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We study the holographic properties of a class of quantum geometry states characterized by a
superposition of discrete geometric data, in the form of generalized tensor networks. This class specifically
includes spin networks, the kinematic states of lattice gauge theory, and discrete quantumgravity.We employ
an algebraic, operatorial definition of holography based on quantum information channels, an approach
which is particularly valuable in settings, such as the one we consider, where the relevant Hilbert space of
states does not factorize into subsystem Hilbert spaces due to gauge invariance. We apply random tensor
network techniques (successfully used in the AdS/CFT context) to analyze information transport properties
of the bulk-to-boundary and boundary-to-boundary maps associated with this superposition of quantum
geometries and produce typicality results about the average over the geometric data coloring the fixed graph
structure. In this context, one naturally obtains a nontrivial area operator encoding the dominant contribution
to entropy calculations.Among ourmain results is the requirement that one can only isometricallymap a bulk
region onto boundaries with fixed total area. We furthermore inquire about similar state-induced mappings
between segments of the boundary and discuss related conditions for isometric behavior. These
generalizations make further steps toward quantum gravity implementations of tensor network holography.
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I. INTRODUCTION

Since the discovery of the Bekenstein-Hawking entropy
formula for black holes [1,2], holography has taken center
stage in the exploration of the overlap of quantum, gravi-
tational, and thermodynamic properties of spacetime.
Indeed, according to the conventional microstate counting
interpretation of entropy, the Bekenstein-Hawking formula
signifies that the number of degrees of freedom associated
with a black hole does not scale with its volume (as for most
systems), but instead scales with the area of the surface
bounding that volume. This implies a formof (informational)

holography: information on the degrees of freedom of the
system is encoded on the boundary of the region of space it
occupies, from where it may be recovered. Although dis-
covered in the context of semiclassical gravity, it is generally
believed that holography calls for a quantum gravity explan-
ation. In fact, this holographic behavior is found for
entanglement entropy in a number of quantum many-body
systems and often (for local Hamiltonians) it characterizes
ground states, distinguishing them from the vast majority of
their quantum states [3]. The suggestion, therefore, is that it
may also provide a similar characterizing role for quantum
gravitational systems.
Following the discovery of the Bekenstein-Hawking area

law for black hole entropy, other forms of holography have
been related to gravity and used to gain access to its
quantum properties. The most explored example is, of
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course, the AdS/CFT correspondence [4,5] and its gener-
alizations [6]. What all of these more recent examples have
in common, and different from the original black hole case,
is that they describe a relation between a bulk gravitational
theory and degrees of freedom on an asymptotic boundary,
apparently describing the same physics. However, a differ-
ent type of holography for finite regions of space/spacetime
is suggested to exist in a variety of contexts, in addition to
the original black hole one. This finite-distance holographic
behavior is signaled too by entropy bounds. For example,
recent work in classical gravity suggests that corner charges
of general relativity provide an encoding of bulk informa-
tion [7–9], which applies to any finite region of space with
boundary. In the already mentioned condensed matter
context, holographic properties refer to finite regions;
indeed, the ground states of local Hamiltonians on lattice
systems are often found to be “short-range entangled” [10],
so that the entropy of any finite region scales at most with the
size of its boundary. States with such properties are highly
desirable. They not only provide a more manageable subset
of the state space for initiating searches for ground states, but
also exhibit characteristics such as exponentially decaying
correlations between regions, whichmimic a local light cone
structure through Lieb-Robinson bounds [11,12].
It is this type of local holographic behavior, in a quantum

gravity context, that we are seeking in the following,
identifying classes of quantum geometries that possess it.
We focus on “spin network states,” which define a complete
basis of spatial quantum geometry. These states were
originally envisioned by Penrose [13,14] and later recovered
to provide such a basis in the loop quantum gravity (LQG)
canonical quantization program [15,16], in the “spin foam”
approach to (discrete) quantum gravity path integrals [17], as
well as in group field theories (GFTs) [18–20].
The goal of this work is to elaborate on criteria for

holographic mappings between patches of a finite spatial
region to exist. This is based on earlier work [21–26] where
spin network states were seen as tensor networks and
analyzed via random tensor network techniques, which have
been well explored in the quantum information literature in
connection to holography (and AdS/CFT correspondence)
[27–29]. These works established the Ryu-Takayanagi
entropy formula [30,31] for spin network states, as well as
isometry conditions for bulk-to-boundary maps defined by
the latter, with an important restriction: both combinatorial
structures (the graph underlying the spin network states) and
the algebraic data labeling them (the eigenvalues of quantum
geometric operators) were held fixed. We generalize those
results by removing one of these substantial restrictions: the
bulk region is modeled by a superposition of spin network
states where we keep the graph structure fixed, but allow for
general superpositions otherwise, i.e., we sum over the
algebraic quantum numbers. This work thus represents a
pivotal first step in studying local holography in its general-
ity, within multiple quantum gravity approaches and with
possible application also to semiclassical states where a large

number of different quantum geometries (spin network
states) are superposed, and complements similar recent work
generalizing random tensor network holography [32–34].
The article is structured as follows. In Sec. II, we detail

the class of states under consideration, along with the
criteria for holographic behavior. Within this section, we
also introduce the methodology for assessing holography:
starting from a state of quantum geometry, we express the
purity of a reduced boundary state—our “holography
measure”—through a random Ising model defined on the
graph underlying the quantum geometry. In Sec. III, we
present our results: after analyzing the properties of the
aforementioned Isingmodel, we derive a precise criterion for
the superposition of spin network states to feature isometry of
the induced map between network subregions. We conclude
by discussing possible extensions of our work in Sec. IV.
Some technical calculations are reported in the Appendixes.

II. METHODOLOGY

We start by explaining the issues we address and outlining
themain features of our calculation. Several of these steps are
analogous to previous results in the case of spin network
states with fixed spins [35] (referred to as single-sector case),
here generalized to include superposition of such states. After
giving examples for the types of quantum systems we would
like to consider,we specify a class of tensor network states via
their concrete construction. We then introduce an algebraic
notion of holography, suitable for our context where the
Hilbert space does not factorize over bulk and boundary
regions. This notion of holography traces back to the bulk-to-
boundary map defined by our states being an isometry, along
the line of previous works on holographic tensor networks
(see, e.g., [27]), although the algebraic formulation represents
a novel aspect of our analysis. We enquire as well about the
isometric character of themaps that our states define between
boundary subregions. As our work is statistical in nature, i.e.,
we ask questions about properties that may hold only “on
average” with respect to the geometric data of our states, we
then specify a choice of randomization. Finally, by adapting
well-known techniques for random tensor networks to our
general setting, we reframe the isometry condition in terms of
theRényi-2 entropy of the input region and compute it via the
analysis of a dual Isingmodel. A novel feature in this last step
is the necessity to perform a cumulant expansion in terms of a
different statistical weight (distinct from but related to the
uniform distribution over states) in order to calculate the
Rényi entropy.

A. Questions and quantities of interest

Our goal is to enhance the characterizations of spin
network states in terms of holography that were put forward
in [26]. This serves to select subsets of states with favorable
typical properties, as well as to make connections with
research done in the context of tensor network holography.
The main questions we address are the following:
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(i) Given a superposition of spin network states with
fixed graph structure, consider the bulk-to-boundary
map it defines, as well as the map between two sub-
regions of the boundary; are these maps isometric?

(ii) Using the channel-state duality, properties of these
maps can be traced back to properties of the
corresponding states. In particular, isometry is re-
lated to maximized Rényi-2 entropy of the input
region. We therefore ask: what is the Rényi-2
entropy of bulk and boundary subregions?

B. States under consideration

Throughout this work, we will study a restricted class
of states made from superposing spin network states asso-
ciated with the same (open) graph γ [36] and different
assignments of spins on its links. More specifically, we
consider states constructed in analogy with projected
entangled pair states (PEPS), i.e., obtained by contracting
tensors associatedwith open spin network vertices according
to γ and therefore denoted as “spin tensor network states.”
Even though most of the constructions in this work are

generic in terms of the relevant Hilbert space, let us be
concrete in our choice of Hilbert spaces. Given a (compact)
Lie groupG, letHx ¼ L2ðGD=GÞ be the Hilbert space of an
open, G-invariant spin network vertex x of valence D,
whose links are identified by an index α ¼ 1;…; D. For
simplicity, we restrict the attention to the case in which all
vertices of the graph possess the same valence, but the
analysis can be easily generalized. Concretely, we will
work with G ¼ SUð2Þ spin networks, whose representa-
tions are labeled by a spin j∈ N

2
, interpreted as quantized

microscopic area aLQG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

and associated with
the links of the spin network graph γ, as it is shown to be the
case in canonical quantum gravity as well as simplicial
quantum geometry. A link of γ is generically indicated by
e∈ γ, while vertices will be labeled by x∈ γ. The boundary
of γ (i.e., the set of boundary links) will be denoted by ∂γ.
The single-vertex Hilbert space admits a decomposition

Hx ≅ ⨁
jx
Ijx ⨂ Vjx ð1Þ

into a direct sum over the representation labels
jx ≔ jx1;…; jxD, where each summand is the tensor product
of the (boundary) space Vjx ≅⨂D

α¼1 V
jxα , given by the

tensor product of the representation spaces of dimension
dj ¼ 2jþ 1 associated with the open links of vertex x and
the (bulk) intertwiner space of vectors invariant under the
diagonal G action, I jx ¼ InvGð⨂α V

jxαÞ.
The main way in which the choice of Hilbert spaces on

links and vertices affects the results is through the dimen-
sionalities, in particular, the dependence ofDjx ≔ dimðIjxÞ
on the adjacent link spaces. Additional structures such as
group actions play less of a role in this work. In particular,
the dimension of the bulk input space on a vertex dimðIjxÞ
depends on the dimensions of its adjacent link spaces djxe .

Additionally, we will consider only finite-dimensional
vertex Hilbert spaces—in the aforementioned example,
we will implement this through imposing cutoffs ℶ < jxe <
J on the values of spin labels.
We wish to stress a point of possible confusion for

different audiences. While the interpretation of a link of the
graph as dual to a surface is generic, there are multiple
possible “area functions” one can associate with it. The first
obvious one is, as noted in our exposition, the LQG area
spectrum aLQG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þp
, obtained from quantizing the

area function obtained from straightforward quantization of
the surface area in classical general relativity or in sim-
plicial geometry (the precise form of the spectrum depends
on the chosen quantization map, an alternative being
a0LQG ¼ jþ 1=2). Another important measure of area in
our context is the tensor network area aTN ¼ logðdjÞ,
motivated mostly from entanglement measures. In assigning
a geometric interpretation to the states on thegivengraph, it is
important not to conflate the two—a point to which we will
return later in the discussion of the scaling of the entropy.
Importantly, the full Hilbert space of N distinguishable

vertices decomposes into a direct sum of “spin sectors,”
each having as a basis the spin network states with fixed
link spins,

HN ¼ ⨂
N

x¼1

Hx ≅ ⨁
j⃗

Hj⃗;

Hj⃗ ≅ I j⃗ ⨂ V j⃗ ¼ ⨂
N

x¼1

I jx ⨂ ⨂
N

x¼1

Vjx ; ð2Þ

where j⃗ ¼ j1;…; jN is the collection of spins over the
whole set of semilinks. Our setup generalizes immediately
to the case where any single-vertex Hilbert space is used, as
long as it admits a decomposition of the same type as (1). In
particular, the dimension of the bulk space I is allowed to
depend on the representation labels in a nonlinear way. The
crucial assumption is rather an initial factorization of states
over vertices, so that a PEPS-type construction of states is
possible. This is not generally the case for states of
quantum geometry in canonical or lattice quantum gravity
(nor is the dependence on a single graph, even though it is
more commonly assumed).
The first step for the construction of the spin tensor

network states consists of picking a state in HN which
factorizes per vertex,

jΨi ¼ ⨂
x
jΨxi: ð3Þ

To turn this state into a spin network state with support
on a graph γ, we apply a projection onto maximally
entangled states of the spins living on the links (semilinks)
forming the maximal closed subgraph Γ of γ consisting of
all vertices with valence > 1, according to the prescription
outlined in, e.g., [22,25]. More specifically, let
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jeji ≔
1ffiffiffiffiffi
dj

p X
m

ð−1Þjþmjj; mi1jj;−mi2 ð4Þ

be a normalized singlet state of two semilinks (labeled here
by 1 and 2) carrying the spin j, and consider a normalized
superposition

jei ¼ ⨁
je ∈ N

2

gje jejei ð5Þ

with coefficients gj. The gluing of the N vertices described
by jΨi into the graph Γ is then performed by projecting jΨi
onto jΓi ¼⨂e∈Γ jei, i.e., by applying to jΨi the operator
(up to normalization)

ΠΓ ¼ ⨂
e∈Γ

ð⨁
je

jgje j2jejeiheje jÞ: ð6Þ

The role of ΠΓ is precisely that of entangling, in every spin
sector, the data of pairs of semilinks according to Γ. The
result is a superposition of spin network states with support
on γ, the set of which we denote by Hγ ¼ ΠΓðHNÞ. Note
that, when restricting the attention to vertex states picked
on a single spin sector, the setting reduces to that of
previous work [21,26]. We thus constrained the link spins
to be in (a superposition of) singlet states, in order to be
glued according to Γ.
In principle, we can proceed to constrain the intertwiner

degrees of freedom as well and focus on the resulting
boundary state. To do so, first notice that the graph
Hilbert space splits into a sum over boundary link labels
E ≔ fj∈ ∂γg,

Hγ ≅ ⨁
E
HE

b ⨂ HE
∂
; ð7Þ

where we introduced the Hilbert spaces for bulk (b) and
boundary (∂) degrees of freedom when the boundary links
carry the spins E,

HE
b ¼ ⨁

fje∶ e∈Γg
⨂
x∈ γ

Ijx ; HE
∂
¼ ⨂

e∈ ∂γ
Vje; ð8Þ

in which the latter has a tensor product factorization over
boundary links, while the former retains a sum over bulk
spins je. We can then choose pure states jζEi∈HE

b ¼
⨁je∶ e∈Γ I j⃗ and define another projector

Πζ ¼ ⨁
E

�jζEihζEj
hζEjζEi

⨂ IHE
∂

�
; ð9Þ

which enforces the state to have certain intertwiner data in
each sector.
Then, the projection

jϕ∂γi ¼ ΠζΠΓ⨂
x
jΨxi ð10Þ

corresponds uniquely (by exact knowledge of the state of
the bulk) to a state of the open (unglued) boundary

semilinks, described by the Hilbert space

H∂γ ≅ ⨁
j∂γ

⨂
e∈ ∂γ

Vje ≅ ⨂
e∈ ∂γ

⨁
je

Vje ≅ ⨂
e∈ ∂γ

Ve: ð11Þ

Because of this factorization, it is straightforward to speak
of entanglement and measures of it in the boundary-
reduced case.
In contrast, the fixed-graph Hilbert space Hγ with no

restriction on the intertwiner data, thus with a generic
superposition of them, has no obvious factorization proper-
ties at all. In such a setting, the notion of entropy survives,
but several subtleties arise in quantifying entanglement
with it [37–39].
Nevertheless, holography can be characterized more

directly than through entanglement scaling. We indeed
use an alternative strategy, in which we can neglect this
distinction and still make use of entropies as a computa-
tional tool to characterize holographic behavior; in par-
ticular, the latter will be traced back to isometric mappings
between graph subregions. This is the task we tackle in the
following.

C. A notion of holography

We introduce here a simple but effective notion of
information transport that allows us to make assertions
about a form of holography. Details may be found in other
work [40], in a more abstract context not focused on spin
network states of quantum geometry.
Consider first the embedding of the graph Hilbert space

Hγ into the tensor product Hb ⨂ H∂, with Hb ¼⨁E HE
b

and H∂ ¼⨁E HE
∂
. The main idea is then to introduce a map

ib∶ BðHbÞ → BðHb ⨂ H∂Þ;
X → X ⨂ I∂;

to (trivially) extend bulk operators into “bulk+boundary”
ones and a partial-trace map

PTr∂∶BðHb ⨂ H∂Þ → BðH∂Þ;
Y → Trb½Y�;

which restricts bulkþ boundary operators to the boundary.
We can then use these objects, suitably generalized, to
define a mapping between algebras of operators associated
with the bulk (Ab) or boundary (A∂) subsystems. The
equivalence between the two subsystems is then the state-
ment that the mapping between corresponding operator
spaces is isometric.
Such a statement may be translated into a calculable

question about Rényi entropies of the bulk-reduced state
ρb. This also connects the present framework to pre-
vious work.
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The pieces are combined as follows: we suppose that
holography can be expressed by turning operators (or
operations) Xb on the bulk system into approximately
equivalent operations on the boundary system. If the two
are part of a larger system, we can extend bulk operators to
the whole system by the operation ib. We could then
evaluate ibðXbÞ in the whole state ρ of the system (here, our
graph state), to get Tr½ibðXÞρ�, or instead reduce this to an
effective operator on the boundary through the partial trace
PTr∂. The algebras Abj∂ serve in this as a restriction to sets
of operators where this “operator transport” suitably keeps
all or most of the data of the system.
This operator-focused approach not only allows for

immediate transport of operators on top of Hilbert space
states, but it is also necessary for the direct-sum Hilbert
spaces we consider here, which, as we remarked, do not
have straightforward factorization properties. Indeed, if we
were to apply a Hilbert space mapping paradigm, mapping
bulk states to boundary states, then we would have to
confront the questions of which Hilbert space would be the
bulk one, which one is the boundary one, and how we can
see these as subsystems; these questions are highly
ambiguous, absent factorization.
To begin, we introduce the algebraic subsystems

Bb ≔ ⨁
E∈Wb

BðHE
b Þ;

B∂ ≔ ⨁
E∈W∂

BðHE
∂
Þ ð12Þ

of the full algebra of operators on the graph Hilbert space

A ¼ BðHγÞ ¼ ⨁
E;E0

BðHE
b ⨂ HE

∂
;HE0

b ⨂ HE0
∂
Þ; ð13Þ

where we choose the index setsWbj∂ a posteriori to ensure
isometric mapping between the two sets. The restriction
can be motivated as follows. If the mapping of algebras is
defined on all sectors, in general, it will not be isometric.
By analyzing the conditions for it to be so, one can identify
necessary restrictions on the set of graphs colored by the
labels E. In principle, then, the mapping is only isometric
when restricted to the subalgebra fulfilling these “isometry
conditions.” This may be seen as an analog of the common
practice of selecting a “code subspace,” which is properly
reconstructible from the boundary data alone. This, of
course, includes at a minimum the restriction that the
dimension of the input algebra is not larger than that of the
output algebra.
We relate them to the full algebra through the associated

extension and partial-trace maps

Bbj∂↪
ibj∂
Abj∂ ⊂ A⟶

PTrbj∂
Bbj∂ ð14Þ

given, for example, for the input/bulk algebra by

ibðXÞ ¼
X
E

XE ⨂ I∂;E;

PTrb½X� ¼
X
E

Tr∂;E½XE�; ð15Þ

and whose images we nameAbj∂ ¼ Imðibj∂Þ [41]. These are
the “naive” partial trace and extension, and our choices of
algebras can be motivated by this naive choice.
However, additionally, we must make this choice for

bulk and boundary algebras where we only have sector-
diagonal operators, because any nondiagonally acting
operator will not have a clear notion of “leaving the
complement invariant.” If we understand a bulk operator
X ¼PE;F XE;F to leave the boundary HE

∂
invariant, its

matrix elements with respect to a basis jE; ijji of the bulk
HE

b labeled by i, j, and jE;mjni of the boundary HE
∂
labeled

by m, n, should satisfy

hE; jjhE; njXE;FjF; iijF;mi ∼ δE;Fδm;n; ð16Þ

but this is only a sensible equation if E ¼ F holds on the
right-hand side, and therefore must be enforced on the left,
giving a sector-diagonal operator.
On the other hand, if we instead defined bulk/boundary

operators to be sector mixing, such that

B0
b ¼ Bð⨁

E
HE

b Þ; B0
∂
¼ Bð⨁

E
HE

∂
Þ; ð17Þ

then there would be no obvious way to extend or realize the
non-sector-diagonal ones to/in the algebra A. Said more
succinctly, these sets are not (isomorphic to) subalgebras of
BðHγÞ and therefore do not function as algebraic subsys-
tems. We are therefore led to the choice of bulk and
boundary algebras (12) as the largest sensible one, and
notice that they are not realized as operators on a single
Hilbert space, but only a certain subset of those. In fact,
they are the subalgebras Bbj∂ ⊆ B0

bj∂ such that their center is
given by the boundary spin Casimir operators fJ2e∶e∈ ∂γg.
This is, in fact, what we get if we remove from the full
algebra A all holonomy operators he on boundary links
e∈ ∂γ [38]. In this sense, because we are removing the
boundary gauge field from the algebra (usually associated
with magnetic degrees of freedom), we could interpret the
bulk/boundary algebras (12) as electric algebras.
Now, with these preliminary choices at hand, we can

define the superoperator mapping bulk operators into
boundary operators via the Choi-Jamiolkowski isomor-
phism [42,43],

T ρðXÞ ¼ KPTr∂½ibðXÞρ�
¼
X
E

KcETrbE ½ðXE ⨂ I∂EÞρE;E�; ð18Þ

where
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ρ ¼
X
E;Ẽ

ffiffiffiffiffiffiffiffiffiffi
cEcẼ

p
ρE;Ẽ ∈DðHγÞ ð19Þ

with Tr½ρE;Ẽ� ¼ δE;Ẽ and cE ¼ TrE½ρ� ≥ 0,
P

E cE ¼ 1,
K > 0, and DðHγÞ the set of density matrices on Hγ .
The sum is again over boundary spin labels E ¼ j∂γ .
In the following, we will work with proper subalgebras,

so Bbj∂ ⊂⨁E BðHbj∂;EÞ. The main reason is that it is
generically impossible to make the mapping on the full
bulk input algebra isometric, just for dimensional reasons
alone. We will make a choice of subalgebra by selecting a
subindex set W of sectors E. The specific choice depends
on the scenario of information transport we consider and
will be done a posteriori.
Assume now that the dimension of Bb does not exceed

that of B∂ so that isometry between spaces of operators is
possible, in principle. We find the condition for T ρ to be an
isometry in the Hilbert-Schmidt inner product on the
operator algebras by equating the two expressions on the
input (bulk) and output (boundary) sides,

hT ρðAÞ; T ρðBÞi∂ ¼ hA;Bib: ð20Þ

As illustrated in [40], this is equivalent to the requirement
on the state ρ that

c2EK
2Tr

∂
⨂2

E
½ðρE;E ⨂ ρE;EÞS∂E

� ¼ SbE ∀ E∈W; ð21Þ

in which we use the “swap operators” S that exchange two
identical copies of a Hilbert space.
In the case where the states ρE;E are pure, the isometry

condition above simplifies drastically to

ðρE;EÞb ¼
IbE
DbE

; cE ¼ DbEP
FDbF

; ∀E∈W; ð22Þ

together with the condition on bulk dimensions DbE ¼
dimðHE

b Þ given by jKj ¼PE DbE ≕Db. This, in fact, is
just the requirement of trace preservation. Therefore,
schematically,

ρE;E pure∶ T ρ Quantum channel ⇒ T ρ isometry: ð23Þ

We will restrict to pure states ρE;E in the following, as
results from [40] indicate that it is generically difficult to
get isometry of T from mixed states. Therefore, in this
work, we will establish when the transport superoperator is,
typically, a quantum channel, and this will be the sense in
which we identify isometric and thus holographic states.
Furthermore, trace preservation is easy to convert into a
calculable statement about entropies, which also directly
connects to previous work.
Let us consider entropies for those isometry-inducing

states. For any normalized input state σ, Hermiticity of the
channel T ρ and isometry imply that the Rényi-2 entropy is

left unchanged by the channel,

e−S2ðT ðσÞÞ ¼ Tr½T ðσÞ2� ¼T herm
Tr½T ðσÞ†T ðσÞ�

¼T isom
Tr½σ†σ� ¼ Tr½σ2� ¼ e−S2ðσÞ: ð24Þ

The Rényi-2 entropy of the reduced state ρb itself is then
also purely determined by the range of sectors and is
maximal,

e−S2ðρbÞ ¼
X
E

c2Ee
−S2ððρE;EÞbÞ

¼
X
E

dimðHbEÞ2
D2

b

1

dimðHbEÞ
¼ 1

Db
: ð25Þ

We now shift our focus toward determining which classes
of spin network states satisfy these last requirements. The
method we use is entirely analogous to the one used in
previous works [26,27,35,44] and relies on entropy calcu-
lation conditions, written, e.g., as S2ððρE;EÞbÞ ¼ logðDbEÞ.
Via the swap operator [45] we can rewrite the Rényi
entropy as traces over two copies of the system,

TrH2
b
½ρ⨂2

b Sb�
TrH2

b
½ρ⨂2

b �
¼

TrH2
∂

½ðjϕihϕjÞ⨂2Sb�
TrH2

∂

½ðjϕihϕjÞ⨂2� : ð26Þ

We have introduced the state jϕi here as a stand-in for
whichever pure state we assign to the full system. In the
case of bulk-to-boundary or boundary-to-boundary maps,
we will use pure states of different systems. For example, in
the boundary-to-boundary case, by using the projectors
Πb;ΠΓ, we consider a state jϕi ¼ ΠbΠΓjΨiwith jΨi∈HN .
We can then further express the numerator and denominator
in terms of traces over H⨂2. For this, note that for product
states jΓi and jζi for, respectively, links and intertwiners,
the reduced state is

ρb ¼ Tr∂½jϕihϕj� ¼ TrH∂⨂HΓ
½hΓ; ζjjΨihΨjjΓ; ζi�

¼ TrH∂⨂HΓ
½jΓ; ζihΓ; ζjjΨihΨj�; ð27Þ

where we traced out the link (shorthandHΓ) and intertwiner
spaces to impose the correct relations on the state and
projected out everything that is not in the boundary Hilbert
space. We can thus equivalently apply the projectors Πb

and ΠΓ and trace over H⨂2. With a product of vertex states
as a starting point, the Rényi-2 entropy then takes the
general form

e−S2ðρbÞ ¼
TrH⨂2 ½Π⨂2

b Π⨂2
Γ ð⨂

x
jΨxihΨxjÞ⨂2Sb�

TrH⨂2 ½Π⨂2
b Π⨂2

Γ ð⨂
x
jΨxihΨxjÞ⨂2�

: ð28Þ
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Importantly, we have reduced the trace from H∂ ⨂
Hb ⨂ HΓ, i.e., the tensor product of the Hilbert spaces
for boundary links, intertwiners, and internal links, to the
“sector-diagonal” subspace H. This is possible since the
vertex states we start from have intertwiner/link/boundary
data whose sectors are matched, meaning jΨxi∈Hx.
The case of bulk-to-boundary maps will be treated later

in more detail.

D. Randomization over vertex states

Instead of calculating the entropy for a particular state,
we will make a typicality statement about our class of spin
tensor networks. So, colloquially, we will ask: what is the
average degree of isometry for states with specified graph
structure? The value of such a statement depends crucially
on the deviation from the average. However, as was shown
in previous work on random tensor networks [27], the
deviation is sufficiently small in a particular limit of bond
dimensions. In our context, this limit must be taken on all
bond dimensions in the superposition. As we will discuss
shortly, our construction requires the introduction of an
upper cutoff J on dimensions, which may be arbitrarily
large, but, in addition, we require a lower cutoff ℶ. By
taking this lower cutoff to be large, all bond dimensions
involved in the superposition are large enough to suppress
deviations from the average.
In our class of states, then, we can write the average

purity as a partition function of a randomized Ising model.
To see this, we first average over a distribution of vertex
states jΨxi ¼ UxjΨrefi, where we choose some arbitrary
pure reference state jΨrefi. This distribution is chosen to be
uniform over the unitary group relating different single-
vertex states [46]. More explicitly, we perform the integral

hðjΨxihΨxjÞ⨂2iUx
≔
Z
UðHxÞ

dμðUxÞðUxjΨrefihΨref jðUxÞ†Þ⨂2

≕RxððjΨxihΨxjÞ⨂2Þ; ð29Þ

where dμðUxÞ is the Haar measure on the unitary groupUx,
for each vertex x separately; the last line defines the
operator Rx implementing such an average. By linearity
this average commutes with taking traces and we denote it
by h−iU in the following.
If all participating spins in the state are sufficiently large,

say larger than some lower cutoff ℶ [47], we can suppress
fluctuations in the quotient

he−S2ðρbÞiU ¼
�
TrH2 ½ðjϕihϕjÞ⨂2Sb�
TrH2 ½ðjϕihϕjÞ⨂2�

�
U

≈
hTrH2 ½ðjϕihϕjÞ⨂2Sb�iU
hTrH2 ½ðjϕihϕjÞ⨂2�iU

≕
Z1

Z0

; ð30Þ

as has been shown in random tensor networks—the
measure concentrates over the average if all spins are large.

A short note on this regime is in order. Operationally, we
are simply making a statement about a class of states that, in
Peter-Weyl decomposition, consist only of certain repre-
sentations. Physically, we may inspect this (still relatively
large) class of states from several angles. For one, if no
superposition is made and we deal with a single spin
network state, (LQG) area operators associated with indi-
vidual links take sharp values. This is already not the case
once we superpose. In this large-j regime, the relative
spacing in the spectrum of the area operator on any given
link becomes arbitrarily small. However, this phenomenon
already occurs at lower spins for sums of area operators of
different links, which are used for larger surfaces.
Furthermore, while for a single sector the area values
may be sharp, no sharpness is present ab initio for other
quantities such as length operators or angles (spin networks
are not eigenstates of those operators). Second, the states
have a fixed entanglement pattern that is in no way erased
by choosing large representation labels from the beginning.
These quantum information properties are our focus, so the
area values are of secondary importance.
The operator Rx acting on two copies of the single-vertex

Hilbert space has the property that it is invariant under
unitary conjugation,

V⨂2RðV†Þ⨂2 ¼ R ð31Þ

by left invariance of the Haar measure.
Crucially, this requires the group to be a finite-dimen-

sional Lie group (this integral does not exist on the infinite
unitary groups, so our Hilbert spaces must stay finite
dimensional). Thus, we must require all spins of the state
to be below some (arbitrarily large) upper cutoff J.
Therefore, all we can consider in our framework are subsets
of the set of spin tensor network states that have only
finitely many, sufficiently large spins in their superposition.
With this property, we can easily find what Rx is—the

only two operators invariant under this action are the identity
and the swap operator and are combined in the form

Rx ¼
1

dimðHxÞðdimðHxÞ þ 1Þ ðIx þ SxÞ: ð32Þ

However, the dimensions here, of course, need to be the
ones of the truncated Hilbert spaces, as otherwise the
right-hand side would vanish. Since we average over each
vertex separately, we really replace the initial random vertex
states by

1Q
x dimðHxÞðdimðHxÞ þ 1Þ⨂x ðIx þ SxÞ: ð33Þ

We will perform three types of average in this work, some
finer than others. The “medium grade” is the one where
each individual vertex Hilbert space Hx is averaged over.
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The coarser one averages instead over all of them simulta-
neously, so over ⨂x Hx, while the finer one performs an
average over each sector Hjx of the single-vertex Hilbert
spaces, and additionally allows for a probability weight pj⃗

among the sectors [48]. This distinction amounts to different
granularities of typicality statements. A coarse average is
easier to produce and has larger validity, but of course may
not capture the finer details. A finer average, however,
assumes more structure of the objects and that no mixing
happens between the sectors averaged upon. In the coarser
case, we replace the initial random vertex states by

1Q
x dimðHxÞð

Q
x dimðHxÞ þ 1Þ ðI þ SÞ; ð34Þ

whose operators act on all spin network vertices (equiv-
alently, in the dual simplicial geometry picture, tetrahedra)
simultaneously. On the other hand, the finer average pro-
duces

X
j⃗;k⃗

pj⃗pk⃗

Ij⃗ ⨂ Ik⃗
Dj⃗Dj⃗

þ
X
j⃗

p2

j⃗

0
B@⨂

x
ðI

H⨂2

jx
þ S

H⨂2

jx
ÞQ

xDjxðDjx þ 1Þ −
I⨂2

j⃗

D2

j⃗

1
CA;

ð35Þ

which, in the regime of high spins, is well approximated by

X
j⃗

p2

j⃗

⨂
x

�
I
H⨂2

jx
þ S

H⨂2

jx

�
− I

H⨂2

j⃗

dimðHj⃗Þ2
þ
�X

j⃗
pj⃗

Ij⃗
dimðHj⃗Þ

�⨂2

≕QðpÞ þ IðpÞ ⨂ IðpÞ: ð36Þ

Then comes a crucial rewriting. To make working with
the tensor product above tractable, we recognize that, when
expanded as a sum, each term will have a number of swap
operators, and identity operators do not matter. Each term
can then be labeled by the set of vertices with swap
operators on it, a −1 indicating a swap.
The method introduced by Hayden et al. [27] assigns to

each vertex a �1-valued Ising spin σx, which indicates
whether a swap is on that vertex or not. This means the
product (here for the medium grade average) turns into the
sum over Ising configurations

Y
x

1

dimðHxÞðdimðHxÞ þ 1Þ
X
σ⃗

⨂
x
S

1−σx
2

x : ð37Þ

To explain further this step, each term in the original sum is
mapped to a unique Ising configuration such that the region
of swap operators is the region of Ising spin-downs. Then,
every configuration must be summed over. This turns the
numerator and denominator of the average purity into
“Ising partition functions,”

Z1j0 ¼
X
σ⃗

Tr½Π⨂2⨂
x
ðS

1−σx
2

x ÞS1j0
b � ¼

X
σ⃗

e−H1j0ðσ⃗Þ; ð38Þ

and evaluation of the average purity is turned into a
calculation of Ising-like partition sums. The projector Π
will depend on the application. In the case of large bond
dimensions, we can approximate the sums by their ground-
state values as the lowest bond dimension plays the role of
inverse temperature. The result is that achieving minimal
purity of the reduced state, corresponding to having an
isometry, depends on the size of the local input and output
legs, along with the underlying graph structure.
In the case of the coarser average, this sort of tensor

product does not appear and the expectation values can be
directly computed. Similarly, the fine average, in the high-
spin limit we are interested in, does not have the tensor
product structure of the medium one. Instead, we have
effectively a structure closer to the coarse average, with
additional dependence in the weights p. Still, an Ising sum
for each sector j⃗ is necessary, potentially complicating the
calculations. We therefore delegate the calculations of the
finer and coarser averages to Appendixes B 1 and B 2,
while the main body of this work is concerned with the
medium average. As it can be seen in that Appendix, the
results are not drastically different.

E. Rewriting the Hamiltonian

To calculate the partition functions, we need to find a
usable expression for the Ising Hamiltonian. This is
straightforward when the Hilbert space factorizes over
vertices or links, but in the case of superposed spin sectors,
this is less immediate. Because the Hilbert space does
not factorize, we first have to split the trace into a sum over
the spin sectors, in which we can then easily determine the
Hamiltonian.
More precisely, the total Hilbert space is the direct sum

H ¼ ⨂
x
Hx ¼ ⨁

j⃗

Hj⃗:

We can thus decompose the trace over H⨂2 into a sum over
the spin sectors Hj⃗ and rewrite the trace as follows:

Z1j0 ¼
X
σ⃗

Tr½Π⨂2⨂
x
S

1−σx
2

x ðSbÞ1j0�

¼
X
ðj⃗;k⃗;σ⃗Þ

TrHj⃗⨂Hk⃗
½Π⨂2⨂

x
S

1−σx
2

x ðSbÞ1j0�: ð39Þ

The individual summands depend, through the choice of

the Hilbert space traced over, on the spin sets j⃗; k⃗. The
traces in each term are now over spaces that factorize over
vertices and links, and accordingly the single-vertex swap
operators do so, too: Sx ¼ SI ;x

Q
α Sα;x. The traces can

then be evaluated over intertwiner, link, and boundary parts
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separately. Then, the general form of decomposition we are
looking for is as follows:

Trj×k½Π⨂2⨂
x
S

1−σx
2

x …� ¼ Δðj⃗; k⃗; σ⃗ÞKj⃗Kk⃗e
−Hðj⃗;k⃗;σ⃗Þ: ð40Þ

The three factors are nonunique, but fulfill specific
functions:

(i) The Δ factor is Boolean (or [0, 1] valued for the
boundary-to-boundary mappings) and indicates
whether a term vanishes—depending on the combi-
nation of spin sectors and Ising configuration, the
term might be zero. Constraints arising from this are
to be incorporated here.

(ii) The K factor absorbs large contributions to the trace
that depend only on the bond dimensions given
through the spin sectors. They function as a normal-
izing factor and will drop out of the calculation if
one considers only a single factor. We can generally
expect something of the form Kj⃗ ¼ TrHj⃗

½Π�.
(iii) TheHamiltonianH is themain quantity of interest and

contains all dependence on the Ising configuration. It
also depends, in a normalized way, on the spins of the
spin sectors j⃗; k⃗. The function is designed such that it
is nonvanishing only where the Δ constraints are
satisfied. This means that there is no ambiguity about
whether the Ising model is subject to couplings
from j⃗ork⃗.

Typically, in the following, the decomposition for Z0 will
be chosen such that the Hamiltonian H0 satisfies

H0ðj⃗; k⃗; þ1
	!Þ ¼ 0, and the resulting choice of Kj⃗ will

be applied for Z1 as well.
For example, for the case of bulk-to-boundary mappings,

discussed in Sec. III A, we can find the following expres-
sions, with details relegated to Appendix A 1:

Δ1j0ðj⃗; k⃗; σ⃗Þ ¼
Y
x

δ
1−bσx

2

jx;kx

Y
e∈ γ

δ
1−σsðeÞσtðeÞ

2

je;ke
; ð41Þ

Kj⃗ ¼
Y
x

Djx
Y
e∈ γ

jgje j2
Y
e∈ ∂γ

dje ¼ TrHj⃗
½ΠΓ;jb �; ð42Þ

H1j0ðj⃗; k⃗; σ⃗Þ ¼
X
e∈ γ

λe
1− σsðeÞσtðeÞ

2
þ
X
x

1− bσx
2

Λx; ð43Þ

with couplings λe ¼ logðdjeÞ;Λx ¼ logðDjxÞ.
Similarly, when discussing boundary-to-boundary map-

pings in Sec. III D, we will use the data

Δ1j0ðj⃗; k⃗; σ⃗Þ ¼ cos θj⃗;k⃗δj⃗↓;k⃗↓

Y
e∈ γ

δ
1−σsðeÞσtðeÞ

2

je;ke
; ð44Þ

Kj⃗ ¼ Trj⃗½ΠB;j⃗∂γ
�
Y
e∈ γ

jgje j2
Y
e∈ ∂γ

dje ; ð45Þ

H1j0ðj⃗; k⃗; σ⃗Þ ¼
X
e∈ γ

λe
1 − σsðeÞσtðeÞ

2
þ 1

2
S2ðXðj⃗∂γ; j⃗↑ÞÞ

þ 1

2
S2ðXðk⃗∂γ; k⃗↑ÞÞ; ð46Þ

with details again found in Appendix A 2.
Let us also define, for reference, the quantities

Zðj⃗;k⃗Þ
1j0 ¼

X
σ⃗

Δ1j0ðj⃗; k⃗; σ⃗Þe−H1j0ðj⃗;k⃗;σ⃗Þ; ð47Þ

which enable us to phrase the discussion of the partition
functions nicely. By defining the normalized distribution
over spin sectors

Pðj⃗; k⃗Þ ¼
Kj⃗Kk⃗

Z0

Zðj⃗;k⃗Þ
0 ; ð48Þ

we see our quantity of interest as a probability average over
Ising models,

he−S2ðρbÞiU ≈
Z1

Z0

¼
X
ðj⃗;k⃗Þ

Pðj⃗; k⃗Þ
X
σ⃗

e−H1ðj⃗;k⃗;σ⃗Þ

Zðj⃗;k⃗Þ
0

Δ1ðj⃗; k⃗; σ⃗Þ: ð49Þ

If all spins in a given sector are large enough, we can
perform a crucial approximation to the partition sums. In
the Ising model, we may approximate the partition function
by its ground-state contribution if the excited states have
very low weight. This is the case if the couplings of the
model are very large, as any spin flip will increase the
energy by an amount proportional to that coupling con-
stant. When the spins are all large, we have that

Zðj⃗;k⃗Þ
0 ≈ 1; Zðj⃗;k⃗Þ

1 ≈ expð−H1ðj⃗; k⃗; σ⃗GSÞÞ; ð50Þ

where σ⃗GS is the ground-state configuration; this approxi-
mation massively simplifies the distribution P as well,

Z0 ¼
X
j⃗;k⃗

Kj⃗Kk⃗Z
ðj⃗;k⃗Þ
0 ≈

�X
j⃗

Kj⃗

�
2

;

Pðj⃗; k⃗Þ ≈ pj⃗pk⃗ pj⃗ ¼
Kj⃗P
k⃗Kj⃗

: ð51Þ

In particular, given that Z0 ¼ hTr½ρ�2iU, we can interpret
the factorization of the partition function as the statement
hTr½ρ�2iU ¼ hTr½ρ�i2U in the high-spin regime. This, in turn,
simply reflects that, in the high-spin regime, ρ is on average
a pure state, which is to be expected since we only work
with such from the outset.
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In this high-spin regime, we may make general state-
ments about the behavior of entropies. Assume that the
Ising sums in Eq. (47) have been calculated, and denote
their approximate value by

Zðj⃗;k⃗Þ
1 ¼ e−Xj⃗;k⃗ : ð52Þ

Then, the full Rényi purity e−S2 takes the form of an
expectation value in the probability density vectors P ¼
p ⨂ p over pairs of spin sectors,

he−S2iU ≈
X
j⃗;k⃗

pj⃗pk⃗e
−Xj⃗;k⃗ ≕ he−XiP: ð53Þ

We are therefore able to use a cumulant expansion for X
and write

he−XiP ¼ exp
�
−
X∞
n¼1

ð−1Þn−1
n!

κnðXÞ
�

ð54Þ

with cumulants of the random variable X,

κ1ðXÞ ¼ hXiP;
κ2ðXÞ ¼ hX2iP − hXi2P; etc: ð55Þ

Then, quite generally,

hS2ðρbÞiU ≈
X∞
n¼1

ð−1Þn−1
n!

κnðXÞ

¼ hXiP −
1

2
ðhX2iP − hXi2PÞ þ…; ð56Þ

which shows that the overall entropy will not be “sharp” in
the sectors, but be an average of the quantity X that depends
on the contributing sectors nontrivially. In the particular
case that the partition sums evaluate, individually, to an
“area” of a certain surface Sj⃗;k⃗ which bounds a bulk region
Σj⃗;k⃗ in the graph, such as

Xj⃗;k⃗ ¼
X

e∈ Sj⃗;k⃗

logðdjeÞ≕
1

4
Aj⃗;k⃗; ð57Þ

then this gives a Ryu-Takayanagi-type formula for the
entropy which takes the P-expectation value of the
area operators ÂΣj⃗;k⃗

associated with the set of minimal

surfaces Σj⃗;k⃗,

hS2ðρbÞiU ≈
1

4
hAiP þ 1

2 · 42
ðhA2iP − hAi2PÞ þ…; ð58Þ

where remaining terms capture higher cumulants of AΣ.

A well-known fact about random tensor networks with
fixed bond dimensions (equivalent to the fixed-spin case
here) is that they feature a Ryu-Takayanagi formula with a
“trivial area operator.” This means that the area operator ÂΣ
of the minimal surface Σ, appearing as

SvNðρbÞ ≈
1

4
hψ jÂΣjψi; ð59Þ

is proportional to the identity operator on the graph Hilbert
space,

ÂS ¼ 4

�X
e∈ S

logðdjeÞ
�
IHγ

: ð60Þ

This is also the case in our setting, because for just a single
sector, there is only one possible value for the spin on each
link. The “tensor network area” ae;TNðjeÞ ≔ logðdjeÞ is
then just a function of those c-number labels on the Hilbert
space. This changes with multiple sectors as seen above: we
have instead that the area operator is evaluated on a set of
minimal surfaces Σj⃗;k⃗, and we can therefore write

hS2ðρbÞiU ≈
1

4

X
j⃗;k⃗

Pðj⃗; k⃗Þhψ jÂΣj⃗;k⃗
jψi;

ÂS ≔
X
e∈ S

Âe ≔
X
e∈ S

X
je

4 logðdjeÞIe;je : ð61Þ

The area operator on the right is not simply a multiple of the
identity because it assigns different values to a surface S
depending on the state. In this sense, our area operator is
nontrivial in a very similar sense to that of recent studies
[33,34]. What is distinct is the possibility of multiple,
distinct minimal surfaces that contribute to the entropy.
However, this can be argued to be natural: if different
sectors correspond to different sets of states with different
metrics for spatial slices of a spacetime, then the condition
of being the surface of minimal area depends on the metric
in question or, more simply, on the sector. Therefore, to
obtain the entropy, one does not evaluate the area operator
on a single given surface in the bulk, but a number of
potentially different minimal surfaces determined by the
state, and average their areas according to P.
We note also that, while the area operator here is of the

same form as the LQG area operator (for the diagonal series
of eigenvalues),

ÂLQG
S ≔

X
e∈ S

ÂLQG
e ≔

X
e∈ S

X
je

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jeðje þ 1Þ

p
Ie;je ; ð62Þ

it differs in the area values themselves: ae;LQGðseÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seðse þ 1Þp

does not even match in terms of scaling.
Therefore, we can not naively identify the Ryu-Takayanagi
graph-area operator above with the discrete geometric LQG
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area operator. If we want to do such an identification, there
must be a difference between the “graph spins” je in our
construction and the “LQG spins” se such that the two
match ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

seðse þ 1Þ
p

≈ logð2je þ 1Þ ð63Þ

at high values of the graph spins je. An identification like
this is routine in tensor network models of holography—
a priori, to interpret the logarithms of bond dimensions as
areas, a relation between the two must be stipulated. This
can, for example, be done by embedding the tensor network
graph in an ambient metric space and matching bond
dimensions to the areas of dual surfaces in the space. Here,
we can instead stipulate the matching through the micro-
scopic LQG area operator and even give it a preliminary
interpretation. We also note that this is independent from
the question of superpositions and already features in the
same way on a single link with fixed spin.
This sort of matching makes sense if we see dje as an

“effective bond dimension” of a system that subsumes
many coarse-grained, or rather “reshuffled,” degrees of
freedom, whereas the se describes the “microscopic”
geometry in terms of LQG areas. The area operator
appearing on the right-hand side of the Ryu-Takayanagi
formula should then be understood as a reshuffled one. In
fact, from this point of view it seems most plausible to
interpret the graph states themselves as a sort of reshuffled
spin network. These kinds of reorganizations would not
strictly be coarse grainings in the usual sense of the word,
as the full dimensionality of the space of states is preserved.
Instead, it may perhaps correspond to a type of “exact”
renormalization procedure.
It needs to be stressed that the nature of the averages

h−iU and h−iP is quite different. The former is, effectively,
a product of (uniform) averages over the Hilbert spaces Hx

and a classical one, in that whatever quantity X̂ [49] we
compute in it (i.e., any average expectation value) corre-
sponds to an ensemble average of complex numbers

hTr½ρ̂ X̂�iU ¼
X
ψ

PψXψ ;

Xψ ¼ hψ jX̂jψi ¼ Tr½jψihψ jX̂�; ð64Þ

each of which is a quantum expectation value, and the
probability Pψ is the uniform distribution. As far as the
meaning of the average h−iP is concerned, first note that we
can write p as

pj⃗ ¼
Kj⃗P
nKn⃗

; Kj⃗ ¼ TrHj⃗
½Π̂� ¼ dimðHj⃗Þ; ð65Þ

with the operator Π̂ that brings us from the full Hilbert
space to the constrained one. For example, in the case of

constraining onto states with definite graph pattern, Π̂
works as a projector that conditions the quantum proba-
bilities on the given graph pattern. Then, pj⃗ can be
understood as a kind of combinatorial probability for a
given, uniform randomly chosen vector jψi∈ Π̂ðHÞ to be in
the subsector Hj⃗: the larger the dimension of the sector, the
larger the chance for a one-dimensional subspace to be a
part of it. The interpretation of h−iP is then the following.
Given some operator X̂ on the system, we can write its
average in the same way as above,

hhX̂iρiU ¼ Z1

Z0

;

Z1 ¼ hTrΠ̂ðHÞ½ρ̂ X̂�iU ¼
X
j⃗

TrHj⃗
½Π̂ X̂�; ð66Þ

with the same Z0 as above. Then approximately, this can
again be written as

hhX̂iρiU ¼
X
j⃗

pj⃗Xj⃗ ¼ hXip;

Xj⃗ ¼
TrHj⃗

½Π̂ X̂�
TrHj⃗

½Π̂� ¼ hhX̂iρj⃗iUj⃗
; ð67Þ

so to get the average expectation value of X̂ in a pure state,
we take the probability of the pure state to be in sector j⃗ and
weigh by the average expectation value in that sector. For
this interpretation, we see the object X as a random variable
on the space of events given by the sectors j⃗, with values
Xj⃗. To any quantum operator X̂, we can associate such a
classical random variable X.
The extension to operators on two copies of the system

brings with it the modification that the weightsXj⃗;k⃗ are now
dependent on a ground-state configuration σGS of the
Ising model, but otherwise the interpretation is the same.
We can therefore see that the average h−iρ is quantum,
h−iU is classical and statistical and h−iP is classical and
combinatorial.
We can also derive general necessary conditions for the

purity to be minimal. To be more precise, consider that the
condition on purity and therefore the isometry condition
may be written as

hp;Mpi ¼
X
j⃗;k⃗

pj⃗Mj⃗ k⃗pk⃗ ¼ 0; Mj⃗ k⃗ ¼ Zðj⃗;k⃗Þ
1 −

1

Db
;

ð68Þ

where Db is the total bulk dimension. The special form of
the matrix M allows us to get an idea of when this is the
case. We may sketch the argument already at this stage,
without referring to specific situations of interest. We can
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calculate the determinant using the matrix Z1 with

entries Zðj⃗;k⃗Þ
1 ,

detðMÞ ¼ det
�
Z1 −

1

Db
1⃗
T ⨂ 1⃗

�

¼ detðZ1Þ
�
1 −

1

Db
1⃗
TðZ1Þ−11⃗

�

¼ detðZ1Þ
 
1 −

1

Db

X
j⃗;k⃗

ðZ1Þ−1j⃗ k⃗

!
: ð69Þ

So assuming detðZ1Þ ≠ 0, we write it as a diagonal,

invertible part W with entries W j⃗ ¼ Zj⃗;j⃗
1 plus a matrix

with empty diagonal. Then, factoring out the diagonal, we
obtain the form Z1 ¼ WðI þ αÞ. We can then solve for the
inverse of Z1 and expand the above expression. At first
order, detðI þ αÞ ≈ eTrðαÞ ¼ 1 and ðZ1Þ−1 ≈ ðWÞ−1ðI − αÞ,
meaning the above is

detðMÞ ¼ detðWÞ
�
1 −

1

Db

X
j⃗;k⃗

ðW j⃗Þ−1ðδj⃗;k⃗ − αj⃗ k⃗Þ
�

¼ detðWÞ
�
1 −

1

Db

X
j⃗

ðW j⃗Þ−1
�
þ detðWÞ

Db

×
X
j⃗;k⃗

ðW j⃗Þ−1αj⃗ k⃗: ð70Þ

Then, the necessary condition at zeroth order in α isP
j⃗ðW j⃗Þ−1 ¼ Db. If, schematically, Db ¼

P
j⃗Dbj⃗

, then

W j⃗ ¼ 1
Db

j⃗

fulfills the condition and the vector pj⃗ ¼
Db

j⃗

Db
is

a solution to Eq. (68). Therefore, for sector-diagonal Z1, we
know a necessary and sufficient criterion on the elements of
the partition sum to fulfill the isometry condition,

pj⃗ ¼
Dj⃗

D
¼!
Dbj⃗

Db
; ð71Þ

which requires that the “boundary dimensions” D∂j⃗
are

constant across all sectors, D∂j⃗
≡D∂ in order to factor out

of the fraction. We will see this again later.

III. ISOMETRY CONDITIONS ON SUPERPOSED
SPIN NETWORKS

A. Bulk-to-boundary maps

In seeking holographic behavior, we are concerned with
the equivalence of a bulk and a boundary space. The setting
for us is to consider a fixed graph connectivity γ and a state
in the Hilbert space,

Hγ ≅ ⨁
E
HE

b ⨂ HE
∂
: ð72Þ

We have a nontrivial center given by sector-diagonal
operators

P
E λEIE. Our interest will be in determining

which choices of connectivity result in quantum channels
that are isometric between the spaces ⨁E BðHE

b Þ and
⨁E BðHE

∂
Þ. In this bulk-to-boundary mapping case, we

will call such a channel and, by proxy, the state from which
it arises, holographic. The average purity of the reduced
bulk state in the high-spin regime is expressed as

he−S2ðρbÞiU ¼
X
j⃗;k⃗;σ⃗

pj⃗pk⃗Δ1ðj⃗; k⃗; σ⃗Þe−H1ðj⃗;σ⃗Þ ð73Þ

with all quantities defined in detail in Appendix A 1.
We will now present a sufficient condition on the graph

data and set of input sectors W, such that the isometry

condition is fulfilled. Unless a sector j⃗ is excluded by
having

Q
e∈ γ jgje j2 ¼ 0,

(1) ∀ j⃗∶j⃗∂γ ∈W, σ⃗ ¼ þ1 is the minimum of H1ðj⃗; σ⃗Þ.
(2) ∀ j⃗∶j⃗∂γ ∈W,

Q
e∈ γ jgje j2

Q
e∈ ∂γ dje ¼ C with C

independent of j⃗.
That this condition is sufficient can be checked directly.
In general,Δ1 allows only terms labeled by ðj⃗; k⃗; σ⃗Þ such

that S↑ ⊆ Gj⃗;k⃗ ≔ fx∈ γjjx ¼ kxg. In particular, there are
no restrictions when the sectors are equal. If σ⃗ ¼ þ1 is the

ground state of H1ðj⃗; σ⃗Þ, then we approximate Zj⃗;k⃗
1 by the

term corresponding to it. However, when j⃗ ≠ k⃗,Δ1 ¼ 0 for

this Ising configuration, implying that Zj⃗;k⃗
1 ¼ Zj⃗;j⃗

1 δj⃗;k⃗, with

Zj⃗;j⃗
1 ¼ W j⃗ ¼ 1

Db
j⃗

. Additionally, the second condition

implies for the probability weights pj⃗ that

pj⃗ ¼
Dbj⃗

Q
e∈ γjgje j2

Q
e∈ ∂γdjeP

k⃗Dbk⃗

Q
e∈ γjgke j2

Q
e∈ ∂γdke

¼
Dbj⃗

CP
k⃗Dbk⃗

C
¼

Dbj⃗P
k⃗Dbk⃗

; ð74Þ

which is, as we discussed before, sufficient to reach
minimal purity. This condition is in a sense the obvious
one. It requires that all sectors that appear in the class of
states must themselves be able to support holographic
transport and also constrains a little the weights by which
they are superposed. However, this does not include the
case where some sectors are not holographic by themselves,
but their superposition is. But in fact, if the choice of data
given by the cutoffs, the gluing pattern, and the coefficients

g are such that the matrix of partition sums Zj⃗;k⃗
1 is

approximately diagonal, then the general argument given
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before enforces this sufficient set of conditions on the
sectors and makes it necessary. Therefore, to find more
general sufficient conditions, we need to inquire how
diagonal said matrix is.
Let us again use the language of nontrivial centers to

investigate this issue. In the following, we denote by E the
set of boundary spin values j∂γ which are values of the
spectrum of the center of the algebra in our Hilbert space.
We decompose our unnormalized states according to them,

jϕi ¼ hΓjΨi;

ðρE;EÞI ¼
Tr∂E ½jϕihϕj�
TrE½jϕihϕj�

; cE ¼ TrE½jϕihϕj�
Tr½jϕihϕj� : ð75Þ

We will study the impact of the trace preservation con-
ditions (22) on these objects and the subsequent constraints

on Zj⃗;k⃗
1 . To begin, we first match the entropy calculations of

the state ρb and its sector components in order to derive the
right type of replica trick.
Using formula (25),we connect the following expressions:

e−S2ððρE;EÞbÞ ¼ TrH2
E
½ðjϕihϕjÞ⨂2SbE �

TrH2
E
½ðjϕihϕjÞ⨂2� ;

c2E ¼ TrH2
E
½ðjϕihϕjÞ⨂2�

TrH2 ½ðjϕihϕjÞ⨂2� ;

e−S2ðρbÞ ¼ TrH2 ½ðjϕihϕjÞ⨂2Sb�
TrH2 ½ðjϕihϕjÞ⨂2� ;

¼
X
E;E

TrHE⨂HĒ
½ðjϕihϕjÞ⨂2Sb�

TrH2 ½ðjϕihϕjÞ⨂2� ; ð76Þ

which implies that we should use the sectorwise swap
operator Sb ¼

P
E SbE for this calculation. [50] While it

is diagonal in boundary spins E, it is not so in the bulk ones.
Aswewill now see, the same property holds for thematrix of
partition sums.We can rewrite the purity e−S2ðρbÞ in the same
Ising-oriented fashion as before, he−S2ðρbÞiU ≈ Z1

Z0
, but with

sums over E,

Z1j0 ¼
X
E;Ẽ

TrHE⨂HẼ
½hðjϕihϕjÞ⨂2iUS1j0

b �; ð77Þ

which are diagonal in E; Ẽ due to the special swap
operator here.
We may therefore write Z1j0 ¼

P
E Z̄

E;E
1j0 , by defining the

“boundary-fixed” partition sums

Z̄E;Ẽ
1j0 ¼ TrHE⨂HẼ

½hðjϕihϕjÞ⨂2iUS1j0
b �; ð78Þ

which are related to the previous partition sums by

Z̄E;Ẽ
1j0 ¼

X
jB;kB

Kj⃗Kk⃗Z
ðj⃗;k⃗Þ
1j0 ; ð79Þ

where the full spin sectors j⃗ ¼ jb ∪ E; k⃗ ¼ kb ∪ E are
composed of the bulk spin sets jb, kb and the boundary
spins E, leading to

he−S2ðρbÞiU ≈
Z1

Z0

¼
X
E

�
Z̄E;E
0

Z0

��
Z̄E;E
1

Z̄E;E
0

�
: ð80Þ

We can furthermore identify, through quick calculation,
that

he−S2ððρE;EÞbÞiU ¼ Z̄E;E
1

Z̄E;E
0

; hc2EiU ¼ Z̄E;E
0

Z0

: ð81Þ

The only assumption that goes into this is that the
calculation of the two Rényi purity is the same if calculated
over the full graph Hilbert space or over its individual
sectors, which is true before averaging and which is true
after averaging if and only if

hc2Ee−S2ððρE;EÞbÞiU ≈ hc2EiUhe−S2ððρE;EÞbÞiU: ð82Þ

So a certain type of localization of the average is required,
but we expect it to be naturally realized in the regime of
large spins, in direct analogy to the arguments presented by
Hayden et al. [27]. In the case of a single vertex (see
Sec. III B for an overview), one can verify this by direct but
tedious calculation, leading to the result

hc2Ee−S2ððρE;EÞbÞiU ¼ DbE þD∂E

D2

�
1þO

�
1

DE
;
1

D

��
;

hc2EiU ¼ D2
E

D2

�
1þO

�
1

DE
;
1

D

��
;

he−S2ððρE;EÞbÞiU ¼ DbE þD∂E

D2
E

�
1þO

�
1

DE
;
1

D

��
: ð83Þ

This also directly demonstrates that the high-spin regime
needs to apply to all sectors E. We stress that the partition
sums need not be diagonal in the bulk spins.
It is noteworthy that the average value of cE can easily be

computed,

hcEiU ≈
TrE½ΠΓhjΨihΨjiU�
Tr½ΠΓhjΨihΨjiU�

¼ TrE½ΠΓ�
Tr½ΠΓ�

¼ DEP
FDF

¼
X
jb

pjb∪E: ð84Þ

Matching this with the required value necessitates that D∂E

is in fact independent of E. In our case, this means a
restriction to boundary spins E ¼ j∂γ such that
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D∂E
¼
Y
e∈ ∂γ

dje ¼ D∂ ∀E: ð85Þ

So, we can only use certain sectors on the output side once
we fix this value D∂. In the following, we will assume such
a value has been fixed once and for all.
We have much more precise control over the isometry

condition now. We can check it in every sector E separately
and it amounts to

Z̄E;E
1

Z̄E;E
0

¼ 1

dimðHbEÞ
;

Z̄E;E
0

Z0

¼ dimðHbEÞ2
ðPẼ dimðHbẼÞÞ2

∀E∈W:

ð86Þ
Crucially, these conditions are necessary and sufficient.
The calculation of these boundary-fixed partition sums
Z̄E;E
1j0 can again be done through dual Ising models. These

conditions can be further reformulated to yield useful
constraints. Assuming the first condition, we can calculate
what the second is,

Z̄E;E
0

Z0

¼ Z̄E;E
1 DbEP

FZ̄
F;F
1 DbF

¼ D2
bE

1P
FDbFDbE

Z̄F;F
1

Z̄E;E
1

: ð87Þ

We can see from the expression in the denominator that we

need
DbE

Z̄E;E
1

¼ 1
q, with q constant, in order to achieve the

second condition. This, in turn, means with the first
condition

Z̄E;E
1 ¼ qDbE ¼ k

D2
E

DbE

;

Z̄E;E
0 ¼ qD2

bE
¼ kD2

E ∀E∈W; q ¼ kD2
∂
: ð88Þ

These are necessary conditions on all sectors that may be
included in the bulk algebra AI , so the set W. In fact, they
are equivalent to the other set of conditions identified
earlier.
With inspiration from the single-vertex case (see Sec. III

B for details), we can make further clear the role of all these
constraints. Define the new objects

YE
1j0 ¼

1

D2
E
Z̄E;E
1j0 ¼

X
jb;kb

LE
jb
LE
kb
Zj⃗;k⃗
1j0 ; Kk⃗ ¼ DELE

kb
; ð89Þ

for which the isometry conditions become (for some
constant k)

YE
1 ¼ k

1

DbE

; YE
0 ¼ k ∀E∈W: ð90Þ

Let us summarize the constraints we have from isometry or

trace preservation. On the partition sums Zj⃗;k⃗
1j0 , which

represent the individual-sector data, there is the maximal
entropy constraint for each Ising model. This can also pose
constraints on the factors Kj⃗. For a single sector, this is all
there is. On those factors as well as the dimensional data,
there is the further restriction for multiple sectors that the
output dimension must be fixed across all sectors and
possibly more subtle constraints.
Quite luckily, if the output dimension must be manually

fixed to be constant across all sectors of the problem, this
reintroduces a notion of scale into the discussion. What this
means is that we can once again speak of low-energy limits
for the Ising model in a sensible manner.
For this purpose, divide all the couplings in the Ising

model by β ¼ logðD∂Þ. Then we can perform a universal
low-temperature approximation on YE

1j0 by sending β → ∞.
To be more precise, let us write out the full dependence

of the partition sums in terms of these quantities,

Z1j0 ¼
X
E

e2βD2
bE

X
jb;kb

LE
jb
LE
kb

X
σ⃗

Δ1j0ðj⃗; k⃗; σ⃗Þe−βH̃1j0ðj⃗;k⃗;σ⃗Þ;

ð91Þ

where we have rescaled H̃1j0 ¼ H1j0
β by rescaling the

couplings λ̃e ¼ λe
β ; Λ̃x ¼ Λx

β . For the Ising models we
consider for the bulk-to-boundary and boundary-to-bulk
cases, the L factors are independent of β. Furthermore,
there are subtle, indirect dependencies on β in DbE;Δ
which come from how many choices of E there are for a
given value of β, but we neglect these here, assuming that in
the low-temperature limit these do not matter so much.
Then, that limit is dominated by the lowest energy

configurations of H̃1j0 and the combinations of jB, kB
which minimize it furthest. We can find estimates for
these quite easily. First, take into account the constraints
from Δ. Let

Gj⃗;k⃗ ¼ fx∈ γ∶jx ¼ kxg ð92Þ

be the vertex set where the constraints do not change
anything. Then, for the different Hamiltonians, the con-
straints imply

H̃1∶ S↑ ⊆ Gj⃗;k⃗; H̃0∶S↓ ⊆ Gj⃗;k⃗; ð93Þ

or else the configuration does not contribute. We can then
compare the values of the Hamiltonians in the all-up or all-
down configurations (subject to the constraints) to see
which corresponds more to a minimum,

H̃1ðþÞ ¼
X

e∈ ∂Gj⃗;k⃗n∂γ
λ̃e þ

X
x∈Gj⃗;k⃗

Λ̃x;

H̃1ð−Þ ¼ 1; H̃0ðþÞ ¼ 0; H̃0ð−Þ ¼ 1þ sj⃗; ð94Þ
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where sj⃗ ¼
logðDj⃗Þ
logðD∂Þ and the reduced couplings are given as

λ̃e ¼ logðdje Þ
logðD∂Þ ; Λ̃x ¼ logðDjx Þ

logðDOÞ. We assumed here that the “all-

up” configuration for H̃1 is up on Gj⃗;k⃗ and down
elsewhere. This does not necessarily give the minimal
energy configuration, but is a good approximation to it.

In particular, when j⃗ ¼ k⃗, it reduces to H̃1ðþÞ ¼ sj⃗.
We can think of the contribution from ∂Gj⃗;k⃗n∂γ as
being the analog of a bulk geometry-dependent minimal
surface—but we are calculating the entropy of the bulk
here, so no such surface is attached to any boundary
region and there is no meaning of Ryu-Takayanagi (RT)
formulas.
Notably, the all-up configuration is always the minimum

of H̃0, so the assumption Zj⃗;k⃗
0 ≈ 1 holds well. We can then

approximate the partition functions as

YE
1j0 ¼

X
jb;kb

LE
jb
LE
kb
e−βE1j0ðj⃗;k⃗Þ; ð95Þ

which for Z0 gives the previous estimate and condition
for isometry and for Z1 selects a certain type of
contribution of minimal energy E1ðj; kÞ. Which combi-
nations of jb, kb give the lowest energy? This all depends
a lot on the size, shape, and values of spins in Gj⃗;k⃗.
However, we can think of two extreme cases for illus-
tration. When the spin sets are equal, Gj⃗;k⃗ consists of all

graph vertices and so E1ðj; jÞ ¼ rE ¼ DbE
D∂E

. On the other

hand, if the spin sets are nowhere equal, Gj⃗;k⃗ ¼ 0 and no
configurations with up spins are allowed. Instead, con-
sider spin sets that are equal at a single vertex
fzg ¼ Gj⃗;k⃗, for which then

E1ðj; kÞ ¼ Λ̃z þ
X

e∩z;=∈ ∂γ

λ̃e; ð96Þ

so it once again depends on the values of the spins at
hand at any given vertex. However, it seems feasible that
such an “off-diagonal” contribution might be smaller than
the “diagonal” one, if the values of the spins are not too
large. In the following, we will simply assume that there
is a number gE of combinations ðjb; kb; σ⃗Þ for which H̃1

is minimal at value

Emin;E ¼
X

e∈ Smin;E

λ̃e þ
X

x∈Σmin;E

Λ̃x ð97Þ

for some bulk region Σmin;E and a boundary segment
Smin;E of it. Then

YE
1 ≈ gEð2 − δjb;min;kb;min

ÞLE
jb;min

LE
kb;min

e−βEmin;E ; ð98Þ

YE
0 ≈
�X

jb

LE
jb

�
2

¼
�X

jB

Y
e∈ γ

jgje j2
�

2

¼
�Y

e∈ γ

X
je

jgje j2
�

2

¼ 1; ð99Þ

and the next-to-leading term will be exponentially sup-
pressed. As we can see, the condition on YE

0 is generi-
cally fulfilled in the bulk-to-boundary model because
jgje j ¼ 1 for all boundary links, making the value inde-
pendent of E. So we are now in a position to give general
conditions for isometry to happen:
(1) First, the input and output algebras must be chosen

such that the output dimension in each sector is a
fixed D∂, which we take here to be quite large.

(2) We assume the localization of Eq. (82), which we
conjecture to naturally happen in the regime of
high spins.

(3) The input Rényi-2 entropy in each boundary sector
is maximal.

This means we can, in this setting of fixed output
dimension, check the degree of isometry purely by
finding the minimizer Emin;E and its degeneracy gE, mea-
ning we are just looking at an Ising model with extended
set of variables ðjb; kb; σ⃗Þ and finding its ground state.
The problem is particularly simple because the minimal
value is most likely the one of configurations where the
bulk spins are close to the lower cutoff. This of course
introduces a tension between the approximations made.
We need a highD∂ to perform the approximation and require
all spins to be large enough for the unitary average to localize,
but still the minimal configuration will be the one with the
smallest possible spins. As the single-bulk-link example in
Appendix III C shows, the third of the three conditions
implies restrictions on the weights gj used to define the state
ρ, of the form Y

e∈ γ

jgjj2 ∼
ffiffiffiffiffiffiffiffi
DbE

p
: ð100Þ

Let us summarize the consequences of these results for the
class of states themselves. In our setting, we consider PEPS-
like spin network superpositions jϕγi whose spins may take
values betweenℶ andJ. Ifwe further consider the (sufficient)
restrictions:
(1) For any sector j⃗ that features in jϕγi, the boundary

spins take the same total value, i.e., A∂γ ¼P
e∈ ∂γ logðdjEÞ is independent of the sector.

(2) Fix any set of boundary spins E ¼ fjeg in accor-
dance with the above. There is a unique pair of spin
sectors ðj⃗; k⃗Þ matching the boundary condition
such that the Ising Hamiltonian H1 achieves its
minimum, and the ground-state energy gives
logðDbEÞ. In terms of spins, this requires as much

inhomogeneity in the spins in j⃗ over the graph γ as
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possible. More generally, require that the state peaks
on such sectors.

Then, provided we restrict the input and output algebras
sufficiently, the state jϕγi induces an approximately holo-
graphic mapping T jϕγi.
We now illustrate the criteria investigated here in two

examples: First of a single bulk vertex, then for a single
bulk link, both of generic valence. The concrete model used
is derived in Appendix A 1.

B. Bulk-to-boundary maps: Single vertex

We give a full analytical calculation of the partition sums
for bulk-to-boundary mappings for a single spin network
vertex. While this example may appear trivial, it illustrates
the complexity of the calculations that already appear
without tensor network contractions when superposition
is allowed.
We begin with the full partition sums

Z1j0 ¼
X
σ⃗

TrH⨂2 ½Π⨂2⨂
x
S

1−bσx
2

Hx
� ¼

X
E;Ẽ

ZE;Ẽ
1j0 ð101Þ

with boundary-fixed partition sums

ZE;Ẽ
1j0 ¼

X
σ⃗

TrHE⨂HẼ



Π⨂2⨂

x
S

1−bσx
2

Hx

�

¼
X
σ⃗

X
jb;kb

TrHE∪jb⨂HẼ∪kb



Π⨂2⨂

x
S

1−bσx
2

Hx

�

¼
X
σ⃗

X
jb;kb

KE∪jbKẼ∪kbZ
E∪jb;Ẽ∪kb
1j0 : ð102Þ

Now each term in this is, in general, hard to compute
already, but here it completely trivializes. Because of
absence of internal links, Π and the sums over jb, kb
disappear entirely. Furthermore, the sums are diagonal in
boundary spins E, meaning we only need to consider

ZE;E
1j0 ¼ K2

EZ
E∪0;E∪0
1j0 ; ð103Þ

where the right partition sum is defined through the Ising
model. Using Appendix A 1, this is

ZE∪0;E∪0
1j0 ¼

X
σx

e−
1−σx
2

P
e∈ ∂γ

λe−
1−bσx

2
Λx

¼ D−ð1j0Þ
bE

þD−1
∂E
D−ð0j1Þ

bE
ð104Þ

and

K2
E ¼ D2

bE
D2

∂E
¼ D2

E ð105Þ

and therefore the Ising sums are

Z0 ¼
X
E

ðD2
E þDEÞ;

Z1 ¼
X
E

D2
bE
D2

∂E
ðD−1

bE
þD−1

∂E
Þ

¼
X
E

DbED∂E
ðDbE þD∂E

Þ: ð106Þ

Let us introduce rE ¼ DbE
D∂E

, which allows us to rewrite

everything in terms of it as an expansion parameter r.
Isometry requires r ≤ 1, and this holds for any gauge-
invariant spin/tensor network vertex by definition of
intertwiner spaces,

Z0 ¼
X
E

D2
bE

rE

�
D2

bE

rE
þ 1

�
;

Z1 ¼
X
E

D3
bE

1

rE

�
1þ 1

rE

�
: ð107Þ

We can establish under which conditions we have holog-
raphy by calculating the purity and weight separately in
each sector. These are given, respectively, by Eqs. (75),
(76), and (81),

ZE;E
1

ZE;E
0

¼ ðDbE þD∂E
ÞDE

ð1þDEÞDE
¼DbE

1
rE
ð1þ 1

rE
Þ

1
rE
ð1þ D2

bE
rE
Þ

¼ 1

DbE

1þ rE
1þ rE

D2
bE

¼ 1

DbE

�
1þ

�
1−

1

D2
bE

�
rE þOðr2EÞ

�
;

ð108Þ

which is generically close to the isometric value for small
rE and, in fact, for one-dimensional bulk spaces only differs
at second order.
The cross-sector conditions can be understood as restric-

tions on which combinations of E we may have in the input
algebra. We must demand for some constant q that

DEðDbE þD∂E
Þ ¼ qDbE;

DEðDE þ 1Þ ¼ qD2
bE
; ð109Þ

which already includes the condition from before that rE is
small. We can just solve the two conditions directly for
some conditions by multiplying the first byDbE and solving
for rE,

D2
bE

þDE ¼ DE þ 1 ⇒ rE ¼ 1

DE
: ð110Þ

Inserting this solution into the first equation yields

DE þ 1 ¼ q ¼ const; ð111Þ
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so, in fact, the dimensions must be independent of the
sector label E. It also yields more trivially that

D2
IE
¼ rEDE ¼ 1

⇒ DbE ¼ 1; DE ¼ D∂E
¼ q − 1 ¼ const: ð112Þ

So although we saw before that, generically for small rE,
the entropy condition is fulfilled easily, this is not the case
for the cross-sector condition: it requires that the boundary
dimension may also not depend on the sector label. In fact,
it also requires, far stronger, the restriction to one-dimen-
sional inputs in each sector. Therefore, we must restrict
ourselves to a fixed boundary dimensionD∂ and select only
those E such that DbE ¼ 1; D∂E

¼ D∂. Then we can find
holographic behavior.
For the trivalent case, the input condition is always

fulfilled; however, in the four-valent case already, we have
to restrict ourselves: either, at least one of the dimensions
on the boundary links is 1, or the largest dimension is

dmax ¼ d1 þ d2 þ d3 − 2: ð113Þ

This means that there are overall two constraints on the four
free variables we can choose. However, the overall message
is clear: while the fixing of the output dimension is
generically necessary, there are also strong restrictions
on the input dimension. Incidentally, the restriction to
dimension-1 inputs also makes corrections to the entropy
vanish, simply because the minimal entropy is also the
maximal entropy. We note though that, in the high-D∂

approximation, holography is generic,

YE
1 ¼ 1

D∂

þ 1

DbE

¼ e−β þ 1

DbE

≈
1

DbE

;

YE
0 ¼ 1þ 1

DE
¼ 1þ 1

DbE

e−β ≈ 1; ð114Þ

which trivially fulfills holography. We should therefore
think of the restriction to bulk dimension 1 perhaps more as
having very low bulk dimension compared to the boun-
dary D∂.

C. Bulk-to-boundary maps: Single internal link

In the case of a single link, we are also able to perform
most of the calculations analytically. We label for conven-
ience the end points by x and y and the set of boundary
spins on x or y as Ex and Ey, respectively. The spins of the
single bulk link will be labeled by u or v, and we denote
intertwiner dimensions on a vertex x depending on link
spins by Dfjxeg.

Once again, we have

ZE;E
1j0 ¼ TrHE⨂HE



Π⨂2⨂

x
S

1−bσx
2

Hx

�

¼
X
u;v

TrHE∪u⨂HE∪v



Π⨂2⨂

x
S

1−bσx
2

Hx

�

¼
X
u;v

KE∪uKE∪vZ
E∪u;E∪v
1j0 ; ð115Þ

and we can split

KE∪u ¼ D∂E
DEx∪uDEy∪ujguj2 ¼ LE∪uD∂E

; ð116Þ

HE∪u
1j0 ðσ⃗Þ ¼ 1− σx

2

X
je∈Ex

logð2je þ 1Þ þ 1− σy
2

×
X
je∈Ey

logð2je þ 1Þ þ 1− bσx
2

Λx þ
1− bσy

2
Λy

þ 1− σxσy
2

logð2uþ 1Þ ð117Þ

into its bulk contribution LE∪u, which stays in the sum, and
the pure boundary contribution D∂E

. Next, we consider the
effect of the constraints. The constraints, in general, state
that for Z1 (Z0), the spin-down (spin-up) region must be
contained in the region Gj⃗;k⃗ of vertices where all the
incident spin labelings agree. This restricts allowed Ising
configurations and leads to a suppression of sector-off-
diagonal partition sums, because the usual lowest energy
configuration is typically disallowed.
In our case, for u ≠ v, Gj⃗;k⃗ ¼ 0 (not counting the

boundary vertices), meaning that only the spin-down
(spin-up) configuration can contribute to off-diagonal
sums. Let

axjy ¼ D−1
Exjy∪u; bxjy ¼

Y
je ∈Exjy

d−1je ; ð118Þ

then

ZE∪u;E∪v
1 ¼ e−H

E∪u
1

ð!−1 Þ ¼ bxby; ð119Þ

ZE∪u;E∪v
0 ¼ e−H

E∪u
0

ð!þ1 Þ ¼ 1: ð120Þ

This means that the matrices ZE∪u;E∪v
1j0 (collected over

u − v) have the form of a constant contribution in each
entry as well as a diagonal part. The diagonal terms are
again

ZE∪u;E∪u
1 ¼ axay þ d−1u axby þ d−1u aybx þ bxby; ð121Þ

ZE∪u;E∪u
0 ¼ 1þ d−1u axbx þ d−1u ayby þ axaybxby; ð122Þ
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and so we have obtained the full partition sums for fixed
boundary spins.
We can use the other objects defined before,

Lj⃗ ¼ jguj2; YE
1j0 ¼

X
u;v

jguj2jgvj2ZE∪u;E∪v
1j0 ð123Þ

and fix the output dimension

D∂ ¼ D∂E
¼ ðbxbyÞ−1 ð124Þ

and so we find

YE
1j0¼

X
u

jguj4ZE∪u;E∪v
1j0 þDð−1j0Þ

∂


�X
u

jguj2
�

2

−
X
u

jguj4
�
:

ð125Þ

Now by noting the normalization condition
P

u jguj2 ¼ 1
for all internal links, the term in the brackets becomes a
Rényi-2 entropy of the sequence of coefficients�X

u

jguj2
�

2

−
X
u

jguj4 ¼ 1 − expð−S2ððjguj2ÞuÞÞ:

We can evaluate, for example, YE
1 in the special case where

the two vertices are four-valent and all the boundary spins
are the same, at value j ¼ n−1

2
, meaningD∂ ¼ n6. Then, we

can explicitly calculate the intertwiner dimension in closed
form and find that DIE ¼ n2, and the sum splits into three
parts: the constant part above, the part wherem ≔ 2uþ 1 is
less than n, and the part where m > n. The first part is as
above, while the second and third are, respectively,

Xn
m¼1

jgmj4
�
1

n6
þ 1

m2

�
1þ 2

n3

��
; ð126Þ

X
m¼nþ2k;k∈ ½1∶n�

jgnþ2kj4



2

n3ðn − kÞð2kþ nÞ þ
1

ðk − nÞ2 þ
1

n6

�
:

ð127Þ

This is already quite complex, but because the sums are
finite, they of course converge. In fact, for g ¼ 1 they even
have a closed form each,

n5Hð2Þ
n þ 2n2Hð2Þ

n þ 1

n5
;

×
−π2n5 þ 6n5ψ ð1Þð1 − nÞ þ 4γn − 4nψ ð0Þðn

2
þ 1Þ þ 4nψ ð0Þð3n

2
þ 1Þ þ 4nψ ð0Þð1 − nÞ þ 6

6n5
;

where Hð2Þ
n gives the nth Harmonic number of order 2, ψ ðkÞ are the polygamma functions, and γ is the Euler-Mascheroni

constant. In the limit of large n, they have simple expansions

π2

6
−
1

n
þO

��
1

n

�
2
�
;

5π2

6
−
1

n
þ π2cot2ðπnÞ þO

��
1

n

�
2
�
:

In general, for varying n the sum shows oscillatory behavior around any integer.
As for YE

0 , we find the same split with exact values,

2n3Hð2Þ
n þHð2Þ

n þ n7

n6
¼ nþO

��
1

n

�
2
�
;

×
6n7 þ 4γn2 − 4n2ψ ð0Þðn

2
þ 1Þ þ 4n2ψ ð0Þð3n

2
þ 1Þ þ 4n2ψ ð0Þð1 − nÞ þ 6ψ ð1Þð1 − nÞ − π2

6n6

¼ nþO
��

1

n

�
2
�
:
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As a result, we see that, indeed, with jgj ¼ 1 we cannot
fulfill the isometry conditions and that

YE
1

YE
0

≈
π2

2n
; ð128Þ

which does not scale like 1
DIE

¼ 1
n2. This shows that the

choice g ¼ 1 hinders holographic behavior. Now, we can
also find what choice for g we must make. In a high-β
approximation, the sums are generally (vn ¼ jgn−1

2
j2),

YE
1 ≈

X
n

v2n
1

DIE

; YE
0 ≈

�X
n

an

�
2

: ð129Þ

So again, in this limit the only condition we need to check
is the entropy one, which takes the form

YE
1

YE
0

≈
X
n

rnaxayðnÞ¼!
1P

nðaxayðnÞÞ−1

rn ¼
v2n

ðPnvnÞ2
; ð130Þ

which has as valid solutions for rn, if there areM values for
the spins,

rn ¼
1

axayðnÞ
�

1

M
P

mðaxayðmÞÞ−1 þ cn

� X
n

cn ¼ 0:

ð131Þ

Ultimately, solving for an here is irrelevant, but what
matters is the scaling,

jguj2 ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

axayðuÞ
p : ð132Þ

So, demanding isometry puts strong constraints on the
scaling of the coefficients g we use to define the state ρ and
map T ρ. This is interesting, for one because it is consistent
with the assumption that large spins must dominate for the
approximations to work, but also because this is the only
constraint we had to put on the problem to get isometry.
This is because, for the setting here, it was quite natural to
assume that the all-up configuration is the ground state of
H̃1. Under this assumption, and the constancy of D∂E

,
though, we are, however, already almost at isometry, as
given in the main section.
The most intriguing part of this scaling, though, is that

the left-hand side does not depend on E. This implies at
least that

ðaxayðnÞÞ−1P
mðaxayðmÞÞ−1 ð133Þ

is independent of E for all n.

We can therefore understand that the full isometry
condition boils down to three essential ingredients:
(1) constancy of D∂E

¼ D∂;
(2) knowledge of the minima of H̃1 and their proximity

to the all-up configuration; and
(3) constraints on the gje coefficients that relate them to

the input dimensions.

D. Boundary-to-boundary maps

In contrast to the usual question of holography, which is
concerned with equivalence of a bulk and a boundary
space, we may consider the system as a transport between
two complementary boundary regions, I; O ¼ ∂γnI and ask
for equivalence of the boundary regions. For this, as we will
see, we will need to fix a state of the bulk intertwinersHE

b in
each boundary sector. This means restricting the set of
graph states that are averaged over to have prescribed data
on intertwiners.
We see that the full graph Hilbert space splits as

Hγ ≅ ⨁
EI;EO

HI;EI
⨂ HO;E∂

⨂ HE
b ð134Þ

with the useful shorthand

HI;EI
≔ ⨂

e∈ I
Vje ; HO;EO

≔ ⨂
e∈O

Vje : ð135Þ

We routinely write E ¼ EI ∪ EO as the sector whose
component boundary spins are given by those in the
region I and O together. We will see the first as an
input space, the second as the output space, and the third
as a bath or background. This means we choose the
algebras

BI ¼ ⨁
EI

BðHI;EI
Þ; BO ¼ ⨁

EO

BðHO;E∂
Þ ð136Þ

with the obvious extension and partial traces

iI

�X
EI

XEI

�
≔
X
EI;FO

XEI
⨂ IFO

⨂ IIE¼EI∪FO
; ð137Þ

PTrb


 X
EI;EO;FI;FO

XEI∪EO;FI∪FO

�

≔
X
EI

X
FO

TrHO;FO
⨂H

EI∪FO
b

½XEI∪FO;EI∪FO
�; ð138Þ

which are again adjoints.
Therefore, we can then again define a Choi map for any

density matrix ρ on the full system,
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T ρðXÞ ¼ KPTrO½iIðXÞρtI �
¼ K

X
EO

X
EI

TrHI;EI
½XEI

σE� ð139Þ

with the effective system density matrix in sector E,

σE ¼ TrHE
b
½ρtHI �∈BðH∂E

Þ ¼ BðHI;EI
Þ ⨂ BðHO;E∂

Þ: ð140Þ

We can derive the applicable isometry condition here more
easily because the effective system has a factorized Hilbert
space,

H∂ ¼ HI ⨂ HO ¼ ⨁
EI;EO

HI;EI
⨂ H∂;E∂

: ð141Þ

We simply see the effective system density as one on this
system,

σ ¼
X
EI;EO

σEI∪EO
∈DðH∂Þ

≅ ⨁
EI;EO;FI;FO

BðHI;EI
⨂ HO;EO

;HI;FI
⨂ HO;FO

Þ: ð142Þ

This lets us write the Choi map as

T ρðXÞ ¼ KTrHI
½ðX ⨂ IOÞσ� ð143Þ

and we can apply the standard bipartite, centerless isometry
condition

jKj2Tr
H⨂2

O
½σ⨂2S

H⨂2

O
� ¼ S

H⨂2

I
: ð144Þ

This becomes particularly easy for pure states σ (equiv-
alently, σE), where it is equivalent to trace preservation,

ðσÞI
Tr½σ� ¼

IHI

dimðHIÞ
; K ¼ dimðHIÞ

Tr½σ� : ð145Þ

Of course, purity of σ requires the state of the full system to
factorize

ρE;E ¼ jϕEihϕEj ⨂ ρb;E ð146Þ

and is not very generic (as by Page’s argument), unless
either the effective system size or the environment size is
very small compared to the other. Still, it is a generic result
of a projective measurement on the effective system H∂

conditioned on some outcome, if one sees HE
b as a kind of

environment coupled to the effective system [51]. In
general, we know that, for mixed states, trace preservation
and isometry are mutually exclusive. We will for now
assume that such a factorization holds and proceed.
To restrict the average to states of this factorized

form, we introduce another projector for the bulk infor-
mation. First, notice that with the states we consider,

ρE;E ∼ jψγ;Eihψγ;Ej is always pure. Then, ρb;E ¼ jζEihζEj
must also be pure. We will fix a single pure state jζEi in
each sector, and the projector to this is then simply

ΠB ¼
X
E

I∂;E ⨂ jζEihζEj
hζEjζEi

: ð147Þ

The reason we fix a single one is that this reduces the
effective dimension of the “environment” HE

b for the
channel to the minimum. This is one of the necessary
requirements to find isometry for this tripartite case.
So we project the randomized graph state jψγi into a

fixed configuration of intertwiners ζE in each sector. This
way, we obtain the pure state required to study isometry
conditions the usual way. We can then write the second
Rényi entropy as before, with

he−S2ðσIÞiU ≈
Z1

Z0

: ð148Þ

In this boundary-to-boundary mapping case, we will call
such a channel and, by proxy, the state from which it arises,
“transparent” if it is isometric.
The purity of the reduced input state is, through

calculations from Appendix A 2, in the high-spin regime

he−S2ðσIÞiU ¼
X
j⃗;k⃗;σ⃗

Pðj⃗; k⃗ÞΔ1ðj⃗; k⃗; σ⃗Þe−H1ðj⃗;k⃗;σ⃗Þ

¼
X
j⃗;k⃗

Y
e∈ γ

pjepke

X
σ⃗

cos θðj⃗; k⃗; σ⃗Þe−1
2
Hj⃗ðσ⃗Þ

× e−
1
2
Hk⃗ðσ⃗Þδj⃗↓; k⃗↓

δj∂S↓ ;k∂S↓ ; ð149Þ

which is a sum of non-negative numbers and we take

Hj⃗ ¼
X
e∈ γ

λe
1 − σsðeÞσtðeÞ

2
þ S2ðXðj⃗∂γ; j⃗↑ÞÞ ð150Þ

as an effective Hamiltonian. The form here is more
complicated than that of the bulk-to-boundary case: the
Δ factors are no longer, in general, Boolean, but can take
any value between 0 and 1. We can take a limit of

β ¼ dimðHOÞ being very large, for fixed r ¼ dimðHIÞ
dimðHOÞ.

Then, we can drop all of the subdominant terms in the
sum and approximate with the most dominant contribu-
tion σ⃗min.
To begin, we study the behavior of the Δ factor. Of

course, we must require as usual that

S↓ ⊆ Gj⃗;k⃗; ð151Þ

but the cosine factor also has an influence. For example, the

all-up configuration σ⃗ ¼ 1⃗ has cos θðj⃗; k⃗; σ⃗Þ ¼ 1 for all
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sectors. For a given sector j⃗, we can evaluate the
Hamiltonian on the extreme configurations for a hint of
what the minimum might be,

Hj⃗ðþ1Þ ¼
X
e∈ I

λe ¼ logðdimðHI;j⃗I
ÞÞ;

Hj⃗ð−1Þ ¼
X
e∈O

λe þ log

� hζj⃗jζj⃗i
hζEjζEi

�
: ð152Þ

We can study, for example, the case of a single vertex.
This is very simple as there are no bulk spin sums involved,
and the entropylike quantities Σ ¼ 0 ¼ S2ðXÞ vanish. This
translates into the cosine cos θ ¼ 1 being 1 for all con-
figurations and choices of spins, so the overall sum
collapses into

he−S2ðσIÞiU ¼
X
j;k

pjpk

X
σ

e−
1
2
Hj⃗ðσ⃗Þe−

1
2
Hk⃗ðσ⃗Þδj⃗↓;k⃗↓

¼
�X

j

pje
−1
2
Hj⃗ðþ1Þ

�
2

þ
X
j

p2
je

−Hj⃗ð−1Þ: ð153Þ

This can be simplified by noting that the dimensionalities
of the boundary spaces factorize and sum nicely,

Dj ¼ DIjI
DOjO

⇒
X
j

Dj ¼
�X

jI

DIjI

��X
jO

DOjO

�
:

ð154Þ
This leads to the expression

he−S2ðσIÞiU ¼ 1

DI

" X
EI

ffiffiffiffiffiffiffiffiffi
DIEI

DI

s !2

þ 1

DO

X
EI

�DIEI

DI

�
2
#

ð155Þ

¼ 1

DI



e
S1
2
ðaÞ þ 1

DO
e−S2ðaÞ

�
; ð156Þ

which is as simple as it gets. We can recognize the two

terms as Rényi entropies Sα of the sequence ajI ¼
DIjI
DI

,
allowing for the rewriting in the second line. We can see
immediately that if the normalized sequence a is constant,
the term in the square brackets will be greater than 1 just
from the first term. On the other hand, if it is peaked on
exactly one sector, it returns 1þ 1

DO
. This shows a general

criterion for isometry:
(1) we require large total output dimensions DO; and
(2) we require the sequence a to be strongly peaked

around one or at most a few input sector.
For the single vertex, this is all we need. If we extend our
study to a single internal link, we find constraints on the
relative weights of different sectors in the bulk states jζEi,

as seen in Appendix III E. We postpone a closer inves-
tigation of these constraints to future work.
To summarize once more: if we want to see the graph

state jϕγi as inducing an isometric boundary-to-boundary
map, the following conditions must be satisfied (on top of
the usual one on the spins size):
(1) the correlations between boundary data HE

∂
and

intertwiner data HE
b in each boundary sector must

be negligible; and
(2) the graph state must be peaked on only a few sets of

spin sectors on the input boundary region.
We now again illustrate this case with an example on a
fixed, simple graph.

E. Boundary-to-boundary: Single internal link

To illustrate the complexity of the calculations involved,
we shall give an innocuous example. We will not impose
the known necessary conditions for isometry and work in
the boundary-to-boundary case, where we include a matrix
ρb for bulk/intertwiner degrees of freedom in the trace
expressions for Z1j0. We do not impose that it is a projector
from the beginning, but this restriction and others may of
course be imposed at the end.
The graph in question, see Fig. 1, is the simplest

nontrivial one, and we only consider two distinct spin
sectors, which agree on all but one link. This means that
there are only four Ising configurations. We choose the area
spins such that only one intertwiner space is nontrivial. We
will also refer to the vertices just by L(eft) or R(ight) for
convenience. In spin sector k⃗, all intertwiner spaces are one
dimensional, while in j⃗, the right one is two dimensional.
We can then give the intertwiner state

ρb ¼
"
ρb
j⃗;j⃗

ρb
j⃗;k⃗

ρb
k⃗;j⃗

ρb
k⃗;k⃗

#
ρb
j⃗;j⃗

¼


a b

b̄ d

�

ρb
j⃗;k⃗

¼


u

v

�
ρb
k⃗;k⃗

¼ w ¼ 1 − ðaþ dÞ: ð157Þ

From this, we can derive the reduced entropies

S2ððρbj⃗;j⃗ÞRÞ ¼ S2ððρbj⃗;j⃗ÞÞ ¼ − log



a2 þ d2 þ jbj2

ðaþ dÞ2
�

S2ððρbj⃗;j⃗ÞLÞ ¼ 0; ð158Þ

while the ones for k⃗ vanish.

FIG. 1. We consider a superposition of two spin sectors that are
only different on a single link. The values are chosen as to give a
controllably low intertwiner space dimension of 1 or 2.
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We choose the input area I to be the rightmost link,
where the two sectors disagree. The individual sectors
induce, at least for large spins, an isometry, making the only
question what parameters need to be chosen to make their
superposition induce an isometry.
We show some of the calculations for this case here, but

some are omitted for brevity and can be easily reproduced
in Mathematica code.
We first discuss the constraints on configurations. The

case chosen here has intertwiner constraints that can be
ignored, so we have the following:
(1) Δ0ðj⃗; j⃗; σ⃗Þ ¼ Δ0ðj⃗; k⃗; σ⃗Þ ¼ 1,

Δ0ðj⃗; k⃗; ðþL;þRÞÞ ¼ 1,
and Δ0ðj⃗; k⃗; ð−L;þRÞÞ ¼ 1.

(2) Δ0ðj⃗; k⃗; ð−L;−RÞÞ ¼
Q

e∶σx¼−1 δje;ke ¼ 0,
Δ0ðj⃗; k⃗; ðþL;−RÞÞ ¼ 0.

Essentially, as the spins on the right vertex do not agree
between the two sectors, the Ising spin may not point down
on it. The only difference in the numerator Δ factors is that
the boundary pinning field flips around where spins have to
agree. We take the pinning field to be −1 on the rightmost
link where the areas disagree:
(1) Δ1ðj⃗; k⃗; ðþL;þRÞÞ ¼ 0 ¼ Δ1ðj⃗; k⃗; ð−L;þRÞÞ.
(2) Δ1ðj⃗; k⃗; ð−L;−RÞÞ ¼ 1 ¼ Δ1ðj⃗; k⃗; ðþL;−RÞÞ.

In other words, the right Ising spin must be down. This is a
manifestation of the general rule that configurations where
the value of the Hamiltonian would be ambiguous need to
be excluded. Overall, even in this innocuous example
we see that there can be a fair reduction of possible
configurations contributing to the mixed partition sums.
Then, we can calculate the Hamiltonian values individually
(see Table I).
We thus find the six partition sums

(1) Zj⃗;j⃗
0 ¼ 1þ e−S2−3L2−L6;− þ e−3L2−L6;−

þe−S2−4L2−L6;−−L6;þ ,

(2) Zk⃗;k⃗
0 ¼ 1þ e−3L2−L6;þ þ e−3L2−L6;þ þ e−4L2−2L6;þ ,

(3) Zj⃗;k⃗
0 ¼ 1þ e−Σð−;þÞ−2L2−L6;þ ,

(4) Zj⃗;j⃗
1 ¼ e−L6;− þ e−S2−3L2 þ e−3L2−L6;−−L6;þ

þe−S2−4L2−L6;þ ,

(5) Zk⃗;k⃗
1 ¼ e−L6;þ þ e−3L2 þ e−2L6;þ−3L2 þ e−L6;þ−4L2 ,

(6) Zj⃗;k⃗
1 ¼ e−Σðþ;−Þ−3L2 þ e−Σð−;−Þ−3L2−L6;þ ,

and we note that, as expected, the values of the Z0 partition
sums approach 1 as we increase the areas. Each term in
the Z1 sums also decays with some power of the area.
Additionally, the decay in the mixed sums is stronger than
the others due to suppression of certain configurations.
It is instructive to see the single-sector results at this

point. For the first sector, the purity is

Zj⃗;j⃗
1

Zj⃗;j⃗
0

¼ e−L6;− þ e−3L2e−S2 þ e−3L2e−L6;−e−L6;þ þ e−4L2e−L6;þe−S2

1þ e−3L2e−L6;−e−S2 þ e−3L2e−L6;− þ e−4L2e−L6;−e−L6;þe−S2
ð160Þ

≈e−L6;− for large s; ð161Þ

which is the reciprocal dimension of the boundary input space in the large-spin limit. The same thing happens with the other

sector, where Zk⃗;k⃗
1

Zk⃗;k⃗
0

≈ e−L6;þ . Thus both sectors individually yield an isometric map when spins are large enough. Now, with

the two weights

TABLE I. Hamiltonian values for the four configurations.a

Function ðþ;þÞ ðþ;−Þ ð−;þÞ ð−;−Þ
H0ðj⃗; j⃗Þ 0 3L2 þ L6;− þ S2 3L2 þ L6;− 4L2 þ L6;− þ L6;þ þ S2

H0ðk⃗; k⃗Þ 0 3L2 þ L6;þ 3L2 þ L6;þ 4L2 þ 2L6;þ
H0ðj⃗; k⃗Þ 0 2L2 þ L6;þ þ Σð−;þÞ
H1ðj⃗; j⃗Þ L6;− 3L2 þ S2 3L2 þ L6;þ þ L6;− 4L2 þ L6;þ þ S2

H1ðk⃗; k⃗Þ L6;þ 3L2 3L2 þ 2L6;þ 4L2 þ L6;þ
H1ðj⃗; k⃗Þ 3L2 þ Σðþ;−Þ 3L2 þ L6;þ þ Σð−;−Þ

aWe have used the shorthand

L2 ¼ lnð2sþ 1Þ; L6;� ¼ lnð6s� 1Þ;
ΣðσL;σRÞ ¼ Σðj⃗; k⃗; ðσL; σRÞÞ; S2 ¼ S2ðΠI

j⃗;j⃗
Þ: ð159Þ
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Kj⃗ ¼ e4L2þL6;þþL6;−ðaþ dÞ; Kk⃗ ¼ e4L2þ2L6;þw ð162Þ

and the entropies of the intertwiner state

e−S2 ¼ t ≔
a2 þ d2 þ jbj2

ðaþ dÞ2 ; ð163Þ

e−Σð−;−Þ ¼ e−Σðþ;−Þ ¼ q ≔
ju2j þ jvj2
wðaþ dÞ ; ð164Þ

e−Σðþ;þÞ ¼ e−Σð−;þÞ ¼ 1 ð165Þ
this gives us Z1

Z0
. The full expression is rather unilluminating,

but we give a few special cases of interest. When the spin is
taken to be asymptotically large,

Z1

Z0

¼ 2w2 − 2wþ 1

6s
þ ð1 − 2wÞ3

36s2
ð166Þ

þ 27ðw − 1Þ2e−S2 þ ð61 − 54qÞw2 þ ð54q − 10Þwþ 24w4 − 48w3 þ 1

216s3
þO

��
1

s

�
4
�
: ð167Þ

This is particularly simple in that the b and u, v parameters
do not contribute up to second order. Thus, in the high-spin
limit, these tend to not matter as much. Studying only the
leading two orders, we can ask which parameters give us
the most mixing. These are easily found to be, for fixed s,
w∈ f1

2
; 2sþ1

2
g, which means that only w ¼ 1

2
is a valid

minimum. If we take the third order into account, we
instead have as minima

ðw; qÞ ¼
�
1;

2

27
ð18s2 − 9sþ 16Þ

�
≈
�
1;
4

3
s2
�

ð168Þ

irrespective of the value of the entropy e−S2. Further orders
preserve this minimum. A simple numerical study of the
minimum of the purity for fixed s reveals that the overall
value decreases with spin inversely as expected,

GðsÞ ≔ min
a;d;w;t;q

�
Z1

Z0

ða; d; w; t; q; sÞ
�
≈

1

12s
: ð169Þ

So, the maximal achievable entropy for fixed spin s is then

S2 ≈ lnð12sÞ: ð170Þ

We can then estimate the maximal dimension for a trans-
parent subspace by G−1 ≈ 12s, which is precisely the
dimension of HC in the studied case. Numerically, we find
that this is achieved when ða; d; wÞ ≈ ð1

4
; 1
4
; 1
2
Þ in the large-

spin limit, with no significant dependence on q or t. This, in
particular, implies cj ¼ ck ¼ 1

2
and has the minimum w ¼ 1

2

seen before. The result agrees qualitatively with the second
order result from (166), confirming that the large-spin
regime is well approximated by it.
If we instead choose the region I to be the upper right

link, we get the same type of result: there is a state of
maximal entropy that makes the induced map into an
isometry, with GðsÞ ¼ 1

2sþ1
, and which is the minimum of

Z1

Z0
for fixed-spin sectors. The parameters of the minimum

are, however, different: ða;d;wÞ≈ ð1
3
; 1
3
; 1
3
Þ. Here, cj ¼ 2ck.

This shows that whether an isometry exists or not can
depend sensitively on the boundary region under consid-
eration and the state of bulk degrees of freedom.

IV. OUTLOOK

In this work, we generalized earlier analyses on the
holographic properties of quantum geometric states, i.e.,
spin networks, to the case of arbitrary superposition of
algebraic (quantum geometric) data, for a fixed support
graph. As in earlier work, we have done so via random tensor
network techniques, taking advantage of the fact that spin
networks are, in fact, generalized tensor networks them-
selves. This required extending appropriately such random
tensor network techniques. In particular, while earlier work
focused on unique, tunable bond dimensions, the true
quantum gravity setting requires Hilbert spaces involving
different combinations of bond dimensions on the same link.
This superposition brings with it several new phenomena,
which we addressed, using more general definitions of
holographic behavior, with respect to the standard Hilbert
space-based one. These new phenomena are as follows:

(i) Several new options for averaging procedures with
different eases of computation.

(ii) A multitude of dual Ising partition sums in place of a
single one. These depend on pairs of bond dimen-
sions ðj⃗; k⃗Þ and are subject to special constraints Δ
depending on the problem.

(iii) Appearance of a sum over sectors in the full
expression of the purity, which may be interpreted
as a kind of average in a distribution p determined
by the bond dimensions and other input data,
through the K factors.

(iv) An “averaged” RT formula (58) with a nontrivial
area operator that is not sharp unless very special
conditions are fulfilled.

(v) A nontrivial center of the algebra given by the
boundary area operators. This requires a generalized
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definition of bulk-to-boundary mappings via Choi
maps and proper choices of input/output algebras.

We provided general conditions, both necessary and/or
sufficient, for an average state of a discrete quantum
geometry (described as a generalized tensor network) to
give an isometricmap between operator algebras. This is, in a
clear sense, a kind of holographic behavior. The conditions
we found all entail two key ingredients:

(i) We need the total boundary area to be constant
across all involved sectors.

(ii) We need the bulk Hilbert spaces to be compa-
rably small.

While the latter may be expected from dimensional reasons
or by the usual picture of bulk code subspaces [52–54], the
former is quite surprising. It arises as a consequence of the
split of the isometry condition into separate conditions for
each sector, which can only hold in parallel if and only if the
total boundary area is a given fixed value across all sectors.
We also considered boundary-to-boundary transport of

data in the presence of a bulk state, giving rise to the notion
of a transparent state. This is a dual viewpoint to holog-
raphy: instead of the bulk being equivalent to the boundary,
the bulk here functions as a realization of a mapping
between two boundary regions.
In future work, we would like to explore various ways to

expand on this setup:
(i) It is expected from several discrete quantum gravity

formalisms that superpositions of different graph
structures must arise. Up until now, our formalism
has been adapted to a fixed graph, and thus a highly
nontrivial extension is required to tackle the truly
general case of quantum geometry states.

(ii) In particular, the group field theory formalism for
quantum gravity points to an extension to a setting
where graph vertices can be created or destroyed in a
(bosonic) second-quantized language, and graph
vertices are unlabeled (or must be identified by
dynamical, physical data).

(iii) The whole analysis should be extended to the
dynamical and (in some approximation) spatiotem-
poral level. The kinematical structures exposed here
are generically subject to gravitational constraints
and quantum gravity dynamics, be it encoded in a
canonical constraint operator or in covariant, path
integral-like amplitudes. They should be subject
also, upon adoption of physical frames, to a rela-
tional temporal evolution.

(iv) For a proper spacetime geometric interpretation and a
rendezvous with the AdS/CFT correspondence, we
need a better handle on how to reconstruct spacetime
information from our data, possibly combining tech-
niques from quantum gravity literature (e.g., from
GFT cosmology) and the AdS/CFT one [55–63].

(v) It would be interesting to take the renormalization
group flow perspective [64–69] on the AdS/CFT
correspondence seriously also in our finite context

and build coarse-graining maps using the boundary-
to-boundary mappings we introduced.

Our work, and the many possible extensions of it, prove
that the interface between quantum gravity and quantum
information is a very fertile research ground, and the search
for a local, microscopic origin of holography is a powerful
motivation to explore it.
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APPENDIX A: DERIVATION OF RANDOM
ISING MODEL

1. Bulk-to-boundary maps

Here we derive the random Ising model components
necessary for the bulk-to-boundary mapping analysis.
Crucially, we will need the projector

ΠΓ ¼
X
jb

ΠΓ;jb ; ΠΓ;jb ¼ ⨂
e∈Γ

jgje j2jejeiheje j ðA1Þ

with the maximally entangled state (4) on each glued link,
in each sector, with the weight jgje j2.
Then each term in the random Ising model becomes

TrHj⃗⨂Hk⃗

h�
ΠΓ;j⃗b

⨂ ΠΓ;k⃗b

�
SS↓S

1j0
b

i
ðA2Þ

¼ TrHΓ;j⃗b
⨂HΓ;k⃗b


�
ΠΓ;j⃗b

⨂ ΠΓ;k⃗b

�
⨂
e∈Γ

S
1−σsðeÞσtðeÞ

2
e

�
ðA3Þ

×TrI j⃗⨂I k⃗



⨂
x
S

1−bσx
2

b;x

�
TrH

∂γ;j⃗∂γ
⨂H

∂γ;k⃗∂γ

"
⨂
e∈ ∂γ

S
1−σsðeÞ

2
e

#
; ðA4Þ

where b ¼ ð−1Þ1j0 in Z1j0. We can then evaluate each part
separately. For the link factor, it factorizes over each
internal link,

Y
e∈Γ

jgje j2jgke j2TrHje⨂Hke



ðjejeiheje j⨂ jekeiheke jÞS

1−σsðeÞσtðeÞ
2

e

�
;

ðA5Þ
where we defineHje ≔ VsðeÞ;je ⨂ VtðeÞ;je . This evaluates toY

e∈Γ
jgje j2jgke j2ðδje;ked−1je Þ

1−σsðeÞσtðeÞ
2 : ðA6Þ

Then, the intertwiner factor is similarly

TrI j⃗⨂I k⃗



⨂
x
S

1−bσx
2

b;x

�
¼
Y
x

DjxDkxðδjx;kxD−1
jx Þ

1−bσx
2 ; ðA7Þ
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where Djx ¼ dimðIjxÞ. Finally, the boundary factor is

TrH
∂γ;j⃗∂γ

⨂H
∂γ;k⃗∂γ



⨂
e∈ ∂γ

S
1−σsðeÞ

2
e

�
¼
Y
e∈ ∂γ

djedkeðδje;ked−1je Þ
1−σsðeÞσtðeÞ

2 ;

ðA8Þ
where we set σtðeÞ ¼ 1 for all boundary links.
This means we have as our random Ising model data the

choices

Δ1j0ðj⃗; k⃗; σ⃗Þ ¼
Y
x

δ
1−bσx

2

jx;kx

Y
e∈ γ

δ
1−σsðeÞσtðeÞ

2

je;ke
; ðA9Þ

Kj⃗ ¼
Y
x

Djx
Y
e∈ γ

jgje j2
Y
e∈ ∂γ

dje ¼ TrHj⃗
½ΠΓ;jb �; ðA10Þ

where we fix the convention gje ¼ 1 for all e∈ ∂γ to
write this uniformly across all links of the graph. The
Hamiltonian is

H1j0ðj⃗; k⃗; σ⃗Þ ¼
X
e∈ γ

λe
1 − σsðeÞσtðeÞ

2
þ
X
x

1 − bσx
2

Λx

ðA11Þ
with couplings λe ¼ logðdjeÞ, Λx ¼ logðDjxÞ. It is clear
that this Hamiltonian is bounded from above and below,
with upper bound

P
e λe þ

P
x Λx.

The diagonal partition sums Zj⃗;j⃗
1 can be reinterpreted

through

Zj⃗;j⃗
1 ¼

�
Tr

H⨂2

j⃗


�
ΠΓ;jB
Kj⃗

�⨂2

ðjΨihΨjÞ⨂2SB

��
U

¼
�
TrI j⃗



TrH∂γ;j∂γ

⨂HΓ;jB



ΠΓ;jB
Kj⃗

jΨihΨj
�
2
��

U
ðA12Þ

as the reduced bulk entropy of a state in the given sector, so
as

Zj⃗;j⃗
1 ¼ he−S2ðρb;j⃗ÞiU;

ρb;j⃗ ¼ TrH∂γ;j∂γ
⨂HΓ;jb



ΠΓ;jb
Kj⃗

jΨihΨj
�
: ðA13Þ

Therefore, the diagonal partition sums are, in fact, in the
interval ½ 1

dimðI j⃗Þ ; 1�.

2. Boundary-to-boundary maps

We have two projectors in this case, one for the
intertwiners in the bulk (b) and one for the connected
links in the bulk (Γ). They split over spin sectors

Πb ¼
X
E

Πb;E; ΠΓ ¼
X
jb

ΠΓ;jb ; ðA14Þ

where the sums jb are only over bulk spins, as designated
by the fixed graph pattern. In the following, the set of bulk

spins of a sector j⃗ will be denoted j⃗b and we will indicate
the decomposition into bulk and boundary spin values

as j⃗ ¼ j⃗b ∪ j⃗∂γ .
The Ising partition sums we are dealing with in this case

are (up to the usual constant factors)

Z1j0 ¼ Tr
H⨂2

∂

½hσ⨂2iUS1j0
I2
� ¼

X
E;F

Z̄E;F
1j0

¼
X
E;F

TrðH∂;E⨂IEÞ⨂ðH∂;F⨂IFÞ

×
h
ðΠb;E ⨂ Πb;FÞhðjψγihψγjÞ⨂2iUS1j0

IEI⨂IFI

i
:

ðA15Þ
The traces are over the full sectors E, F each, so we can
expand this into the usual form with a trace over Hj⃗. The
jψγihψγj part becomes a trace over the internal link spaces,
but the spin sets are identified with the ones coming from

the overall trace, due to S1j0
IEI⨂IFI

being diagonal in the bulk

spin sets. This makes the sum simplify to

Z1j0 ¼
X
j⃗;k⃗;σ⃗

TrHj⃗⨂Hk⃗

h
ðΠb;E ⨂ Πb;FÞ

× ðΠΓ;j⃗b
⨂ ΠΓ;k⃗b

Þ⨂
x
S

1−σx
2

x S1j0
Ij⃗∂γ;I

⨂Ik⃗∂γ;I

i
: ðA16Þ

Each term in the random Ising model becomes

TrHj⃗⨂Hk⃗

h
ðΠb;E ⨂ Πb;FÞ

�
ΠΓ;j⃗b

⨂ ΠΓ;k⃗b

�
SS↓S

1j0
I

i
¼ TrHΓ;j⃗b

⨂HΓ;k⃗b


�
ΠΓ;j⃗b

⨂ ΠΓ;k⃗b

�
⨂
e∈Γ

S
1−σsðeÞσtðeÞ

2
e

�

× TrI j⃗⨂I k⃗

h
ðΠb;E ⨂ Πb;FÞ⨂

x
S

1−σx
2

b;x

i
× TrH

∂γ;j⃗∂γ
⨂H

∂γ;k⃗∂γ



S1j0
I ⨂

e∈ ∂γ
S

1−σsðeÞ
2

e

�
: ðA17Þ

We can then evaluate each part separately. Starting with the
intertwiner factor,

TrI j⃗⨂I k⃗

h
ðΠb;E ⨂ Πb;FÞ⨂

x
S

1−σx
2

b;x

i
¼ δj⃗↓;k⃗↓

Tr⨂x∈ S↓
Ijx

½XðE; j⃗↑ÞXðF; k⃗↑Þ�

¼ δj⃗↓;k⃗↓
Tr⨂xIjx

½Πb;E�Tr⨂xIkx
½Πb;F�e−Σbðj⃗;k⃗;σ⃗Þ; ðA18Þ

where we denote

XðE; j⃗↑Þ ¼ Tr⨂x∈ S↑
Ijx

½Πb;E� ðA19Þ
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with the entropylike quantity

Σbðj⃗; k⃗; σ⃗Þ ≔ − log

"
Trj⃗↓ ½Xðj⃗∂γ; j⃗↑ÞXðk⃗∂γ; k⃗↑Þ�

Trj⃗↓ ½Xðj⃗∂γ; j⃗↑Þ�Trk⃗↓
½Xðk⃗∂γ; k⃗↑Þ�

#
;

ðA20Þ

which simplifies to the Rényi entropy of the reduced bulk
“state” when the sectors coincide,

Σbðj⃗; j⃗; σ⃗Þ ¼ S2ðXðj⃗∂γ; j⃗↑ÞÞ: ðA21Þ

To be more concrete, for the choice

jζEi ¼
X
jb

jζj⃗i;

Πb;E ¼ jζEihζEj
hζEjζEi

¼
X
jb;kb

ΠE;jb;kb ðA22Þ

from the main text, gives

XðE; j⃗↑Þ ¼
X
a↓;b↓

TrI j⃗;↑
½ΠE;j⃗↑∪a↓;j⃗↑∪b↓

�

¼
X
a↓;b↓

TrI j⃗;↑


jζj⃗↑∪a↓ihζj⃗↑∪b↓ j
hζEjζEi

�
; ðA23Þ

which is a Hermitian operator on intertwiners on the spin-
down region between sectors like a↓ and b↓.
We can make more general statements about the quantity

by identifying the trace as a Hilbert-Schmidt inner product:

let X ¼ XðE; j⃗↑Þ, Y ¼ XðF; k⃗↑Þ, then

hX;Yi ¼ ReðhX;YiÞ ¼ Tr½XY� ¼ kXkkYk cosθHS
X;Y ðA24Þ

and with

kXk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½X2�

q
¼ Tr½X�e−1

2
S2ðXÞ ðA25Þ

this gives

Σbðj⃗; k⃗; σ⃗Þ ¼
1

2
S2ðXÞ þ

1

2
S2ðYÞ − log ðcos θHS

X;YÞ; ðA26Þ

which shows that we need to exclude the cosine part of this
object from the Hamiltonian, as it can be 0. By our con-
vention, such factors are to be excluded. Alternatively,
however, we can also write

hX; Yi ¼ Tr½
ffiffiffiffi
X

p
Y
ffiffiffiffi
X

p
�

¼ Tr


� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

p
Y
ffiffiffiffi
X

pq �2�
¼ e

−S2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

p
Y
ffiffiffi
X

pp �
cos2θFX;Y;

ðA27Þ

where FðX; YÞ ¼ cos2θFX;Y ¼ ðTr½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

p
Y
ffiffiffiffi
X

pp
�Þ2 is the

“fidelity of states” X, Y. Because of its properties, and
that of the Rényi entropy, we can see that the Hilbert-
Schmidt inner product is actually non-negative as long as
X, Y are states. Furthermore, due to the fidelity being a
metric on the space of states, we know precisely that the
cosine factors in both cases are 1 if and only if X ¼ Y.
Orthogonality, however, so when the cosine vanishes, is
possible for many different situations.
The link factor is, in fact, identical to that of the bulk-to-

boundary mapping. Finally, the boundary factor is

TrH
∂γ;j⃗∂γ

⨂H
∂γ;k⃗∂γ



S1j0
I ⨂

e∈ ∂γ
S

1−σsðeÞ
2

e

�
ðA28Þ

¼
Y
e∈ ∂γ

TrVsðeÞ;je⨂VsðeÞ;ke



S

1−σsðeÞσtðeÞ
2

e

�
ðA29Þ

¼
Y
e∈ ∂γ

d2jeðδje;ked−1je Þ
1−σsðeÞσtðeÞ

2 ; ðA30Þ

where we introduce boundary conditions for the Ising
configurations on the boundary vertices [tðeÞ in the above]:
for Z1, on boundary vertices of region I, we set σtðeÞ ¼ −1.
For all other cases, σtðeÞ ¼ þ1.
This means we have as our random Ising model data the

choices

Δ1j0ðj⃗; k⃗; σ⃗Þ ¼ cos θj⃗;k⃗δj⃗↓;k⃗↓

Y
e∈ γ

δ
1−σsðeÞσtðeÞ

2

je;ke
; ðA31Þ

Kj⃗ ¼ Trj⃗½Πb;j⃗∂γ
�
Y
e∈ γ

jgje j2
Y
e∈ ∂γ

dje ; ðA32Þ

where we fix the convention gje ¼ 1 for all e∈ ∂γ to write
this uniformly across all links of the graph. We also
introduced the shorthand

cos θj⃗;k⃗ ¼ cosðθHS
Xðj⃗∂γ ;j⃗↑Þ;Xðk⃗∂γ ;k⃗↑Þ

Þ ðA33Þ

for the Hilbert-Schmidt angle between the objects X. It is
not Boolean, but may be zero, which is why we include it in
the Δ factor. The Hamiltonian is
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H1j0ðj⃗; k⃗; σ⃗Þ ¼
X
e∈ γ

λe
1 − σsðeÞσtðeÞ

2
þ 1

2
S2ðXðj⃗∂γ; j⃗↑ÞÞ

þ 1

2
S2ðXðk⃗∂γ; k⃗↑ÞÞ ðA34Þ

with couplings λe ¼ logðdjeÞ. It is clear that this
Hamiltonian is bounded from above and below, with upper
bound

P
e λe þ logðdimðI j⃗ÞÞ.

APPENDIX B: ALTERNATIVE AVERAGING
METHODS

1. Coarse averaging

We can perform, to contrast our main approach, an
average over all tetrahedral states as a whole, as opposed to
averaging over individual tetrahedra’s states. This amounts
to performing a unitary Haar average over the (truncated)
Hilbert space

H ¼ ⨂
x
Hx; ðB1Þ

which does not treat different vertices separately. Such
an average does not keep information about localization
of properties on any given vertex and is in some sense
“nonlocal.”
We exemplify this here for the case of a boundary-to-

boundary mapping by inserting both a bulk projector ΠI as
well as a projector for the input segment of the boundary,
Πcore. This means we are calculating the entropy in a region
A of the outer boundary in the presence of an input or core
state on the inner boundary. While in this average, the
calculations simplify significantly, we lose the correspon-
dence to a random Ising model and the bulk and boundary
decouple as far as the boundary entropy is concerned. Still,
we find that there is an implied transition of an entangle-
ment shadow that is not seen explicitly. We choose as the
state to be projected a general

jΨi ¼ UjΨ0i ¼ ⨁
j⃗

jΨj⃗i

¼ ⨁
j⃗

X
k⃗

Uj⃗;k⃗jΨ0;k⃗i∈H ¼ ⨂
x
Hx; ðB2Þ

whereU is a general unitary H ↦ H and jΨ0i is a reference
state. Split the boundary of choice into two parts—an inner
and outer boundary ∂γin, ∂γout. The inner will also receive
data. Now, we can define the boundary state

jΦi ¼ hθjhζjhΓjΨi∈H∂γout ¼ ⨁
j∂γout

Vj∂γout
. ðB3Þ

We have here introduced a core state jθi ¼Pjin jθjini on
which we project the inner boundary. We are interested in
the second Rényi entropy of this reduced state in depend-
ence on the connectivity Γ and the presence of an interior
Πcore ¼ jθihθj and intertwiner data Πb, from now on
assumed to be a more general projector. For this, we need
to use the replica trick again. We find

Z1j0 ¼ TrH⨂2 ½Π⨂2
coreΠ

⨂2
b ðjΓihΓjÞ⨂2ðjΨihΨjÞ⨂2ðSAjIHÞ�:

ðB4Þ

We now perform an average over the Haar measure on the
unitary group UðHJÞ, where

HJ ≔ ⨁
j⃗;ℶ≤jxα≤J

Hj⃗ with dimensionDJ: ðB5Þ

For this case, we may use the same application of Schur’s
lemma as before. If hfiU denotes the average of a function
f on UðHJÞ with respect to the Haar measure, we have that

hðjΨihΨjÞ⨂2iU ¼ IHJ⨂HJ
þ SHJ⨂HJ

DJðDJ þ 1Þ ; ðB6Þ

where S swaps the two copies of HJ. Now, we insert this
into (B4) and proceed as usual,

hZ1j0iU ¼ TrH⨂2

h
Π⨂2

coreðjζihζjÞ⨂2ðjΓihΓjÞ⨂2ðjΨihΨjÞ⨂2ðSAjIÞ
i

¼ TrH⨂2



Π⨂2

coreðjζihζjÞ⨂2ðjΓihΓjÞ⨂2
IHJ⨂HJ

þ SHJ⨂HJ

DJðDJ þ 1Þ ðSAjIÞ
�

¼ 1

DJðDJ þ 1ÞTrH⨂2

h
Π⨂2

coreðjζihζjÞ⨂2ðjΓihΓjÞ⨂2ðIHJ⨂HJ
þ SHJ⨂HJ

ÞðSAjIÞ
i
: ðB7Þ
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If we also neglect fluctuations in the low-spin regime [70],
we may discard the J-dependent prefactor 1

DJðDJþ1Þ, which
yields objects that we call Y1j0, in the quotient and write

he−S2ðAÞiU ¼
�
Z1

Z0

�
U
≈
hZ1iU
hZ0iU

¼ Y1

Y0

: ðB8Þ

However, we can no longer perform the conversion to an
Ising model as before. The reason is that, for that con-
version, we need a tensor product ⨂x ðIHx⨂Hx

þ SHx⨂Hx
Þ

of operators acting on the vertices individually. Working
with completely generic classes of statesΨ has removed the
local structure from the problem entirely, and thus averag-
ing over it will not allow us to recover that local data.
Note that this is to be expected: an average removes

information from a distribution or random variable. The
larger, or coarser, the average we perform, the more data we
remove in the process. On the other hand, removing said
data can pinpoint typical behavior and allow for simpler
calculations. In our case, the removal of local data clearly

makes the calculation simpler—so simple, in fact, that we
will not be able to talk about holographic surfaces or
entanglement wedges or similar concepts, as those objects
are not needed for the entropy calculation.
In fact, we can perform the calculation as is. For this, it is

actually convenient to work in the form

Y1j0 ¼ TrðH∂γ⨂HbÞ⨂2 ½Π⨂2
coreΠ

⨂2
b ðjΓihΓjÞ⨂2

ðIH∂γ⨂H∂γ
IHb⨂Hb

þ SH∂γ⨂H∂γ
SHb⨂Hb

ÞðSAjIÞ�; ðB9Þ

where the traces over bulk and boundary can be performed
separately. The reason that this is equal to the other sum is
simply that the states jψi we put on the vertices initially
were diagonal in the tensor product space H∂γ ⨂ Hbulk in
the sense that the area spins agree between the two systems.
This means we can trace over either H or H∂γ ⨂ Hbulk.
The key fact is that the bulk state has no support on the

boundary, so it does notmatter for the trace over the boundary
space at all. We study both parts separately and find

Y0 ¼ TrðH∂γ⨂HbÞ⨂2

h
Π⨂2

coreΠ
⨂2
b ðjΓihΓjÞ⨂2ðIH∂γ⨂H∂γ

IHb⨂Hb
þ SH∂γ⨂H∂γ

SHb⨂Hb
Þ
i

¼ TrðH∂γÞ⨂2

h
Π⨂2

coreIH∂γ⨂H∂γ

i
TrðHbÞ⨂2

h
Π⨂2

b ðjΓihΓjÞ⨂2
i

þ TrðH∂γÞ⨂2

h
Π⨂2

coreSH∂γ⨂H∂γ

i
TrðHbÞ⨂2

h
Π⨂2

b ðjΓihΓjÞ⨂2SHb⨂Hb

i
¼ TrðH∂γÞ⨂2

h
Π⨂2

core

i
TrðHbÞ⨂2

h
Π⨂2

b ðjΓihΓjÞ⨂2
i

þ TrðH∂γÞ⨂2

h
Π⨂2

coreSH∂γ⨂H∂γ

i
TrðHbÞ⨂2

h
Π⨂2

b ðjΓihΓjÞ⨂2
i

¼
�
TrðH∂γÞ⨂2

h
Π⨂2

core

i
þ TrðH∂γÞ⨂2

h
Π⨂2

coreSH∂γ⨂H∂γ

i�
TrHb

½ΠbjΓihΓj�2; ðB10Þ

while

Y1 ¼ TrðH∂γ⨂HbÞ⨂2

h
Π⨂2

coreΠ
⨂2
b ðjΓihΓjÞ⨂2ðIH∂γ⨂H∂γ

IHb⨂Hb
þ SH∂γ⨂H∂γ

SHb⨂Hb
ÞSA

i
¼
�
TrðH∂γÞ⨂2

h
Π⨂2

coreSA

i
þ TrðH∂γÞ⨂2

h
Π⨂2

coreSH∂γ⨂H∂γ
SA

i�
TrHb

½ΠbjΓihΓj�2; ðB11Þ

which leads to the interesting result that the entropy does not depend on the bulk at all; in fact, the global average completely
erased the information about the bulk combinatorics,

he−S2ðAÞiU ¼ Y1

Y0

¼
TrðH∂γÞ⨂2

h
Π⨂2

coreSA

i
þ TrðH∂γÞ⨂2

h
Π⨂2

coreSH∂γ⨂H∂γ
SA

i
TrðH∂γÞ⨂2

h
Π⨂2

core

i
þ TrðH∂γÞ⨂2

h
Π⨂2

coreSH∂γ⨂H∂γ

i : ðB12Þ

We can simplify this further using the fact that Πcore only has support on the inner boundary and SA only on the outer one.
For example,

TrðH∂γÞ⨂2

h
Π⨂2

coreSH∂γ⨂H∂γ
SA

i
¼ TrðH∂γ;outÞ⨂2 ½SH∂γ;out

SA�TrðH∂γ;inÞ⨂2

h
Π⨂2

coreSH∂γ;in

i
; ðB13Þ

which, when used in the above, yields
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he−S2ðAÞiU ¼ Y1

Y0

¼
TrðH∂γ;outÞ⨂2 ½SA� þ e−S2ðΠcoreÞTrðH∂γ ;outÞ⨂2 ½SH∂γ;out

SA�
TrðH∂γ;outÞ⨂2 ½I� þ e−S2ðΠcoreÞTrðH∂γ;outÞ⨂2 ½SH∂γ;out

�

¼ dimðHAÞ dimðHĀÞ2 þ e−S2ðΠcoreÞ dimðHAÞ2 dimðHĀÞ
dimðH∂γ;outÞ2 þ e−S2ðΠcoreÞ dimðH∂γ;outÞ

¼ δjjĀjj þ e−S2ðΠcoreÞδjjAjj

δjj∂γoutjj þ e−S2ðΠcoreÞ ; ðB14Þ

where we defined the truncated single-link Hilbert space
dimension

δ ¼ dim
�

⨁
ℶ≤jxα≤J

Vjxα
�
¼ dJðdJ þ 1Þ − dℶðdℶ þ 1Þ

2
: ðB15Þ

So, the average Rényi-2 entropy is given approximately as

− logðhe−S2ðAÞiUÞ ¼ − log

�
δjjĀjj þ e−S2ðΠcoreÞδjjAjj

δjj∂γoutjj þ e−S2ðΠcoreÞ

�
; ðB16Þ

which, for large enough δ, has limiting behavior

hS2ðAÞiU ≈− logðhe−S2ðAÞiUÞ
≈minfS2ðΠcoreÞ þ kĀk lnðδÞ;kAk lnðδÞg ðB17Þ

and, in particular,

hS2ð∂γÞiU ¼ minfk∂γoutk lnðδÞ; S2ðΠcoreÞg: ðB18Þ

Numerically, we can find that this approximation is very
good for even low values of δ.
It appears that the entropy will only depend on the size of

the region A, the outer boundary, and the entropy of the
core. The crucial fact is that, after total randomization, no
connection between bulk and boundary exists anymore.
Furthermore, as the region A grows, its entropy will at
some point make a transition to count the number of links
in the complement instead—it shows Page curve behavior
with an offset.
A simple interpretation connected to the other averaging

procedures is that there is a bulk region akin to an
entanglement wedge bounded by A and a minimal surface
which grow as A grows. This surface eventually “envelops”
the core, but does not enter it, upon which the minimal
surface wraps around and now contains the core as well as
A’s complement in the boundary.
In this figurative sense, a minimal surface is still virtually

present, though no longer accessible as the Ising model is
no longer present.

2. Fine averaging

Here, we will study a different kind of averaging
procedure over the class of spin tensor networks with
stricter control over the participation of different spin
sectors. To be more precise, we write the full state
jΨi∈ ⨂x Hx as

jΨi ¼
X
j⃗

ffiffiffiffiffi
pj⃗

p ⨂x Ujx jΨjx;refi; ðB19Þ

where the unitaries Ujx ∈UðHjxÞ are picked at random
with the Haar distribution, but the weights pj⃗ ∈ ½0; 1�,P

j⃗ pj⃗ ¼ 1 are fixed and act as “manual dials” for us to
manipulate. This average allows us to make a typicality
statement about superpositions where, for example, high
weight p lies on sectors with the right input and output
dimensionality to support isometries. It stands in contrast to
the medium grade average, where the weights pj⃗ were not
free but instead determined by the set of considered sectors
in the input and output algebra alone.
To proceed, first let j, k denote full collections of

(unglued) spins fjx∶ x∈ γg over all vertices. Notice that
the average state in this procedure is

hjΨihΨjiU ¼
X
j;k

ffiffiffiffiffiffiffiffiffiffi
pjpk

p ⨂
x
hðUjx jΨjx;refihΨkx;ref jU†

kxÞiU:

ðB20Þ

We will use the identities

hðUjx jΨjx;refihΨkx;ref jU†
kxÞiU ¼ δjx;kx

Ijx

Djx
¼ Wðjx;kxÞ;

ðB21Þ

as well as

hðUax ⨂ Ucx jΨax;refijΨcx;refihΨbx;ref jhΨdx;ref jU†
bx ⨂ U†

dxÞiU ðB22Þ

¼ Wðax;bxÞ ⨂ Wðcx;dxÞ þ δax;cxδbx;dxδax;bx

� I
H⨂2

ax
þ S

H⨂2

ax

DaxðDax þ 1Þ −Wðax;axÞ⨂2

�
; ðB23Þ
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which, in simpler terms, means that if a ¼ b, c ¼ d, a ≠ c,
it evaluates to Wðax;bxÞ ⨂ Wðcx;dxÞ, but if instead
a ¼ b ¼ c ¼ d, it evaluates to

I
H⨂2

ax
þ S

H⨂2

ax

DaxðDax þ 1Þ : ðB24Þ

Therefore, the average state is

hjΨihΨjiU ¼
X
j

pj⨂
x
Wðjx; jxÞ ¼

X
j

pj
Ij
Dj

; ðB25Þ

which really shows that the average state in this setting is
completely agnostic in each sector up to its relative weight
in contribution to the full state.
On the other hand, the average state on two copies is

more involved,

hðjΨihΨjÞ⨂2iU ¼
X
j⃗≠k⃗

pj⃗pk⃗Wðjx; jxÞ ⨂ Wðkx;kxÞ

þ
X
j⃗

p2

j⃗

⨂
x
ðI

H⨂2

jx
þ S

H⨂2

jx
ÞQ

xDjxðDjx þ 1Þ

¼
X
j⃗;k⃗

pj⃗pk⃗

Ij⃗ ⨂ Ik⃗
Dj⃗Dj⃗

þ
X
j⃗

p2

j⃗

0
B@⨂

x
ðI

H⨂2

jx
þ S

H⨂2

jx
ÞQ

xDjxðDjx þ 1Þ −
I⨂2

j⃗

D2

j⃗

1
CA;

ðB26Þ
which, in the regime of high spins, is well approximated by

X
j⃗

p2

j⃗

⨂x ðIH⨂2

jx
þ S

H⨂2

jx
Þ − I

H⨂2

j⃗

dimðHj⃗Þ2
þ
�X

j⃗
pj⃗

Ij⃗
dimðHj⃗Þ

�⨂2

≕QðpÞ þ IðpÞ ⨂ IðpÞ; ðB27Þ

which is similar in structure to the coarse average, but with
a “weighted identity”

IðpÞ ≔
X
j⃗

pj⃗

Ij⃗
dimðHj⃗Þ

: ðB28Þ

We may proceed from here by introducing an Ising spin
configuration for each sector, σj⃗;x. The average can then be

split into two parts, the first involving Q and the other IðpÞ,
which can be evaluated exactly. Then each term in the first
part is its own separate Ising sum with the all-up state
removed. Because of this removal, we can expect for some
cases the dominant contribution to come from the second,
exactly calculable part.
Using this exactly calculable, second part in the bulk-to-

boundary calculations has two effects:
(i) It replaces the K factors by Kj⃗ ↦ pj⃗

Kj⃗

Dj⃗
¼

pj⃗

Q
e jgje j2 ¼ p̃j⃗.

(ii) It removes all contributions from Ising configura-
tions that are not all up, so the only contributing
configuration is σ⃗ ¼ þ1.

This simplifies calculations dramatically. In fact, it allows
an immediate, exact expression for the Rényi purity,

he−S2ðρbÞiU ≈
X
j⃗

p̃2

j⃗

1

dimðI j⃗Þ
: ðB29Þ

So a tuning of the weights pwill allow for holography quite
easily, e.g., by

p̃j⃗ ¼
dimðI j⃗Þ

DI
: ðB30Þ

This is a solution if, as before, we fix the boundary spins.
For another example, the maximum entropy sequence pn

on a set of sectors j⃗n subject to the constraint of isometry is
then schematically of the form

pn ∼
τ

cn
W
�cn
τ

�
ðB31Þ

for the sequence cn ¼ gn
dimðI j⃗n

Þ and some constant τ in the

LambertW function. So while there may still be constraints
on the weights, the situation is now perfectly controllable.
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