE T
HOOFT INTERACTIONS WITH GLUONS IN SIA

The effective Lagrangian following from (50) after
averaging over the instanton moduli with fermionic zero
modes in the SIA yield emergent multiflavor interactions
with gluon insertions. The latter follow by L.SZ reduction of
the instanton profile. To characterize these interactions, we
use the bookkeeping in 1/N..

For a single instanton with N, quarks and N, gluons, the
vertices in (45) give rise to an effective 't Hooft interaction

coupling
N Nisa 1 47[2,02 Ny 27[2,02 N,
2 N m* g

Grig Ny+N,

characteristic of a vacuum contribution. Note that each
gluon insertion from the instanton tail is further suppressed
by the instanton size. In the SIA, the effective interactions
are given by

V=1 = NLI//I// + N ] — (#) lpaﬂ,,%uu/ij,, - NC(N]% Y (27z;p2> 2J“‘bcll_/a,wxl“l//GﬁpGip
(22 (a0 e i)

(N2-1) 2N, +2)

N2 — <2n f4 > (5bcw v+ 72 .12 d*ry /I“yf”w) Gb,Gs,
N 6(Ng — (2n§p2)3< ey + Ngl_ 4ddaefbceu—//1d )Ga GG,
+ 6(N§1— 3 (2”;/’2)3 (153 fabeigySy 42 Vi 2 — ddae pheey, Adysw> Ga,Gb G,
N 6<N%1_ - (271:;;)2)3 <(N%3_ 3 sabged e j)f\(’]cvc - dabe gede | » face fbde>ym JyGh,Ge,GY,
N 6(N31_ - <2ﬂ;p2)3 <(N% — sabsed 4 o j)f\(];vc - dabe gede | N_E face fbde)ll—/gﬂy oy Gh, oG,
~o((*7)) 2

and the two-body interaction is defined as
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2N, -1

Vyg =t
Ni=2 7 16N (N? — 1

) [(pw)? = (Fw)* = (wir'w)* + (pir’cy)?] +

1 7 77 a
m [(Walwl//)z - (IIIGW,T 1;/)2]

a

i 2w\ [ . e e
- )< g )|:uRuLdR6/w?dL+uRO-/,w?uLdeL:|GZU

N.(N? -1

a b

2

1 212 p? ] A 2
- < )dabc [MR?uLdRaﬂu?dL + uRam,—uLngdL} G;D

(Ne+2)(Ne=1D\ ¢

a

a b

1 2722 ) e p _ y - A ¢
< )fabc [uRdﬂpguLdRaup?dL + uRGﬂpguLdRo-ypgdL} (G;y - G;v)

S NYWNEI-T)

ol (=2

The emergent couplings with constitutive quarks and
gluons follow by color averaging, after pertinent fermionic
lines closing in the SIA. More specifically, in the color
average, each of the UU" pair gives a 1/N, factor in the
large N limit. Therefore, the power counting of each vertex

9

/N s given by the flavor number N, and the gluon
number N ;. That is, the more quarks and gluons involved in
the instanton, the more 1/N,. suppression. Here, we show
the one-body interaction with one to three gluons involved
and the two-body interaction with one gluon involved.
Higher-order interactions follow the same reasoning but are
more involved. Using 14(c) in the mean-field approxima-
tion yields the SIA determinantal mass

APPENDIX B: 6 AND 7/ IN HADRONIC
MATRIX ELEMENTS

In this Appendix, we will estimate the meson-quark
effective couplings in the ¢ and 7’ channels for the hadronic
matrix elements of yw and Wiy y, appearing in the
gravitational form factors.

The quark part of the effective Lagrangian in the
instanton vacuum in (50) determines the meson
mass spectrum and meson-quark effective coupling in
the QCD instanton vacuum. For that, we need to go
beyond the SIA, by resumming the contributions to the
quark propagator that includes both the close and far
pseudoparticles.

The corresponding effective Lagrangian with induced
vertices from unpaired (/, A) and paired (IA) pseudopar-

)= m; n,TH 47rzn f V) (A4) ticles is given by [60]
f
|
Littoort = P (id = M)y + % (pw)* + % (pzw)* + % (wiy’w)* + % (wiy’ty)?
- % ruw)® = % Wy ty)® = % rurw)® - % rurtw)*. (B1)

As we noted earlier, it is the constituent mass M = M ,(0) = 395.17 MeV in (43), as opposed to the determinantal mass m”*,
that enters the analysis of the long-range hadronic correlations. The induced 't Hooft couplings are

G, 4G, G, 4G, G, 4Gy, G, 4Gy,
G = , th = - N G” - 5 G ;= = )
TN TN TV Nz T TN TN
Gia Gia Gia Gia
Gw = NE ’ G,D = NE ’ Ga] = N% ) Gfl =-3 N% .

The coupling constant of each channel is fixed by two parameters G; and G4, directly determined from the QCD instanton
vacuum with p = 0.31 fm and n;,4 = 1 fm™. For two flavors, the values are given by
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0,1 Bethe-Salpeter kernels in the QCD instanton vacuum, in leading order in the 1/N. book-keeping approximation.

4 2 2\ 2
G,:”IT+A( ”f) = 610.3 GeV~2,
m

G% TIA 2 _
G[A = ? < (4ﬂ2p2 = 57.08 GeV 2.

Since n; 4 is of the order of N, both G; and G, are of the
same order in the 1/N, bookkeeping. The quark hopping
integral Ty = [d*x¢}(x — z,)igps(x — z4) in the IA
molecule is defined by the overlap between the quark zero
modes in (41).

With this in mind, the bubble chain in Fig. 15 with the
scalar 't Hooft interaction in (B1) yields the gaplike
equation for the 6 meson mass

1= G,,Hss(m?,), (B2)

where the scalar to scalar vacuum polarization function is
defined as

Hss(Pz) - —2lNC

x / %u[smmsm(k—P>]f<k>f<P—k>.
(B3)

The effective Euclidean quark propagator in the QCD
instanton vacuum involves the running quark mass (not
the determinantal mass) [59,60]

if + M, (k)

CEIAD o

SILM(k) =

With (B2), the sigma mass is obtained:

l
Gy = Gy, + Gy Gy, (Tpp = ng,)

m, = 683.1 MeV. (B5)
The sigma meson-quark effective coupling can also be
determined by

> ollgs(P?)\ 7!
Joqq = P2

In the pseudoscalar-flavor-singlet channel, the chiral
Ward identity is violated, and the pseudoscalar and axial
vector mix. The 7/ mass follows from the resummation in
Fig. 15, in leading order in the 1/N. bookkeeping. Using
the emerging 't Hooft interaction in the pseudoscalar and
axial vector channels, the mass of the two-flavor meson
follows from the gaplike equation with #'-f| mixing:

— 3.841.

22
P =m;

(B6)

l
1 - G,,]’HPP(mi/) + Gfl H(AZ\ (mi«)

- G"/Iv”Gfl HPA<m$/)HAP(m5/’ﬂ). (B7)
The corresponding 7’ mass is
m, = 681.7 MeV, (B8)

which is comparable to the scalar mass (B5). This is to be
compared to the two-flavor m,, = 772 MeV reported on
the lattice [115]. The interactions in (B1) are mostly
repulsive in the scalar and 7’ channels and attractive in
the pion and @, channels, hence the heavy 7.

The meson-quark effective coupling in the pseudoscalar
channel is adjusted by the mixing from the axial vectors:

- 1.686. (B9)

2
Iraq =
oP?

[ PP
Gy(1=G, ) e 1 G, (1 - G, Tlpp)°

—2Gy GlePA s

on P>=n?,

The vacuum polarization functions regarding the mixing are defined as

pp(P?) =

—2iN.,. /

tr[Sim( )WSSILM(k_P)i}’S]f(k)f(P_k)v

(B10)
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I, (P?) =

—2iN, /

with T4, = (IT5,)* its complex conjugate and

[P (P2) = —2iN, /

-

APPENDIX C: INSTANTON FIELD
IN SINGULAR GAUGE

In singular gauge, the instanton gauge field Af(x) is

given by
Al (x=z1,p,U;) = R*(UPAj(x —z1),  (C1)

The gauge profile is defined in (57), and R (U;) =
ITr(z?U,7PU}), where 7% is an N, x N, matrices with
the 2 x 2 Pauli matrices embedded in the upper left corner.
For the anti-instanton field, we substitute 7, by 775, and flip
the sign in front of the Levi-Cevita tensor, €,,,,) = —€,,,;-
The instanton moduli is captured by the rigid color rotation,
instanton location, and size.

The field strength associated to (C1) reads

GiulAl] = R (UGl (x = 2) (C2)
with the corresponding field strength profile
. 1 8p? (X% ]
Gi) = gy [T\ "a%
o (%% 1
- ’71//) <% - Zépﬂ>:| . (C3)

In the sum ansatz, the gluonic field strength for the multi-
instanton configuration can be split into single-instanton
fields and crossing terms typical of non-Abelian fields:

1mt E

The non-Abelian gauge crossing term between two instan-
tons can be expressed as

A+ GLlALA).
I£J

(C4)

Gi[A;. Aj] = gR (U;)e ™ R4(ULU)
X [A;[Z( —2)Al(x — z;)

- Af(x - ZI)Aff(x -z)] (CS)

The ’t Hooft symbol in Euclidean space is defined as

e[Sy (k) iy Sum(k — P)y*y* | F (k) F

PHpPY i PHPY
) e

PpH
— k=i 2
S (K)r"y> Swm(k = P)y* ) F (k) F (P — k)
P (B12)
|
o 1 a( =+ —
Mw = IiTr[T (Tll Ty =TTy )}’ (C6)
a 1 + +
Mw = ITr[ (T T, T, T/A )} (C7)
where the Pauli four-vector is defined as 7;- = (7, F i). The

conversion to Minkowski space is follows by adding extra
i’s to each fourth component of the Lorentz indices. Thus,
the ’t Hooft symbol in Minkowski space is defined as [54]

e pFEOVEQ,

o, =< i u#0,0=0 (C8)
—i0¢, u=0,v#0
and its conjugate
€y, n#EOUVF£O,
M =1 =6, u#0,v=0 (C9)

iy, u=0,v#0.

APPENDIX D: TWO-INSTANTON
CONFIGURATIONS ON THE GLUONIC
OPERATORS

The gluonic operators for the multi-instanton configu-
ration can be constructed using the gluonic field strength
following from the sum ansatz. Throughout, we will limit
the discussion to instanton pairs. The consideration of
higher clusters goes beyond the scope of this work.

1. Two-gluon operators

In the case of the two-gluon operators, we have three
typical instanton pair configurations:

1
GialA/|GL[Ak] = Etr(r’l Ukt U;K)Gza(x -2y)

XGt[ja<x_ZK)7 (Dl)
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1 e
GZ::[AJ]G%[AJ’AK] = Etr(r“ UJKTh U;K)equGle(x - ZJ)[AZI(X - ZJ)Az(x —2x) = Afﬁ(x - zJ)Afj(x - zx)]; (D2)

1 1
GialAs. Ak|GLe[As Ak = Etr(TaUJKTbU;K) Etr(TCUJdeU;K){Aﬁ(X — z))AG(x =z ) — All(x = 2))Aj (x = )]

X [Af(x = z))AG(x — zx) — AG(x — 2))Ad(x — z¢)]. (D3)

2. C-odd three-gluon operators

In the case of the C-odd three-gluon operators, we have two typical instanton pair configurations:

1
d**cG%,[A;)Gb, A GS, [Ak] = 5tr(uzU,KTa Ul)Gh, (x = 2)Ghy(x — 2;) G4, (x = zk). (D4)

1 1
dabCijy[AJ]Gza[AJ’AK]GEa[AK] = Etr(]]ZUJKTa UjK) Etr(TbUJKTCUjK)eadeGﬂly(x - ZJ)[AZ(X - ZJ)AZ(X - 2x)

— A (x = z)) A (x — z)] G5, (x = zk). (Ds)

3. C-even three-gluon operators

In the case of the C-even three-gluon operators, we have two typical instanton pair configurations:

; C 1 a AC c
fachﬁu [AJ]Gfﬂ [AJ]G,W [Ak] = 5“(7 UJKTbU;K)e dG;w(x - z,)Gfﬂ(x - ZJ)G,?,, (x — zx), (D6)

o’ 1 T 1 c T a c
fachZD[AJ]Gfﬂ[AJ7AK]GiM [AK] = Etr(TaU]KTbUJK> Etr(f U]KTdUJK){[GIW(X - Z])AD(X - Z])
= 8Gp, (x = 2)) AL (x = 29)JAZ (x — z¢) G, (x — z)
=[G (x = 2))Af(x — 2y) = 6 Gl (x — 2))Af (x — 2)]A) (x — 2¢) GY, (x — 2) }. (D7)

We now detail the steps in the calculation of the gluonic operators in the instanton ensemble to include correlations
between instantons.

4. Color averages

In the case of a two-instanton configuration J, K, the color structure of the gluonic operators depends on only the relative

color rotation U g = U} Ug. Only a few color structures are involved in the calculation of the color averages, which we
now list.

a. r(?UtUsy)

1 B - 1 m* O\ 2Ns—2
dUJdUKEtr(T UJKT U]K)®J®K = N (N2 — 1) 477;2p2
L ILFPL 1_ 1Fy°
X [W(ZJ) Tznaﬁ(‘])aa/}s(z] - 2x) Znﬁj(K)gpiTW(ZK)
o IFrL 1, 1Fy
+ y(zx) TZ”ﬁA(K)UMS(ZK -zy) Zr/aﬂ(‘])aa/i TW(ZJ) ; (D8)
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where the °t Hooft symbol is defined as #{, (/) = 7, if J €1 (instanton) and 75, (J) = #j, if J €A (anti-instanton). If the
instanton pair is an instanton—anti-instanton molecule, the averaging produces a chiral-conserving quark operator, and a
chiral-flipping quark operator otherwise.

(i) II cluster
When the pair carries like topological charge, i.e., JK = II or AA,

| 1 m* \2N21
dU‘]dUKEtI'<T UJKT UJK)®1®J = N (N2 — 1) 47[2p2 gtr{S(Zj — ZK)}
wl- 1IFP o IFy
x 6\ (zy) —5—wlzx) + (k) —5—wl(z)|- (D9)

(i) 1A cluster
When the pair or molecule carries unlike topological charge, i.e., JK = [A or Al,

1 ‘ 1 m* \ N2 ]
a i _ ~a
/dUJdUKEtr(T Ukt"Ujx)0,0k = TNV 1) <4ﬂ2p2> gtr{S(ZJ — 2k)Yp } sy
_ 1+y _ 1Fp
< Pl 5w - w5 v (D10

b. Ltr(v*U e Uly) Ltr(v°U ;1 U'y )

1 1
/dUJdUKEtr(T" UJKTbU}-K) Etr(TCUJKTdU;K)GJQK

~ s () e e By osSCes - 20) (K)o S )
+w(zk) 1 :; r %ﬁZA(K)GMS(ZK -zy) %ﬁ%“)"aﬂizys‘l/(zj)]
* 2N (=2 —
v o) i)
e 5L 860 - 20 ) + e T E LSt - 20wt o1)

This type of color structure is down by 1/N, in the two-gluon operators. Therefore, they can be neglected in the 1/N,

counting.
(1) II cluster
When the pair carries like topological charge, i.e., JK = II or AA,

1 | . 1 m* \2Ns21
/dUJdUKEtr(TaUJKTbU}K) Etr(TCUJKTdU}K)GJ(aK = ZNC(N% _ 1) <47T2/)2> gtr{S(ZJ - ZK)}

1. (4  N.-2 ‘
____ pace e - e = 5aL5bd
x [NC e T <NC TONN. ¥ 2)) }

X [v‘/(m)l%ysw(zj) +¢(z,)1 q;ysw(m)} (D12)
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(ii) IA cluster
When the pair or molecule carries unlike topological charge, i.e., JK = IA or Al,

1 1
/dU]dUKEtI'(TaU‘/KTbU;K)Etr(TCUJKTdU}K>®J®K

1 m* \2N2 1 I 4 N.-2 ‘
< ) gtl‘{S(Zl — ZJ)YP} [”;/}ﬂﬁﬂNeuwebdf 4 5/7/1 ( )) 5ac5bd:|

:ZNC(N%— 1) \4r*p? Nc+2NC(NC+2
N E% L 1Fy
< w5 v w5 e (D13)
¢ 1Tr(1,U k" Uly)
1 ot Ne=2 (m" \N21 T 1Fy ¥y
/dUJdUKETr(]]ZUJKT UJK)®J®K :_ZN%(N%— ) <4”2p2> Znﬂl/(K) [W(ZJ) 3 S(ZJ_ZK)UW 5 w(zk)
_LFp 1Fy°
+W(ZK)T‘7/4US(ZK_ZJ) > w(zy)|- (D14)
(i) II cluster
When the pair carries like topological charge, i.e., JK = II or AA,
1 . N,.-2 m* \2N21 1
dU;dU g =Tr(1,U ;47U )0 ;08 = — < —tr{S(z;, — -4 (K
/ 149k 5 r(1,Uk7"Uj)0,0k INZ(NZ = 1) (471’2,02> 3 r{S(z; ZK)}zﬂ,w( )
_ 1y _ 1Fp
X |:W(ZJ>O'WTW<ZK) +W(ZK)0uyTU/(ZJ> . (D15)
(i) 1A cluster
When the pair or molecule carries unlike topological charge, i.e., JK = [A or Al,
1 arrt N.-2 m* \ N2 1_,
/dUJdUKZTr(]]ZUJKT UJK)®J®K = _ZN%(N% ) <4ﬂ2p2> th{S(ZJ - ZK)?’;/}ETM(K)
_ £y _ 15y
x [w(zj)n 5w (z) + e —5—v(z))|- (D16)
d. 1tr(1,Ux7°USg) Lr (2 U 2°U )
1 | N,.-2 1 1
dU ;dUg =tr(1,U ;572U ) = tr(tPU g 7 U5 ) O, 05 = ———° — 74, (J)8be
/ 149K 5 r(1,U gt JI()Z (77U jx1°U ¢ )0,0k 2N%(N§—1)4(Nc+2)4'7’”( )
o 1Fy 15/
X\ (2)) =5 0uS(2) = 2x) —5—w(z)
I = 15y
+(ax) —5 Sz — 2o —5—v () |- (D17)
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(a) (b) (©)

FIG. 16. (a) The diagram of O[I] in the multi-instanton expansion of the two-gluon operator O,,. Each dashed line connected to the
instanton represents the classical background field. (b) The diagram of O[I] in the multi-instanton expansion of the two-gluon
operator O,,. Each dashed line connected to the instanton represents the classical background field. (c) The effective two-(anti-)
instanton operators O3, , ._ __, which represents all of the gluons in the operator O3,[A] are plane waves, one of the gluon plane waves
are connected to the instanton /, and the remaining two-gluon plane waves are connected to J. The conjugate diagram could be obtained

by I < J.

(i) 11, AA cluster

When the pair carries like topological charge, i.e., JK = II or AA,

1 1 .
/dedUK Etr(ﬂzUjKT“U}K)Etr(TbUJKTCUJK)GJQK

N.—2 1 MR 1 Lo (g
Pt —_ r — —
2NZ(NZ — 1) 4(N, + 2) \4n2p? g WA T KIS

LFy

< plao

(i1) IA cluster

2 W(ZJ) + l/_/(ZJ)G/u/

(D18)

When the pair or molecule carries unlike topological charge, i.e., JK = IA or Al,

1 | N
/dUJdUKEtr(‘HzUJKTaU.I]K) Etr(ThUJKTLU}K)®J®K

B N.-2 1 m
471.2'02

T 2NZ(N2-1)4(N, +2)
149
2

x [v'/(zf)n

APPENDIX E: GLUONS CAPTURED
BY THE INSTANTON TAILS

When strict factorization is enforced on hadronic kernels
and Feynman-like graphs are used, it may be more
appropriate to evaluate the hadronic matrix elements using
the effective vertices in S in (50), with the LSZ reduced
gluons. This is graphically illustrated by the Feynman
diagrams in Figs. 16(a)-16(c), where the gluonic lines
denote the LSZ reduced gluons.

We note that, in the ensemble averaging described
earlier, the dashed gluons are moduli gluons, as opposed

w(zg) +w(zg)r,

2N=2 I 1 —a bc
Ztr{S(ZJ - ZK)]’M}EW/W(J)5

LFy°

2

w(z»} . (D19)

to the LSZ reduced gluons in this section. The latter are
sourced only by small size pseudoparticles in the QCD
vacuum, while the former are for any pseudoparticle size in
the QCD vacuum.

With this in mind and using the 1/N. bookkeeping, the
one-body interaction is seen to dominate matrix elements,
with the rest of the N — 1 flavors looped up. Therefore, in
the following calculations, we will retain only the one-body
induced interaction.

For the gluonic scalar Gy, Gy,

diagram in Fig. 16(a) reads

the result of the Feynman
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G [ m* \NeL o 27%p?\ 2 o
P166617) == (1) @) [ atx( 2 a0 (B1)

where the Euclidean gluon propagator connecting the instanton and the effective vertices is defined by

d*q 1 .
D,y (x) = / ngm) 7 (949,800 — 9,9,0,0 — 4,9:0,p + 4,4:8,,)0(1/p* — ¢*) e~

I [xx, XX, XX, XX © ) s a
= _4ﬂ2x< xz 51//1_ )C2 5;4/1 - X2 5y/)+ X2 6;4/) 0 dqq ‘Fg<pQ)e(1/p —q )J3(C]X)

1 0 J>(gx)
——(5,,8,, — 5,6 dqq? 0(1/p* — g?) 217 E2
+2”2x( 001 — O) yp)A q9q°F 4(pq)0(1/p*> - q7) " (E2)

The gluon emitted from the instanton carries the instanton gluonic form factor, while the gluon absorbed by the operator is
cut by the hard cutoff 1/p.

The calculation can be extended to second order in the instanton density. The result of the Feynman diagram in Fig. 16(b)
depends on the topological charges of the /J pairs. The pairs with the same topological charges such as the /7 or AA pair
yield a chiral-conserving quark operator. The result reads

" a G? m* \ 2WNe=1) /27227 2 1
P16 P =i () () [ s, pusta - 2)

)+ o) |1 @)

I Fy
X Dm//)/{(x - Z1>Dﬂy/)ﬂ(x - ZJ><P/| |:W(Z1) 2

Similarly, the pairs with opposite topological charges in the /A or Al molecules yield a chiral-flipping quark operator
given by

G? m* \2WN=1) /272p%\ 2 1
PIGLGIP s == () () [ e psta - zr,)
X [D/wpa(x - Z1>D/4Ma<x - Z.I) + D/w/la(x - ZI)D/wpa(x - Z.I)}

_ £33 _ 1Fy
e A R T

w(zn] P). (E4)

The localized form of the pseudoparticles in the QCD instanton vacuum allows for the use of the R expansion or local
approximation, in the evaluation of the double integral over the position of the pseudoparticles, with the result to second
order in the instanton density

G [ m* \N! G? m* \ 201 ]
/| 2¢a (a — | i aw
Plo GuCalF = [ N (4,;2;,2) TNV <4n2p2> m] i)

X (27[2)2/d4XDm//)ﬂ(x)D;w/)i(x)e_ipq‘x

G? m* O\ 2(N-1) . e
SN (N2-1) <4”2p2> P*T14(pm*)(P'|ipry,, 0 ;| P)
x (27°)? / d*x[D e (X)Dyyie(X) + Dyyyia(X) Dy (X)€% + O(G3). (ES)

The quark hopping integral is given in (88).

The calculation can be extended to the three-gluon operators. Here, we detail it for the C-even operator. As expected,
there is no contribution from a single pseudoparticle. The Feynman diagram in Fig. 16(c) with like pairs the pairs /7 or AA
yields the chiral-conserving quark operator:
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N,-2 m* \2WN=1) [ 2722p?\ 3 1
(Pl GGG Pl =gt O () () [ et gulsta =)

471.2/)2
X [D/w/i}/ (X - ZJ)D/)(I(SO'(X - ZI)D/la(so'(x - ZI) + 2D/}(1[)’y(x - ZJ)D;M/&G (X - ZI)D/I(IEG (X - ZI)
_ 15y _ 157
+(p < A)+ (< J)|(P| l:W(ZI)GﬁyTV/(ZJ) + V/(ZJ)U/},/ Tl//(zl) |P). (E6)
For the unlike pairs, the result gives the chiral-flipping quark operator:
N,-2 m* \2N=1) (2722p7\ 3 i
abc ya b e _ c
<P/|d b G;wGpaG/la|P>|IA,AI = _2N%(Ng _ 1) G? <471'2,02> ( g ) /d4zld4ZJ§tr{S(Zl - Zj)yﬁ}
X [D;wﬂy (x = ZJ)Dagpa<x - ZI)DzSaﬂa(x - ZI) + 2Dpaﬂy<x - ZJ)DﬂD56 (x - ZI)D,laéa (X - Zl)
N % 0FS
oo 2) = (1o Pt S o v\ @)

The Euclidean gluon propagator connecting the instanton and the operators is given in (E2).

Similarly, in the forward limit, we can average over the local operator around the neighborhood of one of the instanton
field shared by the operator. Therefore, after averaging the gluonic operator over four-dimensional Euclidean space, the
profile functions depends only on the relative distance between two instantons. Again, the effective fermionic operator is
nonlocal. Using the R expansion or local approximation, the result is

N.-2 mt \20-) 2
P 3datha Gh G¢ |P) = — ¢ G2 Pl P
< |g v~ pa Aal > N%(N% _ 1) 4752,02 pzm* < |l//6/}yW| >

X <2”2)3 / d4xe_ipq.x[Dﬂvﬂy(x)Dpa50(X)Diaéa(x) + 2Dpaﬁy(x)Dﬂvéa(x>Dla§a(x) + (/) <~ j')]

N.-2
N2(N%2 -1

) d
X <2ﬂ2)3 / d4xe_lpq.x$;} [Dﬂvﬂy(x>Dpa5¢r(x/)Dﬁa66(xl) + 2Dpaﬂy(x>D/w5zr<xl)Dia5zi(x/)

o m* NN “\ )l
)G preys P T ia(pm™)(P' [y, w|P)

- D/wﬂ}/(x/)Déapa(x)Déo‘/la(x) - 2Dpaﬂy(x/)D/wéo'(x)Dlaéo‘(x) + (/7 < A)”x:x" (ES)

The quark hopping integral T4 (pm*) is given in (88).

APPENDIX F: GRAND CANONICAL ENSEMBLE result, most of the operators we encountered earlier can be

To account for the fluctuations of the topological charges further averaged:

in the present description using an ensemble of pseudo-

particles, we need to extend it to a grand canonical
ensemble. For that, we will allow for the number sum N =
N, + N_ and the number difference AN =N, —N_ to
fluctuate, with a universal distribution P(N_, N_) fixed by
low-energy theorems for N and a topological variance y,
for AN [6,15,37,68]:

NV\BA AN?
P(N,_,N_ —_— — F1
(Vs ”‘(N!) sz,exp< 2x,> (F1)

with y, = (AN?) and b = J' N, — 3N ;. The average instan-
ton number is consistent with the parameters N = (N), and
the mean topological charge is null O, = (AN) =0. As a

(0)= Y PN N)O)y, ={O)y.. (F2)

N.N_

The averaging is carried over the configurations with fixed
N (canonical ensemble average), followed by an averaging
over the distribution (F1).

Since the multiflavor emergent coupling G(1 +6) =
N_./(04) is fixed by the saddle point approximation
in the canonical ensemble ensemble, we can expand (O)
in (65), in terms of connected diagrams with different
orders of instanton numbers N . Therefore, the total fixed-
N, ensemble average can be written as a certain function
expanded in terms of instanton numbers N:
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(OlA])x, = O(N, N_). (F3)

All vacuum expectation values (O[A]) in the grand canoni-
cal ensemble can be expressed as

(OA]) = O(N,,N_). (F4)
With this in mind, the evaluation of the hadronic matrix

elements can be formally written as a large-T reduction of a
|

three-point function:

(OW) _ o HT/2ON(T /D)y e

(hlh) T (JI(T/2)J,(=T/2))

where J, () is a pertinent source for the hadronic state 5.
The averaging of the connected three-point function reads

(TH(T/2)OlANW(=T/2))on = (T3(T/2)OlA4(=T/2)) = (O[AD (TL(T/2)T (= T/2)) con
= > PN, N)(O(N,,N_) = O(N ., N))J}(T/2)T5(=T/2)),

N,.N_

+ <JZ(T/2)3O[‘//, W I3 (=T/2)) esrs (F6)

where :O[y,y]: denotes the effective quark operator
connected to the hadronic sources. The quark contributions
are usually penalized by 1/N, counting, as they are rooted
in the quark-instanton interaction.

(PlOA]|P)

Fp) = D PN N)(O(N..N.) ~ O, V)

NiN_

To extract the nontrivial contribution from the discon-
nected diagrams, we need to consider the fluctuations. In
the 1/N. bookkeeping, the dominant contributions are
given by

« lim {(N _N) (i In (J;(T/Z)J,l(—T/2)>et»f>N A (()ZN In <J;(T/2)Jh(-T/2)>eff) ANJ (F7)

ON

T—oo

with the number sum N = N, + N_, the number differ-
ence AN = N, — N_, the mean number N = (N), and the
mean topological charge Q, = (AN) = 0.

To show how the three-point function is determined, we
will consider a few examples. When the gluonic operator is
proportional to the total instanton number,

O(N.,N_)=aN/V.
For asymptotic Euclidean times
(T(T/2)T4(=T/2)) oy — MM NIT

the matrix element at the leading 1/N, is tied to the
topological compressibility:

— alth

(PlOJA]|P) = —ZM%O{«N ‘NN ) >P]N S ()

In particular, for the nucleon, the mass is related to the
instanton density by the scaling relation

N 1/4
MN = C<V> +07[N

so that

_ L{(N=N)")p
(P|OJA]|P) = —2M]2Voczl {T

(1 —ZD (F9)

When the gluonic operator is proportional to the number
difference, say, O(N,,N_) = aAN/V, a rerun of the
preceding reasoning gives

olnM,

(PIOWAIP) = ~2Mar,

(F10)

For a polarized nucleon consisting of quark-scalar-
diquark [68],

AN
My(AN) =My — MNSvW

so that
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(P|OJA]|P) = 2M12Va)ﬁs (F11) where €, ,  is the Levi-Civita tensor of rank N,
AT ovr .
with €12...N(. = 1.
This calculation can be extended to the constituent quark With these two identities, the color averagings of

model and SU(6) quark-diquark model. (U( ll])'")l’ Wit{l small p are
pP=1—

APPENDIX G: AVERAGING THE INSTANTON

1
INTERACTIONS OVER THE SU(3) ROTATIONS / dUuU,, Uzd = — Susbop; (G3)
One way to carry out the color averaging in the ¢
effective instanton interaction det, is by determinantal
reduction [116]: 2) p=2—
N, 1
/dUH U, = N_C!ealmaN" €b,...by, (G1) /dUUalb, Uzldl Uap, Uzzdz
1
and = N2 —1 <5a1d1 5a2d2501b1502b2 + 6“1d2602d1 501172502171)
N 1 1
U, = meaal~~-aNC—]€bbl--'bN¢71 Uap,---Uay by, - m (8aydy OardyOc,byOcrb,
(GZ) + 5a|d25a2d1 60,17] 502!)2); (G4)

(3) p=3—

/ dUU 4, Ul 4 Upyp, UL 4 Uaip, ULy,
- N2 -2
N(NZ=4)(Nz =1
+ 64,d,0a,d,0a,d,0¢,6,0¢,b,0¢3b, T Oa,d,Oayd,Oard; Oc, b, OcsbyOcsyy
+ Oa,d;Oasdy Oy, Oc, b330,  Oaydy Oard; Oasd, Oc, 5,010,050, )
- (V2= 4)1(N§ ) (8a,d,0aydyOasdyOc,by0c,b, Ocsby T OaydyOard, OazdsOcib, OcsbyOcyby

+ 6a1d1 602d25a3d3501b3502b2503b1 + 5“11135‘12‘125“3‘11 501171502172503}73 + 501‘11 5azd25a3d3601b1503172652173

) (611[(1]5a2d25a3a’36c1b]5czb25c3b3 + 5a,d26a2dl5a3d35c|h2502b]603[73

+ 5a1d1 6‘13112502‘13501171502b2503b3 + 5‘11d3503d2502d1 5011715531725021’3 + 501d3503d2502d1 60351502b2601h3
+ 6a1d36a3d25a2d15clb26c2b]503b3 + 5a|d15a3d2502d35c|b36c3b2602b] + 5a|d| 503d25[12d36C1b35€3b25C2b]
+ 64,d,0ayd,0a,d,0¢,b,0c35,0c,b, T Oaydy0a,dy0asd, Oc, b, Ocsb,Ocrby + Oa,dyOardsOazd, Ocsb, Ocyy Oc by
+ 64,4,0a,d,0ad,0¢,6,9¢,b,0c3by T OaydyOazdyOards Oc, b, 0c,by0csb,

+ 04,d,Oasdy OardyOc, by OcrbsOcspy T Oaydy OasdyOurdsOc,byOcyby Ocs, )

+

N (NZ _ 4>(N2 _ 1) (501d25¢12d35“3d1 5C1b]5C2b25C3b3 + 5“1[11 5“2d2503d3501b25C2b3503b1
Ve c

+ 5a,d35a3d25a2d15c,b16c2b25c3b3 + 5a1d156125125“36135Clb3503b25€2b1 + 5a|d25a2d35a3d1 56‘1b3503b25€zb1
+ 5a1d35a3d25a2d15clb2502b3563b1 =+ 5a1d15a3d25a2d35C3b2502b2502b3 =+ 5a1d1 5a3d25a2d35clb2502b15c3b3
+ 501d3602d25a3d1501b25€2b1503b3 + 5ald35a2d2503d1 501b1503b2502b3 + 501d2502d1 5a3d3601b1503b25€2b3
+ 5a1d2 5a2d1 5a3d3 503b2 5czb2 5czb3 ) . (GS)
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However, for large values of p, this averaging method is tedious. Since N, ® N, = 1 @ (N2 — 1), the group integral
practically reduces to finding all projections of the product of adjoint representations onto the singlet for SU(N..). The result
can be obtained by using the graphical color projection rules [117-119], with the following results:

) p=2—

1 1
T T BB .
/dUUalb] Ucldl Ullzbz Uczd2 - N_%(saldl 5“2[12561171502172 + 4<Ng _ 1) /Ig]dlj’gzdzﬂclbllczbz’ (G6)
(2) p=3—
1
/dUUalbl Uzldl Ullzbz Uzzdz Ull3b3 UZ3d3 = Fé‘aldlé“zdz a3d3501b1502b2503b3
c
1
B 9B B 9B p p
+ 2 _ (Agldlﬂgzdzdlﬂs)“clbzﬂ“czbl503173 + 5“1111 szz Z3d3501b1/102b2/1c3b3 + Agldléazdz g3d3101b1502b2/103b3>
4NC(NC 1)
T Ne _gomrgenrze W, W W b prplnvie P e )
4(N%_ 1) 2(N%_4) ayd,”aydyazd3 " c by cyby T ezbs 2N, ayd, " aydy, " aydy" e by e by esby
(G7)
3) p=4—

i i i T
/ dUU“lb] Ucldl U“zbz Uc2d2 azbs U03d3 agby U04d4

1
+ |:ﬁ 5a4d456‘4b4 (/ dUUd]b] Uzldl Uazbz Uzzdz Ua3b3 U
c

N N Y A LI L Y A L

1 N2 e /sl
c daﬁe dy(Se 4 Pp dr dp
‘*%N%—U(%N%—@Z "

1
afie fyde rd'fe £y'8e
s ﬂ.

N

1 /] /sl
v _4) daﬂefyﬁeddﬂefyée +

5a|d1 5a2d2 5a3d3 5u4d4 601 by 6c2b2 503}13 604174
exds ~ ﬁ5ald1 5a2d25a3d3501b15021,2503;,3) + permutatlons}
c

S B 'S 5 <oy <BS 5 1§ <y
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