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We study various aspects of capacity of entanglement in the squeezed states of a scalar field theory.
This quantity is a quantum informational counterpart of heat capacity and characterizes the width of the
eigenvalue spectrum of the reduced density matrix. In particular, we carefully examine the dependence of
capacity of entanglement and its universal terms on the squeezing parameter in the specific regimes of the
parameter space. Remarkably, we find that the capacity of entanglement obeys a volume law in the large
squeezing limit. We discuss how these results are consistent with the behavior of other entanglement
measures including entanglement and Renyi entropies. We also comment on the existence of consistent
holographic duals for a family of Gaussian states with generic squeezing parameter based on the ratio of
entanglement entropy and the capacity of entanglement.
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I. INTRODUCTION

In recent years, surprising new connections have been
developing between quantum information theory, quantum
many-body systems, and quantum gravity. In particular,
understanding the entanglement structure of quantum
systems in a pure or mixed state has become an active
area of research, e.g., see [1–6] for reviews. Also in the
context of gauge/gravity correspondence, fascinating con-
nections have been developing between quantum informa-
tion and quantum gravity including the holographic
entanglement entropy proposals and the notion of geometry
from entanglement, e.g., see [7] and references therein.
Moreover, in order to quantify entanglement and quantum
correlations several measures has been studied so far
including entanglement and Renyi entropies. Indeed, the
entanglement entropy is the unique measure which assesses
the amount of quantum entanglement between two sub-
systems for a given pure state jψi. In this case, assuming
that Htot ¼ HA ⊗ HĀ, entanglement entropy can be writ-
ten in terms of von Nuemann entropy as

SE ¼ −TrAðρA log ρAÞ; ð1:1Þ

where ρA is the reduced density matrix defined as ρA ¼
TrĀðjψihψ jÞ. Further, the Renyi entropy is a one-parameter
generalization of entanglement entropy which is given by

Sn ¼
1

1 − n
log TrρnA; ð1:2Þ

where n is a positive integer. It is then easy to show that
entanglement entropy follows by analytic continuation of
the Renyi entropy down to n ¼ 1, i.e., SE ¼ limn→1Sn.
Further, other interesting cases to consider are the large and
small n limits, which yield

S∞≡ lim
n→∞

Sn¼− logλmax; S0≡ lim
n→0

Sn¼ logN ; ð1:3Þ

where λmax is the largest eigenvalue of the reduced density
matrix and N denotes the number of nonvanishing eigen-
values of ρA. Besides the already mentioned case of the
entanglement and Renyi entropies, there are many attempts
to construct new information theoretic measures for study-
ing the entanglement structure in more general setting, e.g.,
mutual information [8], logarithmic negativity [9,10]
and entanglement of purification [11]. However, in this
paper, we focus on another measure that has recently
entered this discussion which is called the capacity of
entanglement [12]

CE ≡ lim
n→1

Cn ¼ lim
n→1

n2
∂
2

∂n2
ðð1 − nÞSnÞ; ð1:4Þ

where Cn is the nth capacity of entanglement. Indeed,
considering n as the inverse temperature, the above
definition is similar to the corresponding relation between
the heat capacity and thermal entropy. Further, using the
definition of the modular Hamiltonian, i.e., HA ¼ − log ρA,
it is straightforward to show that the entanglement entropy
and capacity of entanglement are the expectation value and
variance (the second cumulant) of HA respectively
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SE ¼ Tr ρAHA ¼ hHAi;
CE ¼ Tr ρAH2

A − ðTr ρAHAÞ2 ¼ hH2
Ai − hHAi2: ð1:5Þ

Thus the capacity of entanglement characterizes the width
of the eigenvalue spectrum of the reduced density matrix
such that for a maximally entangled state, i.e., ρA ∝ I, it
vanishes. Indeed, in this case the Renyi entropies are
independent of n and we have a flat entanglement spectra.
Recently, there have been many attempts to investigate
various properties of this quantity in different setups both in
the field theory and holography which have led to a
remarkably rich and varied range of new insights, e.g.,
[13–25]. In particular, an interesting observation in [15]
was that systems where are all entanglement is carried by
EPR pairs have zero capacity of entanglement. Thus,
whenever we find that CE ∼ SE, e.g., (1þ 1)-dimensional
CFTs at equilibrium, EPR pairs are not a very good
approximation of the quantum state and randomly
entangled pairs of qubits give a better description.
Moreover, as proposed in this reference, restricting to field
theories with holographic duals without higher derivative
terms, the ratio CE

SE
turns out to be exactly equal to one. An

interesting question is whether this result also hold for more
general QFTs without a holographic dual.
Clearly, the capacity of entanglement depends on the

choice of the original state of the system. The main aim of
this article is to further investigate the state dependence of
the capacity of entanglement. We study this dependence by
considering a general class of Gaussian states which are
solutions to the time dependent Schrödinger equation, the
so-called squeezed states. As we will see the squeezed
states are less classical than the vacuum state (which is a
special case of a coherent state) and thus study the
entanglement structure in a squeezed state may help us
to gain a better insight into the quantum features of the
system in question. In the following we will focus on a
scalar field theory in (1þ 1)-dimensions to address this
problem. Indeed, in order to avoid the ultraviolet diver-
gences in the continuum limit, we should regulate the
theory by placing it on a one dimensional spatial lattice.
Thus the model reduces to an infinite chain of quantum
harmonic oscillators. Let us add that the entanglement
entropy for this setup in squeezed states has been pre-
viously studied in [26]. These authors proposed an exten-
sion of the method introduced in [27,28] to more general
cases including squeezed states. Interestingly, using a
systematic method they show that for a free scalar field
theory in (1þ 1)-dimensions the entanglement entropy
obeys the volume law rather than the area law in large
squeezing limit. This is in contrast with the behavior of
entanglement entropy in typical ground states which
exhibits area law scaling where in (1þ 1)-dimensions is
replaced with a logarithmic scaling. Further, their result is
in agreement with the Page’s argument where for a typical

pure quantum state of a joint system, the smaller subsystem
is almost maximally mixed, showing little sign that the total
system is pure [29]. Interestingly, the Page curve followed
by the entropy of Hawking radiation [30]. In this context,
an especially interesting question concerns how the scaling
of the capacity of entanglement alters under a nontrivial
squeezing when the total system is in a random squeezed
state.
Additionally, in [31,32], using the holographic propos-

als, it was shown that the capacity of entanglement is a
useful probe of the Hawking radiation during the black hole
evaporation process. Interestingly enough, the authors
argued that this measure shows a discontinuity or a peak
at the Page time while the entanglement entropy varies
smoothly. In this sense, one can consider CE as a conven-
ient probe which can characterizes the order of a phase of
the quantum systems. Indeed a primary motivation for this
work came from these efforts to study the behavior of
different entanglement measures including the capacity of
entanglement in random pure states and to compare our
results to those obtained in the context of holography. Let
us mention that this comparison involves two very different
models, that is a free scalar theory with a single degree of
freedom versus a holographic quantum field theory which
is strongly coupled and has a large number of degrees of
freedom.
The remainder of our paper is organized as follows: In

Sec. II, we give the general framework in which we are
working, establishing our notation and the general form of
the squeezed states and harmonic models in question.
Section III contains a summary about the behaviors of
entanglement measures in ground state of a scalar theory.
We review old results for the entanglement entropy and also
find new ones for the case of capacity of entanglement. To
get a better understanding of the results, we will also
compare the behavior of different measures in specific
scaling regimes. In Sec. IV, we extend our studies to the
case of squeezed states. Specifically, we present a combi-
nation of numerical and analytic results on the scaling of
different entanglement measures in the large squeezing
limit. Next, we return to the field theory problem by
generalizing these results to the continuum limit in
Sec. V. Given the entanglement measures for the scalar
field theory, we then ask how our results compare to
holographic ones. Finally, we close in Sec. VI with a brief
discussion of our results and directions for future work.

II. SETUP

We start by considering a simple quantum harmonic
oscillator with the following Hamiltonian1

1For simplicity of notation in what follows, we will use hat
symbol for the quantum operators only when there is a danger of
confusion. Also we will set ℏ ¼ 1.
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H ¼ p2

2m
þ 1

2
mω2x2: ð2:1Þ

Defining the annihilation and creation operators

a¼ 1ffiffiffiffiffiffiffiffiffiffi
2mω

p ðmωxþ ipÞ; a†¼ 1ffiffiffiffiffiffiffiffiffiffi
2mω

p ðmωx− ipÞ; ð2:2Þ

we have H ¼ ωða†aþ 1
2
Þ. In this case a class of Gaussian

solutions to the time dependent Schrödinger equation
which consists of the so-called coherent states are given by

ψðx; tÞ ¼
�
mω

π

�
1=4

exp
�
−
mω

2
ðx − x0ðtÞÞ2

þ ip0ðtÞðx − x0ðtÞÞ − iϕcðtÞ
�
; ð2:3Þ

where

x0ðtÞ ¼ X0Reðeiωðt−t0ÞÞ; p0ðtÞ ¼ mẋ0ðtÞ;

ϕcðtÞ ¼
−x0ðtÞp0ðtÞ

2
þ ωðt − t0Þ

2
þ ϕ0: ð2:4Þ

These states minimize the uncertainty relation with uncer-
tainty equally distributed between position and momentum
such that

Δx ¼ Δp
mω

¼ 1ffiffiffiffiffiffiffiffiffiffi
2mω

p ; ΔxΔp ¼ 1

2
: ð2:5Þ

Indeed, they have the same minimal uncertainty value
as found for the vacuum state. Further, the mean values
of position and momentum operators in coherent state
follow a classical orbit, e.g., hẍi þ ω2hxi ¼ 0, and
hence these states correspond to the most classical states
of the harmonic oscillator. It is also easy to show that any
eigenstate of the annihilation operator, i.e., ajαi ¼ αjαi,
where α is a complex parameter, represents a coherent state.
Clearly, these states include the vacuum state as a special
case with α ¼ 0. Moreover, defining a unitary displacement
operator DðαÞ ¼ eαa

†−α�a, the coherent states can be
generated from the vacuum, i.e., jαi ¼ DðαÞj0i.
Let us now turn to another class of Gaussian solutions to

the time dependent Schrödinger equation which are more
general, the so-called squeezed states. The corresponding
wave function reads

ψðx; tÞ ¼
�
mReðwðtÞÞ

π

�
1=4

exp

�
−
mwðtÞ

2
ðx − x0ðtÞÞ2

þ ip0ðtÞðx − x0ðtÞÞ − iϕsðtÞ
�
; ð2:6Þ

where2

wðtÞ¼ω
1− isinh zcos2ωt

cosh zþsinh zsin2ωt
;

ϕsðtÞ¼ϕcðtÞ−
ωt
2
þ1

2
tan−1

tanh z
2
þ tanωt

1þ tanh z
2
tanωt

: ð2:7Þ

In the above expressions z is the squeezing parameter
such that for z ¼ 0, we recover the coherent states. The key
feature of a squeezed state in the harmonic potential is that
although its profile is still Gaussian, its width is different
from the vacuum state. Further, the corresponding uncer-
tainty relation is easily found to be

ΔxΔp ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2 zcos22ωt

p
; ð2:8Þ

which shows that the squeezed states are not minimal
uncertainty states at all times. Indeed, the time slices where
the above relation becomes minimal are easily found to be
tmin ¼ ð2kþ 1Þ T

8
where T ¼ 2π

ω and k is an integer. It is
straightforward to show that when the squeezed state is a
minimal uncertainty state, we have

ðΔxÞmin ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mωez
p ; ðΔpÞmin ¼

ffiffiffiffiffiffiffiffiffiffiffi
mωez

2

r
; ð2:9Þ

which shows the possibility of arbitrary compression of the
position uncertainty at the expense of appropriate fluc-
tuation in the momentum variable and vice-versa.
Interestingly, defining a unitary squeezing operator
SðξÞ ¼ e

1
2
ðξa†2−ξ�a2Þ, the squeezed states can be generated

from the vacuum, i.e., jξi ¼ SðξÞj0i where ξ denotes a
complex parameter.3

In the next sections much of our discussion will focus on
the different aspects of entanglement measures when the
corresponding state is given by Eq. (2.6) to examine how
the squeezing parameter can affect different quantities.
To do so, we consider a free massive scalar field in
(1þ 1)-dimensions with Hamiltonian

H ¼ 1

2

Z
dxðπ2ðxÞ þ ð∂xϕðxÞÞ2 þm2ϕ2ðxÞÞ: ð2:10Þ

In order to circumvent the divergences so as to obtain finite
results for the measures, we should regulate the above
model by placing it on a lattice, which reduces the system
to an infinite chain of coupled harmonic oscillators. Indeed,
the general Hamiltonian for a system of N coupled (one-
dimensional) harmonic oscillators can be written as

2We set the origin of time coordinate to be 0.

3Note that this definition gives a squeezed vacuum state. In
addition one can obtain a squeezed coherent state by acting the
squeezing operator on a coherent state, i.e., jξ; αi ¼ SðξÞjαi ¼
SðξÞDðαÞj0i. For reviews on the main properties of coherent and
squeezed states see, e.g., Refs. [33,34] and references therein.
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H ¼ 1

2

XN
i¼1

pT:pþ 1

2

XN
i;j¼1

xT:K:x; ð2:11Þ

where

xT ¼ ðx1;…; xNÞ; pT ¼ ðp1;…; pNÞ; ð2:12Þ
and K is a real symmetric matrix. Now, this suggests that
we begin with an even simpler warm-up problem, namely,
the case of two coupled harmonic oscillators

H ¼ p2
1

2
þ p2

2

2
þ k0

2
ðx21 þ x22Þ þ

k1
2
ðx1 − x2Þ2; ð2:13Þ

where k1 determines the strength of the coupling between
the two oscillators such that weak and strong coupling
regimes correspond to k1 ≪ k0 and k1 ≫ k0 limits respec-
tively. We see that this simple set-up maintains some
interesting features of our original problem which helps
us to better investigate the continuum scalar theory. Let us
recall that related investigations attempting to better under-
stand the entanglement structure in general Gaussian states
have also appeared in [35–37].

III. PRELIMINARIES: CE FOR GROUND STATE

As a first step toward understanding different entangle-
ment measures including capacity of entanglement in
squeezed states, we would like to study the same quantities
in a simpler setup where the state is vacuum. We begin with
the case of two coupled harmonic oscillators and then,
having built up some intuition, we return to the more
involved problem by generalizing these results to a lattice
of coupled oscillators.

A. Two coupled harmonic oscillators

In this case the corresponding Hamiltonian is given by
Eq. (2.13). Indeed, the entanglement entropy in this model
was studied in [27,28]. Here we would like to apply the
techniques developed in these references to examine the
behavior of Renyi entropy and capacity of entanglement.
To do so, one simply rewrites the Hamiltonian in terms of
the canonical coordinates,

H ¼ 1

2
ðp2þ þ ω2þx2þ þ p2

− þ ω2
−x2−Þ; ð3:1Þ

where

x� ¼ x1 � x2ffiffiffi
2

p ; ω2þ ¼ k0; ω2
− ¼ ω2þ þ 2k1: ð3:2Þ

Now we have two decoupled harmonic oscillators, and thus
the vacuum state can bewritten as the product of the vacuum
state wave functions for the two individual oscillators
as follows

ψ0ðxþ;x−Þ¼
�
ωþω−

π2

�
1=4

exp

�
−
ωþx2þþω−x2−

2

�
: ð3:3Þ

The above expression can be rewritten in terms of the
physical coordinates of the two oscillators and then the
corresponding reduced density matrix can be found by
integrating out the x1 coordinate, i.e., ρ2ðx2; x02Þ ¼R
dx1ψ0ðx1; x2Þψ�

0ðx1; x02Þ, which yields

ρ2ðx2; x02Þ ¼
�
γ − β

π

�
1=2

exp

�
−
γ

2
ðx22 þ x022Þ þ βx2x02

�
;

ð3:4Þ

where

β¼ ðωþ−ω−Þ2
4ðωþþω−Þ

; γ¼ðωþþω−Þ2þ4ωþω−

4ðωþþω−Þ
: ð3:5Þ

Moreover, solving the eigenvalue problem for the reduced
density matrix, i.e.,

Z
dy ρ2ðx; yÞfkðyÞ ¼ pkfkðxÞ; ð3:6Þ

one finds an infinite tower of eigenvalues as follows

pk ¼ ð1 − ξÞξk; ξ ¼ β

γ þ α
¼

� ffiffiffiffiffiffiffi
ωþ

p − ffiffiffiffiffiffi
ω−

p
ffiffiffiffiffiffiffi
ωþ

p þ ffiffiffiffiffiffi
ω−

p
�

2

;

k ¼ 0;…;∞; ð3:7Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − β2

p
. Note that based on the above result

the weak and strong coupling regimes correspond to ξ → 0
and ξ → 1 limits respectively. Now using Eq. (1.2), we can
evaluate the Renyi entropy which yields

Sn¼
1

1−n
log

X∞
k¼0

pn
k ¼

1

1−n
ðnlogð1−ξÞ− logð1−ξnÞÞ:

ð3:8Þ

Combining the above result with Eqs. (1.1) and (1.4), we
obtain entanglement entropy and capacity of entanglement

SE ¼ ξ

ξ − 1
log ξ − logð1 − ξÞ;

CE ¼ ξ

�
log ξ
1 − ξ

�
2

: ð3:9Þ

Further the nth capacity of entanglement is obtained by the
replacement ξ → ξn in CE. Remarkably, in the weak
coupling regime a perturbative expansion yields
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SE¼−ξ logξþξþ���; CE¼ ξðlogξÞ2þ2ξ2ðlogξÞ2þ��� ;
ð3:10Þ

which shows that in this limit both quantities vanish. This is
consistent with the idea that as k1=k0 decreases, the reduced
density matrix becomes more and more separable. On the
other hand, in the strong coupling limit we obtain

SE¼− logð1−ξÞþ1þ��� CE¼1−
ðξ−1Þ2

12
þ��� : ð3:11Þ

Interestingly, we see that in this limit CE=SE ≪ 1 which is
consistent with the idea that the reduced density matrix
becomes more and more maximally mixed as one increases
the coupling.4

In Figs. 1 and 2 we summarize the numerical results for
different entanglement measures. Figure 1 presents various
quantities as functions of the coupling between the two

harmonic oscillators. The left panel presents the depend-
ence of entanglement entropy and capacity of entanglement
on ξ. We note a number of key features: First, both these
measures start at the same value (which is equal to zero
corresponds to a separable state) and then increase as one
increases the coupling. Second, although the entanglement
entropy diverges in the strong coupling limit, the capacity
of entanglement saturates to unity in agreement with
Eq. (3.11). Interestingly, for a specific value of the coupling
these measures coincide, i.e., CEðξ�Þ ¼ SEðξ�Þ where
ξ� ∼ 0.31. The middle panel demonstrates the Renyi
entropy as a function of the coupling for several values
of n. Although Sn is a decreasing function of the Renyi
index, it increases with the coupling as expected. In the
right panel we show the nth capacity of entanglement for
the same values of the parameters. We see that Cn decreases
with n and also saturates from below to unity.
We present the n-dependence of Sn and Cn for several

values of the coupling in Fig. 2. Based on these plots, we
see that the qualitative dependence of these measures on the
coupling is similar to n ¼ 1 case. Also both measures
decrease as we increase the Renyi index. Using Eqs. (3.8)
and (3.9) it is easy to find the large n scaling of these
measures as follows

Sn→∞ ∼ − logð1 − ξÞ; Cn→∞ ∼ ξnn2ðlog ξÞ2; ð3:12Þ

SE

CE
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n=100
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4

5

S
n

�� �

FIG. 1. SE and CE (left), Sn (middle) and Cn (right) as functions of the coupling between the two harmonic oscillators. The dashed
lines indicate the large n limit which are consistent with Eq. (3.12).
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FIG. 2. Sn (left) and Cn (right) as functions of the Renyi index for several values of the coupling between the two harmonic oscillators.

4Note that as we have already mentioned, for a maximally
mixed state CE exactly vanishes. Although, here we follow the
terminology of [15] where the strength of the ratio between the
capacity and entropy indicates how much a given reduced density
matrix is close to a maximal distribution. Similar terminology
used in [29] where the author encountered “almost” maximally
mixed states. We would like to thank the anonymous referee for a
useful comment on this point.

CAPACITY OF ENTANGLEMENT FOR SCALAR FIELDS IN … PHYS. REV. D 110, 046021 (2024)

046021-5



which shows that for any 0 < ξ < 1, Cn→∞ vanishes.
Indeed, our numerical results approach the above expres-
sions in this limit as depicted in Fig. 1. Finally, as this
simple example illustrates, the entanglement entropy and
its fluctuations, characterized by the capacity of entangle-
ment have no reason to be equal, except for a specific
coupling. This result is different from what happens for
QFTs with a holographic gravity dual (without higher
derivative terms) where the ratio CE=SE turns out to be
exactly equal to one [15].

B. A lattice of oscillators and continuum limit

In this section we generalize our studies to a lattice of N
coupled harmonic oscillators, where the corresponding
Hamiltonian is given by Eq. (2.11), in specific directions.
Similar to the previous case, the ground state wave function
is described by a factorized Gaussian in the corresponding
normal mode space. To see this we recall that as shown
in [28] the matrixK can be diagonalize by a real orthogonal
similarity transformation, i.e., KD ¼ UKUT . Then writing
the Hamiltonian in terms of the normal modes reduces the
problem to a chain of decoupled quantum harmonic
oscillators. Thus the total vacuum state can be written as

ψ0ðx̃Þ ¼
YN
i¼1

�
ωi

π

�
1=4

exp

�
−
ωix̃2i
2

�
; ð3:13Þ

where x̃i and ωi denote the normal coordinates and
eigenfrequencies respectively. Further, in order to find
the reduced density matrix we would like to express the
above wave function in terms of the original variables xi in
the position basis. It is relatively simple to show that in this
case the above expression becomes

ψ0ðxÞ ¼
�
detΩ
πN

�
1=4

exp

�
−
xT:Ω:x

2

�
; ð3:14Þ

where Ω is the square root of K, i.e.,

Ω ¼ UTK1=2
D U; ðKDÞij ¼ ωiδij: ð3:15Þ

We would like to evaluate the reduced density matrix by
tracing over the first Ñ oscillators. To do so, we consider
the following decomposition

Ω ¼
�

A B

BT C

�
; ð3:16Þ

where A is an Ñ × Ñ matrix and C is an ðN− ÑÞ×ðN− ÑÞ
matrix. Now it is straightforward to explicitly evaluate the
reduced density matrix as5

ρredðxÑþ1;…; xN ; x0̃Nþ1
;…; x0NÞ

¼ N exp

�
−
xT:γ:xþ x0T:γ:x0

2
þ xT:β:x0

�
; ð3:17Þ

where β ¼ BTA−1B
2

, γ ¼ C − β and N is a normalization
factor. Moreover, as shown in [28] the above expression
can be rewritten as follows

ρredðzÑþ1;…; zN ; z0̃Nþ1
;…; z0NÞ

¼ N
YN

i¼Ñþ1

exp

�
−
z2i þ z02i

2
þ β̃iziz0i

�
; ð3:18Þ

where

β̃ ¼ γ−1=2D VβVTγ−1=2D ; z ¼ WTγ1=2D Vx: ð3:19Þ

Also V and W defined as the corresponding similarity
transformations that diagonalize γ and β̃ respectively, i.e.,
γD ¼ VγVT and β̃D ¼ Wβ̃WT . Comparing Eq. (3.18) to
Eq. (3.4) we see that the Renyi entropy can be calculated by
summing the contribution for each of the remaining modes
as follows

Sn ¼
1

1 − n

Xjmax

j¼1

ðn logð1 − ξjÞ − logð1 − ξnj ÞÞ; ð3:20Þ

where ξj ¼ β̃j
1þð1−β̃2j Þ1=2

and jmax ¼ minðÑ; N − ÑÞ. Note

that as long as we are dealing with pure states, the spectrum
of the reduced density matrices for A and Ā is the same and
hence SnðAÞ ¼ SnðĀÞ. Further, the corresponding expres-
sions for entanglement entropy and capacity of entangle-
ment are similar to Eq. (3.9) where again we should
consider the contribution for each of the modes, i.e.,

SE ¼
X
j

�
ξj

ξj − 1
log ξj − logð1 − ξjÞ

�
; ð3:21Þ

CE ¼
X
j

ξj

�
log ξj
1 − ξj

�
2

: ð3:22Þ

We now wish to apply this approach to the problem of
finding different entanglement measures in the continuum
limit. For example considering a free scalar theory given by
Eq. (2.10) and replacing the space continuum with a
discrete mesh of lattice points the Hamiltonian can be
transformed into a discrete counterpart as follows

H ¼ 1

2

XN
i¼1

ðπ2i þ ðϕiþ1 − ϕiÞ2 þm2ϕ2
i Þ; ð3:23Þ5Note that x now has N − Ñ components, so we do not use the

bold face notation which refers to Eq. (2.12).
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where without loss of generality we set the lattice spacing
equal to unity, i.e., ϵ ¼ 1. We see that the above expression
and Eq. (2.11) will be in complete agreement if we choose

Kij ¼ ð2þm2Þδi;j − ðδiþ1;j þ δi;jþ1Þ: ð3:24Þ

It is then possible to extract Ω using Eq. (3.15) and to use
Eqs. (3.20) and (3.21) to determine the behavior of the
entanglement measures. Generally, it is not possible to find
the quantities analytically and thus in the following we will
employ a numerical treatment.
The corresponding numerical results for different quan-

tities are summarized in Figs. 3 and 4. Note that we will
mainly consider N ¼ 60, because the interesting qualitative
features of the entanglement measures are independent of
the total system size. Also this choice facilitates a com-
parison to the analogous results for entanglement entropy
in [28]. In the left panel of Fig. 3, the entanglement entropy
is plotted as a function of Ñ for several values of the mass
parameter. Further, we show the behavior of capacity of
entanglement for the same values of the parameters in the
right panel of this figure. We can see that both measures

have qualitatively similar behavior and decrease with m.
Also in all cases CE is slightly larger than SE. Notice that as
long as we are dealing with pure states, the entanglement
measures are symmetric, e.g., SEðAÞ ¼ SEðĀÞ where Ā is
the complement of A.
In the left panel of Fig. 4, we present the behavior of the

Renyi entropy as a function of Ñ for several values of n in
the massless regime. From this plot, one can infer that the
qualitative features of the Renyi entropy are similar to SE.
Again, we see that the Renyi entropy is a decreasing
function of n such that the rate of change of Sn is a
monotonically decreasing function of the Renyi index and
saturates from above to a constant in the large n limit. Let
us add that we found similar results for Cn, although we do
not explicitly show the corresponding figures here. In order
to investigate how these quantities approach the large n
limit, in the right panel of Fig. 4, we plot the maximum
values of Sn andCn (which occurs at Ñ ¼ N

2
) as functions of

the Renyi index. The dashed line indicates the asymptotic
value of the Renyi entropy given by Eq. (1.3) where the
largest eigenvalue of the reduced density matrix can be
evaluated numerically to be λmax ∼ 0.83. Finally, the

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

N

S
E

m=0 m= 1

16
m=1

8
m=1

4

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

N

C
E

FIG. 3. SE (left) and CE (right) as functions of Ñ for several values of the mass parameter.
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In both plots we consider the massless regime.
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asymptotic behavior of nth capacity is consistent with the
large n expansion, i.e., C∞ ∼ limn→∞ n2λ−nmax ∼ 0.

IV. CE FOR HARMONIC SYSTEMS IN A
SQUEEZED STATE

In this section, we wish to return to our original problem
which is computing the capacity of entanglement of a chain
of coupled oscillators in squeezed states. Again, as a warm
up problem, we first consider the case of a single pair of
coupled harmonic oscillators and then generalize the

problem to more involved case consisting of N degrees
of freedom in the next sections.

A. Two coupled harmonic oscillators

Let us begin with the case of two oscillators as in
Sec. III A, but now the overall system lying in a squeezed
state given by Eq. (2.6). Again, we can write the total wave
function as the product of the wave functions for the two
individual oscillators as follows6

ψðx; tÞ ¼
�
ReðwþÞReðw−Þ

π2

�1
4

exp

�
−
wþðxþ − x0þÞ2 þ w−ðx− − x0−Þ2

2
þ ip0þðxþ − x0þÞ þ ip0−ðx− − x0−Þ

�
; ð4:1Þ

where x� were defined in Eq. (3.2) and we have also
introduced the new variables x0� ¼ x01�x02ffiffi

2
p and

p0� ¼ p01�p02ffiffi
2

p . The corresponding reduced density matrix

can be found by rewriting the wave function in terms of the
original coordinates and integrating out the x1 variable. The
calculation follows straightforwardly from the considera-
tions of the previous section. We have then

ρ2ðx2; x02Þ ¼
�
ReðγÞ − β

π

�
1=2

exp

�
−
γy22 þ γ�y022

2

þ βy2y02 þ ip02ðy2 − y02Þ
�
; ð4:2Þ

where we have defined y2 ¼ x2 − x02, y02 ¼ x02 − x002 and

β¼ jwþ−w−j2
4Reðwþþw−Þ

; γ¼jwþþw−j2þ4wþw−

4Reðwþþw−Þ
: ð4:3Þ

Interestingly, although γ is complex, the eigenvalues of the
reduced density matrix depend only on the real part of this
parameter [26]. Indeed, as shown in this reference the
calculation proceeds essentially as the ground state case
and the resulting spectrum is given by

pk ¼ ð1 − ξÞξk; ð4:4Þ

where ξ ¼ β
ReðγÞþα and α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðγÞ2 − β2

p
. Again we can

evaluate different entanglement measures using Eqs. (3.8)
and (3.9). It is worthwhile to mention that based on
Eq. (2.7) the spectrum of the reduced density matrix
depends on time and thus we expect that the measures
are also time-dependent.
With these tools in hand, let us examine the dependence

of the measures on the squeezed parameter in more detail.
The numerical results for different quantities are summa-
rized in Figs. 5 and 6. Figure 5 shows the time evolution of

entanglement measures when only the symmetric mode is
squeezed. From these plots, one can infer that different
measures exhibit qualitatively similar behaviors. Clearly,
in this case the evolution is periodic with period
τþ ≡ Tþ

2
¼ π

ωþ
. We see that CE reaches it maximum values

at times tmax ¼ ð4kþ 1Þ τþ
4

where k is an integer.
Interestingly, the capacity of entanglement is always greater
than the entanglement entropy such that the difference of
these quantities becomes maximal when they reach
their maximum values. Moreover, the right panel shows
that for larger values of n this difference becomes less
pronounced.
Now we proceed further by examining in more detail the

z dependence of the entanglement measures, as shown in
Fig. 6. The key observation to note here is that while both
SE and CE are monotonically increasing functions of the
squeezing parameter, only the entanglement entropy goes
on to grow indefinitely as we increase z. Indeed, the right
panel illustrates that CE saturates to unity in the large z
limit. To gain some insights into this behavior, let us turn
our attention to the computation of the mean quantities
which is defined as M̄≡ 1

T

R
T
0 MðtÞdt. Before examining

the full z dependence of the mean capacity of entanglement,
we would like to study its asymptotic behaviors in
small and large z limit. In [26] it was shown that in these
limits the expansions for the mean entanglement entropy
become

SE¼
8<
:
SE0− 1

16

�
1þ1þ4ξ0þξ2

0

1−ξ2
0

lnξ0
�
zþþ���; zþ≪1;

zþ
2
þ1−3ln2þ ln

� ffiffiffiffiffi
ωþ
ω−

q
þ

ffiffiffiffiffi
ω−
ωþ

q �
þOðe−zþÞ; zþ≫1;

ð4:5Þ

6Based on the results of [26] in the following we will set
ϕsþ ¼ ϕs− ¼ 0 without loss of generality.
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where SE0 and ξ0 denote the corresponding vacuum values with zþ ¼ 0. This shows that for a large squeezing parameter the
mean entanglement entropy grows linearly with z. A similar derivation holds in the present case and it is also easy to find
that the expression for the mean capacity of entanglement reduces to

CE ¼
8<
:

CE0 þ 1
8

�
1þ 2

1þ3ξ0þξ2
0

1−ξ2
0

ln ξ0 þ 1
2

1þ6ξ0þξ2
0

ð1−ξ2
0
Þ2 ðln ξ0Þ2

�
z2þ þ � � � ; zþ ≪ 1;

1 −Oðe−2zþÞ; zþ ≫ 1;
ð4:6Þ

which shows that in the large z limit, the capacity of entanglement saturates to unity.

The numerical results for the Renyi entropy and nth
capacity of entanglement as functions of the squeezing
parameter for different values of the Renyi index with
specific values of ω� are summarized in Fig. 7. Note that
the case of n ¼ 1 corresponds to SE and CE. In this case our
numerical results coincide with the analytical expansions
given by Eqs. (4.5) and (4.6). Interestingly, we see that in
the large z limit CE=SE ≪ 1 which shows that the reduced
density matrix becomes more and more maximally mixed
as one increases the squeezing parameter. The left panel
illustrates that all curves for Sn have the same behavior in

large n limit. In particular, one gets asymptotic linear
growth with the same slope for different values of n and z.
Moreover, the right panel also shows that the asymptotic
behavior of the mean value of the nth capacity of
entanglement in large squeezing limit is almost indepen-
dent of the Renyi index. Indeed, it is straightforward to
show that the corresponding scaling of Sn and Cn with z at
leading order is the same as Eqs. (4.5) and (4.6)
respectively.
To close this subsection, let us comment on extending

this discussion to cases where both modes are squeezed.
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squeezing parameter vanish.
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Indeed, in this case the evolution of the entanglement
measures is in general not periodic, as the ratio of the
frequencies of the two modes may be irrational. Again we
found similar results for small and large squeezing param-
eter, although we do not explicitly show the corresponding
figures here.

B. A chain of oscillators

In this section we again consider the system of N
coupled harmonic oscillators which was defined in
Eq. (2.11) to compute several entanglement measures,
but now for the squeezed states given by Eq. (2.6). The
main question of interest is what are the additional
technicalities involved in computing different measures

in squeezed states compared to the vacuum state. In
particular, we would like to investigate to what extent
the squeezing parameter modifies the behavior of capacity
of entanglement. Here, it is worth mentioning that, the
influence of this parameter on the entanglement entropy
was studied in [26] and we will follow the discussion there
closely. Indeed, the spectrum of the reduced density matrix
corresponding to a squeezed state can be evaluated as
detailed in this reference. These authors proposed three
equivalent scenarios to compute the eigenvalues of ρA. In
what follows we briefly review one of the approaches used
in the reference which is fairly simple. To do so, assume
that all the corresponding normal modes lie in a squeezed
state whose wave function is given as follows

ψðxÞ ¼
�
det ReðΩÞ

πN

�
1=4

exp

�
−
ðx − x0Þ:Ω:ðx − x0Þ

2
þ ip0:ðx − x0Þ − i

X
j

ϕsj

�
; ð4:7Þ

whereΩwas defined in Eq. (3.15), but now ωi’s are given by the application of Eq. (2.7) for each normal mode and hence it
is a complex symmetric matrix. It is straightforward to show that in this case the reduced density matrix for the remaining
ðN − ÑÞ oscillators becomes

ρredðxÑþ1; � � � ; x0̃Nþ1
; � � �Þ ¼

�
det Reðγ − βÞ

πN−Ñ

�1
2

exp

�
−y:γ:y − y0:γ�:y0

2
þ y0:βyþ ip0:ðy2 − y02Þ

�
; ð4:8Þ

where

β ¼ 1

2
B†ReðAÞ−1B; γ ¼ C −

1

2
BTReðAÞ−1B; ð4:9Þ

and y ¼ x − x0. Note that we consider the same decom-
position forΩ as in Eq. (3.16). Also note that here γ is a real
symmetric matrix and β is a Hermitian matrix. Indeed, this
result is different from what happens for the ground
state where β is a real and symmetric matrix. Hence in
this case it cannot be diagonalized via a real orthogonal

transformation. Fortunately, as shown in [26] for our
purposes a general solution is not required and in order
to find the eigenvalues of Eq. (4.8), it is sufficient to
compute the spectrum of a simpler matrix Ω̃ defined by

Ω̃ ¼ ReðΩÞ−1
� −ReðAÞ iImðBÞ
−iImðBÞT ReðCÞ

�
: ð4:10Þ

The relation between the two spectra is ξj ¼ ξ̃j−1
ξ̃jþ1

where the

normalization condition for the density matrix allows us to
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FIG. 7. Mean values of the Renyi entropy (left) and nth capacity of entanglement (right) as functions of the squeezing parameter for
several values of the Renyi index. The asymptotic behavior of Cn in large z limit is almost independent of n. Here we set ω− ¼ 2ωþ ¼ 2
and z− ¼ 0.
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neglect ξ̃j < 1. Further, the eigenstates can be written in
terms of the Hermite polynomials. We skip over the details
of the calculation and we refer the interested reader to [26]
for further details. Having the corresponding eigenvalues,
the entanglement measures can be found using the same
formulas as in the previous section, e.g., Eq. (3.21). Now
we are equipped with all we need to study the behavior of
the entanglement spectrum and thereby other related
quantities in a squeezed state. To do so, we employ a
numerical treatment in the next section.
Before we proceed further, we would like to study the

asymptotic behaviors of the entanglement measures in large
squeezing limit. Indeed, this study plays an important role
in our analysis in the next section. Here for simplicity we
restrict our analysis to a specific case where all modes lie in
a squeezed state with the same squeezing parameter which
is very large, i.e., z ≫ 1. Of course, a similar analysis has
been previously done for the entanglement entropy in [26].
Indeed, as shown in this reference in the large z limit the
corresponding eigenvalues can be written as

ξj ¼ 1 − e−zξð1Þj þ � � � ; ð4:11Þ

where ξð1Þj are some z independent positive coefficients.
Using the above expression one finds the following
expansion for the entanglement entropy

SE ¼ minðÑ; N − ÑÞðzþ 1Þ −
Xjmax

j¼1

log ξð1Þj −Oðe−zÞ:

ð4:12Þ

Thus in the large z limit the entanglement entropy has a
linear dependence on the squeezing parameter. In a similar
manner, one can show that

Sn ¼ minðÑ; N − ÑÞ
�
zþ log n

n − 1

�
−
Xjmax

j¼1

log ξð1Þj þOðe−zÞ;

ð4:13Þ

which shows that the Renyi entropy also has a linear
behavior in this limit. Further, the corresponding expres-
sion for the capacity of entanglement can be determined in
a similar way and the result is

CE ¼ minðÑ; N − ÑÞ −Oðe−2zÞ: ð4:14Þ

Thus asymptotically, it approaches a constant value which
is exactly the number of degrees of freedom of the smaller
subsystem. Indeed, based on the above results we see that at
leading order all the measures are time-independent and
proportional to the volume of the smaller subsystem.
Again, we see that in this limit CE ≪ SE which shows

that the reduced density matrix becomes more and more
maximally mixed as one increases the squeezing parameter.
It is also easy to show that in this case the expansion for Cn
is the same as CE. In the next section, we numerically
evaluate the entanglement measures for a free scalar theory
in a squeezed state which enables us to more explore the
validity of these expressions.

V. CE FOR A MASSLESS SCALAR
IN SQUEEZED STATES

In this section we proceed our previous analysis in a
scalar theory, whose Hamiltonian is given by Eq. (3.23), to
more investigate the behavior of the capacity of entangle-
ment in a squeezed state. First, we provide a simple analysis
where just a single mode is squeezed and examine the
various regimes in the evolution of entanglement measures.
Next, we will extend this study to a more general case
where all the normal modes lie in a squeezed state which
enables us to directly extract some interesting features of
the z dependence of the capacity of entanglement.

A. Squeezing a single mode

To begin, we consider the system lying in a state where
only one normal mode is squeezed and thus its wave
function is given by Eq. (2.6). Also the remaining modes
are put in their ground states. In the following we will use is
to denote the index of the squeezed mode. Further, based on
the results of Sec. IVA we expect that the evolution of the
measures is periodic with period τs ≡ Ts

2
¼ π

ωs
where ωs is

the normal frequency of the corresponding squeezed mode.
The examples depicted in Fig. 8 exhibit this behavior for
the capacity of entanglement. In the figure, CE as a function
of Ñ is presented for several values of is with z ¼ 3. The
black markers correspond to the vacuum state. Based on
this figure, it is evident that squeezing mostly increases CE
in comparison to that in the vacuum state. Nevertheless, we
notice that for is ¼ 1 and t ¼ 0.75τs the capacity of
entanglement becomes smaller than that of the vacuum
state. It is expected that this behavior also happens for other
values of z and is. Further, the oscillations of CE can be
traced back to the trigonometric functions appearing in the
wave function corresponding to the squeezed state. The
larger is, the shorter the period of oscillation. Also as this
parameter increases, the amplitude of oscillation becomes
smaller. Moreover, one can see that in this regime the
oscillation seems more or less the same independent of is.
Let us add that similar behavior was found for the
entanglement entropy in [26].
To gain some insights into this behavior, let us turn our

attention to the computation of the mean entanglement
measures in this setup. The corresponding results for the
mean capacity of entanglement are summarized in Fig. 9.
The left panel illustrates CE as a function of Ñ for several
values of the index of the squeezed mode. We see that the
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mean capacity of entanglement is always larger than that in
the vacuum state of the system. Further, the right panel
shows this quantity as a function of is for several divisions
of the system in two subsystems. We note a number of key
features: First, CE is not monotonous with the index of the
squeezed mode. Indeed, for small values of Ñ the mean
capacity of entanglement first increases approximately
linearly with is and then after some fluctuations decreases
to a constant value. Note that the intermediate fluctuations

become less pronounced in the large Ñ limit. Second, for
large values of Ñ the mean capacity of entanglement first
increases very sharply with is and then suddenly saturates
to a constant value.
To close this subsection, we examine the z dependence

of mean entanglement measures in Figs. 10 and 11. We
focus our analysis on the special case of is ¼ 1 because the
interesting qualitative features of the measures do not
depend strongly on which mode is squeezed. Note that
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FIG. 9. Mean capacity of entanglement as a function of Ñ (left) and is (right) for several values of the parameters when a single mode
has been squeezed with z ¼ 3.

FIG. 8. The capacity of entanglement as a function of Ñ for several time slices when only a single mode has been squeezed with z ¼ 3.
The black markers correspond to the vacuum state.
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we have also included the corresponding results for the
mean entanglement entropy, which was previously reported
in [26], to allow for a meaningful comparison between the
different measures. Based on Fig. 10, we observe that both
SE and CE are monotonically increasing functions of the
squeezing parameter, as expected. Further, the left panel
illustrates that for large squeezing, the entanglement
entropy has a linear dependence on z. Remarkably, from
the right panel we can deduce that the mean capacity of
entanglement saturates to a constant value in this regime.
Hence, we expect that the corresponding reduced density
matrix becomes more and more maximally mixed as one
increases the squeezing parameter. Moreover, the saturation
value is a monotonically increasing function of both Ñ
and is.
Figure 11 illustrates the behavior of mean values of the

Renyi entropy and nth capacity of entanglement as func-
tions of the squeezing parameter for several values of the
Renyi index. The left panel shows that Sn exhibits a linear
dependence on the squeezing parameter with the same
slope for different values of n. Further, in the right panel we
see that Cn with n ≥ 2 saturate from below to unity
independent of the Renyi index. Indeed, for larger values
of n, the mean value of the n-th capacity of entanglement

vanishes initially but then rapidly rises to the final constant
value corresponding to the large squeezing regime.

B. Squeezing all modes

We turn now to a more realistic case where all modes lie
in a squeezed state with the same squeezing parameter. As
in the previous section, unlike the case where we had
squeezed a single mode, the evolution of entanglement
measures are not necessarily periodic. Moreover, as we
have shown in Sec. IV B, the large z behavior of the
measures are completely independent of time. In particular,
in this regime the scaling of the capacity of entanglement is
not sensitive to the details of the time evolution of the
reduced density matrix.
The corresponding numerical results are summarized in

Figs. 12 and 13. The capacity of entanglement for various
random instants as function of Ñ when all modes lie in a
squeezed state with the same squeezing parameter is
depicted in Fig. 12. Once again, the black markers
correspond to the vacuum state. Note that the qualitative
behavior of the capacity of entanglement is more or less the
same independent of the random instant that we have
chosen. Clearly, CE is a monotonically increasing function
of the squeezing parameter. Further, as we increase the
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FIG. 11. Mean values of the Renyi entropy (left) and nth capacity of entanglement (right) as functions of the squeezing parameter for
several values of the Renyi index with is ¼ 1 and Ñ ¼ 10.

0 10 20 30 40 50 60
0

5

10

15

20

N

C
E

z = 1

0 10 20 30 40 50 60
0

5

10

15

20

25

N

C
E

z = 2

0 10 20 30 40 50 60
0

5

10

15

20

25

30

N

C
E

z = 5

FIG. 12. Capacity of entanglement for various random instants as functions of Ñ when all modes lie in a squeezed state with the same
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squeezing parameter the scaling of the capacity of entan-
glement tends asymptotically to Eq. (4.14) as expected. Let
us recall that according to this equation the leading term is
time-independent and thus the fluctuations of the capacity
of entanglement with time decrease as the squeezing
parameter increases.
To get a better understanding of the results, we compare

the behavior of mean entanglement entropy and mean
capacity of entanglement in Fig. 13. The markers in this
figure show the numerical results which in the large z limit
coincide with the leading term of the asymptotic expan-
sions given by Eqs. (4.12) and (4.14) (represented by the
continuous red line). Further, based on our numerical
results we see that at leading order SE and CE are propor-
tional to the volume of the smaller subsystem. Indeed, for
an infinite chain of oscillators in the continuum limit we
have

SE ¼ zl
ϵ
þ � � � ; CE ¼ l

ϵ
þ � � � ; ð5:1Þ

where l≡ Ñϵ and L≡ Nϵ → ∞. Thus in this limit SE
CE

¼
z ≫ 1 which is a feature of an “almost” maximally mixed
state. Moreover, the measures are both sensitive to the UV
cutoff, but the ratio is finite. We conclude that at least for
the free massless scalar field theory, the ratio of the leading
terms is scheme independent. Of course, the numerical
results depicted in the left panel for the mean entanglement
entropy are consistent with the Page’s argument that in an
arbitrary quantum state the entropy is close to maximal.
Hence we expect entanglement entropy to scale with the
volume (instead of the area) of the entangling region.
The right panel shows that this special behavior also

holds for capacity of entanglement. In particular, we see
that CE is always continuous and varies smoothly. This
feature contrasts with the holographic results for the
capacity of entanglement corresponding to the black hole

evaporation process as previously noted in [31,32]. Of
course, their results should be hold in a strongly coupled
theory with a large number of degrees of freedom which is
completely different from our free scalar model. Thus there
is no a priori reason to expect that the results should agree
in these cases. Interestingly enough, based on Eq. (5.1) we
see that in large squeezing limit the relationship CE ¼ SE is
completely broken. Indeed, as proposed in [15] perhaps
such a relation in QFTs is a hint of a dual gravitational
interpretation. Therefore, at least in this regime the corre-
sponding squeezed states cannot have a solution of a
classical gravity theory as a holographic dual. This is
the main clue that forbids us to compare our results with
some previous studies on capacity of entanglement in the
context of holography. Let us emphasize that we found
similar results for Sn and Cn which are consistent with the
asymptotic expansions we reported in the previous section,
although we do not explicitly show the corresponding
figures here.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we explored the evolution and scaling of
the entanglement measures in squeezed states which are the
most general Gaussian states. We have mainly studied the
behavior of capacity of entanglement, the quantum infor-
mation theoretic counterpart of heat capacity, for a specific
harmonic model which is a discrete counterpart of a
(1þ 1)-dimensional free scalar field theory. To gain some
intuition for the problem, we began by studying the simple
case of a pair of harmonic oscillators. In this case we have
studied different aspects of the capacity of entanglement in
various setups and with different parameters numerically.
In particular, the time evolution of entanglement mea-

sures when only a single mode has been squeezed is
periodic with period equal to half the period of the
corresponding mode. Further, the capacity of entanglement
is always greater than the entanglement entropy such that
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FIG. 13. Mean entanglement entropy (left) and mean capacity of entanglement (right) as functions of Ñ for several values of z. The red
lines indicate the asymptotic behavior in large z limit given by Eqs. (4.12) and (4.14). The mean has been calculated as the average of
300 random times.
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the difference of these quantities becomes maximal when
they reach their maximum values. A key observation to
note here is that while both SE and CE are monotonically
increasing functions of the squeezing parameter, only the
entanglement entropy goes on to grow indefinitely as we
increase z. Indeed, the capacity of entanglement saturates to
unity in the large z limit. Hence, we see that in this limit
CE
SE

≪ 1 which shows that the corresponding reduced
density matrix becomes more and more maximally mixed
as one increases the squeezing parameter. Moreover, the
asymptotic behavior of the mean value of the Renyi entropy
and nth capacity of entanglement in large squeezing limit is
almost independent of the Renyi index. In addition,
considering more general cases where both modes are
squeezed, although the evolution of the entanglement
measures is in general not periodic, the qualitative features
of the results are the same.
We have also extended these studies to the system of N

coupled harmonic oscillators to investigate to what extent
the squeezing parameter modifies the behavior of the
entanglement measures including the capacity of entangle-
ment. In particular, we have shown that where all modes lie
in a squeezed state the measures are time-independent and
proportional to the volume of the smaller subsystem in
large squeezing limit. Again, we have found that in this
limit the ratio of capacity over entropy is negligible and
thus the reduced density matrix behaves as an “almost”
maximally mixed state.
In order to gain further insights into certain properties of

these quantities in squeezed states, we have also considered
a scalar field theory, which is the continuum counterpart of
our harmonic chain. In this case when only a single mode
has been squeezed, we found a number of key features:
First, the mean capacity of entanglement is not monotonous
with the index of the squeezed mode such that for large
values of Ñ, it first increases very sharply with is and then
suddenly saturates to a constant value. Second, we
observed that CE is a monotonically increasing function
of the squeezing parameter and saturates to a constant value
in the large z limit. Further, the mean Renyi entropy
exhibits a linear dependence on the squeezing parameter
with the same slope for different values of the Renyi index.
Also we have shown that the mean value of n-th capacity
saturates from below to unity independent of n. Indeed, for
larger values of the Renyi index, Cn vanishes initially but
then rapidly rises to a constant value corresponding to the
large squeezing regime.
Once again, considering the more realistic case where all

modes lie in a squeezed state, the large z behavior of the
measures are completely independent of time. In particular,
in this regime the scaling of the capacity of entanglement is
not sensitive to the details of the time evolution of the
reduced density matrix. We have also found numerically
that at leading order CE is proportional to the volume of the
smaller subsystem which is consistent with asymptotic

scaling given by Eq. (4.14). Interestingly, for an infinite
chain of oscillators in the continuum limit the correspond-
ing behaviors of SE and CE are given by Eq. (5.1) which
shows that the reduced density matrix becomes more and
more maximally mixed in the large squeezing limit such
that CE=SE ∼ z−1 → 0. As we have mentioned before this
means that the corresponding reduced density matrix can
be approximated as proportional to the identity operator to
the extent that its Renyi entropies are independent of n and
thus we have a flat entanglement spectra. Remarkably, in
the holographic context one can produce the n-independent
Renyi entropies by considering specific semiclassical
states, the so-called fixed-area states [38–41].7 It is an
interesting question whether or not a more concrete
connection can be found between the squeezing states in
the field theory and fixed-area states of quantum gravity.
Of course, Eq. (5.1) is consistent with the Page’s argu-

ment that in an arbitrary quantum state the entropy is close
to maximal. Hence we expect entanglement entropy to
scale with the volume (instead of the area) of the entangling
region. Our results show that this interesting behavior also
holds for the capacity of entanglement. Moreover, the
measures are both sensitive to the UV cutoff, but the ratio
is finite and thus at least for the free massless scalar field
theory, the ratio of the leading terms is scheme indepen-
dent. We found similar results for other entanglement
measures which are consistent with the asymptotic expan-
sions in the large squeezing limit.
To close our discussion, we would like to recall that our

result for the capacity of entanglement for a family of
random states, where CE is continuous, contrasts with the
holographic computations correspond to the black hole
evaporation process reported in [31,32]. Indeed, we expect
that a meaningful comparison between the field theory and
holographic results is achieved by considering strongly
coupled theories with a large number of degrees of free-
dom. This investigation is beyond the scope of the present
paper. It would be interesting to explore the behavior of CE
in general setups including rational and holographic CFTs
[42–45]. Some additional topics to explore include general-
izing our results to higher dimensions [46] or to non-
relativistic models [47–50]. Another interesting direction is
to study the scaling of capacity of entanglement in theories
which exhibit a volume law scaling of the entanglement
entropy [51–54]. In addition, we have been focused on the
exploration of the capacity only in a free scalar theory, but it
should be feasible to extend our work to more realistic
cases with nontrivial interactions where we believe the
capacity will exhibit more interesting features [55]. We
leave the details of some interesting problems for future
study [56].

7We thank Mohammad Hasan Vahidinia for bringing this to
our attention and raising the following question.
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