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The Earth acts as a matter potential for relic neutrinos which modifies their index of refraction from
vacuum by δ ∼ 10−8. It has been argued that the refractive effects from this potential should lead to a large

Oð ffiffiffi
δ

p Þ neutrino-antineutrino asymmetry at the surface of the Earth. This result was computed by treating
the Earth as flat. In this work, we revisit this calculation in the context of a perfectly spherical Earth. We
demonstrate, both numerically and through analytic arguments, that the flat-Earth result is only recovered
under the condition δ3=2kR ≫ 1, where k is the typical momentum of the relic neutrinos and R is the radius
of the Earth. This condition is required to prevent antineutrinos from tunneling into classically inaccessible
trajectories below the Earth’s surface and washing away the large asymmetry. As the physical parameters of
the Earth do not satisfy this condition, we find that the asymmetry at the surface should only be OðδÞ.
While the asphericity of the Earth may serve as a loophole to our conclusions, we argue that it is still
difficult to generate a large asymmetry even in the presence of local terrain.

DOI: 10.1103/PhysRevD.110.053001

I. INTRODUCTION

Standard cosmology predicts the existence of a cosmic
neutrino background (CνB) of relic neutrinos produced in the
early Universe, following a Fermi-Dirac distribution with
temperature Tν ¼ 1.7 × 10−4 eV [1,2]. While the detection
of the CνB would lead to profound insights about the
fundamental properties of neutrinos and early Universe
cosmology [3,4], its direct detection via scattering/absorp-
tion is difficult because neutrino cross sections scale as
OðG2

FÞ [5,6]. Another proposal was put forth by Stodolsky to
look for electron/nuclear spin precession due to the CνB [7].
While this effect isOðGFÞ, it is proportional to the neutrino-
antineutrino asymmetry, which in vacuum is expected to be
comparable to the observed baryon asymmetry of ∼10−9.
In Ref. [8], it was proposed that the neutrino-antineutrino

asymmetrymay be significantly enhanced near the surface of
the Earth. This enhancement occurs because neutrinos/
antineutrinos experience a potential

jUj ∼ 10−14 eV ·

�
nmatter

1022 cm−3

�
ð1Þ

in the presence of matter. For electron neutrinos and muon/
tau antineutrinos, this potential is positive, while for electron

antineutrinos and muon/tau neutrinos, it is negative. This
leads to an index of refraction for neutrinos/antineutrinos
inside the Earth which differs from vacuum by

δ≡ −
mνU
k2

∼�10−8 ·

�
nmatter

1022 cm−3

�
·

�
mν

0.1 eV

�
; ð2Þ

where k ∼ Tν is the momentum of the neutrino andmν is the
mass of the relevant neutrino species. Due to the different
refractive indices for neutrinos vs antineutrinos, it is argued
in Ref. [8] that the Earth induces aOð ffiffiffi

δ
p Þ ∼ 10−4 fractional

asymmetry near its surface. Importantly, the calculation in
Ref. [8] treated the Earth as flat.
In this work, we recompute this asymmetry in the context

of a perfectly spherical Earth. While similar computations
have beenperformed inRefs. [9–11], theprincipal purposeof
this work is to show that the large asymmetry observed in the
flat-Earth calculation is only reproduced under the condition,

δ3=2kR ≫ 1; ð3Þ

whereR is the radius of the Earth. The physical parameters of
the Earth have δ3=2kR ∼ 0.01, and so do not satisfy Eq. (3). In
this case, we show that a much smaller OðδÞ fractional
asymmetry should be expected at the surface of the Earth.
Our calculation treats the Earth as a perfect sphere, and so the
presence of local terrainmay provide a loophole to the above
condition. In our concluding discussion, however, we com-
ment that local terrain should typically make the condition
more stringent rather than less.
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This work is organized as follows. In Sec. II, we give a
heuristic understanding, in terms of ray optics, of how the
condition in Eq. (3) arises. In Sec. III, we perform a precise
calculation of the neutrino-antineutrino asymmetry, under
the assumption of a perfectly spherical earth of uniform
density. As in Ref. [8], for this calculation, we consider
only electron neutrinos/antineutrinos and treat the CνB as
monochromatic and isotropic. In Sec. IV, we comment on
how the asphericity of the Earth affects the interpretation of
our results and contrast our work with Refs. [9–11]. We
make all the code used in this work publicly available on
Github [12].

II. HEURISTIC ARGUMENT

We begin by presenting a heuristic understanding of the
full calculation presented in Sec. III. The relevant features
of the argument are depicted in Fig. 1. In order to determine
the asymmetry at the surface of the Earth, let us consider a
point P located inside the Earth but close to the surface. If
the asymmetry at this point is large, then by continuity, the
asymmetry at the surface will be as well. The neutrino and
antineutrino densities at P receive contributions from all of
the rays passing through P.1 For every antineutrino ray,
there is a corresponding neutrino ray which travels the same
path through the interior of the Earth; e.g., see the rays
labeled 1a and 1b in Fig. 1. The contributions from these
rays cancel, leading to no significant asymmetry.2

Consider instead a neutrino ray which traverses a chord
very close to the surface of the Earth; e.g., ray 2b in Fig. 1.
For such rays there exists no corresponding antineutrino
ray. This is because such an antineutrino ray attempting to
emerge from the interior of the Earth would experience
total reflection, as it exits from a medium of higher index of
refraction to one of a lower index. Conversely, this implies
that classically no antineutrino ray originating from outside
the Earth can reach this trajectory in the interior. These
unpaired neutrino rays are the source of the large asym-
metry described in Ref. [8]. These rays are unpaired so long
as they form an angle θ < θc ≡

ffiffiffiffiffiffiffiffi
2jδjp

with the surface of
the Earth (from the interior; see Fig. 1). All points P which
are within a distance θ2cR=2 ¼ jδjR from the surface will
receive a contribution from such rays, and so will exhibit a

large asymmetry. By continuity, points just above the
surface will exhibit this asymmetry as well.
The above argument only holds in the context of classical

ray optics, where neutrino/antineutrinos travel on fixed paths
determined by refraction. When quantum wave effects are
included, antineutrinos have the ability to tunnel from a ray
outside the Earth onto this classically forbidden trajectory
inside the Earth; e.g., ray 2a in Fig. 1 may tunnel inside the
Earth to cancel the contribution from ray 2b. If this tunneling
occurs efficiently, the large asymmetry will be washed out.
Conservation of energy and angular momentum relate the
parameters of the external and internal trajectories. Suppose
the external trajectory has a velocity v1 and impact parameter
r1, while the internal trajectory has a velocity v2 and impact
parameter r2. Then, we have

mνv21
2

¼ mνv22
2

−U ð4Þ

mνv1r1 ¼ mνv2r2; ð5Þ

which implies

r2 ¼
r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2U
mνv21

q ≈ ð1 − δÞr1: ð6Þ

Inotherwords, the raymust tunnel a distance roughly δR from
its trajectory outside theEarth to its trajectory inside theEarth.
As we will see in Sec. III, the typical distance that a ray can
efficiently tunnel is Ltunnel ∼ ðkRÞ1=3=k. Therefore, when

Ltunnel ≪ δR ⇒ δ3=2kR ≫ 1; ð7Þ

the antineutrino rays outside the Earth will be unable to
tunnel in, and so the large asymmetry will persist.

III. SPHERICAL CALCULATION

Now we make the arguments of Sec. II more precise by
performing a calculation of the neutrino-antineutrino asym-
metry near the Earth’s surface, under the assumption of a
perfectly spherical Earth. The formalism introduced in this
section will be similar to the formalisms applied in
Refs. [9–11], but we will focus on determining the
conditions under which the asymmetry exists. As men-
tioned in Sec. I, we will assume that the Earth is a perfect
sphere of uniform density, and that the CνB is mono-
chromatic (with momentum k) but isotropic.3 We will also
compute the time-averaged asymmetry, in which case, it

1For illustrative purposes, we phrase the argument in this
section in terms of individual rays, but more properly, the detailed
calculation presented in the next section will deal with angular
modes. As all rays with the same impact parameter (with respect
to the center of the Earth) possess the same angular momentum,
this argument should be understood in a context where all rays
with the same impact parameter are considered equivalent. For
instance, the relative orientations of rays 2a and 2b in Fig. 1 are
not particularly important. What is relevant are their impact
parameters.

2In fact, due to their different incident angles outside the Earth,
these rays possess slightly different normalizations which results
in an OðδÞ asymmetry.

3We note that the CνB is not in fact isotropic in the rest frame of
the Earth, due to their relative motion. As the thermal velocity of
relic neutrinos vth ∼ Tν=mν ∼ 10−3 · ðmν=0.1 eVÞ may be com-
parable to this relative motion, this anisotropy may be significant,
depending on the mass of the relevant neutrino species. In this
work, we will neglect this potential anisotropy.
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suffices to solve for the steady-state neutrino/antineutrino
wave functions. In order to determine these wave functions
at a given point for an isotropic background, it is sufficient
to compute the solution for a single incoming plane wave
and average this solution over a sphere of constant radius.
More precisely, given an incoming plane wave from
direction n̂, let ψ n̂ðr;ΩÞ denote the resulting wave function
in the vicinity of the Earth. By symmetry, it is simple to see
that ψ n̂ðr; ẑÞ ¼ ψ ẑðr; n̂0Þ, where n̂0 is n̂ rotated by π around
the z-axis. The total neutrino/antineutrino density is given
by the average of jψ n̂j2 over all n̂, so we can write

nν;ν̄ðrÞ
n0

¼ 1

4π

Z
dn̂jψ n̂ðr; ẑÞj2 ð8Þ

¼ 1

4π

Z
dΩjψ ẑðr;ΩÞj2; ð9Þ

where nν;ν̄ represents the neutrino/antineutrino density, and
n0 denotes their density in the absence of the Earth. We see
then that it is sufficient to compute only the solution ψ ẑ for
a plane wave incoming from the ẑ-direction. Henceforth we
will simply denote this solution by ψ.
Let us decompose this wave function into angular

modes as

ψðr;ΩÞ ¼
X∞
l¼0

ψlðrÞYl0ðΩÞ; ð10Þ

where we only require m ¼ 0 modes by azimuthal sym-
metry. The Schrödinger equation for the radial part ψl of
the wave function becomes

∂
2
rψlþ

2

r
∂rψlþ

�
k2−2mU ·ΘðR−rÞ−lðlþ1Þ

r2

�
ψl ¼ 0;

ð11Þ

The solution to Eq. (11) is simply a combination of
spherical Bessel functions, with momentum k for r > R
and momentum

k0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 2mU

p
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p ð12Þ

for r < R. The corresponding boundary conditions for
Eq. (11) should be that the only incoming modes are that
of the incoming plane wave, and that the wave function is
regular at the origin. An incoming plane wave from the
ẑ-direction can be decomposed in terms of spherical har-
monics as

FIG. 1. Diagram of the heuristic argument presented in Sec. II (not to scale). The asymmetry at a point P receives contributions from
all rays passing through it. Blue rays represent neutrino paths, while red rays represent antineutrino paths. Rays that arrive at large
angles, such as those labeled 1a and 1b, traverse the interior of the Earth in pairs, contributing a small asymmetry at P. However,
neutrino rays that form angles θ < θc with the surface of the Earth, such as ray 2b, have no corresponding antineutrino ray, as
antineutrinos cannot classically access this path in the interior of the Earth. This can lead to a large asymmetry for all points P within δR
of the surface. Quantum mechanically, however, the ray 2a can tunnel to this classically inaccessible trajectory, thereby washing out the
asymmetry. This can occur when its characteristic tunneling range Ltunnel ∼ ðkRÞ1=3=k [see Eq. (30)] exceeds the required distance δR
that it must tunnel, or in other words, when δ3=2kR ≪ 1. See text for more details.
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eikz ¼
X∞
l¼0

il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
jlðkrÞYl0ðΩÞ; ð13Þ

where jl is the spherical Bessel function of the first kind. The
full solution for the wavefunction in and around the Earth
should therefore be

ψlðrÞ ¼
�
AljlðkrÞ þ Blh

ð1Þ
l ðkrÞ; r > R

Cljlðk0rÞ; r < R;
ð14Þ

Al ≡ il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
; ð15Þ

where the spherical Hankel function hð1Þl of the first kind
corresponds to an outgoing wave.
Continuity of ψl and its gradient enforce

AljlðkRÞ þ Blh
ð1Þ
l ðkRÞ ¼ Cljlðk0RÞ; ð16Þ

kAlj0lðkRÞ þ kBlh
ð1Þ0
l ðkRÞ ¼ k0Clj0lðk0RÞ: ð17Þ

These can be solved numerically for sufficiently large l to
determine the full solution ψ . From Eq. (9), we see that the
number density is then given by

nν;ν̄ðrÞ
n0

¼ 1

4π

X∞
l¼0

jψlðrÞj2 ð18Þ

¼
8<
:

1
4π

P
l
jAljlðkrÞþBlh

ð1Þ
l ðkrÞj2; r >R

1
4π

P
l
jCljlðk0rÞj2; r <R:

ð19Þ

Using δ < 0 to compute the above solution will give the
neutrino density nν, while using δ > 0 will give the
antineutrino density nν̄. By taking the difference of
Eq. (19) between these two cases, we can compute the
fractional neutrino asymmetry Δ ¼ ðnν − nν̄Þ=n0.
The sums in Eq. (19) converge only after l≳ kR,

so evaluating them for the physical parameters of the
Earth (kR ∼ 9 × 109) is computationally challenging.
Reference [9] claims to have achieved this with the use of
unspecified asymptotic Bessel function expansions. In this
work, we instead opt to understand the relevant behavior by
evaluating the solution for smaller parameter values. InFig. 2,
we compute the asymmetry ΔðrÞ as a function of radius, for
kR ¼ 3 × 104 and two choices of δ ¼ 10−2 and δ ¼ 10−3. A
number of important features can be seen even with these
parameter values. In both cases, the asymmetry begins atΔ ¼
−2δ deep within the Earth and eventually reaches Δ ¼ 0
outside the Earth. In the case of small δ, the profile transitions
directly between these regimes, leading to an asymmetry of

Δ ¼ −δ at the surface r ¼ R.4 In the case of large δ, however,
the asymmetry becomes large and positive in the region
ð1 − δÞR < r ≤ R, leading to an asymmetry larger thanOðδÞ
at r ¼ R.5 In Fig. 3, we show the asymmetry at the Earth’s
surface Δðr ¼ RÞ for various values of kR and δ. This plot
clearly demonstrates that a large asymmetry at the surface is
only achieved when δ3=2kR ≫ 1. Below, we justify why this
is the case.
First, let us derive the Δ ¼ −2δ asymmetry for

r < ð1 − δÞR. It is straightforward to solve Eqs. (16) and
(17) to find

Cl ¼
iAlk−2R−2

hð1Þ0l ðkRÞjlðk0RÞ−
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2δ

p
·hð1Þl ðkRÞj0lðk0RÞ

: ð20Þ

Now the spherical Bessel and Hankel functions satisfy

FIG. 2. Plot of the neutrino-antineutrino asymmetry ΔðrÞ
(normalized by δ) near the surface of the Earth, for kR ¼ 3 ×
104 and two different values of δ. [To compute these profiles, we
sum up to l ¼ 3.2 × 104 in Eq. (19).] In both cases, we see Δ ¼
−2δ for r < ð1 − δÞR and Δ ¼ 0 well above the surface of the
Earth. In the δ ¼ 10−2 case, however, we see that the asymmetry
becomes large and positive for ð1 − δÞR < r ≤ R.

4The profile exhibits oscillations near the surface of the Earth,
but these will be smoothed out after averaging over k.

5The exact shape and size of this large asymmetry can depend
on kR and δ. In Ref. [8], it is argued that this asymmetry isOð ffiffiffi

δ
p Þ

and extends for a distance λc ≡ 2π=θck above the surface of the
Earth. We find similar results in our numerical computations, but
as the purpose of this work is to understand when this large
asymmetry exists, we choose not to focus on how large it is or
how far it extends.
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jhð1Þl ðxÞj2 ≈ jhð1Þ0l ðxÞj2 ≈ jlðxÞ2 þ j0lðxÞ2 ≈
1

x2
; ð21Þ

hjlðxÞ2i ≈
1

2x2
; ð22Þ

for x > l, where h·i indicates an average over l. With these
approximations, Eq. (20) becomes

hjClj2i ≈ 4πð2lþ 1Þð1þ δÞ; ð23Þ

for l < kR and δ ≪ 1. Plugging Eq. (23) into Eq. (19) gives

nν;ν̄ðrÞ
n0

≈ ð1þ δÞ
X∞
l¼0

ð2lþ 1Þjlðk0rÞ2 ¼ 1þ δ: ð24Þ

Subtracting the neutrino and antineutrino cases gives the
asymmetry Δ ¼ −2δ. The sum in Eq. (24) is dominated by
l < k0r, because as we will see momentarily, a mode with
angular momentuml does not penetrate to radii smaller than
l=k0. Therefore, in order to apply the approximation in
Eq. (23), we require k0r < kR. In other words, this asym-
metry only holds for r < ð1 − δÞR.
In order to understand the behavior for ð1 − δÞR <

r ≤ R, let us reexpress Eq. (11) in terms of φl ¼ rψl as

−
1

2m
∂
2
rφl þ VeffðrÞφl ¼ k2

2m
φl; ð25Þ

VeffðrÞ≡ lðlþ 1Þ
2mr2

þU · ΘðR − rÞ: ð26Þ

Equation (25) has the exact form of the Schrodinger
equation with an effective potential Veff . Therefore, we
can understand neutrino/antineutrino propagation near/
inside the Earth in terms of an incoming wave scattering
off this potential. Several examples of Veff are shown in
Fig. 4. The angular modes shown in Fig. 4 correspond

FIG. 3. Contour plot of the asymmetry at the surface of the Earth
Δðr ¼ RÞ (again normalized by δ) for various values of kR and δ.
The dashedblack line denotes δ3=2kR ¼ 4, and thegreen and purple
stars correspond to the parameter values used in Fig. 2. Note that
large asymmetries are only obtained above the line. Below the line,
ΔðRÞ ¼ −δ for all parameter values. The physical parameters of the
Earth have δ3=2kR ∼ 0.01 and so fall well below the black line.

FIG. 4. Schematic diagram of several effective potentials Veff
near the surface of the Earth. The potentials for neutrino modes
are shown in blue, while the potentials for antineutrino modes are
shown in red, and the potentials are labeled to correspond
schematically to the rays shown in Fig. 1. The dashed black
line denotes the energy of the incoming wave. The point where a
given potential meets the dashed line is its classical “turning
point” r0, and the potentials have been paired so that they share
the same turning point inside the Earth. Potentials 1a and 1b have
low (but slightly different) values of l, and so their turning point
lies deep within the Earth. Neutrino potential 2b, on the other
hand, has a turning point ð1 − δÞR < r0 < R. The corresponding
antineutrino potential 2a exhibits a second turning point rþ
outside the Earth, so that an incident wave will not be able to
penetrate into the Earth classically. Quantum mechanically,
however, the wave may tunnel through the barrier of potential
2a to reach the interior of the Earth. In the lower plot, we show an
incoming wave incident on potential 2a. The characteristic length
scale over which it decays once entering the barrier is Ltunnel [see
Eqs. (27)–(30)]. In the case shown here, Ltunnel < rþ − R, so that
the wave cannot tunnel into the Earth. For the physical parameters
of the Earth, however, Ltunnel > rþ − R, so that the wave can
enter and cancel the contribution of mode 2b, leading to no large
asymmetry.
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schematically to the rays shown in Fig. 1. For instance, the
curve labeled 1a in Fig. 4 shows the potential for an
antineutrino mode with low enough angular momentum to
penetrate deep into the Earth. Classically, an incoming
wave which is incident on this potential will be reflected at
the “turning point” r0 ≈ l=k0 of the potential. (In the ray
optics picture, this corresponds to the impact parameter of
the ray.) The wave will therefore not contribute to the
asymmetry at radii r < r0. The curve labeled 1b in Fig. 4
corresponds to a neutrino ray with the same classical
turning point. Just as in Fig. 1, the angular modes 1a
and 1b contribute to the asymmetry at exactly the same set
of points. Thus, their contributions will cancel, leading to
the small OðδÞ asymmetry derived above.
Consider instead the angular mode 2b with turning point

ð1 − δÞR < r0 < R. The corresponding antineutrino mode
2a exhibits two turning points: r− ≈ l=k0 inside the Earth
(at the same location as r0 for mode 2b), and rþ ≈ l=k
outside the Earth. Classically, a wave incident on this
potential will be reflected at rþ, and so will never reach the
interior of the Earth. In this way, the contribution from
neutrino mode 2b inside the Earth is left uncanceled. This
results in the large asymmetry which can be observed for
ð1 − δÞR < r ≤ R, in some cases.
Note that quantum mechanically, however, an incident

wave may be able to tunnel through the external barrier of
antineutrino mode 2a into the interior of the Earth. The
lower plot in Fig. 4 shows in green a wave incident on the
potential of mode 2a. The wave begins to damp once it
reaches rþ, with some damping length scale Ltunnel. If
Ltunnel exceeds the distance rþ − R, then the wave will
tunnel into the interior of the Earth without significant
damping. Consequently, it will be able to reach r− and
cancel the contribution from neutrino mode 2b. It is simple
to estimate Ltunnel in the Wentzel-Kramers-Brillouin
(WKB) approximation. As the wave propagates from rþ
to rþ − L, the number of e-folds it damps is given by

Z
rþ

rþ−L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

�
VeffðrÞ −

k2

2m

�s
dr ð27Þ

≈
Z

rþ

rþ−L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ − rÞ · 2lðlþ 1Þ

r3þ

s
dr ð28Þ

¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L3 ·

2lðlþ 1Þ
r3þ

s
: ð29Þ

By setting Eq. (29) equal to 1, we find that the tunneling
range is roughly

Ltunnel ∼
rþ
l2=3 ∼

ðkRÞ1=3
k

: ð30Þ

If we are interested in the asymmetry at the surface of the
Earth, we should consider the mode with r− ≈ R, in which
case rþ − R ≈ δR. Therefore, the asymmetry at the surface
will be washed out by this tunneling effect when
Ltunnel ≫ δR, or in other words, when δ3=2kR ≪ 1. This
justifies the behavior seen in Fig. 3.

IV. DISCUSSION

In thiswork,we have demonstrated that the large neutrino-
antineutrino asymmetry derived in Ref. [8], under the
assumption of a flat Earth, is only reproduced in the spherical
calculationwhenEq. (3) is satisfied. As the Earth is not large/
dense enough to satisfy this condition, we showed that the
asymmetry at the surface of the Earth is instead only OðδÞ.
Importantly, the calculation of Sec. III assumed that theEarth
is perfectly spherical. The physical values of the relevant
length scales in this computation are Ltunnel ∼ 1 m and
δR ∼ 1 cm. The Earth is certainly far from a perfect sphere
on these length scales, and so the presence of local terrain can
affect the conclusions of this work.
We argue, however, that deviations from sphericity should

typically make it more difficult to induce a large asymmetry.
To see why, let us return to the heuristic argument presented
in Sec. II. A large asymmetry occurswhen there exists a large
region underneath the surface of the Earth which is inac-
cessible to glancing antineutrino rays. In particular, the extent
of this region must be larger than the tunneling range Ltunnel
derived in Eqs. (27)–(30). Note that this derivation only
relied on the effective potential outside the Earth, and so
Ltunnel should not be affected by local deformations of the
Earth.6 The effect of local terrain should instead be tomodify
the extent of the inaccessible region. The inaccessible region
observed in the perfectly spherical case is a consequence of
the smoothness of the Earth’s surface, which limits the
possible entry angles available to antineutrino rays. As the
surface becomes more inhomogeneous, a larger variety of
entry angles become available, allowing the antineutrinos to
access a larger region below theEarth’s surface.We therefore
argue that the presence of local terrain will typically act to
shrink the inaccesible region, implying that a large asym-
metry will still be washed out by the tunneling argument
presented in this work.
Before concluding,we contrast thisworkwithRefs. [9–11],

which performed similar computations to the one outlined
in Sec. III. As mentioned previously, Ref. [9] computed
the asymmetry at the surface of the Earth for the physical
parameter values of the Earth (kR ¼ 9 × 109 and δ ¼
3 × 10−8). In order to make the computation numerically
tractable, they utilized some unspecified Bessel function
approximations, sowe cannot directly check their result, but
they do obtain an asymmetry Δ ¼ −δ, and so their results

6The R appearing in Eq. (30) arises from the use of spherical
coordinates, with the center of the Earth as our origin, rather than
the presence of the Earth itself.
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agree with the findings of this work. In contrast to Ref. [9],
this work demonstrates that Eq. (3) is necessary in order for
the flat-Earth result to hold.
Reference [10] utilizes a different approach to compute

the neutrino-antineutrino asymmetry. Rather than treating
the CνB as monochromatic, they account for its full Fermi-
Dirac distribution and instead appeal to thermal arguments
to demonstrate that the asymmetry should be OðδÞ. In
particular, their arguments imply that the asymmetry should
be OðδÞ, even when Eq. (3) is satisfied. Figure 3 clearly
demonstrates that this is not the case for a monochromatic
background, as most parameter values above the black line
exhibit an asymmetry larger than OðδÞ. However, because
there are some values which exhibit positive asymmetries
and somewhich exhibit negative asymmetries, it is possible
that after averaging over neutrino momentum, the total
asymmetry is reduced to OðδÞ. These large negative
asymmetries are simple to understand from Fig. 1. When
Eq. (3) is satisfied, ray 2a has a low probability to tunnel to
the dashed red line, and so for most parameter values, we
will observe an underdensity of antineutrinos. However, for
precisely the same reason that it is difficult for this ray to
tunnel into the Earth, it is also difficult for it to tunnel out of
the Earth. That is, if ray 2a does tunnel in, it will find itself
in a long-lived bound state (sometimes called a “whispering
gallery mode” [13]), and so it can instead contribute a large
antineutrino overdensity. As can be seen in Fig. 3, the
negative-asymmetry resonances corresponding to these

bound states can be quite narrow, and so integrating over
neutrino momentum precisely requires very good resolu-
tion in momentum. We therefore do not attempt to verify
the claims of Ref. [10], but instead simply present Eq. (3) as
a different argument for why the asymmetry should be
small. We do note though that the arguments in Ref. [10] do
not rely on the particular geometry of the Earth, and so
apply even when the asphericity of the Earth is accounted
for.
Finally, Appendix C of Ref. [11] also performs a number

of numerical computations related to the problem consid-
ered in this work. Reference [11] simulates scattering of a
thermal background, in both 2þ 1 and 3þ 1 dimensions.
They find OðδÞ effects which are consistent with the
thermal arguments advanced in Ref. [10].
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