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We discuss a general framework for the evaluation of the gluonic form factors in light hadrons at low
momentum transfer, in the QCD instanton vacuum. At medium resolution of the order of the inverse mean
instanton size, the glue is mostly localized in single or pairs of pseudoparticles and globally constrained by
the fluctuations of their topological charges. These pseudoparticles trap light quarks, giving rise to emerging
multiflavor ’t Hooft interactions. We explicitly evaluate the gluonic scalar, pseudoscalar, energy-momentum
tensor (EMT), and the leading C-odd and C-even three-gluon hadronic form factors, at next to leading order
in the instanton density, including molecular clusters of like and unlike instantons. We use the results for the
EMT to address the contribution of the gluons in Ji’s mass and spin sum rules, at low resolution. When
evolved, our results for the mass and spin composition of the nucleon are shown to be in good agreement
with the recently reported lattice results at higher resolution.
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I. INTRODUCTION

We will start by explaining the title and by recalling the
terminology to be used. In general, form factors are Fourier
transforms of distributions of certain charges. The standard
example is the electromagnetic form factors describing the
electromagnetic charge and current distributions of nucle-
ons and nuclei. However, form factors can be defined for
any operator, and we will focus below on gluonic probes,
like G2

μν.
The form factors are functions of the (spacelike) momen-

tum transferQ and reflect on what the probe “sees,” if it has
spatial resolution ∼1=Q. In Fig. 1, we schematically
identify three resolution regimes for QCD probes: hard,
semihard, and soft. We now recall the meaning of this
terminology.
The hard regime is given by perturbative Feynman

diagrams with a number of gluon propagators ð1=Q2Þn.
Physically, it corresponds to a hadron in a very compressed
form, so that the quarks are inside the perturbative Coulomb
fields of each other. In this regime, there are no dimensional
quantities involved, as QCD is asymptotically free, and the
power n can be obtained just by dimensional considerations

(except for certain special cases, e.g., spin flipping ampli-
tudes, where quark masses must also appear).
This paper is about the semihard regime dominated by

nonperturbative vacuum fluctuations.The latter are assumed
to be semiclassical pseudoparticles, instantons, or their
pairs. The ensuing form factors are generically of the form
βiðQρÞ ·Qn with ρ being a typical instanton size. At large
Qρ ≫ 1, the form factors decrease exponentially, but they
have different shapes in the Qρ ∼Oð1Þ region.
In the soft regime, the resolution is too poor to resolve

individual instantons. This regime is dominated by “chi-
ral” phenomena related to the appearance of a quark
condensate and a “pion cloud” surrounding most hadrons.
These chiral properties can be described either by sum-
ming multi-instanton chains or by phenomenological
chiral Lagrangians. In this regime, the form factors are
related to hadronic parameters, e.g., for the scalar channel
with the 2mπ threshold or the σ meson mass.
Different QCD operators naturally see different distri-

butions. However, because of the self-duality of the
instantons, the scalarOS ¼ G2

μν and the pseudoscalarOP ¼
GμνG̃μν operators see the same well-localized spherical ball
of the shape

ðGinst
aμνÞ2 ¼

1

g2
192ρ4

ðx2 þ ρ2Þ4 ð1Þ

if an instanton is alone or a similar but more complicated
instanton is paired. It is important to note that it is a spot of
rather strong field, of a quite small size.
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Today, the mainstream of a first-principle theory of
nonperturbative phenomena is lattice QCD. Therefore, it is
important from the start to recall how these three regimes
are revealed on the lattice as well. Gauge lattice configu-
rations are dominated by “gluons,” waves with wavelength
∼a, the lattice UV cutoff. Yet, e.g., the gradient flow
procedure (cooling) can be used to remove these gluons
and reveal genuine nonperturbative fields. After a few
coolings, the gluonic landscape looks like a (rather dense)
ensemble of strongly correlated instanton–anti-instanton
pairs. After further flow time or cooling, these pairs get
annihilated, leading to a (rather dilute) ensemble of
individual instantons and anti-instantons, which can with-
stand even “deep cooling.” For a detailed description of
this procedure, see, e.g., [1].
For completeness, we briefly recall the history of the

“instanton vacuum.” The QCD vacuum consists of semi-
classical and topological instantons and anti-instantons
(pseudoparticles) [2], that are described by a gluon moduli
(quenched) with additional determinantal interactions
(unquenched) [3,4]. In the “instanton liquid model”
(ILM), one of us suggested that these pseudoparticles
have mean size and density [5]

ρ ≈
1

3
fm; nIþA ≈ 1 fm−4; ð2Þ

which gives the dimensionless packing fraction κ ¼
nIþAπ

2ρ4 ≈ 0.1. This view of the QCD vacuum is sup-
ported by a large body of analytical and numerical results
related to chiral symmetry breakings, including many
aspects of the pions and the anomalous η0 mesons; for a
review, see, e.g., [6].
The QCD instanton vacuum does not strictly confine at

large distances, although the instanton-induced central
potential between heavy quarks is linear within a fem-
tometer [7], before turning to a constant at large distances.
However, it breaks spontaneously chiral symmetry by
trapping and delocalizing massless left-handed or right-
handed quarks, in a narrow zero-mode zone of about
100 MeV around the zero virtuality line. This mechanism
is at the origin of mass from no mass and plays a central
role in the composition and structure of light hadrons.

Earlier studies involving gluonic operators in the
ILM included studies of their vacuum point-to-point
correlators [8–10]. In particular, the scalar G2

μν and
pseudoscalar GμνG̃μν operators were found to receive large
nonperturbative contributions. In contrast, the stress tensor
correlator (also quadratic in the gauge field) was observed
to be not affected.
In Fig. 2, we show the ratio of the vacuum correlator of

two scalarG2 operators separated by (Euclidean) distance x
(in GeV−1), normalized by the leading perturbative con-
tribution

Π0
GGðxÞ ¼

384g4

π4x8
: ð3Þ

In the coordinate representation, the “hard,” “semihard,”
and “soft” regimes appear in the opposite order (left to
right) in comparison to momentum representation in Fig. 1.
Using estimates from the spectral representation, we show
the scalar glueball contribution (blue solid line), the scalar
sigma contribution (red solid line), the perturbative con-
tribution (black solid line), and their sum (blue dashed
line). The glueball mass and coupling are m0þþ ¼ 1.5 GeV
and λ0þþ ¼ 17.2 GeV3 [8], respectively, while the sigma
mass and mixing are, respectively, mσ¼ 0.6 GeV and
λσ=λ0þþ ≈ 0.066 [11].
In Fig. 2, all three regimes are on display, with the full

spectral function (blue dashed line) versus the distance in
GeV−1 units where 5 is 1 fm. The hard regime is dominant
at short distances (black solid line) with a plateau, where
perturbation theory holds. The rise in the spectral function
for separations x ¼ 2–5 GeV−1 ≈ 0.41–1 fm correspond to
the semihard regime. The “sigma halo” at large separation
x > 5 GeV−1 ≈ 1 fm corresponds to the soft regime, famil-
iar from, e.g., nuclear forces at large distances. In fact, the
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FIG. 2. Spectral function in coordinate space in units of GeV−1,
with the perturbative contribution (black solid line), the scalar
glueball contribution (blue solid line), the scalar meson contri-
bution (red solid line), and their sum (dashed blue line).

FIG. 1. The soft, semihard, and hard Q2 regions characterizing
different regimes of the hadronic form factors.
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transition between the hard and semihard regimes is even
stronger in the ILM [6], as we will briefly review below.
Unlike chiral effects, phenomena related to the gauge

fields are due not only to well-separated pseudoparticles in
the dilute ILM, but also to fields in “incomplete tunneling”
or instanton–anti-instanton molecules. In our papers such
as [12] (devoted to the electromagnetic pion form factor)
and the first paper of these series [7] (potentials in
quarkonia), we have found that the “molecular” effects
can even be dominant. In this respect, we reformulated the
instanton vacuum to that of a “dense instanton ensemble,”
where this contribution was included.
In this paper, we will evaluate gauge-invariant matrix

elements of select gluonic operators in hadrons. Naturally,
their definitions follow from QCD factorization, of inclu-
sive processes [e.g., deep inelastic scattering (DIS)] or
semi-inclusive processes (e.g., heavy quark pair produc-
tion). They also emerge in the effective description of
heavy quarkonia and in the standard model when the
electroweak and heavy degrees of freedom are integrated
out. Physically, they describe how the glue is distributed
inside hadrons, mesons, or baryons and, therefore, carry
important insights into their structure.
Unfortunately, such gluonic matrix elements are notori-

ously hard to measure experimentally, owing to the con-
fining character of QCD in the infrared. For a recent
investigation of the importance of the glue in semi-inclusive
heavy meson production at threshold, see [13,14] (and
references therein). So far, most of the evaluations are
theoretical. First principle QCD lattice simulations provide a
useful framework for their evaluation, but the intricacies of
renormalization with operator mixing proves often to be
quite formidable.
While the glueball spectra in gluodynamics are known

rather well, there are no appropriate “constituent gluon
models.” This is not surprising, given the intermittent
nature of the vacuum gauge fields. Therefore, the explicit
glue will not be treated as separate degrees of freedom
(gluons) but as solitonic gauge fields or pseudoparticles of
semiclassical nature. The QCD instanton vacuum captures
the essentials of these pseudoparticles and provides a well-
defined framework for the derivation of the gluonic matrix
elements, in vacuum and in hadrons.
The matrix elements of the glue in hadrons using the

QCD instanton vacuum was first used in [15] for a few
gluonic operators in forward hadronic matrix elements and
in [9] for both fermionic and gluonic form factors. We will
show below how the methods of [15] can be generalized for
nonforward matrix elements, in agreement with [9]. In the
process, we will analyze a large class of gluonic operators,
some of which are of relevance to select semi-inclusive
processes, following factorization. Last but not least, we
will show how to include the contributions from pairs of
like and unlike instanton molecules.

All matrix elements should be understood as normalized
at the “intermediate scale” μ fixed by the instanton size

μ2 ∼
1

ρ2
≈ ð0.6 GeVÞ2: ð4Þ

Sometimes, this scale appears with numerical factors,
reaching μ2 ∼ 1 GeV2. It should not be confused with
the smaller “chiral” scales associated with the pion mass or
the much higher scale μ2 > 4 GeV2 at which perturbative
evolution can be used.
The organization of the paper is as follows: In Sec. II, we

summarize our results for a number of gluonic form factors.
In Sec. III, we review some aspects of the QCD instanton
vacuum and the role played by the zero modes in the
spontaneous breaking of chiral symmetry. We briefly note
the possible interplay of the P vortices with the topological
pseudoparticles in the QCD vacuum. In Sec. IV, we detail
the emergence of the effective quark and gluon interactions
in the QCD instanton vacuum, in the single-instanton
approximation. In Sec. V, we show how to use the sum
ansatz in general, to evaluate the pertinent hadronic form
factors at low momentum transfer. In Sec. VI, we detail the
derivation of the gluonic scalar form factor at next-to-
leading order (NLO) in the instanton density and including
instanton molecular configurations. In Sec. VII, we derive
the pseudoscalar gluonic form factor at NLO in the
instanton density, where the fluctuations in the topological
charge are also included. In Sec. IX, we derive the form
factor for a general C-odd and dimension-6 gluonic
operator, which appears as a leading twist-3 operator in
diffractive production of heavy pseudoscalar mesons. Its
C-even and dimension-6 gluonic operator form factor is
also analyzed in Sec. IX. In Sec. X, we analyze the QCD
gravitational form factor (GFF) in a hadronic state, in the
context of the QCD instanton vacuum. The GFF is split into
a traceless and traceful part, each of which are evaluated at
NLO in the instanton density. In Sec. XI, we show that all
hadronic squared masses satisfy the scale anomaly identity
in the QCD instanton vacuum. In Sec. XI, we use Ji’s mass
sum rule, to detail the various contributions of the quark
and gluons in the QCD instanton vacuum at low resolution.
In Sec. XII, we extend this budget analysis to Ji’s spin sum
rule for the nucleon. Our conclusions are in Sec. XIV. In
Appendix A, we outline the general structure of the
emergent multiflavor effective Lagrangian with constitutive
gluons. In Appendix B, we show how the multiflavor
interactions yield a massive η0 and a massless pion for the
case of two light flavors and extract the scalar and
pseudoscalar singlet couplings to the emerging constituent
quarks. In Appendix C, we briefly go over the instanton
field and field strength in singular gauge and detail its color
moduli. In Appendix D, we detail how the color averaging
is performed for the instanton pairs and molecules. In
Appendix E, we suggest that the emergent effective vertices
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with Lehmann-Symanzik-Zimmermann (LSZ) reduced
gluons can be used in Feynman graphs that include small
size instantons only. In Appendix F, we briefly show how
the canonical ensemble of pseudoparticles can be extended
to a grand canonical ensemble, to account for the fluctua-
tions in their number which captures globally the scale and
Uð1Þ anomalies. In Appendix G, we summarize some
useful identities for averaging over the color moduli.

II. SUMMARY OF THE RESULTS

The theory of semi-inclusive and exclusive QCD proc-
esses with large momentum transfer Q2 is rooted in two
assumptions (see [16,17] for early work): (i) the factori-
zation of a soft and hard parts of the processes, appearing
when Q2 is larger than any nonperturbative scale, and
(ii) the hard part, after it is appropriately “factored out,” can
be treated using perturbative QCD.
Unfortunately, there are big discrepancies between such

an asymptotic theory and existing experimental data,
which remain in the semihard regime (as illustrated in
Fig. 1). This is particularly clear from current JLab data on
the nucleon electromagnetic form factors [18] and lattice
simulations [19]. The measured mesonic and baryonic
form factors are well above the predictions of the
perturbative QCD scaling laws, even when taken with
maximally favorable assumptions (flat distributions and
twist corrections included). This is not surprising, since
there is a drastic difference between the scales in DIS and
jet physics, on one hand, and exclusive processes, on
the other. The former are well defined above the scale
μ2 ∼ 100 GeV2 (hard regime), while the exclusive proc-
esses are defined at a much smaller scale, within
1–10 GeV2 (semihard regime).
In this paper, we evaluate a number of gluonic form

factors, e.g.,GG,GG̃, fGGG, dGGG, and Tμν
g , in the QCD

instanton vacuum at medium resolution, within the semi-
hard regime. At this resolution, the gluons are described by

semiclassical pseudoparticles, with the large gauge space
reduced solely to the bosonic and fermionic moduli of these
pseudoparticles. Their contribution in a given hadron is
amenable to pertinent matrix elements of the collectivized
fermionic zero modes in the moduli.
The calculation are carried out to next order in the

instanton density in the QCD instanton vacuum, where the
contributions of like and unlike pairs of instantons are
retained. There are many technical details associated to
these calculations, most of which can be found in the
subsequent sections and appendixes. Therefore, we decided
to present our results first, while leaving their derivations to
the rest of the paper.

A. GG vacuum form factor

The gluonic scalar vacuum form factor captures impor-
tant aspects of the gluonic correlation function in the QCD
vacuum. Since it also shows up as part of the glue in the
nucleon scalar form factor, we will start by recalling and
then extending some of the results [6,9]. The gluonic scalar
vacuum form factor is

ΠGGðqÞ ¼
Z

d4xe−iq·xhGGðxÞGGð0Þic ¼ ð32π2Þ2 σTðqÞ
V

ð5Þ

with ΠGGðxÞ the point-to-point correlator of the scalar
source OS ¼ G2

μν. Equation (5) was discussed in the
bosonized ILM in [9] and in the full ILM in [6], with
the latter study focusing on the transition between the
semihard and the hard or free regime.
In Fig. 3, we show the x-space point-to-point correlator

normalized to the perturbative (two gluon) version. The
x-space spectral function (dashed line) accounts for the
scalar sigma, plus the scalar 0þþ glueball, plus the soft two-
pion cut and the hard two-parton cut:

FIG. 3. Spectral function from the ILM (open red circles) [8], normalized by the perturbative contribution 14(c) in coordinate space.
The comparison is to the empirical spectral parametrization (6) with the scalar sigma (blue dashed line) and without the scalar sigma
(orange dashed line) and the 0þþ glueball dipole parametrization (8) (green solid line).
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ΠðfullÞ
GG ðxÞ ¼ λ2

0þþDðm0þþ ; xÞ þ λ2σDðmσ; xÞ

þ
Z

Λ2
χ

4m2
π

ds
3

64π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
π

s

r
ðs− 2m2

πÞ2Dð ffiffiffi
s

p
; xÞ

þ 2g4

π2

Z
∞

s0

dss2Dð ffiffiffi
s

p
; xÞ: ð6Þ

The parameters used in the spectral parametrization are
λ0þþ ¼ 15.6 GeV3, λσ ¼ 2.6 GeV3, m0þþ ¼ 1.25 GeV,
and mσ ¼ 683.1 MeV to be consistent with the interacting
ensemble calculation [8]. The perturbative threshold is set
to s0 ¼ 2.4 GeV [8], and the chiral symmetry-breaking
scale range is Λχ ¼ 1.1 GeV. Note that we have reinstated
the gauge coupling with a value g2=4π ¼ 0.3, when
accounting for the perturbative contributions.
To account for the dominance of the 0þþ glueball at low

Q2, and the free two-parton cut at largeQ2, we use instead a
dipole approximation for the vacuum form factor:

σTðqÞ ≈
σT

ð1þQ2=m2
0þþÞ2 ; ð7Þ

where m0þþ ¼ 1.25 GeV [8]. When translated to x space
plus the free contribution, it reads

ΠðdipoleÞ
GG ðxÞ ¼ 384g4

π4x8
þ 128π2

b
hG2i

×
Z

d4q
ð2πÞ4

1

ð1þ q2=m2
0þþÞ2 e

−iq·x: ð8Þ

In Fig. 3, we show (8) (green solid line), which lies between
the full spectral representation with the sigma meson
(dashed blue line) and without the sigma meson (dashed
orange line).

B. GG nucleon form factor

The nucleon gluonic scalar form factor following
from the trace of the energy-momentum tensor (EMT) is
defined as

−
b

32π2
hP0Sjg2G2

μνjPSi ¼ MNGNðQ2ÞūsðP0ÞusðPÞ ð9Þ

with in and out momenta P and P0 ¼ PþQ. Our main
result for (9) in the ILM is

1

32π2
hP0Sjg2G2

μνjPSi ¼ −
�
1

4
Mð0Þ

inv
σT
N̄

ð2πÞ4
V

δ4ðqÞ
�
ūsðP0ÞusðPÞ

−
�
1

Nc

�
2κ

ρ2m�2

�
βðIÞ2g ðρqÞ þ

1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

3ρ2m2TIIβ
ðIIÞ
2g ðρqÞ

�
hP0Sjmψ̄ψ jPSi

þ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2 ρ4m2

9
TIAβ

ðIAÞ
2g ðρqÞqμqνhP0Sjψ̄

�
γðμi∂

↔

νÞ −
1

4
gμνi=∂

↔
�
ψ jPSi; ð10Þ

where packing fraction κ is the dimensionless vacuum
parameter defined as

κ ¼ nIþAπ
2ρ4: ð11Þ

Here, the dependence on Q2 is given via induced
nonlocal form factors, normalized to 1 and derived from
certain instanton-based diagrams. Their analytic form is
defined in (87) and their specific form illustrated in Fig. 4.
The quark hopping integral is defined in (88).
At large x or small Q2, the scalar point-to-point corre-

lator captures the fluctuations of the number of pseudo-
particles in the ILM, and its value atQ2 ¼ 0 is related to the

scale anomaly relation, which we will discuss in Sec. III A.
It allows us to fix the normalization of the form factor. This
effect can be included in (10) via the substitution

σT
N̄

ð2πÞ4
V

δ4ðqÞ → σTðqÞ
N̄

; ð12Þ

which shows how the glue in the scalar vacuum form factor
exports to the nucleon scalar form factor.
In Fig. 5, we show the result for the gluonic contribution

to the trace of the EMT in the nucleon (9) and (10) prior to
the substitution (12) (red solid line), and after the sub-
stitution (green solid line). The comparison is to the recent

FIG. 4. Induced pseudoparticle form factors βðIÞ2g , β
ðIIÞ
2g , and βðIAÞ2g

versus Qρ, from lower to upper, respectively.
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lattice results (blue squares) from [20]. The lattice results
for the nucleon A- and D-form factors from [21] can be
used to reconstruct the gluonic contribution to the trace of
the EMT in the nucleon (gray open circles). As expected,
our results in the semihard region (red solid curve) when
supplemented with the 0þþ-dipole glueball contribution in
the soft region (dashed brown line) yield a good account of
the reported and reconstructed lattice results in both the soft
and semihard regions (green solid line).

C. GG̃ nucleon form factor

The gluonic pseudoscalar form factor in a hadron state is
defined as

1

32π2
hP0Sjg2GμνG̃μνjPSi ¼ MNG̃NðQ2ÞūsðP0Þiγ5usðPÞ:

ð13Þ

In the ILM at NLO in the instanton density, the result is

1

32π2
hP0Sjg2Ga

μνG̃
a
μνjPSi ¼

�
Mqð0Þ

χt
N̄
ð2πÞ4
V

δ4ðqÞ
�
ūs0 ðP0Þiγ5usðPÞ

þ
�
1

Nc

�
2κ

ρ2m�2

�
β̃ðIÞ2g ðρqÞ þ

1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

3ρ2m2TII β̃
ðIIÞ
2g ðρqÞ

�
hP0Sjmψ̄iγ5ψ jPSi

−
1

16NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIAβ̃
ðIAÞ
2g ðρqÞiqμhP0Sjψ̄γμγ5ψ jPSi; ð14Þ

where the nonlocal form factors are given in (107) and the
hopping between pseudoparticles is defined in (88). The first
contribution in (14) captures the fluctuations of the topo-
logical charge of the pseudoparticles in the ILM in (37) in
the large volume limit, which we can recast as

χtðqÞ
V

¼
Z

d4xe−iq·x
�

1

32π2
GG̃ðxÞ 1

32π2
GG̃ð0Þ

�
c

ð15Þ

with χtð0Þ ≈ χt in the zero momentum limit. In Fig. 6, we
show the result (14) (red solid line) for the gluonic
pseudoscalar form factor in the nucleon state where the
gluonic pseudoscalar form factor is defined in (13).
The expected behavior in the soft regime, near Q ¼ 0,

now stems from the screened topological charge fluctua-
tions in the large volume limit, in the leading order in the

FIG. 5. Nucleon gluonic scalar form factor (9) (red solid line) and after the substitution (12) (green solid line) versus the lattice results
(blue data points) [20]. The lattice dipole fits to the A, D EMT form factors from [21] are used to reconstruct the nucleon gluonic scalar
form factor (gray open circles), along with the 0þþ dipole form factor (12) (dashed brown line) with the glueball mass band m0þþ

ranging from 1.25 to 1.75 GeV based on the various lattice calculations on the glueball mass [8,22,23]. The upper band corresponds to
m0þþ ¼ 1.75 GeV, and lower band represents m0þþ ¼ 1.25 GeV.

FIG. 6. Nucleon gluonic pseudoscalar form factor (14) in the
QCD instanton vacuum (red solid line) and after the substitution
(17) (green solid line).
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pseudoparticle density. One expects this screening to be
less singular than in the scalar case. Neglecting the three-
pion continuum, its range is related with the (significantly
heavier) η0 meson

χtðqÞ ≈
χt

1þQ2=m2
η0
: ð16Þ

[For consistency of the setting, we use mη0 ≈ 681.6 MeV
for two flavors (B8).]

In Fig. 5, we show the result for the topological form
factor (green solid line) following from (14) after the
substitution

χt
N̄
ð2πÞ4
V

δ4ðqÞ → χtðqÞ
N̄

: ð17Þ

D. dGGG nucleon form factor

The result for the C-odd gluonic operator dabcGaGbGc

in a hadronic state at NLO in the instanton density is
given by

hP0jg3dabcGa
μνGb

ραGc
λαjPi ¼ −

Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2 8π2m

9
ρ2m2TIIβ

ðIIÞ
3g ðρqÞ 1

2
q2δρλhP0jψ̄σμνψ jPi

þ Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2 8π2m

9
ρ2m2TIIβ

ðIIÞ
3g ðρqÞðδμαqβqν − δναqβqμÞδρλhP0jψ̄σαβψ jPi

−
Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TIA
4π2

45
βðIAÞ3g ðρqÞ

×

�
ϵβγλσqσqνδμρ − ϵβγνσqσqλδμρ −

1

2
ϵβγλνq2δμρ þ ðρ ↔ λÞ − ðμ ↔ νÞ

�
hP0jψ̄γ½βi∂

↔

γ�γ5ψ jPi

−
Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TIA
4π2

15
βðIAÞ3g ðρqÞδρλ

×

�
ϵβγμσqσqν − ϵβγνσqσqμ −

1

2
ϵβγμνq2

�
hP0jψ̄γ½βi∂

↔

γ�γ5ψ jPi

−
Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TIA
8π2

45
βðIAÞ3g ðρqÞ

×

�
ϵμνραðδβλqγqα − δβαqγqλÞ −

1

2
ϵμνργq2δβλ þ ðρ ↔ λÞ

�
hP0jψ̄γ½βi∂

↔

γ�γ5ψ jPi; ð18Þ

where the form factors normalized to unity are given in (118). The details of the derivation of (18) can be found in Sec. IX.

E. fGGG nucleon form factor

The general result for the C-even gluonic form factor fabcGaGbGc in a hadronic state at NLO in the instanton
density reads

5ρ2

384π2
hP0Sjg3fabcGa

μνGb
νρGc

ρμjPSi ¼ −
�
1

4
Mð0Þ

inv
σT
N̄

ð2πÞ4
V

δ4ðqÞ
�
ūs0 ðP0ÞusðPÞ

−
�
1

Nc

�
2κ

ρ2m�2

�
−

1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

3ρ2m2TII

�
β̃3gðρqÞhP0Sjmψ̄ψ jPSi; ð19Þ

where the instanton-induced form factors are given in (135), with the details of the derivation given in Sec. IX. The fGGG
form factor is defined as

hP0Sjg3fabcGa
μνGb

νρGc
ρμjPSi ¼ M3

NA
N
3gðQ2ÞūsðP0ÞusðPÞ: ð20Þ

In Fig. 7, we show the behavior of the C-even three-gluon form factor (19) using the QCD instanton vacuum
parameter (red solid curve). The jump at Q ¼ 0 follows from the additional contribution stemming from the fluctuations
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of the pseudoparticles number in the large volume limit
in leading order in the density. It is screened by higher-
order corrections (green solid curve) following the
substitution (12).

F. Tμν
g nucleon form factor

The hadronic form factor related to the tensor combi-
nation of gluonic field strengths is a very special case, since

the semiclassical instanton fields have a vanishing stress
tensor. This implies a behavior that is very different from
the previous cases, as seen already in vacuum point-to-
point correlators [8].
The gluon energy-momentum form factor in a hadron

state appears only due to instanton–anti-instanton “mole-
cules.” In the pseudoparticle moduli, this form factor is
amenable to quark-based observables

hP0Sjg2T̄g
μνjPSi ¼ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIA

	
16π2

3
βðIAÞTg;1

ðρqÞhP0Sjψ̄
�
γðμi∂

↔

νÞ −
1

4
gμνi=∂

↔
�
ψ jPSi

−
4π2ρ2

9
βðIAÞTg;2

ðρqÞ
�
qμqρgνλ þ qνqρgμλ −

1

2
gμνqρqλ

�
hP0Sjψ̄

�
γðρi∂

↔

λÞ −
1

4
gρλi=∂

↔
�
ψ jPSi

− 4π2ρ4βðIAÞTg;3
ðρqÞ

�
qμqν −

1

4
q2gμν

�
qρqλhP0Sjψ̄

�
γðρi∂

↔

λÞ −
1

4
gρλi=∂

↔
�
ψ jPSi




þ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TII
8π2ρ2

9
βðIIÞTg

ðρqÞ
�
qμqν −

1

4
q2gμν

�
hP0Sjmψ̄ψ jPSi: ð21Þ

The induced pseudoparticle form factors normalized to 1
are given in (149). The details regarding the derivation
of (21) in the QCD instanton vacuum can be found in
Sec. X with the supporting appendixes. Figure 14(c) can
be used to analyze the gluonic energy-momentum form
factors of the nucleon, in terms of the nucleon quark form
factors. These form factors constrain the nucleon gener-
alized parton distributions at zero skewness. They will be
discussed elsewhere. Here, we will make use of (21) to
budget the mass and spin content of the nucleon in the
QCD instanton vacuum as we now summarize.

G. Ji’s mass sum rule

How the nucleon mass may be assigned to the quarks
and gluons is resolution dependent. The QCD instanton
vacuum at low resolution provides for a budgeting based
on semiclassics. Using Ji’s mass decomposition, whereby
the nucleon mass is split to

MN ¼ MN
Q þMN

G þMN
A þMN

m ð22Þ

FIG. 7. C-even form factor in (19) (red solid curve) and after the substitution (Sec. IX) (green solid curve), along with the 0þþ
dipole form substitution (12) (dashed brown line) where the glueball mass band m0þþ ranges from 1.25 to 1.75 GeV based on the
various lattice calculations on the glueball mass [8,22,23]. The upper band corresponds to m0þþ ¼ 1.75 GeV, and the lower
band represents m0þþ ¼ 1.25 GeV.
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with the quark and gluon contributions identified in (167),
in particular, at NLO in the instanton density and a
resolution of μ ≈ 1=ρ ≈ 600 MeV, we obtain

MN
Q

MN
¼ 3

4

�
Aqð0Þ −

σπN
MN

�
≈ 69.19%;

MN
G

MN
¼ 3

4
Agð0Þ ≈ 1.01%;

MN
A

MN
¼ 1

4

�
1 −

σπN
MN

�
≈ 23.40%;

MN
m

MM
¼ σπN

MN
≈ 6.39% ð23Þ

with all the details given in Sec. XI. Fixing the pion-
nucleon sigma term [24,25] shows that 69% of the nucleon
mass is in the valence quarks (hopping zero modes), 23.4%
in the condensate (displaced vacuum instanton field), and
1% in the moduli gluons. This budgeting evolves with the
resolution. Using Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution to μ ≈ 2 GeV yields a redis-
tribution of the mass in favor of the gluons, with

MN
Q

MN
≈ 42.91%;

MN
G

MN
≈ 27.29%: ð24Þ

There is no change in the anomalous and mass contribu-
tions. In Fig. 8, we show comparative pie charts for the
evolved ILM results (170) and (171) at the resolution of
μ ≈ 2 GeV, with the lattice results in [26] at the same
resolution.

H. Ji’s spin sum rule

Similarly to the mass decomposition, the spin decom-
position can be addressed using Ji’s spin sum rule

SN ¼ 1

2
Σq þ Lq þ Jg; ð25Þ

where the quark angular momentum contribution is split
into the intrinsic quark spin Σq plus orbital momentum Lq.
In the QCD instanton vacuum, the leading LO contribution
to the intrinsic quark spin is mostly from the vacuum
topological susceptibility. In the QCD instanton vacuum
with two flavors at a resolution μ ≈ 1=ρ ≈ 600 MeV, the
budgeting is

1
2
Σq

SN
¼ Δq̃ −

g2

8π2
NfΔg ≈ 10.5%;

Lq

SN
¼ Aqð0Þ þ Bqð0Þ −

1
2
Σq

SN
≈ 88.2%;

Jg
SN

¼ Agð0Þ þ Bgð0Þ ≈ 1.4% ð26Þ

with most of the derivation given in Sec. XII. Here, we
assumed Bq;gð0Þ ¼ 0 [27]. Again, these assignments are
resolution dependent and change with increasing μ. In
particular, for μ ≈ 2 GeV, we obtain

1
2
Σq

SN
≈ 10.5%;

Lq

SN
≈ 53.1%;

Jg
SN

≈ 36.4%: ð27Þ

In Fig. 9(a), we show the histograms for the spin assign-
ments (195), in the QCD instanton vacuumwith two flavors
before evolution at μ ¼ 0.56 GeV and after evolution at
μ ¼ 2 GeV. They are to be compared to the lattice results in
Fig. 9(b) from the χQCD Collaboration [28] and the ETMC
Collaboration [29], both at the resolution of μ ¼ 2 GeV.

FIG. 8. Mass decomposition using Ji’s nucleon mass sum rule,
in the QCD instanton vacuum after DGLAP evolution at a
resolution μ ¼ 2 GeV (a) and the lattice results at the same
resolution from [26].
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III. SEMICLASSICAL GLUE
IN THE QCD VACUUM

Understanding of any quantum system starts with under-
standing of its ground state and predefining its excitations.
Similarly, understanding hadrons requires an understanding
of the QCD vacuum. The central aspects of the QCD
vacuum are twofold: the quantum breaking of conformal
symmetry and the spontaneous breaking of chiral sym-
metry, both of which are tied to the topological nature of the
gauge configurations at low resolution.
The size distribution of the pseudoparticles is well

captured semiempirically by the original ILM [5], con-
firmed then by various mean-field studies [30,31] and
statistical simulations of the ensemble [6]. This distribution
can be written as

nðρÞ ∼ 1

ρ5
ðρΛQCDÞbe−#ρ2=R2 ð28Þ

with b ¼ 11Nc=3 − 2Nf=3 (one loop). The small size
distribution follows from the conformal nature of the
instanton moduli and perturbation theory. The large size
distribution is nonperturbative but cut off by R the mean
separation of the instantons (anti-instantons) in the vac-
uum. Detailed lattice simulations using the gradient flow
method [32,33] find that the mean tunneling rate and
quasiparticle size are

nIþA ¼ N̄
V
≡ 1

R4
≈

1

fm4
;

ρ̄

R
≈
1

3
: ð29Þ

This distribution, as well as values of the size and
density, has been many times confirmed by lattice works,
using various versions of “deep cooling” of configurations.
In Fig. 10, we show, e.g., results from lattice simulations by
Leinweber and his collaborators [34], using the gradient
flow (cooling) method. At high resolution as illustrated in
Fig. 10 (top), the vacuum is dominated by quantum or zero
point motion, but as the resolution is decreased, as

FIG. 9. (a) Nucleon spin decomposition using Ji’s spin sum rule,
in the QCD instanton vacuum with two flavors at μ ¼ 0.56 GeV
(left) and μ ¼ 2 GeV (right). (b) The same decomposition from
the χQCD Lattice Collaboration [28] (left) and the ETMC Lattice
Collaboration [29] (right), at a resolution of μ ¼ 2 GeV.

FIG. 10. Visualization of the vacuum in gluodynamics, before
cooling at a resolution of about 1

10
fm (top) and after “deep

cooling” at a resolution of about 1
3
fm (bottom) [35], where the

pseudoparticles emerge.

LIU, SHURYAK, and ZAHED PHYS. REV. D 110, 054005 (2024)

054005-10



illustrated in Fig. 10 (bottom), a much smoother landscape
emerges, composed essentially of instantons and anti-
instantons. These are tunneling pseudoparticles, between
vacua with different Chern-Simons numbers.
Most of the hadronic correlation functions in the QCD

vacuum are little affected by the removal of the quantum
gluons by gradient flow, an indication of the central role
played by these pseudoparticles [6,36]. The dimensional
parameters (29) combine in the dimensionless parameter
packing fraction κ ≡ π2ρ̄4nIþA ≈ 0.1, a small emerging
parameter that allows for a many-body analysis.

A. Scale anomaly

The quantum breaking of conformal symmetry is best
captured by the anomalous part of the trace of the energy-
momentum tensor

Tμ
μ ≈ −

b
32π2

Ga
μνGaμν þmψ̄ψ : ð30Þ

Throughout, we will use the rescaling gG → G for oper-
ators in the instanton or anti-instanton gauge fields. In the
QCD instanton vacuum, the gluonic operators

G2=ð32π2Þ → ðNþ þ N−Þ=V ¼ N=V;

GG̃=ð32π2Þ → ðNþ − N−Þ=V ¼ ΔN=V ð31Þ

count the number-sum (first) and number-difference (sec-
ond) of instantons plus anti-instantons in the 4-volume V.
In the canonical ensemble with zero theta angle, the former
is fixed by the mean instanton density withN�=V → N̄=2V
and ΔN ¼ 0. As a result, the expectation value of (30) in
the Yang-Mills vacuum illustrated in Fig. 10 is

hTμ
μi ≈ −bnIþA ≈ −10 fm−4 ð32Þ

in leading order in the packing fraction and chiral limit. The
emerging gluon condensate hG2i, which is positive, is at the
origin of most hadronic mass in the Universe [37].

B. Fluctuating pseudoparticles

In Fig. 10, the tunneling quasiparticles fluctuate in
numbers. Remarkably, these fluctuations are universally
captured by the distributions [9,15,31]

PðNþ; N−Þ ∝
�
e
bN
4

�
N̄
N

�bN
4

��
1

ð2πχtÞ12
e−

ΔN2

2χt

�
ð33Þ

with mean N̄, in agreement with low-energy theorems [38].
The dominant second moments are

σT ¼ hðN − N̄Þ2iP;
χt ¼ hðNþ − N−Þ2iP: ð34Þ

The variance in N or vacuum compressibility,

σT ¼ V
Z

d4x

�
1

32π2
GGðxÞ 1

32π2
GGð0Þ

�
P
; ð35Þ

vanishes in the large Nc limit:

σT ¼ 4N̄
b

: ð36Þ

The large volume topological susceptibility is

χt ¼ V
Z

d4x

�
1

32π2
GG̃ðxÞ 1

32π2
GG̃ð0Þ

�
P
: ð37Þ

In quenched QCD, χt → χð0Þt is given by the Witten-
Veneziano formula [39,40]

χð0Þt

V
¼ lim

V→∞

hΔN2ðVÞiP
V

¼ f2πM2
1

2Nf
ð38Þ

with M1 the quenched singlet mass,

M2
1 ¼ m2

η0 þm2
η − 2m2

K; ð39Þ

and Eqs. (38) and (39) hold in the QCD instanton
vacuum [6,30,31]. In the unquenched QCD instanton
vacuum, (38) is very sensitive to the presence of light
quarks with the substitution M2

1 → m2
π (see below) and

vanishes in the chiral limit [9,15].

C. Light quarks and zero modes

When a light quark crosses a tunneling configuration, it
develops a zero mode that is single handed [41], an amazing
phenomenon protected by topology and the Atiyah-Singer
theorem. It is the delocalization of these zero modes and
their interactions that is at the origin of the spontaneous
breaking of chiral symmetry and the emergence of the light
hadronic spectrum. Remarkably, this topological mecha-
nism for mass generation leaves behind a distinct finger-
print: universal conductancelike fluctuations in the quark
spectrum, predicted by random matrix theory [42] and
confirmed by lattice simulations [43].

FIG. 11. A quark zero mode propagating through an instanton
enters left handed and exits right handed, to maintain a null
quasispin τ⃗ þ σ⃗ ¼ 0⃗ (left). The opposite takes place through an
anti-instanton (right).
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In Fig. 11, we show how a light up-quark helicity in a zero mode is flipped when crossing an instanton (left) or anti-
instanton (right). (In the zero mode, the quark spin σ⃗ is locked to the color τ⃗, in a hedgehoglike configuration with
σ⃗ þ τ⃗ ¼ 0⃗.) This flipping is captured by the ’t Hooft vertex for a single quark flavor [41]. Specifically, the LSZ reduced
forward scattering matrix for the zero mode in Fig. 11 is in Euclidean signature

nI

�
ψ†
RðpÞp · σ†½φ0ðpÞp̂ · σϵU� 1

m
½φ0ðpÞðp̂ · σϵUÞ†�p · σψLðpÞ

�
U
þ ðI; LÞ ↔ ðĪ; RÞ ð40Þ

with the Weyl notation subsumed ðp · σ ¼ pμσμÞ, where σμ ¼ ð−iσ⃗; 1Þ, and the normalized quark zero mode

ϕi
αIðpÞ ¼ φ0ðpÞðp̂ · σϵUÞiα ≡ ½πρ2ðI0K0ðzÞ − I1K1ðzÞÞ0z¼ρp=2�ðp̂ · σϵUÞiα: ð41Þ

Here, the matrix element ðϵUÞia ¼ ϵibUab carries spin i and color a, with ϵib a real antisymmetric tensor (hedgehog in spin
color) andU an SUðNcÞ valued color matrix. The averaging in (41) is carried overU. Equation (40) can be recast in the form

MqðpÞ
�
N
N̄
ψ†ðpÞψðpÞ − ΔN

N̄
ψ†ðpÞγ5ψðpÞ

�
→ ψ†ðpÞ

�
MqðpÞ

�
1 −

ΔN
N̄

γ5
��

ψðpÞ ð42Þ

with the running constituent quark mass [44,45]
[κ̃ ¼ κ=ð2π2NcÞ]

MqðpÞ ¼ κ̃
jpφ0ðpÞj2

mρ4
→

ffiffiffĩ
κ

pffiffiffi
2

p
ρ2

jpφ0ðpÞj2
kqφ02k : ð43Þ

The singular 1=m effect is removed by disordering, with
Mqð0Þ ¼ 383� 39 MeV [45], which is comparable to the
numerical result Mqð0Þ ≈ 300 MeV [6,46]. In the QCD
instanton vacuum, the running quark mass is fixed by the
same scale as the gluon condensate or Muð0Þ ≈ 1=R, since
ρ̄ ≈ R=3, with the size distribution (28) still controlled by R.
This ensures the renormalization group invariance of all
mass scales.
The emergent quark mass (43) in the QCD instanton

vacuum may remind us of the constituent quark mass from
the Nambu-Jona-Lasinio (NJL)model [47,48] (and refer-
ences therein). However, it is important to stress that the
latter is a pre-QCD model, while the former is rooted in
QCD and is now supported by even numerical QCD lattice
visualizations as in Fig. 10. The canonical NJL model,
although useful, does not explain the vacuum gluon
condensate, the running quark mass, the η0 mass (unless
modified), and the universal spectral conductance fluctua-
tions [42]. More importantly, the gluonic operators, their
correlations, and mixing with the quarks are readily
described in the QCD instanton vacuum. For complete-
ness, we note the nontopological approach to the hadronic
mass scale in [49] (and references therein), where also a
running quark mass emerges by resumming gluon rainbow
diagrams.

D. Center P vortices

The topologically active quasiparticles give rise to a
linearly rising central potential till about 1 fm, before the
potential flattens out at larger distances [7]. Strong lattice
evidence for the disordering of large Wilson loops, points to
the center-projected vortices (center P vortices) [50–52].
Center P vortices can link with large Wilson loops through
ZNc

fluxes, leading to an emergent string tension σT fixed by
the planar density of NV=

ffiffiffiffi
V

p
of center P vortices. More

specifically, σT ¼ 1=ð2πl2sÞwith a string length ls ≈ 0.2 fm,
so that NV=

ffiffiffiffi
V

p
≈ 4=fm2.

The center P vortices are characterized by a number of
branching points (monopoles), which are likely anchors
of topological structures or quasiparticles. Yet the latter
carry much stronger chromoelectric and -magnetic fieldsffiffiffiffi
E

p ¼ ffiffiffiffi
B

p
≈ 2.5=ρ̄ ≈ 1.5 GeV, in comparison to σT ρ̄ ≈

0.3 GeV carried by a center P vortex. This suggests that
the quantum breaking of conformal and chiral symmetry is
strongly mediated by the quasiparticles for the low-lying
hadrons in their ground state. The radial and orbitally
excited states have larger sizes and, hence, are more
susceptible to piercing by ZNc

fluxes threading the center
P vortices. Throughout, we will focus on the pseudopar-
ticles for the low-lying hadrons.

IV. EFFECTIVE THEORY OF INSTANTON
ENSEMBLE

For a more quantitative description of the QCD vacuum
at low resolution, we will focus on the pseudoparticles
illustrated in Fig. 10. We designate by Nþ the number of
pseudoparticles and by N− the number of pseudoparticles
with opposite charges. For fixed numbersN�, the canonical
partition function ZN� is
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ZN� ¼ 1

Nþ!N−!

Z YNþþN−

I¼1

dΩIn0ðρIÞρNf

I e−Sint

×
Y
f

Detð=DþmfÞlow; ð44Þ

where dΩI ¼ dρId4zIdUI is the conformal measure
(size ρI, center zI, and color orientation UI) for each single
(anti-)instanton. The mean tunneling rate is

n0ðρÞ ¼ CNc
ð1=ρ5Þð8π2=g2Þ2Nc e−8π

2=g2ðρÞ

with CNc
is the number dependent on color number Nc

and the gauge interaction between instantons and anti-
instantons is Sint.

A. Emergent ’t Hooft vertices

The fermion determinant receives contribution from the
high-momentum modes as well as the low-momentum
modes. The contribution of the higher modes are localized
on the pseudoparticles. They renormalize the mean-density
rate, with an additional factor of ρNf . The low-momentum
modes, in the form of quasizero modes, are delocalized
among the pseudoparticles. The chief result of the delo-
calization is the emerging constituent mass (42) and (43)
and ’t Hooft vertices [6,15,30,53]:

ΘI ¼
Y
f

�
mf

4π2ρ2
þ iψ†

fðxÞUI
1

2

�
1þ 1

4
τaη̄aμνσ

μν

�
U†

I
1 − γ5

2
ψfðxÞ

�
e−

2π2

g ρ2RabðUIÞη̄bμνGa
μν ;

ΘA ¼
Y
f

�
mf

4π2ρ2
þ iψ†

fðxÞUA
1

2

�
1þ 1

4
τaηaμνσ

μν

�
U†

A
1þ γ5

2
ψfðxÞ

�
e−

2π2

g ρ2RabðUAÞηbμνGa
μν ð45Þ

to lowest order in the current quark massesmf. The gluonic
field strength Ga

μν follows from the LSZ reduction of
pseudoparticle field strength and is sourced by the color-
magnetic moment [54,55]. The rigid color rotation RabðUÞ
is defined as

RabðUÞ ¼ 1

2
TrðτaUτbU†Þ:

With this in mind, the ensuing canonical partition
function ZN� in (44) reads

ZN� ¼ ZðgÞ
N�

Z YNþþN−

I¼1

d4zIdUI
ð4π2ρ3ÞNf

V

×
Z

DψDψ†DAμ

 YNþ

I¼1

ΘI

YN−

A¼1

ΘA

!

× exp

�
−
Z

d4xð−ψ†i=∂ψ þ 1

4
ðGa

μνÞ2Þ
�

ð46Þ

with

ZðgÞ
N� ¼

1

Nþ!N−!

�Z
dρnþðρÞV

�
Nþ
�Z

dρn−ðρÞV
�

N−

e−S̄int :

ð47Þ

Here, n�ðρÞ is the effective instanton size distribution,
including the pseudoparticle binary interaction S̄int, which
can be estimated by Feynman variational principle [15,56].

B. Single-instanton approximation

Since most of the gluonic matrix elements will be
assessed in hadronic states, we can ignore S̄int, and each
emerging vertex ΘI;A in (46) can be randomly averaged
over the single-pseudoparticle moduli with mean size fixed:

θ� ¼
Z

d4zI;AdUI;AΘI;A: ð48Þ

The explicit form of the vertices in the single-instanton
approximation (SIA) can be found in Appendix A. In the
large volume limit with fixed pseudoparticle density, the
emergent vertices θ� exponentiate, giving

ZN� ¼ ZðgÞ
N�

Z
DψDψ†DAμ exp ð−SeffÞ; ð49Þ

where the effective action in Euclidean space reads

SeffðNþ; N−Þ ¼
Z

d4x

�
−ψ†ði=∂ −m�

fÞψ þ 1

4
ðGa

μνÞ2
�

−Gð1þ δÞθþ −Gð1 − δÞθ−: ð50Þ

The emergent parameters G and δ are fixed by the saddle
point approximation. The effective coupling G

G ¼ N
2V

ð4π2ρ3ÞNfQ
fðρm�

fÞ
ð51Þ
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is tied to the mean instanton size ρ, density N=V, and
determinantal mass m�

f [7,57,58]

m�
f ¼ mf −

2π2ρ2

Nc
hψ̄fψfi: ð52Þ

It follows from the mean-field approximation to the
effective action in the SIA summarized in Appendix A.
We note that the determinantal mass m�

f does not run
with momentum and is much smaller than the running
constituent quark mass Mqð0Þ used in [59,60] (and refer-
ences therein). The latter resums all pseudoparticle con-
tributions (close and far) to the quark propagator in leading
order in the packing fraction.
The determinantal mass follows from the SIA, by

retaining only the closest pseudoparticle in the inverted
quark propagator, for a given zero mode [see [58] and
Eqs. (72)–(74) in [7] ]. It is appropriate for the description
of the hopping of fermions at distances jx − yj ≤
R ≈ 1 fm, e.g., in the local clustering of the zero modes
in the effective ’t Hooft vertices and pairing of pseudo-
particles in molecules. The larger constituent quark mass
Mqð0Þ describes long-range propagation of the emerging
quarks for jx − yj ≫ R ≈ 1 fm and is more appropriate in
the description of long-range hadronic correlators.
The screened topological charge δ is fixed to

δ ¼ ΔN
N

X
f

m�
f

mf
: ð53Þ

For a canonical ensemble of pseudoparticles, the instanton
number sum N and difference ΔN are fixed to N ¼ VnIþA
and ΔN ¼ 0, respectively. In a grand canonical ensemble,
the instanton number sum and difference are allowed to
fluctuate.
Using (49), the mean values of the instanton determi-

nantal vertices hθ�i are

hθ�i ¼
Y
f

�
m�

f

4π2ρ2

�
V: ð54Þ

The effective instanton vertices are composed of the
2Nf-quark ’t Hooft interaction and the emission of
multiple gluons. The effective action can be decomposed

into the fermionic instanton-induced interactions (’t Hooft
Lagrangian), with or without multigluon tail emission.
The corresponding effective Lagrangian is given in
Appendix A. Note that multigluon tail emissions are
further suppressed by the small instanton size ρ.
The vacuum parameters are fixed to ρ ¼ 0.313 fm and

nIþA ¼ 1 fm−4. The table for the parameters used in ILM is
shown in Table I.
The determinantal mass is to be compared to the heavier

constituent quark mass Mqð0Þ ≈ 395 MeV. Both masses
are close those used in [7,58–60]. The quark condensate
hψ̄ψi is also close to the one given in [61]. The values of the
current quark mass and quark condensate can also be
compared to the FLAG lattice calculation by renormaliza-
tion group evolution. At μ ¼ 2 GeV, the current mass is
m ≃ 6.9 MeV, and the quark condensate is hψ̄fψfi ≃
−ð251.7 MeVÞ3 comparable to the result in FLAG lattice
Nf ¼ 2þ 1þ 1 calculation [62]. For completeness, we
refer to [6,15], for more details regarding the phenomenol-
ogy of the QCD instanton vacuum.

C. Pseudoparticle form factors

The emergent vertices (45) can be generalized to include
further finite size effects of the pseudoparticles. More
specifically, each quark field in the interaction vertices
ΘI;A gets dressed:

ψðkÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρkÞ

p
ψðkÞ ð55Þ

with

ffiffiffiffiffiffiffiffiffiffiffi
F ðkÞ

p
¼ z

d
dz

½I0ðzÞK0ðzÞ − I1ðzÞK1ðzÞ�
����
z¼k

2

; ð56Þ

which is essentially the profiling of the instanton by the
quark zero mode.
Also, each emitted gluon gets dressed by an induced

nonlocal form factor. For that, we recall that the Belavin-
Polyakov-Schwartz-Tyupkin instanton in singular gauge is
given by

Aa
μðxÞ ¼

1

g

2η̄aμνxνρ2

x2ðx2 þ ρ2Þ ; ð57Þ

which is seen to satisfy both fixed-point and covariant
gauge. In momentum space, it reads

gAa
μðqÞ ¼ i4π2

η̄aμνqν
q2

F gðρqÞ ð58Þ

with the gluonic form factor induced by the finite instanton
size [63,64]

TABLE I. Emergent parameters.

Covariant Light front [60]

G 610.3 GeV−2 567.8 GeV−2

m 12.2 MeV 16.17 MeV
m� 110.70 MeV 114.76 MeV
Mqð0Þ 395.17 MeV 398.17 MeV
hψ̄fψfi −ð208.39 MeVÞ3 −ð208.58 MeVÞ3
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F gðqÞ ¼
4

q2
− 2K2ðqÞ: ð59Þ

As a result, each instanton in the interaction vertices ΘI;A is
regulated by

2π2

g
η̄aμν →

2π2

g
η̄aμνF gðρqÞ; ð60Þ

which follows from (58) by LSZ reduction.
The use of the gluonic vertices ΘI;A is justified in

momentum space diagrams, when the exchange “tail”
gluons carry energies below the sphaleron mass (the top
of the tunneling barrier)

MS ¼
Z

d3x
1

8
G2

μνð0; x⃗Þ ¼
3π

4αsρ
: ð61Þ

Using the above vacuum parameters, we have 8π2=g2ðρÞ ¼
10–15 [6]. This fixes the sphaleron mass MS ∼ 2.5 GeV,
for αsð1=ρÞ ∼ 0.42–0.7.

V. HADRONIC FORM FACTORS

The hadronic form factors are characterized by several
regimes: (i) a soft energy regime with Q2 < 1 GeV2, where
meson exchanges induced by the emerging vacuum inter-
actions are dominant; (ii) a semihard regime with 1 < Q2 <
10 GeV2, where scaling is still largely violated, where
nonperturbative vacuum fields are still important [65];
and (iii) a hard regime Q2 ≫ 10 GeV2 where perturbative
scaling ultimately takes place. Here, wewill focus on the soft
energy regime, where the emergent multiflavor interactions
in the QCD vacuum at low resolution are dominant and
manifest in the form of effective meson exchanges.
With this in mind, and to evaluate the pertinent hadronic

form factors with gluonic operators in the QCD instanton
vacuum, we will trade matrix elements of the gluonic
operators for effective fermionic operators. This can be
done in two ways, either by averaging the gluonic operators

in the presence of the zero modes for forward matrix
elements [66] or by using the semiclassical bosonization for
forward and off-forward matrix elements [9]. This trading
was shown to be exact in two-dimensional QCD in the large
Nc limit in [67] [see Eqs. (91) and (92)]. Here, wewill show
how to generalize [66], by showing how it can be extended
to off-forward matrix elements, and also at NLO in the
mean instanton density to account for like and unlike
instanton molecules. The latter play a dominant role in the
gluonic contribution to the energy-momentum tensor and,
in general, most gluonic operators on the light front.

A. Sum ansatz

Let O½A� be a generic gluonic operator, sourced by a
multipseudoparticle gluon field given by the sum ansatz

AðxÞ ¼
XNþþN−

I¼1

AIðxÞ: ð62Þ

The ensuing gluonic operator O½A� is seen to split into a
sum of multi-instanton contributions

O½A� ¼
X
I

O½AI� þ
X
I≠J

O½AI; AJ� þ � � � ð63Þ

of increasing complexity. In the QCD instanton vacuum,
the gauge fields and their quark zero modes are reduced to
a quantum moduli. The vacuum averaging over the
quantum moduli in the absence of source is the effective
Lagrangian given in Appendix A. In the presence of the
split form of the gluonic source (63), the averaging over
the quantum moduli trades the gluonic source for multi-
flavored fermionic vertices.

B. Vacuum averages

The vacuum averages of local gluonic operators using
(46) for fixed-N� configurations (canonical ensemble)
follow from

hO½A�iN� ¼ ZðgÞ
N�

ZN�

Z YNþþN−

I¼1

d4zIdUI
ð4π2ρ3ÞNf

V

Z
DψDψ†DAμO½A�

 YNþ

I¼1

ΘI

YN−

A¼1

ΘA

!
e−
R

d4xð−ψ†i=∂ψþ1
4
ðGa

μνÞ2Þ: ð64Þ

The evaluation of the gluonic operators from the instanton
vacuum is twofold. When the operator probes the gluonic
content inside the hadronic state with a momentum transfer,
the contribution can be calculated by replacing the gluonic
field in the operator by the semiclassical background of the
instantons [15,66]. The averages over the operators and the
quark-instantonic vertices convert the gluonic operator into

the corresponding effective quark operator. Thus, in the
instanton ensemble, the gluonic operators are mapped into
some effective fermionic operators associated with the
multi-instanton configuration in the instanton vacuum.
Using (63), the vacuum expectation value of O½A� in the

instanton ensemble can be organized in diluteness contri-
butions using the instanton density nIþA:
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hO½A�iN� ¼
X∞
n¼1

1

n!

�Xn
k¼0

�
N
k

�
Nn−kþ Nk

−
hOþþ���−ieff
hθþin−khθ−ik

�

¼ Nþ
hOþieff
hθþi

þ N−
hO−ieff
hθ−i

þ N2þ
2

hOþþieff
hθþi2

þ NþN−
hOþ−ieff
hθþihθ−i

þ N2
−

2

hO−−ieff
hθ−i2

þ � � � ; ð65Þ

where the effective fermionic operatorOþþ���− is obtained by simultaneously connectingO½A� to the n instantons by sharing
the classical fields:

Oþþ���− ¼
Z

d4zI1dUI1…d4zIndUInO½AI1 ; AI2 ;…; AIn �ΘI1…ΘIn : ð66Þ

Now the canonical ensemble average effectively
reduces to the path integral of the effective field theory.
The calculations become the vacuum expectation values of
a bunch of effective multi-instanton fermionic operators
over the effective Lagrangian Leff . This is the conse-
quences of the diluteness of the instanton vacuum.
The calculations now can be done order by order in the
framework of the instanton density expansion. As
the same idea of the diluteness, the correlation between
the instantons becomes irrelevant. Therefore, the fermion
and gluon exchanges among the instanton vertices ΘI will
be neglected. The extension to a grand canonical ensemble

of pseudoparticles with varying N� will follow by
inspection (see below).

C. Form factors

The preceding arguments for the vacuum averages can be
extended to hadronic matrix elements, provided that the
resulting effective vertices are localized within the hadronic
size. This is true for most light hadrons, since the instanton
size is comparable to even to the pion, the smallest of all
light hadrons. With this in mind, the transition matrix
element of the gluon operatorO½A� in a hadron state will be
given by an ensemble average similar to (65) with in-out
on-shell hadronic states:

hP0jO½A�jPiN� ¼
X∞
n¼1

1

n!

�Xn
k¼0

�
n
k

��
Nþ
hθþi

�
n−k
�
N−

hθ−i
�

k
hP0jOþþ���−jPieff

�

¼ Nþ
hθþi

hP0jOþjPieff þ
N−

hθ−i
hP0jO−jPieff þ

1

2

N2þ
hθþi2

hP0jOþþjPieff

þ Nþ
hθþi

N−

hθ−i
hP0jOþ−jPieff þ

1

2

N2
−

hθ−i2
hP0jO−−jPieff þ � � � : ð67Þ

The form factors following from (67) can be expanded
systematically, in terms of the instanton density, which is
commensurate with a bookkeeping in 1=Nc. Translational
symmetry relates the hadronic matrix element of O½A� to
the momentum transfer between the hadronic states:

hP0jO½A�jPi ¼ 1

V

Z
d4xhPjO½AðxÞ�jPie−iq·x ð68Þ

The recoiling hadron momentum is defined as P0 ¼ Pþ q,
and the forward limit follows from q → 0. Equation (67)
generalizes the arguments in [66] to off-forward and multi-
instanton contributions.

Graphically, the color averaging in (66) connects O½A�
to n instantons through the classical field backgrounds.
Each matrix element in (67) is evaluated by the effective
Lagrangian Leff , with only the connected diagrams
retained. The hadronic matrix element effectively reduces
to the path integral of the effective field theory, thanks to
the diluteness of the pseudoparticles in the vacuum state.
The calculations can be carried order by order in the
instanton density expansion.
More specifically, each of the external fermion (anti-

fermion) lines in the diagram contributes a pair of UU† in
the color group integral. Each of the UU† pair gives a 1=Nc
factor in the largeNc limit. Therefore, the 1=Nc counting of

each diagram is 1=N
Nf
c , whereNf is the external unattached
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fermion number [the number of the external (anti-)fermion
line unattached to the operator]. Note that in some cases the
leading 1=Nc contribution gives the disconnected diagrams
in the matrix element [15]. In this case, the fluctuation in
the instanton numbers comes into play, and the ensemble
formulation has to be generalized to the grand canonical
ensemble.

VI. GLUONIC SCALAR FORM FACTORS

We will start our analysis by illustrating how this
averaging carries for the simplest two-gluon scalar operator

O2g½A� ¼ G2
μνðxÞ: ð69Þ

A. One-instanton contribution

In leading order in the density expansion, the effective
fermionic operator for O2g is obtained by averaging the
leading expansion of O2g with one instanton vertex:

O2g�ðxÞ ¼
Z

d4zIdUIO2g½AI�ΘI ð70Þ

with O2g½AI� ¼ G2
μν½AI�. The classical field of the single

instanton plays an important role in the expectation value of
the gluonic operators, due to its strong and localized nature.
The calculations are illustrated by the diagrammatic

contribution in Fig. 12(a), where each of the dashed lines
denotes the replacement of the instanton classical fields
into the gluon field in the operator. In the Feynman
diagram, each of the external fermion flavors Nf contrib-
utes a pair of UU† in the color group integral, giving a

1=Nc factor. The 1=Nc counting of each diagram is 1=N
Nf
c .

Hence, we consider only the one-flavor contribution at each
order of the instanton density expansion.
In leading order in the instanton density, the 1=Nc

expansion of the result in (123) gives

1

V

Z
d4xO2g�ðxÞe−iq·x¼

1

V

Z
d4xFðI;AÞ

2g ðxÞe−iρq·x
��

m�

4π2ρ2

�
Nfð2πÞ4δ4ðqÞ− 1

Nc

�
m�

4π2ρ2

�
Nf−1

Z
d4zψ̄ðzÞ1∓ γ5

2
ψðzÞe−iq·z

�
;

ð71Þ

where the profile function for the single (anti-)instanton I
(A) is defined as

FðI;AÞ
2g ðxÞ ¼ 192

ðx2 þ 1Þ4 : ð72Þ

The leading-order contribution of the 1=Nc expansion
comes from the diagrams where all of theNf flavors looped

up. These diagrams do not have any contribution in the
canonical ensemble, as they are disconnected from the
hadronic source. Similar to the calculation of the G2

μν

operator in [15], we have to consider the fluctuations in the
instanton vacuum. However, this part will contribute only
to the forward matrix element. In the off-forward matrix
element, the nontrivial contribution has to be connected to
the hadronic source and, therefore, is down by 1=Nc.

FIG. 12. (a) The diagrams ofO½I� in the multi-instanton expansion of the two-gluon operatorO2g and Õ2g. Each dashed line connected
to the instanton represents the classical background field. (b) The diagrams of O½AI; AJ� in the multi-instanton expansion of the two-
gluon operator O2g and Õ2g. Each line connected to the instantons I and J represents the gluon fields in the operator. Each of the ring
dots in the diagrams represents the insertion of the non-Abelian cross term Gμν½AI; AJ� in (C5).
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B. Two-instanton contribution

At next-to-leading order of the instanton density expan-
sion, the effective fermionic operator for O2g can be
obtained by averaging the leading expansion of O2g with
a two-instanton vertex

O2g��ðxÞ

¼
Z

d4zId4zJdUIdUJO2g½AI; AJ�ΘIΘJ ð73Þ

with

O2g½AI;AJ� ¼ 2Ga
μν½I�Ga

μν½J� þ 2Ga
μν½J�Ga

μν½I; J�
þ 2Ga

μν½I�Ga
μν½I; J� þGa

μν½I; J�Ga
μν½I; J�: ð74Þ

Here, Gμν½I� is short for Gμν½AI�, the single-instanton field
strength.
In Fig. 12(b), we also show the diagrams that contribute

to the gluonic scalar operatorO2g at the second order in the
instanton density. Each diagram corresponds to each term
of the terms given in (142). Each of the dashed lines
denotes the replacement of the instanton classical fields by
the gluon field in the operator. In the case of a two-instanton
cluster, at the leading order in the 1=Nc contribution, each
instanton with the Nf − 1 flavors contracted will dominate
the contribution in the hadronic matrix element. The
effective operator produces two types of coupling due to
the chirality. The operator produced by II or AA clusters
corresponds to a chiral-flipping process

1

V

Z
d4xO2gþþ;−−ðxÞe−iq·x ¼

1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

8
trfSðzI − zJÞg

×
1

V

Z
d4xe−iq·xFðII;AAÞ

2g ðx − zI; x − zJÞ
�
ψ̄ðzIÞ

1 ∓ γ5

2
ψðzJÞ þ ψ̄ðzJÞ

1 ∓ γ5

2
ψðzIÞ

�
; ð75Þ

where the profile function for the II cluster is defined as

FðIIÞ
2g ðx − zI; x − zJÞ ¼ 2Ga

μνðx − zIÞGa
μνðx − zJÞ þ 4ϵacdGc

μνðx − zIÞAd
μðx − zIÞAa

νðx − zJÞ
þ 4ϵacdGc

μνðx − zJÞAd
μðx − zJÞAa

νðx − zIÞ ð76Þ

and the profile function for the AA cluster is equal

FðIIÞ
2g ðx − zI; x − zJÞ ¼ FðAAÞ

2g ðx − zI; x − zJÞ: ð77Þ

The operator produced by IA molecules corresponds to a chiral-conserving process:

1

V

Z
d4xO2gþ−ðxÞe−iq·x ¼ −

1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

4
trfSðzI − zJÞγμg

×
1

V

Z
d4xe−iq·xFðIAÞ

2g;μνðx − zI; x − zJÞ
�
ψ̄ðzIÞγν

1þ γ5

2
ψðzJÞ − ψ̄ðzJÞγν

1 − γ5

2
ψðzIÞ

�
; ð78Þ

where the profile function for the IA molecule is defined as

FðIAÞ
2g;ρλðx − zI; x − zJÞ ¼

1

2
η̄aρβη

b
λβ½2Ga

μνðx − zIÞGb
μνðx − zJÞ þ 4ϵacdGc

μνðx − zIÞAd
μðx − zIÞAb

νðx − zJÞ
þ 4ϵbcdGc

μνðx − zJÞAd
μðx − zJÞAa

νðx − zIÞ�: ð79Þ

Generally, the operators induced by the instanton clusters
are nonlocal. However, as a result of the diluteness in the
instanton ensemble, the highly localized nature of the
instantons allows us to approximate the nonlocal quark
operators by local operators, using the expansion in terms
of the relative distance between the instanton pairs
R ¼ zI − zJ. The relevant contribution to those matrix

elements at higher order of the instanton density comes
from the close clusters. Therefore, we can extract the leading
contribution by the R expansion (the local approximation)

ψ̄ðzIÞψðzJÞ ≃ ψ̄ðzÞψðzÞ − Rμψ̄ðzÞ∂
↔

μψðzÞ þ � � � :
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Note that the quark line connecting the instanton I and J
produces the Euclidean quark propagator with a determi-
nantal mass m� in the SIA, as opposed to the constituent
quark mass in the mean-field approximation, i.e.,

Sðx − yÞ ∼
Z

d4k
ð2πÞ4

i=kþm�

k2 þm�2 F ðρkÞe−ik·ðx−yÞ: ð80Þ

C. Forward matrix element

To make the physics more transparent, we properly
normalize the hadronic matrix element in the forward limit
q → 0. With the consideration of the instanton fluctuations,
the hadronic matrix element reads

1

32π2
hPSjg2G2

μνjPSi
2MN

¼ −
σT
N̄

1

4
Mð0Þ

inv −
�
1

Nc

�
2κ

ρ2m�2

�
þ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TII

� hPSjmψ̄ψ jPSi
2MN

: ð81Þ

The first term comes from the instanton number fluctuation,
and the second term comes from the quark-instanton
interaction in the SIA. The topological compressibility
σT can be estimated by the QCD low-energy theorem
[15,38]. The value is given by

σT ¼ hðN − N̄Þ2iP ¼ 4

b
N̄; ð82Þ

where b ¼ 11
3
Nc is the one-loop beta function in 1=Nc limit

(quenched QCD).
In QCD, the gluonic scalar operator is tied to the

nucleon mass due by the conformal anomaly. In the chiral
limit, the nucleon mass is saturated by the contribution
from the anomalous mass (invariant massMinv) induced by
the spontaneous breaking of chiral symmetry:

MNðm → 0Þ≡Minv ¼ −
b

32π2
hPSjg2G2

μνjPSi
2MN

: ð83Þ

In the large Nc limit, the invariant mass follows by
dimension

Mð0Þ
inv ¼ C

�
N̄
V

�
1=4

: ð84Þ

As in quenched QCD (Nc → ∞), the instanton density is
the only scale in the QCD instanton vacuum. It is the
analog of ΛQCD for the gauge configurations in the QCD

vacuum, after cooling through gradient flow. Beyond the
quenched limit, quarks start to contribute. The invariant
mass will start to run due to the mixing between the gluon
scalar and the quark scalar operator, induced by the quark-
instanton interaction. The result to second order in the
instanton density is

Minv ¼ Mð0Þ
inv þ

�
b
Nc

�
2κ

ρ2m�2

�
þ b
2NcðN2

c − 1Þ

×

�
2κ

ρ2m�2

�
2

3ρ2m2TII

� hPSjmψ̄ψ jPSi
2MN

: ð85Þ

The invariant mass is renormalized by the quark mixing, in
the instanton density expansion. With the invariant mass
renormalized, the generalization to the off-forward matrix
element is now straightforward, as we now detail.

D. Off-forward matrix element

In the small size limit with momenta ρq ≪ 1, the
detailed instanton structure is not probed. In this case,
the gluonic operators are reduced to effective quark
operators, and the momentum transfer dependence is
dominated by quarks. However, when the momentum
transfer becomes large enough to probe the instanton size,
the momentum transfer dependence will be corrected by the
instanton profiles. Hence, the off-forward hadronic matrix
element

1

32π2
hP0Sjg2G2

μνjPSi ¼ −
�
1

4
Mð0Þ

inv
σT
N̄

ð2πÞ4
V

δ4ðqÞ
�
ūsðP0ÞusðPÞ

−
�
1

Nc

�
2κ

ρ2m�2

�
βðIÞ2g ðρqÞ þ

1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

3ρ2m2TIIβ
ðIIÞ
2g ðρqÞ

�
hP0Sjmψ̄ψ jPSi

þ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2 ρ4m2

9
TIAβ

ðIAÞ
2g ðρqÞqμqνhP0Sjψ̄

�
γðμi∂

↔

νÞ −
1

4
gμνi=∂

↔
�
ψ jPSi; ð86Þ
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where the nonlocal form factors induced by the finite instanton size effect are defined as

βðIÞ2g ðqÞ ¼
1

q

Z
∞

0

dx
24x2

ðx2 þ 1Þ4 J1ðqxÞ ¼
q2

2
K2ðqÞ;

βðIIÞ2g ðqÞ ¼ 1

q

Z
∞

0

dx
8ð2 − x2Þ
ð1þ x2Þ4 J1ðqxÞ ¼

16

q2
−
1

6
q2ðK2ðqÞ þ 2K4ðqÞÞ;

βðIAÞ2g ðqÞ ¼ 1

q

Z
∞

0

dx
576x2

ð1þ x2Þ4
J3ðqxÞ
q2x2

¼ 12½48ð−32þ q2Þ

þ q2ð768þ 72q2 þ q4ÞK0ðqÞ þ 12qð128þ 28q2 þ q4ÞK1ðqÞ�=q6 ð87Þ

and are normalized to unity in the forward limit. We plotted
them in Fig. 4.
The quark hopping integral between the instanton and

anti-instanton TIAðρm�Þ is defined as

TII ¼
Z

d4R
4π2R

Z
∞

0

dkF ðkÞJ1ðkRÞ
����
R< 1

ρ
ffiffiffiffiffiffi
nIþA4

p
;

TIA ¼
Z

d4R
16π2

Z
∞

0

dkkF ðkÞJ2ðkRÞ
����
R< 1

ρ
ffiffiffiffiffiffi
nIþA4

p
: ð88Þ

With the vacuum parameters, we have TII ¼ 1.666
and TIA ¼ 0.5834.
It is clear that the universal fluctuation dominates the

gluonic scalar form factor at the leading order of the 1=Nc

expansion. The δ4ðqÞ contribution reflects on the scalar
glueball decorrelator with the glueballs sourced solely by
the localized and semiclassical instanton and anti-instanton
fields:

σT
N̄

ð2πÞ4
V

δ4ðqÞ ¼ 1

32π2hG2i
Z

d4xe−iq·xhG2ðxÞG2ð0Þic:

ð89Þ

At nonzero momentum transfer, (86) shows that the
gluonic G2 in a hadron mixes with the scalar meson (σ)
and tensor meson (t) in the hadron. The mixing with the
quark traceless tensor operator is penalized further by the
instanton size.

VII. GLUONIC PSEUDOSCALAR FORM FACTOR

The preceding calculation can be straightforwardly
extended to the gluonic pseudoscalar operator, which enters
the spin sum rule in hadrons through the U(1) anomaly
(see below)

Õ2g½A� ¼ Ga
μνðxÞG̃a

μνðxÞ; ð90Þ

where the dual field strength is defined as

G̃a
μνðxÞ ¼

1

2
ϵμνρλGa

ρλðxÞ: ð91Þ

A. One-instanton contribution

At leading order in the instanton density, the effective
quark operator for Õ2g can be obtained using

Õ2g�ðxÞ ¼
Z

d4zJdUJÕ2g½AJ�ΘJ; ð92Þ

where

Õ2g½AJ� ¼ Ga
μν½AJ�G̃a

μν½AJ�: ð93Þ

The evaluation of (92) is also illustrated by the same
diagrammatic contributions in Fig. 12(a). The profile
function for the single (anti-)instanton I (A) in the gluonic
pseudoscalar operator can be deduced from the scalar by
using the identity G̃a

μν½I; A� ¼ �Ga
μν½I; A�. More specifi-

cally, we have

1

V

Z
d4xO2g�ðxÞe−iq·x¼

1

V

Z
d4xF̃ðI;AÞ

2g ðxÞe−iρq·x
��

m�

4π2ρ2

�
Nfð2πÞ4δ4ðqÞ− 1

Nc

�
m�

4π2ρ2

�
Nf−1

Z
d4zψ̄ðzÞ1∓ γ5

2
ψðzÞe−iq·z

�
;

ð94Þ
where the profile function for the single (anti-)instanton I (A) is defined as

F̃ðI;AÞ
2g ðxÞ ¼ � 192

ðx2 þ 1Þ4 : ð95Þ
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Again, the contribution is dominated by the disconnected
diagrams where all of the Nf flavors looped up. The LO
contribution for the pseudoscalar follows from the instan-
ton vacuum fluctuations in the forward limit.

B. Two-instanton contribution

The contribution at the NLO instanton density c is
given as

Õ2g��ðxÞ ¼
Z

d4zId4zJdUIdUJÕ2g½AI; AJ�ΘIΘJ ð96Þ

with

Õ2g½AI;AJ� ¼ 2Ga
μν½I�G̃a

μν½J� þ 2Ga
μν½I�G̃a

μν½I;J�
þ 2Ga

μν½J�G̃a
μν½I;J� þGa

μν½I;J�G̃a
μν½I;J�: ð97Þ

The instanton pair contribution is similar to the one
illustrated in Fig. 12(b). The effective operator produces
two types of coupling due to the chirality. The one
produced by the II or AA clusters corresponds to a
chiral-flipping process:

1

V

Z
d4xÕ2gþþ;−−ðxÞe−iq·x ¼

1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

8
trfSðzI − zJÞg

×
1

V

Z
d4xe−iq·xF̃ðII;AAÞ

2g ðx − zI; x − zJÞ
�
ψ̄ðzIÞ

1 ∓ γ5

2
ψðzJÞ þ ψ̄ðzJÞ

1 ∓ γ5

2
ψðzIÞ

�
; ð98Þ

where the profile functions for the II and AA clusters are, respectively,

F̃ðIIÞ
2g ðx − zI; x − zJÞ ¼ FðIIÞ

2g ðx − zI; x − zJÞ ð99Þ

and

F̃ðAAÞ
2g ðx − zI; x − zJÞ ¼ −FðIIÞ

2g ðx − zI; x − zJÞ: ð100Þ

The operator produced by the IA molecules corresponds to a chiral-conserving process:

1

V

Z
d4xÕ2gþ−ðxÞe−iq·x ¼ −

1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

4
trfSðzI − zJÞγμg

×
1

V

Z
d4xe−iq·xF̃ðIAÞ

2g;μνðx − zI; x − zJÞ
�
ψ̄ðzIÞγν

1þ γ5

2
ψðzJÞ − ψ̄ðzJÞγν

1 − γ5

2
ψðzIÞ

�
; ð101Þ

where the profile function for the IA molecule is defined as

F̃ðIAÞ
2g;ρλðx − zI; x − zJÞ ¼ 2η̄aρβη

b
λβ½ϵacdGc

μνðx − zIÞAd
μðx − zIÞAb

νðx − zJÞ − ϵbcdGc
μνðx − zJÞAd

μðx − zJÞAa
νðx − zIÞ�: ð102Þ

Again, we approximate the nonlocal quark operators by
local operators, by expanding in terms of the relative
distance between the instanton pairs R ¼ zI − zJ.

C. Forward matrix element

For the gluonic pseudoscalar, the naive forward limit of
the hadronic matrix element vanishes due to the parity
selection rule. To extract the forward form factor, we
choose a different normalization for the forward matrix
element by tilting the hadron slightly off forward and
properly normalizing the matrix element with spin, before

taking the forward limit. Without loss of generality, we
assume that the initial state of the nucleon is in the rest
frame. Now, we can rewrite the nucleon spinor product as

ūsðP0Þiγ5usðPÞ ≃ 2MNsv

with the helicity defined as sv ¼ −χ†s i
2
σ⃗ · v⃗χs, where the

final state nucleon carries a small recoiled velocity
v⃗ ≃ q⃗=MN . Thus, the forward limit of the matrix element
can be defined as
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hPSjOjPSi
2MNsv

¼ lim
P0→P

hP0SjOjPSi
2MNsv

: ð103Þ

With the proper normalization to the matrix element, the result of the hadronic matrix element in the forward limit reads

1

32π2
hPSjg2Ga

μνG̃
a
μνjPSi

2MNsv
¼ Mqð0Þ

χt
N̄
þ
�
1

Nc

�
2κ

ρ2m�2

�
þ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

3ρ2m2TII

� hPSjmψ̄iγ5ψ jPSi
2MNsv

−
1

16NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIAiqμ
hP0Sjψ̄γμγ5ψ jPSi

2MNsv
; ð104Þ

where Mqð0Þ ≈ 395 MeV is the constituent quark mass
in (43) and the value is estimated in [59,60]. Here, we
assumed the nucleon as a quark-scalar-diquark composite,
to capture part of the correlations in the nucleon but not
all [57,68], e.g., ðuudÞ↑ ≈ u↑½ud�0 for a spin-up proton. It
follows that the mixing of the proton spin with the axial
charge is mostly through the unpaired u quark.
The result parallels the gluonic scalar matrix element.

The first term stems from the fluctuation of the number
difference in the ensemble, and the second term stems from
the quark-instanton interaction. The topological suscep-
tibility χt can be estimated by the QCD low-energy
theorem [9,15,38]. When recast in terms of the determi-
nantal mass, the result is

χt ¼ hΔN2iP ∼ N̄

�
1þ Nf

m�

m

�
−1
: ð105Þ

In quenched QCD or gluodynamics, the value in (105) is
about N̄ (Poisson), a result supported by quenched lattice
simulations [69]. A similar estimate follows from the

Witten-Veneziano formula in (38) and (39) with χð0Þt =N̄ ∼
1.95=Nf for a singlet massM1 ≈ 0.85 GeV. In unquenched
QCD, (105) is significantly screened by the quarks and
vanishes in the chiral limit χt=N̄ ∼m=Nfm�. This result
holds in the QCD instanton vacuum [9,15,70,71] and is in
agreement with chiral perturbation theory [72–74] and
random matrix theory [75].
The gluonic pseudoscalar operator is tied to the quark

intrinsic spin by the Adler-Bell-Jackiw (ABJ) anomaly. In
the chiral limit, the quark intrinsic spin in the nucleon is
saturated by the gluonic helicity induced by the ABJ
anomaly. This point will be detailed below.

D. Off-forward matrix element

The generalization to the off-forward matrix element is
straightforward, with the result

1

32π2
hP0Sjg2Ga

μνG̃
a
μνjPSi ¼

�
Mqð0Þ

χt
N̄
ð2πÞ4
V

δ4ðqÞ
�
ūs0 ðP0Þiγ5usðPÞ

þ
�
1

Nc

�
2κ

ρ2m�2

�
β̃ðIÞ2g ðρqÞ þ

1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

3ρ2m2TII β̃
ðIIÞ
2g ðρqÞ

�
hP0Sjmψ̄iγ5ψ jPSi

−
1

16NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIAβ̃
ðIAÞ
2g ðρqÞiqμhP0Sjψ̄γμγ5ψ jPSi; ð106Þ

where the nonlocal form factors induced by the finite
instanton size effect are defined as

β̃ðIÞ2g ðqÞ ¼
1

q

Z
∞

0

dx
24x2

ðx2 þ 1Þ4 J1ðqxÞ;

β̃ðIIÞ2g ðqÞ ¼ 1

q

Z
∞

0

dx
8ð2 − x2Þ
ð1þ x2Þ4 J1ðqxÞ;

β̃ðIAÞ2g ðqÞ ¼ 1

q

Z
∞

0

dx
192x2

ð1þ x2Þ5
J2ðqxÞ
qx

ð107Þ

and are normalized to unity in the forward limit. The quark
hopping integral between the instanton and anti-instanton
TIAðρm�Þ is defined in (88). Note that the ultralocal δ4ðqÞ
contribution can be written as

χt
N̄
ð2πÞ4
V

δ4ðqÞ ¼ 1

32π2hG2i
Z

d4xe−iq·xhGG̃ðxÞGG̃ð0Þi:

ð108Þ
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The nonzero momentum transfer induces emergent meson-
nucleon couplings in (106), with the pseudoscalar mesons
(η0) and axial vector mesons (f1).

VIII. C-ODD THREE-GLUON FORM FACTOR

Another class of gluonic operator of interest is the C-odd
three-gluon operator

O3g½A� ¼ dabcGa
μνðxÞGb

ραðxÞGc
λαðxÞ; ð109Þ

which is found to be the leading operator in the photo-
production process of heavy pseudoscalar mesons [76]. A
similar but not identical operator was considered recently
in [66], to estimate Weinberg’s CP-odd contribution to the
nucleon matrix element. We now proceed to evaluate it in the
QCD instanton vacuum, through the substitution of the sum
ansatz (62) and the ensuing averaging over the moduli.

A. One-instanton contribution

Since dabc is a symmetric SUð3Þ structure constant
which with no support on the SUð2Þ subgroup, in LO of
the instanton density, it follows that all associated color
orientations of the gluonic fields rotate congruently in the
moduli. Therefore, the structure constant dabc would reduce
to trðτafτb; τcgÞ ¼ 0, with zero contribution.

B. Two-instanton contribution

In NLO in the instanton density expansion, some of the
two-instanton terms inO3g½A� involve the nontrivial relative
color rotation U†

IUJ ¼ UIJ between τa and 12 in the SUð2Þ
subgroup, with nonzero net color structure

trðUIτ
aU†

IfUJτ
bU†

J; UJτ
cU†

JgÞ ¼ trðτaU†
IUJ12U

†
JUIÞδbc:

ð110Þ

This means contributions from the single-instanton fields
Gμν½AI� andGμν½AJ�, as well as the overlap between pairs of
instanton fields Gμν½AI; AJ�, a consequence of the non-
Abelian gauge nature. (See Appendix C.) The evaluation of
the latter appears involved. Fortunately, the calculation can
be simplified, as the dabc color structure has support only
when two different SUð2Þ subgroups in SUðNcÞ overlap
through their relative color orientations. To obtain a non-
trivial relative color rotation, the crossing termGμν½I; J� has
to be combined with both Gμν½I� and Gμν½J� to carry the
same color rotation along either I or J:

O3g��ðxÞ ¼
Z

d4zIdUId4zJdUJO3g½AI; AJ�ΘIΘJ; ð111Þ

where

O3g½AI; AJ� ¼ dabc
�
Ga

μν½I�Gb
ρα½I�Gc

λα½J� þ Ga
μν½I�Gb

ρα½J�Gc
λα½I� þGa

μν½J�Gb
ρα½I�Gc

λα½I� þ Ga
μν½J�Gb

ρα½J�Gc
λα½I�

þ Ga
μν½J�Gb

ρα½I�Gc
λα½J� þ Ga

μν½J�Gb
ρα½I�Gc

λα½I� þ Ga
μν½I�Gb

ρα½J�Gc
λα½I; J� þ Ga

μν½J�Gb
ρα½I�Gc

λα½I; J�
þ Ga

μν½I�Gb
ρα½I; J�Gc

λα½J� þ Ga
μν½J�Gb

ρα½I; J�Gc
λα½I� þGa

μν½I; J�Gb
ρα½I�Gc

λα½J� þ Ga
μν½I; J�Gb

ρα½J�Gc
λα½I�



: ð112Þ

Here, Gμν½I� is short for Gμν½AI�. In the case of a two-instanton cluster and in LO in 1=Nc counting, each instanton with
Nf − 1 flavors looped up dominates the contribution in the hadronic matrix element. The effective operator produces two
types of coupling due to the chirality. The operator produced by II or AA clusters corresponds to a chiral-flipping process:

1

V

Z
d4xe−iq·xO3gþþ;−−ðxÞ ¼ −

Nc − 2

2N2
cðN2

c − 1Þ
�

m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

8
trfSðzI − zJÞg

×
1

V

Z
d4xe−iq·xFðIIÞ

3g;μνρλαβðx− zI; x− zJÞ
�
ψ̄ðzIÞ

1 ∓ γ5

2
σαβψðzJÞ þ ψ̄ðzJÞ

1 ∓ γ5

2
σαβψðzIÞ

�
;

ð113Þ
where the profile function for the II or AA pairs is defined as

FðIIÞ
3g;μνρλ;βγðx− zI;x− zJÞ ¼

1

2
η̄aβγ½Gb

μνðx− zIÞGb
ραðx− zIÞGa

λαðx− zJÞþGb
μνðx− zIÞGa

ραðx− zJÞGb
λαðx− zIÞ

þGa
μνðx− zJÞGb

ραðx− zIÞGb
λαðx− zIÞ�þ ðI↔ JÞ

þ 1

2
η̄aβγ

1

4ðNcþ 2Þ ½ϵ
acdGc

μνðx− zIÞ½Ad
ρðx− zIÞAb

αðx− zJÞ−Ad
αðx− zIÞAb

ρðx− zJÞ�Gb
λαðx− zJÞ

þ ϵacdGc
ραðx− zIÞ½Ad

λðx− zIÞAb
αðx− zJÞ−Ad

αðx− zIÞAb
λðx− zJÞ�Gb

μνðx− zJÞ
þ ϵacdGc

λαðx− zIÞ½Ad
μðx− zIÞAb

νðx− zJÞ−Ad
νðx− zIÞAb

μðx− zJÞ�Gb
ραðx− zJÞþ ðρ↔ λÞ�: ð114Þ
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The operator produced by IA clusters corresponds to a chiral-conserving process:

1

V

Z
d4xe−iq·xO3gþ−ðxÞ ¼ −

Nc − 2

2N2
cðN2

c − 1Þ
�

m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

i
4
trfSðzI − zJÞγαg

×
1

V

Z
d4xe−iq·xFðIAÞ

3g;μνρλαβðx− zI; x− zJÞ
�
ψ̄ðzIÞγβ

1þ γ5

2
ψðzJÞ þ ψ̄ðzJÞγβ

1− γ5

2
ψðzIÞ

�
; ð115Þ

where the profile function for the instanton clusters is defined as

FðIAÞ
3g;μνρλ;βγðx− zI; x− zJÞ ¼

1

2
η̄aβγ

h
Gb

μνðx− zIÞGb
ραðx− zIÞGa

λαðx− zJÞþGb
μνðx− zIÞGa

ραðx− zJÞGb
λαðx− zIÞ

þGa
μνðx− zJÞGb

ραðx− zIÞGb
λαðx− zIÞ

i
− ðI ↔ JÞ

þ 1

2
η̄aβγ

1

4ðNc þ 2Þ
h
ϵacdGc

μνðx− zIÞ½Ad
ρðx− zIÞAb

αðx− zJÞ−Ad
αðx− zIÞAb

ρðx− zJÞ�Gb
λαðx− zJÞ

þ ϵacdGc
ραðx− zIÞ½Ad

λðx− zIÞAb
αðx− zJÞ−Ad

αðx− zIÞAb
λðx− zJÞ�Gb

μνðx− zJÞ
þ ϵacdGc

λαðx− zIÞ½Ad
μðx− zIÞAb

νðx− zJÞ−Ad
νðx− zIÞAb

μðx− zJÞ�Gb
ραðx− zJÞþ ðρ↔ λÞ

i
: ð116Þ

In the SIA, these correlation functions can be simplified as single-point profile functions. The renormalization-group
invariant result for the hadronic matrix element is

hP0jg3dabcGa
μνGb

ραGc
λαjPi ¼ −

Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2 8π2m

9
ρ2m2TIIβ

ðIIÞ
3g ðρqÞ 1

2
q2δρλhP0jψ̄σμνψ jPi

þ Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2 8π2m

9
ρ2m2TIIβ

ðIIÞ
3g ðρqÞðδμαqβqν − δναqβqμÞδρλhP0jψ̄σαβψ jPi

−
Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TIA
4π2

45
βðIAÞ3g ðρqÞ

×

�
ϵβγλσqσqνδμρ − ϵβγνσqσqλδμρ −

1

2
ϵβγλνq2δμρ þ ðρ ↔ λÞ − ðμ ↔ νÞ

�
hP0jψ̄γ½βi∂

↔

γ�γ5ψ jPi

−
Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TIA
4π2

15
βðIAÞ3g ðρqÞδρλ

×

�
ϵβγμσqσqν − ϵβγνσqσqμ −

1

2
ϵβγμνq2

�
hP0jψ̄γ½βi∂

↔

γ�γ5ψ jPi

−
Nc − 2

2N2
cðN2

c − 1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TIA
8π2

45
βðIAÞ3g ðρqÞ

×

�
ϵμνραðδβλqγqα − δβαqγqλÞ −

1

2
ϵμνργq2δβλ þ ðρ ↔ λÞ

�
hP0jψ̄γ½βi∂

↔

γ�γ5ψ jPi; ð117Þ

where

βðIIÞ3g ðρqÞ ¼ 1

q

Z
∞

0

dx
9

2

640x4

ð1þ x2Þ6
J3ðqxÞ
q2x2

;

βðIAÞ3g ðρqÞ ¼ 1

q

Z
∞

0

dx
2880x4

ð1þ x2Þ6
J3ðqxÞ
q2x2

; ð118Þ

which is seen to vanish in the forward direction.
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1. Light front twist-3

This operator is of special interest on the light front as a leading twist-3 that sources the coherent photoproduction of 1þ−

heavy mesons off the nucleon state [76]. In light front signature, it contributes

hP0jg3dabcGaþiðxÞGbþjðxÞGcþ
jðxÞjPi ¼

Nc − 2

8N2
cðN2

c − 1ÞðNc þ 2Þ
�

2κ

ρ2m�2

�
2

ρ4m3TIIðqþÞ2βþ3gðρqÞhP0Sjψ̄

×

�
σiαqþqα − σþαqiqα −

1

2
q2σþi

�
ψ jPSi; ð119Þ

where

βþ3gðρqÞ ¼
4π2

q

Z
∞

0

dx
512x4

ð1þ x2Þ6
J5ðqxÞ
q4x4

: ð120Þ

2. Gravity dual twist-5

The gluonicC-odd operator dabcGa
μνGb

ρλG
c
ρλ as a twist-5 boundary operator is argued to be dual of the supergravity B field

in diffractive hadron-hadron scattering with odderon exchange [77]. In particular, its off-forward matrix element is

hP0jg3dabcGa
μνGb

ρλG
c
ρλjPi ¼−

Nc−2

2N2
cðN2

c−1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TII
16π2

9
q2hP0jmψ̄σμνψ jPi

þ Nc−2

2N2
cðN2

c−1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TII
32π2

9
ðδμαqβqν− δναqβqμÞhP0jmψ̄σαβψ jPi

−
Nc−2

2N2
cðN2

c−1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TIA
32π2

45
βðIAÞ3g ðρqÞ

×

�
ϵβγμσqσqν− ϵβγνσqσqμ−

1

2
ϵβγμνq2

�
hP0jmψ̄γ½βi∂

↔

γ�γ5ψ jPi

−
Nc−2

2N2
cðN2

c−1Þ
�

2κ

ρ2m�2

�
2

ρ2m2TIA
32π2

45
βðIAÞ3g ðρqÞ

�
ϵμνβαqγqα−

1

4
ϵμνβγq2

�
hP0jmψ̄γ½βi∂

↔

γ�γ5ψ jPi:

ð121Þ

IX. C-EVEN THREE-GLUON FORM FACTOR

As a parity check on the preceding calculation, we now
consider the C-odd analog of (109):

Õ3g½A� ¼ fabcGa
μνðxÞGb

νρðxÞGc
ρμðxÞ: ð122Þ

Equation (122) can again be evaluated semiclassically
through the substitution of the gluonic field in (62).

A. One-instanton contribution

In LO in the density expansion, the effective fermionic
operator for Õ3g follows from the modular averaging

Õ3g�ðxÞ ¼
Z

d4zIdUIÕ3g½AI�ΘI ð123Þ

with

Õ3g½AI� ¼ ϵabcGa
μν½AI�Gb

νρ½AI�Gc
ρμ½AI�: ð124Þ

A rerun of the preceding steps gives

1

V

Z
d4xÕ3g�ðxÞe−iq·x ¼

1

ρ2V

Z
d4xF̃ðI;AÞ

3g ðxÞe−iρq·x
��

m�

4π2ρ2

�
Nfð2πÞ4δ4ðqÞ

−
1

Nc

�
m�

4π2ρ2

�
Nf−1

Z
d4zψ̄ðzÞ 1 ∓ γ5

2
ψðzÞe−iq·z

�
; ð125Þ
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where the profile function for the single (anti-)instanton I
(A) is defined as

F̃ðI;AÞ
3g ðxÞ ¼ 1536

ðx2 þ 1Þ6 : ð126Þ

B. Two-instanton contribution

At NLO in the density expansion, the effective fermionic
operator for Õ3g is obtained by averaging the leading

expansion of Õ3g with a two-instanton vertex:

Õ3g��ðxÞ ¼
Z

d4zId4zJdUIdUJÕ3g½AI; AJ�ΘIΘJ ð127Þ

with

Õ3g½AI; AJ� ≃ ϵabc
�
Ga

μν½I�Gb
ρα½I�Gc

λα½J� þ Ga
μν½I�Gb

ρα½J�Gc
λα½I� þ Ga

μν½J�Gb
ρα½I�Gc

λα½I� þ Ga
μν½J�Gb

ρα½J�Gc
λα½I�

þ Ga
μν½J�Gb

ρα½I�Gc
λα½J� þ Ga

μν½J�Gb
ρα½I�Gc

λα½I�


: ð128Þ

Here, we dropped the contributions associated to Gμν½I; J� as they are subleading in power counting.
The emerging fermionic operators are twofold: chiral conserving and flipping. The chiral-flipping operators are produced

by II or AA clusters:

1

V

Z
d4xÕ3gþþ;−−ðxÞe−iq·x ¼

1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

8
trfSðzI − zJÞg

×
1

V

Z
d4xe−iq·xF̃ðII;AAÞ

3g ðx − zI; x − zJÞ
�
ψ̄ðzIÞ

1 ∓ γ5

2
ψðzJÞ þ ψ̄ðzJÞ

1 ∓ γ5

2
ψðzIÞ

�
; ð129Þ

where the profile function for the II cluster is defined as

F̃ðIIÞ
3g ðx − zI; x − zJÞ ¼ 3ϵabcGa

μνðx − zJÞGb
νρðx − zIÞGc

ρμðx − zIÞ þ 3ϵabcGa
μνðx − zIÞGb

νρðx − zJÞGc
ρμðx − zJÞ ð130Þ

and the profile function for the AA cluster is

F̃ðIIÞ
3g ðx − zI; x − zJÞ ¼ F̃ðAAÞ

3g ðx − zI; x − zJÞ: ð131Þ

The chiral-preserving operators are produced by the IA molecules:

1

V

Z
d4xÕ3gþ−ðxÞe−iq·x ¼ −

1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

4
trfSðzI − zJÞγμg

×
1

V

Z
d4xe−iq·xF̃ðIAÞ

3g;μνðx − zI; x − zJÞ
�
ψ̄ðzIÞγν

1þ γ5

2
ψðzJÞ − ψ̄ðzJÞγν

1 − γ5

2
ψðzIÞ

�
; ð132Þ

where the profile function for the IA molecule is defined as

F̃ðIAÞ
3g;ρλðx− zI; x− zJÞ ¼

1

2
η̄aρβη

b
λβ

h
3ϵacdGb

μνðx− zJÞGc
νρðx− zIÞGd

ρμðx− zIÞ þ 3ϵbcdGa
μνðx− zIÞGc

νρðx− zJÞGd
ρμðx− zJÞ

i
¼ 0

ð133Þ

and is seen to vanish. We again approximated the nonlocal quark operators by local operators, by expanding in the relative
distance between close instanton pairs R ¼ zI − zJ.

LIU, SHURYAK, and ZAHED PHYS. REV. D 110, 054005 (2024)

054005-26



C. Off-forward matrix element

The general off-forward hadronic matrix element of the C-even three-gluon operator is

5ρ2

384π2
hP0Sjg3fabcGa

μνGb
νρGc

ρμjPSi ¼ −
�
1

4
Mð0Þ

inv
σT
N̄

ð2πÞ4
V

δ4ðqÞ
�
ūs0 ðP0ÞusðPÞ −

�
1

Nc

�
2κ

ρ2m�2

�
−

1

2NcðN2
c − 1Þ

×

�
2κ

ρ2m�2

�
2

3ρ2m2TII

�
β̃3gðρqÞhP0Sjmψ̄ψ jPSi; ð134Þ

where the nonlocal form factors induced by the finite
instanton size effect are defined as

β̃3gðqÞ ¼
1

q

Z
∞

0

dx
80x2

ðx2 þ 1Þ6 J1ðqxÞ ð135Þ

with the normalization to 1 in the forward limit.

X. GLUONIC GRAVITATIONAL FORM FACTORS

Another gluonic operator of interest is the gluonic tensor
tied to the QCD EMT. To evaluate the QCD energy-
momentum tensor using local or nonlocal effective for-
mulations is subtle; for a recent discussion, see [78]. In the
present approach, it follows the same reasoning as that for
the scalar and pseudoscalar operators discussed above.
With this in mind, the EMT in QCD is given by

Tμν ¼ Tg
μν þ Tq

μν; ð136Þ

where Tg
μν is the gluonic EMT and Tq

μν is the quark EMT.
All issues of operator renormalization are understood in the
sense of a gradient flow cooling to the semiclassical point
with fixed topological charge per 4-volume, with the
instanton density as the sole scale. The energy-momentum
tensor can be decomposed as the sum of a traceless and
traceful part [79,80]:

Tμν ¼ T̄μν þ
1

4
gμνTαα; ð137Þ

where the traceless part includes the gluonic tensor

T̄g
μν ¼ 1

4
gμνG2

λρ −Ga
μλG

a
νλ ð138Þ

and

T̄q
μν ¼ ψ̄

�
γðμiD

↔

νÞ −
1

4
gμνm

�
ψ ð139Þ

and the traceful part Tαα is given by the trace anomaly
in (30). Both contributions belong to different irreducible
representations of the Lorentz group. Thus, they do not mix
in the renormalization.

In the chiral limit, the traceful part is related to the
gluonic scalar by the conformal anomaly, and in 1=Nc
counting rule, it is independent of the quarks. We note that
this decomposition is commensurate with the analysis of
the energy-momentum tensor in holographic QCD, through
dual gravitons in bulk [81]. (Holography is a good example
of a strong coupling description of a gauge theory via its
gravity dual, where the partonic structure is elusive.) The
traceful and traceless parts of the energy-momentum tensor
correspond to the spin-2 and spin-0 representations of the
Lorentz group, respectively, and do not mix under renorm-
alization by symmetry.
The calculation of the gluonic scalar form factor can be

easily generalized to the gluonic gravitational form factor.
The matrix element vanishes in leading order of the
instanton density expansion, due to self-duality. Purely
tunneling vacuum configurations do not carry energy-
momentum. This is best seen in light front signature with

GaþiGaþ
i ¼ −

1

2

�
E⃗a⊥ · E⃗a⊥ þ 2ẑ · ðE⃗a⊥ × B⃗a⊥Þ þ B⃗a⊥ · B⃗a⊥



:

ð140Þ

Since the instanton and anti-instanton are self-dual, it
means the tunneling configuration of the field strength
in Minkowski space satisfies E⃗a ¼∓ iB⃗a for all I ¼
1;…; N�. Therefore, the instanton contribution at the
leading order of the instanton density in (63) vanishes.
The nontrivial instanton contribution starts from the
higher orders of instanton density and, thus, is penalized
by an extra factor denoted by κ ¼ π2ρ4nIþA, the packing
fraction of the instanton vacuum.

A. Two-instanton contribution

At NLO in the instanton density expansion, the effective
fermionic operator for O2g can be obtained by averaging
the leading expansion of O2g with a two-instanton vertex:

T̄g
μν��ðxÞ ¼

Z
d4zId4zJdUIdUJT̄

g
μν½AI; AJ�ΘIΘJ ð141Þ

with
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T̄g
μν½AI; AJ� ¼ Ga

μα½I�Ga
να½J� þGa

μα½I�Ga
να½I; J� þGa

μα½I; J�Ga
να½I� þ ðI ↔ JÞ þGa

μα½I; J�Ga
να½I; J�−

1

4
δμνO2g½AI; AJ�: ð142Þ

The effective operator produces two types of coupling due to the chirality. The operator produced by II or AA clusters
corresponds to a chiral-flipping process:

1

V

Z
d4xT̄g

μνþþ;−−ðxÞe−iq·x ¼
1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

8
trfSðzI − zJÞg

×
1

V

Z
d4xe−iq·xFðII;AAÞ

Tg;μν
ðx − zI; x − zJÞ

�
ψ̄ðzIÞ

1 ∓ γ5

2
ψðzJÞ þ ψ̄ðzJÞ

1 ∓ γ5

2
ψðzIÞ

�
; ð143Þ

where the profile function for II cluster is defined as

FðIIÞ
Tg;μν

ðx − zI; x − zJÞ ¼ Ga
μαðx − zIÞGa

ναðx − zJÞ −
1

4
δμνGa

αβðx − zIÞGa
αβðx − zJÞ

þ ϵacdGc
μαðx − zIÞ½Ad

νðx − zIÞAa
αðx − zJÞ − Ad

αðx − zIÞAa
νðx − zJÞ�

þ ϵacdGc
ναðx − zIÞ½Ad

μðx − zIÞAa
αðx − zJÞ − Ad

αðx − zIÞAa
μðx − zJÞ�

− δμνϵ
acdGc

αβðx − zIÞ½Ad
αðx − zIÞAb

βðx − zJÞ� þ ðI ↔ JÞ þOð1=NcÞ ð144Þ

and the profile function for AA cluster is equal

FðIIÞ
Tg;μν

ðx − zI; x − zJÞ ¼ FðAAÞ
Tg;μν

ðx − zI; x − zJÞ: ð145Þ

Here, we dropped the contributions associated to Ga
μα½I; J�Ga

να½I; J� as they are subleading in power counting.
The operator produced by IA molecules corresponds to a chiral-conserving process:

1

V

Z
d4xT̄g

μνþ−ðxÞe−iq·x ¼ −
1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

Z
d4zId4zJ

1

4
trfSðzI − zJÞγρg

×
1

V

Z
d4xe−iq·xFðIAÞ

Tg;μνρλ
ðx − zI; x − zJÞ

�
ψ̄ðzIÞγλ

1þ γ5

2
ψðzJÞ − ψ̄ðzJÞγλ

1 − γ5

2
ψðzIÞ

�
; ð146Þ

where the profile function for IA molecule is defined as

FðIAÞ
Tg;μνρλ

ðx − zI; x − zJÞ ¼
1

2
η̄aρβη

b
λβ

�
Ga

μαðx − zIÞGb
ναðx − zJÞ −

1

4
δμνGa

αβðx − zIÞGb
αβðx − zJÞ

þ ϵacdGc
μαðx − zIÞ½Ad

νðx − zIÞAb
αðx − zJÞ − Ad

αðx − zIÞAb
νðx − zJÞ�

þ ϵacdGc
ναðx − zIÞ½Ad

μðx − zIÞAb
αðx − zJÞ − Ad

αðx − zIÞAb
μðx − zJÞ�

− δμνϵ
acdGc

αβðx − zIÞAd
αðx − zIÞAb

βðx − zJÞ þ
�
I ↔ J

a ↔ b

��
þOð1=NcÞ: ð147Þ
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B. Off-forward matrix element

The off-forward hadronic matrix element of the traceless gluonic energy-momentum tensor reads

hP0Sjg2T̄g
μνjPSi ¼ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIA

	
16π2

3
βðIAÞTg;1

ðρqÞhP0Sjψ̄
�
γðμi∂

↔

νÞ −
1

4
gμνi=∂

↔
�
ψ jPSi

−
4π2ρ2

9
βðIAÞTg;2

ðρqÞ
�
qμqρgνλ þ qνqρgμλ −

1

2
gμνqρqλ

�
hP0Sjψ̄

�
γðρi∂

↔

λÞ −
1

4
gρλi=∂

↔
�
ψ jPSi

− 4π2ρ4βðIAÞTg;3
ðρqÞ

�
qμqν −

1

4
q2gμν

�
qρqλhP0Sjψ̄

�
γðρi∂

↔

λÞ −
1

4
gρλi=∂

↔
�
ψ jPSi




þ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TII
8π2ρ2

9
βðIIÞTg

ðρqÞ
�
qμqν −

1

4
q2gμν

�
hP0Sjmψ̄ψ jPSi; ð148Þ

where the nonlocal form factors are defined as

βðIAÞTg;1
ðqÞ ¼ 1

q

Z
∞

0

dx
�

24

ð1þ x2Þ4 J1ðqxÞ þ
24x2

ð1þ x2Þ4 J3ðqxÞ

−
192

ð1þ x2Þ3
J3ðqxÞ
q2x2

�
; ð149Þ

βðIAÞTg;2
ðqÞ ¼ 1

q

Z
∞

0

dx9x2
�

128x2

ð1þ x2Þ4
J3ðqxÞ
q2x2

−
512

ð1þ x2Þ3
J4ðqxÞ
q3x3

�
; ð150Þ

βðIAÞTg;3
ðqÞ ¼ 1

q

Z
∞

0

dx
256x4

ð1þ x2Þ3
J5ðqxÞ
q4x4

; ð151Þ

βðIIÞTg
ðqÞ ¼ 1

q

Z
∞

0

dx
576x2

ð1þ x2Þ4
J3ðqxÞ
q2x2

ð152Þ

and are normalized to 1. For the quark traceless EMT, the
matching is even simpler and straightforward at the leading
order of the instanton density expansion

hP0SjT̄q
μνjPSi ¼ hP0Sjψ̄

�
γðμi∂

↔

νÞ −
1

4
gμνi=∂

↔
�
ψ jPSi

þOðnIþAÞ: ð153Þ

The traceless gluonic and quark EMT now is matched to
the effective traceless quark energy-momentum tensor
derived from the effective field theory (50). It is expected,
as they are under the same Lorentz irreducible representa-
tion. The finite-sized instanton profile also induces the
mixing of the scalar quark operator.
In the nucleon states, we can parametrize the matrix

element for the effective quark traceless EMT operator and
the scalar operator

hP0SjT̄q;g
μν jPSi ¼ ūs0 ðP0Þ

�
Aq;gðqÞ

�
γðμP̄νÞ −

1

4
gμνMN

�
þ Bq;gðqÞ

�
iP̄ðμσνÞαqα

2MN
− gμν

q2

16MN

�

þ Cq;gðqÞ
1

MN

�
qμqν −

1

4
gμνq2

��
usðPÞ ð154Þ

and the scalar form factor

hP0Sjmψ̄ψ jPSi ¼ σðqÞūs0 ðP0ÞusðPÞ: ð155Þ

The gluonic gravitational form factors are related to the effective quark form factors as

AgðqÞ ¼
1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIAðρm�Þ 16π
2

3
βðIAÞTg;1

ðρqÞAqðqÞ; ð156Þ

BgðqÞ ¼
1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIAðρm�Þ 16π
2

3
βðIAÞTg;1

ðρqÞBqðqÞ; ð157Þ
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CgðqÞ ¼
1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIAðρm�Þ
	
16π2

3
βðIAÞTg;1

ðρqÞCqðqÞ þ
2π2ρ2

9
M2

N

�
βðIAÞTg;2

ðρqÞ þ 9

2
ρ2q2βðIAÞTg;3

ðρqÞ
�

×

�
Aq þ Bq

q2

4M2
N
− Cq

3q2

M2
N

�

þ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TII
4π2ρ2M2

N

9
βðIIÞTg

ðρqÞ σðqÞ
MN

: ð158Þ

C. Gravitational charges: Aq;gð0Þ
In the forward limit q → 0, the gluonic traceless part

(154) is

hPSjg2T̄g
μνjPSi ¼ 1

2NcðN2
c − 1Þ

�
nIþA

2

4π2ρ2

m�

�
2

ρ2TIAðρm�Þ

×
16π2

3
hPSjT̄q

μνjPSi; ð159Þ

and the quark traceless part dominates the matrix element at
the LO in the density expansion:

hPSjT̄q
μνjPSi ¼ 2

�
PμPν −

1

4
gμνM2

N

�
Aqð0Þ: ð160Þ

Poincaré symmetry guarantees the energy-momentum con-
servation of the A-form factor in the zero momentum limit

Aqð0Þ þ Agð0Þ ¼ 1

with

Agð0Þ ¼
1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2 16π2ρ2m2

3
TIAðρm�Þ

×

�
1þ 1

2NcðN2
c − 1Þ

×

�
2κ

ρ2m�2

�
2 16π2ρ2m2

3
TIAðρm�Þ

�
−1
:

The gluonic contribution to the nucleon gravitational
charge Agð0Þ receives a contribution from the instanton–
anti-instanton molecules at NLO. Using the QCD instanton
vacuum parameters [59,60] (and references therein), we
have at the resolution μ ≈ 1=ρ

Aqð0Þ ¼ 0.9865; Agð0Þ ¼ 0.0135:

These estimates are consistent with those given in [37].
To compare with other results, we can evolve the result

from μ0 ¼ 0.56 GeV ≈ 1=ρ, where the evolution starts
to resolve the instanton vacuum [59,60] with DGLAP
equation [82]

μ
d
dμ

 
Aqð0Þ
Agð0Þ

!
μ

¼ αs
4π

 
− 16

3
CF

4
3
Nf

16
3
CF − 4

3
Nf

! 
Aqð0Þ
Agð0Þ

!
μ

;

ð161Þ

where CF ¼ N2
c−1
2Nc

. The asymptotic form, thus, is given by
the solution at μ → ∞:

Aqð0Þ ¼
Nf

4CF þ Nf

and

Agð0Þ ¼
4CF

4CF þ Nf
:

At μ ¼ 2 GeV, the results are shown in the table below.

Aqð0Þ Agð0Þ
ILM (this work) 0.560 0.364
Asymptotic [83,84] 0.529 0.471
Skyrmion [85] 0.5 0.5
Lattice (dipole, 2018) [86] 0.46(8) 0.54(8)
Lattice (dipole, 2023) [21] 0.510(25) 0.501(27)
Lattice (tripole) [87] 0.57(4) 0.429(39)
Lattice (Extended Twisted Mass
Collaboration) [29]

0.618(60) 0.427(92)

Global analysis [88] 0.58(1) 0.414(8)

In the second and fourth lattice results, Aqð0Þ is obtained
by imposing the momentum conservation Aqð0Þ ¼ 1−
Agð0Þ. Extended Twisted Mass Collaboration is using
physical pion mass.

D. Gravitational charges: Cq;gð0Þ
TheC-form factor at zero momentum transfer is given by

Cgð0Þ ¼
1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIA

×

	
16π2

3
Cqð0Þ þ

2π2ρ2

9
M2

NAqð0Þ



þ 1

2NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TII
4π2ρ2

9
MNσπN:

ð162Þ
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The estimate follows by saturating the scalar and flavor-
singlet nucleon form factor, by the σ exchange, with the
result

σπN ≡ hPSjmψ̄ψ jPSi
2MN

¼ 3m ×
Mqð0Þ
MN

g2σqq=Gσ

m2
σ

: ð163Þ

The overall factor of 3 counts the three constituent quarks
in the nucleon. Equation (163) yields a nucleon sigma term
of about σπ¼ 11.5 MeV with our value of m ¼ 12.2 MeV
in Table I and consistently the model estimation on the
parameters mσ ¼ 683.1 MeV and gσqq ¼ 3.841 with Gσ ¼
42.32 GeV−2 in Appendix B. This is small in comparison
to the empirical value σπ¼ 60 MeV [89] (and references
therein). Additional contributions to the simple mean-field
estimate with only σ exchange, and beyond the constituent
quark description for the nucleon, are expected to narrow
the difference. For the mass budget to follow, we will make
use of the empirical value
The gluon C-form factor at zero momentum requires the

explicit nucleon wave function in the QCD instanton
vacuum which we plan to construct. For an estimate, we
will use the results from topological models of the nucleon
[85,90,91] which are about −1 (see the table below) at the
low resolution of 1=ρ. The chiral quark soliton model
(χQSM) in [90] is usually argued to emerge from the QCD
instanton vacuum in the large Nc limit [92], at the same
resolution.

Cqð0Þ CILM
g ð0Þ (this work)

πρω soliton [85] −1.006 −0.0117
Skyrme [91] −0.896 −0.0102
χQSM [90] −0.97 −0.0112

Cqð0Þ Cgð0Þ
ILM (this work) −0.617 −0.365
Lattice (dipole, 2018) [86] � � � −2.5
Lattice (dipole, 2023) [21] −0.325ð12Þ −0.643ð21Þ
Lattice (tripole) [87] � � � −0.485
Measurement
(6 GeV) [93]

−0.408� 0.028� 0.033 � � �

To compare with other results, again we can evolve the
result from μ0 ¼ 0.56 GeV ≈ 1=ρ. For C-form factor, they
obey the same DGLAP equation in (161). Thus, their
asymptotic form is given by

Cqð0Þ ¼ C
Nf

4CF þ Nf

and

Cgð0Þ ¼ C
4CF

4CF þ Nf
;

where C≡ Cð0Þ ¼ D=4 is the intrinsic charge related to
the mechanical property inside the nucleon, also known as
D term [94]. Here, we choose the result estimated from
χQSM [90] for Cqð0Þ. Evolved to μ ¼ 2 GeV, the results
are shown in the table.

XI. HADRON MASS IDENTITY

In QCD, the breaking of conformal symmetry is captured
by the trace anomaly (30). By Poincaré symmetry, all
squared hadron masses satisfy the mass identity

M2
H ¼ 1

2
hPSjTμμjPSi; ð164Þ

which is distinct from the mass budgeting sum rule to be
discussed below. In particular, (30) gives

M2
H ¼ −

b
64π2

hPSjg2Ga
μνGa

μνjPSi

þm
2
hPSjψ̄ψ jPSi: ð165Þ

Thus, all hadron masses are composed of

MH ¼ Minv þ σπH ð166Þ

of the “invariant” mass (fixed by ΛQCD) and the chiral
breaking mass (sigma term) at some resolution. In quenched
QCD (gluodynamics), the hadron mass is the quenched

invariant mass Mð0Þ
inv induced solely by the spontaneous

breaking of chiral symmetry and/or confinement from
gluons. In QCD, quarks contribute even in the chiral limit.
Away from the quenched and chiral limit, the hadronic mass
receives additional contributions from the σπH term [24,95].
In the QCD instanton vacuum ΛQCD at low resolution is

played by the mean instanton density at LO. Recall that
even the constituent quark mass is fixed by this density, as
the mean instanton size is also fixed by this density
implicitly through modular interactions. In the QCD
instanton vacuum, the mass-breaking terms are of the order
ofOðmRÞ and small for light quarks. At this low resolution,
it is possible to budget the mass carried by the emerging
quarks, and the semiclassical gluons that permeate the
vacuum, as we now detail.

XII. NUCLEON MASS SUM RULE

The trace identity (165) reflects on the general fact that
all hadron masses in QCD are tied to the quantum breaking
of conformal symmetry as we noted earlier and should be
enforced by any nonperturbative quantum description,
whether numerical such as the lattice or semiclassical such
as the QCD instanton vacuum. However, it does not
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specifically budget this mass breaking in terms of the
emerging constituents in hadrons.
In a strongly interacting theory, the concept of con-

stituents is subtle and resolution dependent. Fortunately,
the QCD instanton vacuum emerging from cooled lattice
simulations allows for a quantitative description, all within
the well-defined framework of semiclassics. In this
spirit, a physically motivated proposal to budget the
mass was put forth by Ji in [80,96] and since revisited
by many [97–99] (and references therein). The ensuing
mass composition involves the sum of partonic contribu-
tions, some of which may be measurable using DIS
experiments. The proposal relies on an invariant decom-
position of the energy-momentum tensor (137).
The traceful and traceless part of the energy-momentum

tensor (137) correspond to the spin-2 and spin-0 repre-
sentations of the Lorentz group, respectively, and do not
mix under renormalization by symmetry, as we noted
earlier. Their renormalization at the instanton size scale ρ ≈
0.3 fm is achieved by cooling through gradient flow, under
the constraint of a fixed topological susceptibility. Note that
this renormalization scale is softer than the one used in
currently fine lattices with 1=μ ≈ 0.1 fm (MS scheme) [26].
With this in mind, the corresponding Hamiltonian in

Minkowski signature follows from the 00 component
of (137):

HG ¼
Z

d3xT̄g
00 ¼

Z
d3x

1

2
ðE2 þ B2Þ;

HQ ¼
Z

d3x

�
T̄q
00 −

3

4
mψ̄ψ

�
¼
Z

d3xψ̄γ · iD
↔
ψ ;

HA ¼
Z

d3x
1

4

�
βðg2Þ
4g2

G2 ≈ −
b

32π2
g2G2

�
;

Hm ¼
Z

d3xmψ̄ψ : ð167Þ

We rearranged the quark mass term so that the nucleon
mass budget is then

MN ¼ hPjHG þHQ þHA þHmjPi
hPjPi

≡MN
G þMN

Q þMN
A þMN

m ð168Þ

with the identification

Minv ¼ MN
G þMN

Q þMN
A : ð169Þ

Using (156), we note that the forward matrix element of
the gluonic HG contribution in (167) vanishes at NLO in
the QCD instanton vacuum. Hence, at the resolution of the
order of the inverse instanton size, we have

MN
Q

MN
¼ 3

4

�
Aqð0Þ −

σπN
MN

�
≈ 69.19%;

MN
G

MN
¼ 3

4
Agð0Þ ≈ 1.01%;

MN
A

MN
¼ 1

4

�
1 −

σπN
MN

�
≈ 23.40%;

MN
m

MM
¼ σπN

MN
≈ 6.39% ð170Þ

using the empirical pion-nucleon sigma term [24,25].
Equation (170) shows that, in the QCD instanton vacuum,
about 69% of the nucleon mass stems from the valence
quarks (hopping zero modes), 23.4% from the gluon
condensate (displaced vacuum instanton field), and 1%

FIG. 13. Mass decomposition using Ji’s nucleon mass sum rule,
in the QCD instanton vacuum at the resolution μ ¼ 560 MeV ∼
1=ρ (a) and after DGLAP evolution at a resolution μ ¼ 2 GeV
(b). (c) Mass decomposition using Ji’s nucleon mass sum rule, at
a resolution of μ ¼ 2 GeV from the lattice collaboration [26].
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from emerging valence gluons. This is illustrated in
Fig. 13(a). The nucleon is composed mostly of quark
constituents hopping and scooping the vacuum gluon
fields. This result is consistent with the one observed
in [37].
The budgeting of the nucleon mass evolves as the energy

scale varies. At μ ¼ 2 GeV, the valence quark and gluon
energy contribution redistributes as illustrated in Fig. 13(b).
The budgeting of the nucleon mass in (171) from the QCD
instanton vacuum is consistent with the one reported on the
lattice in [26] as illustrated in Fig. 13(c). Under DGLAP
evolution, the gluons carry a larger energy fraction at the
expense of the quarks:

MN
Q

MN
≈ 42.91%;

MN
G

MN
≈ 27.29%: ð171Þ

XIII. NUCLEON SPIN SUM RULE

The spin structure of the nucleon has been addressed
both empirically and theoretically by many, and we refer to
the review in [100] for an exhaustive account and refer-
ences. Here, we will address it in the QCD instanton
vacuum following recent estimates by one of us [37], using
Ji’s nucleon spin decomposition [101]:

SN ¼ 1

2
Σq þ Lq þ Jg; ð172Þ

where SN ¼ 1=2 is the nucleon spin.

A. Intrinsic quark spin Σq

The quark intrinsic spin

Σq ¼
Z

d3x⃗ ψ̄ γ⃗ γ5ψ ð173Þ

captures the isoscalar axial charge inside the nucleon,
which is best described by the hadronic matrix element
of the flavor-singlet axial current:

hPSjψ̄γμγ5ψ jPSi ¼ 2ΣqSμ: ð174Þ

Here, Sμ is the spin vector of the nucleon with the
normalization S2 ¼ −M2

N and P · S ¼ 0.
The quark intrinsic spin Σq is tied to the pseudoscalar

gluon operator by the ABJ anomaly [102]

∂μψ̄γμγ
5ψ ¼ Nf

16π2
g2Ga

μνG̃
a
μν þ 2mψ̄iγ5ψ : ð175Þ

The quark intrinsic spin consists of the anomalous gluonic
contribution plus the explicit breaking of the Uð1Þ axial
symmetry by the quark current mass m:

hPSj∂μψ̄γμγ5ψ jPSi
2MNsv

¼ 2MNΣq ¼
Nf

16π2
hPSjg2Ga

μνG̃
a
μνjPSi

2MNsv

þ 2m
hPSjψ̄iγ5ψ jPSi

2MNsv
: ð176Þ

Thus, the intrinsic quark spin can be decomposed into [68]
(and references therein)

Σq ¼ Δq̃ − NfΔg; ð177Þ

where

hPSjmψ̄iγ5ψ jPSi
2MNsv

¼ MNΔq̃ ð178Þ

and

Δg ¼ −G̃Nð0Þ: ð179Þ

Σq

ILM (quenched, 2 GeV) 0.65
ILM (unquenched with two flavors, 2 GeV) 0.105
EMC (1987) [103–105] 0.12� 0.17
COMPASS (

ffiffiffi
3

p
GeV) [106] 0.35� 0.03ðstatÞ � 0.05ðsystÞ

HERMES (
ffiffiffi
5

p
GeV) [107] 0.33� 0.011ðtheoÞ � 0.025ðexpÞ � 0.028ðevolÞ

Lattice (2 GeV, helicity quasi-PDF) [108] 0.467(58)
Lattice (2 GeV, axial form factor) [109] 0.392(26)
Lattice (2 GeV, spin decomposition) [29] 0.382(30)
Lattice [110] 0.30(6)
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In the quenched and LO in the instanton density, the
intrinsic spin is saturated by the ABJ anomaly contribution.
This is achieved in the QCD instanton vacuum at LO in the
pseudoparticle density, with the intrinsic quark spin fixed

by the quenched topological susceptibility χð0Þt :

Σð0Þ
q ¼ −NfΔg ¼ Nf

Mqð0Þ
MN

χð0Þt

N̄
¼ Mqð0Þ

MN

f2πM2
1

2nIþĪ
→ 0.65:

ð180Þ

The singlet squared mass follows from the Witten-
Veneziano relation (39). The rightmost result usesMqð0Þ=
MN ∼ 1=3 [68] and the Witten-Veneziano relation (39).
In the unquenched and NLO instanton density, there is

mixing with the emergent constituent quarks. As a result,
the intrinsic spin gets modified:

Σq ¼ Nf
Mqð0Þ
MN

χt
N̄
þ
�
1þ Nf

Nc

�
2κ

ρ2m�2

�
þ Nf

2NcðN2
c − 1Þ

×
�

2κ

ρ2m�2

�
2

3ρ2m2TII

�
Δq̃

−
1

8NcðN2
c − 1Þ

�
2κ

ρ2m�2

�
2

ρ2m2TIAΣq → 0.1048

ð181Þ

with the unquenched and large volume topological sus-
ceptibility χt given in (105). The rightmost estimate follows
by saturating the pseudoscalar and flavor-singlet nucleon
form factor, by the η0 exchange. In the QCD instanton
vacuum, the exchange is given by

MNΔq̃≡ hPSjmψ̄iγ5ψ jPSi
2MNsv

¼ 3m ×
Mqð0Þ
MN

g2η0qq=Gη0

m2
η0

:

ð182Þ

The overall factor of 3 counts the three constituent quarks
in the nucleon. Equation (182) yields a value of explicit
chiral symmetry breaking about Δq̃ ¼ 0.0119. Here, we
used the empirical valuem ¼ 0.122 MeV in Table I and the
consistent model parametersmη0 ¼ 681.6 MeV and gη0qq ¼
1.686 with Gη0 ¼ 8.417 GeV−2 in Appendix B.
Note that if we were to use a quark-diquark description

of the proton or neutron as a strongly correlated quark-
diquark state, with a tight scalar-isoscalar diquark ½ud�S and
weaker axial-vector flavor-triplet diquark ½ud�A [6], then
the proton SUð6Þ wave functions can be repacked in quark-
diquark contributions as [111]

p↑ ¼ 1ffiffiffiffiffi
18

p
�
3½ud�Su↑þ 2½uu�þAd↓ −

ffiffiffi
2

p
½uu�0Ad↑

−
ffiffiffi
2

p
½ud�þAu↓þ ½ud�0Au↑



: ð183Þ

This would suggest that for the proton the u-quark and d-
quark spin are opposite, with a ratio����Σd

Σu

���� ¼ 1

4
ð184Þ

and, in particular, Σu ¼ 0.0286 and Σd ¼ −0.0071, with
Σq ¼ Σu þ Σd ¼ 0.0215. In this SUð6Þ repacking, the
discrepancy with (181) stems from the left out diquarks.
A more realistic diquark wave function for the nucleon in
the ILM will be addressed elsewhere.
At this stage, it is worth noting that, while the topo-

logical charge fluctuations in the 4-volume are screened in
the QCD instanton vacuum as per our discussion, the
topological charge fluctuations in small subvolumes are
finite; see [71] for a definition. In the QCD instanton
vacuum with light quarks, they were found to be numeri-
cally Poissonian [71]:

lim
V→0

hΔN2ðVÞi
V

¼ nIþA ð185Þ

with the unquenched singlet pseudoscalar mass M1 now
given by

M2
1 →

2Nf

f2
lim
V→0

hΔN2ðVÞi
V

¼ 2Nf

f2
nIþA; ð186Þ

which is finite even in the chiral limit and in agreement
with the result in [70,112]. This is supported by the fact
that the η0 mass is large in nature, which is unquenched
QCD. Since the world volume of a hadron in the QCD
instanton vacuum can be considered as a vanishingly small
subvolume, it is plausible to use (186) in our analysis of the
intrinsic spin. This leads to the result that the quenched and
unquenched results for the intrinsic spin are mostly
unchanged.

Jq Jg

ILM (this work, 2 GeV) 0.318 0.182
Lattice (ETMC) [29] 0.285(45) 0.187(46)
Lattice (χQCD) [28] 0.265(32) 0.230(25)

B. Quark and gluon orbital momenta

The quark orbital angular momentum (OAM) is given by

Lq ¼
Z

d3x⃗ ψ̄ γ0x⃗ × iD⃗ψ : ð187Þ
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Combined with the intrinsic quark spin (173), we have the
quark total angular momentum

Jq ¼
1

2
Σq þ Lq: ð188Þ

The quark total angular momentum Jq is calculated by
the forward hadronic matrix element of the traceless part of
the quark 0j EMT:

Jq ¼
hPSj R d3x⃗ϵ3ijxiT̄0j

q jPSi
hPSjPSi

¼ ϵ3iji∂iq
hP0SjT̄0j

q jPSi
hPSjPSi ; ð189Þ

where ∂
i
q refers to the derivative with respect to the

momentum transfer, followed by the zero momentum
transfer limit. Similarly, the angular momentum carried
by the gluons is

Jg ¼
Z

d3x⃗ x⃗×ðE⃗a × B⃗aÞ; ð190Þ

which translates to the forward hadronic matrix element:

Jg ¼
hPSj R d3x⃗ϵ3ijxiT̄0j

g jPSi
hPSjPSi

¼ ϵ3iji∂iq
hP0SjT̄0j

g jPSi
hPSjPSi : ð191Þ

Using (156), it follows that (191) is penalized by the
instanton density in the forward limit, at NLO in the
instanton density expansion. Hence, at the resolution of
the order of the inverse instanton size, Ji’s spin sum rule is
given by

1
2
Σq

SN
¼ Δq̃ −

g2

8π2
NfΔg ≈ 65%;

Lq

SN
¼ Aqð0Þ þ Bqð0Þ −

1
2
Σq

SN
≈ 33.7%;

Jg
SN

¼ Agð0Þ þ Bgð0Þ ≈ 1.3%: ð192Þ

In the case of the unquenched QCD in the instanton
vacuum with two flavors, we have the topological suscep-
tibility screened:

1
2
Σq

SN
¼ Δq̃ −

g2

8π2
NfΔg ≈ 10.5%;

Lq

SN
¼ Aqð0Þ þ Bqð0Þ −

1
2
Σq

SN
≈ 88.2%;

Jg
SN

¼ Agð0Þ þ Bgð0Þ ≈ 1.4% ð193Þ

at the low resolution of 1=ρ ≈ 560 MeV. Here, we assumed
Bqð0Þ ¼ 0 [27]; hence, Bgð0Þ ¼ 0 from (157).
Equation (192) shows that, in the QCD instanton

vacuum, about 65% of the nucleon spin stems from the
spin of the valence quarks as they hop and mix with the
vacuum topological charge fluctuations, 34% stems from
their OAM, and only 1% stems from the emerging valence
gluons as the topological charge fluctuates in small
subvolumes.
The budgeting of the nucleon spin evolves as the energy

scale varies. For the quenched QCD instanton vacuum at
μ ¼ 2 GeV, the valence quark OAM and gluon angular
momentum redistributes as

1
2
Σq

SN
≈ 65%;

Lq

SN
≈ −1.4%;

Jg
SN

≈ 36.4%: ð194Þ

For the QCD instanton vacuum with two flavors, we have

1
2
Σq

SN
≈ 10.5%;

Lq

SN
≈ 53.1%;

Jg
SN

≈ 36.4%: ð195Þ

In the QCD instanton vacuum, the intrinsic spin does not
renormalize, as it captures the vacuum topological suscep-
tibility scooped by the nucleon, in the small volume limit.
As a result, DGLAP evolution enhances the gluon con-
tribution at the sole expense of the quark orbital contribu-
tion, both of which are not topological in our analysis.
The results for Ji’s spin decomposition in the QCD

instanton vacuum are illustrated in Figs. 14(a) (quenched)
and 14(b) (unquenched) at μ ¼ 0.64 GeV (left) and at μ ¼
2 GeV after DGLAP evolution (right). They are compared
to the reported results from the χ-QCD Collaboration [28]
in Fig. 14(c) (left) and from the ETMC Collaboration [29]
in Fig. 14(b) (right).
While the gluonic contributions are comparable to the

one reported by both lattice collaborations, there is a
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difference in the way the quarks are carrying the spin. In the
lattice, the intrinsic spin to OAM ratio is about 3∶1 (χQCD)
and 2∶1 (ETMC), which is to be compared to 1∶1 in the
QCD instanton vacuum with two flavors. The origin is the

substantial depletion of the intrinsic spin at low resolution,
owing to the strong screening of the large volume topo-
logical susceptibility. Although we suggested earlier that
the small volume topological susceptibility remains large
and may cause the intrinsic spin to be larger even in the
unquenched case, our analysis shows that it would lead to a
considerably large ratio for the intrinsic spin to OAM as
illustrated in Fig. 14(a) (left). This shows the importance
of studying and reporting on both the large and small
volume topological susceptibilities, when reporting the
results for the spin composition of hadrons, using QCD
lattice simulations.

XIV. CONCLUSION

The QCD instanton vacuum is well supported by current
lattice QCD simulations. When the zero-point gauge
fluctuations are removed numerically by cooling using
the gradient flow method [113,114], the QCD vacuum is
found to be populated by topological lumps of gauge
fields. These lumps are tunneling gauge configurations
describing instanton and anti-instanton pseudoparticles
or failed tunneling gauge molecules made of instanton–
anti-instanton pairs.
Deep in the cooling procedure, the corresponding gauge

fields are strong and localized, with a mean size of ρ ¼ 1
3
fm

and a mean density nIþA ¼ 1 fm−4. Confinement is likely
caused by center vortices through percolating long ZNc

strings of about 4 fm−2, with topologically active branch
points, the likely anchors of the pseudoparticles.
Hadrons in the QCD vacuum are small ripples propa-

gating in the QCD vacuum. At the resolution of ρ ¼ 1
3
fm,

the composition and properties of the low-lying hadrons
can be fairly approximated in the QCD instanton vacuum,
where their bound state structure and small sizes make
them less prone to disordering by the long center vortices.
This is less so for their excited states, which are larger in
size and more prone to flux piercing and the string tension.
Throughout, we have assumed that this is the case and
pursued all the analyses of the gluons in hadrons solely in
the context of the QCD instanton vacuum.
At medium resolution and in LO in the instanton density,

the pseudoparticle strong gauge fields dominate the gluonic
content of the forward matrix elements. The scalar and
pseudoscalar gluon matrix elements receive contributions
from their number fluctuations at LO and from pairs of
pseudoparticles at NLO. We have shown that the off-
forward gluonic scalar and pseudoscalar matrix elements
are readily expressed in terms of the pseudoparticle moduli,
essentially the fermionic zero modes in the form of multi-
flavor effective vertices after averaging over the core
moduli. The same carries to higher-dimensional gluonic
operators, as we have shown for the C-even and C-odd
dimension-6 gluon operators. The latter map on leading

FIG. 14. (a) Spin decomposition using Ji’s sum rule, in the
quenched QCD instanton vacuum at μ ¼ 0.56 GeV (left) and μ ¼
2 GeV (right). (b) Spin decomposition using Ji’s sum rule, in
the Nf ¼ 2 QCD instanton vacuum at μ ¼ 0.56 GeV (left) and
μ ¼ 2 GeV (right). (c) Spin decomposition using Ji’s sum rule
at a resolution of μ ¼ 2 GeV, from the Lattice Collaboration
χQCD [28] (left) and the ETMC [29] (right).
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twist contributions in diffractive C-even and C-odd vector
meson production.
The self-dual character of the pseudoparticles shows that

only pairs of pseudoparticles or molecules can contribute at
NLO to the traceless part of the QCD energy-momentum
tensor. The trace part is anomalous and receives contribu-
tions in LO from the pseudoparticles. We have shown how
they contribute to the gluonic form factors in hadrons, in
the form of effective fermionic operators, once the modular
integration is carried out. The results allow for a detailed
budgeting of the quark and gluon contributions to the
nucleon mass and spin, at low resolution. Their evolution at
higher resolution is in good agreement with the current
lattice simulations. The comparison would be enhanced if
the lattice collaboration [28,29] could also report their large
and small volume topological susceptibilities, along with
their nucleon spin results.
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APPENDIX A: EMERGENT EFFECTIVE ’T
HOOFT INTERACTIONS WITH GLUONS IN SIA

The effective Lagrangian following from (50) after
averaging over the instanton moduli with fermionic zero
modes in the SIA yield emergent multiflavor interactions
with gluon insertions. The latter follow by LSZ reduction of
the instanton profile. To characterize these interactions, we
use the bookkeeping in 1=Nc.
For a single instanton with Nf quarks and Ng gluons, the

vertices in (45) give rise to an effective ’t Hooft interaction
coupling

Gfþg ∼
nIþA

2

1

N
NfþNg
c

�
4π2ρ2

m�

�
Nf
�
2π2ρ2

g

�
Ng

characteristic of a vacuum contribution. Note that each
gluon insertion from the instanton tail is further suppressed
by the instanton size. In the SIA, the effective interactions
are given by

Leff ¼ ψ̄ði=∂ −mÞψ −
1

4
ðGa

μνÞ2 þ
nIþA

2

4π2ρ2

m� VNf¼1 þ
nIþA

2

�
4π2ρ2

m�

�
2

VNf¼2 þO
�
nIþA

2

�
4π2ρ2

m�

�
3
�
; ðA1Þ

where the one-body interaction is defined as

VNf¼1 ¼ −
1

Nc
ψ̄ψ þ 1

N2
c − 1

�
2π2ρ2

g

�
ψ̄σμν

λa

2
ψGa

μν −
1

NcðN2
c − 1Þ

�
2π2ρ2

g

�
2

fabcψ̄σμνλaψGb
μρGc

νρ

−
1

NcðN2
c − 1Þ

�
2π2ρ2

g

�
2
�
δbcψ̄ψ þ Nc

2ðNc þ 2Þ d
abcψ̄λaψ

�
Gb

μνGc
μν

−
1

NcðN2
c − 1Þ

�
2π2ρ2

g

�
2
�
δbcψ̄γ5ψ þ Nc

2ðNc þ 2Þ d
abcψ̄λaγ5ψ

�
Gb

μνG̃
c
μν

þ 1

6ðN2
c − 1Þ

�
2π2ρ2

g

�
3
�

8

N2
c
fabcψ̄ψ þ 12

N2
c − 4

ddaefbceψ̄λdψ

�
Ga

μνGb
νρGc

ρμ

þ 1

6ðN2
c − 1Þ

�
2π2ρ2

g

�
3
�

8

N2
c
fabcψ̄γ5ψ þ 12

N2
c − 4

ddaefbceψ̄λdγ5ψ

�
G̃a

μνGb
νρGc

ρμ

þ 1

6ðN2
c − 1Þ

�
2π2ρ2

g

�
3
�

3

ðN2
c − 1Þ δ

abδcd þ 3Nc

ðN2
c − 4ÞðNc þ 2Þ d

abedcde þ 6

N2
c
facefbde

�
ψ̄σμνλ

aψGb
μνGc

ρλG
d
ρλ

þ 1

6ðN2
c − 1Þ

�
2π2ρ2

g

�
3
�

3

ðN2
c − 1Þ δ

abδcd þ 3Nc

ðN2
c − 4ÞðNc þ 2Þ d

abedcde þ 6

N2
c
facefbde

�
ψ̄σμνλ

aγ5ψGb
μνG̃

c
ρλG

d
ρλ

þO
��

2π2ρ2

g

�
4
�

ðA2Þ

and the two-body interaction is defined as
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VNf¼2 ¼
2Nc − 1

16NcðN2
c − 1Þ ½ðψ̄ψÞ

2 − ðψ̄τaψÞ2 − ðψ̄iγ5ψÞ2 þ ðψ̄ iγ5τaψÞ2� þ 1

32NcðN2
c − 1Þ ½ðψ̄σμνψÞ

2 − ðψ̄σμντaψÞ2�

−
1

NcðN2
c − 1Þ

�
2π2ρ2

g

��
ūRuLd̄Rσμν

λa

2
dL þ ūRσμν

λa

2
uLd̄RdL

�
Ga

μν

−
1

ðNc þ 2ÞðN2
c − 1Þ

�
2π2ρ2

g

�
dabc

�
ūR

λa

2
uLd̄Rσμν

λb

2
dL þ ūRσμν

λa

2
uLd̄R

λb

2
dL

�
Gc

μν

−
1

ð2NcÞðN2
c − 1Þ

�
2π2ρ2

g

�
fabc

�
ūRσμρ

λa

2
uLd̄Rσνρ

λb

2
dL þ ūRσμρ

λa

2
uLd̄Rσνρ

λb

2
dL

�
ðGc

μν − G̃c
μνÞ

þO
��

2π2ρ2

g

�
2
�
: ðA3Þ

The emergent couplings with constitutive quarks and
gluons follow by color averaging, after pertinent fermionic
lines closing in the SIA. More specifically, in the color
average, each of the UU† pair gives a 1=Nc factor in the
largeNc limit. Therefore, the power counting of each vertex

1=N
NfþNg
c is given by the flavor number Nf and the gluon

numberNg. That is, the more quarks and gluons involved in
the instanton, the more 1=Nc suppression. Here, we show
the one-body interaction with one to three gluons involved
and the two-body interaction with one gluon involved.
Higher-order interactions follow the same reasoning but are
more involved. Using 14(c) in the mean-field approxima-
tion yields the SIA determinantal mass

m�
f ¼ mf þ

nIþA

2

4π2ρ2

m�
f

hVNf¼1i: ðA4Þ

APPENDIX B: σ AND η0 IN HADRONIC
MATRIX ELEMENTS

In this Appendix, we will estimate the meson-quark
effective couplings in the σ and η0 channels for the hadronic
matrix elements of ψ̄ψ and ψ̄iγ5ψ , appearing in the
gravitational form factors.
The quark part of the effective Lagrangian in the

instanton vacuum in (50) determines the meson
mass spectrum and meson-quark effective coupling in
the QCD instanton vacuum. For that, we need to go
beyond the SIA, by resumming the contributions to the
quark propagator that includes both the close and far
pseudoparticles.
The corresponding effective Lagrangian with induced

vertices from unpaired (I, A) and paired (IA) pseudopar-
ticles is given by [60]

LtHooft ¼ ψ̄ði=∂ −MÞψ þ Gσ

2
ðψ̄ψÞ2 þ Ga0

2
ðψ̄τaψÞ2 þ Gη0

2
ðψ̄iγ5ψÞ2 þGπ

2
ðψ̄iγ5τaψÞ2

−
Gω

2
ðψ̄γμψÞ2 −

Gρ

2
ðψ̄γμτaψÞ2 −

Gf1

2
ðψ̄γμγ5ψÞ2 −

Ga1

2
ðψ̄γμγ5τaψÞ2: ðB1Þ

As we noted earlier, it is the constituent massM ≡Mqð0Þ ¼ 395.17 MeV in (43), as opposed to the determinantal massm�,
that enters the analysis of the long-range hadronic correlations. The induced ’t Hooft couplings are

Gσ ¼
GI

4N2
c
þ 4GIA

N2
c
; Ga0 ¼ −

GI

4N2
c
þ 4GIA

N2
c
; Gπ ¼

GI

4N2
c
þ 4GIA

N2
c
; Gη0 ¼ −

GI

4N2
c
þ 4GIA

N2
c
;

Gω ¼ GIA

N2
c
; Gρ ¼

GIA

N2
c
; Ga1 ¼

GIA

N2
c
; Gf1 ¼ −3

GIA

N2
c
:

The coupling constant of each channel is fixed by two parameters GI and GIA, directly determined from the QCD instanton
vacuum with ρ ¼ 0.31 fm and nIþA ¼ 1 fm−4. For two flavors, the values are given by
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GI ¼
nIþA

2

�
4π2ρ2

m�

�
2

¼ 610.3 GeV−2;

GIA ¼ G2
I

8

��
TIA

4π2ρ2

�
2
�

¼ 57.08 GeV−2:

Since nIþA is of the order of Nc, both GI and GIA are of the
same order in the 1=Nc bookkeeping. The quark hopping
integral TIA ¼ R d4xϕ†

I ðx − zIÞi=∂ϕAðx − zAÞ in the IA
molecule is defined by the overlap between the quark zero
modes in (41).
With this in mind, the bubble chain in Fig. 15 with the

scalar ’t Hooft interaction in (B1) yields the gaplike
equation for the σ meson mass

1 ¼ GσΠSSðm2
σÞ; ðB2Þ

where the scalar to scalar vacuum polarization function is
defined as

ΠSSðP2Þ¼−2iNc

×
Z

d4k
ð2πÞ4 tr½SILMðkÞSILMðk−PÞ�F ðkÞF ðP−kÞ:

ðB3Þ

The effective Euclidean quark propagator in the QCD
instanton vacuum involves the running quark mass (not
the determinantal mass) [59,60]

SILMðkÞ ¼
i=kþMqðkÞ
k2 þMqðkÞ2

: ðB4Þ

With (B2), the sigma mass is obtained:

mσ ¼ 683.1 MeV: ðB5Þ

The sigma meson-quark effective coupling can also be
determined by

g2σqq ¼
�
∂ΠSSðP2Þ

∂P2

�−1����
P2¼m2

σ

→ 3.841: ðB6Þ

In the pseudoscalar-flavor-singlet channel, the chiral
Ward identity is violated, and the pseudoscalar and axial
vector mix. The η0 mass follows from the resummation in
Fig. 15, in leading order in the 1=Nc bookkeeping. Using
the emerging ’t Hooft interaction in the pseudoscalar and
axial vector channels, the mass of the two-flavor meson
follows from the gaplike equation with η0-f1 mixing:

1 ¼ Gη0ΠPPðm2
η0 Þ þ Gf1Π

ðlÞ
AAðm2

η0 Þ
−Gη0;πGf1ΠPAðm2

η0 ÞΠAPðm2
η0;πÞ: ðB7Þ

The corresponding η0 mass is

mη0 ¼ 681.7 MeV; ðB8Þ

which is comparable to the scalar mass (B5). This is to be
compared to the two-flavor mη0 ¼ 772 MeV reported on
the lattice [115]. The interactions in (B1) are mostly
repulsive in the scalar and η0 channels and attractive in
the pion and a0 channels, hence the heavy η0.
The meson-quark effective coupling in the pseudoscalar

channel is adjusted by the mixing from the axial vectors:

g2η0qq ¼
Gη0 − Gf1 þGη0Gf1ðΠPP − ΠðlÞ

AAÞ
Gη0 ð1 −Gf1Π

ðlÞ
AAÞ ∂ΠPP

∂P2 þ Gf1ð1 −Gη0ΠPPÞ ∂Π
ðlÞ
AA

∂P2 − 2Gη0Gf1ΠPA
∂ΠPA
∂P2

������
P2¼m2

η0

→ 1.686: ðB9Þ

The vacuum polarization functions regarding the mixing are defined as

ΠPPðP2Þ ¼ −2iNc

Z
d4k
ð2πÞ4 tr½SILMðkÞiγ

5SILMðk − PÞiγ5�F ðkÞF ðP − kÞ; ðB10Þ

FIG. 15. σ; η0 Bethe-Salpeter kernels in the QCD instanton vacuum, in leading order in the 1=Nc book-keeping approximation.
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Πμ
PAðP2Þ ¼ −2iNc

Z
d4k
ð2πÞ4 tr½SILMðkÞiγ

5SILMðk − PÞγμγ5�F ðkÞF ðP − kÞ ¼ iΠPAðP2Þ Pμffiffiffiffiffiffi
P2

p ðB11Þ

with Πμ
AP ¼ ðΠμ

PAÞ� its complex conjugate and

Πμν
AAðP2Þ ¼ −2iNc

Z
d4k
ð2πÞ4 tr½SILMðkÞγ

μγ5SILMðk − PÞγνγ5�F ðkÞF ðP − kÞ

¼ −ΠðtÞ
AAðP2Þ

�
gμν −

PμPν

P2

�
− ΠðlÞ

AAðP2ÞP
μPν

P2
: ðB12Þ

APPENDIX C: INSTANTON FIELD
IN SINGULAR GAUGE

In singular gauge, the instanton gauge field Aa
μðxÞ is

given by

Aa
Iμðx − zI; ρ; UIÞ ¼ RabðUIÞAb

μðx − zIÞ; ðC1Þ

The gauge profile is defined in (57), and RabðUIÞ ¼
1
2
TrðτaUIτ

bU†
I Þ, where τa is an Nc × Nc matrices with

the 2 × 2 Pauli matrices embedded in the upper left corner.
For the anti-instanton field, we substitute η̄aμν by ηaμν and flip
the sign in front of the Levi-Cevita tensor, ϵμνρλ → −ϵμνρλ.
The instanton moduli is captured by the rigid color rotation,
instanton location, and size.
The field strength associated to (C1) reads

Ga
μν½AI� ¼ RabðUIÞGa

μνðx − zIÞ ðC2Þ

with the corresponding field strength profile

Ga
μνðxÞ ¼

1

g
8ρ2

x2ðx2 þ ρ2Þ2
�
η̄aμρ

�
xρxν
x2

−
1

4
δρν

�

− η̄aνρ

�
xρxμ
x2

−
1

4
δρμ

��
: ðC3Þ

In the sum ansatz, the gluonic field strength for the multi-
instanton configuration can be split into single-instanton
fields and crossing terms typical of non-Abelian fields:

Ga
μν½Ainst� ¼

X
I

Ga
μν½AI� þ

X
I≠J

Ga
μν½AI; AJ�: ðC4Þ

The non-Abelian gauge crossing term between two instan-
tons can be expressed as

Ga
μν½AI; AJ� ¼ gRaa0 ðUIÞϵa0bcRcdðU†

IUJÞ
× ½Ab

μðx − zIÞAd
νðx − zJÞ

− Ab
νðx − zIÞAd

μðx − zJÞ�: ðC5Þ

The ’t Hooft symbol in Euclidean space is defined as

η̄aμν ¼
1

4i
Tr½τaðτ−μ τþν − τ−ν τ

þ
μ Þ�; ðC6Þ

ηaμν ¼
1

4i
Tr½τaðτþμ τ−ν − τþν τ−μ Þ�; ðC7Þ

where the Pauli four-vector is defined as τ�μ ¼ ðτ⃗;∓ iÞ. The
conversion to Minkowski space is follows by adding extra
i’s to each fourth component of the Lorentz indices. Thus,
the ’t Hooft symbol in Minkowski space is defined as [54]

ηaμν ¼

8><
>:

ϵaμν; μ ≠ 0; ν ≠ 0;

iδaμ; μ ≠ 0; ν ¼ 0;

−iδaν ; μ ¼ 0; ν ≠ 0

ðC8Þ

and its conjugate

η̄aμν ¼

8><
>:

ϵaμν; μ ≠ 0; ν ≠ 0;

−iδaμ; μ ≠ 0; ν ¼ 0;

iδaν ; μ ¼ 0; ν ≠ 0:

ðC9Þ

APPENDIX D: TWO-INSTANTON
CONFIGURATIONS ON THE GLUONIC

OPERATORS

The gluonic operators for the multi-instanton configu-
ration can be constructed using the gluonic field strength
following from the sum ansatz. Throughout, we will limit
the discussion to instanton pairs. The consideration of
higher clusters goes beyond the scope of this work.

1. Two-gluon operators

In the case of the two-gluon operators, we have three
typical instanton pair configurations:

Ga
μα½AJ�Ga

να½AK� ¼
1

2
trðτaUJKτ

bU†
JKÞGa

μαðx − zJÞ
×Gb

ναðx − zKÞ; ðD1Þ
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Ga
μα½AJ�Ga

να½AJ; AK� ¼
1

2
trðτaUJKτ

bU†
JKÞϵacdGc

μαðx − zJÞ½Ad
νðx − zJÞAb

αðx − zKÞ − Ad
αðx − zJÞAb

νðx − zKÞ�; ðD2Þ

Ga
μα½AJ; AK�Ga

να½AJ; AK� ¼
1

2
trðτaUJKτ

bU†
JKÞ

1

2
trðτcUJKτ

dU†
JKÞ½Aa

μðx − zJÞAb
αðx − zKÞ − Aa

αðx − zJÞAb
μðx − zKÞ�

× ½Ac
νðx − zJÞAd

αðx − zKÞ − Ac
αðx − zJÞAd

νðx − zKÞ�: ðD3Þ

2. C-odd three-gluon operators

In the case of the C-odd three-gluon operators, we have two typical instanton pair configurations:

dabcGa
μν½AJ�Gb

ρα½AJ�Gc
λα½AK� ¼

1

2
trð12UJKτ

aU†
JKÞGb

μνðx − zJÞGb
ραðx − zJÞGa

λαðx − zKÞ; ðD4Þ

dabcGa
μν½AJ�Gb

ρα½AJ; AK�Gc
λα½AK� ¼

1

2
trð12UJKτ

aU†
JKÞ

1

2
trðτbUJKτ

cU†
JKÞϵadeGd

μνðx − zJÞ½Ae
ρðx − zJÞAb

αðx − zKÞ
− Ae

αðx − zJÞAb
ρðx − zKÞ�Gc

λαðx − zKÞ: ðD5Þ

3. C-even three-gluon operators

In the case of the C-even three-gluon operators, we have two typical instanton pair configurations:

fabcGa
μν½AJ�Gb

νλ½AJ�Gc
λμ½AK� ¼

1

2
trðτaUJKτ

bU†
JKÞϵacdGc

μνðx − zJÞGd
νλðx − zJÞGb

λμðx − zKÞ; ðD6Þ

fabcGa
μν½AJ�Gb

νλ½AJ; AK�Gc
λμ½AK� ¼

1

2
trðτaUJKτ

bU†
JKÞ

1

2
trðτcUJKτ

dU†
JKÞf½Ga

μνðx − zJÞAc
νðx − zJÞ

− δacGe
μνðx − zJÞAe

νðx − zJÞ�Ab
λðx − zKÞGd

λμðx − zKÞ
− ½Ga

μνðx − zJÞAc
λðx − zJÞ − δacGe

μνðx − zJÞAe
λðx − zJÞ�Ab

νðx − zKÞGd
λμðx − zKÞg: ðD7Þ

We now detail the steps in the calculation of the gluonic operators in the instanton ensemble to include correlations
between instantons.

4. Color averages

In the case of a two-instanton configuration J, K, the color structure of the gluonic operators depends on only the relative
color rotation UJK ¼ U†

JUK . Only a few color structures are involved in the calculation of the color averages, which we
now list.

a. 1
2 trðτaUJKτbU

†
JKÞ

Z
dUJdUK

1

2
trðτaUJKτ

bU†
JKÞΘJΘK ¼ 1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2

×

�
ψ̄ðzJÞ

1 ∓ γ5

2

1

4
η̄aαβðJÞσαβSðzJ − zKÞ

1

4
η̄bρλðKÞσρλ

1 ∓ γ5

2
ψðzKÞ

þ ψ̄ðzKÞ
1 ∓ γ5

2

1

4
η̄bρλðKÞσρλSðzK − zJÞ

1

4
η̄aαβðJÞσαβ

1 ∓ γ5

2
ψðzJÞ

�
; ðD8Þ
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where the ’t Hooft symbol is defined as ηaμνðJÞ ¼ η̄aμν if J∈ I (instanton) and ηaμνðJÞ ¼ ηaμν if J∈A (anti-instanton). If the
instanton pair is an instanton–anti-instanton molecule, the averaging produces a chiral-conserving quark operator, and a
chiral-flipping quark operator otherwise.

(i) II cluster
When the pair carries like topological charge, i.e., JK ¼ II or AA,

Z
dUJdUK

1

2
trðτaUJKτ

bU†
JKÞΘIΘJ ¼

1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2 1

8
trfSðzJ − zKÞg

× δab
�
ψ̄ðzJÞ

1 ∓ γ5

2
ψðzKÞ þ ψ̄ðzKÞ

1 ∓ γ5

2
ψðzJÞ

�
: ðD9Þ

(ii) IA cluster
When the pair or molecule carries unlike topological charge, i.e., JK ¼ IA or AI,

Z
dUJdUK

1

2
trðτaUJKτ

bU†
JKÞΘJΘK ¼ −

1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2 1

8
trfSðzJ − zKÞγρgη̄aρβηbλβ

×

�
ψ̄ðzJÞγλ

1� γ5

2
ψðzKÞ − ψ̄ðzKÞγλ

1 ∓ γ5

2
ψðzJÞ

�
: ðD10Þ

b. 1
2 trðτaUJKτbU

†
JKÞ 12 trðτcUJKτdU

†
JKÞ

Z
dUJdUK

1

2
trðτaUJKτ

bU†
JKÞ

1

2
trðτcUJKτ

dU†
JKÞΘJΘK

¼ 1

2N2
cðN2

c − 1Þ
�

m�

4π2ρ2

�
2Nf−2

ϵaceϵbdf
�
ψ̄ðzJÞ

1 ∓ γ5

2

1

4
η̄eαβðJÞσαβSðzJ − zKÞ

1

4
η̄fρλðKÞσρλ

1 ∓ γ5

2
ψðzKÞ

þ ψ̄ðzKÞ
1 ∓ γ5

2

1

4
η̄fρλðKÞσρλSðzK − zJÞ

1

4
η̄eαβðJÞσαβ

1 ∓ γ5

2
ψðzJÞ

�

þ 1

2N2
cðN2

c − 1Þ
�

m�

4π2ρ2

�
2Nf−2

�
2þ Nc − 2

4ðNc þ 2Þ
�
δacδbd

×

�
ψ̄ðzJÞ

1 ∓ γ5

2
SðzJ − zKÞ

1 ∓ γ5

2
ψðzKÞ þ ψ̄ðzKÞ

1 ∓ γ5

2
SðzK − zJÞ

1 ∓ γ5

2
ψðzJÞ

�
: ðD11Þ

This type of color structure is down by 1=Nc in the two-gluon operators. Therefore, they can be neglected in the 1=Nc
counting.

(i) II cluster
When the pair carries like topological charge, i.e., JK ¼ II or AA,

Z
dUJdUK

1

2
trðτaUJKτ

bU†
JKÞ

1

2
trðτcUJKτ

dU†
JKÞΘJΘK ¼ 1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2 1

8
trfSðzJ − zKÞg

×

�
1

Nc
ϵaceϵbde þ

�
4

Nc
þ Nc − 2

2NcðNc þ 2Þ
�
δacδbd

�

×

�
ψ̄ðzIÞ

1 ∓ γ5

2
ψðzJÞ þ ψ̄ðzJÞ

1 ∓ γ5

2
ψðzIÞ

�
: ðD12Þ
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(ii) IA cluster
When the pair or molecule carries unlike topological charge, i.e., JK ¼ IA or AI,

Z
dUJdUK

1

2
trðτaUJKτ

bU†
JKÞ

1

2
trðτcUJKτ

dU†
JKÞΘJΘK

¼ 1

2NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2Nf−2 1

8
trfSðzI − zJÞγρg

�
η̄eρβη

f
λβ

1

Nc
ϵaceϵbdf þ δρλ

�
4

Nc
þ Nc − 2

2NcðNc þ 2Þ
�
δacδbd

�

×

�
ψ̄ðzIÞγλ

1� γ5

2
ψðzJÞ − ψ̄ðzJÞγλ

1 ∓ γ5

2
ψðzIÞ

�
: ðD13Þ

c. 1
2Trð12UJKτaU

†
JKÞ

Z
dUJdUK

1

2
Trð12UJKτ

aU†
JKÞΘJΘK ¼ −

Nc − 2

2N2
cðN2

c − 1Þ
�

m�

4π2ρ2

�
2Nf−2 1

4
η̄aμνðKÞ

�
ψ̄ðzJÞ

1∓ γ5

2
SðzJ − zKÞσμν

1∓ γ5

2
ψðzKÞ

þ ψ̄ðzKÞ
1∓ γ5

2
σμνSðzK − zJÞ

1∓ γ5

2
ψðzJÞ

�
: ðD14Þ

(i) II cluster
When the pair carries like topological charge, i.e., JK ¼ II or AA,

Z
dUJdUK

1

2
Trð12UJKτ

aU†
JKÞΘJΘK ¼ −

Nc − 2

2N2
cðN2

c − 1Þ
�

m�

4π2ρ2

�
2Nf−2 1

8
trfSðzJ − zKÞg

1

2
η̄aμνðKÞ

×
�
ψ̄ðzJÞσμν

1 ∓ γ5

2
ψðzKÞ þ ψ̄ðzKÞσμν

1 ∓ γ5

2
ψðzJÞ

�
: ðD15Þ

(ii) IA cluster
When the pair or molecule carries unlike topological charge, i.e., JK ¼ IA or AI,

Z
dUJdUK

1

2
Trð12UJKτ

aU†
JKÞΘJΘK ¼ −

Nc − 2

2N2
cðN2

c − 1Þ
�

m�

4π2ρ2

�
2Nf−2 i

4
trfSðzJ − zKÞγμg

1

2
η̄aμνðKÞ

×

�
ψ̄ðzJÞγν

1� γ5

2
ψðzKÞ þ ψ̄ðzKÞγν

1 ∓ γ5

2
ψðzJÞ

�
: ðD16Þ

d. 1
2 trð12UJKτaU

†
JKÞ 12 trðτbUJKτcU

†
JKÞ

Z
dUJdUK

1

2
trð12UJKτ

aU†
JKÞ

1

2
trðτbUJKτ

cU†
JKÞΘJΘK ¼ −

Nc − 2

2N2
cðN2

c − 1Þ
1

4ðNc þ 2Þ
1

4
η̄aμνðJÞδbc

×

�
ψ̄ðzJÞ

1 ∓ γ5

2
σμνSðzJ − zKÞ

1 ∓ γ5

2
ψðzKÞ

þ ψ̄ðzKÞ
1 ∓ γ5

2
SðzK − zJÞσμν

1 ∓ γ5

2
ψðzJÞ

�
: ðD17Þ
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(i) II, AA cluster
When the pair carries like topological charge, i.e., JK ¼ II or AA,

Z
dUJdUK

1

2
trð12UJKτ

aU†
JKÞ

1

2
trðτbUJKτ

cU†
JKÞΘJΘK

¼ −
Nc − 2

2N2
cðN2

c − 1Þ
1

4ðNc þ 2Þ
�

m�

4π2ρ2

�
2Nf−2 1

8
trfSðzJ − zKÞg

1

2
η̄aμνðJÞδbc

×

�
ψ̄ðzIÞσμν

1 ∓ γ5

2
ψðzJÞ þ ψ̄ðzJÞσμν

1 ∓ γ5

2
ψðzIÞ

�
: ðD18Þ

(ii) IA cluster
When the pair or molecule carries unlike topological charge, i.e., JK ¼ IA or AI,

Z
dUJdUK

1

2
trð12UJKτ

aU†
JKÞ

1

2
trðτbUJKτ

cU†
JKÞΘJΘK

¼ −
Nc − 2

2N2
cðN2

c − 1Þ
1

4ðNc þ 2Þ
�

m�

4π2ρ2

�
2Nf−2 i

4
trfSðzJ − zKÞγμg

1

2
η̄aμνðJÞδbc

×
�
ψ̄ðzJÞγν

1� γ5

2
ψðzKÞ þ ψ̄ðzKÞγν

1 ∓ γ5

2
ψðzJÞ

�
: ðD19Þ

APPENDIX E: GLUONS CAPTURED
BY THE INSTANTON TAILS

When strict factorization is enforced on hadronic kernels
and Feynman-like graphs are used, it may be more
appropriate to evaluate the hadronic matrix elements using
the effective vertices in Seff in (50), with the LSZ reduced
gluons. This is graphically illustrated by the Feynman
diagrams in Figs. 16(a)–16(c), where the gluonic lines
denote the LSZ reduced gluons.
We note that, in the ensemble averaging described

earlier, the dashed gluons are moduli gluons, as opposed

to the LSZ reduced gluons in this section. The latter are
sourced only by small size pseudoparticles in the QCD
vacuum, while the former are for any pseudoparticle size in
the QCD vacuum.
With this in mind and using the 1=Nc bookkeeping, the

one-body interaction is seen to dominate matrix elements,
with the rest of the Nf − 1 flavors looped up. Therefore, in
the following calculations, we will retain only the one-body
induced interaction.
For the gluonic scalar Ga

μνGa
μν, the result of the Feynman

diagram in Fig. 16(a) reads

FIG. 16. (a) The diagram of O½I� in the multi-instanton expansion of the two-gluon operator O2g. Each dashed line connected to the
instanton represents the classical background field. (b) The diagram of O½I� in the multi-instanton expansion of the two-gluon
operator O2g. Each dashed line connected to the instanton represents the classical background field. (c) The effective two-(anti-)
instanton operatorsO3gþþ;þ−;−−, which represents all of the gluons in the operatorO3g½A� are plane waves, one of the gluon plane waves
are connected to the instanton I, and the remaining two-gluon plane waves are connected to J. The conjugate diagram could be obtained
by I ↔ J.
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hP0jGa
μνGa

μνjPi ¼ −
G
Nc

�
m�

4π2ρ2

�
Nf−1hP0jψ̄ψ jPi

Z
d4x

�
2π2ρ2

g

�
2

DμνρλðxÞDμνρλðxÞe−iq·x; ðE1Þ

where the Euclidean gluon propagator connecting the instanton and the effective vertices is defined by

DμνρλðxÞ ¼
Z

d4q
ð2πÞ4F gðρqÞ

1

q2
ðqμqρδνλ − qνqρδμλ − qμqλδνρ þ qνqλδμρÞθð1=ρ2 − q2Þeiq·x

¼ −
1

4π2x

�
xμxρ
x2

δνλ −
xνxρ
x2

δμλ −
xμxλ
x2

δνρ þ
xνxλ
x2

δμρ

�Z
∞

0

dqq2F gðρqÞθð1=ρ2 − q2ÞJ3ðqxÞ

þ 1

2π2x
ðδμρδνλ − δμλδνρÞ

Z
∞

0

dqq2F gðρqÞθð1=ρ2 − q2Þ J2ðqxÞ
qx

: ðE2Þ

The gluon emitted from the instanton carries the instanton gluonic form factor, while the gluon absorbed by the operator is
cut by the hard cutoff 1=ρ.
The calculation can be extended to second order in the instanton density. The result of the Feynman diagram in Fig. 16(b)

depends on the topological charges of the IJ pairs. The pairs with the same topological charges such as the II or AA pair
yield a chiral-conserving quark operator. The result reads

hP0jGa
μνGa

ρλjPijII;AA ¼ G2

NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2ðNf−1Þ� 2π2ρ2

g

�
2
Z

d4zId4zJ
1

4
trfSðzI − zJÞg

×Dμνρλðx − zIÞDμνρλðx − zJÞhP0j
�
ψ̄ðzIÞ

1 ∓ γ5

2
ψðzJÞ þ ψ̄ðzJÞ

1 ∓ γ5

2
ψðzIÞ

�
jPi: ðE3Þ

Similarly, the pairs with opposite topological charges in the IA or AI molecules yield a chiral-flipping quark operator
given by

hP0jGa
μνGa

ρλjPijIA;AI ¼ −
G2

NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2ðNf−1Þ� 2π2ρ2

g

�
2
Z

d4zId4zJ
1

4
trfSðzI − zJÞγρg

× ½Dμνραðx − zIÞDμνλαðx − zJÞ þDμνλαðx − zIÞDμνραðx − zJÞ�

× hP0j
�
ψ̄ðzIÞγλ

1� γ5

2
ψðzJÞ − ψ̄ðzJÞγλ

1 ∓ γ5

2
ψðzIÞ

�
jPi: ðE4Þ

The localized form of the pseudoparticles in the QCD instanton vacuum allows for the use of the R expansion or local
approximation, in the evaluation of the double integral over the position of the pseudoparticles, with the result to second
order in the instanton density

hP0jg2Ga
μνGa

μνjPi ¼
�
−

G
Nc

�
m�

4π2ρ2

�
Nf−1 þ G2

NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2ðNf−1Þ 1

m�

�
hP0jψ̄ψ jPi

× ð2π2Þ2
Z

d4xDμνρλðxÞDμνρλðxÞe−iρq·x

−
G2

NcðN2
c − 1Þ

�
m�

4π2ρ2

�
2ðNf−1Þ

ρ2TIAðρm�ÞhP0jψ̄γρ ∂
↔

λψ jPi

× ð2π2Þ2
Z

d4x½DμνραðxÞDμνλαðxÞ þDμνλαðxÞDμνραðxÞ�e−iρq·x þOðG3Þ: ðE5Þ

The quark hopping integral is given in (88).
The calculation can be extended to the three-gluon operators. Here, we detail it for the C-even operator. As expected,

there is no contribution from a single pseudoparticle. The Feynman diagram in Fig. 16(c) with like pairs the pairs II or AA
yields the chiral-conserving quark operator:
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hP0jdabcGa
μνGb

ραGc
λαjPijII;AA ¼ −

Nc − 2

2N2
cðN2

c − 1ÞG
2

�
m�

4π2ρ2

�
2ðNf−1Þ� 2π2ρ2

g

�
3
Z

d4zId4zJ
1

4
trfSðzI − zJÞg

× ½Dμνβγðx − zJÞDραδσðx − zIÞDλαδσðx − zIÞ þ 2Dραβγðx − zJÞDμνδσðx − zIÞDλαδσðx − zIÞ

þ ðρ ↔ λÞ þ ðI ↔ JÞ�hP0j
�
ψ̄ðzIÞσβγ

1 ∓ γ5

2
ψðzJÞ þ ψ̄ðzJÞσβγ

1 ∓ γ5

2
ψðzIÞ

�
jPi: ðE6Þ

For the unlike pairs, the result gives the chiral-flipping quark operator:

hP0jdabcGa
μνGb

ραGc
λαjPijIA;AI ¼ −

Nc − 2

2N2
cðN2

c − 1ÞG
2

�
m�

4π2ρ2

�
2ðNf−1Þ� 2π2ρ2

g

�
3
Z

d4zId4zJ
i
2
trfSðzI − zJÞγβg

× ½Dμνβγðx − zJÞDδσραðx − zIÞDδσλαðx − zIÞ þ 2Dραβγðx − zJÞDμνδσðx − zIÞDλαδσðx − zIÞ

þ ðρ ↔ λÞ − ðI ↔ JÞ�hP0j
�
ψ̄ðzIÞγγ

1� γ5

2
ψðzJÞ þ ψ̄ðzJÞγγ

1 ∓ γ5

2
ψðzIÞ

�
jPi: ðE7Þ

The Euclidean gluon propagator connecting the instanton and the operators is given in (E2).
Similarly, in the forward limit, we can average over the local operator around the neighborhood of one of the instanton

field shared by the operator. Therefore, after averaging the gluonic operator over four-dimensional Euclidean space, the
profile functions depends only on the relative distance between two instantons. Again, the effective fermionic operator is
nonlocal. Using the R expansion or local approximation, the result is

hP0jg3dabcGa
μνGb

ραGc
λαjPi ¼ −

Nc − 2

N2
cðN2

c − 1ÞG
2

�
m�

4π2ρ2

�
2ðNf−1Þ 2

ρ2m� hP0jψ̄σβγψ jPi

× ð2π2Þ3
Z

d4xe−iρq·x½DμνβγðxÞDραδσðxÞDλαδσðxÞ þ 2DραβγðxÞDμνδσðxÞDλαδσðxÞ þ ðρ ↔ λÞ�

−
Nc − 2

N2
cðN2

c − 1ÞG
2

�
m�

4π2ρ2

�
2ðNf−1Þ

ρ2TIAðρm�ÞhP0jψ̄γγψ jPi

× ð2π2Þ3
Z

d4xe−iρq·x
∂

∂x0β
½DμνβγðxÞDραδσðx0ÞDλαδσðx0Þ þ 2DραβγðxÞDμνδσðx0ÞDλαδσðx0Þ

−Dμνβγðx0ÞDδσραðxÞDδσλαðxÞ − 2Dραβγðx0ÞDμνδσðxÞDλαδσðxÞ þ ðρ ↔ λÞ�jx¼x0 : ðE8Þ

The quark hopping integral TIAðρm�Þ is given in (88).

APPENDIX F: GRAND CANONICAL ENSEMBLE

To account for the fluctuations of the topological charges
in the present description using an ensemble of pseudo-
particles, we need to extend it to a grand canonical
ensemble. For that, we will allow for the number sum N ¼
Nþ þ N− and the number difference ΔN ¼ Nþ − N− to
fluctuate, with a universal distribution PðNþ; N−Þ fixed by
low-energy theorems for N and a topological variance χt
for ΔN [6,15,37,68]:

PðNþ; N−Þ ∝
�
N̄N

N!

�
b=4 1ffiffiffiffiffiffiffiffiffi

2πχt
p exp

�
−
ΔN2

2χt

�
ðF1Þ

with χt ¼ hΔN2i and b ¼ 11
3
Nc − 2

3
Nf. The average instan-

ton number is consistent with the parameters N̄ ¼ hNi, and
the mean topological charge is null Qt ¼ hΔNi ¼ 0. As a

result, most of the operators we encountered earlier can be
further averaged:

hOi ¼
X
Nþ;N−

PðNþ; N−ÞhOiN� ≡ hOiN� : ðF2Þ

The averaging is carried over the configurations with fixed
N� (canonical ensemble average), followed by an averaging
over the distribution (F1).
Since the multiflavor emergent coupling Gð1� δÞ ¼

N�=hθ�ieff is fixed by the saddle point approximation
in the canonical ensemble ensemble, we can expand hOieff
in (65), in terms of connected diagrams with different
orders of instanton numbers N�. Therefore, the total fixed-
N� ensemble average can be written as a certain function
expanded in terms of instanton numbers N�:
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hO½A�iN� ¼ OðNþ; N−Þ: ðF3Þ

All vacuum expectation values hO½A�i in the grand canoni-
cal ensemble can be expressed as

hO½A�i ¼ OðNþ; N−Þ: ðF4Þ

With this in mind, the evaluation of the hadronic matrix
elements can be formally written as a large-T reduction of a

three-point function:

hhjOjhi
hhjhi ¼ lim

T→∞

hJ†hðT=2ÞOJhð−T=2Þicon
hJ†hðT=2ÞJhð−T=2Þi

; ðF5Þ

where JhðtÞ is a pertinent source for the hadronic state h.
The averaging of the connected three-point function reads

hJ†hðT=2ÞO½A�Jhð−T=2Þicon ¼ hJ†hðT=2ÞO½A�Jhð−T=2Þi − hO½A�ihJ†hðT=2ÞJhð−T=2Þicon
¼
X
Nþ;N−

PðNþ; N−ÞðOðNþ; N−Þ −OðNþ; N−ÞÞhJ†hðT=2ÞJhð−T=2ÞiN�

þ hJ†hðT=2Þ∶O½ψ ; ψ̄ �∶Jhð−T=2Þieff ; ðF6Þ

where ∶O½ψ ; ψ̄ �∶ denotes the effective quark operator
connected to the hadronic sources. The quark contributions
are usually penalized by 1=Nc counting, as they are rooted
in the quark-instanton interaction.

To extract the nontrivial contribution from the discon-
nected diagrams, we need to consider the fluctuations. In
the 1=Nc bookkeeping, the dominant contributions are
given by

hPjO½A�jPi
hPjPi ¼

X
Nþ;N−

PðNþ; N−ÞðOðNþ; N−Þ−OðNþ; N−ÞÞ

× lim
T→∞

�
ðN − N̄Þ

�
∂

∂N
ln hJ†hðT=2ÞJhð−T=2Þieff

�
N¼N̄

þΔN
�

∂

∂ΔN
ln hJ†hðT=2ÞJhð−T=2Þieff

�
ΔN¼0

�
ðF7Þ

with the number sum N ¼ Nþ þ N−, the number differ-
ence ΔN ¼ Nþ − N−, the mean number N̄ ¼ hNi, and the
mean topological charge Qt ¼ hΔNi ¼ 0.
To show how the three-point function is determined, we

will consider a few examples. When the gluonic operator is
proportional to the total instanton number,

OðNþ; N−Þ ¼ αN=V:

For asymptotic Euclidean times

hJ†hðT=2ÞJhð−T=2Þieff → e−MhðNþ;N−ÞT;

the matrix element at the leading 1=Nc is tied to the
topological compressibility:

hPjO½A�jPi ¼ −2M2
hα

�hðN − N̄Þ2iP
N̄

�
N̄
∂ lnMh

∂N̄
: ðF8Þ

In particular, for the nucleon, the mass is related to the
instanton density by the scaling relation

MN ¼ C

�
N̄
V

�
1=4

þ σπN

so that

hPjO½A�jPi ¼−2M2
Nα

1

4

�hðN − N̄Þ2iP
N̄

��
1−

σπN
MN

�
: ðF9Þ

When the gluonic operator is proportional to the number
difference, say, OðNþ; N−Þ ¼ αΔN=V, a rerun of the
preceding reasoning gives

hPjO½A�jPi ¼ −2M2
hαχt

∂ lnMh

∂ΔN
: ðF10Þ

For a polarized nucleon consisting of quark-scalar-
diquark [68],

MNðΔNÞ ¼ MN −MNsv
ΔN
N̄

so that
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hPjO½A�jPi ¼ 2M2
Nα

χt
N̄
sv: ðF11Þ

This calculation can be extended to the constituent quark
model and SUð6Þ quark-diquark model.

APPENDIX G: AVERAGING THE INSTANTON
INTERACTIONS OVER THE SUð3Þ ROTATIONS

One way to carry out the color averaging in the
effective instanton interaction det� is by determinantal
reduction [116]:

Z
dU
YNc

i¼1

Uaibi ¼
1

Nc!
ϵa1…aNc

ϵb1…bNc
ðG1Þ

and

U†
ba ¼

1

ðNc − 1Þ! ϵaa1…aNc−1
ϵbb1…bNc−1

Ua1b1…UaNc−1bNc−1
;

ðG2Þ

where ϵa1…aNc
is the Levi-Civita tensor of rank Nc

with ϵ12…Nc
¼ 1.

With these two identities, the color averagings of
ðUU†Þp with small p are
(1) p ¼ 1—

Z
dUUabU

†
cd ¼

1

Nc
δadδcb; ðG3Þ

(2) p ¼ 2—

Z
dUUa1b1U

†
c1d1

Ua2b2U
†
c2d2

¼ 1

N2
c − 1

ðδa1d1δa2d2δc1b1δc2b2 þ δa1d2δa2d1δc1b2δc2b1Þ

−
1

NcðN2
c − 1Þ ðδa1d1δa2d2δc1b2δc2b1

þ δa1d2δa2d1δc1b1δc2b2Þ; ðG4Þ

(3) p ¼ 3—

Z
dUUa1b1U

†
c1d1

Ua2b2U
†
c2d2

Ua3b3U
†
c3d3

¼ N2
c − 2

NcðN2
c − 4ÞðN2

c − 1Þ ðδa1d1δa2d2δa3d3δc1b1δc2b2δc3b3 þ δa1d2δa2d1δa3d3δc1b2δc2b1δc3b3

þ δa1d3δa2d2δa3d1δc1b3δc2b2δc3b1 þ δa1d1δa3d2δa2d3δc1b1δc3b2δc2b3

þ δa1d3δa3d2δa2d1δc1b3δc3b2δc2b1 þ δa1d2δa2d3δa3d1δc1b2δc2b3δc3b1Þ

−
1

ðN2
c − 4ÞðN2

c − 1Þ ðδa1d1δa2d2δa3d3δc1b2δc2b1δc3b3 þ δa1d2δa2d1δa3d3δc1b1δc2b2δc3b3

þ δa1d1δa2d2δa3d3δc1b3δc2b2δc3b1 þ δa1d3δa2d2δa3d1δc1b1δc2b2δc3b3 þ δa1d1δa2d2δa3d3δc1b1δc3b2δc2b3

þ δa1d1δa3d2δa2d3δc1b1δc2b2δc3b3 þ δa1d3δa3d2δa2d1δc1b1δc3b2δc2b3 þ δa1d3δa3d2δa2d1δc3b1δc2b2δc1b3

þ δa1d3δa3d2δa2d1δc1b2δc2b1δc3b3 þ δa1d1δa3d2δa2d3δc1b3δc3b2δc2b1 þ δa1d1δa3d2δa2d3δc1b3δc3b2δc2b1

þ δa1d1δa3d2δa2d3δc1b3δc3b2δc2b1 þ δa1d2δa2d3δa3d1δc1b1δc3b2δc2b3 þ δa1d2δa2d3δa3d1δc3b1δc2b2δc1b3

þ δa1d2δa2d3δa3d1δc1b2δc2b1δc3b3 þ δa1d1δa3d2δa2d3δc1b2δc2b3δc3b1

þ δa1d1δa3d2δa2d3δc1b2δc2b3δc3b1 þ δa1d1δa3d2δa2d3δc1b2δc2b3δc3b1Þ

þ 2

NcðN2
c − 4ÞðN2

c − 1Þ ðδa1d2δa2d3δa3d1δc1b1δc2b2δc3b3 þ δa1d1δa2d2δa3d3δc1b2δc2b3δc3b1

þ δa1d3δa3d2δa2d1δc1b1δc2b2δc3b3 þ δa1d1δa2d2δa3d3δc1b3δc3b2δc2b1 þ δa1d2δa2d3δa3d1δc1b3δc3b2δc2b1

þ δa1d3δa3d2δa2d1δc1b2δc2b3δc3b1 þ δa1d1δa3d2δa2d3δc3b2δc2b2δc2b3 þ δa1d1δa3d2δa2d3δc1b2δc2b1δc3b3

þ δa1d3δa2d2δa3d1δc1b2δc2b1δc3b3 þ δa1d3δa2d2δa3d1δc1b1δc3b2δc2b3 þ δa1d2δa2d1δa3d3δc1b1δc3b2δc2b3

þ δa1d2δa2d1δa3d3δc3b2δc2b2δc2b3Þ: ðG5Þ
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However, for large values of p, this averaging method is tedious. Since Nc ⊗ Nc ¼ 1 ⊕ ðN2
c − 1Þ, the group integral

practically reduces to finding all projections of the product of adjoint representations onto the singlet for SUðNcÞ. The result
can be obtained by using the graphical color projection rules [117–119], with the following results:
(1) p ¼ 2— Z

dUUa1b1U
†
c1d1

Ua2b2U
†
c2d2

¼ 1

N2
c
δa1d1δa2d2δc1b1δc2b2 þ

1

4ðN2
c − 1Þ λ

α
a1d1

λαa2d2λ
β
c1b1
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(2) p ¼ 3—Z
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(3) p ¼ 4—Z
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