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Scar states are special finite-energy density, but nonthermal states of chaotic Hamiltonians. We argue that
all holographic quantum field theories, includingN ¼ 4 super Yang-Mills, have scar states. Their presence
is tied to the existence of nontopological, horizonless soliton solutions in gravity; oscillons and a novel
family of excited boson stars. We demonstrate that these solutions have periodic oscillations in the
correlation functions and posses low-entanglement entropy as expected for scar states. Also we find that
they can be very easily prepared with Euclidean path integral.
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I. INTRODUCTION

Everyday experience tells us that most systems thermal-
ize over time, but there are exceptions. For instance,
consider a single classical particle moving inside a reflect-
ing cavity, see Fig. 1. For a cavity of random shape, all
trajectories will look essentially random and they will
explore of all the phase space, see Fig. 1(a). This is a one-
particle counterpart of thermalization; time average along
such trajectory will be equal to the phase space average.
We may call such cavity ergodic. Of course, there are
special (integrable) shapes for which all trajectories have a
short period of oscillations, see Fig. 1(b). However, there
are intriguing cases like the Bunimovich stadium [1]; a
generic trajectory is thermal, see Fig. 1(c), but there is a set
of short periodic trajectories which do not explore all of
the phase space, see Fig. 1(d). We will refer to them as
classical scars.
There is an exponentially small number of such trajec-

tories and they are unstable, so one might expect that on a
quantum level they are not important for anything. It turns
out to be incorrect [2]. A number of energy eigenstate wave
functions are concentrated around the classical scar tra-
jectories. In other words, short classical unstable orbits

permanently “scar” the wave functions. This is the phe-
nomena of single-particle quantum scars.
Recent interest towards scars started from discovering a

similar phenomena experimentally in a many-body quan-
tum system of cold Rydberg atoms [3,4] (see also [5]). In
the many-body setup, there is no classical analog and the
scarring occurs in the Hilbert space; evolution of certain
states jΨð0Þi shows short-period revivals when the fidelity
jhΨðtÞjΨð0Þij ≈ 1. It is important to emphasize that scars
were observed in ergodic Hamiltonians, for which most of
the states are thermalizing; the fidelity exponentially decays
to zero and it stays zero till the Poincaré recurrence time. A
hallmark of many-body quantum scars are scarred energy
eigenstates with abnormally low entanglement compared to
states of the same energy density. Typically they represent
an exponentially small fraction of the Hilbert space. We
refer to [6–9] for an overview.
The main objective of this paper is to explore the scarring

phenomena in gravity and quantum field theory. AdS/CFT
correspondence [10–13] says that certain strongly-coupled
largeN conformal field theories (CFTs) are dual to classical
gravitational theories in the asymptotically anti–de Sitter
(AdS) spacetime. The gravitational dual of thermalization
process is the formation of a black hole. It is known
[14–18] that AdS spacetime is unstable; a small perturba-
tion (either matter or metric) inside AdS quickly collapses
into a black hole. However, there are special initial
conditions which do not lead to a collapse. Instead the
perturbation oscillates inside AdS forever [19,20]. This is a
clear analog of a classical scar trajectory. It is important to
emphasize that these oscillating gravity solutions and
“small” perturbations are large from the boundary CFT
point of view, they correspond to the energy density of the
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order of the central charge (in the units of boundary
volume). The simplest example, which we study in the
present paper, involves Einstein gravity minimally coupled
to a matter scalar field.
Given that there are classical scar solutions in classical

gravity, one [21] can naturally ask two questions:
(i) Is there associated quantum scarring phenomena in

the wavefunctions of quantum gravity?
(ii) What is the CFT state dual to classical gravity scar?

In this paper we would like to answer the second question:
”Such periodic classical gravity solutions, known as

boson stars or oscillons, are holographically dual to
many-body scar states at the boundary. Moreover,
we would like to argue that it is a feature of all holo-
graphic systems, whenever the bulk has three or mode
spacetime dimensions and has a scalar field. One such
example is N ¼ 4 super Yang-Mills which we will
discuss in detail.”
Why is this interesting? Holographic systems are sup-

posed to be not just chaotic [22,23], but maximally chaotic
[24–26]. Having scar states is not a generic feature of
chaotic Hamiltonians. However, our result indicates that
scars, which break erodicity, are generic for holographic
systems. Also, it is expected that the presence of scars is
associated with hidden symmetries (or more generally,
spectrum-generating algebras) [27–35]. The question of a
possible hidden symmetry behind oscillons has been
extensively discussed in the literature before and we give
a small overview in the Conclusion. Also there is an
interesting difference with classical scars. It is known that
boson stars and oscillons are linearly stable and exhibit
slow thermalization; adding an extra perturbation on top
does not immediately lead to black hole formation [36].
In contrast, classical scars are associated with unstable
periodic orbits. Finally, the presence of boson stars and

oscillons gives predictions for certain boundary CFT
correlation functions involving a nonprimary operator
eεO, O being the single-trace CFT scalar, dual to the scalar
field in the bulk.
Oscillons and boson stars require scalar matter fields.

Even more generally, there are geon solutions [20] which
are made purely from the metric, that is, from the CFT
stress-energy tensor. However, they are more complicated
and they break translational symmetry at the boundary so
we do not consider them here.
How hard is it to prepare these states? The main

difference between oscillons and boson stars is whether
the scalar field is real or complex; for oscillons the field is
real and the metric is time dependent. For boson stars the
field is complex and has a harmonic time-dependence
e−iΩt, so the stress-energy tensor and the metric are time
independent. From the gravity point of view, oscillons and
boson stars are very different solutions which are usually
discussed separately. Interestingly, we find that from the
boundary CFT viewpoint they are very similar and both of
them can be very easily prepared using the Euclidean path
integral on a hemisphere with a single operator insertion
eε̃O at the pole, see Fig. 2. In case of oscillons the single-
trace operator O is Hermitian, whereas for boson stars it is
complex. In our regime of interest, ε̃ can be large, of order
the square root of central charge if the two-point function of
O is normalized to 1. The resulting CFT state lives on
sphere Sd−1. We find evidence that for boson stars it is
possible to take the infinite volume limit to get a homo-
geneous state on Rd−1. For oscillons we were not able to
find such limit.
It is important to emphasize that oscillons and boson

stars are not energy eigenstates for the boundary CFT.
However, they are very close to being energy eigenstates;
their energy density scales with the (large) central charge,
whereas the variance is expected to scale at most as the
square root of the central charge, essentially because the
classical gravitational solution provides a dominant saddle
point for the path integral. Nonetheless, they are non-
thermalizing, uniform energy density, pure states which
support eternal oscillations in the one-point function of a
scalar single-trace operator O:

FIG. 2. Euclidean path-integral state preparation of oscillons
and boson stars; we put CFT on a Euclidean hemisphere and
insert eε̃O at the South Pole.

(a) (b)

(c)

(d)

FIG. 1. Illustration of possible one-particle motions in a cavity.
(a) Is a fully chaotic cavity, (b) is integrable circular cavity. The
cavity in (c) and (d) is the Bunimovich stadium. Case (d) is the
scar trajectory.
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oscillon: hΨjOjΨi ¼
X
i¼1

εi cosðð2i − 1ÞΩtÞ;

boson star: hΨjOjΨi ¼ εeiΩt: ð1Þ

Such behavior, by definition, implies the violation of the
eigenstate thermalization hypothesis (ETH) [37,38], which
only allows such oscillating terms to be exponentially small
in the thermal entropy. More interestingly, it was recently
argued [39] that under certain mild assumptions in discrete
local systems, the presence of such revivals in pure states
possessing area-law entanglement imply the presence of
scarred energy eigenstates in the spectrum. In this paper
we indeed find evidence that boson stars possess area law
entanglement at the boundary; entanglement of a CFT
subregion scales as the area of the boundary of that region.
In contrast, for a thermal (black hole) state the entropy
scales as the volume of a CFT subregion. Hence we can
expect the presence of exact scars in the spectrum. The
simplest oscillons we study here only exist in a finite
volume and up to some critical energy density, so it is not
clear how to separate volume and area law entanglement
for them.
Let us summarize out key findings:
(i) Boson stars and oscillons can be easily prepared

with Euclidean path integral.
(ii) They have lower boundary entanglement entropy

compared to a black hole of the same mass. In case
of boson star this separation is parametric: area law
instead of volume law.

(iii) We find that oscillons have bounded mass. However,
we uncover a novel family of linearly stable excited
boson stars, which we call C-stars, for which the
mass is unbounded.

In Sec. III we will explain why one needs to study excited
boson stars, rather than fundamental (nonexcited ones) to
find scars.
Recently the phenomena of scar states in quantum field

theories (QFTs) has been addressed in a number of papers.
Previous discussions of oscillons and boson stars within the
AdS/CFT include [17,40–44]. Scars based on Virasoro
symmetry and their relation to AdS3=CFT2 are discussed in
[45,46]. For a general discussion of scar states within the
QFT framework we refer to [47–49]. Another recent
discussion of scar states [50] is based on stable orbits
around black holes.
The rest of the paper is organized as follows. Section II is

dedicated to oscillon solutions. We discuss their generic
properties and then switch to the entanglement entropy in
Sec. II A. In Sec. II B we argue that oscillons exist in the
supergravity dual toN ¼ 4 super Yang-Mills. Section III is
devoted to boson stars. We briefly describe their properties
and demonstrate that they have area-law entanglement.
The CFT state preparation of oscillons and boson stars is
discussed in Sec. IV. In Sec. V we turn away from
discussing specific solutions and argue generally that black

holes maximize entanglement entropy due to weak energy
condition. In the Conclusion we summarize our findings
and outline open question.

II. OSCILLONS

In this section we study the oscillons states first found in
[19]. We will review their perturbative construction and
then compute subsystem entanglement entropy.
Consider Einstein gravity with negative cosmological

constant plus a minimally coupled scalar field ϕ, which is
spherically symmetric. The main statement of [19] is that
such soliton can exist forever, without collapsing into a
black hole. The Lagrangian is

L ¼ 1

16πGN
ðRþ 2ΛÞ − ð∂μϕÞ2 −m2ϕ2: ð2Þ

A general ansatz for the metric, preserving the spherical
symmetry is

ds2 ¼ l2

cos2 x
ð−dt2Ae−2δ þ A−1dx2 þ sin2 xdΩ2

d−1Þ: ð3Þ

Usual (undeformed) AdSdþ1 is Aðx; tÞ ¼ 1; δðx; tÞ ¼ 0.
AdS radius l is determined by l2 ¼ dðdþ1Þ

2Λ . The boundary
is at x ¼ π=2 and the center is at x ¼ 0. We impose a gauge
constraint that at the boundary δ is zero; δðt; π=2Þ ¼ 0, so
the dimensionless coordinate t is the boundary time. This
setup corresponds to ½ðd − 1Þ þ 1]-dimensional CFT
located at the asymptotic boundary Sd−1 ×Rt.
It is very important to discuss units in this paper because

all results we present will be in dimensionless units. The
conformal metric at the boundary has unit radius.
Correspondingly, t and the frequencies are measured in
the units of the boundary radius. The AdS radius l drops out
from the equations and we can reabsorb 8πGN ¼ ld−1p into

ϕ. So the scalar field is measured in the units of l−ðd−1Þ=2p .
With Dirichlet boundary conditions for the scalar field,
function A has the following expansion:

A ¼ 1 − 2Mðπ=2 − xÞd þ…; ð4Þ

the CFT energy density Ttt is proportional to M times
ðl=lpÞd−1. The ratio ðl=lpÞd−1 is proportional to the CFT
central charge, which is large. Similarly, using Ryu-
Takayanagi/Hubeny-Rangamani-Takayanagi (RT/HRT)
prescription [51,52], entanglement entropy of boundary
subregions is given by the area of extremal codimension
two surfaces in the bulk with minimal area,

SvN ¼ Area
4GN

: ð5Þ

Technically it is always infinite, because the AdS boundary
is infinitely far, so we will always compute the difference
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with the vacuum (empty AdS answer). So in this paper we
compute it in the units of ðl=lpÞd−1. The upshot is that we
are interested in large CFT perturbations, when the energy
density and entropy are proportional to the central charge.
The solutions are parametrized only by the (dimensionless)

value of the scalar field [in the l−ðd−1Þ=2p units].
Without gravitational backreaction, a minimally coupled

scalar of mass m2 ¼ ΔðΔ − dÞ has a set of (spherically
symmetric) normal modes:

ejðxÞ ¼ nj cosðxÞΔPd=2−1;Δ−d=2
j ðcosð2xÞÞ;

j ¼ 0; 1;…;

n2j ¼
2ð2jþ ΔÞΓðjþ ΔÞj!

Γðjþ d=2ÞΓðjþ Δ − d=2þ 1Þ ; ð6Þ

with frequencies ωj ¼ Δþ 2j and P being the Jacobi
polynomials. With this choice of normalization, they are
orthonormal with respect to the tanðxÞd−1. The fundamental
mode j ¼ 0 has no zeros, and the excited ones have j zeros.
The question is what happens with this solution once we
include backreaction into account. The key statement is that
solutions with a single dominant frequency do not collapse
into a black hole. Solutions which have several frequencies
collapse very quickly, that is, they thermalize. Let us list a
few other facts:

(i) Nonspherically symmetric configurations are more
prone to instability—only very special modes can be
dressed to yield a periodic solution [53].

(ii) For generic perturbations (not oscillons), secularly
growing corrections arise in the third order of
perturbation theory, ε3t. So thermalization time is
of order 1=ε2.

(iii) Even if the scalar field has zero self-interaction, tree-
level graviton exchange induces it. Hence, one might
expect that explicit self-interaction should not
change the picture much. This logic was verified
numerically in [54–56] by considering λϕ4 inter-
action in the bulk.

(iv) Finally, one can ask about the influence of higher-
derivative terms in the gravity action. It was argued
based on numerical analysis that in Einstein-Gauss-
Bonnet [57] gravity [41,58,59] and Starobinsky R2

gravity [60], oscillons continue to exist.
All this suggests that oscillons have lifetime nonperturba-
tive in 1=GN . Meaning that their lifetime is e#=GN , non-
perturbatively large in 1=GN .
For example, one can start from the lowest mode solution

in asymptotically AdS5 spacetime with j ¼ 0;Ω ¼ 4,

ϕ ¼ εe0ðxÞ cosð4tÞ; ð7Þ

and then try to find the fully backreacted solution,

ϕ ¼
X
i;j

fi;jejðxÞ cosðð2iþ 1ÞΩtÞ: ð8Þ

Functions ejðxÞ form a basis, so the only special property of
this ansatz is the periodic time dependence. By AdS/CFT
dictionary, such field profile leads to the oscillating expect-
ation value of the dual operator O in the form (1). One can
add backreaction either perturbatively or perform numerics.
Following the approach of [19], we constructed such
solutions numerically. In short, one truncates the expansion
(8) at some big values of i, j and then requires the Einstein
equations to be satisfied on a set of collocation points in
space and time. We fix the amplitude ε by requiring
f0;0 ¼ ε. The resulting mass M and frequency Ω for
asymptotically AdS5 space and massless scalar field (which
is the case relevant forN ¼ 4 super Yang-Mills) are shown
in Fig. 3. One distinct feature we find for various spacetime
dimensions and various masses is that the frequency Ω
blows up at a finite value of the scalar field amplitude,
whereas the mass stays finite.

FIG. 3. Boundary energy density [in units of ðl=lpÞd−1] and
frequency (in units of boundary radius) of oscillon as the function

of the amplitude [in units of l−ðd−1Þ=2p ]. At finite value of the
amplitude the frequency blows up, but the mass stays constant.
These plots are made for a massless scalar in asymptotically AdS5
but similar behavior occurs for massive fields and in other
dimensions.
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One interesting question is whether for AdS3 these
solutions can have mass above the Bañados-Teitelboim-
Zanelli (BTZ) black hole threshold. For a massless field
with Dirichlet boundary conditions the maximal mass
appears to be much below.

A. Entanglement entropy

Let us discuss the entanglement entropy. Since the metric
is time dependent the entanglement entropy is expected to
be time dependent too. However, we do not expect it to
change a lot during the period of one oscillation, therefore
we will concentrate on the time-symmetric t ¼ 0 slice for
which we can use a simple RT prescription. For small
subsystems of linear size s the entanglement entropy grows
very slowly,

SvN ∼ ε2sd; ε2sd ≪ 1; ð9Þ

[as usual, in the units of ðl=lpÞd−1]. The origin of this
equation is the following. The oscillon has a finite energy
density M ∼ hTtti at the boundary, proportional to ε2. The
behavior hTttisd for small subsystems was previously
proved in [61,62]; for small subsystems the RT surface
lies near the boundary and the only important parameter in
the metric isM ∼ hTtti, sd comes from dimension analysis.
Of course, this does not imply volume law entanglement or
area law, for that we need to look at large subsystems.
The problem is that we are dealing with global AdS, so

the boundary CFT lives on a sphere. But what is a large
subsystem of a sphere? Similar problem arises in con-
densed matter setups because they study systems of finite
number of spins. In principle, we can do a Weyl trans-
formation to map the state of the CFT from a sphere to a
plane. On the gravity side it corresponds to appropriately
selecting a Poincaré path inside global AdS. However, the
resulting state will be time dependent and inhomogeneous
[63,64], so it is not very useful. One natural thing to do is to
compute the entropy for half of the system. Then we have
only two parameters because we have a CFT; radius of the
boundary sphere r (which we set to unity) and energy
densityM ∼ hTtti. The entanglement entropy depends only
on the effective dimensionless length rhTtti1=d ∼ rM1=d.
Then the volume-law entanglement in d − 1 spacial dimen-
sion can be associated with

volume law: SvN ∼ ðrM1=dÞd−1 ∼Mðd−1Þ=d ð10Þ

growth for large M, whereas the area law is

area law: SvN ∼ ðrM1=dÞd−2 ∼Mðd−2Þ=d: ð11Þ

This is the same as conventional area and volume law
entanglement; we can fix a smaller subsystem of size s
and send M to infinity, s to zero, keeping sdM fixed, but

big. In this limit CFT is effectively decompactified and
large sdM governs the entanglement behavior of large
subsystems.
Black holes yield volume-law Mðd−1Þ=2. This can be

understood without any computations: in this regime the
horizon lies very close to x ¼ π=2, namely xh ∼ π=2−
1=M1=d. The RT surface will wrap around the horizon and
most of its lengthwill come fromadisk x ¼ xh, which area is
proportional to 1= cosd−1ðxhÞ ∼Mðd−1Þ=d.
Unfortunately, for oscillons M has a maximum value, so

we cannot distinguish the area law and the volume law. The
only thing we can verify is that oscillons have lower
entanglement entropy, compared to black holes. This is
indeed the case as illustrated by Fig. 4. In the next section
we will study boson stars for which the mass M can be
unbounded. We will see that they indeed exhibit area law.

B. A comment on N = 4 super Yang-Mills

N ¼ 4 super Yang-Mills is dual to AdS5 × S5 solution in
IIB ten-dimensional supergravity. This background is
sourced by (self-dual) 4-form field H. We would like to
claim that there exist oscillons in this background which
only propagate along AdS5 part. Meaning that this solution
keeps the radius of S5 constant. The relevant oscillating
scalar field is the dilaton ϕ or the axion χ. In the Einstein
frame the Lagrangian looks like

1

16πGð10Þ
N

�
R −

1

2
ð∂ϕÞ2 − 1

2
e2ϕð∂χÞ2 − 1

4
ðdHÞ2

�
; ð12Þ

where Gð10Þ
N is ten-dimensional Newton constant.

There is nontrivial flux of H through S5, but the dilaton
and axion are constant. Since H has traceless stress-energy
tensor, Einstein equations with nonconstant ϕ and χ can be
written as

Rμν ¼ ∂μϕ∂νϕþ e2ϕ∂μχ∂νχ þ TH
μν: ð13Þ

FIG. 4. Entanglement entropy [again, in units of ðl=lpÞd−1] of
half the system for AdS5 black hole and oscillon.

ALL HOLOGRAPHIC SYSTEMS HAVE SCAR STATES PHYS. REV. D 110, 046023 (2024)

046023-5



Hence, if ϕ and χ do not vary over the S5, one can make an
ansatz for AdS5 deformation like Eq. (3), but with S5

having a constant radius.
In these units (which are different from the rest of the

paper) dilaton ϕ is dimensionless, the corresponding dual
operator is TrF2=g2YM, its two-point function is propor-
tional to N2 (F is the gauge field strength). In Sec. IV we
will discuss the state preparation. In order to produce an
order-one correction to the metric, the operator insertion at
the Euclidean disk should have the form exp ðε̃ 1

g2YM
TrF2Þ,

where ε̃ is order 1 small number (say, 0.01).
Strictly speaking [65], the stability of oscillons has been

shown only for the AdS metric and the scalar field
perturbations. In the linear regime the S5 part will add
extra scalar fields charged under SOð6Þ symmetry. We do
not expect that these extra fields will destabilize the
oscillon. For empty AdS the extra fields have normal
modes with frequencies away from zero and for small
oscillon amplitudes the shift of the normal mode frequen-
cies will be small but it would be instructive to study this
question more carefully.

III. BOSON STARS

In this section we make a minimal modification and
study a “phenomenological” holographic model; Einstein–
Maxwell theory minimally coupled to a complex scalar
field. We refer to [43,66–69] for more “realistic” Einstein-
Maxwell-scalar theories arising from higher-dimensional
supergravities. For simplicity, we consider massless scalar
in 1þ 3 dimensions. This theory has a plethora of different
phases and solutions, including hairy black holes and boson
stars [70–72], depending on the value of the charge. In this
paper we would like to point out the existence of an extra
family of heavy boson stars, which we call C-stars. It was
first discovered in [70] but then overlooked in the sub-
sequent works. Here we study their properties in more
detail, demonstrate their linear stability and argue that they
represent scar states in the dual CFT.
It is expected that there are no global symmetries is

quantum gravity, this is why we do not study a complex
field with global Uð1Þ. By AdS/CFT correspondence
gauged Uð1Þ symmetry in the bulk corresponds to a global
symmetry in the CFT. Gauge coupling constant is related to
the coefficient in the operator product expansion (OPE) of
two current operators in the CFT.
The Lagrangian is

L ¼ 1

16πGN
ðRþ 2ΛÞ − jDμϕj2 −

1

4
FμνFμν;

Dμϕ ¼ ∂μϕ − ieAμϕ: ð14Þ

We again put ld−1p ¼ 8πGN ¼ 1 and measure the scalar

field in unites of l−ðd−1Þ=2p and gauge field Aμ in units of

ll−ðd−1Þ=2p . We can do rescaling of the boson star equations,

which reveals that the only important parameter (in addition

to the value of the fields) is eeff ¼ el=lðd−1Þ=2p . In holog-
raphy we expect it to be of order 1, because the interaction
strength is of order the gravitational one (suppressed by the
CFT central charge).
We again study spherically symmetric solutions in the

form (3), but the scalar field has a simple one-harmonic
time behavior,

ϕðt; xÞ ¼ e−iΩtϕðxÞ: ð15Þ

In the limit of vanishing backreaction (very small ampli-
tude), ϕðxÞ are the normal modes (6) inside empty AdSdþ1.
Because the stress-energy tensor is proportional to jϕj2, the
actual metric is time independent. This is why to find the
solutions we can use a simple shooting method. Since
the equations of motion for the scalar field are singular both
at the origin x ¼ 0 and at the AdS boundary x ¼ π=2, we
step away from the origin using power series expansion at
the origin, numerically integrate the equations up to a point
x1 close to the boundary and then use the scalar field, the
gauge field and the metric functions values at x1 to fit an
asymptotic power series expansion near the boundary. We
then shoot for the scalar field frequency Ω to match the
scalar field derivative ϕ0

lðx1Þ found by numeric integration
to the scalar field derivative found from the asymptotic
ϕ0
rðx1Þ. We again impose Dirichlet boundary conditions for

the scalar, such that near the boundary ϕ̃ ∼ ðπ=2 − xÞd. The
only nonzero component of the vector potential is At. This
component and the metric has the following expansion near
the boundary:

AtðxÞ ≈
Ql

d − 2
ðπ=2 − xÞd−2 þ…; ð16Þ

AðxÞ ≈ 1 − 2Mðπ=2 − xÞd þ…: ð17Þ

Before diving inside the details, let us discuss the
expectations from the CFT side. From the CFT perspective
such state has nonzero global Uð1Þ charge density ∝ Q and
one-point expectation value of a charged operator O:

hΨjOjΨi ∼ e−iΩt: ð18Þ

As in the case of oscillons, we are interested in the “large”
masses and electric charges, of the order of the CFT central
charge. In this case in a given charge sector, the lowest
energy state has nonzero energy density, proportional to the
massM. In the limit of large chargeQ there are many field-
theory results relating Q to M [73–80]. Specifically for
2þ 1 CFT it is expected that M ∼Q3=2 and in 3þ 1

dimensions M ∼Q4=3.
It would be convenient to explore the space of gravity

solutions by fixing the amplitude jϕð0Þj≡ ε of the scalar
field at the center x ¼ 0 and the asking what discrete set of
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frequencies Ω are allowed. In short, there are three phases,
depending on the effective charge [71,72,81] eeff .
“Boring” weak coupling phase: eeff < eeffcrit;1: In this case

we can start from a normal mode solution ejðxÞ and
increase the amplitude. It turns out that all solutions have
a bounded mass; at first the mass grows with the amplitude
jϕð0Þj, but then reaches the maximum and decreases. For
amplitudes above the maximum of the mass the solution is
linearly unstable. Technically the Fig. 5 illustrates the
intermediate coupling phase, but the qualitative behavior
of the normal modes is the same. Dashed blue [representing
fundamental mode e0ðxÞ] and orange [first excited mode
e1ðxÞ] shows the behavior of the frequency and ADMmass.
Analytical arguments suggest [82] that eeffcrit;1 ¼

ffiffiffiffiffiffiffiffi
3=2

p
. Our

numerical results are consistent with this prediction,
although the shooting becomes increasingly hard near
the critical point.
Intermediate coupling: eeffcrit;1 < eeff < eeffcrit;2, illustrated

by Fig. 5. In this regime the solutions connected to the
perturbative normal modes ejðxÞ behave qualitatively
similar (dashed lines). Interestingly, above certain

amplitude additional solutions appear (solid lines). These
solutions can have different number of zeros. The one with
no zeros (solid blue) is usually called “the second branch of
the fundamental mode” in the literature [71,72,81]. Why it
is called the second branch will become apparent from its
behavior in the strong coupling phase. Take the funda-
mental second branch with no zeros (solid blue). This
branch has unbounded mass, but is linearly stable. Does it
signal the presence of a scar? Our answer for this question
is: probably not. This state has a lower mass compared to
the extremal Reissner-Nordström (RN) black hole of the
same charge [72], it satisfies [83] the relation M ∼Q3=2

expected for the ground state of a CFT. Moreover, it is
horizonless, hence it is dual to a pure state of the boundary
theory. Hence, we can expect that it is actually dual to (or at
least very close to) a ground state of the CFT, as was
proposed in [83]. Below we will also show that it has area
law entanglement. Interestingly, we find solutions with
unbounded mass which has more than one zero in the scalar
profile; 1-node (solid orange) and 2-node (green) in the
Fig. 5, although they almost coincide. However, we will

FIG. 5. Asymptotically AdS4, intermediate coupling eeffcrit;1 < eeff ¼ 2.2 < eeffcrit;2; frequency Ω and massM of fundamental boson stars
(blue) and C-stars (orange and green, almost coincide) as a function of the scalar field value at the center jϕð0Þj ¼ ε. Both the
fundamental (dashed blue), the second branch fundamental (solid blue) and C-stars (orange, green) has a local maximum in the mass,
after which the solutions with bigger amplitudes are linearly unstable.
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abstain from calling them “the second branch of excited
modes“. Instead, we call them “C-stars.” Again, the reason
for this will become clear from the strong coupling
behavior. They are significantly heavier than the funda-
mental (0-node) solution, so they are not close to the
ground state at a fixed charge. We claim that these C-stars
are approximate scar states. Approximate means that they
are not exact energy eigenstates, as discussed in the
Introduction. To backup this statement, we evaluated the
entanglement entropy of half the system for different values
of M, see Fig. 7. As we explained in Sec. II A, this probes
the entanglement structure in the infinite-volume limit. We
indeed find area-law entanglement Mðd−2Þ=d ¼ M1=3, in
contrast to the volume lawMðd−1Þ=d ¼ M2=3 of the extremal
RN black hole. Actually, depending on the mass, the
relevant RT surface can have different configurations,
see Fig. 9. There is a simple RT surface (pink line) slicing
through the equatorial plane, which yields area-law entan-
glement M1=3. We found that it always dominates for large
enough M, for both C-stars and the second branch of the
fundamental mode. However, there is another RT surface

which avoids the strong gravity region by curving around it
(red line). For some C-stars, it dominates if M is not too
large, resulting in a entanglement shadow [84–86]; an area
in the bulk which cannot be probed with extremal surfaces.
The planar limit of a heavy fundamental boson star

should coincide with zero temperature limit of a holo-
graphic superconductor [87]. One can verify independently
that those have subvolume law entanglement. However,
they seem to posses an interesting phenomena that at
intermediate distances there is volume law scaling
(cf. Figs. 7 and 8). It would be interesting to understand
this entanglement pattern from the boundary perspective.
Our numerics suggests eeffcrit;2 ≈ 2.3.
Strong coupling: eeff > eeffcrit;2. In this case the two

branches of the fundamental mode merge; one can start
from small-amplitude normal mode solution and mono-
tonically increase mass to infinity, see Fig. 6 (blue). This is
the origin of the name “second branch” in the intermediate
coupling phase. In contrast, this does not happen (at least
for eeff ≤ 20, because we are limited by numerics) to
the excited modes and C-stars, see Fig. 6 (orange, green).

FIG. 6. Asymptotically AdS4, strong coupling eeff ¼ 3 > eeffcrit;2. Upper panel: frequency Ω, mass M. Lower panel: charge Q and the
lowest frequency of linearized perturbations. Orange and green solid curve is the C-star: it is a solution where the scalar field has one
(orange) or two (green) zeros, but it is not continuously connected to the normal modes e1;2ðxÞ of the scalar, which is shown in dashed.
C-star is linearly stable; its perturbations frequencies are close to zero, but they are real.
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This is why we do not call C-stars “the second branch of the
excited modes.” Both C-stars and the fundamental boson
star are superextremal, see Fig. 10 and have area-law
entanglement, see Fig. 8. So they continue being scar
states at strong coupling. We believe that our “one node C-
star” was first found in [70] where it was called “one node
solution.” The contribution of this paper was to find
solutions with more nodes and to point out that they do
not merge with the perturbative excited solutions.
One important question is the stability of the solutions

we found. This question is important because unstable
solutions can be highly sensitive to the parameters of the
theory. For example, in this paper we neglected a possible

explicit self-interaction of the scalar field (apart from the
one mediated by gauge field and gravity). In holographic
theories we expect the bulk fields interactions to be small,
but nonzero. The first step to understand boson star stability
is to consider normal modes of the linearized boson star
perturbations. We follow the method outlined by [72],
which reduces the system of equations for spherically
symmetric linearized perturbations of a boson star to a
system of three linear equations, two for real and imaginary

FIG. 8. Asymptotically AdS4; boundary EE of half the system
for extremal RN black hole, C-star and fundamental boson star in
the strong coupling regime when eeff ¼ 3 > eeffcrit;2. Dots are
numerical data, solid lines represent a fit. The corresponding
phase diagram is shown in Fig. 6.

FIG. 7. Asymptotically AdS4; boundary EE of half the system
for extremal RN black hole, C-star and the (second branch)
fundamental boson star in the intermediate regime when
eeffcrit;1 < eeff ¼ 2.2 < eeffcrit;2. Dots are numerical data, solid lines
represent a fit. The corresponding phase diagram is shown in
Fig. 5.

FIG. 10. Mass M vs charge Q in the strong coupling regime
eeff > eeff;2. 1-node C-star solution lies slightly below the
extremal RN curve.

FIG. 9. Time slice ðx; θÞ of a C-star solution, ds2 ¼
1

cosðxÞ2 ðAðxÞ−1dx2 þ sinðxÞ2ðdθ2 þ sinðθÞ2dφ2ÞÞ which is asymp-

totically global AdS4 (each point contains a circle φ which we
suppressed). The gray circle indicates the conformal boundary
at x ¼ π=2.

ALL HOLOGRAPHIC SYSTEMS HAVE SCAR STATES PHYS. REV. D 110, 046023 (2024)

046023-9



scalar field perturbations and one for gauge potential
perturbations, and then uses Chebyshev pseudospectral
collocation method to find normal modes of these equa-
tions. The star is stable when all the modes have real
frequencies and becomes unstable when at least one of the
frequencies becomes imaginary. The point of transition
between the stable and the unstable parts of the branches
of boson stars happens when the mass curve encounters an
extremumM0ðεÞ ¼ 0, there is a good argument to that [72]
that follows awell-known argument for fluid stars [88] and it
stays valid for all the AdS boson stars we have encountered.
Furthermore, linearly stable boson stars inAdS are known to
be nonlinearly stable as well [19,40,72]. Figures 5 and 6
show the square of the frequency of the lowest normalmode,
all the parts of the brancheswith unboundedmass (separated
by a mass extremum) are stable. Because they are linearly
stable, we do not expect that self-interaction or higher-
derivative curvature terms will affect the solutions. Direct
studies of fundamental boson stars in various theories
[40,89–97] support this intuition.

IV. STATE PREPARATION

We have identified a bulk field configuration which has
scar properties. How do we prepare this state using CFT
path integral? The calculations we presented above con-
cerned purely classical system of Einstein gravity with a
scalar field. It means that in the QFT language we are
dealing with a coherent state of that scalar field. The
question of preparing such coherent states was addressed in
a series of papers [98–103].
Since we want a single-mode configuration at t ¼ 0,

which is spherically symmetric, we prepare CFT state on a
sphere using disk (hemisphere) path integral, where we
insert a single eε̃O operator at the center of the disk, see
Fig. 2. O is CFT single-trace operator dual to the field ϕ in
the bulk. ForN ¼ 4 super Yang–Mills such operator could
be TrF2 or TrF̃F (F being the gauge field strength) which
is marginal and has no R-charge in order to leave the S5 part
of the bulk geometry intact. Constant ε̃ is proportional (up
to an order-one number) to the bulk scalar field amplitude ε.
If the two-point function ofO is normalized to 1, then ε̃ can
be large, of order the square-root central charge, such that
gravity backreaction becomes important. This state is fine-
tuned; moving the operator away from the pole will create a
spherically nonsymmetric configuration which will col-
lapse to a black hole at times of order 1=ε2.
In order to read off the bulk configuration we need bulk-

to-boundary propagator which for global AdS is

Kðx; ê; t; be0; t0Þ ¼ �
cosðxÞ

cosðt − t0Þ þ sinðxÞðê; be0Þ
�

Δ
; ð19Þ

where unit vector ê parametrize Sd−1 of AdSdþ1. Also it is
important to keep in mind that we are interested in

expectation values in the form hΨj · jΨi, so the path integral
involves both south and north hemispheres. Putting the
operators at the poles basically [104] sets ðê; ê0Þ ¼ 0. This
yields ϕ ∝ ε̃ cosðxÞΔ; ∂tϕ ¼ 0 profile at t ¼ 0, which is
what we want for an oscillon. In case of a complex field, we
get ϕ ∝ ε̃ cosðxÞΔ; ∂tϕ ∝ iΔε̃ cosðxÞΔ, which is the relevant
configuration for a boson star. Excitations with higher
radial numbers can be obtained by acting with derivatives.
For example, for the first excited mode we need to insert
∂
2Oð0Þ, ∂2 being the Laplacian on the sphere. In a generic
quantum field theory an insertion in the form eε̃Oð0Þ is not
well-defined. Thanks to the stability of boson stars/oscil-

lons one can introduce a small smearing eε̃
R

ddzO. Such
operator is well-defined and it would be interesting to
investigate whether such operators lead to scars beyond
holographic CFTs.
Of course, this is just a leading order in ε̃ (that is, in ε)

answer. One can solve bulk equations of motions pertur-
batively and then prepare the configuration at t ¼ 0 exactly
by placing the appropriate Euclidean sources. We refer to
[103] for a discussion.

V. VOLUME-LAW ENTANGLEMENT AND WEAK
ENERGY CONDITIONS

In the previous sections we demonstrated that oscillons
have smaller entanglement entropy compared to black
holes and boson stars have parametrically smaller entan-
glement entropy compared to a black hole of the same
mass. Namely, for half-system the black hole answer is
“volume-law” Mðd−1Þ=d, whereas for C-stars it is “area-
law” Mðd−2Þ=d.
In this section we show that imposing the weak-energy

condition in the bulk guarantees that the CFT entanglement
entropy is smaller compared to the one of a thermal state of
the same mass, which is a well-known statement from the
statistical mechanics. Unfortunately, our arguments are not
sensitive to the presence/absence of the horizon. It would
be interesting to understand how the requirement of horizon
absence further bounds the entanglement.
Consider a static space-time (3) with some matter fields,

with or without a horizon. Weak energy condition Ttt ≥ 0
for the matter stress-energy tensor yields,

∂xA ≤
d − 2þ 2 sin2ðxÞ
sinðxÞ cosðxÞ ð1 − AÞ: ð20Þ

The Grönwall theorem implies [105] that A can be bounded
by the solution of the corresponding differential equation,

A ≥ 1 − 2M
cosðxÞd
sinðxÞd−2 : ð21Þ

The right-hand side is the value of A for AdS black hole of
massM. In particular, it implies that if there is a horizon, it
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lies inside a would-be black hole of the same mass [106].
Imagine now, that we fix a boundary subregion and the
energy density M. Then the RT prescription in the corre-
sponding black hole background with this mass will yield a
certain codimension 2 surface. Now, if we compute the area
of the same surface in the geometry of interest of the same
energy density, the area will be lower because of the
inequality (21). But the RT prescription instructs us to find
the minimum over all possible surfaces, so the actual RT
answer will be even lower.

VI. CONCLUSION

In this paper we studied the properties of oscillons and
boson stars in asymptotically AdS spacetime. These are
time-periodic, horizonless, solitonic solutions and we
argued that they are linearly stable, have low entanglement
and are easily prepared with the Euclidean path integral. In
the dual CFT they signal the presence of scars states. We
demonstrated that excited boson stars have area law
entanglement. In contrast, in low-dimensional spin-chains
scar states often have logarithmic scaling of entanglement.
It is an interesting question if it is possible to obtain
something like this in holographic theories in higher
dimensions. Also it would be interesting to go beyond
entanglement and understand other properties of scar states,
both holographic and not. For example, entanglement can
be used as a probe for confinement [107].
Oscillons and boson stars only require the presence of a

scalar field in a theory, hence they represent a generic
phenomenon for holographic theories. As we mentioned in
the Introduction, one can even build solitonic objects
(geons) purely from the gravitational degrees of freedom
[20]. It would be interesting to perform the analysis of this
paper for geons.
There are two important take-aways, one for the holo-

graphic CFTs and one for the gravity.
The gravity predicts that for holographic CFTs the states

corresponding to eε̃O (prepared by Fig. 2) are nonthermaliz-
ing finite energy-density states. It means that in any holo-
graphic CFT, four-point correlation function of the form

heε̃OLLeε̃Oi; ð22Þ

where L are light fields evolved in Lorentzian signature, and
eε̃O are inserted at the poles of the Euclidean sphere, will not
look thermal in any number of dimensions. It is important to
emphasize that ε̃ can be large, of the order of square-root
central charge (if hOOi is normalized to 1), so this operator
causes huge backreaction. In contrast, states prepared with
the insertion finitely away from the pole will look thermal.
The question of thermality of CFT correlators has been
extensively studied before. For the case of heavy conformal
primariesH in 2d CFT, it was argued in [108,109] that four-
point function of the form

hHLLHi; ð23Þ
does look thermal if the conformal dimensionΔ ofH is above
the BTZ threshold Δ > c=12. Below this threshold the
corresponding geometry is just a horizonless conical defect
which also should be regarded as a scar.1 However, this is a
rather special situation in 1þ 2 gravity and the mass of such
objects is bounded, so it is not clear what entanglement law
can be assigned to them. In case of boson stars, very heavy
boson stars become effectively planar, making it possible to
show that they have area law entanglement. Also [110,111]
studied more complicated CFT states which effectively
prepare collapsing dust shells in the dual gravity. In both
cases, the large central charge limit and the vacuum domi-
nance in the four-point function was enough to link the CFT
results to the gravity black hole computation. It would be
interesting to perform a similar CFT calculation for the (22)
correlator and map the results to the oscillon (boson star)
background.
On the other hand, all current examples of scar states in

the condensed matter literature involve the presence of
hidden symmetries [29–35,112]. A possible hidden sym-
metry in behind oscillons was discussed in [113–116].
Without a backreaction, a scalar field of massm2 ¼ ΔðΔ −
dÞ in AdSdþ1 poses a set of normal modes:

ωjl ¼ Δþ lþ 2j; j; l ¼ 0; 1;…; ð24Þ
where l is the (integer) angular momentum and j is the
(integer) radial quantum number. Notice that they enter
only in lþ 2j combination. This highly resonant spectrum
is a direct consequence of the conformal SOð2; dÞ sym-
metry of AdS. Such resonant spectrum is the reason why
AdS is unstable, because nonlinearities coming from
gravity may produce secular corrections growing linearly
in time. Surprisingly, it was argued in [117] that the same
SOð2; dÞ symmetry forces the secular terms to vanish. This
symmetry constrains a lot the leading nonlinear correction
to the oscillon solution, but it would be interesting to
understand what role this possibly weakly broken sym-
metry plays for the full nonlinear solution.
As we mentioned many times, oscillons and boson stars

are only approximate energy eigenstates which only signal
the presence of scar energy eigenstates in the spectrum. Is it
is possible to construct a geometry dual to the actual scar
eigenstate? One possible set of candidates are Lin-Lunin-
Maldacena (LLM) [118] geometries. They are dual to half-
BPS boundary operators [119,120]. These geometries are
complicated, but it would be nice to understand what
entanglement law they have, some preliminary steps in this
direction were made in [121]. However, LLM solutions are
very special; they preserve supersymmetry and explicitly
use the compact S5 part of the geometry. Unlike oscillons
and boson stars, we do not expect to find something like
this in more generic holographic theories.

1We thank anonymous referee for suggesting this.
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