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We calculate helicity amplitudes for e−eþ → W−Wþ analytically in the Feynman-diagram (FD) gauge.
We show that, unlike in the unitary gauge, there is no energy growth of the individual Feynman amplitudes
for the longitudinally polarized W bosons, and the contributions from the associated Goldstone bosons are
manifest even without taking the high-energy limit. We also find that the physical distributions can be
interpreted by the individual amplitudes in the FD gauge.
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I. INTRODUCTION

It is known that gauge cancellation among amplitudes is
an obstacle to numerical evaluations of cross sections as
well as event generation, especially for the collinear phase
space in QED and QCD, and for longitudinally polarized
gauge-boson scattering in high energies in the electroweak
theory.
A recently proposed gauge fixing, Feynman-diagram

(FD) gauge [1–3], is promising for high-energy event
simulations not only for the standard model (SM) processes
but also for those beyond the SM [4]. So far, all the results
shown in Refs. [1–4] are numerical and indicate that subtle
gauge cancellation among the interfering amplitudes can be
avoided.
In this paper, we revisit the e−eþ → W−Wþ process in

the SM in order to study the analytic structure of the
helicity amplitudes in the FD gauge for the first time.
The process has been thoroughly studied both theoreti-

cally, e.g., in Refs. [5–7], and experimentally [8] in the LEP
era. The process for longitudinally polarized W bosons is
also often discussed in quantum-field-theory textbooks to
demonstrate gauge cancellation and the Goldstone boson
equivalence theorem; see, e.g., Chapter 21 in Peskin and
Schroeder [9]. Moreover, W-boson pair production is
very important for the precision test of the electroweak
theory in future high-energy lepton colliders, such as the
ILC [10–12], CEPC [13], and FCC-ee [14].

We note that most of the tree-level calculations and
discussions have been conventionally done in the unitary
(U) gauge. In Ref. [2], the process e−eþ → W−Wþ →
l−ν̄ll0þνl0 is studied numerically to demonstrate the
calculation in the FD gauge by comparing with that in
the U gauge. Here, we calculate the e−eþ → W−Wþ
scattering amplitudes analytically in the FD gauge, and
show that gauge cancellation among the amplitudes for
longitudinally polarized W bosons in the U gauge at high
energies is absent in the FD gauge since there is no energy
growth of the individual FD-gauge amplitudes.
After introducing the FD gauge in Sec. II, we present the

helicity amplitudes for e−eþ → W−Wþ both in the FD and
U gauges in Sec. III. In Sec. IV we show the numerical
results for the total and differential cross sections to discuss
the contributions from the individual Feynman amplitudes
in the two gauges. Section V is devoted to a summary.

II. FEYNMAN-DIAGRAM GAUGE

In this section, we briefly introduce ingredients neces-
sary to calculate helicity amplitudes for e−eþ → W−Wþ in
the FD gauge.
In the FD gauge, the propagator of the gauge bosons is

obtained from the light-cone gauge [3], where the gauge
vector is chosen along the opposite direction of the gauge-
boson three momentum

nμ ¼ ðsgnðq0Þ;−q⃗=jq⃗jÞ: ð1Þ

Note that we take nμ ¼ ð1; 0; 0;−1Þ when jq⃗j ¼ 0 and
q0 > 0. The propagator of a massless gauge boson is
given by [1]

GμνðqÞ ¼
i

q2 þ iϵ

�
−gμν þ

qμnν þ nμqν
n · q

�
; ð2Þ
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while that of a massive gauge boson is combined with
the associated Goldstone boson and formed as a five-
dimensional propagator with its mass m [2],

GMNðqÞ ¼
i

q2 −m2 þ iϵ

 
−gμν þ qμnνþnμqν

n·q i mnμ
n·q

−i mnν
n·q 1

!
; ð3Þ

with M;N ¼ 0 to 4, where 0 to 3 are the Lorentz
indices μ, ν.
The polarization vector (or wave function) for massive

gauge bosons with the helicity λð¼ �1; 0Þ in the FD gauge
includes the associated Goldstone boson, and is given as a
five-component vector by [2]

ϵMðq;�Þ ¼ ðϵμðq;�Þ; 0Þ; ð4Þ

ϵMðq; 0Þ ¼ ðϵ̃μðq; 0Þ; iÞ; ð5Þ

with the reduced polarization vector [1–3]

ϵ̃μðq; 0Þ ¼ ϵμðq; 0Þ − qμ

Q
¼ −sgnðq2ÞQnμ

n · q
; ð6Þ

where ϵμðq; λÞ is the ordinary polarization vector and
Q ¼

ffiffiffiffiffiffiffiffi
jq2j

p
.

It is well known that the ordinary polarization vector
with λ ¼ 0, i.e., the longitudinally polarized gauge boson,
behaves badly at high energies, as shown below. For a
massive gauge boson with its momentum

qμ ¼ ðE; 0; 0; qÞ; ð7Þ

the transverse polarization vector is given by

ϵμðq;�Þ ¼ 1ffiffiffi
2

p ð0;∓ 1;−i; 0Þ; ð8Þ

while the longitudinal polarization vector is

ϵμðq; 0Þ ¼ 1

m
ðq; 0; 0; EÞ ¼ γðβ; 0; 0; 1Þ; ð9Þ

where

β ¼ q
E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2

E2

r
; γ ¼ E

m
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p : ð10Þ

This γ factor gives rise to the energy growth of scattering
amplitudes at high energies (β → 1, γ → ∞), which might
cause violation of unitarity.
In contrast, the reduced polarization vector for λ ¼ 0 in

Eq. (6) with the momentum (7) is given as

ϵ̃μðq; 0Þ ¼ 1

γð1þ βÞ ð−1; 0; 0; 1Þ; ð11Þ

which vanishes in the high-energy limit.

III. HELICITY AMPLITUDES

In this section we present helicity amplitudes in the FD
gauge for the process

e−ðk; σÞ þ eþðk̄; σ̄Þ → W−ðp; λÞ þWþðp̄; λ̄Þ ð12Þ

in the SM. The four-momenta (k, k̄, p, p̄) and the helicities
(σ, σ̄, λ, λ̄) are defined in the e−eþ collision frame

kμ ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ;

k̄μ ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ;

pμ ¼
ffiffiffi
s

p
2

ð1; β sin θ; 0; β cos θÞ;

p̄μ ¼
ffiffiffi
s

p
2

ð1;−β sin θ; 0;−β cos θÞ; ð13Þ

with the center-of-mass energy
ffiffiffi
s

p
and the scattering angle

θ for W− with respect to the e− momentum direction. The
boost factors in Eq. (10) in this frame are

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
W

s

r
; γ ¼

ffiffiffi
s

p
2mW

: ð14Þ

There are three Feynman diagrams both in the FD and
U gauges: s-channel photon (γ) and Z-boson exchange, and
t-channel neutrino exchange,

M ¼
X
i

Mi ¼ Mγ þMZ þMν; ð15Þ

depicted in Fig. 1. We note that, although the Feynman
diagrams look identical both in the FD and U gauges, the
weak-boson lines in the FD gauge implicitly include the
associated Goldstone bosons forming the 5 × 5 component
propagator in Eq. (3) and the five-component polarization

FIG. 1. Feynman diagrams for e−eþ → W−Wþ.
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vectors in Eqs. (4) and (5), as introduced in the previous
section. In the end of this section, we see that the
Goldstone-boson contribution is manifest in FD-gauge
amplitudes.
Each helicity amplitude (i ¼ γ, Z, ν) is written as [5]

Mi
λλ̄
σ ¼

ffiffiffi
2

p
e2ciM̃i

λλ̄ðθÞεdJ0Δσ;ΔλðθÞPiðθÞ; ð16Þ

where the coupling factor ci and the propagator factor
PiðθÞ are given in Table I, ε ¼ Δσð−1Þλ̄ is a sign factor,
Δσ ¼ ðσ − σ̄Þ=2, Δλ ¼ λ − λ̄, J0 ¼ maxðjΔσj; jΔλjÞ, and
dJ0Δσ;ΔλðθÞ is the d function; see, e.g., Ref. [15] for the
explicit forms. We note that, since we neglect the electron
mass, σ̄ ¼ −σ, i.e., Δσ ¼ þ1 or −1 and hence J0 ¼ 1 or 2.
All the above factors in Eq. (16) except the reduced
helicity amplitudes M̃i

λλ̄ðθÞ are common both in the FD
and U gauges. We present M̃i

λλ̄ðθÞ in the FD gauge in
Table II, while those in the U gauge are shown in Table III
for comparison; see also Table 3 in Ref. [5].
Although it is not so obvious at a glance for λ ¼ 0 and/or

λ̄ ¼ 0, the sum of the three amplitudes (15) in the FD
gauge agrees with that in the U gauge for each helicity

combination because of the gauge invariance of the helicity
amplitudes.
On the other hand, each amplitude (16) for the longi-

tudinally polarized W bosons, λ ¼ 0 and/or λ̄ ¼ 0, is rather
different between the two gauges. For the λ ¼ λ̄ ¼ 0 case,
the first term of each amplitude in the FD gauge is
proportional to γ−2, while that in the U gauge is propor-
tional to γ2. Similarly, for the case that one of theW bosons
is longitudinally polarized, i.e., Δλ ¼ �1, each amplitude
in the FD gauge is proportional to γ−1, while the leading
term of each amplitude in the U gauge is proportional to γ.
For the case that both W bosons are transversely polarized,
each amplitude is identical in the two gauges, and does not
depend on γ. These γ dependences are dictated by the
longitudinal polarization vectors, Eq. (11) in the FD gauge
and Eq. (9) in the U gauge, which behave completely
opposite. Therefore, in the high-energy limit β → 1, or
γ → ∞, the amplitudes for longitudinally polarized W
bosons behave rather differently in the two gauges, which
will be shown numerically in the next section.
Before turning to numerical results, we remark on the

Goldstone-boson contributions to the amplitudes in the FD
gauge. In contrast to the U gauge, where the Goldstone
bosons do not present explicitly, the contribution of
Goldstone bosons is manifest in the FD gauge even without
taking the high-energy limit. The second term of the
s-channel γ=Z exchange amplitudes for λ ¼ 0 and/or
λ̄ ¼ 0 in Table II is exactly a footprint of the Goldstone
bosons. In Fig. 2, we explicitly show the Goldstone-boson
diagrams extracted from the diagrams in the FD gauge in
Fig. 1. We refer to Table 2 in Ref. [2] for the couplings of

TABLE I. Coupling and propagator factors for each amplitude.
sW ≡ sin θW is the weak mixing angle in the SM.

i γ Z ν

ci 1 s−2W
�
− 1

2
δσ;−1 þ s2W

�
s−2W δσ;−1

PiðθÞ−1 1 1 −m2
Z=s 1þ β2 − 2β cos θ

TABLE II. Reduced helicity amplitudes M̃i
λλ̄ðθÞ in Eq. (16) in the FD gauge.

Δλ ðλ; λ̄Þ M̃γ
λλ̄ðθÞ M̃Z

λλ̄ðθÞ M̃ν
λλ̄ðθÞ

0 (0,0) 1
γ2

3þβ
ð1þβÞ2 þ 1 − 1

γ2
3þβ

ð1þβÞ2 −
s2W
c2W

�
β

2s2W
− 1
�

− 1
γ2

2
ð1þβÞ2 ð1þ cos θÞ

þ1 ðþ; 0Þ; ð0;−Þ 1
2γ

�
3−β
1þβ þ 1

�
− 1

2γ

�
3−β
1þβ −

s2W
c2W

�
− 1

γ
2

1þβ ð1þ cos θÞ
−1 ð0;þÞ; ð−; 0Þ 1

2γ

�
3−β
1þβ þ 1

�
− 1

2γ

�
3−β
1þβ −

s2W
c2W

�
1
γ

2
1þβ ðβ − cos θÞ

0 ð�;�Þ −β β β − cos θ
�2 ð�;∓Þ 0 0 −

ffiffiffi
2

p

TABLE III. Same as Table II, but in the U gauge.

Δλ ðλ; λ̄Þ M̃γ
λλ̄ðθÞ M̃Z

λλ̄ðθÞ M̃ν
λλ̄ðθÞ

0 (0,0) −2γ2β þ β 2γ2β − β 2γ2ðβ − cos θÞ − β
þ1 ðþ; 0Þ; ð0;−Þ −2γβ 2γβ 2γðβ − cos θÞ − 1

γ

−1 ð0;þÞ; ð−; 0Þ −2γβ 2γβ 2γðβ − cos θÞ þ 1
γ

0 ð�;�Þ −β β β − cos θ
�2 ð�;∓Þ 0 0 −

ffiffiffi
2

p
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π∓ −W� − γ=Z and π− − πþ − γ=Z. For λ ¼ λ̄ ¼ 0, all
three amplitudes in Fig. 2 contribute, because both
polarization vectors have the fifth component in Eq. (5),
representing the Goldstone boson component of the five-
component weak boson. Only diagram (a) gives non-
vanishing contribution for λ ¼ 0 and λ̄ ¼ �1, while only
diagram (b) contributes for λ ¼ �1 and λ̄ ¼ 0. For the
λ ¼ λ̄ ¼ 0 case in Table II, as energy increases, the first
term of the γ=Z exchange amplitudes rapidly falls as γ−2

and the second term becomes dominant. This behavior is
literally consistent with the Goldstone boson equivalence
theorem. We note that the Z-associated π0 contribution is
absent since we neglect the electron mass. Similarly, the
π� do not couple to the massless fermion line in the
ν-exchange diagram.

IV. CROSS SECTIONS

In this section we present the total and differential cross
sections for e−eþ → W−Wþ. Only the sum of all the
relevant amplitudes is gauge invariant, and its absolute
value square gives a physical cross section. Nevertheless,

we also show contributions from the absolute value square
of the individual Feynman amplitude in order to compare
the behaviors of each amplitude in the FD and U gauges. In
the following we focus on the case of longitudinally
polarized W bosons in the final state (λ ¼ 0 and/or
λ̄ ¼ 0) to discuss the difference between the two gauges.
Figure 3 shows the total cross section of e−eþ → W−Wþ

for ðλ; λ̄Þ ¼ ð0; 0Þ as a function of the collision energy from
200 GeV up to 10 TeV, where we simply assume 100%
polarized beams as the left-handed (right-handed) electron
in the left (right) panel. The black solid line denotes the
physical total cross section. Red, blue, and green dashed
lines show contributions from the square of each γ, Z, and ν
amplitude, respectively, in the FD gauge. Similarly, the
dotted lines denote the U-gauge amplitudes.
The total cross section is identical between the two

gauges, showing gauge invariance of the sum of all the
amplitudes, and falls as 1=s for s ≫ m2

Z.
On the other hand, all three individual amplitude squares

in the U gauge grow with energy, dictated by the γ2 factor
of the amplitudes in Table III. There is a slight constant
difference between the photon (red dotted) and Z (blue
dotted) contributions when s ≫ m2

Z in the left panel, while
the two lines are overlapped in the right panel. Since the
reduced γ and Z amplitudes in Table III are identical except
for the relative sign, these can be explained by the gauge
couplings of electrons and the propagator factors in Table I.
This indicates that artificial gauge cancellation among the
individual contributions with the order of ðs=m2

ZÞ is
required at the amplitude level to get the physical cross
section, e.g., aboutOð108Þ cancellation at ffiffiffi

s
p ¼ 10 TeV as

seen in Fig. 3. This is exactly a problem of numerical
evaluation for scattering processes at future high-energy
colliders which we have encountered, since matrix-element

FIG. 2. Goldstone-boson (π∓) contributions to e−eþ →W−Wþ.

FIG. 3. Total cross section of e−eþ → W−Wþ for ðλ; λ̄Þ ¼ ð0; 0Þ as a function of the collision energy with the left-handed electron
(left) and the right-handed electron (right). The solid line denotes the total cross section, while dashed (dotted) lines show contributions
from the absolute value square of the individual amplitude in the FD (U) gauge.
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event generators normally evaluate each Feynman ampli-
tude for a fixed helicity combination, sum up all of them,
and square it.
In the FD gauge, in contrast, the photon and Z con-

tributions fall as 1=s in high energies, the same as the total
cross section, while the ν contribution falls as 1=s3. There is
absolutely no artificial cancellation among the relevant
amplitudes. We clearly see that the Goldstone-boson
contributions, i.e., the second term of the γ=Z amplitudes
in Table II, become dominant when γ−2 ¼ 4m2

W=s ≪ 1.
Similar to the relation between the photon and Z ampli-
tudes in the U gauge, the first terms of the photon and Z
amplitudes in the FD gauge in Table II, i.e., the pure gauge-
boson terms, are identical except for the relative sign. For
the Goldstone-boson terms, on the other hand, the Z
amplitudes are suppressed by s2W=c

2
W as compared to the

photon ones, leading to a visible difference between the
photon (red dashed) and the Z (blue dashed) contributions,
both for e−L (left) and e−R (right) cases in Fig. 3. We observe
a slight constructive interference between the γ and Z
amplitudes for e−L, and a destructive one for e

−
R. This can be

explained by the relative sign of the Goldstone-boson
contributions and the coupling factors in Table I between
photon and Z.
We now move to the differential cross section for

ðλ; λ̄Þ ¼ ð0; 0Þ at certain fixed energies. Figure 4 shows
the distribution of the scattering angle of W− with respect
to the e− momentum direction, defined in Eq. (13), for
e−eþ → W−Wþ at

ffiffiffi
s

p ¼ 250 GeV (left) and
ffiffiffi
s

p ¼ 1 TeV
(right), where only the left-handed electron case is con-
sidered. The black solid line denotes the physical distri-
bution. Here, we categorize the individual contributions
into two: the s-channel γ þ Z amplitude (magenta) and the
t-channel ν amplitude (green).
As expected, the total (physical) distribution is identical

between the FD and U gauges. Since the d function in
Eq. (16) is common for all the amplitudes and d1−1;0ðθÞ ¼
sin θ=

ffiffiffi
2

p
, the amplitudes vanish at cos θ ¼ �1. However,

the physical distribution is rather distorted from the naive
expectation of sin2 θ; the enhancement in the forward
region (cos θ ∼ 1) and a sharp dip structure are observed
at both energies.
The angular dependence for the s-channel photon and Z

amplitudes (magenta lines) is simply determined by the d
function, and hence only their magnitudes are different
between the two gauges. At larger energies, the difference
between the FD and U gauges becomes larger because of
the difference of the γ dependence of the amplitudes as
shown in Tables II and III.
For the t-channel ν amplitudes, the angular distributions

are nontrivial, and are determined not only by the d
function but also by the propagator factor PνðθÞ as well
as by the reduced amplitude M̃ν

λλ̄ðθÞ. Nevertheless, the
distribution in the U gauge (green dotted) is mostly

governed by the d function, i.e., sin2 θ, except for a sharp
dip in the very forward region in the left panel. For the ν
contribution in the FD gauge (green dashed), in contrast,
we clearly see the enhancement in the forward region
(cos θ ∼ 1) and the suppression in the backward region
(cos θ ∼ −1) as naively expected from the t-channel propa-
gator factor.
To summarize the distribution, the individual U-gauge

amplitudes give little useful information on the physical
distribution, while the FD-gauge ones provide clear physics
interpretations. In the FD gauge, the observable cross
section is dominated by the single ν amplitude for the
singular kinematical region (cos θ ∼ 1), and by the
s-channel photon and Z amplitudes for cos θ ≲ −0.5 atffiffiffi
s

p ¼ 250 GeV and for cos θ ≲ 0.5 at
ffiffiffi
s

p ¼ 1 TeV. Since
the location of the physical dip position is at the crossing
point of the magenta and green dashed curves, where the
magnitude of the s- and t-channel amplitudes are the same,
the dip structure can be explained as a consequence of the
destructive interference among the two channels. Although
we do not show the right-handed electron case explicitly,
there is no such dip structure, and the distribution simply
follows the square of d11;0ðθÞ ¼ − sin θ=

ffiffiffi
2

p
, because the

t-channel ν contribution is absent.
In addition to Figs. 3 and 4, we present the total and

differential cross sections for the ðλ; λ̄Þ ¼ ðþ; 0Þ and ð0;−Þ
case, i.e., Δλ ¼ þ1 in Figs. 5 and 6. The cross sections are
identical for these two helicity combinations. As most of
the discussions for ðλ; λ̄Þ ¼ ð0; 0Þ above can be applied for
this case, we note only those points which are specific for
Δλ ¼ þ1 below.
As seen in Fig. 5, the total cross section falls as 1=s2. In

the U gauge, the three individual contributions are constant
at high energies, dictated by the γ factor of the amplitudes
in Table III, leading to subtle gauge cancellation to obtain
the physical cross section. In the FD gauge, in contrast, all
three individual contributions behave the same as the
physical cross section, dictated by the γ−1 factor of the
amplitudes in Table II. Different from the ðλ; λ̄Þ ¼ ð0; 0Þ
case, the Goldstone-boson amplitudes are also proportional
to γ−1, and hence the contributions do not become
dominant even at high energies. Instead, the ν amplitude
dominates.
As for the cos θ distributions shown in Fig. 6, due to the

d function d1−1;1ðθÞ ¼ ð1 − cos θÞ=2, the amplitudes at
cos θ ¼ 1 vanish. Similar to the ðλ; λ̄Þ ¼ ð0; 0Þ case, how-
ever, the physical distribution does not follow the naive
expectation of ð1 − cos θÞ2. In the FD gauge, we clearly
observe that the t-channel amplitude dominantly contrib-
utes to the forward region, while the s-channel amplitudes
dominate in the backward region. In between, around
cos θ ∼ −0.25, where the magenta and green dashed
curves intersect, there is a dip structure as a physical
destructive interference among the s- and t-channel
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FIG. 5. Same as Fig. 3, but for ðλ; λ̄Þ ¼ ðþ; 0Þ and ð0;−Þ.

FIG. 4. Distribution of the scattering angle of e−eþ → W−Wþ for ðλ; λ̄Þ ¼ ð0; 0Þwith the left-handed electron at ffiffiffi
s

p ¼ 250 GeV (left)
and at

ffiffiffi
s

p ¼ 1 TeV (right). The solid line denotes the total distribution, while dashed (dotted) lines show contributions from the absolute
value square of the s-channel γ þ Z amplitude and the t-channel ν amplitude in the FD (U) gauge.

FIG. 6. Same as Fig. 4, but for ðλ; λ̄Þ ¼ ðþ; 0Þ and ð0;−Þ.
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FD-gauge amplitudes. Because the t-channel enhancement
in the forward region is much larger than the suppression by
the d function, the ν contribution is larger than the photon
and Z contributions in the total cross section in the left
panel in Fig. 5. For e−Re

þ
L collisions, which we do not show

explicitly, there is no such dip structure, and the distribution
simply follows the square of d11;1ðθÞ ¼ ð1þ cos θÞ=2
because the t-channel ν contribution is absent.
Let us give brief comments on the ðλ; λ̄Þ ¼ ð0;þÞ and

ð−; 0Þ cases, i.e., for Δλ ¼ −1. Since the global picture is
very similar to the Δλ ¼ þ1 case, we do not show the plots
explicitly here. The total cross section is slightly different
from that for Δλ ¼ þ1 in Fig. 5 quantitatively. This is
because the amplitudes at cos θ ¼ −1 (þ1) vanish for e−L
(e−R) due to the d-function d1∓1;−1ðθÞ ¼ ð1� cos θÞ=2, and
because the reduced ν amplitude for Δλ ¼ −1 is slightly
different from the one for Δλ ¼ þ1 both in the FD
(Table II) and U (Table III) gauges. Note that the reduced
γ=Z amplitudes for Δλ ¼ −1 are exactly the same as in the
case for Δλ ¼ þ1. Because of these differences between
Δλ ¼ þ1 and Δλ ¼ −1, the dip position in the cos θ
distribution for Δλ ¼ −1 is more forward than that for
Δλ ¼ þ1 shown in Fig. 6.
Finally, we refer to Sec. 3.2 in Ref. [2] for the total cross

sections and the distributions including the W-boson
decays, where parts of our results have been obtained by
numerical calculations.

V. SUMMARY

In this paper, in order to study the analytic structure
of the helicity amplitudes in the recently proposed FD
gauge [1–3], we revisited the e−eþ → W−Wþ process and
calculated the helicity amplitudes analytically in the SM.
Table II shows the FD-gauge amplitudes, and one can

explicitly see that the well-known energy growth of the

individual photon, Z, and ν exchange amplitudes for
longitudinally polarizedW bosons in the unitary (U) gauge
is completely absent in the FD gauge. One can also see that
the Goldstone-boson contributions are manifest in the FD
gauge even without taking the high-energy limit. The
energy dependence of the individual amplitudes is explic-
itly shown in Figs. 3 and 5.
We also showed the differential cross sections in Figs. 4

and 6. Although the angular distributions of the individual
Feynman amplitudes in the U gauge give little useful
information on the physical distribution, those in the FD
gauge allow us to interpret the physical distribution as a
sum of the ν-exchange amplitude which dominates in the
forward region and the γ=Z-exchange amplitude which
dominates in the central and backward region, as well as
their interference which gives a dip in the distribution at
cos θ where the magnitude of the s- and t-channel ampli-
tudes are the same.
Although W-boson pair production in e−eþ collisions

has been studied extensively in the past and physics does
not depend on the gauge choice, we believe that our
analytic results in the FD gauge provide a new insight
into gauge theories.
Finally, we note that a numerical evaluation of helicity

amplitudes in the FD gauge was automated in
MadGraph5_aMC@NLO [16] not only for SM processes but
also for those beyond the SM, such as models with higher-
dimensional operators [4].
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