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This study explores the intricate real-time dynamics of a non-Hermitian system composed of two
interconnected Sachdev-Ye-Kitaev (SYK) models. A central finding reveals that an excitation initially
localized in the right SYK subsystem can be efficiently transmitted to the left subsystem subsequent to the
characteristic scrambling time, a phenomenon facilitated by the intrinsic non-Hermitian nature of the
system. The defining hallmark of non-Hermiticity is manifest in the asymmetric conveyance of quantum
states, with the non-Hermitian parameter functioning as a tunable knob that selectively amplifies or
dampens propagation modes on either side. Despite this inherent directional bias in state transfer, the
system sustains two distinct phases, analogously likened to black holes and wormholes.
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I. INTRODUCTION

In the landscape of modern physics, non-Hermitian
Hamiltonians have emerged as a fecund and thought-
provoking domain of inquiry, transcending the conventional
boundaries of Hermitian systems and offering a wealth of
unconventional phenomena and novel applications [1–13].
Their unique attributes, such as exceptional points [14–18],
skin effects [19–21], and parity-time symmetry break-
ing [22–25], have found relevance in diverse fields ranging
from optics and quantum simulators to topological materials
and sensing technologies [26–31]. Concurrently, the inter-
face between Hermitian/non-Hermitian physics and holog-
raphy has garnered considerable interest, representing a
bold attempt to bridge the gap between strongly correlated
quantum matter and higher-dimensional gravitational the-
ories. A central player in this exploration is the SYK
model [32–44], a minimal yet powerful exemplar of
quantum many-body chaos, which owes its significance
to its exact holographic duality with a two-dimensional
Jackiw-Teitelboim gravity theory. This duality provides a
direct correspondence between the intricate dynamics of the
SYK model and the geometric and gravitational attributes
of its holographic counterpart, thereby serving as a fertile

ground for examining the interplay of strongly coupled
quantum elements within the holographic framework.
One particularly captivating extension of the SYK model

is the realm of non-Hermitian two-coupled SYK systems.
By endowing the original two coupled SYK model—the
Maldacena-Qi model [33] with non-Hermitian couplings,
researchers have ventured into largely uncharted territory
where the interplay between non-unitary dynamics, quan-
tum correlations, and holographic correspondence can yield
groundbreaking insights. Initial inquiries, as chronicled
in [45] by some of the authors, have already shed light
on the resilience of the thermodynamic structure in the face
of non-Hermitian perturbations, suggesting that certain core
aspects of the SYK model remain impervious to the
introduction of nonconservative interactions.
In this work, we focus specifically on the revival

dynamics of the non-Hermitian two coupled SYK system,
seeking to unravel a strikingly unique and insightful physical
narrative that transcends prior understandings. Our inves-
tigation delves into the intricate interplay between the non-
Hermitian couplings and the emergent collective behavior of
the coupled SYK subsystems, which, in the holographic
context, may correspond to novel gravitational or topologi-
cal features in the dual spacetime. This non-Hermitian dual-
SYK paradigm delineates a physics scenario wherein, in the
absence of coupling (μ ¼ 0), the Hamiltonian essentially
decomposes into two standalone Hermitian SYK models.
Consequently, when initialized in the ground state with an
excitation introduced on the right subsystem via C†

Rjψ0i, the
quantum excitation rapidly diffuses and scrambles across an
immense multitude of states within the Hilbert space of the
right-side SYK Hamiltonian, HR

SYK, rendering it virtually
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untraceable by conventional observables. Upon introduc-
ing a weak coupling μ plus non-Hermitian terms, however,
a transformative dynamic ensues. The scrambled excita-
tion undergoes a directional transfer to the left side within a
characteristic timescale tre. Subsequently, the system
evolves to a state akin to C†

Ljψ0i. The essence of non-
Hermiticity manifests in the asymmetry of quantum state
transmission; the non-Hermitian parameter assumes a
pivotal role, acting as a tunable amplifier or suppressor
for the propagation modes on either the left or right sides.
This phenomenon profoundly impacts the directional
transport of quantum excitation, offering a novel perspec-
tive on the intricate interplay between nonunitary dynam-
ics and scrambling in coupled SYK systems. In this paper,
we perform a comprehensive numerical study of several
specific quantities to support our results. We firstly
investigate the nondiagonal real-time elements of the
Green’s functions, GLR and GRL for black hole and
wormhole phases, as well as their corresponding spectral
functions. Additionally, we analyze the diagonal elements
of the Green’s functions and their respective spectral
functions to understand the system’s behavior more
thoroughly. To provide further insights, we examine
the imaginary parts of the Green’s functions and observe
the influence of the non-Hermitian parameter α on the
frequency of the first peak of the spectral functions. We
also calculate the transmission amplitude of the Green’s
functions, which reflects the tunneling amplitude between
different sites. Moreover, we explore the nondiagonal
elements of the Green’s functions at finite N and study
the out-of-time-ordered correlators (OTOCs) under differ-
ent values of α and temperature conditions. These quan-
tities collectively offer a detailed understanding of the
system’s dynamics and the impact of non-Hermiticity. This
addition provides a clearer explanation of the specific
quantities we study and how they support the results
claimed in our paper.
The structure of this paper is outlined as follows: Sec. II

commences with the introduction of the non-Hermitian
Hamiltonian as a pivotal component of our study.
Subsequently, in the same section, we delve into an in-
depth analysis of particle transmission through an asym-
metrically traversable wormhole configuration. Progressing
to Sec. V, we scrutinize the behavior of OTOCs, which play
a significant role in characterizing the chaotic dynamics of
the system. Finally, we conclude with a synthesis of our
findings and engage in a comprehensive discussion in the
concluding section.

II. THE NON-HERMITIAN MODEL

We start with the Hamiltonian describing two-coupled
non-Hermitian SYK model. The Hamiltonian reads

H¼HL
SYKþHR

SYKþHint;

H0¼HL
SYKþHR

SYK

¼−
XN

i;j;k;l¼1

Jijkl
X
A¼L;R

ð2CA†
i CA†

j CA
kC

A
l þ4CA†

i CA
j C

A†
k CA

l Þ;

Hint¼ iμ
XN
i¼1

ðe−2αCL†
i CR

i −e2αCR†
i CL

i Þ; ð1Þ

where μ is the coupling strength (not the chemical
potential1) that connect the two sides L and R, and the
parameter α controls the non-Hermiticity of our model. Ci

and C†
i are Dirac fermion operators satisfying the following

anti-commutation relations

fCA
i ; C

B†
j g ¼ δijδAB; fCi; Cjg ¼ fC†

i ; C
†
jg ¼ 0: ð2Þ

These operators substitute the Majorana fermions used in
the traditional Majorana SYK model and facilitate the
introduction of non-Hermiticity through a similarity trans-
formation, as detailed in the Appendix A of [45].
This non-Hermitian two coupled SYK model can

provide thermodynamic structure equivalent to a Her-
mitian two coupled SYK model [45]. The findings indicate
that the non-Hermiticity does not exert any influence on
the energy spectrum, entanglement degree of the ground
states, or the low-energy effective action associated with
this model. This is attributed to the fact that the
Hamiltonian provided in Eq. (1), which is essentially a
pseudo-Hermitian Hamiltonian, can be derived through a
self-similarity transformation from the MQ model while
eliminating unphysical terms. The eigenenergies of the
Hamiltonian are always real within the parameter range
α∈C. In a more precise manner, we can utilize the exact
diagonalization method to numerically construct and solve
the 22N × 22N dimensional Hamiltonian matrix represen-
tative of a finite-sized (N fermions) system. Within a single
computational realization, we deliberately fix the set of
Gaussian-distributed random couplings Jijkl to ensure their
constancy. This controlled setup enables us to observe that
distinct values of the non-Hermiticity parameter α and α0
can yield an entirely identical spectrum of eigenenergies,
demonstrating a surprising insensitivity of certain eigen-
states to variations in the degree of non-Hermiticity. The
novel biorthogonal ground states reveal that, by adjusting
the non-Hermiticity, two SYK sites can be independently
tuned; one can occupy the ground state, while the other
transitions to the Schwarzian excited state. Notably, the
free energy remains unaffected by the non-Hermiticity,
maintaining the same thermodynamic structure. However,
we anticipate that the dynamical properties of this

1We work in the zero chemical potential condition, which
corresponds to particle-hole symmetric case.
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non-Hermitian Hamiltonian will exhibit distinctive char-
acteristics, as the real-time evolution of the Green function
strongly depends on the non-Hermiticity. This suggests
that the non-Hermitian Hamiltonian may offer novel
insights into the dynamic behavior of the system, com-
plementing the static properties captured by the eigene-
nergies and ground states.
As we have discussed above, all thermodynamic proper-

ties remain unaffected by non-Hermitian properties. This
prompts us to analyze the non-Hermitian model from an
alternative perspective. Essentially, the model is derived
from a similarity transformation of a Hermitian Hamiltonian.
Furthermore, any two distinct values of the non-Hermitian
parameter α share an identical set of energy eigenvalues.
This can explains why the partition function and free energy
remain invariant between Hermitian and non-Hermitian
models. In general, the Hamiltonian yields the transforma-
tion by a matrix S

H0ðα0Þ ¼ S−1HðαÞS; ð3Þ

here we label the α-dependent Hamiltonian as HðαÞ. Notice
that the exponential of a matrix satisfies the relation
eS

−1AS ¼ S−1eAS. From the definition of partition function
we have

Z0½H0ðα0Þ� ¼ Tr
�
e−βS

−1HðαÞS� ¼ Tr
�
S−1e−βHðαÞS

�
¼ Tr

�
e−βHðαÞ� ¼ Z½HðαÞ�: ð4Þ

However, when considering the two-point correlator, the
introduction of additional operators S complicates the
situation. Taking the greater Green’s function as an
illustrative example,

G>
ABðt1; t2; αÞ ¼

X
i

θðtÞ
N

hCA
i ðt1ÞCB†

i ðt2Þiβ; ð5Þ

in which the h…iβ represents thermal ensemble average
Tr½e−βH…�, for simplicity we set the t1 ¼ t > 0 and t2 ¼ 0
leave out the greater symbol in the following content, i.e.,
G>

ABðt1; t2; αÞ ¼ GABðt; αÞ. The time evolution of any
operator in the real time is defined as

OðtÞ ¼ eiHtOð0Þe−iHt; ð6Þ

with this and (5) we have

GABðt; α0Þ ¼
1

N

X
i

Tr
�
S−1e−βHSS−1eiHtSCA

i ð0Þ

× S−1e−iHtSCB†
i ð0Þ�

¼ 1

N

X
i

Tr
�
e−βHeiHtðSCA

i ð0ÞS−1Þe−iHt

× ðSCB†
i ð0ÞS−1Þ�: ð7Þ

Unlike the Hamiltonian, which remains invariant under
certain transformations, the correlators in non-Hermitian
models exhibit a pronounced dependence on the similarity
transformation matrix, S. Essentially, the analysis pre-
sented above holds universally for the thermodynamic
states of arbitrary quantum systems. This implies that two
systems that are related by similarity transformations
share identical thermodynamic properties, yet they can
be dynamically distinguished from each other.
The Euclidean time Schwinger-Dyson equations of the

model can be analytically extended to the Lorentzian time
domain via the Wick rotation, where τ is replaced by it and
ω is replaced by iωn. This transformation leads to a set of
corresponding real-time SD equations

Σ>
ABðtÞ ¼ −36J2G>2

ABðtÞG>
BAð−tÞ;

G̃R
LLðω; αÞ ¼

−ω − Σ̃R
RRðω; αÞ

D̃ðω; αÞ ;

G̃R
RRðω; αÞ ¼

−ω − Σ̃R
LLðω; αÞ

D̃ðω; αÞ ;

G̃R
LRðω; αÞ ¼

−iμe−2α þ Σ̃R
LRðω; αÞ

D̃ðω;αÞ ;

G̃R
RLðω; αÞ ¼

iμe2α þ Σ̃R
RLðω; αÞ

D̃ðω; αÞ ;

D̃ðω; αÞ ¼
�
−ω − Σ̃R

LL

��
−ω − Σ̃R

RR

�
þ
�
iμe−2α − Σ̃R

LR

��
iμe2α − Σ̃R

RL

�
: ð8Þ
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To enhance clarity, we introduce the notation t ¼ t1 − t2 to
streamline the equations. Throughout this work, ω repre-
sents Euclidean time, while ωn denotes the Matsubara
frequency. Additionally, the labels t and ω are used to
signify Lorentzian real time and frequency, respectively.
See Appendix A for detailed derivation of the SD equa-
tions. To maintain brevity, we will omit the greater sign in
the greater Green’s functions, thus utilizing the notation
G>

AB ¼ GAB in subsequent sections. Typically, in the
presence of mirror symmetry, the SD equations are sim-
plified to two pairs, namely LL and LR. However, the
introduction of non-Hermitian models disrupts this sym-
metry, necessitating the consideration of the complete set of
SD equations.
The term “mirror symmetry” mentioned in [33,37,46]

refers to the specific transformation CL
i → CR

i and CR
i →

−CL
i . In the Hermitian case where α ¼ 0, the Hamiltonian

remains invariant under this transformation and the trans-
formation send GLR → −GRL. Whereas the physical proc-
esses described by the Green’s functions remain
unchanged under the transformation. Consequently, the
Green’s functions GLL and GRR are equal, and the off-
diagonal Green’s functions satisfy GLR ¼ −GRL. This
implies

GLLðtÞ ¼ GRRðtÞ; GLRðtÞ ¼ −GRLðtÞ:

However, when α is nonzero, the Hamiltonian changes
under the same transformation, leading to the breaking of
this mirror symmetry. Specifically, the introduction of the
non-Hermitian parameter α results in GLRðtÞ ≠ −GRLðtÞ.
This breaking of symmetry is a crucial aspect of our study,
as it directly influences the directional transmission of
quantum excitation within the system. Therefore, the
non-Hermitian parameter α introduces additional complex-
ities into the system’s dynamics. This comprehensive
approach adds computational complexity to numerical
calculations, particularly in the low-temperature regime,
thereby posing greater challenges in obtaining accurate
solutions. This comprehensive approach adds computa-
tional complexity to numerical calculations, particularly
in the low-temperature regime, thereby posing greater
challenges in obtaining accurate solutions.
The retarded two point functions and self-energies are

defined as

GR
ABðtÞ ¼ θðtÞðG>

ABðtÞ −G>
ABð−tÞÞ;

ΣR
AB ¼ θðtÞðΣ>

ABðtÞ − Σ>
BAð−tÞÞ; ð9Þ

where θðtÞ is the Heaviside step function. In frequency
space ω, the greater two point function G̃>

ABðωÞ and the
spectral function G̃R

ABðωÞ obey the relation [47]

G̃>
LLðωÞ ¼

iρLLðωÞ
1þ e−βω

; G̃>
LRðωÞ ¼

ρLRðωÞ
1þ e−βω

;

G̃>
RRðωÞ ¼

iρRRðωÞ
1þ e−βω

; G̃>
RLðωÞ ¼

ρRLðωÞ
1þ e−βω

; ð10Þ

by introducing the spectral functions ρABðωÞ are

ρLLðωÞ ¼ −2Im½G̃R
LLðωÞ�; ρLRðωÞ ¼ −2Re½G̃R

LRðωÞ�;
ρRRðωÞ ¼ −2Im½G̃R

RRðωÞ�; ρRLðωÞ ¼ −2Re½G̃R
RLðωÞ�:

ð11Þ

The Eqs. (8), (10), and (11) constitute a set of self-consistent
equations. We can employ the same iterative algorithm to
numerically solve the SD equation. Previous research
findings indicate that the non-Hermitian interaction does
not lead to complex values for the energy spectrum and
thermodynamic quantities. In other words, the system
energy remains entirely real, independent of the non-
Hermitian parameter α. However, upon examining the SD
equation (8), it becomes evident that the left-right and right-
left correlators, GLR and GRL, explicitly depend on the non-
Hermitian parameter α. This dependence indicates that the
mirror symmetry or Z4 symmetry has been broken, resulting
in the inequality GLRðtÞ ≠ −GRLðtÞ. Actually, the propa-
gators of the SD equation satisfy the specific relation below

GLLðt;αÞ ¼GRRðt;αÞ; e2αGLRðt;αÞ ¼−e−2αGRLðt;αÞ;
ð12Þ

when α ¼ 0, the model return to the Hermitian MQ’s model
and the mirror symmetry recovers. Intriguingly, there are
two different symmetries for the Hamiltonians: H0 is
α-independent and satisfies the symmetry as that of the MQ
model, while Hint is invariant under the transform L ↔ R
and α ↔ −α. In the vanishing α limit, the time-translation
invariance GABðt1; t2Þ ¼ GABðt1 − t2Þ and the mirror sym-
metry between L and R systems GRR ¼ GLL and GLRðtÞ ¼
−GRLðtÞ can be recovered.

III. PARTICLE TRANSMISSION
OF ASYMMETRICALLY TRAVERSABLE

WORMHOLE

Having derived the real-time SD equations, we strive to
deeply explore the intricate dynamical properties of the non-
Hermitian model by an iterative algorithm [32,46,48,49].
The numerical obstacles originate from the inclusion of an
exponential non-Hermitian coefficient, which complicates
the SD equations significantly. Unlike the decoupling
techniques utilized in [46], this complexity bars a direct
simplification, thus demanding more computationally inten-
sive calculations for non-Hermitian instances. To guarantee
the elimination of spectral leakage or sidelobe effects,
within our numerical computation framework, we have
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set a considerably high resolution with a discrete points
count of 4 × 105, alongside a maximum time cutoff reach-
ing 2 × 103. Our meticulous numerical results attest that
both the Green’s functions and spectral functions in the
black hole and wormhole phases exhibit satisfactory
smoothness. Moreover, the Green’s functions convincingly
vanish due to thermalization processes nearing the time
truncation boundary.
At temperatures below the critical value (Tc ¼ 0.25;

μc ¼ 0.7), as documented in [45], a clear-cut first-order
phase transition occurs from a black hole phase to a
wormhole phase. The overt dependency of the non-
Hermitian parameter α on the off-diagonal real-time
Green’s functions GLR and GRL is vividly displayed in
Fig. 1. Here, the distinct behaviors of these functions in each
phase are separately showcased.
In the black hole phase, as seen in the upper half-plane of

Fig. 1, the real component of the left-right Green’s function
GLR, exhibits a diminishing trend as the non-Hermitian
parameter α escalates from α ¼ 0 to α ¼ 0.1. Conversely,
in the lower half-plane, the real part of the right-left
counterpart GRL, rises with increasing α.
When the system transits into the wormhole phase, the

interaction term Hint dominates, allowing excitations to
transmit from one side to the other more active. The real
parts of the off-diagonal Green’s functions, GLR and GRL,
manifest intriguingly discrete attributes as depicted on the
right side of Fig. 1. These discontinuous features sym-
bolize the capability for quantum excitation to traverse
from the left-hand side to the right-hand side, indicating a
nontrivial excitation transfer mechanism within the worm-
hole configuration.
Moreover, in the black hole regime, the system displays a

continuum spectrum, characterized by a gapless distribution
of energy levels. However, upon transitioning to the

wormhole phase, the spectrum experiences a qualitative
shift, manifesting as the emergence of distinct, isolated
energy gaps, thus creating a discontinuous energy distribu-
tion. The exact positioning of these energy gaps holds
paramount importance, as it directly governs the persistence
of quasiparticle excitations, where the characteristic decay
rate γ adheres to the exponential relationship γ ¼ e−βEgap=2.
Turning to the realm of Green’s functions, it is a well-

established fact that under finite-temperature conditions, the
temporal evolution of Green’s functions eventually decays
to zero at late times. This thermodynamic decay behavior is
indeed confirmed by our numerical computations. Both
panels of Fig. 1—specifically, Figs. 1(a) and 1(b)—attest to
this attenuation pattern, visually illustrating the gradual
decline in the amplitude of the Green’s functions as time
progresses. Based on the numerical results shown in Fig. 1,
it appears that the lifetime of the revival excitations created
in a wormhole phase can significantly exceed its duration of
a black hole phase. However, it is important to note that this
prolonged behavior cannot persist, especially at finite
temperatures. Thermalization processes will ultimately
erase all initial information, leading to the Green’s function
approaching zero at a sufficiently large time, denoted as
GABðtÞ ∼ 0. In fact, both larger μ and lower temperatures
slow down the decay rate of amplitude of Green’s functions.
To quantitatively study the lifetime of the Green’s function
in both the wormhole phase and the black hole phase, we
evaluate the time it takes for the amplitude of the Green’s
function to decay below a threshold of 10−2. For two phases
in Fig. 1, our numerical results indicate that in the wormhole
phase, the Green’s function amplitude decays to 10−2 at
approximately t ∼ 102, while in the black hole phase, the
Green’s function amplitude decays to 10−2 at approximately
t ∼ 10. The increased lifetime in the wormhole phase can be
attributed to the discrete distribution of the spectral function.
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FIG. 1. The real part of off-diagonal terms of Green’s functions Re½GLRðtÞ� and Re½GRLðtÞ� as functions of time. (a) In the upper half
plane, the peak of Re½GLRðtÞ� decreases as α increases from α ¼ 0 to α ¼ 0.1 in the black hole phase at temperature T ¼ 0.04. (b) In the
wormhole phase, the amplitude of Re½GRLðtÞ� amplifies at α ¼ 0.1 at a lower temperature T ¼ 0.03.
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In the black hole phase, the spectral function is continuous,
leading to rapid phase decoherence and faster decay of the
Green’s function. Conversely, in the wormhole phase, the
spectral function consists of discrete peaks, resulting in
sustained oscillations and a slower decay rate. This con-
clusion aligns with our numerical approach, where we limit
our analysis to a finite truncation of the Green’s function,
considering times within the range of t∈ ð−tmax; tmaxÞ. It is
worth mentioning that the interaction Hint remains
unchanged under the transformation that swaps L and R
and simultaneously reverses the sign of α. Derived from the
definition of the Green’s functions, this observation high-
lights the role of non-Hermitian parameters and asymmetric
interactions in determining the directionality of excitation
propagation.

The portrayal of spectral functions ρLRðωÞ and ρRLðωÞ in
Fig. 2 for the black hole and wormhole phases distinctly
indicates that whenever α > 0, the off-diagonal spectral
functions adhere to the relation ρLRðωÞ ¼ −e−4αρRLðωÞ.
This observation signifies that the introduction of the non-
Hermitian parameter α inherently leads to a dampening
effect on the ρLR component, while correspondingly
amplifying the ρRL component.
Figure 3 is the diagonal Green function of non-Hermitian

wormhole and black hole terms, GLL and GRR, placed in
the same figure to illustrate that the diagonal terms satisfy
GLL ¼ GRR. In addition, the diagonal Green functions of
the wormhole and black hole overlap at early time near
t ¼ 0. The comparison of Hermitian and non-Hermitian
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FIG. 2. Spectral functions ρLRðωÞ and ρRLðωÞ. (a) Black hole phase at T ¼ 0.04. The spectral are continuous, the amplitude is
obviously influenced by α. (b) Wormhole phase at T ¼ 0.03. The gapped spectral functions also amplified or reduced due to the
existence of α. A striking feature is that the positions of these peaks are generally shifted by the influence of α. As μ and T decrease
simultaneously, the spectral function exhibits an increment in the number of its discernible peaks.
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FIG. 3. Diagonal terms of Green’s functions GLLðtÞ; GRRðtÞ of (a) Hermitian and (b) non-Hermitian cases.

SIZHENG CAO and XIAN-HUI GE PHYS. REV. D 110, 046022 (2024)

046022-6



cases in Fig. 3(a) and 3(b) is used to illustrate that α has
minor effect on the diagonal terms.
Figure 4 describes the spectral function corresponding

to the identical parameters as in Fig. 3, characterized by
the positive symmetric spectral function of the diagonal
Green’s function. Additionally, due to the normalization
condition of the spectral function, the discrete narrow
spectrum corresponding to the wormhole exhibits a higher
amplitude. Under the conditions of μ ¼ 0.1 and T ¼ 0.03,
there are three distinct narrow peaks, occupying 0.96 of the
total area, with the first peak always dominating. From the
spectral function of diagonal terms Fig. 4, we notice that
the peaks of spectral function can be affected by the non-
Hermitian strength. With the existence of α, the width of the
peaks become narrower and higher.

Figure 5 presents the imaginary part of the nondiagonal
Green’s function, which also illustrates that the enhance-
ment and suppression of the imaginary component of the
Green’s function reverses when α takes values of �0.1.
Specifically, for a positive value of α, the magnitude of
Im½GRLðωÞ� is larger, whereas for a negative value, the
magnitude of Im½GLRðωÞ� is larger. This observation is
consistent with Eq. (12). Meanwhile, the frequency of
corresponding the maximum of peaks are also affected by
α. We further study the relationship between α and the
position of the first peak. Figure 6 shows the frequency of
first peak and its fitting curve, the numerical result indicates
that its maximum frequency may square with α with the
relation ωpeak ¼ 1.42α2 þ 0.208.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

(a)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70
(b)

FIG. 4. Spectral functions ρRR and ρLL (a) Hermitian and (b) non-Hermitian cases. When α is nonzero, the peaks are not symmetric
with respect to ω ¼ 0 and all peaks become narrower and higher.
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FIG. 5. (a) The imaginary part of the off-diagonal Green functions with positive α ¼ 0.1, the excitation created from the right side
transmits more active than the excitation created from the left side; (b) The imaginary part With a negative α ¼ −0.1, the propagation of
excitation then becomes more active from left side to right side.
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The total amplitude of the Green’s functions describe
probability of excitation transports from sites to sites. To
investigate the transmission probability, we can define the
average site transmission amplitude through the averaged
Green’s functions

TABðtÞ ¼ jGABðtÞj: ð13Þ

Figure 7 displays the transmission amplitudes three types of
transmission amplitude TLLðtÞ, TLRðtÞ, TRLðtÞ in the
wormhole phase. For the transmission amplitudes between
the left and right side TLRðtÞ; TRLðtÞ, it can be observed that
the excitation is first created at t ¼ 0 then reaches the first

peak after half a period t ¼ 1
2
tre and hits the bottom

t ¼ tre ∼ μ2=3 after another half period. The recurrence
time tre indicates stronger coupling leads to denser oscil-
lations. The Green’s function oscillates with a period
proportional to μ−2=3, explained by the energy gap in
Euclidean time. This gap leads to exponential decay of
Green’s functions GABðtÞ ∝ e−Egapτ, resulting in an oscil-
lating frequency ωre ¼ μ2=3. Previous work [45] studied
decay rates and numerically demonstrated the energy gap’s
proportionality to μ−2=3. In our study, we have thoroughly
investigated the dynamics of non-Hermitian SYKmodels. For
a comprehensive understanding of the behavior of Green’s
functions and spectral functions under various parameter
settings, we have included additional numerical analysis in
Appendix B. This supplementary analysis provides further
insights into the system’s response under different temper-
ature and non-Hermitian parameter configurations.

IV. OUT-OF-TIME-ORDERED CORRELATORS

In the subsequent analysis, we embark on an exhaustive
numerical exploration of this non-Hermitian two coupled
SYK model, confined to a finite system size, with the
express purpose of unraveling its intricate chaotic behavior
and the accompanying emergent features. The Jordan-
Wigner transformation allow us to build the exact matrix
of the Hamiltonian through a spin-chain, the specific form
we set is

Ci ¼ σ−i ⊗
j>i

σzj; C†
i ¼ σþi ⊗

j>i
σzj; ð14Þ

where the σ�i ; σ
z
i represent the spin Pauli matrices at each

site, different sites operator are connected by the tensor
product. Every single complex fermion lives in a 2 × 2
dimension Fock space. For the case of two-coupled
SYK model, the number of the fermion of both side are
N, therefore the Hamiltonian takes 4N × 4N dimensions.
The diagonalization of the matrix representation of
Hamiltonian (1) permits a direct extraction of the energy
spectrum. Nevertheless, the dimension of this matrix grows
exponentially with the number of lattice sites, presenting
formidable computational hurdles for exact diagonalization
methods. In light of the stringent constraints imposed by
current computational resources, the practical scope for
undertaking such a task is necessarily restricted to a
meticulously chosen, finite range of system sizes, para-
metrized byN. For the present study, we have opted to carry
out numerical computations for the exemplary case of
N ¼ 6, cognizant of the fact that the computational and
memory requirements swiftly outstrip the capacities of
conventional computational platforms.
The exact diagonal method offers an alternative

approach to reexamine the relation of off-diagonal corre-
lators relation (12). The averaged two point function is
defined as
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FIG. 6. The frequency corresponding to the first peak of the
spectral function ρLLðωÞ (blue dots) and its quadratic fitting curve
(red curve) ωpeak ¼ 1.42α2 þ 0.208.
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FIG. 7. The non-Hermitian transmission TLLðtÞ, TLRðtÞ and
TRLðtÞ.
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GABðtÞ ¼
XN
i¼1

Tr½e−βHCA
i ðtÞCB

i ð0Þ�
NTr½e−βH� : ð15Þ

It is crucial to emphasize that when dealing with a non-
Hermitian Hamiltonian, the inverse time-evolution operator
fundamentally deviates from being unitary. Mathematically,
this can be expressed asUð−tÞ ¼ eiHt ≠ UðtÞ† ¼ eiH

†t, due
to the noncommutation relation eiH

†te−iHt ≠ 1. This inher-
ent departure from unitarity has profound implications
for the ED method, necessitating the independent compu-
tation of the exponentiated matrix corresponding to
the inverse time evolution. Figure 8 serves as a testament
to the robustness of (12) even for finite-N correlators.
The numerical data, depicted by the green solid line,
attests to an exceptionally tight agreement, with the maxi-
mum absolute deviation satisfying Maxje2αGLRðtÞ þ
e−2αGRLðtÞj < 10−15. This near-perfect alignment can be
confidently attributed to numerical precision limits rather
than genuine deviations from the predicted symmetry,
thereby providing strong empirical validation for the theo-
retical framework under scrutiny.
We are now able to numerically implement a finite-size

non-Hermitian SYK model, which allows us to initiate an
initial exploration of the system’s chaotic behavior. In a
quantum system, the chaotic behavior can be described by
the exponential growth behavior of the OTOCs. In order to
mitigate the impact of finite-size effect, we choose the
specific form of OTOCs to be the “regularized” OTOCs.

FðtÞ ¼ Tr½WiðtÞρ1=4Vjð0Þρ1=4WiðtÞρ1=4Vjð0Þρ1=4�
Trρ

; ð16Þ

where ρ ¼ e−βH and the operators Wi and Vj are chosen to
be the fermion operators from different sites Wi ¼ CA

i þ
CA†
i ,Vj ¼ CB

j þ CB†
j ; i ≠ j, the index A; B ¼ L, R are

represented for the left or right side fermion operators.
The overline represents the average of the random ensem-
bles. This specific form has been detailed investigated and
demonstrated in [50,51] that it can capture the behavior
of the large N limit condition better and more reliably
compared to the unregularized form

FðuÞðtÞ ¼ hWðtÞVð0ÞWðtÞVð0Þiβ: ð17Þ

To study how exactly does the non-Hermitian model
differ from the Hermitian case in the behavior of OTOCs,
we calculate the OTOCs of different α cases, as shown in
Fig. 9. Much of the earlier literature [50–53] suggests the
regularized OTOCs obey a leading exponential growth
behavior by eλt=N. It is well represented in the early time
behavior of OTOCs in Fig. 9. This implies that one can
extract the Lyapunov exponents by capturing the early
segments in OTOCs that exhibit exponential growth. As
shown in Fig. 9, we calculate the fifty implements average
for the regularized OTOCs, setting the operatorsWi and Vj

on the same side to explore the behavior of the chaos
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FIG. 8. The N ¼ 6 full diagonalization implement of Green’s
function. With positive α, GRLðtÞ is amplified and GLRðtÞ is still
suppressed, which is consistent with the result of large N
calculation. Their difference je2αGLRðtÞ þ e−2αGRLðtÞj at N ¼ 6
is shown as the green solid line which is vanished.
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FIG. 9. The averaged regularized OTOCs with 50 implements
average, where we chose N ¼ 6 and μ ¼ 0.05. The graphical
representation illustrates that regardless of the choice of α, the
regularized OTOCs display insensitivity to it, as evidenced by the
parallel trends in the non-Hermitian (depicted by dotted lines) and
Hermitian (represented by solid lines) scenarios. Upon lowering
the temperature, a notably slower decline in slope during the
initial time period emerges, suggesting a diminishing Lyapunov
exponent with decreasing temperature—a trend that becomes
more pronounced as temperatures drop.
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exponent. Our numerical result shows that once the
operator are fully single-sided, the FðtÞ is independent
of α no matter positive or negative. Furthermore, FðtÞ is
same for both case: Wi ¼ CL

i þ CL
i ; Vi ¼ CL

j þ CL
j and

Wi ¼ CR
i þ CR

i ; Vi ¼ CR
j þ CR

j . This is partially due to the
fact that the chaos behavior of SYK model is driven by the
random interaction whereas the four body interactions on
both the left and right sides share the exact same Gaussian
random variables. At early time, FðtÞ shows a exponential
decay as expect and the decay rate is inversely proportional
to βJ which implies a smaller Lyapunov exponent as
temperature goes down.
In [50], the authors conducted a more detailed and

extensive study on many-body chaos in the single-sided
Majorana SYKmodel. They used Krylov subspace method
to investigate regularized OTOCs in extremely large and
sparse matrices. This method leverages the sparsity of the
Hamiltonian to avoid excessive memory usage and sig-
nificantly accelerates the time evolution of states through
the Krylov subspace algorithm. With these optimizations,
it becomes feasible to calculate the Lyapunov exponents
for systems with much larger number of fermions. They
computed the Lyapunov exponents for up to 60 Majorana
fermions, the results shows that the Lyapunov exponents
matched well with the large N results obtained from SD
equations as expectation. This indicates that both for the
finite size SYK model with N ¼ 60 and JT gravity satisfy
the chaos bound, which is a necessary requirement for
gravitational duals as explained by [32]. This finding is
also highly relevant to the many-body chaos behavior
exhibited by non-Hermitian OTOCs. While such algorith-
mic optimization requires comprehensive consideration
and thorough investigation for non-Hermitian cases, our
current approach still uses matrix exponential of the time
evolution operator to compute OTOCs. Although this
method is not as efficient as the Krylov subspace algo-
rithm, it guarantees more accurate and reliable results. It
also suggests that the feasibility of Krylov subspace
algorithm in non-Hermitic cases is a topic worth studying.
Specifically, as shown in Fig. 9, the initial exponential

growth phase of the OTOCs demonstrates a slower rate
with decreasing temperatures, indicating smaller Lyapunov
exponents. This behavior is consistent with the findings in
the literature, suggesting that even with the computational
constraints, our results are in good agreement with the
established behavior.
These observations are crucial for understanding the

implications of maximal chaos and its gravitational duals in
non-Hermitian systems. Therefore, despite the limitations
imposed by the small system size, our findings align well
with larger system studies and provide a robust foundation
for further exploration of chaotic dynamics in non-
Hermitian SYK models.

V. CONCLUSION AND DISCUSSIONS

In summary, we investigate the revival dynamics of
excitations in a coupled non-Hermitian SYK system,
uncovering a novel connection between diagonal and
off-diagonal Green’s functions [Eq. (11)]. Despite direc-
tional asymmetry in propagation (right-to-left vs left-to-
right), the system retains distinct black hole and wormhole
phases. Notably, the black hole phase features a gapless
continuous energy spectrum, whereas the wormhole phase
introduces isolated energy gaps critical for quasiparticle
longevity, with decay rate γ ∝ e−βEgap=2. Finite-temperature
Green’s function simulations robustly demonstrate
thermally-driven late-time decay, as visually exemplified
in Figs. 1(a) and 1(b).
This study also examines the spectral functions ρRR and

ρLL associated with Hermitian and non-Hermitian systems,
respectively, revealing that when the parameter α assumes a
nonzero value, the symmetry of the peaks with respect to
ω ¼ 0 is broken, and all peaks exhibit increased height and
reduced width. The spectral functions ρLR and ρRL are
analyzed for both the black hole phase at T ¼ 0.04 and the
wormhole phase at T ¼ 0.03. In the black hole phase, the
spectra remain continuous, with the amplitude significantly
influenced by α. In the wormhole phase, the gapped spectra
also experience amplification or reduction due to the
presence of α, and a notable observation is that the
positions of these peaks are systematically shifted under
the effect of α. As both coupling μ and temperature T
decrease concomitantly, the spectral function displays an
increase in the number of discernible peaks.
Investigating the off-diagonal terms of Green’s func-

tions, GRLðtÞ and GLRðtÞ for the Hermitian and non-
Hermitian cases, respectively, reveals that when α is
positive (e.g., α ¼ 0.1), excitations originating from the
right side transmit more actively than those from the left.
Conversely, with a negative α ¼ −0.1, excitation propaga-
tion is more pronounced from left to right. The frequency
corresponding to the first peak of the spectral function
ρLLðωÞ is found to follow a quadratic dependence on α2,
specifically ωpeak ¼ 1.42α2 þ 0.208. The non-Hermitian
transmission coefficients TRRðtÞ, TLRðtÞ, and TRLðtÞ are
also explored. We have meticulously verified the symmetry
properties fulfilled by the off-diagonal Green’s functions
via the finite N ED methodology. Notably, even for finite N
scenarios, OTOCs persistently exhibit exponential decay
which is independent of non-Hermiticity, a finding that
holds true for both Hermitian and non-Hermitian system
realms. This exhaustive scrutiny provides profound insights
into the complex revival dynamics governing non-
Hermitian systems, along with their subtle phase transition
characteristics.
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APPENDIX A: DERIVATION OF SCHWINGER-DYSON EQUATIONS

In this appendix, we will start from the averaged partition functions to derive the corresponding SD equations. For
simplicity, we first employ the Euclidean time signature, one can obtain the real-time formalism through the wick rotation.
After applying the replica-trick the M-copy replicated partition functions under averaged over the Gaussian random
variables reads

ZM ¼
Z Y

i;A

DCA†
i DCA

i

Y
i;j;k;l

dJijkldJ�ijkle
−jJijklj2=σ2 exp

"
−
XM
m¼1

Z
dτ1

X
i;A

CA†
im∂τC

A
im

þiμ
X
i

ðe−2αCL†
imC

R
im − e2αCR†

imC
L
imÞ − Jijkl

X
i;j;k;l;A

ð2CA†
imC

A†
jmC

A
kmC

A
lm þ 4CA†

imC
L
jmC

L†
kmC

A
lmÞ

#
; ðA1Þ

where the second lower index m of fermions Cim denotes the mth replica copy. After integrating out all Gaussian random
integrals, the replicated average partition becomes

ZM ¼
Z Y

i;A

DCA†
i DCA

i exp

"
−
XM
m¼1

Z
dτ1

X
i;A

CA†
im∂τC

A
im þ iμ

X
i

ðe−2αCL†
imC

R
im − e2αCR†

imC
L
imÞ

þ 9NJ2
X
m;n

Z
dτ1dτ2

X
A;B¼L;R

�
1

N

X
i

CA
imðτ2ÞCB†

in ðτ1Þ
�

2
�
1

N

X
i

CB
imðτ1ÞCA†

in ðτ2Þ
�

2
�
: ðA2Þ

Next, insert the identity

Z
DΣDG exp

	
N
Z

dτ1dτ2
X
A;B

ΣAB
mnðτ1; τ2Þ

�
GBA

mnðτ1; τ2Þ −
1

N

X
i

CB
imðτ1ÞCA†

in ðτ2Þ
��

¼ 1; ðA3Þ

this is equivalent to introduce two auxiliary functions to package the fermion pair 1
N

P
i C

A
imðτ1ÞCB†

in ðτ2Þ. The partition
functions can be rewritten as

ZM ¼ DΣDG exp

"
−
XM
m¼1

Z
dτ1dτ2δðτ2 − τ1Þ

�X
i;A

CA†
imðτ2Þ∂τ1CA

imðτ1Þ

þiμ
X
i

ðe−2αCL†
imðτ2ÞCR

imðτ1Þ − e2αCR†
imðτ2ÞCL

imðτ1ÞÞ
�
−
Z

dτ1dτ2
X
A;B

X
m;n

CA
imðτ2ÞΣAB

mnðτ1; τ2ÞCB†
in ðτ1Þ

þNJ2
X
m;n

Z
dτ1dτ2

X
A;B

ΣAB
mnðτ1; τ2ÞGBA

mnðτ2; τ1Þ þ 9
X
A;B

GAB
mnðτ2; τ1Þ2GBA

mnðτ1; τ2Þ2
#
: ðA4Þ

As illustrated in [44], the most natural replica-diagonal solution is ΣAB
mn ¼ ΣABδmn. The form with only replica diagonal

terms significantly simplifies the action, now the partition function is simplified as
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ZM ¼
Z

DΣDGe−NSðMÞ ¼
Z

DΣDG exp

"
−
XM
m¼1

Z
dτ1dτ2δðτ2 − τ1Þ

�X
i;A

CA†
imðτ2Þ∂τ1CA

imðτ1Þ

þiμ
X
i

ðe−2αCL†
imðτ2ÞCR

imðτ1Þ − e2αCR†
imðτ2ÞCL

imðτ1ÞÞ
�
−
Z

dτ1dτ2
X
A;B

X
m

CA
imðτ2ÞΣABðτ1; τ2ÞCB†

imðτ1Þ

þNJ2
X
m

Z
dτ1dτ2

X
A;B

ΣABðτ1; τ2ÞGBAðτ2; τ1Þ þ 9
X
A;B

GABðτ2; τ1Þ2GBAðτ1; τ2Þ2
#
: ðA5Þ

Recast the remaining fermionic terms into a determinant
and utilize the replica trick

−lnZ ¼ − lim
M→0

lnZM

M
; ðA6Þ

the action −lnZ is eventually expressed as the saddle point
of the integral DΣ;DG

S
N

¼ − ln detMþ
Z

dτ1dτ2
X
A;B

ΣABðτ1; τ2ÞGBAðτ2; τ1Þ

þ 9J2
X
A;B

GABðτ2; τ1Þ2GBAðτ1; τ2Þ2: ðA7Þ

where we finally put the left and right label A; B ¼ L, R on
subscript to make them consistent with the text. The matrix
M in Matsubara frequency representation reads

M ¼ ⨁
n

�
−iωn − ΣRR iμe2α þ ΣRL

−iμe−2α þ ΣLR −iωn − ΣLL

�
: ðA8Þ

The time translation invariance indicates GABðτ1; τ2Þ ¼
GABðτ1 − τ2Þ ¼ GðτÞ. The functional variation, for

example, δSðΣ;GÞ
δGLRðτ0Þ is

0 ¼ δS½Σ; G�
δGLRðτ0Þ

¼ β

Z
dτΣRLðτÞδβðτ0 þ τÞ

þ 18J2GLRð−τÞGRLðτÞ2δβðτ0 þ τÞ
þ 18J2GLRðτÞGRLð−τÞ2δβðτ0 − τÞ

¼ ΣRLð−τ0Þ þ 36J2GLRðτ0ÞGRLð−τ0Þ2; ðA9Þ

where the δβðτÞ is a counterperiodic Dirac comb with the
period of β. Move the ΣRL to the left-hand side and remark
τ0 → −τ we derive

ΣRLðτÞ ¼ −36J2GRLðτÞ2GLRð−τÞ: ðA10Þ

After the functional variation over all auxiliary fields
GAB;ΣAB and applying the Wick rotation, we ultimately
obtain the real-time SD equations (8). Specifically, for
δSðΣ; GÞ=δGAB ¼ 0, this corresponds to

Σ>
ABðtÞ ¼ −36J2G>2

ABðtÞG>
BAð−tÞ; ðA11Þ

for δSðΣ; GÞ=δΣAB ¼ 0 we obtain

G̃R
LLðω; αÞ ¼

−ω − Σ̃R
RRðω; αÞ

D̃ðω; αÞ ;

G̃R
RRðω; αÞ ¼

−ω − Σ̃R
LLðω; αÞ

D̃ðω; αÞ ;

G̃R
LRðω; αÞ ¼

−iμe−2α þ Σ̃R
LRðω; αÞ

D̃ðω;αÞ ;

G̃R
RLðω; αÞ ¼

iμe2α þ Σ̃R
RLðω; αÞ

D̃ðω; αÞ ;

D̃ðω; αÞ ¼
�
−ω − Σ̃R

LL

��
−ω − Σ̃R

RR

�
þ
�
iμe−2α − Σ̃R

LR

��
iμe2α − Σ̃R

RL

�
: ðA12Þ
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APPENDIX B: ADDITIONAL NUMERICAL
ANALYSIS FOR DIFFERENT α AND μ

To further elucidate the spectral characteristics of the
non-Hermitian model, we have carried out additional
computations, the results of which are illustrated in
Fig. 10. This analysis reveals that the non-Hermitian model
exhibits spectral function features akin to those detailed in
Ref. [46], particularly pertaining to low temperatures and
small tunneling strengths, characterized by a more pro-
nounced distribution of discrete peaks. As the coupling
constant μ decreases, more discrete peaks appear at larger ω
values, while the area ratio of the first peak becomes
smaller. Specifically, the area ratio of the first peak is 60.3%
for μ ¼ 0.05 and 35.6% for μ ¼ 0.01. The additional

calculation presented here allows us to underscore both
the parallels and divergences in the spectral function
characteristics between the Hermitian and non-Hermitian
scenarios without disrupting the main narrative flow.
Furthermore, Fig. 11 showcases the variation of non-
diagonal Green functions across a range of α configura-
tions. It becomes strikingly apparent that as α escalates, the
magnitude of GLR wanes, juxtaposed with a corresponding
surge in the amplitude of GRL.
We also extend our analysis of the Green’s functions and

spectral functions to explore their behavior under different
parameter settings. The additional figures presented here
correspond to Figs. 12–15 but with different values of the
non-Hermitian parameter α and temperature T.
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FIG. 11. Various non-Hermtiain strengths of the off-diagonal Green’s functions (a) GLRðtÞ, (b) GRLðtÞ with T ¼ 0.02, μ ¼ 0.05.
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FIG. 10. (a) The wormhole phase spectral functions at lower temperature, where α ¼ 0.05; T ¼ 0.002; μ ¼ 0.01, 0.05. (b) The black
hole phase spectral functions at lower temperatures, where α ¼ 0.05; T ¼ 0.02; μ ¼ 0.01, 0.05.
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FIG. 12. The real part of off-diagonal terms of Green’s functions Re[GLRðtÞ] and Re[GRLðtÞ] as functions of time for temperature
(a) T ¼ 0.05 (black hole phase) and (b) T ¼ 0.05 (wormhole phase) with non-Hermitian parameter α ¼ 0.05.
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FIG. 13. Spectral functions ρLRðωÞ and ρRLðωÞ as functions of frequency, showing the impact of different parameters α, T and μ.
(a) Spectral functions in the black hole phase at μ ¼ 0.05, T ¼ 0.05, with α ¼ 0 and α ¼ 0.05. (b) Spectral functions in the wormhole
phase at μ ¼ 0.05, T ¼ 0.02, with α ¼ 0 and α ¼ 0.05.
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