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We employ a dispersion relation that allows us to recover the phase of the electromagnetic form factor of
the pion from its absolute value above threshold. Compared to alternative approaches building on the phase,
this approach builds on experimental input directly accessible at colliders. Employing the precise datasets
from the eþe− → πþπ− reaction, we obtain the phase of the electromagnetic form factor up to 2.5 GeV,
well beyond standard dispersive approaches. In addition, we separate the isovector and isoscalar
components, that allows us to extract the P-wave ππ phase shift. We also provide relevant results,
including the radius of the form factor and bounds in the spacelike region. Last, but not least, the study
assess potential systematic uncertainties from the interpolation method and potential zeros of the form
factor.
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I. INTRODUCTION

The electromagnetic form factor of the pion encapsulates
important aspects of hadron dynamics. In particular, it
enters in the dispersive reconstruction of a variety of
hadronic electromagnetic form factors, see for instance
Refs. [1–10]. Furthermore, by virtue of Watson’s final-state
theorem, its phase identifies below inelasticities with the
P-wave ππ phase shift modulo isospin-breaking (IB)
corrections. Such a phase is ubiquitous in many hadronic
quantities at low energies once the machinery of dispersion
relations is employed. In summary, this form factor encodes
relevant universal effects in low-energy QCD, and provides
as such valuable information for hadronic physics.
While the absolute value of the pion form factor can be

accessed at eþe− colliders in the eþe− → πþπ− reaction in
the timelike region, its phase is not directly measurable.
Nonetheless such a phase can be inferred using long-known
dispersion relations involving the modulus of the form
factor along the unitarity cut [11–16] (see also [17–19]).
Seemingly, this possibility to obtain the P-wave ππ phase
shift has fallen into oblivion with the advent of the modern
and precise extractions based on Roy equations [20–22].

Motivated by the dense and precise data that is available
from modern eþe− → πþπ− analysis, we reconsider such
possibility with the aid of modulus dispersion relations that
have an improved convergence with respect to previous
studies, carefully assessing on convergence and the impact
of potential zeroes of the form factor. Note that this study
provides a unique opportunity to access the region above
inelastic thresholds up to

ffiffiffi
s

p ¼ 3 GeV, where the phase of
the form factor no longer identifies with that of the P-wave
ππ scattering one, and where information is scarce.
Compared to traditional dispersive approaches, that
become intractable beyond the elastic region, our approach
finds itself in a privileged position to analyze the high-
energy region. In this work, we make use of the widely
adopted Gounaris-Sakurai parametrization as an auxiliary
means to interpolate and fit the available data, including a
study on systematics from the interpolation method. As a
result, we find good agreement when comparing to the
extraction based on Roy equations, suggesting future
studies along these lines. For completeness, we also study
further applications, including the extrapolation to the
spacelike region, the pion charge radius and the separation
of the P-wave ππ phase shift from the octet form factor,
clarifying some misunderstandings regarding isospin-
breaking effects.
The paper is structured as follows: Sec. II introduces the

main definitions and dispersion relations formulas. Their
convergence properties are analyzed by means of a toy
model in Sec. III to discern their applicability. Real data is
analyzed in Sec. IV, that embodies the main results in this
work. These includes the phase of the electromagnetic form
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factor, the P-wave ππ phase shift, the isovector form factor,
the charge radius, and the spacelike behavior. We draw our
conclusions in Sec. Vand provide our numerical results for
the form factor in Appendix D. Extensive discussions on
systematics are found in Appendices A–C.

II. DEFINITIONS

The charged pion electromagnetic form factor is defined
in terms of the matrix element of the pions with the
electromagnetic current JμQ ¼Pq Qqq̄γμq

hπþðp0ÞjJμQð0ÞjπþðpÞi ¼ Fπ
Qðq2Þðpþ p0Þμ; ð1Þ

where q ¼ p0 − p is the momentum transfer and Qq stands
for the charge of the quark q. For definiteness we will
take as usual the notation q2 ¼ −Q2 < 0 for spacelike
momenta and q2 ¼ s > 0 for timelike momenta, which
corresponds to the eþe− invariant center-of-mass energy
squared. While such a nonperturbative function is in
general unknown, some properties are well established.
At low energies, the Ward identities imply Fπ

Qð0Þ ¼ 1

while, on the opposite extreme, at asymptotically large
Euclidean momenta Q2 → ∞, perturbative QCD (pQCD)
demands that (see [23–30])

lim
Q2→∞

Fπ
Qðq2 ¼−Q2Þ ¼ 16πF2

παsðμ2RÞ
Q2

×

�
1þαsðμ2RÞ

π

�
6.58þ 9

4
ln

�
μ2R
Q2

���
ð2Þ

for the asymptotic distribution amplitude, with Fπ ≃
92 MeV the pion decay constant. Nonetheless, the scale
where pQCD applies is unclear and likely at energies not
yet accessible, see for instance [29,31–35] and references
therein. In this limit, the analytic continuation in the
complex q2-plane from the spacelike ðQ2 > 0Þ to the time-
like (s > 0) region corresponds to diminish the phase by π
so that lnðQ2=Λ2Þ → lnðse−iπ=Λ2Þ ¼ lnðs=Λ2Þ − iπ. Note
in addition that duality implies in the timelike region
(assuming for the moment μ2R ¼ Q2)

lim
s→∞

Fπ
QðsÞ → −

16πF2
π

s
4π

β0

Lþ iπ
L2 þ π2

×

�
1þ 6.58

π

4π

β0

Lþ iπ
L2 þ π2

�
; ð3Þ

with L ¼ lnð s
Λ2Þ, and where we used the LO result

αsðQ2Þ ¼ ð4π=β0Þ= lnðQ2=Λ2Þ with β0 ¼ ð11=3ÞNc −
ð2=3ÞNf and Λ ≃ 250 MeV. This implies that real and
imaginary parts are negative modulo duality violations.
Further, tan δ ¼ π=L, that requires the phase to behave

asymptotically, modulo 2π, as δ→ πð1þ L−1 þ ½6.58=π�×
½4π=β0�L−2Þ. Note this implies, at s ¼ ð2.5 GeVÞ2;
Fπ
Q ¼ −0.017 − 0.018i, with corresponding phase 226°,

see also Refs. [36,37] for further discussions on the pQCD
analytic continuation. As we shall discuss, while the data
shows a clear departure from pQCD (similar to the space-
like data), it agrees qualitatively with pQCD expectations.
One may wonder at this point whether pQCD could predict
the phase without 2π ambiguities. In this regard, the
argument theorem [38] comes in handy. Essentially, apply-
ing Cauchy’s integral theorem to the logarithmic derivative
d lnFπ

QðsÞ=ds and choosing an appropriate contour to
exclude singularities, one obtains (see also Appendix A)1

δðsÞ ¼ π

�
1þ L−1 þ 6.58

π

4π

β0
L−2 þ N − P

�
ð4Þ

where s should be large enough to apply pQCD and where
NðPÞ corresponds to the number of zeros (poles). This
resembles Levinson’s theorem for scattering, while in this
case the absence of bound states imply P ¼ 0. As a
consequence, additions of 2π to the pQCD prediction
requires the presence of complex-conjugate zeros.
On the other hand, analyticity and unitarity require the

Schwarz reflection principle to hold, implying that above
the lowest-lying threshold2 Fπ

Qðs� iϵÞ ¼ jFπ
QðsÞje�iδðsÞ. In

the following, we shall assume that the form factor has no
zeroes on the first Riemann sheet (cf. the study in [39] and
references therein, as well as Ref. [19], Appendix B and our
comments in Sec. III A below). Under such an assumption,
one can write Cauchy’s theorem for lnFπ

QðsÞ. Including a
subtraction at s ¼ 0 to ensure convergence, one arrives at
the widely used Omnès-like solution

Fπ
QðsÞ ¼ exp

�
s
π

Z
∞

sth

dz
δðzÞ

zðz − sÞ
�

ð5Þ

which phase, δðsÞ, is usually identified in the elastic region
with the ππ P-wave phase shift δ11ðsÞ due to Watson’s
theorem [40] (this holds modulo IB corrections, that we
discuss in Sec. IV B). A much less exploited relation arises
from applying Cauchy’s theorem to lnFπ

QðsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sth − s

p
, see

Refs. [11–16],

Fπ
QðsÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
sth − s

p
π

Z
∞

sth

dz
ln jFπ

QðzÞjffiffiffiffiffiffiffiffiffiffiffiffiffi
z − sth

p ðz − sÞ
�
: ð6Þ

1In general, if pQCD predicts fðsÞ ∝ s−nαms , the principle of
the argument demands δðsÞ ¼ πðnþmL−1Þ.

2We take sth ¼ 4m2
π . In principle, the presence of QED lowers

the lowest threshold to the π0γ state, but this is negligible
compared to the dominant πþπ− state.
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The expression above allows us to extrapolate the form
factor to s < sth from its knowledge along the cut, but also
to obtain its phase,

δðsÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
π

PV
Z

∞

sth

dz
ln jFπ

QðzÞj
ðz − sÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

z − sth
p

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
π

PV
Z

∞

sth

dz
ln jFπ

QðzÞ=Fπ
QðsthÞj

ðz − sÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
z − sth

p ; ð7Þ

where the last line follows from [14]. Note that the
dispersive integral in the last line is finite at threshold.
Indeed, the value of the form factor at zero Fπ

Qð0Þ ¼ 1,
together with the P-wave demanding δðsÞ ∼ ðs − sthÞ3=2,
imply the following sum rules [14]

exp
� ffiffiffiffiffi

sth
p
π

Z
∞

sth

dz
ln jFπ

QðzÞj
z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z − sth

p
�

¼ 1; ð8Þ

2mπ

π

Z
∞

sth

dz
ln jFπ

QðzÞ=Fπ
QðsthÞj

ðz − sthÞ3=2
¼ 0: ð9Þ

The first can also be inferred from the asymptotic behavior,
and also the second if considering the dispersion relation in
Eq. (14) below, see for instance [19]. Unfortunately, due to
the slow convergence rate of the sum rules above, their
applicability turns out to be purely academic (see discus-
sion in the following section). As such, these should not be
applied to draw any conclusion about possible zeroes of the
form factor as done in Ref. [14]. Indeed, to have better
convergence, it is beneficial to use further subtracted
dispersion relations. Specifically, we will use the one
subtracted at zero [16]

Fπ
QðsÞ ¼ exp

�
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sth − s

p
π

Z
∞

sth

dz
ln jFπ

QðzÞj
z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z − sth

p ðz − sÞ
�
; ð10Þ

δðsÞ ¼ −
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
π

PV
Z

∞

sth

dz
ln jFπ

QðzÞj
z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z − sth

p ðz − sÞ ; ð11Þ

that we will refer to as DR1 in the following, and the one
that is obtained by applying Cauchy’s theorem to
ln½Fπ

QðsÞ=Fπ
QðsthÞ�=ðs − sthÞ3=2 [19],3

Fπ
QðsÞ ¼ Fπ

QðsthÞ1−
�
sth−s
sth

�
3=2

exp

"
−
sðsth − sÞ3=2

π

×
Z

∞

sth

dz
ln jFπ

QðzÞ=Fπ
QðsthÞj

zðz − sthÞ3=2ðz − sÞ

#
; ð12Þ

δðsÞ ¼ − lnFπ
QðsthÞ

�
s − sth
sth

�
3=2

−
sðs − sthÞ3=2

π
PV

×
Z

∞

sth

dz
ln jFπ

QðzÞ=Fπ
QðsthÞj

zðz − sthÞ3=2ðz − sÞ ; ð13Þ

that we will refer to as DR2 in the following, and has not
been used in previous studies despite its superior con-
vergence properties. Note also that in its unsubtracted
version

Fπ
QðsÞ ¼ Fπ

QðsthÞ exp
 
−ðsth − sÞ3=2

π

×
Z

∞

sth

dz
ln jFπ

QðzÞ=Fπ
QðsthÞj

ðz − sthÞ3=2ðz − sÞ

!
; ð14Þ

the normalization at zero demands the following sum rule
(see for instance [19])

s3=2th

π lnFπ
QðsthÞ

Z
∞

sth

dz
ln jFπ

QðzÞ=Fπ
QðsthÞj

zðz − sthÞ3=2
¼ 1: ð15Þ

This expression embodies a fast convergence behavior at
high energies and will be relevant in our analysis to be
explained shortly. Equations (10)–(13) and (15) are the
relevant equations to be used in the following under the
assumption that the form factor has no zeros. Finally, we
emphasize that the sum rule in Eq. (15) plays an important
role. For instance, when extrapolating the form factor into
the deep spacelike region for asymptotically large Q2,
Eq. (14) implies

−ðQ2 þ sthÞ3=2
ln
	
Fπ
Qð−Q2Þ
Fπ
QðsthÞ


 1

Q2

Z
∞

sth

dz
ln
��� Fπ

QðzÞ
Fπ
QðsthÞ

���
ðz − sthÞ3=2

→ 1: ð16Þ

This, together with Eq. (15), allows us to express the
asymptotic Euclidean limit of DR2 as

Fπ
Qð−Q2Þ → Fπ

Qð−Q2ÞX2

Fπ
QðsthÞð1−X1Þ

�
Q2

sth

�
3=2 ; ð17Þ

where X1 and X2 correspond, respectively, to the numerical
values obtained for the left-hand side of Eqs. (15) and (16).
Such values might in general differ from the exact
theoretical one due to errors and truncation. In particular,
mild variations of Eq. (15) will imply important deviations
for Q2 ≫ sth, illustrating that special attention must be
payed to this sum rule in the following. Similarly, for
asymptotically large s values, the phase δðsÞ in Eq. (13) is
easily shown to be divergent unless the sum rule is fulfilled.
Finally, special attention must be payed to the kernel in

3This is enabled thanks to the P-wave nature, that demands
Fπ
QðsÞ ¼ Fπ

QðsthÞð1 þ α1ðs − sthÞ þ iβ3=2ðs − sthÞ3=2 þ � � �Þ,
while the presence of a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
term would invalidate it.
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DR2 close to threshold, where it converges as an improper
integral. This implies an apparent large sensitivity to the
form factor behavior at threshold. This is however not
certainly true as long as the sum rule in Eq. (15) is
considered. While this is irrelevant when analyzing a toy
model, a minimal discussion is necessary when applying
DR2 to real data. This is discussed in Appendix C, in
connection to the real data analysis, and will serve to assess
systematic uncertainties. Before applying them to real data,
where information is available only for a finite range of
energies, we discriminate the expectations on convergence
with the help of a toy model. This will be helpful to assess
the applicability to the available datasets.

III. TOY MODEL: CONVERGENCE ISSUES

In the following, and for illustration purposes and in
order to gather some numerical insight, we shall make use
of a simplified toy model based on Ref. [41], that provides
with a resummation of unitary loops at the one-loop level,

Fπ
QðsÞ ¼

m2
ρ

m2
ρ − s − 192π

β3ρ

Γρ

mρ
Hππðs; μÞ

; ð18Þ

Hππðs; μÞ ¼
�ðs − 4m2

πÞB̄0ðs;mπ; mπÞ
− ðs=3Þ½1þ 3 lnðm2

π=μ2Þ�

; ð19Þ

B̄0ðs;mπ; mπÞ ¼ 2þ β ln
β − 1

β þ 1
; ð20Þ

where β ¼ βðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4m2

π=s
p

and βρ ¼ βðm2
ρÞ. We choose

mρ ¼ 850 MeV and Γ ¼ 190 MeV, that leads to a pole in
the second Riemann sheet at

ffiffiffi
s

p ¼ ð0.77 − i0.15=2Þ GeV.4

A. Convergence I: Sum rules

To begin with, we comment to which extent the sum
rules in Eq. (8) are fulfilled for a finite cutoff s < Λ2,
that would represent a real case where information is only
available on a finite energy range. Choosing Λ ¼
f1; 3; 10; 100g GeV, we find f1.4; 1.3; 1.12; 1.05g for
the first sum rule and f0.4; 0.3; 0.1; 0.02g for the second
one. Both of them display a poor convergence, discourag-
ing its use to search for potential zeroes as done in [14].
We continue with the sum rule in Eq. (15). In this respect
it is relevant to note that, provided jFπ

QðsÞj < Fπ
QðsthÞ for

s > Λc, that not only holds in this model but is supported
by the experimental data and asymptotics, the left-hand
side (lhs) of Eq. (15) should be approached from above. In
this sense, any value below 1 for a finite (but sufficiently
large) cutoff would be unacceptable. However, not any

positive value would be admissible, for the pQCD pre-
diction (which lies below experimental data) suggests the
remainder from Λ ¼ f1; 3; 10; 100g GeV up to infinity
to be not more negative than −f0.075; 0.0054; 2 × 10−4;
4 × 10−7g, respectively. Turning to the numerics, taking
an upper cutoff Λ2 we find the values for Eq. (15) to be
f1.02; 1.004; 1.0002; 1þ 3 × 10−7g, displaying a nice con-
vergence and providing an useful test for any possible
parametrization of the form factor.

B. Convergence II: Phase and spacelike behavior

Next, we explore the rate of convergence for the
quantities that we wish to explore with real data.
Starting with the phase, we explore the convergence
properties of DR1 and DR2. In the following, we compute
the phase δΛðsÞ that is obtained if the integral is cut off at
Λ ¼ f1; 2; 3; 5g GeV and plot the relative uncertainty,
ΔδðsÞ ¼ δΛðsÞ=δðsÞ − 1 in Fig. 1. As shown, the error is
at the few percent level for DR1 when a cutoff Λ ¼ 3 GeV
is taken,5 albeit with significant uncertainties close to
threshold, that reflects the slow convergence of the sum
rule in Eq. (8). On turn, DR2 greatly improves on

0.5 1.0 1.5 2.0 2.5 3.0
20

15

10

5

0

s GeV

s

0.5 1.0 1.5 2.0 2.5 3.0
5

4

3

2

1

0

s

s

GeV

s
FIG. 1. The relative uncertainty for the dispersion relations in
Eqs. (11) (top) and (13) (bottom). The phase is never extrapolated
beyond the cutoff. From lighter to darker bands the results are
shown for Λ ¼ f1; 2; 3; 5g GeV (see details in the text).

4While this model has a pole in the deep Euclidean region
(around 666 GeV), it serves for our purposes, that focus in the
GeV region.

5Similar results, albeit with a better performance at threshold,
would be obtained for an unsubtracted version of DR2.
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convergence (see Fig. 1)—and becomes especially relevant
at threshold—representing our preferred choice.
We repeat the same exercise, but extrapolating the form

factor to the spacelike region. Here, we find a nice property
analogous to the sum rule discussed in the previous
subsection. Namely, provided that jFπ

QðsÞj < Fπ
QðsthÞ for

s > Λc, the spacelike values are approached from below
and above for DR1 and DR2, respectively. This is interest-
ing, as it allows us to set upper and lower bounds in a
model-independent way without the need to provide a high-
energy completion, which could be interesting in the
context of Refs. [35,42]. The results are shown in Fig. 2.

C. Convergence III: The radius and higher derivatives

It is customary to define the coefficients for the form
factor series expansion around s ¼ 0 as

Fπ
QðsÞ ¼ 1þ bπsþ cπs2 þ dπs3 þ � � � ð21Þ

In particular, the slope parameter has been intensively
studied, and it is related to the charge radius via hr2πi ¼ 6bπ
(see Ref. [43] for an updated list of different estimates).
Using DR1 and DR2, the slope reads

bπ ¼
2mπ

π

Z
∞

sth

ln jFπ
QðzÞj

z2ðz − sthÞ1=2
; ð22Þ

bπ ¼
3

2

lnFπ
QðsthÞ
sth

−
s3=2th

π

Z
∞

sth

ln jFπ
QðzÞ=Fπ

QðsthÞj
z2ðz − sthÞ3=2

; ð23Þ

whereas similar expressions can be found for higher deriv-
atives. Once more, taking upper cutoffsΛ¼f1;2;3;5gGeV,
we obtain a relative uncertainty of f2; 1; 0.4; 0.1g% for bπ
when using DR1, and −f0.6; 0.01; 0.002; 0.0002g% when
using DR2. For the nth derivative the error scales as ðΔbπÞ2n.

IV. REAL DATA ANALYSIS

With the hindsight of previous section, we analyze the
data from the BABAR Collaboration [44] for the following
reasons: first, it is among the most precise extrac-
tions, including the finest binning of 2 MeV in theffiffiffi
s

p
∈ ð0.5; 1Þ GeV region, allowing us to check the validity

of the chosen interpolating function; second, it provides
with the largest dataset, ranging from

ffiffiffi
s

p ¼ 300 MeV toffiffiffi
s

p ¼ 3 GeV, thus allowing us to compare DR1 and DR2
(we recall that DR1 requires cutoffs Λ > 1 GeV to provide
accurate results) and to cross-check the sum rule Eq. (15)
that guarantees the reliability of DR2. Comparatively, other
highly precise datasets are not in such a privileged situation
(see Ref. [45] for an up-to-date comparison of datasets at
the ρ peak). For instance, the KLOE datasets [46], that are
in tension with BABAR in the common overlapping
regimes, have a similar precision and a binning size of
10 MeV. However, they only cover the region from
threshold up to 945 MeV inducing greater systematic
uncertainties and hence largely preventing the current
analysis where systematic uncertainties are below statistical
ones. Analyzing KLOE data on its own would introduce
then large systematic uncertainties for the reasons outlined
above. As such, we have restrained ourselves to the BABAR
dataset. Similar comments apply for instance to the recent
results from the CMD-3 collaboration [47]. We return to
this point later on.
In the following, to interpolate the data to perform the

numeric integrals we make use of the Gounaris-Sakurai
model [48] used in Ref. [44], while modifying the ρ − ω
mixing to vanish at s ¼ 0 as argued in [49], and including
and analogous term for the ϕ meson, that is also visible in
the data (see further details in Sec. IV B). Importantly,
we subtract corrections from final state radiation from
the data, see Ref. [50].6 We emphasize that, even if the
model is motivated by analyticity and implements the ππ
threshold, there are constant complex phases breaking
unitarity and the Schwarz reflection principle since the
form factor should become purely real below the πþπ−
threshold. The model should only be thought of as an
interpolator for the experimentally accessible modulus
jFπ

QðsÞj, whereas the physical phase is derived from
Eqs. (11) and (13), that respect unitarity and will differ
in general with respect to the original model. As we shall
see, this has a numerical impact. In summary, the dispersion
relations Eqs. (11) and (13) unitarize the phase of the form
factor, that represents our main interest in this work.
Further, with the phase at hand, it is possible to recover
the modulus via the Omnès solution, which consistency
with the input provides a sanity check. Since Eq. (5) has

4 3 2 1 0
10

5

0

5

10

s GeV2

F
Q

s

FIG. 2. The relative precision in the spacelike region for
cutoffs Λ ¼ f1; 2; 3; 5g GeV shown as blue/orange bands for
Eqs. (10)/(12).

6We emphasize that BABAR data is undressed from inter-
mediate hadronic vacuum polarization (HVP) effects as well, thus
free of intermediate 1γ reducible contributions.
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a slow convergence, we postpone our comments to
Sec. IV C, which results allow us to set a twice-subtracted
version and shows consistent results.
In order to derive uncertainties and to keep track of

correlations, we perform fits to pseudodata (pseudofits),
that are generated as replicas of the actual experiment by
means of the Monte Carlo method accounting for the full
covariance matrix provided by the BABAR collaboration,7

including a consistent treatment of systematic uncertainties
in order to avoid d’Agostini bias [50,51]. Each of the
quantities discussed in the following section is obtained for
each pseudofit. The obtained distribution allows us then to
derive uncertainty bands at the desired confidence level
(CL), fully accounting for correlations. Concerning the
central fit, corresponding to the most likely parameters,
we obtain χ2=dof ¼ 353=317. Importantly, we find for the
sum rule Eq. (15) a value of 1.003 taking a cutoff of
Λ ¼ 3 GeV, in line with our model expectations and
ensuring reliable results for DR2.8 Concerning pseudofits,
most of them display reasonable results for the sum rule.
Still, in order to avoid physically unacceptable outcomes,
those pseudofits in which the sum rule result is either

negative or above 1.0054 are discarded for the reasons
outlined in Sec. III A, keeping only the ones surpassing this
test to derive the physical quantities in the following.
In Fig. 3 we show the absolute value of the form factor
with 68% CL bands. We emphasize that our bands are
similar to the data uncertainties close to the ρ peak. Finally,
we also provide the value for the form factor at threshold,
Fπ
Qð4m2

πÞ ¼ 1.174ð1Þ, that is ubiquitous when using DR2.
Our value is in nice agreement with the model-independent
prediction 1.176(2) from Ref. [34]. In the following sub-
sections, we discuss the different outcomes, starting with
the phase of the form factor, that represents our main result.

A. The phase of the charged form factor

In this section, we extract the phase of the form factor,
which is the main object of interest in this work. While this
is closely related to the δ11 phase-shift, comparison requires
the removal of the isospin zero component of the electro-
magnetic form factor, that we postpone till next section.
Together with the modulus, the phase allows us to extract
the real and imaginary parts. Our result for the phase of the
form factor obtained from DR29 is shown in Fig. 4 (top) for
a cutoff Λ ¼ 5 GeV. Such a large cutoff is unnecessary
below

ffiffiffi
s

p
≃ 1.8 GeV, but required above. Regarding the

potential systematics of such an extrapolation, we note that
the dashed line result (from choosingΛ ¼ 3 GeV) provides
a lower bound. An extreme upper bound would be obtained
if extrapolating the model with pQCD above, that is
however a factor of four smaller at 3 GeV and likely
unrealistic and leads to δð2.5 GeV2Þ ¼ 201°. It is hard to
imagine such a sudden drop immediately after 3 GeV.
Indeed, would we extrapolate our model just up to
3.5=4 GeV, we would find δð2.5 GeV2Þ ¼ ð184=188Þ°,
pretty close to our central value of 190.5°. Other
approaches including Fπ

QðsÞ → Fπ
QðΛ2ÞΛ2ðαsðsÞÞ=s lead

to 191.5ð191.8Þ°. Again, in line with our central result.
Likewise, our plot shows systematic uncertainties from
extrapolation at threshold, that we discuss in Appendix C.
In that plot, we also show the phase that would be obtained
directly from the model as a dotted-gray line. This needs
not agree (and indeed does not agree) with the one obtained
through DR2. It especially displays marked differences
close to the ρ0. Indeed, the phase that is obtained directly
from the model approaches 3π at infinity, which is only
possible in the presence of (complex-conjugate) zeros; such
possibility and its potential impact is discussed in detail
in Appendix B. Note however that: (i) the complex phases
in the original (interpolating Gounaris-Sakurai) model
violate the Schwarz reflection principle and unitarity, that

FIG. 3. The absolute value of the form factor from the model
fitted to BABAR data with a 68% CL (gray) band. The data points
(blue crosses) correspond to BABAR [44]. The zoom shows the
ρ − ω energy region. The dotted gray line represents the pQCD
prediction.

7We found the statistical correlation matrix provided by the
BABAR collaboration to have near-zero eigenvalues possibly due
to the small energy binning, causing numerical difficulties. Such
results are unstable if considering uncertainties on uncertainties.
In particular, if rescaling the off-diagonal correlation matrix
elements by 0.99 such problem is avoided—an approach that
we adopt in the following.

8Interesting enough, if fitting to the exponential parametriza-
tion in Ref. [52], values below 1 are obtained, pointing to a
violation of the sum rule and unreliable results. Indeed, we
checked that, within such a model, the results from DR1 and DR2
are not equivalent. On turn, if we use the model in Sec. III instead,
the sum rule is satisfied and the results are nearly indistinguish-
able, that emphasizes once more the relevance of the sum rule.

9We checked that the phase obtained through DR1 is very
similar, with tiny differences, especially near threshold and at
high energies, expected from the convergence pattern discussed
in Sec. III, that serves as a cross-check.
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requires them to be dynamical; (ii) the resonance descrip-
tion is well oversimplified above the ρ region, where many
inelastic channels open. Overall, such considerations cast
serious doubts on the validity of the original (interpolating
Gounaris-Sakurai) model’s phase and its extrapolation to
the complex plane. By contrast, in the absence of zeros, the
current approach cures such pathologies and diminishes
potential model-dependencies by unitarizing the phase of
the model and providing an extension to the complex plane
consistent with analyticity and unitarity constraints. The
differences can also be appreciated when plotting the real
and imaginary parts of the form factor, see Fig. 4 (bottom).
These results are very interesting since, in the absence of
zeros, they allow us to extract the phase above inelastic
thresholds, where δðsÞ no longer identifies with δ11ðsÞ,
directly from data with reduced model dependencies. Note
in this respect that current estimates are mostly based on

models that violate analyticity [43,53,54]. In the following
section, we derive the relation to the isovector δ11 phase-
shift and clarify common misunderstandings around this.

B. The isovector phase-shift and the octet form factor

As argued in Refs. [49,55], the electromagnetic form
factor is not a pure isovector I ¼ 1 object, but receives
nonvanishing IB (I ¼ 0) contributions. In particular, the
electromagnetic current can be decomposed as JμQ ¼
Vμ
3 þ ð1= ffiffiffi

3
p ÞVμ

8, where Vμ
a ¼ ð1=2Þq̄γμλaq are the usual

SUð3ÞV currents, with λa Gell-Mann matrices. This implies

hπþðp0ÞjJμQjπþðpÞi ¼ hπþðp0ÞjVμ
3 þ

1ffiffiffi
3

p Vμ
8jπþðpÞi

¼
�
Fπ
3ðq2Þ þ

1ffiffiffi
3

p Fπ
8ðq2Þ

�
ðpþ p0Þμ:

ð24Þ

The octet part would vanish in the isospin-symmetric limit
uponG-parity, while IB effects drive a nonzero form factor.
Still, the null octet charge of the pion demands Fπ

8ð0Þ ¼ 0.
Note that, in the SUð2Þ limit, the octet part reduces to the
baryonic one discussed in [49,55]. Indeed, these would be
identical (up to overall constants), in the large-Nc limit of
QCD, since strange-quark effects find a further suppression
following from the OZI rule. With this decomposition in
mind, we discuss the resonances that should appear in each
form factor following Ref. [49]. In particular, regarding the
isovector form factor, Fπ

3ðq2Þ, the ρ vector meson (alter-
natively, πþπ− rescattering) appears atOð0Þ in IB, whereas
the ω;ϕ resonances (say 3π; KK̄ intermediate effects)
appear at Oð2Þ. Indeed, the leading IB effect in the
electromagnetic form factor comes from the octet form
factor, Fπ

8ðq2Þ, where intermediate ρ and ω states appear
both at Oð1Þ in IB; the ϕ resonance is, in addition, OZI
suppressed and is expected to be subleading, yet visible in
the data. This means that the observed effects of the ω, ϕ
resonances are a feature of the octet form factor, whereas
such effects play a marginal role in the isovector one, which
phase would correspond to δ11. Indeed the latter quantities
receives their leading IB effects atOð2Þ. This contrasts with
statements in Refs. [56,57] that compare the phase of the
electromagnetic form factor to δ11, which is inconsistent.10

As such, we need to disentangle the isovector and octet
form factors in order to extract the δ11 phase-shift, that
requires a minimal modeling. To do so, in the previous
fitting procedure we have employed a similar model to
that in Ref. [49] to interpolate the data, but including

FIG. 4. Top: the phase of the form factor from DR2 with an
upper cutoff Λ ¼ 5 GeV (black solid line with 68% CL gray
band; the outer band includes systematics from interpolation).
The value obtained for Λ ¼ 2=3 GeV is shown as a dot-dashed/
dashed black line, and the original phase from the model as a
gray-dotted line. The pQCD prediction is shown as a dot-dashed
gray line close to 225°. Bottom: the real and imaginary parts
obtained from DR2 are shown in blue and orange, respectively,
with corresponding 68% CL bands; the outer band includes
systematics. The real(imaginary) part from the model is shown as
a blue(orange)-dashed line.

10We note in addition that intermediate photonic states should
be ignored here, since the BABAR cross section is removed from
HVP effects. The leading electromagnetic IB effects would come
from intermediate hγ states, see for instance Ref. [58].
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the ϕ meson. Specifically,

Fπ
Q ¼ �DρðsÞ½1þ cωsDωðsÞ þ cϕsDϕðsÞ� þ cρ0Dρ0 ðsÞ

þ cρ00Dρ00 ðsÞ þ cρ000Dρ000 ðsÞ
� 1

1þ cρ0 þ cρ00 þ cρ000
;

ð25Þ

where cX are complex parameters, DρðsÞ is the Gounaris-
Sakurai parametrization in Ref. [44] and Dω;ϕ are modeled
through a normalized Breit-Wigner parametrization as
in Ref. [44]. In addition, while the ω parameters are
obtained from the experiment, the ϕ mass and width need
to be fixed to the PDG values. To recover the purely
isovector part, we set cω;ϕ → 0, where little model-
dependence is expected. This allows us to obtain the
absolute value of the isovector form factor and to recover
the phase through DR2, along the lines of previous section.
In particular, we find cω ¼ 0.00196ð6Þei0.06ð5Þ GeV−2 and
cϕ ¼ 0.0008ð3Þei1ð1Þ GeV−2, displaying a precise result
for the ω contribution, in contrast to the ϕ case. A better
assessment of the role of the ϕ meson might be obtained in
the future using CMD-3 data [47] that, however, requires a
dedicated analysis due to the tensions with respect to
BABAR data here employed. With these results, the iso-
vector phase-shift is shown in Fig. 5. This compares to the
δ11ðsÞ phase-shift below the first relevant inelasticity open-
ing at

ffiffiffi
s

p ¼ mω þmπ0 . The plot shows the comparison to
the Madrid [21] and Bern [50,59] phases (which are,
overall, not overlapping). At this level of precision, the
systematics stemming from the extrapolation down to
threshold become relevant. These are discussed in
Appendix C and are notoriously constrained by the sum
rule. Still, they are especially relevant at low energies,
where these dominate and cannot compete in precision with
Refs. [21,50,59]. Additional systematics from the impact of
potential zeros require a separate study and are discussed in
Appendix B. The corresponding error band is shown in
Fig. 5. Overall, we observe a good agreement with both
phases, with an average deviation of about 2σ for both cases
that reduces below the 1σ level when accounting for
systematics. Noteworthy, our results align better at high-
energies with the Bern phase, that features an up-to-date
analysis of eþe− → πþπ− data. This is reflected in their
value at the matching point, δ11ð0.8 GeVÞ ¼ 110.4ð7Þ°,
which is in good agreement with ours, 110.1ð3Þ°, yet 3σ
away from the Madrid result, 108.6ð6Þ°. To put our results
on a firmer ground, it would be interesting to take
advantage of the densely populated datasets to evaluate
the integrals numerically without resorting to an interpo-
lation method. While this seems plausible above

ffiffiffi
s

p ¼
500 MeV (see Appendix C), it would require a dedicated
effort in the region below, which goes beyond the scope of
this work.

The results from Sec. IVA for the real and imaginary
parts of the form factor can be used together with previous
results to subtract the isovector form factor and to obtain
the octet form factor.11 We show our results in Fig. 6. We
emphasize that our results are not reliable much above
1 GeV, since our model lacks the ρ0;ω0 contributions, that
cannot be obtained from data in contrast to the narrow ω;ϕ
resonances. Compared to the isovector case, we find a
vanishing value for the form factor at zero momentum
transfer, and a sudden change in sign for the imaginary part
due to the ω resonance at

ffiffiffi
s

p
∼mω. This is also reflected in

the phase, that rapidly increases by π when crossing the ω
resonance. The ϕ meson effects are clearly visible but,
compared to their ρ, ω counterparts, suffer from larger
uncertainties. A distinct feature in this form factor when
compared to the isovector one regards its phase, that seems
to approach 2π asymptotically. This makes perfect sense
from the point of view of the Omnès-like reconstruction,
that would be possible for lnFπ

8ðsÞ=s, and would demand a
factor of s in front of Eq. (5), as well as with the argument
theorem, since the zero at s ¼ 0 demands an extra factor
of π. Overall, that would imply a s−1 asymptotic behavior,
in accordance with pQCD.12 We emphasize that such phase
no longer identifies with a scattering phase, but would still
relate, upon unitarity, to the δ11 phase and the P-wave
hπþπ−π0jπþπ−i phase-shift. Systematic uncertainties are
not included in the quoted plots, while their size would be
similar to previous cases.
This completes our discussion on phases. In the follow-

ing, we discuss the information that can be obtained for the
radius and higher derivatives of the electromagnetic form
factor.

C. The pion radius and their companions

Next, we move on to the pion radius. Using the DR in
Eq. (23) with a cutoff Λ ¼ 3 GeV we obtain

hr2πi ¼ 11.01ð7Þstðþ10
−4 Þsys GeV−2

¼ �0.655ð2Þstðþ4
−2Þsys fm

�
2

¼ 0.429ð2Þstðþ3
−1Þsys fm2; ð26Þ

Our result is in good agreement with the model-independent
estimate from Ref. [60], hr2πi ¼ ð0.657ð3ÞÞ fm2 and with
the recent estimate from Ref. [50] based on a dispersive
representation, hr2πi ¼ 0.429ð4Þ fm2, albeit smaller than

11In practice, it is simpler to use δQ and the phase difference,
δQ − δ3, which is less noisy.

12Note that, for the octet form factor, the pQCD behavior is
largely unknown, as it would depend on the size of the leading
odd Gegenbauer polynomial (odd polynomials reflect asymme-
tries in u=d quark distributions and vanish in the IB limit), which
is unknown. Still, pQCD would imply s−1 behavior modulo αs
corrections.
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11.28ð8Þ GeV−2 from Ref. [43] based on a dispersive fit to
τ data from Belle collaboration (see Table 6 in Ref. [43] for
a detailed compilation of different estimates). As a check
of consistency, we obtain hr2πi ¼ ð0.656ð2Þ fmÞ2 using
Eq. (22), in agreement with expectations from Sec. III.
As a nice byproduct, with the knowledge of the radius at

hand, it is possible to reliably reconstruct the absolute value
of the form factor using a twice-subtracted Omnès-like
dispersion relation with a cutoff Λ ¼ 3 GeV, that should
recover the input value for the modulus of the form factor.
The method proves to be self-consistent within uncertain-
ties, reinforcing the reliability of our results.

Finally, we compute for completeness the quadratic and
cubic slope, finding

cπ ¼ 3.84ð3Þstðþ5
−2Þsys GeV−4; ð27Þ

dπ ¼ 10.1ð1Þstðþ3
−1Þsys GeV−6; ð28Þ

with systematic uncertainties arising from interpolation,
see Appendix C. These are in good agreement with the
bounds from [61], cπ ∈ ð3.79; 4Þ GeV−4 and dπ ∈ ð10.14;
10.56Þ GeV−6, albeit smaller than cπ ¼ 3.94ð4Þ GeV−4

FIG. 5. We show our extraction of δ11ðsÞ with 68% CL (gray) bands; the additional lighter-gray band includes systematic uncertainties.
We confront our results against the Madrid [21] (blue dots) and Bern [50] (black triangles) phases.
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and dπ ¼ 10.54ð5Þ GeV−6 from Ref. [43] (find a complete
compilation in [43]). Note in this respect that results in [43]
come from τ data, that need not agree with this case since
comparison requires to correct the data, including IB
effects, see for instance Refs. [62–64]. Furthermore, there
is no consensus on the agreement of τ and eþe− data after
IB corrections are accounted for. In the following section,
we discuss the bounds that can be derived in the SL region.

D. Extrapolation to the spacelike region

As argued in Sec. III B, under the mentioned assump-
tions, DR1 and DR2 provide lower and upper bounds for
the form factor in the spacelike region, while we expect
those from DR2 to lie closer to the real value. We show our
results using an upper cutoff Λ ¼ 3 GeV in Fig. 7. We also
check that, if extrapolating to larger cutoffs, both results
come close, providing yet another consistency check. Once
more, we include, in addition to statistical uncertainties,
systematic ones form the extrapolation at threshold. These
affect more DR2, as it is more sensitive to threshold,
while DR1 suffers from larger finite cutoff uncertainties.
Increasing the cutoff with a model, would improve both,
DR1 and DR2. Our results are in good agreement with the

low-energy data from [65–71] and suggest slightly larger
values at larger Q2. In this respect, once more, the data
suggests that the pQCD behavior, which prediction is
shown as a dashed-gray line in Fig. 7, is not reached
below ð2 GeVÞ2, which is also in line with the findings in
Ref. [72] using the dispersive matrix approach with space-
like data and lattice QCD results. In this respect, it would be
interesting to check implications from other experiments,
such as KLOE or CMD-3 in order to elucidate whether
spacelike data could help assessing which of the currently
conflicting timelike datasets could be potentially correct.
This requires a better understanding on how to combine the
conflicting datasets and represents work in progress.

V. CONCLUSIONS

In the absence of zeroes it is possible to extract the phase
of the pion form factor from its modulus along the cut using
dispersion relations. Compared to common dispersive
analysis, building on the phase, the input to the dispersion
relation is a measurable quantity. In this article, we have
revisited this kind of dispersive analysis motivated by the
large dataset from the BABAR Collaboration in the ð2mπ <ffiffiffi
s

p
< 3Þ GeV region and incorporating further subtrac-

tions that improve on convergence with respect to previous
studies. We have made use of an auxiliary (unitarity-
breaking) Gounaris-Sakurai fit to interpolate the data and
evaluate the DR integral. The obtained result proves self-
recursive and fulfills the relevant sum rule, thus fulfilling
analytic constraints and providing a sanity check of our
results. Furthermore, we have evaluated systematic uncer-
tainties from the interpolation method and the impact of

FIG. 6. Top: our result for Fπ
8ðq2Þ displaying the absolute value

(gray) as well as the real (blue) and imaginary (orange) parts
(bands stand for 68% CL). Bottom: the phase of the octet form
factor (black) with 68% CL gray band.

FIG. 7. The extrapolation to the spacelike region using
Eqs. (10) (lower gray band) and (12) (upper gray band). They
provide an estimate of the lower and upper values for the form
factor. We also provide lighter error bands corresponding to
combined statistic and systematic uncertainties. In addition, we
provide the NLO pQCD prediction (dashed-gray line). Exper-
imental results from [65,66] (green triangles), [67] (blue dots),
[68] (orange diamonds) and [69] (purple squares; includes
compilation therein).
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potential zeros of the form factor. In consequence, we have
obtained the phase of the form factor below 2.5 GeV. The fit
also models the relevant isovector and octet form factors
that appear in the electromagnetic current decomposition.
The latter is an isospin-breaking effect and relates to the
ω;ϕ interferences, clearly visible in the data. This way we
can extract the isovector form factor and corresponding
phase-shift, that identifies with the δ11 ππ phase shift below
inelasticities, finding a good agreement with respect to the
analysis based on Roy equations and competitive uncer-
tainties except for the region close to threshold, which
uncertainty is mainly driven by systematics from interpo-
lation. In addition, we have studied the potential effect of
zeroes of the form factor. Our method provides however a
unique capability to extract the phase above inelasticities,
which is currently poorly known and more model depen-
dent. In addition, we have extracted the isovector and
isoscalar components of the electromagnetic form factor, as
well as the pion radius and higher derivatives, which are in
good agreement with current determinations. Furthermore,
we have set upper and lower bounds on the spacelike
behavior without the necessity to model the high-energy
part, that otherwise would be prone to model dependencies,
including the everlasting debate on the onset of pQCD. Our
analysis suggests slightly larger values than current exper-
imental data in the spacelike region. In this respect, it would
be interesting to check in the future the implications from
other conflicting datasets. Since the latter do not encompass
such a large energy range, some kind of combination with
BABAR is necessary, that represents work in progress.
Once this is achieved for CMD-3 data, that has a better
coverage of the ϕ region, a better extraction of the octet
form factor would be achieved, that could be compared
with expectations from models. We note this has attracted
attention in the context of isospin-breaking corrections in
the muon (g − 2) [58].
Finally, the current study suggests interesting lines of

further research, such as the possibility to avoid interpolat-
ing functions thanks to the dense dataset, or to use the
knowledge of the form factor along the cut to extract
resonance poles.
For convenience, we provide our results for the phase

and modulus of the form factor in Appendix D.
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APPENDIX A: THE ARGUMENT THEOREM

Given a function fðzÞ with zeros and poles, its loga-
rithmic derivative, f0ðzÞ=fðzÞ will features simple poles
with residue 1ð−1Þ at the location of the zeros (poles) of the
original function fðzÞ. Then, it can be shown that, inside a
closed contour where the function fðzÞ is analytic except
for the presence P poles,

1

2πi

I
C

f0ðzÞ
fðzÞ dz ¼ N − P; ðA1Þ

with N the number of zeros enclosed inside such con-
tour [38]. This theorem can be easily applied to our
function by deforming appropriately a closed contour so
that it excludes the branch cut for Fπ

QðzÞ. In such a way, and
choosing a circle with radius jzj ¼ Λ2, one obtains

I
C

Fπ0
QðzÞ

Fπ
QðzÞ

dz ¼ 2πiðN − PÞ: ðA2Þ

Regarding the left-hand side of the equation above, the
circle at threshold provides a vanishing contribution; the
paths along the branch cut lead to the discontinuity
2iδðΛ2Þ; finally, we evaluate the outer circle contour with
pQCD, leading to −2πið1þ L−1 þ 6.58

π
4π
β0
L−2 þ � � �Þ.

Assembling all these quantities, one derives the relation
in Eq. (4). For additional discussions on the interrelation
among the phase and the zeroes of form factors, see
also Ref. [73].

APPENDIX B: SYSTEMATIC ERRORS FROM
THE PRESENCE OF ZEROS

If the form factor features zeroes in the first Riemann
sheet, the phase and modulus dispersion relations must be
modified. Following Ref. [14], this amounts to the replace-
ment in Cauchy’s representation f1;1= ffiffiffiffiffiffiffiffiffiffiffiffi

sth−s
p g lnFπ

QðsÞ→
f1;1= ffiffiffiffiffiffiffiffiffiffiffiffi

sth−s
p g ln½Fπ

QðsÞ=BðsÞ�, where BðsÞ is a product of
conformal factors

BðsÞ ¼
Y
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sth − zi

p − ffiffiffiffiffiffiffiffiffiffiffiffiffi
sth − s

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sth − zi

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
sth − s

p ; ðB1Þ

with zi the zeroes of the form factor. Note that, for the
Schwarz reflection principle to hold, complex poles must
appear in (complex-conjugate) pairs. For the unsubtracted
modulus dispersion relation, Eq. (B2), this implies

Fπ
QðsÞ ¼ BðsÞ exp

� ffiffiffiffiffiffiffiffiffiffiffiffi
sth − s

p
π

Z
∞

sth

ln jFπ
QðzÞjdzffiffiffiffiffiffiffiffiffiffiffiffi

z− sth
p ðz− sÞ

�
; ðB2Þ

δðsÞ ¼ ϕðsÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
π

PV
Z

∞

sth

ln jFπ
QðzÞjdz

ðz − sÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
z − sth

p ; ðB3Þ
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where ϕðsÞ ¼ argBðsÞ. As a consequence, the form factor is
modified below/above threshold by the value/phase of BðsÞ.
Similarly, the equivalent of DR1 reads (see also Ref. [16])

Fπ
QðsÞ ¼

BðsÞ
Bð0Þ

ffiffiffiffiffiffi
sth−s
sth

p exp

�
s
ffiffiffiffiffiffiffiffiffiffiffiffi
sth − s

p
π

Z
∞

sth

ln jFπ
QðzÞjdz

z
ffiffiffiffiffiffiffiffiffiffiffiffi
z− sth

p ðz− sÞ
�
;

ðB4Þ

δðsÞ ¼ ϕðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth
sth

r
lnBð0Þ

−
s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
π

PV
Z

∞

sth

dz
ln jFπ

QðzÞj
z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z − sth

p ðz − sÞ ; ðB5Þ

and similar considerations follow. Similarly, the extrac-
tion of the slope parameter will be affected and Eq. (22)
reads now

bπ ¼
B0ð0Þ
Bð0Þ þ

lnBð0Þ
2sth

þ 2mπ

π

Z
∞

sth

ln jFπ
QðzÞj

z2ðz − sthÞ1=2
: ðB6Þ

In parallel to Eq. (8), one could derive a sum rule from the
value at zero. However, it features the same convergence
properties as Eq. (8). In brief we will introduce the
analogous version of Eq. (15), that will prove more useful.
Before that, it makes sense to question whether the presence
of zeros would forbid a self-recursive function, as we
found. This is, whether feeding the phase DR with our
phase—obtained under the assumption of no zeros—would
lead back to the original modulus from which the phase
was extracted. To do so, we introduce the phase DR in
the presence of zeros, that reads in its once- and twice-
subtracted forms

Fπ
QðsÞ ¼

BðsÞ
Bð0Þ exp

�
s
π

Z
∞

sth

dz
δðzÞ − ϕðzÞ
zðz − sÞ

�
; ðB7Þ

Fπ
QðsÞ ¼

BðsÞ
Bð0Þ exp

�
sFπ0

Qð0Þ − s
B0ð0Þ
Bð0Þ

þ s2

π

Z
∞

sth

dz
δðzÞ − ϕðzÞ
z2ðz − sÞ

�
; ðB8Þ

respectively. Note that, would the absence of zeros be
false, we would obtain a shift in δ̄ðsÞ ¼ δðsÞ − ϕðsÞ×
ð− lnBð0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s=sth − 1
p Þ. Such a shifted phase would be the

input of our phase DR. For the twice-subtracted phase DR,
it is simple to prove that the shift in DR1 precisely
reproduces the additional terms in Eq. (B8), guaranteeing
that the original modulus is recovered. Hence, such a
property cannot be taken as a signal of the absence of
zeros. Note in addition that approaches based on the phase
DR (see for instance Ref. [43]), where the phase is taken as
an input, implicitly assume the absence of zeros and are

affected by similar considerations, see for instance Ref. [74]
for similar discussions in the context of the Kπ scalar form
factor.
Finally, we turn back to the DR subtracted at threshold

which, in the presence of zeros, requires further consid-
erations. In particular, near s ¼ sth,

gðsÞ≡ 1

ðsth − sÞ3=2 ln
Fπ
QðsÞ

FðsthÞBðsÞ

≃
−2
P

i
1ffiffiffiffiffiffiffiffiffi

sth−zi
p

s − sth
≡ ResgðsthÞ

s − sth
ðB9Þ

the function gðsÞ has a pole. Consequently, the contour
chosen for Cauchy’s representation must be modified to
encircle the pole at threshold, leading to

Fπ
QðsÞ ¼ Fπ

QðsthÞBðsÞ exp
2
4− ffiffiffiffiffiffiffiffiffiffiffiffiffi

sth − s
p

ResgðsthÞ;

−
ðsth − sÞ3=2

π

Z
∞

sth

ln
jFπ

QðzÞj
Fπ
QðsthÞ dz

ðz − sthÞ3=2ðz − sÞ

3
5; ðB10Þ

δðsÞ ¼ ϕðsÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
Res gðsthÞ −

ðs − sthÞ3=2
π

PV

×
Z

∞

sth

ln
jFπ

QðzÞj
Fπ
QðsthÞ dz

ðz − sthÞ3=2ðz − sÞ : ðB11Þ

Similarly, the analogue of DR2 reads

Fπ
QðsÞ ¼ Fπ

QðsthÞBðsÞ½Fπ
QðsthÞBð0Þ�−

�
sth−s
sth

�
3=2

× exp

2
4− s

sth

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sth − s

p
ResgðsthÞ −

sðsth − sÞ3=2
π

×
Z

∞

sth

ln
jFπ

QðzÞj
Fπ
QðsthÞ dz

zðz − sthÞ3=2ðz − sÞ

3
5; ðB12Þ

δðsÞ ¼ ϕðsÞ þ s
sth

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
ResgðsthÞ −

�
s − sth
sth

�
3=2

× ln½Fπ
QðsthÞBð0Þ� −

ðs − sthÞ3=2
π

PV

×
Z

∞

sth

ln
jFπ

QðzÞj
Fπ
QðsthÞ dz

ðz − sthÞ3=2zðz − sÞ : ðB13Þ

Finally, the sum rule in Eq. (15) is modified as
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ffiffiffiffiffi
sth

p
ResgðsthÞ þ s3=2th

π

R
∞
sth

ln
jFπ
Q
ðzÞj

Fπ
Q
ðsthÞ

dz

zðz−sthÞ3=2
ln½Fπ

QðsthÞBð0Þ�
¼ 1: ðB14Þ

Note that, once more, such a sum rule is also relevant
for the asymptotics of Eq. (B12). Finally, the slope is
modified as

bπ ¼
B0ð0Þ
Bð0Þ −

ResgðsthÞffiffiffiffiffi
sth

p þ 3

2

ln½Fπ
QðsthÞBð0Þ�
sth

−
s3=2th

π

Z
∞

sth

ln jFπ
QðzÞ=Fπ

QðsthÞj
z2ðz − sthÞ3=2

: ðB15Þ

Once again, the modifications implied by the presence of
zeros alter the value/phase of the form factor below/above
threshold. In addition, it can be shown that the terms
shifting the phase obtained from DR2 lead precisely to the
additional terms in the twice-subtracted DR in the presence
of zeros, see Eq. (B8).
As a consequence, we have two options to test for the

presence of zeros: (i) to look at the variation in the spacelike
region (ii) to check the validity of the sum rule in Eq. (B14).
It turns out that, for most regions in the complex plane,
it is the second option that leads to stronger bounds. In
particular, from our results and considerations in the main
text, such a sum rule can be stated as

s3=2th

R
Λ
sth

ln
jFπ
Q
ðzÞj

Fπ
Q
ðsthÞ

dz

zðz−sthÞ3=2
π lnFπ

QðsthÞ
>

ln½Fπ
QðsthÞBð0Þ� −

ffiffiffiffiffi
sth

p
ResgðsthÞ

lnFπ
QðsthÞ

:

ðB16Þ

for sufficiently large Λ. In particular, we can take our value
1.003 for Λ ¼ 3 GeV for the LHS (allowing for extrapo-
lation to higher Λ would provide more stringent bounds).
In addition, one can use the model-independent bounds
derived in Ref. [39]. Both are shown in Fig. 8. Note in
particular that Ref. [39] excludes zeros near the timelike
axis below 0.846 GeV2 approximately. In the following,
we discuss the corrections that such hypothetical zeros
outside the excluded regions have on the phase. In
particular, we take the shift required in Eq. (B13), since
it is the DR employed in this work and because it leads to
the milder corrections. To do so, we must we distinguish
two class of boundaries in Fig. 8: (i) those in the space-
like region and the upper timelike boundary and (ii) those
in the lower timelike boundary. Regarding class (i), those
configurations leading to larger uncertainties come from
the bounds in [39] at z ¼ ð−7.3þ 0.86iÞ GeV2 and z ¼
ð−1.95þ 4.89iÞ GeV2 (complex conjugates poles are
implied) and are shown in Fig. 9. Regarding class (ii), such
zeros generally feature a steep (steeper as they approach the

real axis) rise of about 2π in the phase, which is easily
understood from the argument theorem. We do not find a
strong physical motivation for an arbitrary number of such
shifts, completely distorting our result. At most, we would
expect them in the neighborhood of some resonance (see
for instance the original phase in our interpolating model,
that seems to approach 3π; note however that the original
model features two poles which are not complex-conjugate,
as it does not fulfill the Schwarz reflection principle,
and jFπ

Qðsþ iϵÞj ≠ jFπ
Qðs − iϵÞj. Further, the argument

theorem should be modified, as the discontinuity differs
from 2δðΛ2Þ).
To further explore this scenario and show its impact, we

explore what happens if the absence of zeroes is not
imposed in the formalism. One possibility is to unitarize
our GS model by using Cauchy’s integral representation
for ImFπ

QðzÞ. To do so, we remove the imaginary part at
threshold and employ Cauchy’s integral theorem to find the

FIG. 8. The (shaded) regions where zeros are excluded. The
gray-dotted region follows from Eq. (B16), whereas the blue-
thick region follows from Ref. [39] (cf. their Fig. 4).

FIG. 9. The systematic uncertainty from potential zeros belong-
ing to the class (i) boundary.
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real part. In doing so, we find the phase in the upper-left
panel in Fig. 10, that essentially reproduces the original one
shown in Fig. 4 and features complex-conjugate poles at
s ¼ ð1.56� 0.25iÞ2 GeV2, offering an example for the
quoted 2π jumps. The corresponding phase for the iso-
vector form factor is shown in Fig. 10 and illustrates the
potential systematics induced by nearby zeros with some
potential physical motivation (rather than arbitrary zeros).
Of course, this does not imply the existence of such a zero,
as it is just a model (for instance, the GS model lacks
important two-body contributions to the imaginary part,
such as KK̄, ωπ, or a1π ones, that necessarily change the

phase). Actually, the phase for the resonant model in
Ref. [43] lacks such a jump, which illustrates the ambi-
guities of inverse problems and potential large model-
dependencies. See also the study in Ref. [75] for related
discussions in the context of Kπ form factors, where
solutions asymptotically approaching either π or 3π are
obtained. This is in marked contrast with the case of the
dispersion relations here employed that, for the potential
scenario in which the form factor is actually devoid of
zeros, show a large stability with respect to mid- and high-
energy input as illustrated in Appendix C (see Fig. 11),
producing then robust results.

FIG. 10. We compare the result of a unitarization model based on Cauchy’s theorem for ImFπ
QðsÞ that features nearby complex-

conjugated zeroes (red line), as described in the main text, to the results of the DR2 for the full phase (upper-left panel; cf. Fig. 4 and the
corresponding coloring scheme) and isovector phase (other panels; cf. Fig. 5 and the corresponding coloring scheme).
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To advance in this problem, it would be interesting
to better understand the region beyond 1 GeV, including
for instance the ωπ or KþK− electromagnetic form
factors.

APPENDIX C: SYSTEMATIC ERRORS FROM
DATA INTERPOLATION

As mentioned in Sec. II, DR2 shows a potentially large
sensitivity to the form factor behavior close to threshold,
see Eqs. (12) and (13). Given that, to some extent, we rely
on the extrapolation of the chosen model, one may wonder
about model dependencies and potential systematic uncer-
tainties. To estimate them, we will investigate variations of
the form factor behavior close to threshold.
Clearly, the largest impact comes from variations of

lnFπ
QðsthÞ [cf. the prefactor in Eq. (12) and the first term in

Eq. (13)], that can be easily estimated varying lnFπ
QðsthÞ

while keeping Fπ
QðsÞ=Fπ

QðsthÞ fixed. Further, in order to
investigate energy-dependent variations, we will introduce
the following threshold expansion

Fπ
QðsÞ

Fπ
QðsthÞ

¼ 1þ α1s
1 − α2s

þ
iβ s3=2

M2
ρ
ffiffiffiffi
sth

p

1 − s
M2

ρ

; ðC1Þ

which is able to describe our model from threshold up to
around 0.42 GeV—arguably enough to assess potential
large dependencies to the form factor close to threshold.
However, lnFπ

QðsthÞ or the parameters in Eq. (C1) cannot
be chosen at will, for they (in general) imply a violation of
the sum rule in Eq. (15). Indeed, as we will see, in the
absence of zeros the sum rule greatly reduces the sensitivity
to the form factor behavior close to threshold.
For instance, if varying lnFπ

QðsthÞ alone, we find that
only the Fπ

QðsthÞ∈ ð1.1737; 1.1747Þ range is allowed
when accounting for the limits discussed in Secs. III A
and IV. This immediately translates into a relative un-
certainty ðFπ

QðsthÞ=Fπ
QðsthÞjfitÞ1−ð1−s=sthÞ

3=2
for the form

factor below threshold and a phase variation of
− ln ðFπ

QðsthÞ=Fπ
QðsthÞjfitÞðs=sth − 1Þ3=2 above. At this

stage, two remarks are relevant. First, it must be empha-
sized that, nonetheless, part of this error appears already in
our statistical error budget since our MC sample contains
limiting cases for the sum rule. Second, potential zeros
discussed in Appendix B could slightly shift these bounds,
that rigorously holds in the absence of zeros.
Further, to vary the parameters in Eq. (C1), we first fix the

value for Fπ
QðsthÞ; then we vary the parameters in regions

allowed by the sum rule. We note that there is a hier-
archy when varying them. In order of relevance, we find
fFπ

QðsthÞ; α1; α2; βg, with β playing a marginal role.

For Fπ
QðsthÞ∈ ð1.1737; 1.1747Þ, their variation leads to

additional systematics beyond the bounds that could be
obtained if varying Fπ

QðsthÞ alone. Further, since we have
the independent estimate Fπ

QðsthÞ ¼ 1.176ð2Þ [34], we also
consider this case that, for instance, leads to the larger
systematics for the phase close to threshold. This, together
with the systematics from variations of Fπ

QðsthÞ ∈
ð1.1737; 1.1747Þ will be considered as the systematic error
uncertainty.
Finally, to close on systematic uncertainties, we display

in Fig. 11 the result that would be obtained for the phase
if replacing our fitting function above

ffiffiffi
s

p ¼ 0.6 GeV by a
simple linear interpolation to BABAR’s data. Indeed, it
would be possible to choose a cutoff as low as .45 GeV,
leading to very similar results for the phase above 0.6 GeV.
This emphasizes the stability of this approach with respect
to the particular parametrization chosen from energies as
low as 0.6 GeV.

APPENDIX D: NUMERICAL RESULTS

In this appendix, we provide the form factor (modulus
and phase) for different points above the ππ threshold in
Table I. We include in addition the shown bands at 68% CL.
We note however that the upper and lower bands do not
necessarily identify with particular values of the fitting
parameters—in order to perform a careful error analysis,
accounting for correlations, any quantity derived from our
results should be obtained from the set consisting of all
pseudofits. In addition, we provide (in parenthesis) the sys-
tematic uncertainty for the phase corresponding to the
interpolation uncertainties discussed in Appendix C. The
systematic uncertainties corresponding to potential zeros
must be considered separately, as it largely depends on their
position. See our discussion in Appendix B.

FIG. 11. The result from DR2 if switching to a linear inter-
polation of BABAR’s data above 0.6 GeV (purple) compared to
the results in Fig. 4 (same color scheme).
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TABLE I. The value for the modulus and phase of the electro-
magnetic form factor of the charged pion Fπ

QðsÞ ¼ jFπ
QðsÞjeiδQðsÞ.

The error for the modulus stems from the fit and is statistical only.
The error for the phase is split into the statistical and systematic
(in parenthesis) one. The latter accounting from the interpolation
uncertainties exclusively, whereas the systematic of zeroes
require, in general, a separate treatment (cf. Appendix B).ffiffiffi
s

p
(GeV) jFπ

QðsÞj δQðsÞð°Þ
0.279 1.1740.001−0.0009 0
0.299 1.2090.001−0.001 0.110.001ð0.001Þ−0.001ð0.002Þ
0.319 1.2460.002−0.001 0.3160.004ð0.009Þ−0.003ð0.005Þ
0.339 1.2880.002−0.001 0.5950.007ð0.03Þ−0.005ð0.01Þ
0.359 1.3340.002−0.002 0.930.01ð0.07Þ−0.008ð0.02Þ
0.379 1.3860.003−0.002 1.340.01ð0.1Þ−0.01ð0.02Þ
0.399 1.4430.003−0.002 1.820.02ð0.2Þ−0.02ð0.03Þ
0.419 1.5090.003−0.002 2.380.02ð0.3Þ−0.02ð0.04Þ
0.439 1.580.004−0.003 3.030.03ð0.2Þ−0.02ð0.05Þ
0.459 1.6640.004−0.003 3.760.04ð0.2Þ−0.03ð0.07Þ
0.479 1.760.005−0.003 4.640.04ð0.2Þ−0.04ð0.08Þ
0.499 1.8660.006−0.004 5.60.05ð0.2Þ−0.04ð0.1Þ
0.519 1.9920.006−0.004 6.780.06ð0.2Þ−0.05ð0.1Þ
0.52 1.9980.006−0.004 6.840.06ð0.2Þ−0.05ð0.1Þ
0.535 2.10.007−0.005 7.910.07ð0.2Þ−0.06ð0.1Þ
0.55 2.2240.008−0.005 9.040.08ð0.2Þ−0.07ð0.1Þ
0.565 2.3580.009−0.006 10.350.09ð0.2Þ−0.07ð0.2Þ
0.58 2.520.01−0.007 11.90.1ð0.2Þ−0.08ð0.2Þ
0.595 2.690.01−0.007 13.70.1ð0.2Þ−0.09ð0.2Þ
0.61 2.90.01−0.009 15.70.1ð0.2Þ−0.1ð0.2Þ
0.625 3.140.01−0.01 18.20.1ð0.2Þ−0.1ð0.2Þ
0.64 3.420.02−0.01 21.10.1ð0.2Þ−0.1ð0.3Þ
0.646 3.540.02−0.01 22.40.2ð0.2Þ−0.1ð0.3Þ
0.652 3.660.02−0.01 23.80.2ð0.2Þ−0.1ð0.3Þ
0.658 3.80.02−0.01 25.40.2ð0.2Þ−0.2ð0.3Þ
0.664 3.960.02−0.01 27

0.2ð0.2Þ
−0.2ð0.3Þ

0.67 4.10.02−0.01 28.80.2ð0.2Þ−0.2ð0.3Þ
0.676 4.280.02−0.01 30.80.2ð0.2Þ−0.2ð0.3Þ
0.682 4.440.02−0.01 33

0.2ð0.2Þ
−0.2ð0.3Þ

0.688 4.640.02−0.02 35.40.2ð0.2Þ−0.2ð0.3Þ
0.694 4.820.02−0.02 37.80.2ð0.2Þ−0.2ð0.4Þ
0.7 5.020.02−0.02 40.60.2ð0.3Þ−0.2ð0.4Þ

(Table continued)

TABLE I. (Continued)

ffiffiffi
s

p
(GeV) jFπ

QðsÞj δQðsÞð°Þ
0.706 5.220.03−0.02 43.50.3ð0.3Þ−0.2ð0.4Þ
0.71 5.370.03−0.02 45.60.3ð0.3Þ−0.2ð0.4Þ
0.714 5.490.03−0.02 48

0.3ð0.3Þ
−0.2ð0.4Þ

0.718 5.640.03−0.02 50.10.3ð0.3Þ−0.2ð0.4Þ
0.722 5.760.03−0.02 52.80.3ð0.3Þ−0.2ð0.4Þ
0.726 5.880.03−0.02 55.20.3ð0.3Þ−0.2ð0.4Þ
0.73 6.030.03−0.02 57.90.3ð0.3Þ−0.2ð0.4Þ
0.734 6.120.03−0.02 60.90.3ð0.3Þ−0.2ð0.4Þ
0.738 6.240.03−0.02 63.60.3ð0.3Þ−0.2ð0.4Þ
0.742 6.330.03−0.02 66.60.3ð0.3Þ−0.3ð0.4Þ
0.746 6.420.03−0.02 69.90.3ð0.3Þ−0.3ð0.5Þ
0.75 6.480.03−0.02 72.90.3ð0.3Þ−0.2ð0.5Þ
0.754 6.540.03−0.02 76.20.3ð0.3Þ−0.2ð0.5Þ
0.758 6.570.03−0.02 79.50.3ð0.3Þ−0.2ð0.5Þ
0.76 6.570.03−0.02 81.30.3ð0.3Þ−0.2ð0.5Þ
0.764 6.60.03−0.02 84.30.3ð0.3Þ−0.2ð0.5Þ
0.767 6.630.03−0.02 87.30.3ð0.3Þ−0.3ð0.5Þ
0.771 6.660.03−0.02 90.60.3ð0.3Þ−0.3ð0.5Þ
0.774 6.720.04−0.02 94.50.3ð0.3Þ−0.3ð0.5Þ
0.778 6.720.04−0.03 100.20.3ð0.3Þ−0.3ð0.5Þ
0.779 6.680.04−0.03 102

0.4ð0.3Þ
−0.3ð0.5Þ

0.78 6.60.04−0.02 104
0.4ð0.3Þ
−0.3ð0.5Þ

0.781 6.480.04−0.03 106
0.4ð0.3Þ
−0.3ð0.5Þ

0.782 6.240.04−0.03 108
0.4ð0.3Þ
−0.3ð0.5Þ

0.782 60.04−0.03 108.80.4ð0.3Þ−0.3ð0.5Þ
0.783 5.760.04−0.03 109.20.4ð0.3Þ−0.2ð0.5Þ
0.784 5.560.04−0.03 108.40.4ð0.3Þ−0.2ð0.5Þ
0.785 5.480.04−0.03 107.60.4ð0.3Þ−0.2ð0.5Þ
0.788 5.370.03−0.03 106

0.4ð0.4Þ
−0.4ð0.5Þ

0.791 5.380.02−0.02 106
0.4ð0.4Þ
−0.3ð0.6Þ

0.794 5.380.02−0.02 107.20.4ð0.4Þ−0.3ð0.6Þ
0.797 5.340.02−0.02 108.80.4ð0.4Þ−0.3ð0.6Þ
0.8 5.280.02−0.02 110.80.4ð0.4Þ−0.3ð0.6Þ
0.803 5.20.02−0.02 112.20.3ð0.4Þ−0.3ð0.6Þ
0.806 5.120.02−0.02 114

0.3ð0.4Þ
−0.3ð0.6Þ

(Table continued)
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TABLE I. (Continued)

ffiffiffi
s

p
(GeV) jFπ

QðsÞj δQðsÞð°Þ
0.809 5.040.02−0.02 115.50.3ð0.4Þ−0.3ð0.6Þ
0.812 4.960.02−0.02 117

0.3ð0.4Þ
−0.3ð0.6Þ

0.815 4.860.02−0.02 118.80.3ð0.4Þ−0.3ð0.6Þ
0.818 4.780.02−0.02 120

0.3ð0.4Þ
−0.3ð0.6Þ

0.82 4.720.02−0.02 121.20.3ð0.4Þ−0.3ð0.6Þ
0.827 4.520.02−0.02 124.20.3ð0.4Þ−0.3ð0.6Þ
0.833 4.320.02−0.02 126.90.3ð0.4Þ−0.2ð0.7Þ
0.84 4.120.02−0.02 129.30.3ð0.4Þ−0.2ð0.7Þ
0.846 3.940.02−0.02 131.70.3ð0.4Þ−0.2ð0.7Þ
0.853 3.780.02−0.01 133.80.3ð0.5Þ−0.2ð0.7Þ
0.86 3.60.02−0.01 135.60.3ð0.5Þ−0.2ð0.7Þ
0.866 3.460.02−0.01 137.40.3ð0.5Þ−0.2ð0.8Þ
0.87 3.380.02−0.01 138.60.3ð0.5Þ−0.2ð0.8Þ
0.88 3.160.02−0.01 140.70.3ð0.5Þ−0.2ð0.8Þ
0.89 2.980.01−0.01 143.10.3ð0.5Þ−0.2ð0.8Þ
0.9 2.810.01−0.01 144.90.3ð0.5Þ−0.2ð0.9Þ
0.91 2.660.01−0.01 146.70.3ð0.6Þ−0.3ð0.9Þ
0.92 2.520.01−0.01 148.20.3ð0.6Þ−0.3ð0.9Þ
0.93 2.40.01−0.009 149.70.3ð0.6Þ−0.3ð1Þ
0.94 2.280.01−0.009 150.90.3ð0.6Þ−0.3ð1Þ
0.95 2.180.01−0.008 152.40.4ð0.7Þ−0.3ð1Þ
0.96 2.080.01−0.008 153.60.4ð0.7Þ−0.3ð1Þ
0.97 20.01−0.008 154.80.4ð0.7Þ−0.4ð1Þ
0.98 1.920.01−0.008 155.50.5ð0.7Þ−0.4ð1Þ
1.01 1.730.01−0.01 160

1ð0.8Þ
−1ð1Þ

1.014 1.70.02−0.03 162
2ð0.8Þ
−2ð1Þ

1.015 1.710.03−0.03 162
2ð0.8Þ
−2ð1Þ

1.016 1.680.04−0.04 164
2ð0.8Þ
−2ð1Þ

1.017 1.680.06−0.06 165
3ð0.8Þ
−3ð1Þ

1.018 1.620.09−0.09 168
3ð0.8Þ
−3ð1Þ

1.019 1.50.1−0.1 168
2ð0.8Þ
−3ð1Þ

1.02 1.40.1−0.1 164
1ð0.8Þ
−3ð1Þ

1.021 1.40.1−0.08 159
3ð0.8Þ
−4ð1Þ

1.022 1.470.07−0.05 156
3ð0.8Þ
−3ð1Þ

1.023 1.50.05−0.03 156
3ð0.8Þ
−3ð1Þ

(Table continued)

TABLE I. (Continued)

ffiffiffi
s

p
(GeV) jFπ

QðsÞj δQðsÞð°Þ
1.024 1.50.03−0.02 158

2ð0.8Þ
−2ð1Þ

1.025 1.530.03−0.01 158
2ð0.8Þ
−2ð1Þ

1.04 1.510.01−0.006 160
0.8ð0.9Þ
−0.7ð1Þ

1.07 1.390.01−0.006 162.60.6ð1Þ−0.6ð2Þ
1.1 1.270.01−0.006 165.20.7ð1Þ−0.6ð2Þ
1.13 1.1790.009−0.007 168

0.8ð1Þ
−0.7ð2Þ

1.16 1.0980.009−0.007 171
0.9ð1Þ
−0.8ð2Þ

1.19 1.0170.009−0.007 174
1ð1Þ
−0.9ð2Þ

1.2 0.9990.009−0.007 175
1ð1Þ
−1ð2Þ

1.238 0.9090.009−0.008 180
1ð2Þ
−1ð2Þ

1.276 0.8280.009−0.009 186
2ð2Þ
−1ð3Þ

1.314 0.7470.009−0.009 192
2ð2Þ
−2ð3Þ

1.352 0.650.01−0.01 198
2ð2Þ
−2ð3Þ

1.39 0.540.01−0.01 207
3ð2Þ
−3ð4Þ

1.428 0.410.01−0.01 216
3ð2Þ
−4ð4Þ

1.43 0.410.01−0.01 216
4ð2Þ
−4ð4Þ

1.435 0.390.01−0.01 216
4ð2Þ
−4ð4Þ

1.44 0.370.01−0.01 216
4ð2Þ
−4ð4Þ

1.445 0.360.01−0.01 216
4ð2Þ
−4ð4Þ

1.45 0.340.01−0.01 220
5ð3Þ
−4ð4Þ

1.455 0.320.01−0.01 220
5ð3Þ
−5ð4Þ

1.46 0.310.01−0.01 220
5ð3Þ
−5ð4Þ

1.465 0.30.02−0.01 222
6ð3Þ
−5ð4Þ

1.466 0.280.02−0.01 222
6ð3Þ
−5ð4Þ

1.47 0.280.02−0.009 222
6ð3Þ
−5ð4Þ

1.475 0.260.02−0.009 224
7ð3Þ
−6ð4Þ

1.48 0.240.02−0.01 224
8ð3Þ
−6ð4Þ

1.485 0.220.02−0.01 224
8ð3Þ
−7ð4Þ

1.49 0.220.02−0.01 225
9ð3Þ
−7ð5Þ

1.495 0.20.02−0.009 220
10ð3Þ
−7ð5Þ

1.5 0.180.02−0.01 220
10ð3Þ
−8ð5Þ

1.505 0.160.02−0.01 220
10ð3Þ
−9ð5Þ

1.51 0.160.02−0.01 220
10ð3Þ
−9ð5Þ

1.515 0.140.02−0.01 220
20ð3Þ
−10ð5Þ

1.52 0.120.02−0.01 220
20ð3Þ
−10ð5Þ

(Table continued)
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