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We discuss in detail the 1þ 1-dimensional superconformal field theory dual to type II string theory on
AdS3 × S3 × T4, emphasizing the string theoretic aspects of this duality. For one unit of Neveu-Schwarz
(NS-NS) 5-brane flux (Q5 ¼ 1), this string theory has been suggested to be dual to a grand-canonical
ensemble of T4N=SN free symmetric orbifold conformal field theories (CFTs). We show how the string
genus expansion emerges to all orders for the free orbifold grand-canonical correlation functions. We also
discuss how the strong coupling limit of the NS-NS string theory arises (even at largeN) in the free orbifold
description, and argue why this limit does not have a weakly coupled RR description. The dual conformal
field theory (CFT) includes (for all values of Q5) an extra T4 factor that is decoupled from perturbative
string theory. We discuss the exactly marginal deformations that relate the different values of Q5, including
the precise JJ̄ deformations mixing this extra T4 with the symmetric orbifold.
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I. INTRODUCTION AND SUMMARY

The duality between type II string theory on AdS3 ×
S3 × T4 (which can be viewed as the near-horizon limit of
Q1 D1-branes and Q5 D5-branes wrapped on T4) and a
specific 1þ 1-dimensional N ¼ ð4; 4Þ superconformal
field theory (SCFT) (the “D1-D5 SCFT”) is one of the
original examples of the AdS/CFT correspondence [1,2]. It
shares many features with other examples of the AdS/CFT
correspondence; forQ1 ≫ Q5 ≫ 1 the theory has one limit
of its continuous parameters where it is described by string
theory on a weakly coupled and weakly curved back-
ground, and another limit where it is a free field theory [a
free symmetric orbifold ðT4ÞQ1Q5=SQ1Q5

]. However, it also
has several advantages compared to higher-dimensional
examples, most notably the fact that when the background
has purely Neveu-Schwarz (NS-NS) charges the string
world sheet theory is under very good control, either in the
Ramond-Neveu-Schwarz (RNS) formalism [3–10] (for
Q5 > 1) or in the hybrid formalism [11–14].
Many features of this theory, such as its moduli space [15],

chiral ring [16,17], protected [18–24] and unprotected [25–36]
correlators, and its perturbative string spectrum [14,37]
were studied and understood over the years. However, some

of its features, in particular features related to string
perturbation theory, are more subtle. In this paper we
review what is known about this theory, highlighting three
specific confusing issues and how they are resolved.
We begin in Sec. II by reviewing this theory from various

different points of view—the supergravity approximation,
the CFT, and the string world sheet. In particular, we
describe the parameter space of the theory and the relations
between theories with different (relatively prime) values of
Q1 and Q5 (and the same N ¼ Q1Q5).
In Sec. III we review one of the strange features of this

theory, the fact that perturbative string theory in the back-
ground with only NS-NS fluxes on AdS3 and on S3 is not
dual to a specific SCFT but rather to a grand-canonical
ensemble of SCFTs (with different values of Q1). This fact
was suspected based on the world sheet in the RNS
formalism forQ5 > 1 [7,38]. ForQ5 ¼ 1, where the theory
is dual to a free symmetric orbifold, the relation between
string theory and the SCFT can be analyzed in great detail.
We describe (following [39–41]; see also [20,29,42]) how
correlation functions of free symmetric orbifolds SymNðMÞ
have a 1=N expansion. However, this expansion does not
map directly to a string theory, while its grand-canonical
version does, and we write in detail the relation between
string theory and CFT correlation functions. Themain result
is Eq. (3.12), which shows how appropriately defined grand-
canonical correlation functions exhibit an exact string genus
expansion (generalizing the relation between the partition
functions, discussed in [43–45]). We comment on the
generalization of this relation to Q5 > 1.
In Sec. IV we discuss the fact that even though the

Q5 ¼ 1 background [with vanishingRamond-Ramond (RR)
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scalars] maps to a free orbifold theory for any value
of its parameters, with the 1=N expansion of the orbifold
mapping to perturbative string theory in the NS-NS
description of this background, there is a region in
parameter space where the NS-NS string becomes strongly
coupled and an S-dual string seems to become weakly
coupled. We show that in this region of parameter space
the 1=N expansion of the free orbifold breaks down, and
discuss the fact that even though naively the string
coupling in the dual RR description can become arbitrarily
weakly coupled, this description is never really weakly
coupled (similar to the behavior of type IIB string theory
on AdS5 × S5 with a small integer flux N, which does not
become weakly coupled even when gs → 0).
Finally, in Sec. V, we describe a mysterious feature of the

CFT, which is that it includes an extra T̂4 factor, which is
completely decoupled when the rest of the CFT is a free
symmetric orbifold (for general values of the parameters,
this factor only couples to the rest of the SCFT through JJ̄
deformations). Usually, string theory does not allow for
decoupled sectors (since all states couple to gravity), but in
this case, the decoupled sector is a topological Chern-
Simons (CS) theory on AdS3, and we discuss to what extent
and how it couples to the rest of string theory for general
values of the parameters.
Our analysis suggests various interesting future direc-

tions. When N is not prime, the CFT has a singular limit
corresponding to every N ¼ Q1Q5 factorization with
Q5 > 1, in which its spectrum becomes continuous
(described by “long strings” on AdS3 [46]). The CFT also
has another singular limit where it is described by the
orbifold ðT4ÞN=SN with a vanishing theta angle at the Z2

singularity, and it would be nice to know if this limit has
some controllable string theory description. Our results in
Sec. V suggest various properties of string theory on AdS3
and its D-branes, and it would be nice to confirm these
properties directly. It would also be interesting to under-
stand in more detail the precise grand-canonical ensemble
that is dual to string theory on the NS-NS background
with Q5 > 1.
The discussion of the free orbifold limit can be gener-

alized to other purely NS-NS type IIB backgrounds with 1
unit of 3-form flux on an S3, such as AdS3 × S3 × K3 or
AdS3 × S3 × S3 × S1 [47]. However, in those cases there is
no direct relation to other values of the flux, so it is not clear
what can be said about them. It would be interesting to
understand what can be said about other backgrounds, like
orbifolds of AdS3 and/or S3 [48–51], type IIA string theory
on AdS3 × S3 × K3 [52] and heterotic string theories
(including nonsupersymmetric ones [53,54]) on AdS3.
Last but not least, it would be nice if the detailed

understanding of the duality between free orbifolds and
string theory could be generalized to the case of free gauge
theories with continuous gauge groups.

II. A REVIEW OF TYPE II STRING THEORY
ON AdS3 × S3 × T4 AND ITS DUAL CFT

Oneway to obtain type II string theory on AdS3×S3×T4

is by considering the near-horizon limit [1] of Bogomol'nyi-
Prasad-Sommerfield (BPS) strings preserving 2dN ¼ð4;4Þ
supersymmetry in type II string theory on T4 (coming from
fundamental strings, wrapped NS5-branes or 8 types of
wrapped D-branes). The type IIA and type IIB cases are
related by T duality so there is no need to discuss them
separately, for convenience we will use the type IIB
language throughout this paper. Type II string theory on
T4 has an SOð5; 5;ZÞ U-duality group, under which the ten
string charges transform as a vector. By a U-duality trans-
formation one can go to a framewherewe have onlyD-string
charge Q1 and wrapped D5-brane charge Q5, and we will
focus on this case in our discussion. By S duality these
configurations are identical to configurations carrying Q1

units of fundamental string charge andQ5 units of wrapped
NS5-brane charge. In this section, we review what is known
about these configurations from three different points of
view—supergravity, the string world sheet, and the dual
CFT. We will then review how U duality relates different
AdS3 backgrounds.

A. Supergravity solutions

The near-horizon limit ofQ1D1-branes andQ5D5-branes
wrapped on a T4 is AdS3 × S3 × T4. String theory on T4 has
25massless scalar fields, including the metric andB-field on
the T4 (16 scalars), the dilaton (1 scalar), and 8 RR scalars.
When both Q1 and Q5 are nonzero (as we will assume
throughout this paper) 5 of these scalars (4 of the RR scalars
and the overall volumeof theT4) are fixed in thenear-horizon
limit, while the other 20 scalars remain as moduli.
We will begin by focusing on the case where the RR

scalars vanish, while the string coupling takes some
arbitrary value g10, and the torus has some fixed shape
and B field. In this case the near-horizon limit is
AdS3 × S3 × T4, with RR 3-form flux on AdS3 and on
S3, where the radius R of AdS3 and S3 and the volume of T4

are given by (up to numerical constants that will not be
important for our discussion):

R2

α0
¼ g10Q5¼ g6

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
;

volðT4Þ
α02

¼Q1

Q5

; g210¼ g26
Q1

Q5

:

ð2:1Þ

Here we defined the six-dimensional string coupling g6 in
the standard way, and the expressions are derived from the
supergravity solution for these branes, so they are reliable
when R and volðT4Þ are much larger than the string scale.
Naively, perturbative string theory in this RR background is
reliable when g6, g10 ≪ 1, while supergravity is valid when
Q1 ≫ Q5, g10Q5 ≫ 1. The 6- and 10-dimensional Newton
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constants (in AdS units) in the background described
above are

Gð6Þ
N

R4
¼ 1

Q1Q5

;
Gð10Þ

N

R8
¼ 1

g26Q1Q3
5

: ð2:2Þ

Performing S duality, we find a purely NS-NS back-
ground (that also arises as the near-horizon limit of Q1

fundamental strings and Q5 NS5-branes). In this back-
ground, there is NS-NS 3-form flux on AdS3 and on S3

instead of RR 3-form flux. While the ten-dimensional
string coupling in this new frame, g010 ¼ 1=g10, is still a free
parameter, the six-dimensional string coupling is now
fixed, while the volume of the torus in string units in this
frame is a free parameter which we will denote by v4,
related to the RR frame by v4 ¼ g−26 . The new background
is given by

R2

α0
¼Q5;

volðT4Þ
α02

¼ v4; g026 ¼Q5

Q1

; g0210¼ v4
Q5

Q1

:

ð2:3Þ

In this background all 16 scalars parametrizing the metric
and B field on the T4 are massless moduli, as well as 4 RR
scalars (which we are still setting to zero). Perturbative
string theory is now valid whenever g06; g

0
10 ≪ 1, while

supergravity is valid for Q5; v4 ≫ 1. The NS-NS descrip-
tion is invariant under a T-duality transformation inverting
the four cycles of the torus, so we can choose without loss
of generality v4 ≥ 1 (implying that for fixed Q1, Q5, the
ten-dimensional string coupling cannot be arbitrarily
small). Newton’s constants remain the same, and in terms
of v4 they are given by (2.2)

Gð6Þ
N

R4
¼ 1

Q1Q5

;
Gð10Þ

N

R8
¼ v4

Q1Q3
5

: ð2:4Þ

B. The dual conformal field theory

Thegeneral arguments of theAdS/CFT correspondence [1]
imply that string theory on the AdS3 background discussed
above should be dual to the 2dN ¼ ð4; 4Þ SCFT that arises
at low energies on a bound state of Q1 D strings and Q5

D5-branes wrapped on T4. In this section we will discuss
this theory when all the RR scalars vanish. One way to
describe this theory is as a sigmamodel on themoduli space
ofQ1 instantons of aUðQ5Þ theory on T4 [T duality implies
that another way to describe the same low-energy theory is
as a sigma model on the moduli space ofQ5 instantons of a
UðQ1Þ gauge theory on a dual T4]. The dimension of this
moduli space is 4Q1Q5 þ 4, where the first factor comes
from the moduli space of Q1 instantons of SUðQ5Þ on T4,
and the second factor from the Wilson lines of the overall

Uð1Þ in UðQ5Þ [which do not affect the SUðQ5Þ gauge
fields, except through global constraints]. The correspond-
ing conformal field theory thus has central charge
c ¼ 6Q1Q5 þ 6, consistent at large Q1,Q5 with the central
charge following from the supergravity background of the
previous section (2.2), (2.4). We will denote N ≡Q1Q5.
In general, this sigma model is a complicated SCFT, and

no simple theory that flows to it at low energies is known. In
the limit that the volume of T4 becomes infinite, it can be
identified (for Q5 > 1) as the conformal field theory
describing the Higgs branch of a UðQ1Þ N ¼ ð4; 4Þ super-
symmetric QCD theory with one hypermultiplet in the
adjoint representation andQ5 hypermultiplets in the funda-
mental representation (this theory decouples at low energies
from the theory of the Coulomb branch [55,56], which
corresponds to separating theD strings from theD5-branes).
The sigma model on the instanton moduli space is

singular for Q5 > 1 when instantons go to zero size; for
a single SUð2Þ instanton on R4 becoming small, this
singularity is locally an R4=Z2 singularity with a vanishing
theta angle. At these singularities, the sigma model devel-
ops semi-infinite throats (which before taking the low-
energy limit connect the Higgs branch to the Coulomb
branch [57]), with a continuous spectrum of dimensions
above a gap of order Q5.
The moduli space simplifies significantly for Q5 ¼ 1; in

this case all instantons are pointlike, so the moduli space of
instantons becomes ðT4ÞQ1=SQ1

. Including the Wilson
lines, and noting that in this case N ¼ Q1, the CFT is
expected to be a sigma model on

ðT4ÞN=SN × T̂4 ð2:5Þ

[where the second T̂4, arising from theUð1ÞWilson lines, is
inversely related to the first T4]. This moduli space has
orbifold singularities when instantons come together on the
T4 (these are not related to the small-instanton singularities
discussed above). A priori the value of the theta angle at
these singularities is not clear, but we will review below the
arguments that it has the value θ ¼ π corresponding to a free
orbifold (rather than the value θ ¼ 0 that appeared above).1

1Naively this statement contradicts statements made in the
previous paragraphs, because we stated that the ðQ1; Q5Þ ¼ðN; 1Þ theory is the same as the ðQ1; Q5Þ ¼ ð1; NÞ theory
(possibly at different values of the moduli), and naively the
latter theory of a single instanton in UðNÞ is expected to have a
continuous spectrum because of the small-instanton singularity.
However, it turns out that there are actually no smooth SUðNÞ
instantons on T4 [58], so the naive expectation that the local
small-instanton singularity looks the same on T4 and on R4 does
not hold in the Q1 ¼ 1 case. Our arguments imply that the sigma
model on the one-instanton moduli space of UðNÞ on T4 should
be given by the free orbifold (2.5), which one would naively
obtain from the position of a zero-size instanton and from the
UðNÞ Wilson lines in this theory, and it would be interesting to
confirm this directly.
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Returning to the case of generalQ5, as in anyN ¼ ð4; 4Þ
SCFT, the super-Virasoro algebra contains SUð2ÞL ×
SUð2ÞR affine Lie algebras of level Q1Q5 þ 1. In addition,
the SCFT described above has 8 left-moving and 8 right-
moving Uð1Þ affine Lie algebras. 4þ 4 of these sym-
metries have levelQ1, and are related to the compact scalars
describing the center of mass position of the Q1 instantons
(which lives on T4). The other 4þ 4 affine Lie algebras
have level Q5, and are related to the Uð1Þ ⊂ UðQ5ÞWilson
lines (which live on the dual T̂4). These symmetries are
manifest in the Q5 ¼ 1 case (2.5). In the dual supergravity
description of the previous subsection, if we consider the
NS-NS background, the first 8Uð1Þ’s arise from the NS-NS
sector (as the gμi and Bμi components of the metric and B
field, where i labels the four coordinates of T4), and the
other 8Uð1Þ’s arise from the RR sector (by taking suitable
components of the RR 2-form and 4-form potentials). The
level of the affine Lie algebras in the CFT is related to the
Chern-Simons level of the correspondingUð1Þ gauge fields
on AdS3, and the levels mentioned above agree with type II
supergravity on AdS3 × S3 × T4.

C. The string world sheet

There are various methods for studying string theory in
the RR AdS3 × S3 × T4 background—the Green-Schwarz
string, the pure spinor string and a hybrid formalism.
However, as in other RR backgrounds, quantization of the
string is not yet well-understood in any of these approaches.
The situation is much better in the NS-NS background.

This background can be described in the standard RNS
formalism [with N ¼ ð1; 1Þ supergravity on the world
sheet], in which the world sheet action is a sum of
supersymmetric Wess-Zumino-Witten (WZW) models of
SLð2Þ (describing AdS3 with NS-NS flux) and SUð2Þ
(describing S3 with NS-NS flux), both at level Q5, and a
supersymmetric sigma model on T4 (together these give a
critical type II superstring). The supersymmetric SUð2Þ
WZW model can be written as a direct sum of a bosonic
SUð2Þ model at level ðQ5 − 2Þ and three free fermions, so
this description makes sense for Q5 ≥ 2, and it was
investigated in detail in [5,7].
One unusual property of string theory in these back-

grounds is that it has a continuous spectrum. From the point
of view of the world sheet this arises because SLð2Þ has
representations with continuous “spins,” while in space-
time it is related to long strings [46] winding around the
angular direction of AdS3, that can go all the way to the
boundary at a finite cost in energy (so their radial
momentum is a continuous parameter). This continuous
spectrum can be related to the continuous spectrum arising
at small-instanton singularities in the SCFT, discussed in
the previous subsection.
The NS-NS background may also be described in the

hybrid formalism for the world sheet, where the AdS3 × S3

part corresponds [11] to a super-WZW model on the
supergroup PSUð1; 1j2Þ at level Q5 (for a recent review
see [59]). This description makes sense for any integer
value of Q5. For Q5 > 1 it agrees with the RNS formalism
discussed above, while for Q5 ¼ 1 it behaves very differ-
ently and, in particular, it does not have a continuous
spectrum. It was shown in [60] that the spectrum [13,14]
and correlation functions [42,61–63] of string theory in
this background with Q5 ¼ 1 precisely reproduce those of
the symmetric orbifold ðT4ÞQ1=SQ1

, and we will discuss the
precise form of this matching (and its consistency with our
discussion in the previous subsection) in more detail below.
Together with the discussion of the previous subsection, and
with the fact that this background (like the free orbifold)
maps to itself under T duality, this strongly suggests that
string theory on the ðN; 1Þ NS-NS AdS3 background with
vanishingRR scalars is dual to the CFT (2.5) with θ ¼ π, the
free orbifold value.

D. Relations between different backgrounds

Naively, the backgrounds with different values of
ðQ1; Q5Þ are distinct, and each of them corresponds to a
different SCFT. But in fact, as discussed in detail in [15],2

all the backgrounds with the same N ≡Q1Q5 and
with mutually prime ðQ1; Q5Þ are related by SOð5; 5;ZÞ
U-duality transformations of type II string theory on
T4. Those SOð5; 5;ZÞ transformations that preserve
ðQ1; Q5Þ remain as duality symmetries of string theory
on AdS3 × S3 × T4, and form a subgroup of SOð4; 5;ZÞ
[among these, we already mentioned the SOð4; 4;ZÞ
T-duality in the NS-NS description]. On the other hand,
the remaining transformations relate the theories with
different values of ðQ1; Q5Þ; we already described the
S-duality transformation that maps NS-NS charges to RR
charges, and in this subsection we focus on transformations
between backgrounds with purely NS-NS charges (a more
general discussion of these dualities will be given in
Sec. V). In our descriptions in the previous subsections,
the theories with differentQ1 andQ5 looked very different,
because we focused on the codimension 4 subspace of their
moduli space where the RR scalars vanish. However, the
duality transformations do not leave this subspace invari-
ant, but rather they relate configurations with vanishing RR
scalars for one value of ðQ1; Q5Þ to configurations with
nonzero RR scalars for other values. When the string
coupling in one description is small, it is large in all
other descriptions, so there is no direct relation between

2In [15] it was assumed that the free orbifold (2.5) sits at
Q5 ¼ 1 at a nonzero value of the RR scalar χ, since at the time it
was believed that the χ ¼ 0 theory has a continuous spectrum (as
it does for higher values of Q5). However, up to moving the
subspace associated with the free orbifold to sit at χ ¼ 0, the
analysis of the dualities relating different backgrounds in [15] is
still valid, and we review it in this subsection and in Sec. V.
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the perturbative string expansions for different values of
ðQ1; Q5Þ.
Turning on the RR scalars corresponds to an exactly

marginal deformation of the CFT, so this implies that all the
theories with different mutually prime ðQ1; Q5Þ but the
same N ¼ Q1Q5 sit on the same moduli space of exactly
marginal deformations. In particular, they can all be
described as exactly marginal deformations of the free
sigma model on (2.5). This sigma model actually has an
84-dimensional space of exactly marginal deformations.
Sixteen of these are the metric and B field on the T4 in
ðT4ÞN=SN (which map to the metric and B field of the T4 in
the NS-NS description). Four additional ones are blowup
modes of the Z2 singularity of this orbifold. The other 64
exactly marginal deformations take the form JiJ̄j, where
i (j) go over the 8 left-moving (right-moving)Uð1Þ currents
of the SCFT. 16 of these deformations are the metric and B
field on the T̂4 in (2.5), 16 of them can be thought of as
changing the metric and B field on the “center of mass” T4

in the orbifold, and the remaining 32 mix the Uð1Þ
symmetries of the orbifold and those of T̂4. As discussed
in [15], turning on the 4 RR scalars on AdS3 corresponds in
the CFT to a linear combination of turning on the blowup
modes of the orbifold, and specific JJ̄ deformations mixing
the T4 and T̂4 symmetries. For every mutually prime pair
ðQ1; Q5Þ there is a codimension 4 subspace of the
20-dimensional space of non-JJ̄ deformations that maps
to the ðQ1; Q5Þ background with vanishing RR scalars, and
on that subspace the specific JJ̄ deformations that are
related to string theory on AdS3 deform the currents such
that there are 4þ 4 Uð1Þ currents of level Q1, and 4þ 4
additional currents (orthogonal to them) of level Q5. In
Fig. 1 we show a slice of these subspaces forN ¼ 30, where
we turn on only the string coupling and the 10-dimensional
RR scalar field χ (this determines also the value of the RR
4-form on the T4); we draw this slice in the language of the
RR background with Q1 ¼ 30 and Q5 ¼ 1 (with a fixed T4

shape), and describe the positions of the subspaces men-
tioned above in this parametrization (a similar figure for
Q1 ¼ 6 appears in [15]). This background is mapped to
itself under a Γ0ðNÞ subgroup of an SLð2;ZÞ × SLð2;ZÞ
subgroup of the U-duality group, which acts on τ ¼ χ þ i

g10
in the same way as the Γ0ðNÞ subgroup of SLð2;ZÞ, and we
draw a fundamental domain containing all inequivalent
theories (in this slice).3 In Sec. V we will describe in detail
where all the subspaces mentioned above [of ðQ1; Q5Þ
charges with vanishing RR fields] sit inside this slice; they
are denoted by thick black lines in the figure. Note that the
subspaces corresponding to charges ðQ1; Q5Þ and ðQ5; Q1Þ
are identical, since the two descriptions are related (for fixed

T4 shape) by a combination of S duality, T duality on all 4
cycles, S duality and another T duality on all 4 cycles.
The other 64 exactly marginal deformations, that are not

related to scalar fields in AdS3, are all related to changes in
the boundary conditions for the Uð1Þ8 ×Uð1Þ8 CS gauge
fields on AdS3 (these can be written as 8 copies of a
k
4π

R
A ∧ dB theory, where k is equal to either Q5 or Q1,

depending on the gauge field). For a given choice of
complex coordinates in the CFT, they can be thought of as
choosing which 8 bulk gauge fields have a boundary
condition in which their z component is fixed at the

FIG. 1. The subspace of the moduli space parametrized by
τRR ¼ ðχ þ i=g10Þ in the RR description of the Q1 ¼ 30, Q5 ¼ 1

background, for fixed T4 moduli. A fundamental domain under
the U-duality subgroup Γ0ðNÞ [that keeps both the charges
ðQ1; Q5Þ ¼ ðN; 1Þ and the T4 normalized metric fixed] is
bounded by the grey lines, and divided into different SLð2;ZÞ
fundamental domains. The ðQ1; Q5Þ ¼ ðN; 1Þ NS-NS back-
ground with vanishing RR scalars sits on the imaginary axis
at χ ¼ 0, and is weakly coupled close to τ ¼ 0. Its S dual, the
ðN; 1Þ RR background, is weakly coupled close to τ ¼ i∞. The
two limits are continuously connected to each other as a function
of g10, drawn in a vertical thick black line, and this line maps to
the free orbifold (2.5). For every other ðQ1; Q5Þ background with
Q1Q5 ¼ N, there is a line describing its singular (χ0 ¼ 0) locus,
connecting the weakly coupled ðQ1; Q5Þ NS-NS and RR back-
grounds. These are the rest of the thick black lines in the figure.
Up to the sign of χ, the (15,2) line connects the NS-NS theory at
τ ¼ 1=2 to the RR theory at τ ¼ 7=15, the (10,3) line connects
the NS-NS theory at τ ¼ 1=3 to the RR theory at τ ¼ 3=10, and
the (6,5) line connects the NS-NS theory at τ ¼ 1=5 to the RR
theory at τ ¼ 1=6.

3The number of fundamental domains of SLð2;ZÞ inside a
fundamental domain of Γ0ðNÞ is N

Q
pjN;p primeð1þ p−1Þ [64].

For N ¼ 30, which we draw in the figure, it is 72.
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boundary (so that they correspond to antiholomorphic
currents), while the other 8 gauge fields have their z̄
component fixed at the boundary.
Note that for Q5 > 1 with vanishing RR scalars the CFT

contains a long-string sector with a continuous spectrum,
which is far from evident in our description of the CFT as a
deformation of the symmetric orbifold. The subsector of
the CFT describing the long strings is believed to be
described as an SQ1

symmetric orbifold [46,65–67], and it
would be nice to understand how this is related to the
picture described above.4

There is another subspace of the moduli space of the
deformed free orbifold which is singular, which is the
subspace where the metric is given by (2.5) but the theta
angle on the vanishing 2-cycle at theZ2 orbifold singularity
of (2.5) is taken to θ ¼ 0 (instead of its value θ ¼ π at the
free orbifold point [69]). This subspace is not the same as
the singular subspaces that are weakly coupled NS-NS-
background strings; we believe that in the RR background
of Fig. 1 it sits at χ ¼ �1=2, on the boundary of the
fundamental domain.

E. Questions

The picture described in this section raises 3 questions:
(1) String theory in NS-NS AdS3 backgrounds is

believed [7,8,38,45,70] to describe not a background
with fixedQ1, but rather a grand-canonical ensemble
of theories with differentQ1 (and the sameQ5). How
is this consistent with the picture described above,
and how is it consistent with the detailed matching of
the correlation functions of the Q5 ¼ 1 string to the
free orbifold (2.5)?

(2) For Q5 ¼ 1 we mentioned that the NS-NS perturba-
tive expansionmatches the 1=N expansion of the free
orbifold (2.5). However, the orbifold is free for any
value of the moduli of the torus, while (2.3) implies
that the ðN; 1ÞNS-NS string theory becomes strongly
coupled oncev4 > N.Moreover, for v4 ≫ N it seems
that the same theory should have a different weakly
coupled description, as string theory on the RR
background. How is this consistent?

(3) The SCFT (2.5) (dual to string theory with Q5 ¼ 1)
has a decoupled T̂4 sector, which did not show up in
the mapping of this string theory to the free orbifold.
Moreover, this sector is still essentially decoupled
from the rest of the SCFT even after we deform it by
JJ̄ deformations to go to other values of ðQ1; Q5Þ
(one can think of these deformations as just modi-
fying the energies of states with given charges). How
is this decoupled sector realized in string theory?

The answers to these questions will be discussed in the
next three sections of the paper, respectively. The three

sections are almost completely independent of each other,
so readers who are just interested in one question can jump
directly to the relevant section.

III. STRING THEORY AND THE
GRAND-CANONICAL ENSEMBLE

The near-horizon limit suggests that (the nonperturbative
completion of) string theory on AdS3 × S3 × T4 with fixed
fluxes Q1 and Q5 should be equivalent to the conformal
field theories discussed above, at any point in their moduli
space. In principle, one can consider instead of the quantum
gravity theory (and its dual CFT) with some fixed flux Q,
the grand-canonical ensemble defined as the sum over the
theories with flux Q, weighted by e−μQ. In the bulk this can
be thought of as choosing a different boundary condition
for the 2-form field potential on AdS3, for which the
integral over AdS3 of its field strength is equal to Q.
Somewhat surprisingly, it turns out that perturbative

string theory on the NS-NS background with NS5-brane
flux Q5 computes such a grand-canonical ensemble
with respect to Q1, rather than being dual to a specific
conformal field theory.5 This was first understood in the
RNS formalism for Q5 ≥ 2 [7,8,38], and it was then
claimed to be the case also in the hybrid formalism for
Q5 ¼ 1 [45,70]. In this section, we explain in detail how the
grand-canonical ensemble forQ5 ¼ 1 is consistent with the
relation between free orbifold correlation functions and
perturbative string theory.

A. A brief review of string theory
in the NS-NS background

In this subsection we review the relevant information
about string theory on AdS3 × S3 × T4 with a purely
NS-NS background.
As reviewed in Sec. II A, when we take the near-horizon

limit of Q1 fundamental strings and Q5 NS5-branes
wrapped on T4, we obtain this AdS3 background, with a
fixed value for the six-dimensional string coupling (related
to the vacuum expectation value of the dilaton field) given
by g026 ¼ Q5=Q1. So from this point of view, we would
expect string theory on the NS-NS background to have a
fixed value of Q1 and not to have any continuous NS-NS
parameters beyond the moduli of the T4.
However, if we directly study string theory on the NS-NS

AdS3 background, either in the RNS formalism (for
Q5 ≥ 2) [5,7,8,38] or in the hybrid formalism [45,70],
we find a rather different picture. The world sheet action
depends explicitly on Q5, but the parameter Q1 does not
appear in it. On the world sheet one can have as usual a

4It was suggested in [68] that perhaps even the full CFT has a
description as a deformed symmetric orbifold of this type.

5Note that perturbative string theory in the RR background is
believed to correspond to fixed fluxes; in particular string theory
in this background has a T-duality symmetry exchanging Q1

and Q5.
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continuous parameter gs related to the coefficient ofR
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðhÞp

R½h�where h is theworld sheet metric, which
weighs connected string diagrams arising from genus g
surfaces by g2g−2s . Unlike in most other string theories, here
this parameter is not related to the expectation value of any
field in space-time, but it is still present on the world sheet.
In addition, when computing from the world sheet the

central charge appearing in the space-time operator product
expansion (OPE) of two CFT energy-momentum tensors
or NS-NS Uð1Þ currents, one finds that it is given by
c ¼ 6Q5I and by k ¼ I, respectively, where I is a specific
operator on the world sheet (naively it depends on a
position on the boundary of AdS space, but in fact this
dependence is trivial) [5]. If the string theory corresponded
to the CFT suggested by the near-horizon limit, we would
expect to haveQ1 appearing in these equations instead of I,
but instead the operator I appears, whose correlation
functions are not equivalent to replacing it by a constant.
The correlation functions of this operator are not arbitrary,
but are fixed by the world sheet theory. The fact that I is not
a constant prevents the interpretation of string theory as
dual to a specific CFTwith a given central charge, and from
having the expected space-time factorization properties.
The interpretation of this property was suggested in

[38,45,70]. Since I is a vertex operator on the world sheet, it
is natural to turn on a coupling μ for it, like for any other
vertex operator. Then, naively one obtains a string theory
labeled by two continuous parameters, gs and μ. However,
the properties of correlation functions of I imply a specific
dependence of correlation functions on μ [8,38], and this
dependence is such that its effect can be swallowed into a
rescaling of the string coupling gs and a μ-dependent
normalization of the world sheet vertex operators. So, in
this normalization of the vertex operators, string theory on
AdS3 depends just on a single continuous parameter gs. It
was then suggested that this string theory should be identified
with a grand-canonical ensemble of the ðQ1; Q5Þ CFTs
reviewed in Sec. II, with the same Q5 but with different
values of Q1, weighted by pQ1, with some specific relation
between the continuous parameters p and gs. It was argued
in [38] that one can obtain the CFT with fixed Q1 by a
Legendre transform of the string theory. In this section,
following the analysis ofQ5 ¼ 1 partition functions in [45],
we describe the precise relation between the grand-canonical
ensemble of CFTs and the dual string theory. ForQ5 ¼ 1we
argue that the preciseway to obtain fixed-Q1 CFT correlation
functions from string theory is more complicated than a
Legendre transform (though it agrees with it at leading
order), and we conjecture that this should be true also
for Q5 > 1.

B. The genus expansion for symmetric orbifolds

Before introducing the grand-canonical ensemble, it
is illuminating to understand why the fixed N orbifold

theory (2.5) does not behave as a string theory. Specifically,
it does not have a proper genus expansion. Even though we
focus on the ðT4ÞN=SN orbifold in this paper, our analysis
of the free orbifold in this section is relevant for any
symmetric orbifold.
We begin by briefly reviewing the construction of the

genus expansion for the (fixed N) ðT4ÞN=SN symmetric
orbifold, following [39,40] (see also [18,20,29,42]). The
Hilbert space of the symmetric orbifold at low energies and
large N can be understood as a Fock space of single-cycle-
twist operators, divided into different w sectors. The basic
operator for a given such sector 1 < w ≤ N is the w-cycle
twist operator, defined as

σwðzÞ ¼
1

wðN − wÞ!
X
h∈ SN

σh−1ð1;…;wÞhðzÞ; ð3:1Þ

where ð1;…; wÞ is the cyclic permutation of the first w
elements, and σgðzÞ is the twist operator with holonomy
g∈ SN permuting the N copies as one goes around it. The
sum over SN ensures the gauge invariance of the operator.
Our choice of normalization may appear nonstandard, but
as we will see below, this is the correct normalization for
comparison with string theory vertex operators. It is
mathematically natural, as the denominator is the stabilizer
size of ð1;…; wÞ in SN (by SN conjugations), so that each
different permutation is counted in (3.1) with weight 1. In
this section we will consider only correlation functions of
σw’s, but the extension to more general single-cycle
operators (with additional CFT excitations in addition to
the twist operator) and to untwisted-sector operators (which
have w ¼ 1) is straightforward.
The insertion of σwð0Þ can be understood as cutting a

hole around z ¼ 0, with a cyclic gluing of w copies of T4

around the boundary circle [different ones for each term
in (3.1)], and a trivial gluing for the rest of the (N − w)
copies. A correlation function of σwðzÞ’s will get contri-
butions from consistent gluings between the insertions.
Each such consistent gluing between the N copies gives a
nontrivial covering of the original CFT manifold. The
contribution of each gluing to the correlation function is
proportional to the partition function of the T4 CFT on the
covering space. For this reason, the covering space is
believed [40] (and later also shown [42,61–63,71]) to be
identified with the string world sheet.
We begin with the two-point function of two σw’s on the

plane (which can be conformally mapped to the sphere),
given by [40]

hσwðzÞσw0 ð0Þi ¼ N!

wðN − wÞ!
δw;w0

jzj2Δw
; ð3:2Þ

with Δw ¼ c
24
ðw − 1=wÞ (where in our case c ¼ 6 is the

central charge of the T4 SCFT). In this case all consistent
gluings are related by a gauge transformation, and the
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topology of the gluing is of a sphere with two insertions of
degree-w branch points (more precisely, this is the topology
of the nontrivial part of the correlation function which
involves w copies of the T4, ignoring all other copies).
We thus understand (3.2) as a single world sheet diagram
contributionwith genus zero. The combinatorial factor of the
diagram can be understood as follows. In the normalization
we choose, each gluing is summed over once, and we only
need to count how many different permutations are gauge
equivalent to ð1;…; wÞ. This is given by N! divided by the
size of the stabilizer of ð1;…; wÞ, which is wðN − wÞ!.
In a general diagram contributing to a correlation

function on the plane, there will be Nc copies of T4 which
are involved in nontrivial permutations, while the other
ðN − NcÞ copies may be viewed as “vacuum diagrams”.
We will call a diagram “connected” if all the Nc copies are
permuted nontrivially (rather than having some of them
only permuted among themselves). By the Riemann-
Hurwitz formula, in connected diagrams Nc is related to
the genus g of the covering space by

Nc ¼ 1 − gþ 1

2

Xn
j¼1

ðwj − 1Þ: ð3:3Þ

The contribution from such connected diagrams goes as

hσw1
ðz1Þ…σws

ðzsÞiconn ¼
Xgmax

g¼0

N!

NcðN − NcÞ!
· ð…Þ; ð3:4Þ

where (…) stands for the contribution of diagrams with the
appropriate value of Nc, given in terms of the path integral
over the appropriate branched covering, divided by the
appropriate vacuum path-integral [39]. For a given Nc,
the combinatorial factor in (3.4) is simply the orbit size
of the cyclic permutation ð1;…; NcÞ in SN ; in a specific
diagram, after choosing the Nc participating sheets and their
cyclic ordering, there is just one permutation from (3.1)
which contributes for each operator. Here we are interested
in the large N limit in which the wi are kept fixed; for finite
values of N there is an extra restriction that Nc ≤ N.
In the literature [39,40] one usually defines a normalized

version σ̃w of the twisted operators (3.1), in which their
two-point function (3.2) is normalized to one. Then one can
ask about the leading largeN behavior of a given connected
diagram to (3.4). The result from genus g diagrams is

hσ̃w1
� � � σ̃wn

iconn;g ∝
N!

NcðN − NcÞ!
Yn
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wjðN − wjÞ!

N!

r

∼ NNc−1
2

P
n
j¼1

wj ¼ N1−g−n=2: ð3:5Þ

This result looks very appealing, after comparing it to the
general structure expected in string theory,

hO1 � � �Oniconn¼
X∞
g¼0

g2g−2þn
s ·

X
Diagramswith genus g

ð…:Þ: ð3:6Þ

A naive comparison gives g2s ¼ 1=N, with an identification
between string theory diagrams and the symmetric orbi-
fold’s sum over branched coverings.
However, this identification actually works only at

leading order in 1=N. We will give two different reasons
to suspect the identification. The first reason, which was
noticed already in [20], is that the right-hand side of (3.5)
describes only the leading 1=N behavior from a given
genus, and receives 1=N corrections from expanding the
product in the middle. Thus, at subleading order in 1=N, a
given correlator will receive contributions from higher-
genus diagrams, but also from the subleading corrections to
the planar diagrams, and we find

hO1 � � �Oniconn¼ gn−2s · ðgenus0Þ
þgns · ðgenus1þ# · genus0Þþ �� � : ð3:7Þ

This is not what we expect in (3.6). Note that because of the
structure of (3.5), it is not possible to fix this by redefining
gs and/or the operator normalizations at higher orders
in 1=N.
The second problemwith identifying g2s ¼ 1=N arises for

disconnected diagrams. For simplicity, consider the four-
point function of two w1 and two w2 twist operators.
Diagrammatically the four-point function has a leading
disconnected piece, with w1 sheets permuted among them-
selves and w2 other sheets permuted among themselves.
Following the string theory picture, one would expect this
contribution to be equal to the product of the two two-point
functions. However, for a given N, the combinatorial factor
associated with this disconnected piece also accounts for the
fact that the w1 and w2 cycles should not overlap. The exact
ratio between the disconnected piece and the product of the
connected diagrams is thus

hσw1
ðz1Þσw1

ðz2Þσw2
ðz3Þσw2

ðz4Þidisc
hσw1

ðz1Þσw1
ðz2Þihσw2

ðz3Þσw2
ðz4Þi

¼ ðN − w1Þ!ðN − w2Þ!
N!ðN − w1 − w2Þ!

¼ 1þOð1=NÞ; ð3:8Þ

and is not exactly equal to 1. As a result, at fixed N,
correlation functions do not obey the expected “cluster
decomposition” of string theory beyond the leading order
in 1=N.6

6We stress that the CFT still maintains standard field-theory
cluster decomposition at fixed N. It is only the string theory
interpretation that breaks. It was noticed in [38] that the string
theory dual for Q5 > 1 does not obey field-theory cluster
decomposition, due to the Legendre transform; we will comment
further on Q5 > 1 below.
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C. The grand-canonical ensemble

To solve this issue we would like to work not with fixed
N but rather in the grand-canonical ensemble with a
chemical potential for N. As we reviewed at the beginning
of this section, this is generally expected for string theory
on AdS3 with NS-NS backgrounds. It was suggested in
[38] that the string theory at Q5 > 1 is related to a fixed
CFT by taking a Legendre transform with respect to the
coefficient of the operator I. A slightly different sugges-
tion was made in [45] for Q5 ¼ 1, that string theory and
the dual CFT are related by a Laplace transform, so that
the string theory corresponds to a grand-canonical ensem-
ble of the ðQ1; Q5Þ theories with the same NS-NS moduli,
with a chemical potential for Q1. In this subsection we
analyze this suggestion in detail for Q5 ¼ 1, generalizing
the analysis of the partition function in [45] to general
correlation functions. In this case we just have a grand-
canonical ensemble of (2.5) with respect to N; since this
does not affect the T̂4 factor, we will ignore it here and
return to it in Sec. V.
Denoting by ZN ½J� the partition function of the

SymNðT4Þ CFT on some manifold with sources J for
various operators, the grand-canonical partition function
is defined as7

Zp½J� ¼
X∞
N¼0

pNZN ½J�; ð3:9Þ

with Z0½J� ¼ 1. Sources for untwisted-sector operators
exist for any N, while sources for twisted operators start
appearing at some Nmin that depends on the twisted sector.
Note that we are summing here ZN ½J� rather than
ZN ½J�=ZN ½0� [which would be the generating function
for correlation functions in the SymNðT4Þ CFT], since
already the vacuum partition function (discussed in [45])
is nontrivial when the CFT lives on higher-genus
manifolds.
Simplifying to the case where we turn on sources just

for the leading twist operators in each twisted sector of
the orbifold, the SymNðT4Þ generating function is given
schematically by8

ZN ½J� ¼
1

N!

Z
DNXe−S½X� exp

 X∞
w¼1

Z
d2zJwðzÞσwðzÞ

!
:

ð3:10Þ

The expansion of ZN ½J� generally includes disconnected
coverings. Some of the connected components include
operator insertions and others, the vacuum diagrams, do
not. The normalization (3.1) exactly allows us to compute
the combinatorial factor from each component on equal
footing. Let us denote by N1;…; Nk and n1;…; nk the
number of copies of T4 of the different connected compo-
nents (which can differ in the number of copies and/or in the
operator insertions) and their multiplicity, respectively, so
that

P
k
i¼1Nini ¼ N. The generalization of (3.4) is given by

ZN ½J� ¼
X∞
n¼0

�P∞
w¼1

R
d2zJwðzÞ

�
n

n!

×
X

Disconnected
diagramsP
k
i¼1

niNi¼N

Yk
i¼1

1

ni!N
ni
i
ðZðiÞ

coveringÞni ; ð3:11Þ

with ZðiÞ
covering the partition function coming from the ith

connected component [such that the product of the partition
functions contains also insertions of n σwj

ðzjÞ operators].9
We stress again that some of these components include no
operator insertions and correspond to vacuum diagrams. For
example, in (3.4) there is a single n1 ¼ 1; N1 ¼ Nc con-
nected diagram with all the insertions, and n2 ¼ N − Nc
vacuum diagrams with N2 ¼ 1 each. For given operator
insertions, not all the possible Ni’s and ni’s are included in
the sum, as only some will correspond to a possible
diagram. For example, only Ni ¼ 1 diagrams are possible
when all wj ¼ 1. Of course, for some values of fwjg there
are no covering spaces at all if the corresponding permu-
tations cannot be multiplied to give the identity permutation
(and in particular there are no diagrams if any wj > N).
Importantly, the only dependence on N in (3.11) is in the

definition of the sum over Ni, ni. Considering now the
grand-canonical ensemble (3.9), the sum over the diagrams
is no longer constrained by N. Notice that as (3.1) is cyclic,
each insertion will appear in a single connected compo-
nent.10 As a result, the now unconstrained sums over n and
ni nicely exponentiate into connected components7As we will discuss below, p is related to the string coupling.

In general it is not clear if the sum (3.9) converges, and
correspondingly we do not expect string perturbation theory to
converge but just to be an asymptotic series. Our statement is that
the asymptotic series on the two sides of the duality are the same.
In the special case of the free orbifold CFTon a sphere wewill see
that the sum does converge (at least for any finite number of
operator insertions).

8We include here the w ¼ 1 case even though σ1ðzÞ is trivial,
because the same formulas will be relevant also for sources for
any other operators from the same sectors.

9We are not writing down explicitly the dependence of the CFT
partition function on the metric (some such dependence is
required by the conformal anomaly), and, if it is on a manifold
of genusG ≥ 1, on the spin structure. The covering spaces inherit
the metric and spin structure in an obvious way from those of
the original manifold.

10The fact that only for single-cycle operators the grand-
canonical partition function exponentiates further supports their
identification as single-string states.
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Zp½J�¼ exp

(X∞
n¼0

ðP∞
w¼1

R
d2zJwðzÞÞn
n!

X
Connected
diagrams

pNc

Nc
Z
fwjg
covering

)
;

ð3:12Þ

with Nc the number of T4 ’s in the connected covering, and

Z
fwjg
covering the corresponding partition function in the pres-

ence of the n σwj
ðzjÞ operators. In this expression, the

vacuum diagrams appear in the n ¼ 0 term in the exponent.
The vacuum partition function is known to exponentiate
nicely in the grand-canonical ensemble [43,44]. Using the
normalization (3.1), (3.12) is a generalization of that
statement which incorporates operator insertions.11

Up to now our discussion was valid for the CFT on any
manifold, but let us now consider the case of the CFTon the
sphere (higher-genus surfaces will be discussed in the next
subsection). In this case there is a single vacuum diagram in
ZN , which gives ZN ½0� ¼ Z1½0�N=N!. Thus, the grand-
canonical partition function for the sphere can also be
written as

Zsphere
p ½J� ¼ exp

(X∞
n¼1

�P∞
wn¼1

R
d2zJwðzÞ

�
n

n!

×
X

Connected
non-vacuum

pNc

Nc
Z
fwjg
covering þ p · Z1½0�

)
: ð3:13Þ

Unlike the fixed N ensemble discussed above, the
exponential form of (3.12) has a nice interpretation as a
perturbative string theory. What is the corresponding string
coupling? Redefining our operators by

σ0w ¼ p−w=2σw; ð3:14Þ

and using (3.3), the grand-canonical generating function for
σ0w takes the form

Zp½J0� ¼ exp

(X∞
n¼0

�P∞
w¼1

R
d2zJ0wðzÞ

�
n

n!

×
X

Connected
diagrams

p1−g−n=2

Nc
Z
fwjg
covering

)
: ð3:15Þ

Comparing with (3.6) gives exactly the string theory genus
expansion with

g−2s ∝ p: ð3:16Þ

The problems discussed in the previous subsection dis-
appear when going to the grand-canonical ensemble.
Note that a priori one may expect string theory to

compute a grand-canonical generating function for the
correlation functions, where the coefficient of pN in the
expansion of an n-point correlation function would be
the correlation function in the Nth CFT. Instead, we find
that string theory computes correlation functions that are
derivatives of Zp½J� divided by Zp½0�, and these are not
directly related to correlators for specific values of N
(which are derivatives of ZN ½J� divided by ZN ½0�). To
obtain correlators with a specific N one has to separately
inverse-Laplace transform the correlation functions and the
vacuum diagrams of the string theory. In particular, it seems
that one should view the grand-canonical ensemble not as a
sum over different independent theories, but more like
summing over some extra “particle number’ charge in a
given theory, that is present also in the vacuum diagrams.12

To make the matching to string theory more precise, we
can define an operator “ICFT” that would couple to logðpÞ,
and that should be related to the operator I discussed above
on the world sheet [5,8,45]. For the free orbifold (Q5 ¼ 1)
this can be identified with “N” inside the sum over N
in (3.9). The vacuum expectation value of ICFT for the CFT
on the sphere (from vacuum diagrams), related to string
theory on Euclidean AdS3, is given by

hICFTi ¼ ∂logðpÞ logðZp½0�Þ ¼ pZ1½0�: ð3:17Þ

This agrees with the expectation that for large p (corre-
sponding to weak string coupling) the sum over N should
have a saddle point with N ∝ p, with a smaller and smaller
variation as p increases. Note that because of the conformal
anomaly, Z1½0� depends on the radius of the sphere that the
CFT lives on as Z1½0� ∝ R2. So the relation between p and
the typical value ofN depends on this radius (see the related
discussion in [75]). However, the relation between the
string coupling and this typical value does not depend

on the radius. This can be seen by rewriting pNcZ
fwjg
covering

in (3.13) as ðpZ1½0�ÞNcðZfwjg
covering=Z1½0�NcÞ, where the

factor in the second parenthesis is independent of the
radius, suggesting that a more precise version of (3.16)
is g−2s ∝ pZ1½0�.
To find the expectation value of ICFT for a given

connected diagram, we can compute the derivative of the
generating function logðZp½J�Þ by logðpÞ. Directly from the
form of logðZp½J�Þ in (3.12) we get

11It would be interesting to study extensions of (3.12) to
incorporate defects [72], and other permutation groups [73,74].

12This suggests in particular that the string theory dual to the
CFT on a disconnected surface should also correspond to a
product of the corresponding Zp’s, rather than the naive product
of the corresponding ZN’s, as discussed in [45].
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�
ICFT

Yn
j¼1

σwðzjÞ
�

conn;g

¼Nc ·

�Yn
j¼1

σwðzjÞ
�

conn;g

: ð3:18Þ

This agrees with the arguments of [45] for correlation
functions of I in the corresponding string theory.
In [38] it was noted that the string theory disconnected

4-point function (for Q5 > 1) does not satisfy the naively
expected field-theoretic cluster decomposition, due to the
appearance of the central element I in the appropriate
channel. Similarly, for Q5 ¼ 1 where we can compute the
correlation functions from Zp, what would naively be
identified as a connected correlation function in the dual
CFT is given by

hσw1
ðz1Þσw1

ðz2Þσw2
ðz3Þσw2

ðz4Þip
− hσw1

ðz1Þσw1
ðz2Þiphσw2

ðz3Þσw2
ðz4Þip

¼
∂
2
Jw1

∂
2
Jw1

Zp½0�
Zp½0�

−
∂
2
Jw1

Zp½0�
Zp½0�

∂
2
Jw1

Zp½0�
Zp½0�

¼ ð1 − expð−p · Z1½0�ÞÞ · hσw1
ðz1Þσw1

ðz2Þi
× hσw2

ðz3Þσw2
ðz4Þi þ ðConnectedÞ: ð3:19Þ

The first term on the right-hand side does not vanish when
the distance between the pairs of operators becomes large,
as expected for a standard CFT. Expanding in orders of
p, the sum can be interpreted as the OPE contribution of
ðI − hIiÞk operators.

D. Higher-genus partition functions

Equation (3.12) holds also for the CFT on higher-genus
Riemann surfaces (which is expected to be dual to string
theory on orbifolds of AdS3). The main difference is that
already without any operator insertions, we now have a sum
over holonomies in SN around the various cycles of the
Riemann surface (subject to a global consistency condi-
tion), and a similar sum over holonomies appears in the
correlation functions of vertex operators. So, in (3.12) the
sum over coverings should also allow different SN holon-
omies (already for the n ¼ 0 term). The definition of the Nc
“participating” sheets now involves both the sheets that are
permuted by vertex operators, and the ones that are
permuted by nontrivial holonomies (it is still the degree
of the covering). The splitting into “connected” contribu-
tions (which are linked by some permutation, either from a
vertex operator or a holonomy) is the same. Because of the
sum over the holonomies, there is no longer a simple
relation between ZN ½0� and Z1½0�.
Surprisingly, Zp has peculiar properties for higher genus.

Let us denote the genus of the CFT manifold by G, and
assume G > 1. To repeat the calculation of the string
coupling, we can use the generalization of (3.3) to general
genus G

ð1 − GÞNc ¼ ð1 − gÞ þ 1

2

Xn
j¼1

ðwj − 1Þ: ð3:20Þ

Unlike the G ¼ 0 case where we had contributions from
g ¼ 0;…; gmax, for G > 1 the world sheet genus g can
range from gmin ¼ GþPjðwj − 1Þ=2 to values of orderN.
Repeating the same redefinition (3.14) of the operators,

the generating function for σ0w now gives the string coupling
identification

p ∝ g2G−2s ; ð3:21Þ

as also found by [45]. Note that while for G ¼ 0 small
coupling corresponded to large p (and therefore large N),
for G > 1 the string coupling appears to become large for
large p. To understand the reason behind this, we repeat the
calculation of hICFTi for general G,

hICFTiG ¼
X
Nc¼1

pNcZðGÞ
Vac;Nc

¼
X
g

g2g−2s ZðGÞ
Vac;g; ð3:22Þ

with ZðGÞ
Vac the corresponding vacuum diagram. For the

sphere G ¼ 0, we only had the sphere g ¼ 0 diagram,
which gave the expected leading behavior hICFTi ∼ g−2s . For
G > 1 one would expect a similar relation to arise from the
sphere diagram. However because in this theory the world
sheet is localized to be a covering of the CFT manifold, the
minimal world sheet genus is g ¼ G, so we find (for small
gs) the peculiar relation

hICFTiG ∼ p ∼ g2G−2s : ð3:23Þ

This relation explains why the large p (or N) limit does not
have the same relation to the string coupling for different
G’s. We emphasize that in any correlation function, (3.20)
forbids tree-level g ¼ 0 diagrams for G ≥ 1. This is a
unique property of the Q5 ¼ 1 string theory, due to the
localization of the world sheet to the boundary, and we do
not expect it (and the related properties discussed in this
subsection) to persist for Q5 > 1.
An even more peculiar case is the CFT on the torus

G ¼ 1 (related to the string theory on thermal AdS, which
is an orbifold of AdS3). In this case (3.20) degenerates, so
that the world sheet genus is completely determined by the
operator insertions (with g ¼ 1 for vacuum diagrams),
independently of Nc. For that reason we can set p ¼ 1,
and “mimic” a genus expansion by simply appropriately
defining a normalized σ0w.

E. Final comments

It is natural to guess that a similar relation between string
theory and the CFT applies also to Q5 > 1. The natural
guess is that while there is an exact CFT for every Q1 and
Q5, the NS-NS string theory backgrounds for Q5 > 1 are
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given by a Laplace transform over Q1

Zp;Q5
½J� ¼

X∞
Q1¼0

pQ5Q1ZQ1;Q5
½J�; ð3:24Þ

such that only Zp;Q5
has a well-behaved string perturbation

theory. This suggestion is a refinement of the Legendre
transform suggested in [38] (which gives a good approxi-
mation for large Q1 or small gs). Note that when Q1 is
relatively prime to Q5 the CFTs appearing here are also on
the moduli space of the N ¼ Q1Q5 free orbifold as
discussed above, while for other values of Q1 they are
not; it is not obvious if all values of Q1 should appear
in (3.24) or just the relatively prime ones.
To be precise, for (3.24) to make sense it is essential to

properly normalize the sources in the CFT as a function of
Q1 [as we did in (3.1) above]. Furthermore, we saw that to
get the expected powers of gs, it was necessary to also
normalize the sources by a power of p (3.14). This is
important if we would like to perform an inverse Laplace
transform to fixedQ1. ForQ5 > 1, the operator I (related to
Q1) was found to satisfy [8,38]

�
I
Yn
j¼1

ΦhjðzjÞ
�

conn;g

¼ 1

Q5

�
1−gþ

Xn
j¼1

ðhj−1Þ
�

·

�Yn
j¼1

ΦhjðzjÞ
�

conn;g

; ð3:25Þ

where hj is the CFT dimension of the operator. Comparing
with (3.18), this suggests that only in the normalization of
Φh where each string diagram comes with a power of

p1−gþ
P

n
j¼1

ðhj−1Þ does an inverse Laplace transform give the
fixed Q1-generating function. One can further wonder if
something can be said about the appropriate fixed-Q1

normalization. For large Q1, using the relation Q1 ∝ p,
the two-point function will scale as hΦhðz1ÞΦhðz2ÞiQ1

∼
Q2h−1

1 . To find the exact normalization, we need to compute
the inverse Laplace transform of the full string theory
calculation.
ForQ5 ¼ 1, since we have an equality in (3.13) for finite

values of p, it seems that the perturbative string theory here
captures the full partition function of the free symmetric
orbifold, with no nonperturbative contributions. Naively,
for higher-genus manifolds, one would expect (based on
weakly curved examples) to have different bulk back-
grounds that give saddle points leading to nonperturbative
contributions (in gs) to the same CFT partition function.
But, as noted in [45], this is not the case here, suggesting
that the perturbative expansion around any bulk back-
ground (with the appropriate boundary) is complete by
itself, giving a strong version of background independence
(and in [45] this was shown explicitly for some orbifolds of

AdS3, see also [71]). This is obviously related to the
localization of the string world sheets on the boundary.
Presumably, all of these properties will no longer be present
once we deform away from the free orbifold theory (and, in
particular, for Q5 > 1).

IV. BREAKDOWN OF STRING
PERTURBATION THEORY

A. The large-volume limit and S duality

As reviewed in Sec. II, the symmetric orbifold (2.5) is
believed to be dual (up to the Laplace transformation
reviewed in the previous section) to the NS-NS background
with ðQ1; Q5Þ ¼ ðN; 1Þ and vanishing RR scalars, where
the moduli of the T4 in the symmetric orbifold are
identified with the moduli of T4 in string theory [we
will discuss the other T̂4 in (2.5) in the next section]. The
six-dimensional string coupling in this background is
g26 ¼ 1=N (2.3), so this description is weakly coupled
when N ≫ 1, and the 1=N expansion of the free orbifold
correlation functions [39,41,42] was argued to exactly
match with the NS-NS perturbative expansion. However,
while for some observables the perturbative expansion is
governed by g6, for other observables it is governed by g10,
and, in particular, the latter parameter is expected to control
string perturbation theory in the large-volume limit. We
denote the volume of the torus in string units in this frame,
which is also the dual symmetric orbifold metric, by V.
Since g210 ¼ V=N (2.3), this implies that string perturbation
theory should break down when V becomes as large as N,
even though the orbifold remains free for any value of V.
Moreover, for g210 ≫ 1 the S-dual RR background becomes
weakly coupled, so we may expect to obtain a different
perturbative expansion for the free orbifold in this large-
volume regime, that would reproduce this different string
perturbation theory. How is this consistent with the free
orbifold?
The point is that even though the orbifold (2.5) is free for

any V and N, its (nontrivial) 1=N expansion, reviewed in
the previous section, can sometimes break down. In
particular, it was shown in [42] that this expansion can
be mapped to the NS-NS perturbative expansion. In this
expansion, for large V ≫ 1, higher-genus diagrams are
proportional to Vg, because this factor would arise (for
V ≫ 1) from the momentum states running in the loops.
For instance, the torus partition function of a scalar of
radius R ≫ 1 is proportional to R. The general structure of
the 1=N perturbation theory that arises from the free
orbifold (on a sphere) for V ≫ 1 is thus schematically

hOw1
ðz1Þ…Own

ðznÞi ¼ N1−n
2

�
ðg¼ 0Þ þ V

N
· ðg¼ 1Þ þ � � �

þ
�
V
N

�
gmax

· ðg¼ gmaxÞ
�
; ð4:1Þ
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where gmax is the maximal genus arising in that correlation
function. In the language of the free orbifold, even though
it lives on a topologically trivial space, there are nontrivial
loops going around branch points where twist operators
are inserted, along which the different T4 factors are
permuted, and there are nontrivial zero modes of the T4

scalars along these loops, such that the integrals over them
give the factors of V in (4.1). Thus, even though the
description (2.5) is always free, its 1=N expansion indeed
breaks down (in any correlation function that contains
g > 0 contributions) once V becomes as large as N,
consistent with the bulk string theory.
As mentioned above, S duality in string theory seems to

imply that for V ≫ N we should find a new perturbative
description of the free orbifold, that would match with the
RR string theory perturbative expansion, that has
g210 ¼ N=V. Indeed, our analysis in Sec. II A tells us that
this string theory has a ðQ1; Q5Þ ¼ ðN; 1Þ RR description
with parameters

g26 ¼
1

V
; g210¼

N
V
;

R2

α0
¼

ffiffiffiffi
N
V

r
;

VolðT4Þ
α02

¼N; ð4:2Þ

such that the theory with V ≫ N ≫ 1 seems to be weakly
coupled.
While individual correlation functions like (4.1) can be

rewritten as expansions in N=V, it is easy to check that
there is no sensible expansion in this parameter of the full
theory. The resolution of this apparent paradox is that (4.2),
which follows from supergravity, is not valid in this regime,
since it gives an anti–de Sitter (AdS) radius that is much
smaller than the string scale. When this happens, we expect
all the stringy modes to be at the AdS energy scale, rather
than the string scale. The physics (at least for the gravi-
tational sector) is expected to be governed by Newton’s
constants in AdS units, which are given by the S-duality
invariant values

Gð6Þ
N =R4 ¼ 1=N; Gð10Þ

N =R8 ¼ V=N: ð4:3Þ

The fact that Gð10Þ
N is large in AdS units implies that

perturbation theory is not valid, despite the naive expect-
ations from (4.2). The bottom line is, as discussed in [23],
that for Q5 ¼ 1 the RR picture is always strongly coupled,
but the NS-NS picture is weakly coupled for V ≪ N. For
V ≫ N both pictures are strongly coupled. It is only for
Q5 ≫ 1 that there is a region where the RR description is
truly weakly coupled, and both the string couplings and
Newton’s constants in AdS units are small.

B. Breakdown of perturbation theory
at high energies

There is another regime where we expect string pertur-
bation theory to break down, which is the regime of high

energies (scaling as some power of the inverse string scale
and the inverse string coupling). In this subsection, we
study the n-point function of single-cycle operators, all
with dimensions scaling as E ≫ 1, and we will see for
which energies the 1=N expansion breaks down. Note that
in a highly curved background it is not clear from the space-
time point of view at which energies this should happen.
If we look at an operator of dimension L0 ¼ h in the wth

twisted sector of the orbifold, its energy (the conformal
dimension of the corresponding twisted sector operator) is
given by

L0 ¼
h
w
þ w − w−1

4
; ð4:4Þ

where the second term comes from the dimension of the
twist field (in the NS-NS sector of the CFT). For a given
operator with some h ≫ 1, this implies that the lowest-
energy state it gives will come from the sector with w ≃

ffiffiffi
h

p

and will have E ¼ L0 þ L̄0 ≃
ffiffiffi
h

p
. Conversely, this implies

that typical operators with energy E will come from sectors
with w ≃ E.
We start by estimating the number of diagrams with

genus g that contribute to the n-point correlation function,
following [76]. Each genus g diagram satisfies

n − nE þ nF ¼ 2 − 2g; ð4:5Þ

with nE, nF the number of edges and faces of the skeleton
graph. For high enough E, we can approximate the graphs
being triangular 3nF ¼ 2nE, which gives

nE ¼ 3ð2g − 2þ nÞ: ð4:6Þ

The diagram is completely determined by the number of
edges between each pair of vertices i and j, which we
denote by nij. In a graph with nE edges, nij has nE (4.6)
nontrivial elements, and it has to satisfy

P
j nij ¼ wi,

giving n constraints. So overall there are 3ð2g − 2Þ þ 2n
independent variables nij, each of order ∼w ∼ E. In this
way we can approximate the number of diagrams by

#ðcoverings with genus gÞ ≃ E3ð2g−2Þþ2n: ð4:7Þ

It is not clear how the contribution of individual dia-
grams scales in the large energy/cycle length limit. If we
assume that the contribution of each diagram separately
does not scale with the energy, then the 1=N expansion
breaks down when the number of diagrams grows faster
than Ng, which happens [using (4.7)] when E ∼ N1=6. If
individual diagrams grow with the energy in a way that
depends on the genus, the expansion could break down at
lower scales, such as the naive ten-dimensional Planck
scale coming from (2.4), which scales as N1=8. In any case,
we find that perturbation theory breaks down at high
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energies going as a negative power of the string coupling,
as expected.

V. THE DECOUPLED SECTOR

A. The decoupled sector of the Q5 = 1 CFT

In Sec. II B we reviewed the argument that the SCFT
dual of the Q5 ¼ 1, Q1 ¼ N NS-NS background with
vanishing RR scalars is given by a product of the symmetric
orbifold over T4 and an extra T̂4 (2.5). The symmetric
orbifold SymNðT4Þ has 4 holomorphic and 4 antiholomor-
phic Uð1Þ currents associated with the “center-of-mass”
momentum and winding of the T4, whose currents are
given by the sums of the corresponding Uð1Þ currents over
the N copies of the T4, such that they have level N. The T̂4

CFT has its own 8 (winding and momentum) currents, all at
level 1.
Invoking the coset construction, it is possible to rewrite

this theory as the semidirect product

ðT4ÞN=SN × T̂4≡�ðT4ÞN=SN
�
=Uð1Þ8N⋊

�
Uð1Þ8N × Ûð1Þ81

�
:

ð5:1Þ

Wewill name the first term on the right-hand side the “coset
CFT,” and the second the “Sugawara CFT.” The operators
of the full theory are spanned by products of operator pairs,

one from the coset and one in the SugawaraUð1Þ8N × Ûð1Þ81
theory; the product with Uð1Þ8N is semidirect, meaning that
not all possible products of operators appear in the theory,
while the product with Ûð1Þ81 is direct, such that the theory
contains any operator in this sector multiplied by any
operator in the rest of the CFT.
The left-moving and right-moving energies of the full

theory can each be written as a sum

EL=R ¼ EL=R
coset þ EL=R

Sugawara; ð5:2Þ

with ESugawara given by the Sugawara stress tensor of the 8
left-moving or right-moving currents. Due to unitarity, the
Sugawara energy of a state gives a lower bound for the left-
and right-moving energies

EL=R ≥ EL=R
Sugawara: ð5:3Þ

We denote the metric and B field of the T4 in the orbifold
by E ¼ Gþ B, and Ê ¼ Ĝþ B̂ for the decoupled T̂4. We
also denote the integer winding and momentum charges of
the orbifold by wi, pi, and the T̂4 charges by ŵi, p̂i
(i ¼ 1;…; 4). In this notation, the left/right Sugawara
energy is given by

EL=R
Sugawara ¼

1

4

	
w p ŵ p̂



2
666664

1
N ðGþ BTG−1BÞ 1

N ð�1þ BG−1Þ 0 0

1
N ð�1 −G−1BÞ 1

N G
−1 0 0

0 0 Ĝþ B̂TĜ−1B̂ �1þ B̂Ĝ−1

0 0 �1 − Ĝ−1B̂ Ĝ−1

3
777775

2
666664
w

p

ŵ

p̂

3
777775: ð5:4Þ

We now turn to the string theory background with NS-NS
fluxes.13 The charges wi and pi correspond to fundamental
string winding and momentum on the T4, respectively. The
extra T̂4 accounts for the charges of RR D-branes wrapping
on the T4. In type IIB string theory, we have 4 charges from
D1-braneswinding on one of theT4 circleswi

D1, and ð43Þ ¼ 4

from D3-branes winding on 3 circles of the T4,
wD3
i ¼ ϵijklw

jkl
D3. We identify the T̂4 charges with the bulk

RR charges by

ŵi ¼ wi
D1; p̂i ¼ wD3

i : ð5:5Þ

What is the meaning of the Sugawara energy bound from
the string theory side? This question was answered in [15].
The authors used the description of the AdS3 × S3 × T4

background as a near-horizon limit of a flat space brane
configuration. The flat-space BPS formula holds even in
the decoupling limit, and when subtracting the energies of
the strings and 5-branes making up the background, it
gives an energy bound14 on particlelike excitations in AdS3.

13In this section we ignore the fact that perturbative string
theory in this background actually involves a grand-canonical
ensemble of CFTs, as discussed in Sec. III; namely, we consider
the theory with fixed Q1 and Q5, even though its perturbative
string description is more complicated. The U-duality group that
we discuss in this section acts naturally on the backgrounds with
fixed Q1 and Q5, rather than on the grand-canonical ensemble
that appears in the perturbative NS-NS-background string.

14This is obvious in the RR sector of the CFT, in which the
fermions are periodic around the circle and supersymmetry is
preserved. Here we discuss the NS-NS sector of the CFTwhich is
dual to string theory on AdS3 (where the spatial circle of the CFT
is contractible), where the fermions are antiperiodic, so that the
configuration does not directly arise as a near-horizon limit.
However, N ¼ ð4; 4Þ supersymmetry implies that this sector is
related by spectral flow to the RR sector, so the same BPS bounds
hold.
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We will discuss the energy formula for a general back-
ground in the next subsection. For the ðQ1; Q5Þ ¼ ðN; 1Þ
NS-NS background with T4 metric G and vanishing B field
and RR scalars, the resulting BPS formula is [15]

EL=R
BPS ¼ 1

4N1=2 ðg10w2 þ g−110w
2
D1 þ ðg10=VÞp2

þ ðV=g10ÞðwD3Þ2Þ � 1

2N
p · w� 1

2
wD1 · wD3

¼ 1

4N
ðV1=2w2 þ V−1=2p2 � 2w · pÞ

þ 1

4
ðV−1=2ŵ2 þ V1=2p̂2 � 2ŵ · p̂Þ: ð5:6Þ

All the (implicit) T4 metric contractions in this equation are
written in terms of the unit-volumemetric ðG0Þij¼V−1=2Gij,

where V is the T4 volume V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGÞp

. In the second line
we used (5.5) and the relation (2.3)

V ¼ Ng210: ð5:7Þ

To find the relation to the CFT parameters, we compare the
bulk BPS bound (5.6) to the CFT Sugawara bound (5.4). The
orbifold metric is immediately identified with the bulk T4

metric, while the T̂4 metric has the same shape but an inverse
volume, Ĝ ¼ 1

V G. The fact that we got an inverse volume can
be traced to the fact that the D1-brane tension is proportional
to g−110 ∼ V−1=2 (or, alternatively, to the fact that this extra T̂4

comes from Wilson lines which live on a dual torus).
Choosing a different Ĝ in the CFT corresponds in the bulk
to different boundary conditions for the ðUð1Þ ×Uð1ÞÞ4 RR
gauge fields (analogous to a double-trace deformation).
We can generalize (5.6) to nonzero bulk B fields, by

performing the transformation [15]

pi ↦piþBijwj; ŵi↦ ŵi−
1

2
ϵiljkBjkp̂l: ð5:8Þ

The first transformation gives a B field (identical to the one
in the bulk) to the T4 in the orbifold CFT. The second
(coming from theC2 ∧ B2 coupling in the D3-brane action)
amounts to adding B0ij ¼ − 1

2
ϵijklBkl in the T-dual frame of

the T̂4 sigma model. Altogether, the CFT moduli are related
to the string theory moduli (for vanishing RR scalars) by

Eij¼GijþBij; ðÊÞ−1;ij ¼V ·G−1;ij−
1

2
ϵijklBkl: ð5:9Þ

What is the world sheet interpretation of the decoupled
sector? The momentum and winding currents of the
orbifold have a clear world sheet dual, coming from the
metric and B field of the bulk T4, whoseUð1Þ8 currents can
be used to construct the corresponding currents of the CFT
(for Q5 > 1 this was discussed in [7,12], and for Q5 ¼ 1

in [14]). Perturbative string states are charged under these
currents. On the other hand, the charged states under the
Ûð1Þ81 RR currents can all be constructed as “boundary
modes” of the bulk Chern-Simons theory (for general level
k this is only true for states whose charges are integer
multiples of k, while here k ¼ 1). In the bulk they are pure-
gauge modes of the RR gauge potentials. One would
naively expect the T̂4 currents to have their own world
sheet vertex operator, describing the RR potential in the
bulk,15 and to have D-branes (though no perturbative string
states) that carry their charge. However, the structure of the
dual CFT contradicts this expectation. Notice that each
single-string state has its single-string descendants under
the NS-NS Uð1Þ8N current algebra. In the CFT these are
descendants in the core CFTwhose symmetric orbifold we
are considering. More generally, the existence of a world
sheet vertex for a CFT current means there is a Uð1Þ8
current algebra module already in the single-string partition
function Z1-string ¼ logðZÞ. However, the partition function
of the T̂4 CFT is simply an overall factor in the full partition
function. In terms of the string theory, for every multistring
state, each of its single strings has its own NS-NS Uð1Þ8N
descendants, but only one multistring RR Ûð1Þ81, or T̂4,
descendant. This suggests that the T̂4 Ûð1Þ81 currents have
no local string theory vertex.16

An alternative perspective on this is that a ðUð1Þ ×Uð1ÞÞ41
Chern-Simons theory on AdS3 is dual by itself to a T̂

4 CFT,
with the moduli of the T̂4 determined by the boundary
conditions on the CS fields (see, for instance, [77,78]). So
this sector of the theory, which is modular invariant by itself,
decouples completely from the rest of the string theory; it has
no interactions with any string states (and does not even
depend on the topology of the interior of the AdS space, just
on the boundary conditions). In particular, even though
naively one may expect the string theory with Q5 ¼ 1 to
contain particlelike D-branes wrapped on cycles of the T4

which are charged under these Ûð1Þ’s, such D-branes have
not yet been found, and this analysis implies that they should
not exist as nontrivial boundary states.
This behavior is special to level k ¼ 1, and does not

apply to the decoupled Uð1Þ8N sector; we will discuss in
what sense it is decoupled later, after generalizing to other
values of Q5.

B. String dualities and exact CFT deformations

We now extend our discussion to more general string
theory backgrounds with different charges, following [15].

15One reason why this is not obvious is that in flat space, vertex
operators for RR potentials, as opposed to field strengths, exist in
some pictures for the world sheet ghosts but not in others.

16It is possible that world sheet operators for the total charge of
these currents can be defined.
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We write the string and 5-brane integer fluxes as a charge
matrix

Q ¼
�

f1 d1
−d5 n5

�
; ð5:10Þ

which labels the (integer) number of F1, D1, D5, and NS5-
branes in the original flat-space construction (we assume
for simplicity there are no wrapped D3-branes). Before
taking the near-horizon limit, the backgrounds are also
labeled by τ ¼ χ þ ig−110 and by τ̃ ¼ A4 þ iv4g−110 . Here g10
is the ten-dimensional string coupling, v4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGÞp

the
volume of the T4, and χ and A4 are the RR scalar C0 and the
holonomy of the RR 4-form C4 on the T4, respectively.17 It
is useful to write τ; τ̃ also as matrices

T ¼ gs

�
1 −χ
−χ g−2s þ χ2

�
;

T̃ ¼ gs
v4

�
1 −A4

−A4 v24=g
2
s þ A2

4

�
: ð5:11Þ

When taking the near-horizon limit of a brane configuration
with a charge matrix Q, the attractor mechanism gives a
relation between τ and τ̃ of the form

detðQÞ · 1 ¼ T̃ QT QT: ð5:12Þ

This minimizes the tension formula trðT̃ QT QTÞ. For
example, in the case of the d1, d5 background the equation
is τ̃ ¼ ðd1=d5Þτ.
As in the Q5 ¼ 1 case, we now consider particle

excitations in this background. These are labeled by their
T4 winding and momentumwi

F1, p̃i, and by the RR winding
charges wi

D1 and wD3
i . It is useful to organize them in pairs

based on their natural T4 indices

qi ¼
�
wi
F1

wi
D1

�
; qi¼

�
p̃i

wD3
i

�
: ð5:13Þ

For a general string theory background, the energy bound
found by [15] is given by

EL=R
BPS ¼

1

4

	
qi qj


24 T
det1=2ðQÞ �Q−1

�ðQ−1ÞT T̃
det1=2ðQÞ

3
5"qk

ql

#
; ð5:14Þ

where anyT4 index contraction is written in terms of the unit
metric v−1=24 G (the v4 dependence appears through T ; T̃ ).
The U-duality group of the system is SOð5; 5;ZÞ. In this

section we are interested only in the SLð2;ZÞL ×
SLð2;ZÞR U-duality subgroup which fixes the general

form (5.10) of the charges, the vanishing of B2 and C2,
and the unit-volume metric on the T4. SLð2;ZÞR is
generated by the S-duality of type IIB string theory and
by the transformation χ ↦ χ þ 1. SLð2;ZÞL is generated
by T1234ST1234 (where T1234 means a T-duality trans-
formation on the four cycles of the T4) and by the
transformation A4 ↦ A4 þ 1. For gL; gR ∈ SLð2;ZÞ, the
background parameters are transformed by

Q0 ¼gLQgTR; T 0 ¼g−1;TR T g−1R ; T̃ 0 ¼g−1;TL T̃ g−1L : ð5:15Þ

The particle charges are transformed by

qi0 ¼ gR · qi; q0j ¼ gL · qj: ð5:16Þ

We note that the energy formula (5.14) [as well as the
relation (5.12)] is duality invariant under the transformation
of the background parameters and the charge lattice.
We would like to describe the structure of the conformal

manifold for (5.1). Different values of τ; τ̃ correspond to
different deformations of (5.1), but because τ and τ̃ are
related through (5.12), each deformation can be labeled by
τ alone. The ðN; 1Þ NS-NS background is given by

Q ¼
�
N 0

0 1

�
; ð5:17Þ

and we consider values of the charges (5.10) that can be
mapped to these charges by a U-duality transformation.
We can then describe the deformations by τ in this
background, and two deformations are identical if
and only if there is a U-duality transformation mapping
one τ to the other, while keeping the canonical back-
ground (5.17) fixed. In other words, the conformal
manifold is given by the fundamental domain of the
U-duality subgroup which stabilizes the canonical back-
ground (5.17).18 As explained in [15], this subgroup is
isomorphic to the congruence modular subgroup Γ0ðNÞ,
or the set of pairs

gL ¼
�
α βN

γ δ

�
; gR ¼

�−δ −γN
−β −α

�
; ð5:18Þ

with αδ − βγN ¼ 1. Figure 1 depicts the fundamental
domain of Γ0ðNÞ for N ¼ 30, in terms of the S-dual
parameter τRR ¼ −1=τ. The grey dashed lines separate the
domain into (halves) of SLð2;ZÞ fundamental domains.
The number of SLð2;ZÞ fundamental domains in the
fundamental domain of Γ0ðNÞ is given by [15,64]

17We assume here vanishing B2 and C2 fields on the T4,
although the generalization is straightforward [15].

18Of course, we could just as well describe the geometry of the
conformal manifold in terms of deformations of any other string
theory background U dual to (5.17).
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ðSLð2;ZÞ∶Γ0ðNÞÞ ¼ N
Y
pjN

p is prime

ð1þ p−1Þ: ð5:19Þ

The vertical black line corresponds to the ðN; 1Þ back-
ground with vanishing RR scalars χ ¼ A4 ¼ 0. The point
τRR ¼ 0 corresponds to the g10 ¼ 0 limit of the NS-NS
background. The point τRR ¼ i∞ is the strongly coupled
limit, or, by S-duality, the g10 ¼ 0 limit of the ðN; 1Þ RR
background.
EveryNS-NS (andRR) ðQ1; Q5Þ backgroundwithQ1,Q5

mutually prime is related to the canonical ðN; 1Þ background
(5.17) withN ¼ Q1 ·Q5 by a U-duality transformation, and
can be described as a CFT deformation of (5.1). We are
specifically interested in the singular locus of these back-
grounds (with vanishing RR scalars χ ¼ A4 ¼ 0), given by

Q¼
�
Q1 0

0 Q5

�
; T ¼

�
t 0

0 t−1

�
;

T̃ ¼
�
t−1Q5=Q1 0

0 tQ1=Q5

�
; ð5:20Þ

with t the ten-dimensional string coupling in the NS-NS
ðQ1; Q5Þ background. These backgrounds are related to the
canonical background (5.17) by the duality transformation

gL ¼
�
aQ5 bQ1

1 1

�
; gR¼

�
Q5 −Q1

−b a

�
; ð5:21Þ

with a, b integers satisfying aQ5 − bQ1 ¼ 1. Under the
transformation (5.15), the dual canonical parameters are

g10¼ a2tþb2t−1; χ¼−
Q1atþQ5bt−1

a2tþb2t−1
: ð5:22Þ

Written in terms of τRR ¼ −ðχ þ i=g10Þ−1, these lines are
drawn as thick black arcs in Fig. 1. Each arc is drawn twice,
related by a sign χ ↦ −χ, but the two arcs are identified by
the action of Γ0ðNÞ. The limit t ¼ 0 is the weakly coupled
limit of the NS-NS ðQ1; Q5Þ background, which is also
dual by a T1234ST1234 duality transformation to the weakly
coupled RR ðQ5; Q1Þ background.19 Both are mapped to
the point τRR ¼ �b=Q5 in the figure. The limit t ¼ ∞
in (5.20) corresponds by S duality to the weakly coupled
RR ðQ1; Q5Þ background, and by another T1234ST1234, to
the weakly coupled NS-NS ðQ5; Q1Þ background. Both are
mapped to τRR ¼ �a=Q1 in the figure. Generally, the arcs
of the fundamental domain’s boundary are identified in a
complicated way. We conjecture that the CP-invariant line

χ ¼ �1=2 in the figure (in the RR background) corre-
sponds to the orbifold (2.5) at the singular point θ ¼ 0 for
the 2-cycle at the Z2 fixed point; note that this line
has A4 ¼ �N=2 both in the RR and in the NS-NS
descriptions.20

For a given t, the string theory background (5.20) is a
deformation of the CFT (5.1); this deformation involves
both a blowup of the Z2 singularity of the orbifold, which
affects only the coset CFT, and a JJ̄ deformation, which
affects only the Sugawara CFT. In the dual ðN; 1Þ back-
ground, it is described by τ and τ̃ given by (5.22). Consider
a general deformation labeled by τ; τ̃. For the canonical
background (5.12) the two are related by

A4 ¼ −v4χ; v4 ¼
V

1þ χ2 V
N

; ð5:23Þ

with V ¼ Ng210. Labeling a general deformation by V, χ, the
BPS energy bound (5.14) gives in the canonical frame
(assuming B ¼ 0)

EL=R
BPS¼

1

4

	
w p ŵ p̂



2
6666664

V1=2

N � 1
N −χ V1=2

N 0

� 1
N

1þV
Nχ

2

NV1=2 0 χ V1=2

N

−χ V1=2

N 0
1þV

Nχ
2

V1=2 �1

0 χ V1=2

N �1 V1=2

3
7777775

2
66664
w

p

ŵ

p̂

3
77775

¼ 1

4N

�
V1=2ðw−χŵÞ2þV−1=2p2�2w ·p

�
þ1

4

�
V−1=2ŵ2þV1=2

�
p̂þ χ

N
p
�

2

�2ŵ · p̂
�
: ð5:24Þ

This generalizes (5.6) to the case of nonzero χ. We see that
in the BPS formula the χ deformation is equivalent to the
shift

wi ↦ wi − χŵi; p̂j ↦ p̂j þ
χ

N
pj: ð5:25Þ

We would like to repeat the exercise of the previous
section. Interpreting the BPS bound (5.24) as the Sugawara
energy, we can find the Sugawara CFT deformation for
every V, χ. However, unlike (5.6), (5.24) is no longer
decoupled between the charges of T4 and T̂4. It is therefore
not enough to simply deform the G, Ĝ metrics. As
explained in [15], the Sugawara CFT needs to be further
deformed by a mixed JJ̄ deformation to match with (5.24).
Let us denote the Uð1Þ8N orbifold currents by Ji, J̄i, and

the Uð1Þ81 T̂4 currents by Ĵi and ˆ̄Ji (i ¼ 1;…; 4). All the
19By weak coupling here we mean a small ten-dimensional

string coupling; as discussed above, this does not necessarily
imply that the six-dimensional string coupling or Newton’s
constant are small, so the theory may not really be weakly
coupled.

20The line χ ¼ �N=2 in the ðN; 1Þ NS-NS background, which
is related to the A4 ¼ �N=2 line by T duality in the NS-NS
frame, and that appears in the figure as the two (identified)
boundary arcs emanating from τRR ¼ 0, is also singular.
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currents are normalized such that the corresponding
charges are integers (see the Appendix). A general JJ̄
marginal deformation is of the form

ΔS¼2π

Z
d2z
�
M11

ij J
iJ̄jþM12

ij J
i ˆ̄JjþM21

ij Ĵ
iJ̄jþM22

ij Ĵ
i ˆ̄Jj
�
;

ð5:26Þ

for some 8 × 8 matrix Mαβ
ij (α, β ¼ 1, 2, i; j ¼ 1;…; 4).

The M22 matrix simply deforms the T̂4 moduli, Ê ↦ Êþ
M22.M11,M12 andM21 do not have such an interpretation,
but together with M22 they label an SOð8; 8Þ=ðOð8Þ ×
Oð8ÞÞ conformal manifold. In the appropriate sense (which
takes care of the different levels), Mαβ

ij deforms the metric

and the B field on the T4 × T̂4 manifold.
For every V and χ, it is possible to find the exact Mαβ

ij

deformation such that the new ESugawara will exactly agree
with the string theory BPS bound (5.24). Starting from the
moduli (5.9) with the appropriate V, the answer is

M11
ij ¼ 0;

M12
ij ¼ M21

ij ¼ −
χ

N
Gij;

M22
ij ¼ V

N
χ2Ĝij ¼

χ2

N
Gij; ð5:27Þ

where in the last equation we used Ĝ ¼ 1
V G. Specifically,

plugging in (5.22) will give us the exact Sugawara CFT
deformation which corresponds to the singular ðQ1; Q5Þ
string theory backgrounds.
Let us emphasize that the deformation labeled by χ on

the string theory side deforms both the coset CFT and the
Sugawara CFT in (5.1). The coset deformation is known to
correspond at leading order to one of the blowup modes of
the Z2 orbifold singularity [79]. Following the deformation
is a highly complicated task, even in conformal perturba-
tion theory, and it is beyond the scope of this paper
(see [80–88] and references therein for recent progress
on this). In this section we identified the exact deformation
only of the Sugawara part of the CFT, not the coset CFT.
This was possible because the JJ̄ deformation is integrable
from the CFT perspective, and can be matched exactly to
the string theory using string dualities.

C. The decoupled sector of the Q5 > 1 CFT

In Sec. VAwe asked for the world sheet interpretation of
the decoupled T̂4 currents. For the backgrounds (5.20) at
small g10 ¼ t there is a different perturbative world sheet
description with Q5 > 1 [5,7,8,37]. We would like to ask
more generally, what is the Q5 > 1 world sheet interpre-
tation of the deformed Sugawara CFT (5.27)?

First, it is useful to rewrite the Sugawara energy (5.24) in
terms of the ðQ1; Q5Þ charges, and not the original CFT
charges. The two charge lattices are related through (5.16),
(5.21) by

�
wi
F1

wi
D1

�
¼
�
a Q1

b Q5

��
wi

ŵi

�
;

� p̃j

wD3
j

�
¼
�

1 −bQ1

−1 aQ5

��
pj

p̂j

�
: ð5:28Þ

In terms of the ðQ1; Q5Þ string theory charges, the
Sugawara energy [also given directly from (5.14)] takes
the simple form

EL=R
Sugawara¼

1

4Q1

�
v1=24 w2

F1þv−1=24 p̃2�2wF1 · p̃
�

þ 1

4Q5

�
v1=24 ðwD3Þ2þv−1=24 w2

D1�2wD1 ·wD3
�
;

ð5:29Þ

where v4 ¼ t2Q1=Q5 is the world sheet T4 volume (2.3).
Equation (5.29) should be understood as the generalization
of (5.6) for Q5 > 1. It agrees with the fact that, as reviewed
in Sec. II, the bulk theory includes a Uð1Þ8Q1

×Uð1Þ8Q5
CS

theory in AdS3, from the 4þ 4 NS-NS and 4þ 4 RR bulk
gauge fields, respectively. The JJ̄ deformation at these
points in the moduli space has precisely the effect of
forming orthogonal linear combinations of the original
currents of (5.1) that have these new levels. Each set of
currents involves linear combinations of the currents from
the orbifold and from T̂4.
Just as in the Q5 ¼ 1 case, the NS-NS currents at level

Q1 have a string world sheet vertex operator, found
explicitly in [7]. As the authors comment there, the RR
currents do not seem to appear in the string spectrum,
consistent with the fact discussed above that single-string
states should have descendants under 8 of the Uð1Þ
symmetries but not under the other 8.21 This also
agrees with the string 1-loop calculation done recently
for Q5 > 1 [89], in which the Uð1Þ8Q5

RR currents were
absent.
After discussing the currents of the decoupled Sugawara

sector, we would next like to understand the bulk inter-
pretation of its charged states. Consider first the unde-
formed theory (5.1) for Q5 ¼ 1. A general charged state
will satisfy the Sugawara/BPS bound, but will not saturate
it. The operators that saturate the bound are exactly the
operators that are given entirely by the Sugawara CFT, with

21Note that the higher Kaluza-Klein modes of the RR potential
which have a nonzero RR field strength do have a world sheet
vertex operator [7], but here we consider the pure-gauge mode of
the RR potential.
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only the identity in the coset CFT. These operators can
have any ŵ, p̂ integer charges (any operator from T̂4), but
the chargesw,pmust be integermultiples ofN.We term this
charge sublattice the BPS lattice.22 We can immediately
generalize this statement to the ðQ1; Q5Þ backgrounds.
Under the χ, V deformation, the energy of the coset changes
in a nontrivial way. However, for the BPS lattice, the coset
operator is simply the identity. Therefore, also at finite χ these
operators remain BPS, as their energy is given exactly by the
(deformed) Sugawara energy (5.29). In order to understand
what these operators are from the perspective of the ðQ1; Q5Þ
background, we rewrite (5.28) as

2
4 wi

F1
Q1

wi
D1

Q5

3
5 ¼

�
aQ5 1

bQ1 1

�� wi

N

ŵi

�
;

2
4 p̃j

Q1

wD3
j

Q5

3
5 ¼

�
Q5 −b
−Q1 a

�� pj

N

p̂j

�
: ð5:30Þ

The matrices appearing here also have determinant 1.
Therefore, in terms of the ðQ1; Q5Þ NS-NS theory, the
BPS sub-lattice w; p ¼ 0 mod N is exactly

wi
F1 ¼ p̃j ¼ 0 mod Q1;

wi
D1 ¼ wD3

j ¼ 0 mod Q5: ð5:31Þ

Namely, the charges are all integer multiples of the corre-
sponding Chern-Simons levels. States carrying other
charges, including now also singly wrapped D-branes, are
not BPS.
We now discuss the bulk interpretation of this BPS

lattice. Already in the undeformed case, the interpretation
of the T̂4 charged states seems to have a paradoxical nature.
On the one hand, they carry RR charge (p̂, ŵ), with the
interpretation of D-branes. On the other hand, these states
exactly decouple from the entire closed string spectrum
(and for example do not emit gravitons). This seems to
contradict the basic property of D-branes as world sheet
boundary conditions. For Q5 > 1 we found a generaliza-
tion of that question. The BPS states do not just saturate the
bound. As they live entirely in the Sugawara CFT, they also
decouple exactly (in correlation functions) from operators
in the coset CFT. These modes appear to be completely

topological, and yet they carry (Q5-quantized) RR charges
like D-branes.23 Similarly, we find states carrying the same
charge as Q1 winding fundamental strings, that decouple
from all operators in the coset CFT.
The solution to the paradox is that these states are pure

bulk gauge modes, not D-branes, that nevertheless carry RR
(and/or NS-NS) charges. Oneway to think of these modes is
as boundary modes of the low-energy Chern-Simons the-
ories, as in our discussion of the Q5 ¼ 1 case above.
Alternatively, the existence of such charged modes in string
theory in the presence of nonzeroKalb-RamondH3 fluxwas
described in [91]. Consider the AdS3 × S3 × T4 type IIA
backgroundwithH3 ¼ Q5ω3, withω3 the unit volume-form
on the S3 (the AdS3 component of the flux is not important
for our analysis).24 Denote the pure-gauge mode of the C3

field on S3 by ψ,

C3 ¼ ψ ω3 þ c3; ð5:32Þ

where c3 includes the rest of the directions. In type IIA,
the gauge transformation of δC1 ¼ dΛ is followed by δC3 ¼
ΛH3 [92], with 0-form Λ. In our case,

δψ ¼ Q5Λ: ð5:33Þ

Because ψ is the C3 holonomy over S3, ψ ∼ ψ þ 2π. The
holonomy expðiψÞ is thus an operator with chargeQ5 under
the RR gauge field C1. In terms of type IIB charges (upon T
dualizing one of the T4 directions), those are pure C4

(wrapping S3 × T1) gauge modes with wD1 ¼ Q5 RR
charge. Applying T duality on the four directions of the
torus also reveals pure C̃6 modes (wrapping S3 × T3) with
Q5-quantized wD3 charge. Applying ST1234S gives the
topologicalmodeswithQ1-quantizedmomentumandwind-
ing modes. In the language of [91], the full string theory
includes a Uð1Þ16 gauge theory with Z16 charges, but the
coset has only Z8

Q1
⊕ Z8

Q5
≡ Z8

Q1Q5
charges.
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APPENDIX: TOROIDAL SIGMA MODELS
AND JJ̄ DEFORMATIONS

In this Appendix we write down basic facts about 1þ 1-
dimensional sigma models on tori and their JJ̄
deformations.

1. Compact bosons

We will follow Polchinski’s notations [93] with

z¼ σ1þ iσ2; z̄¼ σ1− iσ2;

∂¼ 1

2
ð∂1− i∂2Þ; ∂̄¼ 1

2
ð∂1þ i∂2Þ; ðA1Þ

and d2z ¼ 2d2σ. We take d compact scalar fields Xi

(i ¼ 1;…; d) with

Xi ∼ Xi þ 2π: ðA2Þ

In these conventions, we take the (Euclidean) action

S ¼ 1

4π

Z
d2σðGijgμν þ iBijϵ

μνÞ∂μXi
∂νXj

¼ 1

2π

Z
d2zðGij∂Xi

∂̄Xj þ Bij∂Xi
∂̄XjÞ; ðA3Þ

with some constant metric and B field Eij ¼ Gij þ Bij. The
momentum and winding Noether currents are

Jμi ¼
1

2π
ðGijgμν þ iBijϵ

μνÞ∂νXj;

J̃iμ ¼ ϵμνGijJνj ¼
1

2π
ðδijϵμν − iGikBkjgμνÞ∂νXj: ðA4Þ

We can write these in a holomorphic/antiholomorphic basis

Ji ¼
1

2
ðJi;z − iJ̃i;zÞ ¼

1

2π
ðGij − BijÞ∂Xj;

J̄i ¼
1

2
ðJi;z̄ þ iJ̃i;z̄Þ ¼

1

2π
ðGij þ BijÞ∂Xj; ðA5Þ

which satisfy ∂Ji ¼ ∂J̄i ¼ 0.
To consider the Hilbert space on a circle, we use the

transformation z ¼ expð−iwÞ, with

w ¼ θ þ iτ ∼ wþ 2π: ðA6Þ

To consider the Lorentzian version we further take τ ¼ it.
The different particle sectors are labeled by the winding
wj ∈Z

Xjðwþ 2πÞ ¼ XjðwÞ þ 2πwj; ðA7Þ

and the center of mass momentum pi ∈Z

pi ¼
Z

dθJti ¼ Gijvj þ Bijwj; ðA8Þ

with the target space velocity vi, with the quantization

vi ¼ pi − Bijwj: ðA9Þ

The Hilbert space is labeled by the integers pi, wj together
with the usual harmonic oscillators αn. The Hamiltonian
(ignoring the Casimir energy) is given by

H ¼ 1

4
ðv2R þ v2LÞ þ N þ N̄; ðA10Þ

with

vi;L=R ¼ vi � Gijwj: ðA11Þ

The Sugawara energy is given solely by the first term
in (A10), which gives a lower bound on L0; L̄0,

EL=R
Sugawara¼

1

4
v2L=R¼

1

4
v2þ1

4
w2�1

2
v ·w

¼ 1

4

	
wi pj


�GþBTG−1B �1þBG−1

�1−G−1B G−1

��
wi

pj

�
;

ðA12Þ

where we omitted the G contractions in the first line. The
last formula is explicitly invariant under T duality, which
acts as

pi↔wi; E↔E−1: ðA13Þ

Back to the Euclidean plane z; z̄. For a given G, B we
would like to know the metric on the currents. The two-
point function

h∂XiðzÞ∂Xjð0Þi ¼ Gij

2z2
;

h∂̄Xiðz̄Þ∂̄Xjð0Þi ¼ Gij

2z̄2
; ðA14Þ

gives the current two-point function for the chiral compo-
nents of the momentum current (A5)
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hJiðzÞJjð0Þi ¼
1

8π2
Gij þ BikGklBlj

z2
;

hJ̄iðz̄ÞJ̄jð0Þi ¼
1

8π2
Gij þ BikGklBlj

z̄2
: ðA15Þ

This exactly the Gþ BTG−1B term that we have in (A12).
The winding Noether current is given by Ĵμ;i ¼ 1

2π ϵ
μν
∂μXi.

Its holomorphic and antiholomorphic components are25

Ji ¼ i
2π

∂Xi; J̄j ¼ −
i
2π

∂Xj; ðA16Þ

which are also given by raising the target space index
of (A5) using E. The two-point function is

hJiðzÞJjð0Þi ¼ −
1

8π2
Gij

z2
;

hJ̄iðz̄ÞJ̄jð0Þi ¼ −
1

8π2
Gij

z̄2
; ðA17Þ

with the mixed terms

hJiðzÞJjð0Þi ¼
i

8π2
δji − BikGkj

z2
;

hJ̄iðz̄ÞJ̄jð0Þi ¼ −
i

8π2
δji þ BikGkj

z̄2
: ðA18Þ

We can directly see that the matrix (A12) is also the matrix
of the current-current two-point functions, as required in
the Sugawara construction.
The JJ̄ deformation [94] (see also the recent [95]) is

given by the general deformation

∂λS ¼ 2π

Z
d2zMijJiJ̄j ¼

1

2π

Z
d2zEkiMijEjl∂Xk

∂Xl;

ðA19Þ

for some matrix Mij and currents Ji; J̄j depending on λ. In
other words, the sigma-model moduli exactly changes with

∂λEij ¼ EikMklElj: ðA20Þ

These deformations cover the entire space of Eij deforma-
tions. They can be labeled by the Oðd; dÞ=ðOðdÞ ×OðdÞÞ
moduli.

2. Going to the next level

Wewill now specialize to the (bosonic version of) theory
(2.5). Namely, we have 4N fields XI;i (I ¼ 1;…; N and
i ¼ 1;…; 4) which will constitute the T4N=SN orbifold, and
4 more fields X̂i. We assume the moduli on the XI;i are
independent of I and consist of “single-trace” moduli. The
action is given by

S ¼ 1

2π

Z
d2zðEij∂XI;i

∂XI;j þ Êij∂X̂
i
∂X̂jÞ: ðA21Þ

The single-trace momentum currents are

Ji ¼
1

2π

XN
I¼1

Eji∂XI;j; J̄i¼
1

2π

XN
I¼1

Eij∂XI;j;

Ĵi ¼
1

2π
Êji∂X̂

j; ˆ̄Ji ¼
1

2π
Êij∂X̂

j: ðA22Þ

In the normalization we use, the w-cycle twisted sectors
(including the untwisted sector) have integer charges Qi,
Qj. We denote the integer charges of these currents by wi,
pj, ŵk and p̂l, respectively.
Setting E ¼ Gþ B, Ê ¼ Ĝþ B̂, the two-point function

for the currents is

hJiðzÞJjð0Þi ¼
N
8π2

Gij þ BikGklBlj

z2
;

hĴiðzÞĴjð0Þi ¼
1

8π2
Ĝij þ B̂ikĜ

klB̂lj

z2
: ðA23Þ

Inverting the matrix, the Sugawara energy bound is given by

EL=R
Sugawara ¼

1

4

	
w p ŵ p̂



2
666664

GþBTG−1B
N

�1þBG−1

N 0 0

�1−G−1B
N

1
N G

−1 0 0

0 0 Ĝþ B̂TĜ−1B̂ �1þ B̂Ĝ−1

0 0 �1 − Ĝ−1B̂ Ĝ−1

3
777775

2
66664
w

p

ŵ

p̂

3
77775: ðA24Þ

25These i’s are an outcome of the holomorphic coordinates in Euclidean spacewith ϵz;z̄ ¼ i
2
. After continuing to the circlew; w̄ ¼ θ ∓ t

we have ϵw;w̄ ¼ 1
2
, which gives the familiar formulas.
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Notice that this is exactly two blocks of (A12), only with
the p, w block multiplied by 1=N (as the two-point
functions of J are proportional to N).
A general JJ̄ deformation in this theory can be written as

∂λS¼2π

Z
d2zðM11

ij J
iJ̄jþM12

ij J
i ˆ̄JjþM21

ij Ĵ
iJ̄jþM22

ij Ĵ
i ˆ̄JjÞ;

ðA25Þ

for some 8 × 8 matrix Mαβ
ij (α, β ¼ 1, 2, i; j ¼ 1;…; 4).

In (A25) we raise indices of J; J̄ by E, and those of Ĵ; ˆ̄J by
Ê. The M22 matrix simply deforms the T̂4 moduli just
like (A20),

∂λÊij ¼ M22
ij : ðA26Þ

M11,M12 andM21 do not have that interpretation anymore,
but together with M22 they label an SOð8; 8Þ=ðOð8Þ ×
Oð8ÞÞ manifold.
To make contact with the χ deformation of (5.24), we set

B ¼ B̂ ¼ 0 and consider the JJ̄ deformation

M11
ij ¼ 0;

M12
ij ¼ M21

ij ¼ −
χ

N
Gij;

M22
ij ¼ V

N
χ2Ĝij ¼

χ2

N
Gij; ðA27Þ

where we took Ĝ ¼ 1
V G as in Sec, V. In terms of the

(ungauged) 4N þ 4 fields, we deformed the ð4N þ 4Þ ×
ð4N þ 4Þ metric to

G4Nþ4 ¼
�

δIJ −χ 1
N

−χ 1
N V−1 þ χ2

N

�
⊗ G; ðA28Þ

with the inverse

G−1
4Nþ4 ¼

�
δIJ þ Vχ2

N2 χ V
N

χ V
N V

�
⊗ G−1: ðA29Þ

Projecting to the single-trace currents (A22) gives the
Sugawara energy

EL=R
Sugawara ¼

1

4

	
w ŵ p p̂



2
666664

1
N G −χ 1

N G � 1
N 0

−χ 1
N G

1þV
Nχ

2

V G 0 �1

� 1
N 0

1þV
Nχ

2

N G−1 χ V
N G

−1

0 �1 χ V
N G

−1 VG−1

3
777775

2
66664
w

ŵ

p

p̂

3
77775: ðA30Þ

Rewriting in terms of contractions with the unit metric V−1=2G (and changing the order of the vector components) gives
exactly (5.24).

[1] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231
(1998).

[2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large N field theories, string theory and gravity,
Phys. Rep. 323, 183 (2000).

[3] J. M. Maldacena and A. Strominger, AdS3 black holes
and a stringy exclusion principle, J. High Energy Phys.
12 (1998) 005.

[4] J. M. Evans, M. R. Gaberdiel, and M. J. Perry, The no ghost
theorem for AdS3 and the stringy exclusion principle, Nucl.
Phys. B535, 152 (1998).

[5] A. Giveon, D. Kutasov, and N. Seiberg, Comments on string
theory on AdS3, Adv. Theor. Math. Phys. 2, 733 (1998).

[6] J. de Boer, H. Ooguri, H. Robins, and J. Tannenhauser,
String theory on AdS3, J. High Energy Phys. 12 (1998) 026.

[7] D. Kutasov and N. Seiberg, More comments on string
theory on AdS3, J. High Energy Phys. 04 (1999) 008.

[8] A. Giveon and D. Kutasov, Notes on AdS3, Nucl. Phys.
B621, 303 (2002).

[9] M. Cho, S. Collier, and X. Yin, Strings in Ramond-Ramond
backgrounds from the Neveu-Schwarz-Ramond formalism,
J. High Energy Phys. 12 (2020) 123.

[10] G. Giribet, C. Hull, M. Kleban, M. Porrati, and E.
Rabinovici, Superstrings on AdS3 at k ¼ 1, J. High Energy
Phys. 08 (2018) 204.

[11] N. Berkovits, C. Vafa, and E. Witten, Conformal field theory
of AdS background with Ramond-Ramond flux, J. High
Energy Phys. 03 (1999) 018.

[12] M. R. Gaberdiel and S. Gerigk, The massless string spec-
trum on AdS3 × S3 from the supergroup, J. High Energy
Phys. 10 (2011) 045.

OFER AHARONY and EREZ Y. URBACH PHYS. REV. D 110, 046028 (2024)

046028-22

https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1088/1126-6708/1998/12/005
https://doi.org/10.1088/1126-6708/1998/12/005
https://doi.org/10.1016/S0550-3213(98)00561-6
https://doi.org/10.1016/S0550-3213(98)00561-6
https://doi.org/10.4310/ATMP.1998.v2.n4.a3
https://doi.org/10.1088/1126-6708/1998/12/026
https://doi.org/10.1088/1126-6708/1999/04/008
https://doi.org/10.1016/S0550-3213(01)00573-9
https://doi.org/10.1016/S0550-3213(01)00573-9
https://doi.org/10.1007/JHEP12(2020)123
https://doi.org/10.1007/JHEP08(2018)204
https://doi.org/10.1007/JHEP08(2018)204
https://doi.org/10.1088/1126-6708/1999/03/018
https://doi.org/10.1088/1126-6708/1999/03/018
https://doi.org/10.1007/JHEP10(2011)045
https://doi.org/10.1007/JHEP10(2011)045


[13] L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, The
worldsheet dual of the symmetric product CFT, J. High
Energy Phys. 04 (2019) 103.

[14] M. R. Gaberdiel and K. Naderi, The physical states of the
hybrid formalism, J. High Energy Phys. 10 (2021) 168.

[15] F. Larsen and E. J. Martinec, U(1) charges and moduli in the
D1—D5 system, J. High Energy Phys. 06 (1999) 019.

[16] A. Dabholkar and A. Pakman, Exact chiral ring of
AdS3=CFT2, Adv. Theor. Math. Phys. 13, 409 (2009).

[17] J. de Boer, J. Manschot, K. Papadodimas, and E. Verlinde,
The chiral ring of AdS3=CFT2 and the attractor mechanism,
J. High Energy Phys. 03 (2009) 030.

[18] O. Lunin and S. D. Mathur, Three point functions for MN/
SN orbifolds with N ¼ 4 supersymmetry, Commun. Math.
Phys. 227, 385 (2002).

[19] A. Pakman and A. Sever, Exact N ¼ 4 correlators of
AdS3=CFT2, Phys. Lett. B 652, 60 (2007).

[20] A. Pakman, L. Rastelli, and S. S. Razamat, Extremal
correlators and hurwitz numbers in symmetric product
orbifolds, Phys. Rev. D 80, 086009 (2009).

[21] M. Baggio, J. de Boer, and K. Papadodimas, A non-
renormalization theorem for chiral primary 3-point func-
tions, J. High Energy Phys. 07 (2012) 137.

[22] M. R. Gaberdiel and B. Nairz, BPS correlators for
AdS3=CFT2, J. High Energy Phys. 09 (2022) 244.

[23] E. J. Martinec, S. Massai, and D. Turton, On the BPS sector
in AdS3=CFT2 holography, Fortschr. Phys. 71, 2300015
(2023).

[24] S. Iguri, N. Kovensky, and J. H. Toro, Spectral flow and the
exact AdS3=CFT2 chiral ring, J. High Energy Phys. 08
(2023) 034.

[25] G. Giribet and C. A. Nunez, Correlators in AdS3 string
theory, J. High Energy Phys. 06 (2001) 010.

[26] J. M. Maldacena and H. Ooguri, Strings in AdS3 and the SL
(2,R) WZWmodel. Part 3. Correlation functions, Phys. Rev.
D 65, 106006 (2002).

[27] J. Troost, Winding strings and AdS3 black holes, J. High
Energy Phys. 09 (2002) 041.

[28] M. R. Gaberdiel and I. Kirsch, Worldsheet correlators in
AdS3=CFT2, J. High Energy Phys. 04 (2007) 050.

[29] G. Giribet, A. Pakman, and L. Rastelli, Spectral flow in
AdS3=CFT2, J. High Energy Phys. 06 (2008) 013.

[30] M. Taylor, Matching of correlators in AdS3=CFT2, J. High
Energy Phys. 06 (2008) 010.

[31] C. A. Cardona and C. A. Nunez, Three-point functions in
superstring theory on AdS3 × S3 × T4, J. High Energy Phys.
06 (2009) 009.

[32] C. A. Cardona and I. Kirsch, Worldsheet four-point func-
tions in AdS3=CFT2, J. High Energy Phys. 01 (2011) 015.

[33] A. Dei and L. Eberhardt, String correlators on AdS3: Three-
point functions, J. High Energy Phys. 08 (2021) 025.

[34] A. Dei and L. Eberhardt, String correlators on AdS3: Four-
point functions, J. High Energy Phys. 09 (2021) 209.

[35] A. Dei and L. Eberhardt, String correlators on AdS3:
Analytic structure and dual CFT, SciPost Phys. 13, 053
(2022).

[36] A. Dei, B. Knighton, and K. Naderi, Solving AdS3 string
theory at minimal tension: Tree-level correlators, arXiv:
2312.04622.

[37] J. M. Maldacena and H. Ooguri, Strings in AdS3 and
SL(2,R) WZW model 1.: The spectrum, J. Math. Phys.
(N.Y.) 42, 2929 (2001).

[38] J. Kim and M. Porrati, On the central charge of spacetime
current algebras and correlators in string theory on AdS3, J.
High Energy Phys. 05 (2015) 076.

[39] O. Lunin and S. D. Mathur, Correlation functions for MN/
SN orbifolds, Commun. Math. Phys. 219, 399 (2001).

[40] A. Pakman, L. Rastelli, and S. S. Razamat, Diagrams for sym-
metric product orbifolds, J. High Energy Phys. 10 (2009) 034.

[41] A. Pakman, L. Rastelli, and S. S. Razamat, A spin chain for
the symmetric product CFT2, J. High Energy Phys. 05
(2010) 099.

[42] L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, Deriving
the AdS3=CFT2 correspondence, J. High Energy Phys. 02
(2020) 136.

[43] R. Dijkgraaf, G. W. Moore, E. P. Verlinde, and H. L.
Verlinde, Elliptic genera of symmetric products and second
quantized strings, Commun. Math. Phys. 185, 197 (1997).

[44] P. Bantay, Symmetric products, permutation orbifolds and
discrete torsion, Lett. Math. Phys. 63, 209 (2003).

[45] L. Eberhardt, Summing over geometries in string theory, J.
High Energy Phys. 05 (2021) 233.

[46] N. Seiberg and E. Witten, The D1/D5 system and singular
CFT, J. High Energy Phys. 04 (1999) 017.

[47] L. Eberhardt and M. R. Gaberdiel, Strings on AdS3 × S3×
S3 × S1, J. High Energy Phys. 06 (2019) 035.

[48] D. Kutasov, F. Larsen, and R. G. Leigh, String theory in
magnetic monopole backgrounds, Nucl. Phys. B550, 183
(1999).

[49] E. J. Martinec and W. McElgin, String theory on AdS
orbifolds, J. High Energy Phys. 04 (2002) 029.

[50] E. J. Martinec, AdS3 orbifolds, BTZ black holes, and
holography, J. High Energy Phys. 10 (2023) 016.

[51] M. R. Gaberdiel, B. Guo, and S. D. Mathur, Tensionless
stringsonAdS3 orbifolds, J.HighEnergyPhys. 04 (2024) 057.

[52] S. Hohenegger, C. A. Keller, and I. Kirsch, Heterotic
AdS3=CFT2 duality with (0,4) spacetime supersymmetry,
Nucl. Phys. B804, 193 (2008).

[53] Z. K.Baykara,D.Robbins, andS. Sethi, Non-supersymmetric
AdS from string theory, SciPost Phys. 15, 224 (2023).

[54] B. Fraiman, M. Graña, H. Parra De Freitas, and S. Sethi,
Non-supersymmetric heterotic strings on a circle, arXiv:
2307.13745.

[55] O. Aharony, M. Berkooz, S. Kachru, N. Seiberg, and E.
Silverstein, Matrix description of interacting theories in six-
dimensions, Adv. Theor. Math. Phys. 1, 148 (1998).

[56] E. Witten, On the conformal field theory of the Higgs
branch, J. High Energy Phys. 07 (1997) 003.

[57] O. Aharony and M. Berkooz, IR dynamics of D ¼ 2,
N ¼ ð4; 4Þ gauge theories and DLCQ of “little string
theories,” J. High Energy Phys. 10 (1999) 030.

[58] C. H. Taubes, Self-dual connections on 4-manifolds with
indefinite intersection matrix, J. Diff. Geom. 19, 517 (1984).

[59] S. Gerigk, Superstring theory on AdS3 × S3 and the
PSLð2j2Þ WZW model, Ph.D. thesis, Zurich, ETH, 2012,
10.3929/ethz-a-007595532.

[60] M. R. Gaberdiel and R. Gopakumar, Tensionless string
spectra on AdS3, J. High Energy Phys. 05 (2018) 085.

TYPE II STRING THEORY ON AdS3 × S3 × T4 … PHYS. REV. D 110, 046028 (2024)

046028-23

https://doi.org/10.1007/JHEP04(2019)103
https://doi.org/10.1007/JHEP04(2019)103
https://doi.org/10.1007/JHEP10(2021)168
https://doi.org/10.1088/1126-6708/1999/06/019
https://doi.org/10.4310/ATMP.2009.v13.n2.a2
https://doi.org/10.1088/1126-6708/2009/03/030
https://doi.org/10.1007/s002200200638
https://doi.org/10.1007/s002200200638
https://doi.org/10.1016/j.physletb.2007.06.041
https://doi.org/10.1103/PhysRevD.80.086009
https://doi.org/10.1007/JHEP07(2012)137
https://doi.org/10.1007/JHEP09(2022)244
https://doi.org/10.1002/prop.202300015
https://doi.org/10.1002/prop.202300015
https://doi.org/10.1007/JHEP08(2023)034
https://doi.org/10.1007/JHEP08(2023)034
https://doi.org/10.1088/1126-6708/2001/06/010
https://doi.org/10.1103/PhysRevD.65.106006
https://doi.org/10.1103/PhysRevD.65.106006
https://doi.org/10.1088/1126-6708/2002/09/041
https://doi.org/10.1088/1126-6708/2002/09/041
https://doi.org/10.1088/1126-6708/2007/04/050
https://doi.org/10.1088/1126-6708/2008/06/013
https://doi.org/10.1088/1126-6708/2008/06/010
https://doi.org/10.1088/1126-6708/2008/06/010
https://doi.org/10.1088/1126-6708/2009/06/009
https://doi.org/10.1088/1126-6708/2009/06/009
https://doi.org/10.1007/JHEP01(2011)015
https://doi.org/10.1007/JHEP08(2021)025
https://doi.org/10.1007/JHEP09(2021)209
https://doi.org/10.21468/SciPostPhys.13.3.053
https://doi.org/10.21468/SciPostPhys.13.3.053
https://arXiv.org/abs/2312.04622
https://arXiv.org/abs/2312.04622
https://doi.org/10.1063/1.1377273
https://doi.org/10.1063/1.1377273
https://doi.org/10.1007/JHEP05(2015)076
https://doi.org/10.1007/JHEP05(2015)076
https://doi.org/10.1007/s002200100431
https://doi.org/10.1088/1126-6708/2009/10/034
https://doi.org/10.1007/JHEP05(2010)099
https://doi.org/10.1007/JHEP05(2010)099
https://doi.org/10.1007/JHEP02(2020)136
https://doi.org/10.1007/JHEP02(2020)136
https://doi.org/10.1007/s002200050087
https://doi.org/10.1023/A:1024453119772
https://doi.org/10.1007/JHEP05(2021)233
https://doi.org/10.1007/JHEP05(2021)233
https://doi.org/10.1088/1126-6708/1999/04/017
https://doi.org/10.1007/JHEP06(2019)035
https://doi.org/10.1016/S0550-3213(99)00144-3
https://doi.org/10.1016/S0550-3213(99)00144-3
https://doi.org/10.1088/1126-6708/2002/04/029
https://doi.org/10.1007/JHEP10(2023)016
https://doi.org/10.1007/JHEP04(2024)057
https://doi.org/10.1016/j.nuclphysb.2008.06.020
https://doi.org/10.21468/SciPostPhys.15.6.224
https://arXiv.org/abs/2307.13745
https://arXiv.org/abs/2307.13745
https://doi.org/10.4310/ATMP.1997.v1.n1.a5
https://doi.org/10.1088/1126-6708/1997/07/003
https://doi.org/10.1088/1126-6708/1999/10/030
https://doi.org/10.4310/jdg/1214438690
https://doi.org/10.3929/ethz-a-007595532
https://doi.org/10.1007/JHEP05(2018)085


[61] A. Dei, M. R. Gaberdiel, R. Gopakumar, and B. Knighton,
Free field world-sheet correlators for AdS3, J. High Energy
Phys. 02 (2021) 081.

[62] L. Eberhardt, AdS3=CFT2 at higher genus, J. High Energy
Phys. 05 (2020) 150.

[63] B. Knighton, Higher genus correlators for tensionless AdS3
strings, J. High Energy Phys. 04 (2021) 211.

[64] B. Schoeneberg, J. Smart, and E. Schwandt, Elliptic
Modular Functions: An Introduction, Grundlehren der
mathematischen Wissenschaften (Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012).

[65] R.Argurio, A.Giveon, andA. Shomer, Superstrings onAdS3
and symmetric products, J. HighEnergyPhys. 12 (2000) 003.

[66] L. Eberhardt and M. R. Gaberdiel, String theory on AdS3
and the symmetric orbifold of Liouville theory, Nucl. Phys.
B948, 114774 (2019).

[67] A. Dei, L. Eberhardt, and M. R. Gaberdiel, Three-point
functions in AdS3=CFT2 holography, J. High Energy Phys.
12 (2019) 012.

[68] L. Eberhardt, A perturbative CFT dual for pure NS–NS
AdS3 strings, J. Phys. A 55, 064001 (2022).

[69] P. S. Aspinwall, Enhanced gauge symmetries and K3
surfaces, Phys. Lett. B 357, 329 (1995).

[70] L. Eberhardt, Partition functions of the tensionless string, J.
High Energy Phys. 03 (2021) 176.

[71] B. Knighton, A note on background independence in AdS3
string theory, arXiv:2404.19571.

[72] B. Knighton, V. Sriprachyakul, and J. Vošmera, Topological
defects and tensionless holography, arXiv:2406.03467.

[73] F. M. Haehl and M. Rangamani, Permutation orbifolds and
holography, J. High Energy Phys. 03 (2015) 163.

[74] A.Belin, C. A.Keller, andA.Maloney, Permutation orbifolds
in the large N limit, Ann. Henri Poincaré 18, 529 (2016).
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