PHYSICAL REVIEW D 110, 046026 (2024)

Vacuum energy in the effective field theory of general relativity
with a scalar field

E. Epelbaum R Gegelia % UIf-G. MeiBner®,>*? and L. Neuhaus'
'Institut fiir Theoretische Physik II, Ruhr-Universitit Bochum, D-44780 Bochum, Germany
Tbilisi State University, 0186 Tbilisi, Georgia
*Helmholtz Institut fiir Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,
Universitit Bonn, D-53115 Bonn, Germany
*Institute for Advanced Simulation, Forschungszentrum Jiilich, D-52425 Jiilich, Germany

® (Received 21 May 2024; accepted 5 August 2024; published 27 August 2024)

A consistency condition of general relativity as an effective field theory in Minkowskian background
uniquely fixes the value of the cosmological constant. In two-loop calculations, including the interaction of
gravitons with matter fields, it has been shown that this value of the cosmological constant leads to
vanishing vacuum energy, under the assumption that the energy-momentum tensor of the gravitational field
is given by the pseudotensor of Landau-Lifshitz’s classic textbook. Here, we demonstrate that this result
also holds when the self-interaction of a scalar field is taken into account. That is, our two-loop-order
calculation suggests that, in an effective field theory of metric and scalar fields, one arrives at a consistent
theory with massless gravitons if the cosmological constant is fixed from the condition of vanishing
vacuum energy. Vice versa, imposing the consistency condition in Minkowskian background leads to a

vanishing vacuum energy.

DOI: 10.1103/PhysRevD.110.046026

It is widely accepted that at low energies the physics
of fundamental interactions is adequately described by
effective field theory (EFT) [1-3]. Gravitation can also be
included in this formalism by considering the most general
effective Lagrangian of metric and matter fields [4-8],
which is invariant under all underlying symmetries includ-
ing the gauge symmetry of massless spin-two particles [9].
It is well known that for nonvanishing values of the
cosmological constant term A a quantum field theoretical
treatment of general relativity with the metric field pre-
sented as the Minkowskian background plus the graviton
field poses a problem due to the graviton propagator
possessing a pole that corresponds to a massive ghost
mode [9]. Setting A equal to zero does not improve the
situation as radiative corrections lead to the reemergence of
the problem with the massive ghost [10]. However, one
can represent the cosmological constant as a power series in
h with coefficients chosen to yield self-consistent EFT
results to all orders in the loop expansion [10]. Thus, the
consistency requirement of a perturbative EFT in flat
Minkowski background uniquely fixes the cosmological
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constant as a function of other parameters of the effective
Lagrangian. This also necessarily requires considering an
EFT in a curved background field if any other value of the
cosmological constant is assumed. In this case, the mass
term of the graviton can be removed at classical level by
imposing the equations of motion with respect to the
background graviton field [11]. To the best of our knowl-
edge, a systematic study beyond tree level has not been
done due to the lack of an EFT on non-Minkowskian
background.

In Refs. [12,13] it was found by performing two-loop
calculations for gravitational interactions only that the
vacuum energy vanishes exactly for the value of the
cosmological constant corresponding to that of Ref. [10],
i.e., for the value that guarantees the vanishing of the
graviton mass and of the vacuum expectation value of the
graviton field. Provided that this result holds to all orders,
also when including interactions among matter fields, the
uniquely fixed value of the cosmological constant yielding
a self-consistent perturbative EFT on Minkowskian back-
ground could also be interpreted as a consequence of
imposing the condition of vanishing vacuum energy.

In this work we consider a simple EFT of general
relativity with metric and a scalar matter fields. We perform
two-loop-order calculations for the value of the cosmo-
logical constant leading to a consistent EFT in order to see
if the vacuum energy vanishes when self-interactions of the
scalar field are taken into account. Notice that, while there

Published by the American Physical Society


https://orcid.org/0000-0002-7613-0210
https://orcid.org/0000-0002-5720-9978
https://orcid.org/0000-0003-1254-442X
https://ror.org/04tsk2644
https://ror.org/05fd1hd85
https://ror.org/041nas322
https://ror.org/02nv7yv05
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.046026&domain=pdf&date_stamp=2024-08-27
https://doi.org/10.1103/PhysRevD.110.046026
https://doi.org/10.1103/PhysRevD.110.046026
https://doi.org/10.1103/PhysRevD.110.046026
https://doi.org/10.1103/PhysRevD.110.046026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

EPELBAUM, GEGELIA, MEIBNER, and NEUHAUS

PHYS. REV. D 110, 046026 (2024)

does not exist a commonly accepted expression of the
energy-momentum tensor for the gravitational field (see,
e.g., Refs. [14-18]), Refs. [12,13] and also the current work
use the definition of the energy-momentum pseudotensor
(EMPT) and of the full four-momentum of the matter and
gravitational fields as given in the classic textbook [19].

In the framework of the EFT of general relativity, the
action is given via the most general effective Lagrangian of
gravitational and matter fields, which is invariant under
general coordinate transformations and other underlying
symmetries of the considered model:

s:/mfﬂ%@+%@m}
- / d“x\/—_g{% (R=2A) + Leno(9) + Lin(9 w)}

= Sgr(g) +Sm(91 W) (1)

Here, k2 = 322G, with Newton’s constant G = 6.70881x
1073 GeV~2, A is the cosmological constant,  and ¢**
denote the matter and metric fields, respectively, g =detg"*,
and R is the scalar curvature. An infinite number of
gravitational self-interactions involving higher orders in
derivatives are contained in Ly ho(g) and Ly, (g.y) is the
effective Lagrangian of the matter fields interacting with
the metric and the vielbein tetrad fields. Experimental
evidence suggests that the contributions of L 4,(g) and
of nonrenormalizable interactions of £,,(g,y) to physical
quantities are heavily suppressed.

The action of the matter part of the model considered
here includes an infinite number of terms, of which we
show below only those contributing in our specific calcu-
lations:

v 2
Sm = /d“x, /_—g{TaﬂHayH M I +fH},
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where H is the scalar field. The low-energy EFT is obtained
by representing the metric field as the sum of the
Minkowskian background and the quantum fields [20]

G = Ny + Kh;un

g =" — kh* + thghﬁ” — K%ﬂ{hf,h"’“ +-, (3)

and we calculate physical quantities perturbatively by
expanding in x and other coupling constants treating them
independently.

The energy-momentum tensor of the matter fields
coupled to the gravitational field is given by

2 58S,
V=909,

(4)

T (9. w)

The energy-momentum tensor corresponding to Eq. (2) has
the form

gu[)’
2

2
T =0,Ho,H - g””{ d HozH -2 H2 + T 3 1 fH}.

2 T3
(5)

The pseudotensor of the gravitational field (alone) is
given as

v 4 v
Ty (g) = S AP+ T (9), (6)

where 7%, (g) is defined via [19]

1 1 1
(=9)Tr(9) = = (g 99" 9oy 9568 1 8701 — 1 PG oy 95587 6 870 — 1 99" 9pa9,68™ 5 87

1 1
+ Egﬂlguagﬂagﬂsgay’” gﬂﬁ’ﬁ +gﬂagiagl/6’a gIM B + Egﬂygﬂagiﬂ’a gaa’ﬁ

- gldgo'ﬁgbﬁ?a gaa% _gmgaﬂgﬂﬁ’a g(m’/l +g/10ﬂ0 gm/% _gﬂl% guaw ) ’ (7)

with ¢ = ,/=gg¢" and g"*,, = ogH* /ox*.
The conserved full four-momentum of the matter and
the gravitational fields is defined via the full EMPT 7" =

T (9. w) + Tir (g) as [19]

W:ﬂﬂWW% (8)

where the integration covers any hypersurface containing
the whole three-dimensional space. Thus, for a vanishing
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FIG. 1.

Topologies of two-loop diagrams whose sums (but not the separate diagrams) lead to the same contribution to the cosmological

constant for the graviton tadpole and the matrix element of (—g)7#. The wavy and solid lines correspond to gravitons and scalars,
respectively. The filled dots stand for vertices generated by the fH term of the Lagrangian. The cross corresponds to either external

graviton line or a (—g)T* insertion.

vacuum expectation value of (—g)T*, the energy of the
vacuum will be zero. This expectation value can be
represented via the following path integral:

(0l(=g)T|0) = / DDy (~g)[T(g) + T (9. )]

X exp {i / d*x\/=g(L(g.w) + Lcr] }
9)

where

1 1
Lor = zs(ayhﬂv - 5aﬂhz) (af’hﬂﬂ - gaﬂhz) (10)

is the gauge-fixing term with parameter ¢ and the integra-
tion measure includes the Faddeev-Popov determinant.
According to Ref. [10] the cosmological constant A is
uniquely fixed by the condition that the vacuum expect-
ation value of the quantum field £, vanishes, and this also
removes the graviton mass from the dressed propagator as a
result of a Ward identity [10]. To study the implications for
the vacuum energy at two-loop order we represent A as

A= f: A, (11)

i=0

The vacuum expectation value of (—g)T# at tree order
vanishes for Ag = 0, and this choice also removes the
graviton mass from the propagator at tree level. It is a
straightforward consequence of Eq. (4) that the same value
of A; cancels the one-loop contribution to the vacuum
expectation value of the graviton field /,, and the vacuum

energy. Calculations taking into account only gravitational
interaction have been done in Refs. [12,13].

In this work we consider the order-fg (that is, linear in f
and linear in g) two-loop contributions to the vacuum
expectation values of (—g)7T*" and of the graviton field £,,,
and we find that the same value of A, leads to an exact
cancellation of both of them. To show this, we first fix A,
by imposing the condition that the corresponding two-loop
order contribution to the expectation value of /,,, vanishes
and next by imposing an analogous condition on the
corresponding contribution to the vacuum expectation
value of (—g)T*. We subtract the obtained two values
of A, from each other and denote the difference by R. Itis a
trivial consequence of Eq. (4) that diagrams with the same
structure, where the vertices with external graviton and with
(—g)T* insertion couple only to scalar lines, give con-
tributions to R which cancel each other diagram by
diagram.l On the other hand, we find that individual
diagrams contributing to a given topology in Fig. 1 yield
different contributions to the cosmological constant A, in
the two cases. However, considering the sums of the
diagrams in Fig. 1 we find that the contributions of the
two sets of diagrams [one for the vacuum expectation value
of (—g)T* and one for the graviton field %,,] to R neatly
cancel. The first nontrivial result is obtained at two-loop
order. The relevant Feynman rules are included in the
Appendix, and in calculations we used the Mathematica-
based program FeynCalc [21,22].

'This is because due to Eq. (4) the Feynman rules of one
graviton coupling to scalars and (—g)7** coupling to the same
number of scalars (and no gravitons) are the same, modulo an
overall factor.
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A self-consistent EFT should lead to finite physical
quantities after renormalizing (an infinite number of)
parameters of the effective Lagrangian. Therefore, it is
mandatory that the unique value of the cosmological
constant that defines the perturbative EFT of the
Standard Model, coupled to gravitons on a Minkowskian
flat background, leads to a finite expression of the energy
(density) of the vacuum to all orders of perturbation theory.
Based on the two-loop order results including the one of the
current work, we expect that this finite value should be at
least of three-loop order and thus very small. Moreover, it
seems natural that an adequate theory formulated in the
language of mathematics should assign zero energy to the
vacuum state [23]. Therefore turning the argument around
we expect that by demanding that the vacuum energy
should be vanishing to all orders we obtain a self-consistent
perturbative low-energy EFT of matter and gravitational
fields on a flat Minkowskian background.
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Rustaveli National Science Foundation (Grant No. FR-
23-856), by CAS through a President’s International
Fellowship Initiative (PIFI) (Grant No. 2025PD0022), by
the EU Horizon 2020 research and innovation program
(STRONG-2020, Grant Agreement No. 824093), and by
the Heisenberg-Landau Program 2021.

APPENDIX

Below we give Feynman rules used in the calculation of
the vacuum expectation values of the graviton field and the
energy-momentum tensor.

1. Propagators

(i) Scalar propagator with momentum p:
L (A1)
pr—m? +ie’

(ii) graviton propagator in D dimensions with Lorentz
indices (u,v), (a, ) and momentum p:

ig"g + grge =L
2 p’+ie
_i&Ep(p°g* + p'g) + p" (79" + P'g)
2 (p* + ie)? '

(A2)

2. Vertices (all momenta in all vertices are incoming)

(i) One scalar:
if; (A3)
(i) three scalars:
ig; (A4)
(iii) one graviton with indices (u,v):

_2iAg" (435)

K

(iv) one graviton with indices (u,v) and one scalar:
1.
S ifig: (6)

(v) one graviton with indices (u, v) and two scalars with
momenta p; and p,:

1,
Em(—g"”(m2 + p1-p2) + PApY + Pips): (A7)

(vi) one graviton with indices (u,v) and three scalars:
1.
5 19k (A8)

(vii) two gravitons with indices (u,v) and (a, f) and one
scalar:

1
~1 if (g™ " + g™d — g7 g"):  (A9)

(viii) two gravitons with indices (u,v) and (a, f) and two
scalars with momenta p; and p,:

_ % i (=2 g™ P — m2 g P+ mP g g
+ P psg™ + Pl phg™ + pipsg”
+ pY(=phg® + phg™ + psg) + piphg”
+ Pi(=psg” + Phg™ + psg™) — psphg™
= Piphg"™ = pr - P + g — g g™):
(A10)
(ix) two gravitons with indices (u, v) and (a, ) and three

scalars:

1
—7i9C (g P+ g = gPg); (AL

(x) three gravitons with (Lorentz indices, momentum)
combinations (u,v, p1), (a,f, p2) and (4,0, p3):
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8
+hhh({g,v, p1}, {8, @, p2}. {4, 0, p3}) + hhh({u,v, pi }, {B, @, p2}, {6, 4, p3})
+hhh({v, u, p},{a. B, p2}. {4, 0, p3}) + hhh({v, u, p1 }, {@. B, p2}. {0, 4, p3})
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+hhh({v, u, p1}, {B, @, p2}. {4, 0, p3}) + hhh({v, u, p1 }, {8, @, p2}, {0, 4, p3})], (A12)

where

hhh({, v, pr}. . B, P2}, {A 0, p3}) = ! lK(plng“g"” + Phpigog + 20g 7P o g
+20%d(p1-p2+pi-p3+pa- pa)g”” + 299" (P} + p3 + p3)g"
+ 9P (PP + PG + (Ph+ ph)p3g™) + 4(PTpsg™ g + PR psg™ g + pSphg™e™)
A((p§ps + PSP8) g g + (Pl + PP g™ g + (P ps + pTph) g™ g™)
= 2((pypS + P5P g + (PUrh + Phps)g™d + (pTph + Plpd)g™e™)
2((p4p5 + P5pDI™Pd* + (PPt + Php) g™ g + (Phps + Phpg)g™ ™)
2P pig 7 + (PAp3e™ + pirhe)g™) — (p/lj Pigee” + pirhg g
+g?P(Psrh + Pap%)g + (P§Ph + PipS)g™)) — 4(pipla g™ + pirhd 9"
+g"((Psps + P5P)G + (Pip§ + Papg)g™)) = 5(p3(pl + PR)g g™ + ¢ (P (Ps + P5)g"
+(pT + P3)PAe™)) + 2(Ps P9 g + Pipid T + pipide + Ph(phe g + phgg™)
+pi Pl 9) + 2(pSPhg P g + PhPAg T + pipsd g + PIpAg g + pipidP e + pipsg™ 9)
+A(PIPhgP g + PLphgm g + pipsd g + PAPAg g + pIpid e + plpig”g")
—4(p psg g + pi(psg™ P + Pha™ a*) + p3(psgP e + Pla*d¥) + psphg™e)
= 6(psPhg g + p(psg™ Pt + Pg ™) + pi(psg™d* + Pha™g™) + Pl pig™e')
+8A(g P g + g P g) = 2phsg I + Phpsg S + pIpag™ 9 A pipSg 9
+DIPEg g + pIPhg* 9) = 2P g + g (Pipsd* + PAPAGY) + pipid g
+g™ (pPhd” + P Pig')) + 2(pspSg™ g + pipha gt + Phrig gt + Pl pSgtg”
+pE g (P3P + Phg)) + 2P (pSgP g + Phg g ) + PSP g + PP ™)
+A(PLg g + pig?e) — 2(Ph (P39 g + Pha™d7) + (Phpig™ + p§pse?) g™
+p5(pSg g7 + Phag')) + 2(P (P59 g + Pla™ g ) + p§(psg g + p3gP ™)
+pA (DA + pigPg)) — 4(PTi (g + ) + pIph (g e + gg)
+pips (g g + g g)) — H(psp3 (g™ g + g ) + PP (g g + g g")
P40 T + g% g)) + 2(ph pSg™ g + PAPheC T + pipSea + piphg g
+pi(p3g g + P59 g')) + 16(p5Pig” 9" + pipid 9" + piphg” ¢7) — 8(pipad™ g
+PAPSd 9 + Pipsg 97) + 2(pi g g + pipid ¢ + pS(Phd 9 + pid )
+piP g + PAPgP ) + 2(pS(phd 9 + pig ) + pE(PsdM G + PAF )
+(Piph + paps)g7Pe”) = 4(Phpig g + pipid e d” + P (pag™ + pig) + pspig e
+p?1?§9ﬂ” g°) = 8(pipig™d” + pipi g I + Pid” (Ps9™ + P59"°) + PSphd 9 + pipid*e)
A(PApSg™d” + Pipig g + pipha¢?) = 2(pipig™ e + phpg™ e + Pl phg e
11);9‘”9"7" + pIphg g + Phpsghe) + 8(piphg g + pipsat e + pirhg™ e + phpigtg

(
(
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(xi)

(xii)

(xiii)

(xiv)

+PIPSg g + piphg ) + B(PipTg™ e + PApSeS” + Phpsgt e + Pipse e + piplgt g
+pephg ) + 10((pS + p3)pAg™ g™ + Pi(ps + P5)g™ " + p§(ph + P g g)

—4N(g* P S+ g P + 9P g ) + A(ps (PSS + Pid) g + Pl §9ﬂ”+l7§gw)
+PAg(phg" + Pha)) — 8((pSpSe™ + pipid”) g + ¢ (pipid” + Papig”)

+gH (P p39” + Paphg’)) — 10(pS(PS” + P’ ) g™ + Pha™ (psd” + Plg””)

+P g (p3e” + PAg”)) — 4((P3pid” + pipsd) g + g (PIPhg” + PLPhg”)

+g™ (pipkd” + PAPAg)) — 4((PT P + Pipsd) g + g (pipsd + Pl phg”)

+g™ (PSP + Paphg’?)) + 10((pp3e™ + Pspid?) g™ + g™ (Pirsd” + piphe”)

+gH (P b e + PiPhe”)) + 8(ps(Phe? g + pid 9™ + Pl (pSg” g + Pig? ¢

+p5(pi g + PhgPg?)) + 12(pspad 9 + Ph (P59 9 + Pig?Pa)) — 6(ph g™ 9
+P5P39" A + PipSd 9 + pipid g + P (pag gt + p5d” ) — 4(paph (g d + g )
+pip5(9° g + 9 97) + pipi (¢ 9+ ) + 4 piph (g d + g 97)

+PiP5(97 9" + 9P 90) + paps (9P 9 + P g) = A(pipid g + pi(Phg™ 9 + pid 9
AP+ DA (PG + pigg) + 2(hpid g+ pr (P + Pl 9) + pihd g
+P1 (Phg™ " + p§dg)) — 12(pspi(g™ ¢ + ¢ ¢*°) + P (Ph(g™ " + g™ 9")

WPd + 9"9) + 4 g Py pr+ PPy - P+ NS PPy a9 9Py - p3)
+g"”d’”¢”pz p3+ g Py p3) + 29 PSPy po 4 9P 9Py - s+ 99 9 pa - p3)
—8(g* 9 p1- 2+ 9P "¢ p1 - P + 9P P P2 p3) + 8(gH (G
+"d)p1 - P2+ 9SG Py s+ VS Py p3 A 9L Py - ps + PG - pa)
=4 (p1 - P2+ p1-p3) + 9P g (1 P2+ P2 p3) + 9SG (py s+ P2 p3))
—4(g g pi + 9P g 95 + g I 9 p3) + 8(gV g P + 9 ps + 9 F 9 p3
+9 P 9 p3 + g (P79 Pt + P9 p3)) — Mg g (P + p3)

+gP g g (pi + p3) + 9 ¢ 9" (P3 + P3))): (A13)
|

energy-momentum tensor with indices (p,v) and (xv) energy-momentum tensor with indices (u,v), grav-

one scalar: iton with indices (a, #) and two scalars with momenta
p1 and ps:

~fg": (A14)

_ pr — 2 2 af

energy-momentum tensor with indices (u,v) and 2K<m (=g™)g™ = m*g g + 2m* g7 ¢

two scalars with momenta p; and p,: + p/fpi g+ p/f pg 7+ piph g

2 :
gU(m* + pr-pa) = i = pipy (ALS) + p(=2p597 + Phg™ + pSg) + piphe”
energy-momentum tensor with indices (u,v) and + P (=2p597 + Phg™ + i) — papl g™
three scalars: w B w ,
= PiPag"™ = p1- P29 9" = p1 - P29y
_ v.

99" (A16) +2p1 - p2g™g™); (A18)
energy-momentum tensor with indices (u,v), grav- (xvi) energy-momentum tensor with indices (4, v), grav-
iton with indices (a, /) and one scalar: iton with indices (a, ) and three scalars:

1 1
SIRP g 2P, (A1) Sol g+ P2y (A19)
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(xvii) energy-momentum tensor with indices (u,v) and two gravitons with (Lorentz indices, momentum) combinations
(4,0, p1) and (a, f, po):

(=4pTpag™ ™ — 4pipsg™ g + 4pipsg g™ = 2pipsg P = 2pipsg P + 4pipsg 9
—4g°g" pr - P2 + 647G p1 - p2g + 69 g 1 - P2 — A g py - P — ApTpig* g
—4ptp3g e — ApTpsg M + ApTphgm g + 4Pl pig gt — 4pTpsd g + ApTpsd g
+4pIPsgT g — AP PG + 4P Phg Mg + A Phg g — 4pTpad g + 4piphd g
= 2P\ P57 = 2P Phg™ g = 2D ph g 7+ 2D PAg P ¢ + 2pi pSg g — 2 psg e
=2 PAg " + 2P AP + 2P P = 2D PSS g = 2 phe T + 2Pk ps g g
+2pphg g = 2P P3G G = 2p5Phg 97 + 2P g e + 2t pig ¢ — 2p) Pl g
— 2 phg g + 2pT phe g + 2pt PSP — 25 PSP — 25 pAg g + 2P plg g
+ 2P b = 2P PSP = 25 Phg g — 2 pha g = 2P Phg ™ gt = 2Pk o
+ 2P\ PSg g+ 2D Ph G 4 2 PSS S+ 2P ph g g™ — 4l pig g + 4pl phg g
+Aplph g — AP P g + AD s g + Api st g — 2P PG g = 2t phet e
= 2P (=2p3 g " + 2597 + 259 = 2p3g™ g + 5 (=29 = 2% M + (¢ + ) )
+2phg" g7+ 2phg ™ 4 295 (47 + PP = (97 + PN (G + ) + Phg g+ pég"“g"")
—Apiphg g + AP\ PG + APIPhg M — 4D phd g + ADTPhe g = 2P ity = 2P phg e
- 2p} (—2p2¢”g”’ +2p5979" + 20597 = 205997 + p3 (=297 = 2079 + (97 + #)g")
+2phg" 7+ 2Phg g+ 2p5 (g P+ g = (6 + PG+ o) + phePe + P )
=49 g g p1 - pr— 49V d G p1 - P2 — 4GP T 1 P2+ 69MF G Py - P2+ 2979 9 1 - o
+207 g p1 - Py = 3¢ g7 G pr - pa = 397079y P2+ 3979 Py - P2+ 3979 9Dy o
+209" ¢ p1 - P+ 207979 Py - p2 = 397979 Py - P2 = 39799 Py - P2+ 3¢V g D1 o
+3¢7 g4 g p1 - pa + 69" g7 Py - pr = 3979 g7 Py - P2 = 3979 g7 p1 - P2 = 397 ¢ g7 P - o
=3¢ g pr - pr— 4¢P g pr - P2 — 497 g Py pa+ 397 g Py P+ 39 1 s

0| —

—4g™ g g pr - P2 + 397 ¢ g7 p1 - pa + 3999 Py - ). (A20)
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