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We present a phenomenological study of the γγ� → KK̄�ð892Þ process by including the s-channel
production of the ηð1475Þ and f1ð1420Þ resonances. The nonresonant channel via K- and K�-exchanges is
investigated carefully by performing the Lorentz tensor decomposition and is constructed to yield a correct
high-energy Regge behavior. The transition form factor of f1ð1420Þ is adjusted to achieve a reasonable
description of the existing L3 data in the f1ð1420Þ resonance region. This model is intended to serve as a
Monte Carlo generator for the analysis currently being performed by the BESIII Collaboration. We also
estimate the polarized γγ� → KK̄�ð892Þ cross sections and demonstrate how to extract the transition form
factors of f1ð1420Þ from the polarized cross sections.
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I. INTRODUCTION

The electromagnetic transition form factors (TFFs) of
mesons, accessed through the fusion of two (virtual)
photons into a meson, comprise the inner-structural infor-
mation of the hadrons. Studying the low momentum
behavior of these TFFs can deepen our understanding of
the quark structure of these mesons in nonperturbative
QCD. In the case of axial-vector mesons (A), the γγ → A
process is forbidden due to the Landau-Yang theorem [1,2].
However, the measurement of their TFFs can be accessed
through singly virtual or doubly virtual processes.
Currently, several measurements focus on the spacelike
process eþe− → eþe−A with A ¼ f1ð1285Þ and f1ð1420Þ
[3–8] via the singly virtual γγ� → A production. The
precision of the existing data makes it challenging to
accurately determine the TFFs of f1ð1285Þ and f1ð1420Þ,
particularly regarding their momentum dependence.
Phenomenologically, a commonly used parametrization
of f1 TFFs is the dipole form [7–9], which relies on the
quark model [10]. The f1 TFFs constrained by the large-Nc
and operator product expansion arguments are proposed
by Melnikov and Vainshtein [11], and are further anti-
symmetrized to satisfy the Landau-Yang suppression in
Ref. [12]. Most recently, the f1ð1285Þ and f1ð1420Þ TFFs
have been studied using the resonance chiral theory [13]

and the holographic models [14]. When the virtuality
becomes very large, the asymptotic behavior of f1 TFFs
is obtained from the light cone expansion [15]. Incor-
porating this constraint, a vector meson dominance inspired
parametrization of the f1ð1285Þ TFFs have been proposed
in Refs. [16,17] through a global fit of all relevant data.
However, the determination of the f1ð1420Þ TFFs remains
inconclusive due to the limited experimental data. A better
determination of the f1ð1285Þ and f1ð1420Þ TFFs is also
timely in view of its contribution to the hadronic light-by-
light (HLbL) contribution to the muon’s g − 2 [11,18–37].
To improve upon the experimental situation, the BESIII

Collaboration conducted a preliminary analysis of the
γγ� → K�K�∓ð892Þ → KþK−π0 reaction [38]. The γγ� →
KK̄�ð892Þ process is considered as an ideal channel to
extract the f1ð1420Þ TFFs, since the KK̄� þ c:c: channel is
the dominant decay mode of the f1ð1420Þ state with a
branching ratio around 96% [39,40]. In the BESIII pre-
liminary data analysis, the “GaGaRes” Monte Carlo (MC)
program [41] was used to distinguish between different
resonance contributions, i.e., ηð1475Þ and f1ð1420Þ, to the
γγ� → KK̄�ð892Þ process. However, the GaGaRes program
does not implement interference between these amplitudes,
nor does it include nonresonant mechanisms. These lim-
itations could potentially lead to misinterpretations of
the data.
In order to provide a more realistic MC generator for the

data analysis of the BESIII measurement, we propose a
phenomenological model for γγ� → KK̄�ð892Þ with the
chargedK andK� final states. This model includes s-channel
contributions from the ηð1475Þ and f1ð1420Þ produc-
tion mechanisms. Additionally, we consider nonresonant
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contributions via the K- and K�-exchange channels. The
corresponding amplitude is constructed to exhibit the correct
high-energy behavior using the Reggeized exchanges of K
and K� mesons. To determine the interference effects among
the different contributions, we utilize available L3 experi-
mental data oneþe− → eþe−K0

SK
�π∓ [8]. Subsequently,we

predict polarized (differential) cross sections of γγ� → KK̄�

within the Q2 regime of the BESIII experiment.
The paper is organized as follows: In Sec. II, we present

the γγ� → KK̄�ð892Þ amplitude in our phenomenological
model. To constrain the f1ð1420Þ TFFs, in Sec. III, we
describe the existing L3 data and present the prediction
of the polarized (differential) cross section of γγ� →
KK̄�ð892Þ in the BESIII energy range. The extraction of
TFFs is also discussed there. Finally, we summarize the
main results in Sec. IV. Some technical details are given in
two appendixes.

II. THEORETICAL FRAMEWORK

To parametrize the γγ� → KK̄�ð892Þ amplitude, one
needs to account for the contributions of ηð1475Þ and
f1ð1420Þ resonances, as shown in Figs. 1(a)–(b). The
s-channel production of ηð1475Þ via two-photon fusion
is allowed, and theKK̄� channel is the major decay mode of
the ηð1475Þ state. For the real photon fusion process,
ηð1475Þ is expected to be the dominant resonant process,
since the production of an axial-vector resonance by real
photons is forbidden by the Landau-Yang theorem [1,2]. If
one photon is virtual, the axial-vector mesons are allowed
to be produced in the photon-photon fusion. Thus, we have
an s-channel contribution to the γγ� → KK̄�ð892Þ reaction
via the production of the f1ð1420Þ resonance. Besides, in
Fig. 1, the nonresonant channels, namely t- and u-channel
K;K� exchanges mechanisms, along with the associated
contact terms to ensure the electromagnetic gauge invari-
ance, are included at the tree level. In our model, the total
amplitude of the γγ� → KK̄� reaction is written as

Mγγ�→KK̄� ¼ Mη̄ þMf1 þMnon-res; ð1Þ

where we use shorthand notation η̄ to denote the ηð1475Þ
state in the following.

A. γγ� → ηð1475Þ → KK̄�ð892Þ channel
The production of ηð1475Þ resonance by two photons,

γ�ðq1; λ1Þ þ γ�ðq2; λ2Þ → ηð1475Þ, is described by the
matrix element,

Mη̄γ�γ� ðλ1; λ2Þ ¼ −ie2ϵμναβεμðq1; λ1Þενðq2; λ2Þ
× qα1q

β
2Fη̄γ�γ� ðQ2

1; Q
2
2Þ; ð2Þ

where the polarization vectors of (real and virtual) photons
are denoted as εμðqi; λiÞ with λ1;2 ¼ 0;�1. The structure
information of the ηð1475Þ state is encoded in the spacelike
γ�γ� TFF, which is taken in the monopole form,

Fη̄γ�γ�ð0; Q2
2Þ ¼

Fη̄γ�γ� ð0; 0Þ
1þQ2

2=Λ2
η̄

; ð3Þ

with Λη̄ ¼ 1470 MeV from Ref. [8]. The TFF at Q2
1 ¼

Q2
2 ¼ 0, Fη̄γ�γ�ð0; 0Þ, is related to the decay width of

ηð1475Þ → γγ,

Γη̄→γγ ¼
πα2

4
M3

η̄jFη̄γ�γ� ð0; 0Þj2; ð4Þ

with the ηð1475Þ mass Mη̄ ¼ 1475 MeV and the fine-
structure constant α ¼ e2=ð4πÞ ≈ 1=137. Since the decay
modes of the ηð1475Þ state are not well-established in the
experiment, we assume that the total width of ηð1475Þ,
Γη̄ ¼ 90� 9MeV, is obtained by the sum of the ηð1475Þ →
KK̄� þ c:c:, ηð1475Þ → a0ð980Þπ0, and ηð1475Þ → γγ
channels, as listed in PDG [40]. Using the determined
branching ratio by the L3 Collaboration [8], we obtain
the decay width of ηð1475Þ → γγ as Γη̄→γγ ≃ 0.23 keV.

(d) (e)

(a)

(c)

(b)

FIG. 1. Tree-level diagrams of the γγ� → KK̄�ð892Þ reaction via the s-channel ηð1475Þ (a) and f1ð1420Þ (b) production, the contact
term (c), and the t-channel charged K and K̄� exchange (d,e). The diagrams with crossed photon lines are not shown but are included in
the calculation.
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This leads to the value of the normalization of the
TFF Fη̄γ�γ� ð0; 0Þ ≃ 0.0414 GeV−1.
The effective Lagrangian to describe the interaction of

ηð1475ÞK�K�∓ is written as

Lη̄KK� ¼ igη̄KK� ½η̄ð∂μK−K�þ;μ − ∂μKþK�−;μÞ
− ∂μη̄ðK−K�þ;μ − KþK�−;μÞ�; ð5Þ

where the charged Kð�Þ� fields denote the annihilation of
Kð�Þ∓ and creation of Kð�Þ� particles. The dimensionless
coupling gη̄KK� is fixed by the partial decay width of
ηð1475Þ → KK̄�,

Γη̄→KK̄� ¼ 1

2π
g2η̄KK�

½qη̄→KK̄� ðM2
η̄Þ�3

M2
K�

; ð6Þ

with the momentum in the rest frame of ηð1475Þ → KK̄�
channel,

qη̄→KK̄� ðW2Þ ¼ λ1=2ðW2;M2
K� ; m2

KÞ
2W

; ð7Þ

where λ denotes the Källén triangle function, λðx; y; zÞ≡
x2 þ y2 þ z2 − 2xy − 2xz − 2yz, and W is the total energy
of the KK̄� system. To estimate the magnitude of Γη̄→KK̄� ,
we assume

Γη̄→KK̄π ¼ Γη̄→KK̄�þc:c: þ Γη̄→a0π0 ≈ Γη̄ ¼ 90 MeV:

Using the available measurements of the branching ratio,
Γη̄→KK̄�þc:c:=Γη̄→KK̄π ¼ 0.5 [42] or < 0.25 [43], we obtain
the maximum value of Γη̄→KK̄�þc:c: ≃ 45 MeV, which
results in the value of gη̄KK� ≃ 2.04.
Finally, the tree-level amplitude of γγ� → ηð1475Þ →

KK̄�ð892Þ reaction is

Mη̄ ¼ −2ie2gη̄KK�Fη̄ð0; Q2
2Þϵμνσβ

× εμðq1; λ1Þενðq2; λ2Þε�αðp1;ΛK�Þ

×
ðq1Þσðq2Þβðp2Þα

ðq1 þ q2Þ2 −M2
η̄ þ iMη̄Γη̄ðW2Þ

×

�
D1½qη̄→γγ� ðW2ÞRη̄�
D1½qη̄→γγ� ðM2

η̄ÞRη̄�
�

1=2

×

�
D1½qη̄→KK̄�ðW2ÞRη̄�
D1½qη̄→KK̄�ðM2

η̄ÞRη̄�
�

1=2

; ð8Þ

where the energy-dependent width of ηð1475Þ is written as

Γη̄ðW2Þ ¼ Γη̄ðM2
η̄Þ
�
Brðη̄ → KK�ÞMη̄

W

×

�
qη̄→KK̄�ðW2Þ
qη̄→KK̄�ðM2

η̄Þ
�
3D1½qη̄→KK̄�ðW2ÞRη̄�
D1½qη̄→KK̄�ðM2

η̄ÞRη̄�
× ΘðW2 − ðmK þMK� Þ2Þ

þ Brðη̄ → a0π0Þ
Mη̄

W

qη̄→a0π0ðW2Þ
qη̄→a0π0ðM2

η̄Þ

× ΘðW2 − ðmπ þMa0Þ2Þ
�
; ð9Þ

with the Blatt-Weisskopf barrier factor [44] D1ðxÞ ¼ 1=
ð1þ x2Þ, and the momentum

qη̄→γγ� ðW2Þ ¼ λ1=2ðW2; 0; Q2
2Þ

2W
: ð10Þ

The barrier effective radius Rη̄ for the ηð1475Þ resonance,
accounting for finite size effects, is usually taken from
1 GeV−1 to 7 GeV−1 [45]. Since the results are found to
display very little sensitivity to this value in the kinematical
region studied here, then we set Rη̄ ¼ 3.0 GeV−1 as used
in Ref. [46].

B. γγ� → f 1ð1420Þ → KK̄�ð892Þ channel
The production of the f1ð1420Þ resonance by two-

photon fusion is allowed when one or both photons are
virtual. The amplitude of γ�ðq1; λ1Þ þ γ�ðq2; λ2Þ →
f1ð1420Þ can be parametrized by three structures [10,47],

Mf1γ�γ� ¼ ie2εμðq1; λ1Þενðq2; λ2Þεω�ðq1 þ q2;Λf1Þ

× ϵρστω

�
Rμρðq1; q2ÞRνσðq1; q2Þðq1 − q2Þτ

×
ν

M2
f1

FTT
f1γ�γ�ðQ2

1; Q
2
2Þ þ Rνρðq1; q2Þ

×

�
qμ1 þ

Q2
1

ν
qμ2

�
qσ1q

τ
2

1

M2
f1

FLT
f1γ�γ� ðQ2

1; Q
2
2Þ

þ Rμρðq1; q2Þ
�
qν2 þ

Q2
2

ν
qν1

�
qσ2q

τ
1

×
1

M2
f1

FTL
f1γ�γ�ðQ2

1; Q
2
2Þ
�
; ð11Þ

where the symmetric transverse tensor is defined as

Rμνðq1; q2Þ ¼ −gμν þ 1

X
½νðqμ1qν2 þ qμ2q

ν
1Þ þQ2

1q
μ
2q

ν
2

þQ2
2q

μ
1q

ν
1�; ð12Þ

with the virtual photon flux factor, X ¼ ðq1 · q2Þ2 −
q21q

2
2 ¼ ν2 −Q2

1Q
2
2, and ν ¼ q1 · q2. The structure
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information of the f1ð1420Þ state is encoded in the three
TFFs FTT;TL;LT

f1γ�γ� , which are functions of the virtualities of
both photons. The superscript TT indicates the two trans-
verse photons, while TL (LT) stands for the first photon
being transverse (longitudinal) and the second photon
being longitudinal (transverse). The TFFs FLT and FTL

are related as

FLT
f1γ�γ� ðQ2

1; Q
2
2Þ ¼ FTL

f1γ�γ�ðQ2
2; Q

2
1Þ: ð13Þ

In the current work, we consider the process with one
real photon and take Q2

1 ¼ 0. The amplitude of γðq1; λ1Þ þ
γ�ðq2; λ2Þ → f1ð1420Þ is then expressed as [48]

Mf1γγ� ¼ ie2εμðq1;λ1Þενðq2;λ2Þεω�ðq1þq2;Λf1Þ

× ϵρστω

��
νgμρgνσðq1 −q2Þτ − gνρqμ2q

σ
1q

τ
2

þ gμρ
�
qν2þqν1þ

Q2
2

ν
qν1

�
qσ1q

τ
2

�
1

M2
f1

FTT
f1γ�γ� ð0;Q2

2Þ

þ gμρ
�
qν2þ

Q2
2

ν
qν1

�
qσ1q

τ
2

1

M2
f1

FTL
f1γ�γ� ð0;Q2

2Þ
�
;

ð14Þ

which results in the helicity amplitudes of γγ� → f1ð1420Þ

M
λ1¼λ2¼�1;Λf1

¼0

f1γγ� ¼ −e2
νQ2

2

M3
f1

FTT
f1γ�γ� ð0; Q2

2Þ;

M
λ1¼−1;λ2¼0;Λf1

¼0

f1γγ� ¼ −e2
νQ2

M2
f1

FTL
f1γ�γ� ð0; Q2

2Þ: ð15Þ

Note that the third TFF, FLT
f1γ�γ� ð0; Q2

2Þ, decouples in the
single virtual case.1 The remaining two TFFs can be
independently determined from the polarized cross sec-
tions, σTT and σTL, of the γγ� → f1ð1420Þ resonance
production process,

σTTðQ2
2Þ ¼

2π2α2

Mf1Γf1

Q4
2

M4
f1

�
1þ Q2

2

M2
f1

�
½FTT

f1γ�γ� ð0;Q2
2Þ�2;

σTLðQ2
2Þ ¼

4π2α2

Mf1Γf1

Q2
2

M2
f1

�
1þ Q2

2

M2
f1

�
½FTL

f1γ�γ� ð0;Q2
2Þ�2: ð16Þ

Note that σTT is suppressed by Q2
2=ð2M2

f1
Þ in comparison

with σTL, in the low Q2
2 region, for the case where the TFF

FTT
f1γ�γ� ð0; Q2

2Þ and FTL
f1γ�γ� ð0; Q2

2Þ are of similar magnitude,
as discussed further on.
The relations of Eq. (16) are strictly valid for the

resonance production process at the resonance position.

The model for the process γγ� → KK̄�ð892Þ developed in
this work will allow to quantify the resonance dominance,
and enable to extract the TFF by a fit to the γγ� →
KK̄�ð892Þ data at the resonance position. For this purpose,
we need to work out the matrix element of f1ð1420Þ decay
to KK̄�. The corresponding effective Lagrangian of
f1ð1420ÞKþK�− vertex is given by

Lf1KK� ¼ gf1KK�

Mf1

ð∂μK�þ
ν − ∂νK�þ

μÞ

× ð∂μðf1Þν − ∂
νðf1ÞμÞK−; ð17Þ

where the coupling gf1KK� is determined by the decay width
of f1ð1420Þ → KþK�−,

Γf1→KþK�− ¼ g2f1KK�

12πM4
f1

qf1→KK� ðM2
f1
Þ

× ½2M2
K�M2

f1
þ ðM2

f1
þM2

K� −m2
KÞ2�; ð18Þ

where the rest frame momentum of f1 → KK̄� channel
qf1→KK̄� ðW2Þ has the same functional form as qη̄→KK̄� ðW2Þ.
According to the branching ratio of

Brðf1ð1420Þ → KK̄� þ c:c:Þ ¼ 96.0� 1.0� 1.0%

measured by WA102 Collaboration [39], we have
Γf1→KK̄�þc:c: ¼ 52.32 MeV, which leads to the coupling
value gf1KK� ¼ 1.027.
Using the above vertices, the s-channel amplitude

of γðq1Þγ�ðq2Þ → K̄�ðp1ÞKðp2Þ via the f1ð1420Þ state
[Fig. 1(b)] can be written as

Mf1 ¼
2ie2gf1KK�

Mf1

εμðq1; λ1Þενðq2; λ2Þε�αðp1;ΛK� Þ

×
ðp1 · pf1Þgαβ − ðp1Þβðpf1Þα
p2
f1
−M2

f1
þ iMf1Γf1ðW2Þ

× ϵρστβ

��
νgμρgνσðq1 − q2Þτ − gνρqμ2q

σ
1q

τ
2

þ gμρ
�
qν2 þ qν1 þ

Q2
2

ν
qν1

�
qσ1q

τ
2

�
1

M2
f1

FTT
f1γ�γ�ð0; Q2

2Þ

þ gμρ
�
qν2 þ

Q2
2

ν
qν1

�
qσ1q

τ
2

1

M2
f1

FTL
f1γ�γ� ð0; Q2

2Þ
�
;

ð19Þ

where the f1ð1420Þ momentum is pf1 ¼ q1 þ q2. The
energy-dependent width of the intermediate f1ð1420Þ
resonance is introduced in the propagator

1FLT
f1γ�γ� ð0; Q2

2Þ can be extracted from the interference observ-
ables τTL or τaTL, as discussed in Ref. [48].
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Γf1ðW2Þ ¼ Γf1ðM2
f1
Þ
�
Brðf1 → KK�ÞMf1

W

qf1→KK� ðW2Þ
qf1→KK� ðM2

f1
Þ

× ΘðW2 − ðMK� þmKÞ2Þ
�
: ð20Þ

In order to extract the TFFs FTT
f1γ�γ� ð0; Q2

2Þ and
FTL
f1γ�γ� ð0; Q2

2Þ in Eq. (19), one needs the polarized cross
section for the γγ� → KK̄�ð892Þ reaction. Currently only
the helicity averaged data is available, as measured by the
L3 Collaboration [8]. To estimate the smaller σTT contri-
bution to the cross section, which is suppressed as
Q2

2=ð2M2
f1
Þ compared to σTL at low Q2

2, we will use the
quark model estimate [49], which relates both TFFs as

FTT
f1γ�γ� ð0; Q2

2Þ ¼ −FTL
f1γ�γ� ð0; Q2

2Þ: ð21Þ

Therefore, the matrix element [Eq. (14)] of the
γðq1; λ1Þγ�ðq2; λ2Þ → f1ð1420Þ reaction depends solely
on one dominant form factor, FTL

f1γ�γ� ð0; Q2
2Þ, which is

parametrized by the dipole form,

FTL
f1γ�γ� ð0; Q2

2Þ ¼
FTL
f1γ�γ� ð0; 0Þ

ð1þQ2
2=Λ2

f1
Þ2 : ð22Þ

This parametrization shares the same functional form as
the one proposed in the nonrelativistic quark model [10]
with Λf1 ¼ Mf1 . The dipole form has been demonstrated to
satisfy the large Q2 asymptotic 1=Q4

2 behavior in Ref. [15].
However, there is no compelling reason to identifyΛf1 with
Mf1 . Instead, this value can be adjusted to better describe
the L3 data in the energy range of f1ð1420Þ. Regarding the
normalization of the TFF, FTL

f1γ�γ� ð0; 0Þ, it is conventional to
define an equivalent two-photon decay width of f1ð1420Þ
as [5]

Γ̃f1→γγ ≡ lim
Q2

2
→0

M2
f1

2Q2
2

Γðf1 → γTγ
�
LÞ

¼ πα2

4
Mf1

1

3
½FTL

f1γ�γ� ð0; 0Þ�2; ð23Þ

via the decay width Γðf1ð1420Þ → γTγ
�
LÞ into a real

transverse photon (Q2
1 ¼ 0) and a quasireal longitudinal

photon with virtuality (Q2
2 → 0). The branching ratio

Γ̃f1→γγ × Γf1→KK̄π=Γf1 ≃ 1.9� 0.4 keV

is averaged by PDG [40] among the existing measurements
from 1987 to 2007. The latest value of

Γ̃f1→γγ × Γf1→KK̄π=Γf1 ¼ 3.2 keV; ð24Þ

was reported by the L3 Collaboration [8], which are
the data we are comparing to in more detail in this work.

The normalized TFF FTL
f1→γ�γ� ð0; 0Þ can in principle be

adjusted as a free parameter. However, as discussed in
Sec. III A, an extra global normalization factor is intro-
duced to describe the L3 events of γγ� → K0

SK
�π∓.

To avoid a large correlation in both parameters, we fix
the TFF normalization to the L3 value of Eq. (24)
as FTL

f1→γ�γ�ð0; 0Þ ¼ 0.401.

C. Nonresonant channels for γγ� → KK̄�

In addition to the resonance production mechanism
described above, we also need to incorporate the contri-
butions from the contact term and the t- and u-channel
charged K, K� exchange mechanisms, depicted in
Figs. 1(c), 1(d), and 1(e). The pertinent interaction vertices
for the charged K and K� are described by the effective
Lagrangians,

LγKK ¼ ieAμðKþ
∂
μK− − K−

∂
μKþÞ;

LγK�K� ¼ −ie½FμνK�−
μ K�þ

ν

þ AμðK�þÞνð∂μðK�−Þν − ∂νðK�−ÞμÞ
− AμðK�−Þνð∂μðK�þÞν − ∂νðK�þÞμÞ�;

LγKK� ¼ egγKK�

mK
ϵμναβFμν½ðK�þÞα∂βK− þ ðK�−Þα∂βKþ�;

LγγKK� ¼ −i
e2gγKK�

mK
ϵμναβFμν½ðK�þÞαK− − ðK�−ÞαKþ�Aβ;

ð25Þ
with the electromagnetic tensor Fμν ¼ ∂μAν − ∂νAμ. For the
spin-1 K� fields, we use the triple gauge boson interaction
terms as in the SUð2Þ ⊗ Uð1Þy Yang-Mills theory, which
indicates the nonminimal term FμνK�−

μ K�þ
ν in LγK�K� . Such

effective interaction guarantees tree-level unitarity for the
nonresonant process in contrast to minimal substitution.
The dimensionless coupling gγKK� is determined from the
decay width of K�þ → Kþγ,

ΓK�þ→Kþγ ¼
e2g2γKK�

3πm2
K

½qK�þ→KþγðM2
K� Þ�3; ð26Þ

with the rest frame momentum of the K�þ → Kþγ channel

qK�þ→KþγðsÞ ¼
λ1=2ðs;m2

K; 0Þ
2

ffiffiffi
s

p : ð27Þ

Using the experimental value of ΓK�þ→Kþγ ¼ 50� 5 keV
given in PDG [40], one obtains gγKK� ¼ 0.203.
The amplitudes for the γðq1Þγ�ðq2Þ → K̄�ðp1ÞKðp2Þ

reaction corresponding to Figs. 1(c), 1(d), and 1(e) are
expressed as follows:

Mnon-res ¼ εμðq1; λ1Þενðq2; λ2Þε�αðp1;ΛK� Þ
× ðMμνα

ðcÞ þMμνα
ðdÞ þMμνα

ðeÞ Þ; ð28Þ
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with

Mμνα
ðcÞ ¼−

2e2gγKK�

mK
ϵμναβ

× ½FKðq22Þðq1Þβ−Fγ�KK� ðq22Þðq2Þβ�;

Mμνα
ðdÞ ¼

2e2

mK
gγKK�

�
ϵμσαβðq1Þσðp1Þβð2p2−q2Þν

q22−2q2 ·p2

FKðq22Þ

þ ϵνσαβðq2Þσðp1Þβð2p2−q1Þμ
q21−2q1 ·p2

Fγ�KK� ðq22Þ
�
; ð29Þ

Mμνα
ðeÞ ¼

2e2gγKK�

mK

�
ϵνσρβðq2Þσðp2Þβ
q21− 2q1 ·p1

Fγ�KK� ðq22Þ

× ðgαρð2p1−q1Þμ− gμρðp1− 2q1Þα − gμαðp1þq1ÞρÞ

þ ϵμσρβðq1Þσðp2Þβ
q22− 2q2 ·p1

FKðq22Þðgαρð2p1−q2Þν

− gνρðp1 −2q2Þα− gναðp1þq2ÞρÞ
�
; ð30Þ

where we included the electromagnetic kaon form factor
FKðq22Þ and the vector meson transition form factor
Fγ�KK� ðq22Þ. Both are considered in the monopole form,

FKðq22Þ ¼
1

1þQ2
2=Λ2

K
;

Fγ�KK� ðq22Þ ¼
1

1þQ2
2=Λ2

K�
; ð31Þ

with the monopole masses ΛK ¼ 872 MeV [50] and
ΛK� ¼ MK� ¼ 893.5 MeV. The electromagnetic form
factor FK�ðq22Þ is set equal to the FKðq22Þ in the above
amplitude to satisfy gauge invariance.
To extend the above amplitude into the high-energy

region, as we used in Ref. [51], we first express the
amplitude using the Lorentz tensor decomposition,

Mμν;α
ðcþdþeÞ ¼

X9
i¼1

Tμν;α
i ðq1; q2;p1 − p2ÞFiðW2; t; uÞ: ð32Þ

Here Ti
μν;α stands for the complete set of the nine gauge

invariant tensors for the γγ� → VP reaction, and Fi
corresponds to the scalar functions. Both expressions can
be found in Appendix B.
We assume that in the high energy region the above

amplitude is dominated by Regge poles. Then, one can
calculate the residues of the K and K� Regge exchange
based on the amplitudes calculated with Feynman propa-
gators. We apply the Regge trajectory of K and K� to
replace the corresponding propagators. The Reggeized
propagators of the K and K� mesons in the t-channel are

1

t −m2
K
→ PKðW2; tÞ≡

�
W2

W2
0

�
αKðtÞ πα0K

sin ðπαKðtÞÞ

×

�
1þ e−iπαKðtÞ

2Γð1þ αKðtÞÞ
�
;

1

t −M2
K�

→ PK� ðW2; tÞ≡
�
W2

W2
0

�
αK� ðtÞ−1 πα0K�

sin ðπαK� ðtÞÞ

×

�
−1þ e−iπαK� ðtÞ

2ΓðαK� ðtÞÞ
�
; ð33Þ

with the trajectories of K and K� mesons are given by
αKðtÞ ¼ 0.7ðt −m2

KÞ and αK� ðtÞ ¼ 0.25þ 0.83t [52],
respectively. The same form applies to the K and K�
Reggeized propagators in the u-channel. The gamma
function ΓðαðtÞÞ ensures that the propagator only has poles
in the timelike region. The mass scale is conventionally
taken as W0 ¼ 1 GeV.

D. Cross sections of γγ� → KK̄� reaction

Since the γγ� → KK̄� process enters the cross section for
the unpolarized single tagged eþe− → eþe−KK̄� process,
we first present the differential cross section for the latter
reaction

dσ
dQ2

2dW
2
¼ F̃þþ

2

Q2
2ðW2 þQ2

2Þ
½σTTðW2; 0; Q2

2Þ

þ εσTLðW2; 0; Q2
2Þ�; ð34Þ

in order to fix the convention for σTT and σTL. Here,W2 ¼
ðq1 þ q2Þ2 denotes the invariant mass of the KK̄� system,
the dimensionless quantity F̃þþ

2 stands for the integrated
transverse virtual photon flux factor, and ε is the longi-
tudinal photon polarization parameter. Their expressions
and the details of the derivation of Eq. (34) are given in
Appendix A.
The differential polarized cross sections of the

γðq1Þγ�ðq2Þ → K̄�ðp1ÞKðp2Þ process are then given by

dσTT
d cos θ

¼ 1

64πW2

λ1=2ðW2;M2
k� ; m

2
KÞ

λ1=2ðW2; 0;−Q2
2Þ

×
X
ΛK�

ðjMþþ;ΛK�j2 þ jMþ−;ΛK�j2Þ;

dσTL
d cos θ

¼ 1

32πW2

λ1=2ðW2;M2
k� ; m

2
KÞ

λ1=2ðW2; 0;−Q2
2Þ

X
ΛK�

jMþ0;ΛK�j2; ð35Þ

where Mλ1λ2;ΛK� stands for the helicity amplitude of the
photon fusion process, and θ is the scattering angle in the
γγ� c.m. system.
Before proceeding to the numerical results, it is neces-

sary to discuss the relative phases of the ηð1475Þ,
f1ð1420Þ, and nonresonant contributions. For the ηð1475Þ
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contribution, only helicity amplitudes with λ1;2 ¼ 1 and
ΛK� ¼ 0 are nonzero. For the f1ð1420Þ contribution, the
nonzero helicity amplitudes occur when the relative
helicity of both photons is either zero or one. We found
an interesting result; the constructive and destructive
interferences between the ηð1475Þ and f1ð1420Þ ampli-
tudes do not affect the polarized cross sections for
γγ� → KK̄�. This arises from the fact that Mþþ;0ðη̄Þ is
independent of cos θ, while Mþþ;0ðf1Þ is proportional
to cos θ. Consequently, the differential cross section
dσþþ=d cos θ with constructive/destructive interference
modes Mþþ;0ðη̄Þ �Mþþ;0ðf1Þ are symmetric in cos θ
ranging from −1 to 1. This symmetry leads to the same
total cross section σTT upon integration over cos θ. Thus,
the experimental measurement of dσTT=d cos θ allows to
distinguish the relative phase between the ηð1475Þ and
f1ð1420Þ contributions. Including the nonresonant contri-
bution, we find that the constructive interference with the
ηð1475Þ and f1ð1420Þ components yields a better global

description of the L3 data compared to the ones with the
destructive interference, as shown in Fig. 2.

III. RESULTS AND DISCUSSION

In this section, we first describe the available exper-
imental data related to the γγ� → KK̄�ð892Þ process,
i.e., the L3 measurement of the eþe− → eþe−γγ� →
eþe−K0

SK
�π∓ events [8], to constrain the TFFs of

f1ð1420Þ state. Then, the theoretical prediction of the
polarized cross sections of γγ� → KK̄�ð892Þ reaction is
presented for the forthcoming BESIII measurement.

A. Description of the L3 data

In our phenomenological model, the free parameter is
the dipole mass Λf1 , which enters the transition form
factor Eq. (22) for the f1ð1420Þ resonance. The other
parameters, along with the PDG values of masses and
widths of resonances [40], are listed in Table I. The L3

FIG. 2. The W ¼ MðK0
SK

�π∓Þ dependence for the events of eþe− → eþe−K0
SK

�π∓ reaction via the photon-photon fusion for the
four Q2 bins; 0–0.01 GeV2, 0.01–0.12 GeV2, 0.12–0.4 GeV2, and 0.4–0.9 GeV2. The gray dots are the data points from the L3
Collaboration [8]. The black solid curve denotes the full results of our model, and the red dashed, blue dot-dashed, and green dotted
curves are the contributions of ηð1475Þ, f1ð1420Þ, and nonresonant channels, respectively.
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data of γγ� → K0
SK

�π∓ reaction, where the f1ð1420Þ state
is prominently observed in five Q2 bins from 0 to 7 GeV2,
provide a way to empirically determine Λf1 .
To apply our cross section model to the L3 measurement,

we need to establish the connection between the polarized
cross sections of the γγ� → KK̄� reaction and the events
of the γγ� → K0

SK
�π∓ process for eþe− c.m. energies of

183–209 GeV as reported by the L3 Collaboration. First,
we take into account the K�− → ðKπÞ− decay effectively
by using

σγγ�→KþðKπÞ−ðW2Þ ¼
Z ðW−mKÞ2

ðmKþmπÞ2
dW2

K�FðW2
K� Þ

× σγγ�→KK̄� ðW2;WK� Þ; ð36Þ

to obtain the unpolarized cross section of γγ� → KKπ
reaction, where the K� mass in the σγγ�→KK̄� is replaced
by the variable WK� , starting from the Kπ threshold. The
lineshape function FðW2

K�Þ is defined as

FðW2
K�Þ ¼ 1

π

MK�ΓK� ðW2
K� Þ

ðW2
K� −M2

K� Þ2 þ ðMK�ΓK� ðW2
K� ÞÞ2 ; ð37Þ

in order to satisfy the normalization

Z
∞

ðmKþmπÞ2
dW2

K�FðW2
K� Þ ¼ 1; ð38Þ

where the energy-dependent width in Eq. (37) is given by

ΓK� ðW2
K� Þ ¼ ΓK� ðM2

K� Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

K� − ðmK þmπÞ2
M2

K� − ðmK þmπÞ2
s

: ð39Þ

To access the unpolarized cross section combination
σγγ�→KK̄� ¼ σTT þ εσTL, which enters Eq. (34), one needs
to know the longitudinal photon polarization parameter ε.
In principle, such value is provided by the L3 experimental
conditions. Since the eþe− beam energy (from 183 GeV to
209 GeV) at LEP is significantly larger than the γγ� total
energy W ¼ 1–3 GeV, one can safely approximate ε ≈ 1.

We obtain the unpolarized cross section of the γγ� →
KþðKπÞ− by allowing K̄� decay to Kπ. More specifically,
we have this process; γγ� → KþK�− → KþðKπÞ−. In order
to estimate the γγ� → KþK̄0π− reaction, its cross section is
given by

σγγ�→KþK̄0π− ¼ 2

3
σγγ�→KþðKπÞ− : ð40Þ

However, the L3 data are for the γγ� → K0
SK

�π∓ process
and include two intermediate processes γγ� → K0

SðKπÞ0
and γγ� → ðK0

Sπ
∓ÞK�. The charged KK� process, i.e.,

γγ� → ðK0
Sπ

∓ÞK�, can be directly related to the γγ� →
KþK̄0π process studied above under isospin conservation.
Ignoring the tiny effect of CP violation, we have jK0

Si ¼
1ffiffi
2

p ðjK0i þ jK̄0iÞ, then the L3 measured cross section can

be related to the cross section of γγ� → KþK̄0π− via

σγγ�→ðK0
Sπ

−ÞKþ ¼ 1

2
σγγ�→KþK̄0π− : ð41Þ

Thus, we have the following relation

σγγ�→ðK0
Sπ

−ÞKþ ¼ 1

3
σγγ�→KþðKπÞ− : ð42Þ

Another intermediate process of L3 measurement, γγ� →
K0

SðKπÞ0 involves the neutralK andK�. Since both ηð1475Þ
and f1ð1420Þ have isospin zero, the γγ� → K0K̄�0 ampli-
tudes are identical to those for γγ� → KþK�−, given in
Eqs. (8) and (19), respectively. However, for the nonresonant
channel, the contribution to γγ� → K0K̄�0 may differ from
that of γγ� → KþK�− as the charged K and K� exchange
processes of Figs. 1(c)–(e) do not contribute for the
former process, and require further investigation. As the
nonresonant process is quite small in the kinematic region
shown in this work, we assume in the comparison with
the L3 data that they are the same for both channels.
Finally, considering both intermediate processes of the L3
experiment, we establish the following relation between
the cross sections:

σγγ�→K0
SK

�π∓ ¼ 2

3
σγγ�→KþðKπÞ− : ð43Þ

Next, we need to establish the relation between our γγ�

cross section prediction and the L3 events for the eþe− →
eþe−K0

SK
�π∓ process through the two-photon collision.

Such comparison typically requires specific information
about the L3 detector, such as the virtual photon flux
factors, the minimal and maximal virtualities of photons,
etc., as presented in Appendix A. Based on the differential
cross section given in Eq. (34), we parametrize the
experimental events as measured by L3 as

TABLE I. Values of resonance (R) parameters used in our
model.

mR [MeV] ΓR [MeV] Coupling TFF

gη̄KK� Fη̄γ�γ� ð0; 0Þ
ηð1475Þ 1475 90 2.04 0.0414 GeV−1

gf1KK� FTL
f1γ�γ� ð0; 0Þ

f1ð1420Þ 1426.3 54.5 1.027 0.401
gγKK�

K�ð892Þ 893.5 51.4 0.203
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EventsðW2Þ ¼N
Z

Q2
high

Q2
low

dQ2
1

Q2

2

3
σγγ�→KþðKπÞ−ðW2Þ; ð44Þ

where the integral limits correspond to the different Q2

bins. The normalization factor N depends on the
specific details of the experimental detector. Since this
information is not accessible, we approximate a global
normalization factor in practice. This factor is determined
to simultaneously describe the L3 events across all
Q2 bins; Q2 ∼ ½0; 0.01�, ½0.01 − 0.12�, ½0.12 − 0.4�,
½0.4 − 0.9� GeV2, and ½0.9 − 7� GeV2. Note that the exist-
ence of such a single normalization factor leads to a
meaningful comparison with the L3 data.
A reasonable description of all events, as shown in

Fig. 2,2 can be achieved by adjusting the dipole mass
scale in the f1ð1420Þ TFF of Eq. (22) to Λf1 ¼ 920 MeV.
This value is consistent with the one given in Ref. [8]. From
Fig. 2, we observe that the ηð1475Þ contribution is
dominant for quasireal photons and gradually decreases
with increasing photon virtuality. In the low Q2 region
½0 − 0.01� GeV2, the contribution of the nonresonant
channel is large relative to the f1ð1420Þ result. This is
because the production of axial-vector mesons at any small
Q2 is suppressed. Furthermore, the constructive interfer-
ence between the ηð1475Þ and the nonresonant channels
provides a rather good description of the L3 events at large
γγ� c.m. energy. For the Q2 range of 0.01–0.12 GeV2 and
larger, the f1ð1420Þ contribution is dominant. Thus, the
theoretical calculation of the eþe− → eþe−K0

SK
�π∓ proc-

ess is sensitive to the f1ð1420Þ TFF.
In the last two Q2 bins, we notice that the L3 data show

an enhancement relative to our results at very low γγ�
energy. This discrepancy arises due to the missing con-
tribution of the f1ð1285Þ resonance in our model. Addi-
tionally, the deviation from the L3 data is also observed on
the higher-energy side of the f1ð1420Þ resonance. One
reason is that we use quasitwo-body states to mimic the
three-body final states, neglecting the nonresonant mech-
anisms involving KKπ states in our analysis. Such con-
tributions have been noticed in the L3 data analysis, e.g.,
the background contribution to the K� invariant mass
distribution, as shown in Fig. 7 of Ref. [8].
To further improve upon the description of the L3 data, it

is possible to include the contributions from the f1ð1285Þ
exchange in the s-channel and potentially higher mass
resonances like ηð1760Þ [53]. However, including these
higher resonances in our model is not expected to sig-
nificantly change the data description within the energy
region of f1ð1420Þ. The reason is twofold: these higher

resonances are far away from the f1ð1420Þ state; the total
cross section of γγ� → KK̄� is dominated by σTL, while
ηð1760Þ can only contribute to the transverse-transverse
part. For a more realistic description, we plan to extend the
current model of the γγ� → KK̄� reaction to the process
with actual three-body final states via the K� decay to Kπ,
i.e., γγ� → K�K�∓ → KþK−π0, which is an ongoing
analysis process at BESIII.

B. Prediction of polarized γγ� → K�K�∓ð892Þ
cross sections

Based on the reasonable description of the L3 data in
the f1ð1420Þ region, we first present our predictions
for the polarized differential cross sections in Fig. 3 with
W ¼ Mf1 . We take Q2 ¼ 0.25, 0.5, 0.75, 1.0 GeV2 to
cover the range of forthcoming BESIII data for the eþe− →
eþe−KþK−π0 process. Since both K and K� are charged in
the process measured by BESIII, our model for the
nonresonant process is directly applicable. From Fig. 3,
we notice that the constructive interference between the
S-wave f1ð1420Þ and the P-wave ηð1475Þ channels, deter-
mined by the L3 data, is clearly shown in the transverse
part. The contribution from the nonresonant channel is
rather small. In contrast, the f1ð1420Þ production mecha-
nism dominates the dσTL=d cos θ cross section, which
leads to the quasiangular-independent results across all
Q2 values. The forthcoming BESIII data will provide
valuable validation of these predictions.
Using the phenomenological model of γγ� →

K�K�∓ð892Þ, we also predict the polarized cross sections,
σTT and σTL, in Fig. 4. For the transverse cross section
σTT at Q2 ¼ 0.25 GeV2, we found a broad peak aroundffiffiffi
s

p ¼ 1.45 GeV, consistent with a preliminary analysis of
the BESIII data [38]. This peak originates from the
interference of the two closely located resonances,
ηð1475Þ and f1ð1420Þ. Our study provides a natural
explanation, which could facilitate the extraction of the
f1ð1420Þ resonance parameters from experimental data.
Furthermore, the constructive interference between the
ηð1475Þ production channel and the nonresonant channel
can be further validated by the forthcoming high-statistics
BESIII data. As Q2 increases, one notices from Fig. 4
that the contribution from the f1ð1420Þ production mecha-
nism dominates. Accordingly, the contributions from the
ηð1475Þ and the nonresonant channels decrease. However,
a small shoulder on the higher energy side of the f1ð1420Þ
peak remains visible.
Since the ηð1475Þ channel does not contribute to the σTL

cross section, the f1ð1420Þ production mechanism domi-
nates σTL for all Q2 values shown and accounts for over
95% of the total σTL. As Q2 increases, the f1ð1420Þ
production cross section decreases gradually, attributed
to the dipole form of the TFF. Thus, forthcoming
BESIII data are promising to provide an extraction of

2Note that the comparison with the broad and high Q2 ∼
½0.9; 7� GeV2 bin is not shown as it is beyond the applicability of
our model, but a reasonable description of the L3 data is still
achieved.
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the f1ð1420Þ TFF. Furthermore, one can see that the
magnitude of σTL is approximately 10 times larger than
that of σTT in the low-Q2 region. This difference arises
because σTT is suppressed by Q2=ð2M2

f1
Þ, as seen from

Eq. (16) and discussed above.

Finally, from the measurement of the above-mentioned
polarized cross sections, we demonstrate the possibility to
extract the FTT

f1γ�γ� ð0; Q2
2Þ and FTL

f1γ�γ� ð0; Q2
2Þ TFFs. Based

on Eq. (16), one can define the quantities at the f1ð1420Þ
resonance at W2 ¼ M2

f1
as

FIG. 4. Prediction for σTT (left panels) and σTL (right panels) cross sections for γγ� → K�K�∓ with Q2 ¼ 0.25, 0.5, 0.75, 1.0 GeV2

and with the full angular coverage jcos θj ≤ 1. The curve notations are the same as in Fig. 2.

FIG. 3. Prediction for the differential cross sections dσTT=d cos θ (left panels) and dσTL=d cos θ (right panels) for γγ� → K�K�∓ with
Q2 ¼ 0.25, 0.5, 0.75, 1.0 GeV2 for W ¼ 1.42 GeV. The curve notations are the same as in Fig. 2.
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½FTT
f1γ�γ� ð0; Q2

2Þ�2jextract ≡
Mf1Γf1

4π2α2Brðf1 → KK̄�Þ

×
2M4

f1

Q4
2ð1þQ2

2=M
2
f1
Þ

× σTTðW2 ¼ M2
f1
; 0; Q2

2Þ;

½FTL
f1γ�γ� ð0; Q2

2Þ�2jextract ≡
Mf1Γf1

4π2α2Brðf1 → KK̄�Þ

×
M2

f1

Q2
2ð1þQ2

2=M
2
f1
Þ

× σTLðW2 ¼ M2
f1
; 0; Q2

2Þ: ð45Þ

Here we employed the polarized cross sections of γγ� →
KK̄�ð892Þ instead of those of γγ� → f1ð1420Þ in Eq. (16),
by introducing the branching ratio Brðf1 → KK̄�Þ for
charged final states. The obtained quantities are presented
in Fig. 5 as functions of Q2

2. Due to the significant
contributions from ηð1475Þ and nonresonant channels at
low Q2, the extracted quantity FTT

f1γ�γ� is larger than the
dipole parametrization [Eq. (22)] for the f1ð1420Þ TFF,
which is given by the blue curve in Fig. 5. AsQ2 increases,
e.g., Q2

2 ≥ 0.5 GeV2, the contribution of f1ð1420Þ channel
dominants over the ηð1475Þ channel, as shown in Fig. 4.
Consequently, FTT

f1γ�γ� can be reliably extracted in the larger
Q2

2 region. The situation regarding FTL
f1γ�γ� form factor is

more straightforward. One can directly extract FTL
f1γγ� from

σTL via Eq. (45) in the whole Q2
2 region, since the ηð1475Þ

channel is forbidden, and the nonresonant contribution is
relatively small.

IV. CONCLUSION

In this work, we have developed a phenomenological
model for the γγ� → KK̄�ð892Þ reaction. Our model
includes the production mechanism of the ηð1475Þ and

f1ð1420Þ resonances in the s-channel. Additionally, we
have parametrized the nonresonant contribution using the
chargedK and K� crossed-channel exchanges. By perform-
ing the Lorentz tensor decomposition of the γγ� → PV
amplitude, we employ the Regge trajectories to replace the
K and K� propagators, ensuring a correct high-energy
behavior.
In order to constrain the transition form factor of

γγ� → f1ð1420Þ in our model, we utilize the available
L3 data from the γγ� → K0

SK
�π∓ process, which leads to a

dipole mass parameter Λf1 ¼ 920 MeV in good agreement
with the L3 extraction. Subsequently, we predict the
polarized cross sections within the Q2 regime of the
forthcoming BESIII measurement. Finally, we emphasize
that the f1ð1420Þ form factors, particularly FTL

f1γ�γ� ð0; Q2
2Þ,

can be obtained nearly model-independently from the
polarized cross sections, as the f1ð1420Þ channel domi-
nates in the γγ� → KK̄� process around the f1ð1420Þ
resonance excitation and in the Q2

2 range up to
around 2 GeV2.
The presented model of the γγ� → KK̄� process in the

f1ð1420Þ energy region includes the necessary interference
between the s-channel production of the ηð1475Þ and
f1ð1420Þ states. This interference is not accounted for in
the Monte Carlo generator GaGaRes, typically used to
simulate two-photon resonance production in eþe− colli-
sions. Therefore, our model can serve as a Monte Carlo
generator for theBESIIImeasurement of the γγ� → KþK−π0

reaction, providing a tool to extract the f1ð1420Þ TFFs.
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APPENDIX A: CROSS SECTION FOR THE
UNPOLARIZED SINGLE TAGGED

e+ e − → e + e−X PROCESS

In this Appendix, we present the formulae for the cross
section of the process eðp1Þeðp2Þ → eðp0

1Þeðp0
2ÞX, where

X represents the produced hadronic state or system (e.g.,
X ¼ KK̄�), in the c.m. system of the colliding beams. The
general cross section formalism has been outlined in
Ref. [54]. Here, we specifically focus on the unpolarized
single tagged process eþe− → eþe−X and present an
accessible formalism for the experimental analysis.
The four-vector momenta of the incoming electron

and positron in the e−eþ c.m. frame are denoted as
p1ðE; p1Þ and p2ðE;−p1Þ with the beam energy E ¼ffiffiffi
s

p
=2 and s ¼ ðp1 þ p2Þ2. The outgoing electron and

positron have momenta p0
1ðE0

1; p
0
1Þ and p0

2ðE0
2; p

0
2Þ, respec-

tively. Regarding the unpolarized single tagged process, the
lepton momentum p0

2 is detected, and the lepton momen-
tum p0

1 goes undetected. This corresponds to the kinemati-
cal situation where the first photon is quasireal, and
the second photon has a finite virtuality. Then the photon
four-momenta are

q1 ¼ p1 − p0
1; q2 ¼ p2 − p0

2; ðA1Þ

with the corresponding energies (in the e−eþ c.m. frame)
and virtualities of the two photons expressed as

ω1 ≡ q01 ¼ E − E0
1; ω2 ≡ q02 ¼ E − E0

2; ðA2Þ

Q2
1 ≡ −q21 → 0; Q2

2 ≡ −q22 ¼ 4EE0
2sin

2θ2=2þQ2
2;min;

ðA3Þ

where θ2 is the polar angle of the scattered lepton relative to
the beam direction. The minimal value of the virtuality is
given by

Q2
2;min ≃m2

ω2
2

EE0
2

; ðA4Þ

in the limit where E0
2 ≫ m with m being the electron mass.

TheW2 ¼ ðq1 þ q2Þ2 stands for the squared invariant mass
of the hadronic system.
For the unpolarized single-tagged process, both the

outgoing lepton four-momentum p0
2 and the invariant mass

W2 of the hadronic system are measured, which allows the
energy ω1 of the quasireal photon to be fixed as

ω1 ¼ E

�
W2 þQ2

2

4Eω2 þQ2
2

�
: ðA5Þ

The differential unpolarized cross section of the single
tagged measurement can be expressed as

dσ
dω2dQ2

2dW
2
¼ 1

ðω2 þ Q2
2

4EÞQ2
2ðW2 þQ2

2Þ
× fFþþ

2 σTTðW2; Q2
1 ¼ 0; Q2

2Þ
þ F00

2 σTLðW2; Q2
1 ¼ 0; Q2

2Þg; ðA6Þ
where the virtual photon flux factors Fþþ

2 and F00
2 are

given by

Fþþ
2 ¼

�
α

π

�
2

F1;soft

�
1 −

1

E

�
ω2 þ

Q2
2

4E

�

þ 1

2E2

�
ω2 þ

Q2
2

4E

�
2
�
;

F00
2 ¼

�
α

π

�
2

F1;soft

�
1 −

1

E

�
ω2 þ

Q2
2

4E

��
; ðA7Þ

resulting from the integral over the quasireal photon
virtuality Q2

1, with F1;soft defined as

F1;soft ¼
�
1 −

ω1

E
þ ω2

1

2E2

�
ln
Q2

1;max

Q2
1;min

−
�
1 −

ω1

E

��
1 −

Q2
1;min

Q2
1;max

�
: ðA8Þ

The bounds on the quasireal photon virtuality Q2
1 are

given by

Q2
1;min ≃m2

ω2
1

E2ð1 − ω1

E Þ
; Q2

1;max ≃ 4E2

�
1 −

ω1

E

�
: ðA9Þ

Since the γγ� → X polarized cross sections, σTT and σTL, in
Eq. (A6) do not depend on ω2, one can perform the
integration over the experimentally accepted range of ω2

values, i.e., ωexp
2;min ≤ ω2 ≤ ωexp

2;max, which leads to the
doubly differential cross section,

dσ
dQ2

2dW
2
¼ F̃þþ

2

Q2
2ðW2 þQ2

2Þ
fσTTðW2; Q2

1 ¼ 0; Q2
2Þ

þ εσTLðW2; Q2
1 ¼ 0; Q2

2Þg; ðA10Þ
with the (dimensionless) integrated transverse virtual pho-
ton flux factor F̃þþ

2 expressed as

F̃þþ
2 ¼

Z
ωexp
2;max

ωexp
2;min

dω2

ðω2 þ Q2
2

4EÞ
Fþþ
2 ; ðA11Þ

and the longitudinal photon polarization parameter ε
defined as

ε ¼ 1

F̃þþ
2

Z
ωexp
2;max

ωexp
2;min

dω2

ðω2 þ Q2
2

4EÞ
F00
2 : ðA12Þ
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APPENDIX B: LORENTZ DECOMPOSITION OF
THE γγ� → VP REACTION

To perform the Lorentz decomposition of the nonresonant
contribution of the γγ� → KK̄�ð892Þ amplitude, Eq. (28),
we first derive the linearly-independent tensor basis for
the fusion of one real-photon and one virtual-photon into

a vector meson and a pseudoscalar meson: γðq1Þγ�ðq2Þ →
Vðp1ÞPðp2Þ. Following the general recipe outlined by
Bardeen, Tung, and Tarrach (BTT) [55,56], and considering
the on shell condition of the final vector meson, we found
nine independent tensors for the γγ� → VP reaction after
applying the Schouten identity,

T1
μν;α ¼ ðq1 · q2Þϵμναβðq1 þ q2Þβ þ ðq1Þνϵαμγβðq1Þγðq2Þβ þ ðq2Þμϵανγβðq1Þγðq2Þβ;

T2
μν;α ¼ ðq1 · q2ÞϵμναβΔβ − ðq1Þνϵαμγβðq2ÞγΔβ þ ðq2Þμϵανγβðq1ÞγΔβ þ gμνϵασγβðq1Þσðq2ÞγΔβ;

T3
μν;α ¼ ðq1 − q2Þαϵμνγβðq1Þγðq2Þβ;

T4
μν;α ¼ ðq1 þ q2Þαϵμνγβðq1Þγðq2Þβ;

T5
μν;α ¼ ðq1 · q2Þðq1Þαϵμνγβðq1ÞγΔβ þ ðq1 · q2Þðq2Þαϵμνγβðq2ÞγΔβ;

þ ðq1Þαðq1Þνϵμσγβðq1Þσðq2ÞγΔβ þ ðq2Þαðq2Þμϵνσγβðq1Þσðq2ÞγΔβ;

T6
μν;α ¼ ðgμνðq1 · q2Þ − ðq2Þμðq1ÞνÞϵασγβðq1Þσðq2ÞγΔβ;

T7
μν;α ¼ ðq2 · ΔÞðq1Þνϵαμγβðq1ÞγΔβ þ ðq1 · ΔÞðq2Þμϵανγβðq2ÞγΔβ − ðq1 · q2ÞΔμϵανγβðq2ÞγΔβ − ðq1 · q2ÞΔνϵαμγβðq1ÞγΔβ;

T8
μν;α ¼ −ðq2 · ΔÞðq1Þνϵαμγβðq1ÞγΔβ þ ðq1 · ΔÞðq2Þμϵανγβðq2ÞγΔβ − ðq1 · q2ÞΔμϵανγβðq2ÞγΔβ þ ðq1 · q2ÞΔνϵαμγβðq1ÞγΔβ;

T9
μν;α ¼ −ðq2 · ΔÞðq1Þνϵαμγβðq1Þγðq2Þβ − ðq1 · ΔÞðq2Þμϵανγβðq1Þγðq2Þβ þ ðq1 · q2ÞΔμϵανγβðq1Þγðq2Þβ

þ ðq1 · q2ÞΔνϵαμγβðq1Þγðq2Þβ; ðB1Þ

with Δ ¼ p1 − p2. It is worth noting that the six independent tensors for the γγ → VP reaction can be easily obtained by
choosing T3, T4, T6, T7, T8, and T9 terms. Also, the current basis and the one obtained in Ref. [51] are identical after using a
linear transformation.
We applied the above tensor basis to perform the decomposition of the γγ� → KK̄� amplitude, Eq. (28), and found the

corresponding scalar functions,

F1ðW2; t; uÞ ¼ e2
gγKK�

mK

1

Q2
2 þW2

�
FKð−Q2

2Þ
�
2ðm2

K −M2
K� Þ þ ðQ2

2 þW2Þ
2ðt −m2

KÞ
þ 2ðm2

K −M2
K�Þ − ðQ2

2 þW2Þ
2ðu −M2

K� Þ
�

þ Fγ�KK� ð−Q2
2Þ
�
−
3ðQ2

2 þW2Þ
2ðt −M2

K� Þ −
Q2

2 þW2

2ðu −m2
KÞ
��

;

F2ðW2; t; uÞ ¼ e2
gγKK�

mK

�
FKð−Q2

2Þ
2

u −M2
K�

− Fγ�KK� ð−Q2
2Þ

2

t −M2
K�

�
;

F3ðW2; t; uÞ ¼ e2
gγKK�

mK

�
FKð−Q2

2Þ
1

Q2
2 þW2

�
m2

K −M2
K�

2ðt −m2
KÞ

þ m2
K −M2

K�

2ðu −M2
K�Þ

�
þ Fγ�KK�ð−Q2

2Þ
1

Q2
2 þW2

�
m2

K −M2
K�

2ðu −m2
KÞ

þm2
K −M2

K� − 4ðQ2
2 þW2Þ

2ðt −M2
K� Þ

��
;

F4ðW2; t; uÞ ¼ e2
gγKK�

mK

�
FKð−Q2

2Þ
1

Q2
2 þW2

�
m2

K −M2
K� − ðQ2

2 þW2Þ
2ðt −m2

KÞ
þm2

K −M2
K� − 5ðQ2

2 þW2Þ
2ðu −M2

K�Þ
�

þ Fγ�KK� ð−Q2
2Þ

1

Q2
2 þW2

�
m2

K −M2
K� − ðQ2

2 þW2Þ
2ðu −m2

KÞ
þm2

K −M2
K� − 5ðQ2

2 þW2Þ
2ðt −M2

K� Þ
��

;

F5ðW2; t; uÞ ¼ 0;

F6ðW2; t; uÞ ¼ 0;
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F7ðW2; t; uÞ ¼ e2
gγKK�

mK

1

ðQ2
2 þW2Þ

�
FKð−Q2

2Þ
�

1

t −m2
K
þ 1

u −M2
K�

�
þ Fγ�KK� ð−Q2

2Þ
�

1

t −M2
K�

þ 1

u −m2
K

��
;

F8ðW2; t; uÞ ¼ −e2
gγKK�

mK

1

ðQ2
2 þW2Þ

�
FKð−Q2

2Þ
�

1

t −m2
K
þ 1

u −M2
K�

�
− Fγ�KK� ð−Q2

2Þ
�

1

t −M2
K�

þ 1

u −m2
K

��
;

F9ðW2; t; uÞ ¼ −e2
gγKK�

mK

1

ðQ2
2 þW2Þ

�
FKð−Q2

2Þ
�

1

t −m2
K
þ 1

u −M2
K�

�
− Fγ�KK� ð−Q2

2Þ
�

1

t −M2
K�

þ 1

u −m2
K

��
: ðB2Þ
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