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We consider an arbitrary deformation of the Gaussian matrix model parametrized by Miwa variables za.
One can look at it as a mixture of the Gaussian and logarithmic (Selberg) potentials, which are both
superintegrable. The mixture is not, still one can find an explicit expression for an arbitrary Schur average
as a linear transform of a finite degree polynomial made from the values of skew Schur functions at the

Gaussian locus pk ¼ δk;2. This linear operation includes multiplication with an exponential ez
2
a=2 and a kind

of Borel transform of the resulting product, which we call multiple and enhanced. The existence of such
remarkable formulas appears intimately related to the theory of auxiliary K-polynomials, which appeared
in bilinear superintegrable correlators at the Gaussian point (strict superintegrability). We also consider in
great detail the generating function of correlators hðTrXÞki in this model, and discuss its integrable
determinant representation. At last, we describe deformation of all results to the Gaussian β-ensemble.
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I. INTRODUCTION

This paper is a direct extension of our recent discovery
[1] that perturbation theory around a superintegrable point
can be extraordinary simple and can actually be summed up
into an absolutely explicit formula with the help of what we
called an enhanced Borel transform. In this paper, we
develop this result in two directions.
First, we express perturbative corrections through the

values of Schur functions at the special point pk ¼ δk;2,
which makes similarity to superintegrability nearly full,
and allows us to call the entire phenomenon a deformation
of superintegrability. The only difference is that now the
skew Schur functions are involved. In fact, these are rather
sophisticated special functions, they are still polynomials,
but with nontrivial coefficients. The formulas from [1] are
actually computationally better, but conceptually an expres-
sion via the Schur functions has many advantages.

Second, we make use of one of advantages and describe
various generalizations like introducing many Miwa var-
iables (and multiple Borel transform) and β-deformation.
A very interesting generalization to expansions around
non-Gaussian monomial potentials is now also straightfor-
ward [2], but it involves a number of new ideas: in addition
to just shifting the locus to pk ¼ δk;r, there is also an
ambiguity in the choice of superintegrability preserving
integration contours among all the (nonsuperintegrable)
Dijkgraaf-Vafa phases. We leave this story to a separate
paper in order to avoid overloading and shadowing the
ideas of the present one.
The rest of the Introduction briefly repeats the main

points from [1], since we need them below as well.
Superintegrability in quantum field theory was originally

defined in [3,4] (based on the phenomenon earlier observed
in [5–14], see also some preliminary results in [15–19] and
later progress in [20–40]) as a possibility of finding a basis
in the space of correlators, when they can be explicitly
calculated. The basis can be a somewhat transcendental
(not expressed in elementary functions), but just a little,
unlike the case of generic nonsuperintegrable models. This
was supposed to mimic the situation in superintegrable
classical potentials, like the harmonic oscillator or Newton/
Coulomb potentials, when the orbits become periodic and
are expressed in terms of periodic, though still elliptic
integrals (i.e., not just elementary trigonometric functions).
As a basic example in QFT, we took the Gaussian matrix
model [4], other examples include Selberg (logarithmic)
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models [10,11,41–43], and a variety of other theories [35].
This basic example states that the Gaussian average of the
Schur function1 SR is explicitly calculable in terms of the
same Schur functions

hSRi ¼ ηRðNÞSRfδk;2g ð1Þ

with ηRðNÞ ≔ SRfNg
SRfδk;1g, where the Schur function is labeled

by the Young diagram R and is a graded polynomial of
time variables, which is expressed at the left-hand side
through “the quantum fields” pk ¼ trXk, X being a N × N
Hermitian matrix in the case of Gaussian matrix model. The
correlators in this latter are defined

h…i ¼
Z

dXe−
1
2
trX2

… ð2Þ

and are normalized in such a way that h1i ¼ 1. The
measure dX is a natural flat Lebesgue measure (invariant
under translations) on Hermitian matrices. At the right-
hand side (rhs) of the Schur function in (1), the variables are
restricted to particular loci pk ¼ δk;m and pk ¼ N. The ratio
ηRðNÞ is just a polynomial in N, a product over the boxes
ði; jÞ of the Young diagram: ηR ¼ Q

ði;jÞ∈RðN þ i − jÞ.
In this paper, we are going to consider a deformation of

the Gaussian model2:

h…iπk ¼
Z

dX exp

�
−
1

2
TrX2 þ

X
k

πk
k
TrXk

�
… ð3Þ

The rhs of this expression is understood as a power series in
πk’s, i.e., this is an arbitrary deformation that is associated
with the same integration contour along the real axis as
in the Gaussian model. In other words, this is a small
deformation over the Gaussian background, and parameters
fπkg are considered as describing small deviations from the
Gaussian action. Here we consider only the specialization
πk ¼ �zk and explain the structure of correlators in such a

model. It appears to have an interesting and intriguing
feature: it turns out that the correlators are given by a
Borel transform of a finite degree polynomial times a
quadratic exponential.
In [38, Sec. 3], we used the model (3) as a typical

counterexample for superintegrability. Now we try to move
further and explain how this notion can be extended and
generalized to capture this more sophisticated model. One
of the most natural options is to choose the parameters πk’s
in the Miwa parametrization: πk ¼

P
m
i¼1 z

k
i . Not surpris-

ingly, the quantity m plays a distinguished role in the
resulting formulas. In this paper, we start from the simplest
case of m ¼ 1 and explain the structure of correlators in
such a model. It appears to have an interesting and
intriguing feature: it turns out that the correlators are given
by a Borel transform of a finite degree polynomial times a
quadratic exponential.
Let us explain the origin of this Borel transform. To this

end, we notice that, in the Gaussian model, the generating
function of all correlators looks like

Zfpkg ≔
X
R

SRfpkghSRi ¼
X
R

ηRðNÞSRfδk;2gSRfpkg:

ð4Þ

If not this ηRðNÞ, one would get an elementary answer,
using the Cauchy formula [44]:

X
R

SRfp̄kgSRfpkg ¼ exp

�X
k

p̄kpk

k

�

⇒
X
R

SRfδk;2gSRfpkg ¼ ep2=2: ð5Þ

As explained in [31,32], insertion of the polynomial factor
ηRðNÞ can be induced by an action of a linear operator
acting on the time variables pk:

Zfpkg ¼ ÔðNÞ
�X

R

SRfδk;2gSRfpkg
�
¼ ÔðNÞep2=2: ð6Þ

The action of operator Ô can be interpreted as an enhanced
Borel transform. Usually Borel “improves” infinite series
by inserting extra factorials [45] or their combinatorial
counterparts [46] in denominators. In the case of poly-
nomial insertions like ηR, the series are sometimes3 cut off
by a combination of Γ-function factors N!

ðN−nÞ! at finite values
of n, actually regulated by the size N of the matrix in
the underlying matrix model. This cutoff is a kind of
extreme (enhanced) version of the same convergency
improvement idea.

1The Schur function SRðzaÞ is a symmetric function of a set of
variables fzag or of their power sums pk ¼

P
a z

k
a. In the latter

case, we use the notation SRfpkg. The Schur function is labeled
by the Young diagram (partition) R: R1 ≥ R2 ≥ … ≥ RlR > 0,
and can be manifestly evaluated using the Jacobi-Trudi formula

SRfpkg ¼ deti;jhRi−iþjfpkg

where the complete homogeneous symmetric polynomials
hnfpkg’s are defined as

exp

�X
k

pkzk

k

�
¼

X
m

hnfpkgzn

2In the deformed case, we do not change the normalization of
correlators as compared with the nondeformed case in order to
have formulas simpler.

3In the case of choosing the deformation of the Gaussian
model by πk ¼ −

P
a z

k
a, see Sec. VI below.
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In order to demonstrate that emerging the Borel trans-
form is a general feature of the Miwa-deformed model, in
the paper, we consider a deformation with an arbitrary m.
However, the correlators in this case become rather
involved. This is why we specifically consider in detail
arbitrary correlators of ðTrXÞk in this model with m Miwa
variables, and demonstrate that, in order to imitate ηRðNÞ,
the kind of borelization is applied independently to all the
Miwa variables, thus what we come across is actually a
multiple enhanced Borel transform.
Summing up series in πk provides an example of

resurgence [47], remarkable because it should one day
give rise to new superintegrable theories, e.g., for mono-
mial potentials trXp with integer p ≥ 3. Like every non-
trivial resurgence, it involves extra parameters like p − 2
different phases (Stokes sectors) for monomial potentials
or Dijkgraaf-Vafa phases for nonmonomial potentials.
This interesting direction is beyond the scope of the
present paper, because Miwa deformations with any finite
number m of za variables do not bring us to a new
superintegrable point with multiple Stokes sectors.
Instead, we can treat these deformations as a kind of
superintegrable themselves, because we found a way to
express the answers for averages hSRiπk¼P zka

with arbi-

trary R through finite and explicit polynomials made from
Schur functions. In fact, even more is correct: as we
demonstrated in [1], at least, in the case of one Miwa
variable, all correlators are explicitly expressed in terms
of peculiar polynomials WjðQÞ depending on somewhat
mysterious truncation Q ⟶ Q of the Young diagram Q.
At least, this looks like quite a nontrivial and interesting
generalization of superintegrability.
The paper is organized as follows. In Sec. II, we discuss a

structure of correlators in the Gaussian model with general
deformation, and in detail in the case of deformation by
a single Miwa variables. In this latter case, we realize
natural to introduce an enhanced Borel transform, which
we define and discuss in Sec. III. In Sec. IV, we explain that
instead of considering averages of the Schur functions,
one can deal with another set of polynomials, which have
simpler averages. This allows us to obtain a general formula
for correlators in the Gaussian model deformed with
arbitrary many Miwa variables and to extend it to the
β-ensemble in Sec. V. In Sec. VI, we consider correlators
of ðTrXÞk in the Gaussian model deformed by m Miwa
variables, discuss its integrable properties in Sec. VII, and
its β-deformation in Sec. VIII. Section IX contains some
concluding remarks.
Notation. We use the notation SRðzaÞ and SRðz1;

z2;…; znÞ for the Schur functions, which are symmetric
functions of a set of n variables fzag, and SRfpkg for the
Schur functions as functions of power sums pk ¼

P
a z

k
a,

which are graded polynomials of variables pk of grading k.
The Schur function SRfpg is labeled by the Young diagram
(partition) R: R1 ≥ R2 ≥ … ≥ RlR > 0, and the grading of

this Schur function is jRj ≔ P
i Ri. We also denote through

SR=Qfpg the skew Schur functions:

SRfpk þ p0
kg ¼

X
Q

SR=QfpkgSQfp0
kg: ð7Þ

Similarly, we use notations JRð:Þ and JRf:g for the Jack
polynomials [44].
Throughout the paper, we use the Pochhammer symbol

ðN; μÞn ¼
Yn−1
k¼0

ðN þ kμÞ ð8Þ

and ðN; μÞ0 ¼ 1.

II. MIWA DEFORMATION OF
SUPERINTEGRABILITY FOR GAUSSIAN MODEL

Thus, in this paper, we consider the correlators in the
deformed Gaussian model. The generating function of the
correlators is given by

Z ¼
Z

dX exp

�
−
1

2
TrX2 þ

X
k

pk þ πk
k

TrXk

�
ð9Þ

and, using (1), we immediately obtain [see Eq. (7)]

Z ¼
X
R

ηRðNÞSRfδk;2gSRfpk þ πkg

¼
X
R;Q

ηRðNÞSRfδk;2gSR=QfπkgSQfpkg ð10Þ

i.e., for an arbitrary correlator, one obtains

hSQfTrXkgiπk ¼
X
R

ηRðNÞSRfδk;2gSR=Qfπkg: ð11Þ

This is an infinite sum. It is always divisible by to ηQ, since
the summand is nonzero only if the Young diagram R
contains all boxes of the Young diagram Q inside. Hence,
the correlator can be written as

hSQfTrXkgiπk ¼ ηQðNÞFQðπk; NÞ ð12Þ

where

FQðπk; NÞ ≔
X
R

ηRðNÞ
ηQðNÞ SRfδk;2gSR=Qfπkg ð13Þ

is a power series in N and πk. Here the (infinite) sum runs
over all Young diagrams R containing the diagram Q.
For πk ¼ 0 and FQ ¼ SRfδk;2g, one obtains the

usual superintegrability formula (1) [35], for πk ≠ 0,
one gets a deformation, which we can treat as that of
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superintegrability provided FQðπk; NÞ are calculable and
simple enough.
As we already explained, the Miwa parametrization of

the deforming constants πk ¼
P

i z
k
i looks quite natural. In

this case, one inserts in the Gaussian integral an additional
factor of4

Ym
i¼1

1

detð1 − ziXÞ
: ð14Þ

In the case of generic m, formula (13) for FQðπk; NÞ does
not look simple (though it possesses an interesting structure

that we discuss throughout the paper), however, in the case
of m ¼ 1, it does:

FQðz; NÞ ¼
X
R

zjRj−jQj ηRðNÞ
ηQðNÞ SRfδk;2gSR=Qf1g ð15Þ

where jRj ¼ P
i Ri denotes the size of the Young diagramR.

There is a systematic description of the correlators in the
case of the Gaussian model deformed by one Miwa
variable. It turns out that one can evaluate the infinite
sums, (13) for FQðz; NÞ in this case.
The simplest correlators in this case are

F½2r� ¼
X∞
k¼0

Xminðk;rÞ

j¼0

ðN þ 2j; 1Þ2k−2jz2k
ð2r − 2jÞ!!ð2k − 2jÞ!! ¼

X∞
k¼0

Xminðk;rÞ

j¼0

ðN þ 2k − 1Þ!
ðN þ 2j − 1Þ!

z2k

ð2r − 2jÞ!!ð2k − 2jÞ!!

F½2rþ1� ¼
X∞
k¼0

Xminðk;rÞ

j¼0

ðN þ 2jþ 1; 1Þ2k−2jz2kþ1

ð2r − 2jÞ!!ð2k − 2jÞ!! ¼
X∞
k¼0

Xminðk;rÞ

j¼0

ðN þ 2kÞ!
ðN þ 2jÞ!

z2kþ1

ð2r − 2jÞ!!ð2k − 2jÞ!! ð16Þ

and

F½12s� ¼
ð−Þs
ð2sÞ!!

X∞
k¼0

ðN þ 2k − 1Þ!
ðN − 1Þ!

z2k

ð2kÞ!!

F½12sþ1� ¼
ð−Þs
ð2sÞ!!

X∞
k¼0

ðN þ 2kÞ!
N!

z2kþ1

ð2kÞ!! : ð17Þ

The general answer for FQ of even size jQj is

FQ ¼
X∞
k¼0

z2k

ð2kÞ!!
Xk
j¼0

cjðQÞ k!
ðk − jÞ!

ðN þ 2k − 1Þ!
ðN þ 2j − 1Þ! ¼

X∞
k¼0

ðN; 1Þ2k
z2k

ð2kÞ!!
Xk
j¼0

cjðQÞ ðk;−1ÞjðN; 1Þ2j
ð18Þ

while that for FQ of odd size jQj is

FQ ¼
X∞
k¼0

z2kþ1

ð2kÞ!!
Xk
j¼0

cjðQÞ k!
ðk − jÞ!

ðN þ 2kÞ!
ðN þ 2jÞ! ¼

X∞
k¼0

ðN; 1Þ2kþ1

z2kþ1

ð2kÞ!!
Xk
j¼0

cjðQÞ ðk;−1Þj
ðN; 1Þ2jþ1

ð19Þ

Now we explain various ingredients of these formulas.
Overall coefficients. An important observation is that if

the constant term in FQ at even jQj or the linear term in z
in FðQÞ at odd jQj, the whole FQ is zero, i.e. the
corresponding coefficients are, in fact, the overall coef-
ficients. Hence, we need to describe them in order to
determine when FQ vanishes.

The overall coefficient in the case of even jQj in (18)
follows immediately from (13): the coefficient c0ðQÞ in
front of z0 is determined by R ¼ Q and is equal just to
SQfδk;2g. The value of SQfδk;2g is equal [14,48] to

SQfδk;2g ¼ δ2ðQÞ
Y

ði;jÞ∈Q

1

hevi;j
ð20Þ

where hi;j is the hook length, and the product runs over
only hook with even length, which we denoted by the
superscript ev. δ2ðQÞ is defined in [14, Eq. (3.26)]:

4One can avoid a potential singularity of the integral shifting zi
from the real axis. In practice, we always deal with this factor as a
power series in zi.
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δ2ðQÞ ¼
� ð−1ÞjQj=2Qði;jÞ∈Qð−1Þ½ci;j=2�þ½hi;j=2� if the 2-core of Q is trivial

0 otherwise
ð21Þ

where ci;j is the content of the box ði; jÞ in Q. Thus,
cjðQÞ ¼ 0 if the 2-core of Q is nontrivial.5

The overall coefficients in the case of odd jQj is
proportional to z, i.e., only the Young diagrams R with
jRj ¼ jQj þ 1 contributes to the sum (13):

c0ðQÞ ¼
X
Qþ□

ðN þ j□ − i□ÞSQþ□fδk;2g ð22Þ

where the sum goes over all Young diagrams produced from
Q by adding a box, and i□, j□ denote the coordinates of the
added box on this newYoung diagramQþ□. Note that this
coefficient does not depend on N. Indeed, since [44]

p1SQfpkg ¼
X
Qþ□

SQþ□fpkg ð23Þ

we immediately obtain

X
Qþ□

SQþ□fδk;2g ¼ 0: ð24Þ

Hence,

c0ðQÞ ¼
X
Qþ□

ðj□ − i□ÞSQþ□fδk;2g: ð25Þ

Note that this sum can be reproduced by the action of the
differential operator

P
k kpkþ1

∂

∂pk
, [31]

c0ðQÞ ¼
X
Qþ□

ðj□ − i□ÞSQþ□fδk;2g

¼
X
k

kpkþ1

∂

∂pk
SQfpkgjpk¼δk;2

¼ ∂

∂p1

SQfpkgjpk¼δk;2
≔ S0Qfδk;2g: ð26Þ

Coefficients cjðQÞ. The coefficients cjðQÞ are expressed
through auxiliary functions, which we manifestly described
in the Appendix of [1]. The manifest formulas for them are

cjðQÞ ¼ 2jSQ=½2j�fδk;2g for even jQj
cjðQÞ ¼ 2jSQ=½2jþ1�fδk;2g for odd jQj ð27Þ

These quantities are the mysterious quantities from [1] that
were denoted there CQ ·WjðQÞ, and they were parame-
trized an auxiliary Young diagramQ [see Ref. [1], formulas
(38) and (51)]. The WjðQÞ-representation of [1] for

correlators has its own advantages, for example, it is easily
computable (when Q is known), in variance with the Schur
polynomials, which get increasingly complicated for large
partitions. However, (27) are conceptually important and
emphasize the fact that superintegrability is deformed only
slightly once expressed in an appropriate form and varia-
bles. We prove these formulas in Sec. IV, they appear
related to the theory of exact bilinear Gaussian correlators
(strict superintegrability) [30,38], which originally could
seem a little artificial, but now acquires a spectacular
raison d’être.
An important additional property that allows one to

identify (27) with formulas from [1] is that

S0Qfδk;2g ¼ SQ=½1�fδk;2g: ð28Þ

From here, it is just one step toward the final formu-
las (32) and (33) for the averages (18) and (19). It, however,
involves one more ingredient, which we will name the
enhanced Borel transform.

III. BOREL TRANSFORM

A priori the Schur averages FQðz; NÞ in the Gaussian
model deformed with one Miwa variable z are represented
by series (18) and (19) in powers of z (sums over k), with
the coefficients having three properties:
(a) they are themselves some series (sums over j),
(b) which are actually cut to polynomials by peculiar

factorials ðN − jÞ! in denominators in the case of
choosing πk ¼ −

P
a z

k
a, see Sec. VI below,

(c) a truly nontrivial part of the coefficients is defined by a
certain truncation of Q [1].

In this paper, we found remarkable formulas (27) which
resolve point (c): now we know what are these coefficients.
The next step is to find an appropriate interpretation of

(b), and below in this section we suggest that the inverse
factorials ðN − jÞ! are an enhanced version of the ordinary
inverse factorials j!, which defined the Borel transform.
While the Borel transform damped the large j asymptotics
of the series, our coefficients can just cut them down to
polynomials, hence we call this enhanced Borel transform.
A pleasant bonus of this definition is that if one treats the

j-sums as the enhanced Borel transform, the entire sum
over k can be explicitly summed up into the exponential
ez

2=2 times a polynomial! Thus, by finding an interpretation
for (b), we are simultaneously handling (a): the final answer
for the average FQ is the enhanced Borel transform of a
simple exponential times a polynomial.

5In accordance with [44], the r-core ofQ is the unique result of
stripping all possible rim hooks of length r from Q.
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In result, the averages are explicitly calculable, i.e., in a
sense, are superintegrable, just instead of a single Schur
product, the answer is the enhanced Borel transform of a
finite sum.
Moreover, items (a) and (b) can be immediately con-

tinued to several Miwa variables, only one needs a multiple
enhanced Borel transform. One can sometimes avoid
multiplicity in the transform, at expense of making it more
sophisticated like in [2] but, at the moment, the multiple
option looks more preferable.
In the next sections, we also consider in detail the

evaluation of an arbitrary correlator hðTrXÞki in the
Gaussian potential perturbed by an arbitrary number of
Miwa variables, πk ¼ �P

a z
k
a, and explain what the

multiple enhanced Borel transform is, which converts it
in a convenient form. The generalization of point (c) is also
straightforward, see the next section IV.

A. Borel representation of correlators

Let us introduce a Borel transformation defined in the
following way: given a power series

FðzÞ ¼
X
k

Fkzk ð29Þ

the Borel transformation (parametrized by a parameter N)
is the power series

BN ½FðzÞ�z ¼
X
k

ðN; 1ÞkFkzk: ð30Þ

This transformation at negative integer N regularizes the
infinite series (29) making a finite polynomial from it,
hence the name (as we explained in the Introduction).
One may notice that all the correlators in the single Miwa

deformed model possess such a form: (18) and (19). Hence,
all of them can be written the Borel transformation of the
finite degree polynomial multiplied with the quadratic
exponential. For instance, the results (17) of the previous
section can be rewritten using the Borel transform

F½1�ðz; NÞ ¼
X
k¼0

ðN þ 1; 1Þ2k
z2kþ1

ð2kÞ!! ¼
1

N
Bð1Þ
N

h
ze

z2
2

i
z

ð31Þ

while (18) has the form

FQ ¼
X∞
k¼0

ðN; 1Þ2k
z2k

ð2kÞ!!
Xk
j¼0

cjðQÞ ðk;−1ÞjðN; 1Þ2j

¼ BN

�X∞
k¼0

X
j¼0

cjðQÞ ðk;−1ÞjðN; 1Þ2j
z2k

ð2kÞ!!
�
z

¼ BN

�
e
z2
2

X
j

cjðQÞ
ðN; 1Þ2j

�
z2

2

�
j
�
z

ð32Þ

and (19) has the form

FQ ¼
X∞
k¼0

ðN; 1Þ2kþ1

z2kþ1

ð2kÞ!!
Xk
j¼0

cjðQÞ ðk;−1Þj
ðN; 1Þ2jþ1

¼ BN

�
ze

z2
2

X
j

cjðQÞ
ðN; 1Þ2jþ1

�
z2

2

�
j
�
z

ð33Þ

Here we have the Borel transform of finite degree poly-

nomials times e
z2
2 .

The notable difference between (31)–(33) is that, in the
first of them, the answer is given by the Borel transform of a
function that does not depend on N.
An essential point is that all correlators in the single

Miwa deformed model can be presented as the Borel
transform. This is a peculiarity of the model: in the multiple
Miwa deformed model, in order to describe all the
correlators one has to generalize the Borel transform to
the multiple Borel transform, which we discuss in this
section. In the next sections, we consider in detail evalu-
ating an arbitrary correlator ðTrXÞk in the example of
multiple Miwa deformation, ck ¼ �P

a z
k
a and demon-

strate that they can be presented in a convenient form with
the multiple Borel transform.

B. The operator ÔðNÞ
Let us construct the operator ÔðNÞ, which was called

rotation operator in [32] and which plays the central role in
the definition of the Borel transform. This operator is
constructed manifestly via generalized cut-and-join oper-
ators. That is, the generalized cut-and-join operators ŴΔ
form a commutative set of operators, the Schur functions
being their eigenfunctions [49]:

ŴΔSR ¼ ϕRðΔÞSR ð34Þ

where, for the diagram Δ containing r unit cycles:
Δ ¼ ½Δ̃; 1r�,

ϕRðΔÞ¼
�0 jΔj> jRj

ðjRj−jΔjþrÞ!
r!ðjRj−jΔjÞ! ϕRðΔ̂Þ¼ ðjRj−jΔjþrÞ!

r!ðjRj−jΔjÞ!
ψRðΔ̂Þ

zΔ̂SRfδk;1g jΔj≤ jRj:
ð35Þ

Here Δ̂ ≔ ½Δ; 1jRj−jΔj�, ψRðΔÞ is the value of character of
the permutation group SjRj in the representation R on the
conjugacy class Δ, and zΔ is the order of automorphism of
the Young diagram Δ [50]. Now note that [[51], Eq. (61)]

X
Δ
ϕRðΔÞpΔ ¼ SRfpk þ δk;1g

dR
: ð36Þ

Now we construct the rotation operator as follows:
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ÔðuÞ ≔
X
Δ
pΔ · ŴΔ; with pk ¼ u − δk;1: ð37Þ

Here we use the notation pΔ ¼ QlΔ
i¼1 pδi , where lΔ is the

length of the partition Δ, and δi’s are its parts.
Then,

ÔðuÞ · SRfpkg ¼ SRfug
SRfδk;1g

SRfpkg ¼ ηRðuÞSRfpkg: ð38Þ

This operator was constructed earlier in [[12], Eq. (21)] in
order to insert additional factors SRfNg

SRfδk;1g into character

expansion of the partition function, and was written there
in a different form. In particular, one can rewrite it via
Casimir operators [12, Sec. 3].

C. Borel transform

Now we define the Borel transform of an arbitrary
symmetric power series Fðzi; z2;…; zmÞ of m variables,
which we sometimes call the m-fold (or multiple) Borel
transform:

BðmÞ
N ½Fðzi; z2;…; zmÞ�z ¼ ÔðNÞ · Fðzi; z2;…; zmÞ: ð39Þ

In fact, the superscriptm is not that necessary, and we often
omit it.
Let us explain this definition more explicitly. An

arbitrary symmetric power series can be expanded into
the basis of the Schur functions SR, and, form variables, the
Young diagrams R cannot have more than m lines. Thus,
one can generally write

Fðz1; z2;…; zmÞ ¼
X

n1≥n2≥…≥nm≥0
Cn1;n2;…;nmS½n1;n2;…;nm�ðz1; z2;…; zmÞ ð40Þ

and the m-fold Borel transform gives rise to

BðmÞ
N ½Fðz1; z2;…; zmÞ�z ¼

X
n1≥n2≥…≥nm≥0

ðN; 1Þn1ðN − 1;1Þn2…ðN −mþ 1;1ÞnmCn1;n2;…;nmS½n1;n2;…;nm�ðz1; z2;…; zmÞ: ð41Þ

Note that one can similarly use the relation

SRfpkg ¼ SR∨fð−1Þkþ1pkg ð42Þ
where R∨ denotes the transposed Young diagram, in order to get the expansion

Fðz1; z2;…; zmÞ ¼
X

n1≥n2≥…≥nm≥0
ð−1Þ

P
niCn1;n2;…;nmS½n1;n2;…;nm�∨

�
−
Xm
i¼1

zki

�
ð43Þ

and, in these terms,

BðmÞ
N ½Fðz1; z2;…; zmÞ�z
¼

X
n1≥n2≥…≥nm≥0

ð−1Þ
P

niðN;−1Þn1ðN þ 1;−1Þn2…ðN þm − 1;−1ÞnmCn1;n2;…;nmS½n1;n2;…;nm�∨
�
−
Xm
i¼1

zki

�

¼
X

n1≥n2≥…≥nm≥0
ð−N; 1Þn1ð−N − 1; 1Þn2…ð−N −mþ 1; 1ÞnmCn1;n2;…;nmS½n1;n2;…;nm�∨

�
−
Xm
i¼1

zki

�
: ð44Þ

In particular, in the case of one variable, this transformation
reduces to the ordinary enhanced Borel transform (30)

X
k

Ckzk⟶
Bð1Þ
N

X
k

ðN; 1ÞkCkzk: ð45Þ

IV. AVERAGES IN THE GAUSSIAN MODEL WITH
GENERIC MIWA DEFORMATION

We observed in the previous sections that the aver-
ages of the Schur functions in the Gaussian model

deformed by a single Miwa variable are calculable
and can be presented as the enhanced Borel transform
of a polynomial times quadratic exponential. Let us
explain that there is another basis [38,39] instead of
the Schur one, where these polynomials are simpler.
Instead, the polynomials that form this basis are more
complicated.
These polynomials are defined as

KRfTrHkg ¼ ð−1ÞjRje1
2
trH2

SRfŴ−
k ðHÞge−1

2
trH2 ð46Þ
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where6

Ŵ−
k ðHÞ ¼ Tr

�
∂

∂H

�
k

ð47Þ

andH is anN × N Hermitian matrix. The time variables are
pk ¼ TrHk. One can also realize the operators Ŵ−

k as
differential operators in pk from the very beginning [52]
so that

KRfpkg ¼ ð−1ÞjRje1
2
p2SRfŴ−

k ðpkÞge−1
2
p2 : ð48Þ

However, this realization is quite involved.
The polynomials KR form a complete polynomial basis,

however, they are not graded.7 The averages of these
polynomials in the (nondeformed) Gaussian model cel-
ebrate two important (and defining) properties:

hKR · KQiG ¼ ηRðNÞδRQ ð49Þ

and

hKQ · SRiG ¼ ηRðNÞSR=Qfδk;2g: ð50Þ

The second property is called strict superintegrability, since
the bilinear correlator also turns out to be factorized. It
follows from (50) that the average of KR in the deformed
Gaussian model (3) is

hKQiπk ¼
X
R

SRfπkghKQ · SRiG

¼
X
R

ηRðNÞSRfπkgSR=Qfδk;2g: ð51Þ

This formula, in a sense, is dual to (11),

hSQiπk ¼
X
R

ηRðNÞSRfδk;2gSR=Qfπkg ð52Þ

but, in the case of πk given by m Miwa variables, can be
immediately transformed to

hKQiðmÞ ¼
X
R

ηRðNÞSRfzagSR=Qfδk;2g

¼ BN

�X
R

SRfzagSR=Qfδk;2g
�
z

¼½44;p:71�
BN

�
SQfzage

1
2

P
a
z2a

�
z

ð53Þ

One can definitely expand the Schur functions over the
polynomials KR and use the transition matrix in order to
evaluate the average hSQiðmÞ:

SQ ¼
X
R

CR
QKR

⇒

8<
:

hSQiðmÞ ¼ BN

hP
R C

R
QSRfzage

1
2

P
a
z2a
i
zP

RðC−1ÞRQhSRiðmÞ ¼ BN

h
SQfzage

1
2

P
a
z2a
i
z

ð54Þ

One can easily calculate the transition matrix from
formulas (49) and (50), it turns out to be rather simple
and triangle:

CR
Q ¼ ηQðNÞ

ηRðNÞ SQ=Rfδk;2g ð55Þ

Its inverse is also simple

ðC−1ÞRQ ¼ ηQðNÞ
ηRðNÞ SQ=Rf−δk;2g ð56Þ

and, hence, one finally obtains

hSQiðmÞ ¼ BN

�X
R

ηQðNÞ
ηRðNÞ SQ=Rfδk;2gSRðzaÞe

1
2

P
a
z2a

�
z

ð57Þ

and

FðmÞ
Q ¼ BN

�X
R

SQ=Rfδk;2g
ηRðNÞ SRðzaÞe

1
2

P
a
z2a

�
z

ð58Þ

which is a polynomial of degree (grading) jQj in za.
Using relation (42), one can also obtain similar expres-

sions for the choice of Miwa variables πk ¼ −
P

m
a¼1 z

m
a :

FðmÞ
Q ¼ B−N

�X
R

ð−1ÞjRj SQ=R∨fδk;2g
ηR∨ðNÞ SRðzaÞe−

1
2

P
a
z2a

�
z

ð59Þ

In particular, atm ¼ 1, (58) gives rise to expressions (19)
and (18) coinciding with [[1], Eqs. (59) and (60)] with the
coefficients cjðQÞ as in (27):

cjðQÞ ¼ 2jSQ=½2j�fδk;2g for even jQj
cjðQÞ ¼ 2jSQ=½2jþ1�fδk;2g for odd jQj: ð60Þ

Similarly, (59) at m ¼ 1 gives rise to expressions coincid-
ing with [[1], Eqs. (63) and (64)] MMPS1 taking into
account that

6By the matrix derivative, we imply the derivative with respect
to matrix elements of the transposed matrix: ð ∂

∂ΛÞij ¼ ∂

∂Λji
.

7Generalizations of these polynomials for other cases can be
found in [30, Sec. 7.3] and in [40].
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SR∨fδk;2g · SR=½12n�fδk;2g ¼ ð−1ÞnSRfδk;2gSR∨=½2n�fδk;2g
S0R∨fδk;2g · SR=½12nþ1�fδk;2g ¼ ð−1ÞnS0Rfδk;2gSR∨=½2nþ1�fδk;2g:

ð61Þ

We point out again that the normalization of the coefficients
cjðQÞ here and in [1] differs by a factor of SRfδk;2g in the
case of even jQj, and by a factor of S0Rfδk;2g, in the case of
odd jQj.
Thus, we demonstrated that, in the case of the Gaussian

model deformed with m Miwa variables, the general
correlators are reduced to infinite sums over m integers
and only finite sums over Young diagrams instead of an
infinite sum over Young diagrams as in (11). In the case of
one Miwa variable, they are the infinite sums (18) and (19)
over integer k and finite sums over integer j instead of an
infinite sum over the Young diagram R in (15).

V. DEFORMED β-ENSEMBLE

The construction of the previous section can be easily
extended to the deformed Gaussian β-ensemble, where the
correlators are defined

h…iβπk ¼
Z Y

i

dxiΔ2βðxÞe−1
2

P
i
x2iþ

P
i;k

πkx
k
i

k … ð62Þ

instead of (2), where ΔðxÞ ¼ Q
i<jðxi − xjÞ is the

Vandermonde determinant.
In this case, the proper basis of polynomials is formed by

the Jack polynomials [44] instead of the Schur functions
since they provide the superintegrability basis in this case
[53,54], and the operators Ŵ−

k ðHÞ (47) are now substituted

by operators Ŵð−;βÞ
k , which can be formulated either again as

a differential operator in variables pk ¼
P

i h
k
i , or in terms

of eigenvalues hi of the matrix H: in this case, they are
just Hamiltonians of the rational Calogero model with the
particle coordinates hi [[52,55], Sec. 7]. A possibility of this
β-deformation is in noway a surprise since the construction is
described by the so called integer ray Hamiltonians of [52],
which are immediately β-deformed [56].

In order to describe the operators Ŵð−;βÞ
k in terms of

variables pk, we introduce a β-deformed counterpart of the
operator ÔðNÞ [32], which is defined

ÔβðNÞ · JRfpkg ¼ ηβRðNÞJRfpkg

ηβRðNÞ ¼ JRfNg
JRfδk;1g

¼
Y
i;j∈N

ðN þ β−1ðj − 1Þ − iþ 1Þ: ð63Þ

Then, one has

Ŵð−;βÞ
k ¼ ðÔβðNÞÞ−1

�
k
β

∂

∂pk

�
ÔβðNÞ ð64Þ

so that formula (48) is now substituted with

KðβÞ
R fpkg ¼ ð−1ÞjRje1

2
p2JR

�
Ŵð−;βÞ

k ðpkÞ
�
e−

1
2
p2 : ð65Þ

Now, following [32], we use that

JQ

�
k
β

∂

∂pk

�
JRfpkg ¼ kJQk · JR=Qfpkg ð66Þ

where kJQk is the norm square of the Jack polynomial,

kJRk ≔
Ḡβ

R∨Rð0Þ
Gβ

RR∨ð0Þ
βjRj

Gβ
R0R00 ðxÞ ≔

Y
ði;jÞ∈R0

ðxþ R0
i − jþ βðR00

j − iþ 1ÞÞ ð67Þ

with the bar over the functions denoting the substitution
β → β−1, use that

JR=P ¼
X
Q

N̄R∨
Q∨P∨JQ ð68Þ

where NQ
RP are the generalized Littlewood-Richardson

coefficients for the Jack polynomials [44], and also use
the superintegrability of the β-ensemble [53,54]

hJRiβG ¼ ηβRðNÞJRfβδk;2g ð69Þ
in order to obtain

hKðβÞ
P · JQfpkgiβQ ¼ hJPfŴð−;βÞ

k gJQfpkgiβG ¼
�
ðÔβðNÞÞ−1 · JP

�
k
β

∂

∂pk

�
· ÔβðNÞ · JQfpkg

	
β

G

¼ ηβQðNÞ
�
ðÔβðNÞÞ−1JP

�
k
β

∂

∂pk

�
JQfpkg

	
β

G
¼ ηβQðNÞkJPkhðÔβðNÞÞ−1JQ=PfpkgiβG

¼ ηβQðNÞkJPk
X
Q

N̄Q∨
R∨P∨hðÔβðNÞÞ−1JRfpkgiβG ¼ ηβQðNÞkJPk

X
Q

N̄Q∨
R∨P∨

1

ηβRðNÞ hJRfpkgiβG

¼ ηβQðNÞkJPk
X
Q

N̄Q∨
R∨P∨JRfβδk;2g ¼ ηβQðNÞkJPkJQ=Pfβδk;2g: ð70Þ
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From this expression, one obtains instead of (49) and (50):

hKðβÞ
R · KðβÞ

Q iβG ¼ ηβRðNÞkJRkδRQ ð71Þ

and

hKðβÞ
Q · JRiβG ¼ ηβRðNÞkJQkJR=Qfβδk;2g: ð72Þ

Now, using the Cauchy identity

X
R

JRfpkgJRfp0
kg

kJRk
¼ exp

�
β
X
k

pkp0
k

k

�
ð73Þ

one can literally repeat all calculations of the previous section:

hKðβÞ
Q iβπk ¼

X
R

JRfπkg
kJRk

hKðβÞ
Q · JRiG ¼

X
R

ηβRðNÞ kJQkkJRk
JRfπkgJR=Qfβδk;2g: ð74Þ

This formula, in the case of πk given by m Miwa variables, can be immediately transformed to

hKðβÞ
Q iβðmÞ ¼

X
R

ηβRðNÞ kJQkkJRk
JRðzaÞJR=Qfβδk;2g ¼ BðβÞ

N

�X
R

kJQk
kJRk

JRðzaÞJR=Qfβδk;2g
�
z

¼ BðβÞ
N

�
kJQkJQðzaÞe

β
2

P
a
z2a

�
z

ð75Þ

where we now define the enhanced multiple Borel trans-
form with the action by the operator ÔβðNÞ.
At last, one can calculate the transition matrix from

formulas (71) and (72), it is again rather simple and
triangle:

JR ¼
X
Q

�
ηβRðNÞ
ηβQðNÞ JR=Qfβδk;2g

�
· KðβÞ

Q ð76Þ

and, hence, one finally obtains

hJQiβðmÞ

¼ BðβÞ
N

�X
R

ηβQðNÞ
ηβRðNÞ JQ=Rfβδk;2gkJRkJRðzaÞe

β
2

P
a
z2a

�
z

ð77Þ

Defining similarly to (12)

hJRiβðmÞ ¼ ηβRðNÞFðm;βÞ
Q ð78Þ

one finds

Fðm;βÞ
Q ¼ BðβÞ

N

�X
R

JQ=Rfβδk;2g
ηβRðNÞ kJRkJRðzaÞe

β
2

P
a
z2a

�
z

ð79Þ

which is a polynomial of degree (grading) jQj in za.

VI. GAUSSIAN MODEL WITH LINEAR TERM
IN MIWA VARIABLES

Now we consider the Gaussian model deformed by the
Miwa variables and the generating function of correlators of
the form hðTrXÞki, which is equivalent to adding the linear
term to the Gaussian exponential. After integrating over
angular variables, this partition function can be presented in
the form

Zð�mÞ
N ¼ 1Q

N
k¼1 k!

Z þ∞

∞

dw1ffiffiffiffiffiffi
2π

p …

×
Z þ∞

∞

dwNffiffiffiffiffiffi
2π

p
Y
i<j

ðwi − wjÞ2e−
w2
i
2
þtwiþ

P
i;k

πkw
k
i

k

¼ ¼πk¼�
P

a
zka 1Q

N
k¼1 k!

Z þ∞

∞

dw1ffiffiffiffiffiffi
2π

p …

Z þ∞

∞

dwNffiffiffiffiffiffi
2π

p

×
Y
i<j

ðwi − wjÞ2
Ym
a¼1

YN
i¼1

ð1 − zawiÞ∓1e−
w2
i
2
þtwi :

ð80Þ

One can look differently at this partition function, and
generate correlators in the Gaussian model with the linear
term expanding this integral in za. We now demonstrate that

the partition function Zð�mÞ
N is given by the Borel transform

of a relatively simple function, if one parts off a peculiar
N-dependent factor.
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A. One Miwa variable m = 1

We start with the simplest example of one Miwa variable.
First of all, we expand

YN
i¼1

ð1 − zwiÞ�1 ¼ exp

�
∓ X

i;k

zkwk
i

k

�
¼

X
R

SRf∓ zkgSR
�X

i

wk
i

�
ð81Þ

so that

Zð�1Þ
N ¼ 1Q

N
k¼1 k!

Z þ∞

∞

dw1ffiffiffiffiffiffi
2π

p …

Z þ∞

∞

dwNffiffiffiffiffiffi
2π

p
Y
i<j

ðwi − wjÞ2
�X

R

SRf�zkgSR
�X

i

wk
i

��
e−

w2
i
2
þtwi

¼
X
R

SRf�zkg
�
SR

�X
i

wk
i

�	
ð82Þ

and use the superintegrability property of the Gaussian model with a linear shift [35,54]8

�
SR

�X
i

wk
i

�	
¼ e

Nt2
2 ηRðNÞSRftδk;1 þ δk;2g: ð83Þ

Thus,

Zð�1Þ
N ¼

X
R

SRf�zkg
�
SR

�X
i

wk
i

�	
¼ e

Nt2
2

X
R

zjRjηRðNÞSRf�1gSRftδk;1 þ δk;2g: ð84Þ

Now note that SRf1g ¼ δR;½n� and, hence, SRf−1g ¼ ð−1ÞnδR;½1n�, and that

S½k�ftδk;1 þ δk;2g ¼ ½ez2=2þzt�k ð85Þ

and, hence,

ð−1ÞkS½1k�ftδk;1 þ δk;2g ¼ ½e−z2=2−zt�k: ð86Þ

Here ½…�k denotes the coefficient in front of zk, and this kind of formulas follows from the identity

X
n

S½n�fpkgzn ¼ exp
�X

k

pkzk

k

�
ð87Þ

Thus, finally, one obtains

Zð�1Þ
N ¼ e

Nt2
2

X
k¼0

ðN;�1Þk½e�z2=2�zt�kzk ¼ e
Nt2
2

X
k¼0

ð�N; 1Þk½e�z2=2�zt�kð�zÞk ð88Þ

i.e.

Zð�1Þ
N ¼ e

Nt2
2 B�N ½e�z2=2þzt��z ð89Þ

8We point out that the partition function in these references is normalized with an additional factor of eNt2=2.
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B. m Miwa variables

One can immediately generalize this calculations for arbitrary μ. That is, one expands

Ym
a¼1

YN
i¼1

ð1 − zawiÞ�1 ¼ exp

�
∓ X

i;k;a

zkawk
i

k

�
¼

X
R

SR

�
∓ X

a

zka

�
SR

�X
i

wk
i

�
ð90Þ

so that

Zð�1Þ
N ¼

X
R

SR

�
�
X
a

zka

��
SR

�X
i

wk
i

�	
ð91Þ

and, using (83),

Zð�mÞ
N ¼

X
R

SR

�
�
X
a

zka

��
SR

�X
i

wk
i

�	
¼ e

Nt2
2

X
R

ηRðNÞSR
�
�
X
a

zka

�
SRftδk;1 þ δk;2g ð92Þ

1. Evaluating ZðmÞ
N

Let us first evaluate the partition function with positive m:

ZðmÞ
N ¼

X
R

SR

�X
a

zka

��
SR

�X
i

wk
i

�	
¼ e

Nt2
2

X
R

ηRðNÞSRðz1; z2;…; zmÞSRftδk;1 þ δk;2g ð93Þ

Note that the Schur function SR that depends on m variables is nonzero only if R has no more than m lines. Hence, we can
replace the sum over all R in this formula with the sum over m lengths of lines n1 ≥ n2 ≥ … ≥ nm ≥ 0:

ZðmÞ
N ¼ e

Nt2
2

X
n1≥n2≥…≥nm≥0

ðN; 1Þn1ðN − 1; 1Þn2…ðN −mþ 1; 1ÞnmS½n1;n2;…;nm�ðz1; z2;…; zmÞS½n1;n2;…;nm�ftδk;1 þ δk;2g: ð94Þ

In order to evaluate the last multiplier, we use the Macdonald scalar product [44],9

1

m!

I Ym
i¼1

dξi
ξi

SRðξÞSQðξ−1Þ
Y
i≠j

�
1 −

ξi
ξj

�
¼ δRQ ð95Þ

and the Cauchy identity

X
R

SRfpkgSRðξ1;…Þ ¼ e
P

k;a

pkξ
k
a

k ð96Þ

i.e.

X
n1≥n2≥…≥nm≥0

S½n1;n2;…;nm�ftδk;1 þ δk;2gS½n1;n2;…;nm�ðξ1; ξ2;…; ξmÞ ¼ et
P

a
ξaþ1

2

P
a
ξ2a : ð97Þ

Thus, we finally obtain

ZðmÞ
N ¼ 1

m!
e
Nt2
2

X
n1≥n2≥…≥nm≥0

ðN; 1Þn1ðN − 1; 1Þn2…ðN −mþ 1; 1ÞnmS½n1;n2;…;nm�ðz1; z2;…; zmÞ

×
I Ym

a¼1

dξa
ξa

Y
a≠b

�
1 −

ξa
ξb

�
et
P

a
ξaþ1

2

P
a
ξ2aS½n1;n2;…;nm�ðξ−11 ; ξ−12 ;…; ξ−1m Þ: ð98Þ

9The contour integral here includes the factor 1
2πi, and the integral surrounds zero so that this is just the residue at the origin.
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Using the Cauchy identity (96) with pk ¼
P

a z
k
a, one can immediately rewrite this formula as the Borel transform

ZðmÞ
N ¼ 1

m!
e
Nt2
2 BðmÞ

N

�I Ym
a¼1

dξa

Q
a≠bðξa − ξbÞQ
a;bðξa − zbÞ

et
P

a
ξaþ1

2

P
a
ξ2a

�
z

ð99Þ

where the integration contours surround the poles.
In the case of m ¼ 1, we immediately return to formula (89).

2. Evaluating Zð−mÞ
N

For evaluating Zð−mÞ
N , we use formula (42) in order to obtain instead of (93)

Zð−mÞ
N ¼

X
R

SR

�
−
X
a

zka

��
SR

�X
i

wk
i

�	
¼ e

Nt2
2

X
R

ð−1ÞjRjηRðNÞSR∨ðz1; z2;…; zmÞSRftδk;1 þ δk;2g ð100Þ

so that

Zð−mÞ
N ¼ e

Nt2
2

X
n1≥n2≥…≥nm≥0

ð−1Þ
P

a
naðN;−1Þn1ðN þ 1;−1Þn2…ðN þm − 1;−1Þnm

× S½n1;n2;…;nm�ðz1; z2;…; zmÞS½n1;n2;…;nm�∨ftδk;1 þ δk;2g: ð101Þ

Using the same way to evaluate the factor S½n1;n2;…;nm�∨ftδk;1 þ δk;2g as in the previous subsection, but with the Cauchy
identity in the form

X
n1≥n2≥…≥nm≥0

S½n1;n2;…;nm�∨ftδk;1 þ δk;2gS½n1;n2;…;nm�ðξ1; ξ2;…; ξmÞ

¼
X

n1≥n2≥…≥nm≥0
ð−1Þ

P
a
naS½n1;n2;…;nm�ftδk;1 − δk;2gS½n1;n2;…;nm�ðξ1; ξ2;…; ξmÞ ¼ et

P
a
ξa−1

2

P
a
ξ2a ð102Þ

we obtain

Zð−mÞ
N ¼ 1

m!
e
Nt2
2

X
n1≥n2≥…≥nm≥0

ðN;−1Þn1ðN þ 1;−1Þn2…ðN þm − 1;−1ÞnmS½n1;n2;…;nm�ðz1; z2;…; zmÞ

×
I Ym

a¼1

dξa
ξa

Y
a≠b

�
1 −

ξa
ξb

�
et
P

a
ξa−1

2

P
a
ξ2aS½n1;n2;…;nm�ðξ−11 ; ξ−12 ;…; ξ−1m Þ ð103Þ

One again can rewrite this formula as the Borel transform:

Zð−mÞ
N ¼ 1

m!
e
Nt2
2 BðmÞ

−N

�I Ym
a¼1

dξa

Q
a≠bðξa − ξbÞQ
a;bðξa þ zbÞ

et
P

a
ξa−1

2

P
a
ξ2a

�
−z

ð104Þ

and, again, in the case of m ¼ −1, we immediately return to formula (89).

3. Moral

Thus, we obtained the generating functions of correlators hðTrXÞki in the Gaussian model deformed by the Miwa
variables as the Borel transform of a relatively simple function:

Zð�mÞ
N ¼ 1

m!
e
Nt2
2 BðmÞ

�N

�I Ym
a¼1

dξa

Q
a≠bðξa − ξbÞQ
a;bðξa ∓ zbÞ

et
P

a
ξa�1

2

P
a
ξ2a

�
�z

ð105Þ

Technically, this formula is, in a sense, more convenient than the sums over all possible Young diagrams since they are
just multiple (m-fold) sums of the Schur functions with no more than m lines. These latter can be evaluated as
m ×m determinants:
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S½n1;n2;…;nm�ðz1; z2;…; zmÞ ¼
detm≥i;j≥1z

mþnj−j
i

ΔðzÞ ð106Þ

where ΔðzÞ ¼ Q
i<jðzi − zjÞ is the Vandermonde

determinant.

Moreover, at integer N, the infinite series Zð−mÞ
N becomes

a finite sum: this is the main role of the Borel transform.

VII. INTEGRABILITY AND DETERMINANT
REPRESENTATION

It is known that the partition function of the Hermitian
matrix model (9) at any constants πk’s is a τ-function of
the integrable hierarchy: the (forced) Toda chain with the
size of matrix N playing the role of the discrete (zeroth)
time, and tk ¼ pk=k being the remaining time variables
of the hierarchy [57,58]. The Toda chain τ-function satisfies
the bilinear differential Hirota equations [59–61], and, after
the Miwa transformation of variables,10 pk ¼ −

P
a z

k
a ¼

−
P

a ζ
−k
a , it satisfies the bilinear difference Hirota equa-

tions [62–64]. Moreover, the τ-function in these variables
always has the determinant representation

τN ¼ deta;bψaðζbÞ
ΔðζÞ ð107Þ

where ψ iðζÞ ¼ ζi−1ð1þOðζ−1ÞÞ form the Segal-Wilson
basis describing some point in the Sato’s Grassmannian
[63]. The concrete form of ψ iðζÞ for the Hermitian matrix
model at any constants πk’s was obtained in [65]

ψaðζÞ ¼ ζ−NPNþa−1ðζÞ ð108Þ
where PaðζÞ ¼ ζa þ � � � are polynomials in ζ orthogonal

with the weight e−
1
2
ζ2þ

P
k

πkζ
k

k . In the case of model (80),
when πk ¼ tδk;1, these polynomials are the Hermite
polynomials

PaðζÞ ¼ Heaðζ − tÞ ¼ a!
X
j¼0

ð−1Þj
j!ða − 2jÞ!

ðζ − tÞa−2j
2j

¼ a!
X
j¼0

X
k¼0

ð−1Þj
ða − 2j − kÞ!j!k!

ζa−2j−ktk

2j
ð109Þ

where ½…� denotes the integer part of a number. Thus,

ψaðζÞ ¼
X
j¼0

X
k¼0

ð−1Þj ðN þ a− 1Þ!
ðN þ a− 1− 2j− kÞ!j!k!

×
ζa−1−2j−ktk

2j
¼ ζa−1B−N−aþ1

h
e−tζ

−1−ζ−2
2

i
ζ−1

ð110Þ

and this finally gives us the determinant representation for the
partition function (80) (choosing the proper normalization),

Zð−mÞ
N ¼ e

Nt2
2

m!
·
deta;b

�
z1−ab B−N−aþ1

h
e−tzb−

z2
b
2

i
zb

�
Δðz−1Þ ð111Þ

which is equivalent to (104).

VIII. β-DEFORMATION

The Gaussian matrix model after integrating over
angular variables (80) admits a simple deformation to
the β-ensemble

Zð�mÞ
N;β ¼

�YN
m¼1

Γðβ þ 1Þ
ð2πÞ1=2Γðmβ þ 1Þ

�Z þ∞

∞

dw1ffiffiffiffiffiffi
2π

p …

×
Z þ∞

∞

dwNffiffiffiffiffiffi
2π

p
Y
i<j

ðwi − wjÞ2βe−
βw2

i
2
þβtwiþ

P
i;k

pkw
k
i

k :

ð112Þ

Note that we preserve here β positive in order to have the
integral (112) convergent.
In this case, the calculations of Sec. IV are literally

repeated, with the following changes:
(i) The Miwa variables are now introduced with

nonunit multiplicity: πk ¼ β
P

a z
k
a. Hence, the in-

tegral (80) becomes

Zð�mÞ
N;β ¼

�YN
m¼1

Γðβ þ 1Þ
ð2πÞ1=2Γðmβ þ 1Þ

�Z þ∞

∞

dw1ffiffiffiffiffiffi
2π

p …

×
Z þ∞

∞

dwNffiffiffiffiffiffi
2π

p
Y
i<j

ðwi − wjÞ2β

×
Ym
a¼1

YN
i¼1

ð1 − zawiÞ∓βe−
βw2

i
2
þβtwi ð113Þ

(ii) The natural expansion is now into the Jack poly-
nomials [44]:

YN
i¼1

ð1 − zwiÞ�β ¼ exp

�
∓ X

i;k

βzkwk
i

k

�

¼
X
R

JRf∓ zkgJRf
P
i
wk
i g

kJRk
ð114Þ

where we used the Cauchy identity for the Jack
polynomials,

X
R

JRfpkgJRðξ1;…Þ
kJRk

¼ e
P

k;a

βpkξ
k
a

k ð115Þ
10Some of ζi may coincide giving rise to nonunit multiplicities.

However, it is a smooth procedure, and, for the sake of simplicity,
we consider here only unit multiplicities.
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where

kJRk ≔
Ḡβ

R∨Rð0Þ
Gβ

RR∨ð0Þ
βjRj

Gβ
R0R00 ðxÞ ≔

Y
ði;jÞ∈R0

ðxþ R0
i − jþ βðR00

j − iþ 1ÞÞ

ð116Þ

(iii) The superintegrability property now reads

�
JR

�X
i

wk
i

�	
¼ e

βNt2

2 ηðβÞR ðNÞJRftδk;1 þ δk;2g

ð117Þ

where

ηðβÞR ðNÞ ¼ JRfNg
JRfδk;1g

¼
Y
i;j∈R

ðNþ ðj− 1Þβ−1 − iþ 1Þ:

ð118Þ

(iv) The transposition rule (42) for the Jack polynomials
deforms to

JRfβ−1pkg ¼ kJRk · J̄R∨fð−1Þkþ1pkg ð119Þ

where the bar over any function denotes the replace
β → β−1. In particular,

kJRk ¼ kJ̄R∨k−1: ð120Þ

(v) The Macdonald scalar product (95) is deformed [44]
to

1

m!

I Ym
i¼1

dξi
ξi

JRðξiÞJQðξ−1i Þ
Y
i≠j

�
1−

ξi
ξj

�
β

¼N RδRQ

ð121Þ

with

N R ¼
Y

1≤i<j≤m

ΓðRi − βi − Rj þ βjþ βÞΓðRi − βi − Rj þ βj − β þ 1Þ
ΓðRi − βi − Rj þ βjÞΓðRi − βi − Rj þ βjþ 1Þ : ð122Þ

(vi) At last, the operator ÔðNÞ also admits a natural β-deformation ÔðβÞðNÞ [32],

ÔðβÞðNÞ · JR ¼ ηðβÞR ðNÞ · JR ð123Þ

so that one now naturally defines the β-deformed multiple Borel transform

BðmÞ
N;β½Fðzi; z2;…; zmÞ�z ¼ ÔðβÞðNÞ · Fðzi; z2;…; zmÞ ð124Þ

which acts on the symmetric function expanded into the basis of the Jack functions,

Fðz1; z2;…; zmÞ ¼
X

n1≥n2≥…≥nm≥0
Cn1;n2;…;nmJ½n1;n2;…;nm�ðz1; z2;…; zmÞ ð125Þ

as

BðmÞ
N;β½Fðz1; z2;…; zmÞ�z
¼

X
n1≥n2≥…≥nm≥0

ðN; β−1Þn1ðN − 1; β−1Þn2…ðN −mþ 1; β−1ÞnmCn1;n2;…;nmS½n1;n2;…;nm�ðz1; z2;…; zmÞ ð126Þ

Answers for the β-ensemble partition functions. Now one can repeat calculations of Sec. IV, using these modifications,
in order to obtain
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ZðmÞ
N;β ¼

1

m!
e
βNt2

2

X
n1≥n2≥…≥nm≥0

1

N ½n1;n2;…;nm�
ðN; β−1Þn1ðN − 1; β−1Þn2…ðN −mþ 1; β−1Þnm

× J½n1;n2;…;nm�ðz1; z2;…; zmÞ
I Ym

a¼1

dξa
ξa

Y
a≠b

�
1 −

ξa
ξb

�
β

eβt
P

a
ξaþβ

2

P
a
ξ2aJ½n1;n2;…;nm�ðξ−11 ; ξ−12 ;…; ξ−1m Þ ð127Þ

and

Zð−mÞ
N;β ¼ 1

m!
e
βNt2

2

X
n1≥n2≥…≥nm≥0

kJ̄½n1;n2;…;nm�∨k
N̄ ½n1;n2;…;nm�

ðN;−1Þn1ðN þ β−1;−1Þn2…ðN þ β−1ðm − 1Þ;−1Þnm

× J½n1;n2;…;nm�ðz1; z2;…; zmÞ
I Ym

a¼1

dξa
ξa

Y
a≠b

�
1 −

ξa
ξb

�
β−1

et
P

a
ξa−1

2

P
a
ξ2a J̄½n1;n2;…;nm�ðξ−11 ; ξ−12 ;…; ξ−1m Þ: ð128Þ

These formulas are immediately rewritten via the

β-deformed multiple Borel transforms BðmÞ
N;β and BðmÞ

−βN;β

accordingly. However, these Borel transforms are of much
more complicated expressions as compared with (105)
because of the coefficients N −1

½n1;n2;…;nm�, which make
evaluating the infinite sums not that simple.

IX. CONCLUSION

Exact solvability is slowly paving its way to the hearts and
minds of theorists working with nonperturbative quantum
field theory. It has its origins in the properties of (functional)
integrals [66]: their independence of the change of integra-
tion variables [67], and thus is one of the basic features of
quantum theory. The subject is still full of puzzles, including
the basic one of how chaotic types of behavior emerge from
exact solvability in the classical limit (see a recent very
interesting paper [68]). A part of the answer is presumably
related to different images which solvability acquires in
different contexts. There is a very clean part of the story,
currently nicknamed superintegrability [35], when all quan-
tum averages are immediately calculable if appropriate
special functions are used, exactly like the motion in
quadratic and Newton/Coulomb potentials, hence the name.
However, so far this is achieved only for Gaussian or
hypergeometric (in particular, Selberg) integrals, and exten-
sion requires thorough analysis whichwill take several steps.
In this paper, we look at the most obvious generalization,

a mixture of the Gaussian and Selberg types, and describe
one of the structures which emerges in the answers. It can
look tremendously sophisticated, but this is the usual story:
when one encounters a new type of special functions, one
needs time to get used to them and reach a consensus about
appropriate notation and abbreviations. At this stage, we

avoid making simplifications of this type, in order to let
people enjoy and think about the newborn structures in
their original form.
Remarkable is a natural appearance of the new variation

of Borel transform, which usually “improves” infinite
series by adding extra factorials [45] or their combinatorial
counterparts [46] in the denominators. This time the series
are not just improved in the asymptotics, they are cut off by
Γ-function factors N!

ðN−nÞ! at finite values of n if B is integer,

and become polynomials of a finite degree actually
regulated by the size N of the matrix in the underlying
matrix model. Another remarkable fact is that this kind of
borelization is applied independently to all the Miwa
variables, thus what we come across is actually a multiple
enhanced Borel transform.
Another remarkable fact is that what this Borel acts on

are just the universal exponentials ez
2
a=2 multiplied with

polynomials, which do not differ too much from the
answers for the Gaussian correlators: compare (1) and (57).
The significance and the degree of generality of this
statement, the existence of superintegrable direction for
deformation of superintegrable theory still remains to be
appreciated and understood. What is interesting, however,
is that these (58) were discovered (see Sec. IV) on the base
of the theory of strict superintegrability [30,38,40], which
originally could look somewhat artificial, but now proves to
be valuable and inspiring.
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