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In six dimensions there exists a unique one-parameter family of nonlinear conformal electrodynamics for
a chiral 2-form gauge field that includes (in a free-field limit) the linear chiral 2-form theory and is related,
by dimensional reduction, to the four-dimensional ModMax electrodynamics. In this work, we present the
first exact solutions of this theory in presence of gravity. In particular, we will consider plane wave,
Robinson-Trautman, and self-dual dyonic string configurations, generalizing well-known solutions of this
type in six-dimensional supergravities with linear chiral 2-form multiplets.

DOI: 10.1103/PhysRevD.110.046020

I. INTRODUCTION

It was found in [1] that there exists a unique nonlinear
extension of four-dimensional Maxwell’s theory (dubbed
ModMax) that preserves all symmetries of Maxwell’s
electrodynamics including electric-magnetic duality and
conformal invariance. In view of its uniqueness, ModMax
has attracted a great deal of attention and has been studied
from different perspectives, in particular, in the context of
black hole physics, Taub-NUT and pp-wave solutions
(see, e.g., [2–19]), and as a characteristic example that
triggered the development of new marginal (so-called
root-TT̄) deformations of field theories in various
dimensions [20–36]. It has Born-Infeld-like deformations
[37–39], as well as supersymmetric [40,41], higher-spin
[42], sigma-model [43], and higher-derivative [44] gen-
eralizations. Furthermore, ModMax is a causal theory
[1,45,46] and its nonlinear equations of motion have
exact solutions including plane waves [1], generic null
electromagnetic fields [47] and Lienard-Wiechert fields
induced by moving dyonic particles [48]. Birefringence
and Compton effects have also been studied in this
theory [1,2,48,49].

In six space-time dimensions there exists a close relative
of ModMax: a unique non-linear conformal chiral 2-form
theory [37] that reduces to the former upon a dimensional
reduction. It contains a dimensionless parameter γ such that
for γ ¼ 0 the theory reduces to the free chiral 2-form
electrodynamics. This six-dimensional ModMax counter-
part and its Born-Infeld-like generalization [37] have been
subject so far to a much less detailed study, one of which
was (marginally) in the context of the trirefringence
phenomenon [50] and another one in the context of
TT̄-like deformations of six-dimensional chiral 2-form
theories [31]. In this paper we initiate the systematic study
of exact solutions of this theory, which we will call
“6D ModMax” for short. In particular, we will concentrate
on wavelike and black-string solutions of this theory
coupled to gravity, inspired by well-known solutions of
this kind in D ¼ 6 supergravities containing linear chiral
2-form multiplets.
Among wave configurations in the 6D Einstein-

ModMax theory, we shall explore a generalization of
pp-wave solutions [51,52] studied in the context of
D ¼ 6 supergravity in [53,54], Siklos space-times [55,56]
[gravitational-wave spaces with planar wave fronts in anti–
de Sitter (AdS)] and Robinson-Trautman solutions asso-
ciated with the presence of gravitational radiation [57,58],
considered previously in D-dimensional Einstein gravity
minimally coupled to linear p-form gauge theories [59,60].
As for Siklos space-times, they have been generalized to
arbitrary dimensions in the absence of matter fields [56],
and here we will be interested in the addition to the Einstein
equations of a 2-form gauge field satisfying the nonlinear
self-duality condition of 6D ModMax. To the best of our
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knowledge these solutions have not appeared in the
literature yet even in the linear case of 6D supergravity
chiral 2-forms, probably because they do not preserve
supersymmetry.
Regarding black-string configurations, a supersymmetric

self-dual black string solution was first found in ungauged
D ¼ 6 supergravity in [61]1 and its generalization with
independent electric and magnetic charges appeared in [63]
(see also [64–66]). Interestingly enough, this solution was
shown to be an uplift of a static, uncharged string solution
of a D ¼ 3 gauged supergravity [67]. We will focus on the
study of a static black-string configuration and its thermo-
dynamics in the 6D Einstein-ModMax theory. We find that
a main effect of the ModMax nonlinearity is a change in the
relation between the AdM mass and charge of the extremal
self-dual string which involves the ModMax parameter γ
similar to what happened for 4D Reissner-Nordström
ModMax black holes [2–4]. This relation also resembles
the effect of a constant dilaton in a self-dual string solution
of a 6D supergravity discussed in [61,64]. As for rotating
dyonic string solutions, their existence and supersymmetric
properties have been studied in various works, see, e.g.,
[68–71]. In this paper we focus on a near-horizon geometry
of a particular subclass of rotating black strings considered
in [72,73], for which we find a ModMax generalization.
The paper is organized as follows. In Sec. II we start with

a brief description of the 6D ModMax theory in a curved
space-time, presenting its Lagrangian, equations of motion
and the energy-momentum tensor. In Sec. III we present a
procedure of how to consistently couple 6D ModMax to a
dynamical self-dual string, as well as the equations of
motion describing the Einstein-ModMax system. In Sec. IV
generic aspects of null-field configurations in 6D ModMax
theory are considered. These results are then used in Sec. V,
in which novel wavelike solutions of the Einstein-ModMax
system are presented. In Sec. VI we obtain a static black
string solution in the Einstein-ModMax theory and show
that it satisfies the first law of thermodynamics. We also
obtain an extremal self-dual string solution with waves
propagating along the string world sheet. In Sec. VII we
present another solution of the Einstein-ModMax system
that we interpret as a near-horizon geometry of a rotating
extremal black string. We conclude by discussing open
problems and possible future directions.
In the Appendix we give details on the relation between

two Lagrangian formulations of N ¼ ð1; 0Þ, D ¼ 6 super-
gravity coupled to a single tensor multiplet, the original
one [74] involving a nonchiral 2-form gauge field and the
Pasti-Sorokin-Tonin (PST) formulation [75], which uses
one chiral and one antichiral 2-form field. To our

knowledge, the comparison of these two formulations have
not been discussed in the literature yet.
Notation and conventions. We use lower case greek

letters as six-dimensional space-time indices μ; ν;… ¼
ð0; 1;…; 5Þ, and lower case latin letters as five-dimensional
spatial indices i; j;… ¼ ð1;…; 5Þ. The signature of the
Minkowski metric is chosen to be “almost plus.”
The (anti)symmetrization of indices is performed with
weight one, i.e., X½μ1μ2…μp� ¼ 1

p!ðXμ1μ2…μp −Xμ2μ1…μp þ���Þ
and Xðμ1μ2…μpÞ ¼ 1

p! ðXμ1μ2…μp þ Xμ2μ1…μp þ � � �Þ. The 6D
totally antisymmetric tensor density εμ1…μ6 is such that
ε012345 ¼ −ε012345 ¼ 1.

II. PRELIMINARIES: PST FORMULATION
OF THE 6D MODMAX THEORY

The PST Lagrangian density for a generic self-
interacting 2-form field Aμν (of canonical dimension of
mass squared) in a curved 6D space-time with a metric gμν
has the following form [37,76,77]

LPST ¼ ffiffiffiffiffiffi
−g

p �
1

4
BμνFμνρvρ −Hðs; pÞ

�
; ð2:1Þ

where g ¼ det gμν, Fμνρ ¼ 3∂½μAνρ� and

Bμν ¼ 1

2
ffiffiffiffiffiffi−gp εμνρλσκ∂λAσκvρ ¼ F�μνρvρ: ð2:2Þ

Observe that Bμνvμ ¼ 0. The vector vμ is a normalized
gradient of an auxiliary scalar field aðxÞ, such that vμ is a
unit timelike vector which, in the almost plus metric
convention, is

vμvμ ¼ −1; vμ ¼
∂μaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∂νa∂νa
p : ð2:3Þ

The term HðBμνÞ ¼ Hðs; pÞ is a function of two
Lorentz (or general-coordinate) invariants s and p,
which are the only two independent invariant combinations
of Bμν (obeying Bμνvν ¼ 0) at any order of B, defined
as follows:

s ¼ 1

4
BμνBμν;

pμ ¼ −
1

8
ffiffiffiffiffiffi−gp εμνρλσκBρλBσκvν; p ¼ ffiffiffiffiffiffiffiffiffiffi

pμpμ
p

: ð2:4Þ

For the 6D ModMax theory

HMM ¼ coshðγÞs − sinhðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q
; ð2:5Þ

1A similar self-dual string soliton solution exists in the
nonlinear chiral 2-form theory on the world volume of the
M5-brane [62].
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from which the free chiral 2-form case is obtained by
setting γ ¼ 0. Let us also define

Fμνρvρ ≕Eμν: ð2:6Þ

From their definitions, we may readily note that Eμν and
Bμν are analogous of the electric and magnetic fields of 4D
electrodynamics.
In addition to the conventional gauge invariance

δAμν ¼ 2∂½μλν�, the local symmetries of the PSTaction (2.1)
are

δAμν ¼ 2∂½μaΦν�; δa ¼ 0; ð2:7Þ

and

δa ¼ φðxÞ; δAμν ¼ −
φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∂μa∂μa
p ðEμν −HμνÞ: ð2:8Þ

where ΦνðxÞ and φðxÞ are local symmetry parameters,

Hμν ¼ 2
∂H
∂Bμν ¼ ðHs þ 2sp−1HpÞBμν þ p−1HpðB3Þμν;

ð2:9Þ

and ðB3Þμν ¼ BμλBλρBρν. In (2.9) and below Hs ¼ ∂sH
and Hp ¼ ∂pH.
The action (2.1) is invariant under the local transforma-

tions (2.8) provided the function Hðs; pÞ satisfies the
condition

H2
s þ

2s
p
HsHp þH2

p ¼ 1: ð2:10Þ

The local shifts (2.8) of the scalar aðxÞ can be used to
impose the gauge ∂μa ¼ δ0μ.

2 Then, if for simplicity we
consider the flat space-time case, Bμν defined in (2.2)
reduces to −Bij and Eμν defined in (2.6) reduces to −Eij

of the Hamiltonian formulation, and the PST Lagrangian
density reduces to the first-order time derivative Lagrangian
density of the Hamiltonian formulation of the chiral-
form theory3

LH ¼ 1

4
Bij∂0Aij −HðBijÞ: ð2:11Þ

In the generic nonlinear chiral 2-form theory the PST
equations of motion of Aμν and aðxÞ are, respectively,

εμνρσκλ∂ρðvσðEκλ −HκλÞÞ ¼ 0 ð2:12Þ

and

εμνρσκλðEμν −HμνÞ∂ρðvσðEκλ −HκλÞÞ ¼ 0: ð2:13Þ

Note that the aðxÞ-field equation is not independent. It
holds whenever the Aμν-field equation (2.12) is satisfied.
This reflects the fact that aðxÞ is a nondynamical pure
gauge field.
It can then be shown, with the use of the local symmetry

(2.7), that Eq. (2.12) produces, upon integration, the
nonlinear self-duality condition

Eμν ¼ Hμν: ð2:14Þ

Note that, on the mass-shell (2.14) the PST Lagrangian
density (2.1) is4

Lon-shell
PST ¼1

4
BμνHμν−H¼ðsHsþpHpÞ−Hðs;pÞ: ð2:15Þ

It vanishes in the free theory and in the ModMax case due
to the conformal invariance, which implies that H is a
homogeneous function of s and p of order one, i.e.,

Hconfðs; pÞ ¼ sHs þ pHp: ð2:16Þ

A generic chiral 2-form energy-momentum tensor has the
following form5

Tμν ¼ −
2ffiffiffiffiffiffi−gp ∂L

∂gμν

¼ −gμν
�
Hþ 1

2
trHB

�
−
1

2
vμvνtrHB

þ ðHBÞμν − 2vðμpνÞ: ð2:17Þ

On the mass-shell (2.14) it reduces to [81]

Tμνjon-shell ¼ gμν

�
1

4
HρλBρλ −H

�
þ 1

4
FρλðμF

�ρλ
νÞ

¼ gμνLjon-shell þ
1

4
FρλðμF

�ρλ
νÞ : ð2:18Þ

2Note that because of the definition of vμ in (2.3) the gauge
a ¼ const is not admissible. As explained in Sec. 6.1 of [31], this
restriction implies nontrivial conditions on the global causal
structure of space-time, which must be globally hyperbolic
[78,79]. It is known that this space-time property is necessary
for defining the Hamiltonian (ADM) formulation of general
relativity. In the PST formulation it ensures the existence of the
Hamiltonian formulation for chiral p-forms.

3Upon a dimensional reduction to D ¼ 4 this Lagrangian
density and the corresponding Hamiltonian density reduce to the
Hamiltonian formulation of a 4D nonlinear electrodynamics, as
explained in [37].

4To derive (2.15) one should use the expression (2.9) and the
identity 1

4
ðB3ÞμνBμν ¼ p2 − 2s2.

5It was first derived in [80] for the description of the M5-brane
equations of motion.
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As we have already seen, for ModMax Ljon shell ¼ 0, so its
on-shell energy momentum tensor is

TMM
μν jon shell ¼

1

4
FρλðμF

�ρλ
νÞ : ð2:19Þ

This was shown [31] to be equivalent to

TMM
μν jon shell ¼

1

4
FρλðμF

�ρλ
νÞ

¼ 1

4 cosh γ

�
FμρλFν

ρλ −
1

6
ημνF2

�
: ð2:20Þ

For the free chiral 2-form theory (corresponding to γ ¼ 0)
the 3-form field strength is self-dual

Fμνρ ¼ F�
μνρ; ð2:21Þ

and hence on the mass-shell the free (self-dual) chiral-field
energy momentum tensor is

T0
μν ¼

1

4
FμλρFν

λρ: ð2:22Þ

We will use the obtained manifestly covariant form of the
on-shell ModMax energy momentum tensor (2.20) for the
study of solutions of this theory coupled to gravity.
Finally, let us present the equations of motion for the

ModMax chiral 2-form theory. They can be written in the
following forms which are almost (but not completely)
equivalent, as we explain below Eq. (2.26). One is obtained
from the nonlinear self-duality condition (2.14) forH given
in (2.5) and involves the auxiliary vector vμ

Eμν ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 − p2
p ðcosh γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q
þ s sinh γÞBμν

þ sinh γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

p ðB3Þμν: ð2:23Þ

Another one is the manifestly covariant vμ-independent
equation that is obtained upon some algebraic manipula-
tions from a general nonlinear self-duality equation con-
sidered in [31,82]:

F�μνρ ¼ Fνρλ

�
cosh γδμλ −

24sinh2γ
F2

Tλ
μ

�
≔ Gμνρ; ð2:24Þ

or, alternatively,

Fμνρ ¼ F�νρλ
�
cosh γδμλ −

24sinh2γ
ðF�Þ2 T̃λ

μ

�
≔ G�μνρ; ð2:25Þ

where

T̃μν ¼
1

4 cosh γ

�
F�
μρλF

�ρλ
ν −

1

6
gμνðF�Þ2

�
≡ Tμν: ð2:26Þ

With the use of the identity [80]

Fμνρ ¼ −
1

2
ffiffiffiffiffiffi−gp εμνρλσδvλBσδ − 3v½μEνρ�; ð2:27Þ

from (2.23) one finds that on the mass shell

FμνρFμνρ ¼ 3ðBμνBμν − EμνEμνÞ
¼ 3ð4s −HμνHμνÞ

¼ 24
s2 − p2

p
HsHp;

¼ 24 sinh γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q
Hs

¼ 24ðs − cosh γHMMÞ: ð2:28Þ

Projecting Eqs. (2.24) and (2.25) along vμ, upon some
algebraic manipulations one gets Eq. (2.23). However, it
should be pointed out that the Eqs. (2.24) and (2.25) include
the cases of the both signs∓ of sinh γ in the definition (2.5)
of HMMðs; pÞ and correspondingly in (2.23). These
two choices are related by the replacement of γ with −γ
under which (2.24) and (2.25) are invariant. Another related
subtlety is that Eqs. (2.24) and (2.25) are not suitable for the
description of null field configurations with FμνρFμνρ¼0,
such as plane waves. In this case Eq. (2.23) is indispensable.
As follows from the relation (2.28), for the choice of the sign
of sinh γ as it appears in (2.5) and (2.23), the null field
solutions exist only for γ ≥ 0, while for the opposite choice
of the sign of sinh γ the null field solutions exist if γ ≤ 0.
To fix this sign ambiguity, in what follows we will only
consider the solutions of the ModMax theory described by
the function (2.5) with γ ≥ 0. This choice is in accordance
with the absence of superluminal propagation of small wave
disturbances on constant uniform field backgrounds in
4D [1] and 6D [50] ModMax.

III. COUPLING 6D MODMAX TO A DYNAMICAL
SELF-DUAL STRING

In [83–86] it was shown that linear chiral p-forms can
couple to dynamical self-dual p-branes (carrying equal
electric and magnetic charges) in the same way as dyons
couple to electromagnetic fields in 4D electrodynamics or
to fields related by a twisted self-duality (see Ref. [87] for a
recent discussion). This coupling is straightforwardly
generalized to the case of interacting chiral p-form theories
and in particular to 6D ModMax in which case we are
dealing with a self-dual string. The procedure of adding to
the chiral 2-form action a string source is carried out as
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follows. We assume that the coupling of the chiral 2-form
field action (2.1) to a string includes the Nambu-Goto string
action and a minimal coupling of Aμν to a string electric
current

S ¼ SPST −
1

2

Z
d6xð ffiffiffiffiffiffi

−g
p

AμνjμνÞ

− T
Z
W2

d2ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detð∂αyμ∂βyνgμνðyðξÞÞÞ

q
; ð3:1Þ

where

jμν ¼ Qffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp Z

W2

dyμ ∧ dyνδ6ðx − yðξÞÞ; ð3:2Þ

is the string current, ξα ¼ ðτ; σÞ (α ¼ 0, 1) parametrize the
string world sheet W2, yμðξÞ are string embedding coor-
dinates in 6D, Q is the string charge and T is its tension.
However, the addition of the minimal coupling term

breaks the local symmetry (2.7). To restore this symmetry
one should modify the chiral form field strength F3¼dA2

by adding to it a so-called Dirac membrane6 whose
boundary is the string, namely

F̂μνρ ¼ Fμνρ − 2C�
μνρ; ð3:3Þ

where

Cμνρ ¼ Qffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp Z

M3

dzμ ∧ dzν ∧ dzρδ6ðx − zðωÞÞ; ð3:4Þ

M3 being the three-dimensional world volume of the Dirac
membrane whose boundary is the string world sheet W2.
M3 is parametrized by three coordinates ωA ¼ ðξα;ω2Þ
and zμðωÞ are embedding coordinates of M3 into six-
dimensional space-time such that zμðξα; 0Þ ¼ yμðξÞ.
The Dirac membrane is served to endow the string with
the magnetic charge whose value coincides with its
electric charge Q, since by construction, the following
relation holds

DμCμνρ ¼ −jνρ; ð3:5Þ

where Dμ is the covariant derivative with respect to the
metric-compatible connection in D ¼ 6.
The equivalence of the electric and magnetic charge is

required for the action (2.1)—in which Eμν and Bμν are
replaced with Êμν ¼ F̂μνρvρ and B̂μν ¼ F̂�

μνρvρ—to be
invariant under the local symmetries (2.7) and (2.8).

Therefore, as described in the previous section, the
equations of motion of the chiral 2-form field derived
from the action (3.1) again reduce to nonlinear self-
duality conditions which have exactly the same form as
in (2.23)–(2.25) but with Fμνρ replaced by F̂μνρ. Then,
from (3.3), (3.5), and (2.24) it follows that

1

2
DμF̂

�μνρ ¼ 1

2
DμĜ

μνρ ¼ jνρ: ð3:6Þ

We have thus coupled the ModMax theory to the self-dual
string which carries the equal electric and magnetic charge
Q. The string electric current minimally couples to the
chiral 2-form Aμν and its magnetic current couples to the
chiral field strength Fμνρ via the Dirac membrane.
We will now look for solutions in the 6D ModMax

theory coupled to gravity, restricting ourselves to space-
time regions away from the string sources. To this end we
will need the Einstein equations (with a cosmological
constant Λ) sourced by the ModMax energy-momentum
tensor

Rμν −
1

2
gμνðR − 2ΛÞ ¼ 8πGNTμν; ð3:7Þ

where GN is the Newton constant of the dimension of
ðlengthÞ4. Since the ModMax energy-momentum tensor
(2.20) is traceless, we see that R ¼ 3Λ and the Eq. (3.7)
takes the following explicit form

Rμν −
1

2
gμνΛ ¼ 2πGNFρλðμF

�ρλ
νÞ

¼ 2πGN

cosh γ

�
FμρλFν

ρλ −
1

6
gμνF2

�
: ð3:8Þ

IV. NULL FIELDS AND PLANE WAVES

Let us study whether the nonlinear conformal chiral
2-form theory under consideration admits plane wave
solutions. In flat space-time, these have the following form:

Fμνρ ¼ fμνρeikμx
μ þ f̄μνρe−ikμx

μ
; ð4:1Þ

where fμνρ is a complex constant amplitude, f̄μνρ is its
complex conjugate and kμ is the wave vector. In the linear
case, self-duality (2.21) of Fμνρ ¼ 3∂½μAνρ� implies that for
the plane waves the following relations hold

fμνρ ¼ f�μνρ; ð4:2Þ

FμνρFμνρ ¼ 0; ð4:3Þ

kμf�μνρ ¼ 0; ð4:4Þ

kμkμ ¼ 0: ð4:5Þ

6The Dirac membrane is not physical and is the 6D counter-
part of the 4D Dirac string introduced by Dirac for the
description of monopoles. For details regarding the invisibility
of Dirac branes and string/brane charge quantization we refer
the reader to [83,86].
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We are interested in exploring whether there exist plane
wave solutions satisfying the nonlinear self-duality con-
dition (2.23) instead of (2.21) [or (4.2)], while preserving
all other properties (4.3), (4.5). The fields satisfying (4.3)
are six-dimensional counterparts of the so-called null
electromagnetic fields in four dimensions whose 4D field
strengths Fμ̂ ν̂ (μ̂; ν̂ ¼ 0, 1, 2, 3) satisfy Fμ̂ ν̂Fμ̂ ν̂ ¼
Fμ̂ ν̂F�μ̂ ν̂ ¼ 0. The electromagnetic plane waves are exam-
ples of such fields.
Note that the form of the ModMax self-duality condition

given in (2.24), having F2 in the denominator, is not
suitable for studying the null fields. So, for this purpose we
will use the self-duality relation (2.23).
The null-field condition (4.3), in view of (2.28), implies

the following relation between the invariants s and p

sinh γs − cosh γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q
¼ 0 → s2 ¼ cosh2γp2 → s ¼ p cosh γ: ð4:6Þ

Since s and p are positive definite the solution exists only
for γ ≥ 0 as in the 4D ModMax theory [1]. From the
above equation and the form (2.5) of the ModMax
function HMM, we also see that Hnull ¼ p for null
fields, which is the Hamiltonian density of the 6D
counterpart [88] of the 4D conformal Bialynicki-Birula
electrodynamics [89].
Using the relation (4.6) in (2.23) we get

Eμν ¼ 2 cosh γ

�
Bμν þ

1

2s
ðB3Þμν

�
: ð4:7Þ

Substituting this expression into the identity (2.27) we find
the expression for the field strength of a generic null field in
this theory in terms of the components of Bμν subject to the
constraint (4.6). We should stress that Eq. (4.7) is valid in
any curved space-time background.
Let us now consider a plane wave solution (4.1) in flat

space-time. First, for simplicity, let us fix the PST gauge
of the local symmetry (2.8) such that vμ ¼ −δ0μ. Then, the
nonzero components of Eμν and Bμν are those along the
spatial directions i; j ¼ 1, 2, 3, 4, 5, i.e., Eij and Bij.
Further on, using the SOð5Þ transformations we can
always chose the spatial part of the wave vector kμ to be
aligned along the fifth direction, thus kμ ¼ ðk0; k5Þ. Then,
from (4.4) it follows that the only nonzero components of
Bij and Eij are in the directions orthogonal to k5, i.e., Bab

and Eab with a; b ¼ ð1; 2; 3; 4Þ. In view of (4.5), which in
the frame under consideration is equivalent to k0 ¼ �k5,
from (4.4) we have

Eab ¼ � 1

2
εabcdBcd: ð4:8Þ

This solves the null-field condition (4.3) and, upon sub-
stitution into (4.7) produces the nonlinear relation between
the components of Bab, which solves (4.6).

V. EXACT PLANE WAVE AND NULL FIELD
SOLUTIONS IN CURVED SPACE-TIMES

In this section we will study solutions to the 6D Einstein-
ModMax system that describe the simultaneous presence
and propagation of gravitational and 2-form gauge field
waves. We will start with the consideration of pp waves,
interpreted as gravitational waves with planar wave fronts
propagating through Minkowski space-time. Then, we will
study plane waves on top of AdS backgrounds, which
correspond to Siklos space-times. Finally, we will explore
gauge field waves on top of Robinson-Trautman space-
times, which are generically associated with radiative
space-times.

A. pp waves

We look for wave solutions to the Einstein-ModMax
equations of motion (3.8) with Λ ¼ 0. Let us consider a
pp-wave metric7

ds2 ¼ 2dudvþWðu; xaÞdu2 þ dxadxa; ð5:1Þ

where8 u ¼ − 1ffiffi
2

p ðx0 − x5Þ, v ¼ 1ffiffi
2

p ðx0 þ x5Þ (not to be

confused with the PST vector field vμ), and the index
a ¼ 1;…; 4 is associated with the flat four-dimensional
Euclidean subspace. The only nonzero component of the
Ricci tensor is

Ruu ¼ −
1

2
∂a∂aW; ð5:2Þ

where ∂a∂a ¼ ∂a∂bδ
ab is the Laplacian of the four-

dimensional flat Euclidean space. Let us now make the
following ansatz for the 3-form field strength:

F3 ¼ MabðuÞdxa ∧ dxb ∧ du; ð5:3Þ

where MabðuÞ is a u-dependent 4 × 4 antisymmetric
matrix. Note that F2 ¼ 0 for this choice. This is a particular
case of null fields, which must satisfy (4.6) and (4.7) to be a
solution of the 6D ModMax theory. If we take the auxiliary
timelike vector field vμ of the PST formalism as

vμ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ W

2

q δ0μ; ð5:4Þ

7More information about pp-wave metrics can be found in the
introduction of [90].

8Note that εvu1234 ¼ 1.
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then the electric field Eμν and magnetic field Bμν have
nonzero components only along xa directions

E2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þW
p Mabdxa ∧ dxb; ð5:5Þ

B2 ¼ −E�
2 ¼ −

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þW

p Mabεabcddxc ∧ dxd

¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þW
p M�

abdx
a ∧ dxb; ð5:6Þ

where the Hodge duality is taken in the four-dimensional
Euclidean subspace. This duality relation between E and B
is similar to Eq. (4.8) for plane waves. Substituting the
components of (5.5) and (5.6) into the nonlinear self-
duality condition (4.7) we find that the matrix MabðuÞ is
constrained as follows

Mab ¼ −2 cosh γ
�
M�

ab þ
2

M�
cdM

�cd ðM�3Þab
�
: ð5:7Þ

By appropriate Oð4Þ transformations, any antisymmetric
4 × 4matrixMab can be brought to a form in which its only
nonzero components are M0

12 ¼ −M0
21 and M0

34 ¼ −M0
43.

Using this result, we may obtain the general solution of
Eq. (5.7) in the following form

Mab ¼ La
cLb

dM0
cd ¼ 2ðL½a1Lb�2 − e�γL½a3Lb�4ÞλðuÞ;

ð5:8Þ

where λðuÞ ¼ M0
12 ¼ −e∓γM0

34 is an arbitrary function of u
and La

bðuÞ is a u-dependent generic Oð4Þ matrix, i.e.,
La

cLb
dδcd ¼ δab ðLLT ¼ IÞ. Hence,

MabMab ¼ 2λ2ðuÞð1þ e�2γÞ ð5:9Þ

and

2πGN

cosh γ
FμρσFν

ρσ ¼ 8πGNMabMab

cosh γ
δuμδ

u
ν

¼ 32πGNe�γλ2δuμδ
u
ν : ð5:10Þ

Having obtained the solution of the nonlinear self-duality
condition for the chiral 2-form, we can now look at the
corresponding Einstein equations (3.8) with Λ ¼ 0. As it
turns out, the only component of these equations that is not
automatically satisfied is the uu component. Using (5.2)
and (5.9), we obtain the following necessary and sufficient
conditions for the Einstein equations to hold:

∂a∂aW ¼ −16πGN
MabMab

cosh γ
¼ −64πGNe�γλ2ðuÞ: ð5:11Þ

The solution of (5.11) is

W ¼ CðuÞðxaxaÞ−1 − 8πGNλ
2e�γxaxa þ caðuÞxa þ cðuÞ

ð5:12Þ

for arbitrary functions CðuÞ, caðuÞ, and cðuÞ of u. Observe
that caðuÞ and cðuÞ can be gauged away by means of
coordinate transformations.9 When γ ¼ 0, La

b ¼ δa
b, and λ

is a constant, the above solution [for CðuÞ ¼ 0] reduces to a
maximally supersymmetric solution of 6D N ¼ ð1; 0Þ and
N ¼ ð2; 0Þ supergravities [53].

B. AdS plane waves

We will now generalize the result of the previous
subsection to AdS-wave solutions of the Einstein-
ModMax system (3.8) with the cosmological constant
set to Λ ¼ − 10

l2. For that, we will consider the following
Siklos space-times [55], which are interpreted as gravita-
tional waves propagating in the AdS space-time [56,91]:

ds2 ¼ l2

z2
ð2dudvþ dxadxaÞ þWðu; xaÞdu2; ð5:13Þ

where l stands for the AdS radius and xa ¼ fxi; zg (i ¼ 1,
2, 3). The Ricci tensor of (5.13) is

Rμν ¼ −
5

l2
gμν þ

1

2l2
ð6W − z2∂a∂aWÞδuμδuν : ð5:14Þ

Observe that these space-times are Einstein if and only if

6W − z2∂a∂aW ¼ 0: ð5:15Þ

A solution to these equations is given by [92]

Wðu; xaÞ ¼ ffiffiffi
z

p ðc1ðuÞI5=2ðzξÞ þ c2ðuÞK5=2ðzξÞÞ
× sinðξ⃗ · x⃗þ c3ðuÞÞ; ð5:16Þ

where ξ⃗ is a constant vector, ξ ¼ jξ⃗j, I and K stand for
the modified Bessel functions and ciðuÞ are arbitrary
functions of the coordinate u. Since (5.15) is linear, the
sum or an integral of its solutions with different ξ⃗ will
also be a solution of (5.15). For ξ⃗ ¼ 0, (5.16) simplifies
to Wðu; zÞ ¼ cðuÞz3 [93] and the metric describes six-
dimensional Kaigorodov’s space-time [94].
For the gauge field strength, we take the same ansatz as

in (5.3). Then, it can be readily checked that MabðuÞ as
in (5.8) satisfies the ModMax nonlinear self-duality
Eq. (4.7) in the background (5.13). Then Eq. (5.10) holds

9To this effect one should perform the shifts v→v− 2cðuÞþcaca

4
−

caðuÞ
2

xa and xa → xa þ 1
2

R
caðuÞdu.
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again, so the Einstein equations (5.14) are satisfied if and
only if

6W − z2∂a∂aW ¼ 64πGNe�γλ2z4

l2
: ð5:17Þ

The solutions to these equations are given by

Wðu; xaÞ ¼ Whomðu; xaÞ þ 32πGNe�γλ2z4

3l2
; ð5:18Þ

where Whomðu; xaÞ is the general solution to the homo-
geneous part of (5.17) given by the linear combination of
the solutions (5.16) with different ξ⃗.
We have thus derived asymptotically AdS plane-wave

solutions of the Einstein-ModMax system. The asymptoti-
cally flat plane wave solutions considered in Sec. VA
are obtained from the AdS ones in the limit l → ∞. To take
this limit one should shift the variable z by l, i.e., introduce
the new coordinate x4 ¼ z − l. Then, in the limit l → ∞ the
metric (5.13) reduces to (5.1), the Ricci tensor (5.14)
reduces to (5.2) and Eq. (5.17) for W reduces to (5.11).

C. Robinson-Trautman solutions

Solutions of Robinson-Trautman space-time type [58]
have been considered in linear p-form theories coupled to
gravity [59,60] and in presence of nonlinear vector-field
electrodynamics [17,95–97]. Wewill show that the nonlinear
6D Einstein-ModMax system with a cosmological constant
Λ also admits such solutions, which generalize the plane-
wave solutions considered in the previous subsections.
D-dimensional Robinson-Trautman space-times are

those admitting a nontwisting, nonshearing but expanding
congruence of null geodesics. The class of Robinson-
Trautaman space-times includes very different types of
solutions, such as static or accelerating black-hole solutions
with a cosmological constant or pure radiation solutions
(see, e.g., [59,98–100]). Here we are interested in a
radiative subclass of Robinson-Trautaman space-times that
are induced by a chiral 2-form gauge field with the
ModMax null field strength F2 ¼ 0 of the form given
in (5.3), (5.7), and (5.8). The form of the Robinson-
Trautman metric is inspired by those considered in the
context of D-dimensional conformal nonlinear electrody-
namics of a gauge vector field in [96], namely

ds2 ¼ 2dudvþWðu; v; xaÞdu2 þ hðu; xaÞ1=4v2dxadxa;
ð5:19Þ

where Wðu; v; xaÞ and hðu; xaÞ are (a priori) arbitrary
functions of the light-cone coordinates u and v, and
coordinates xa of four-dimensional Euclidean subspace.
As in [96], we will take the four-dimensional family of
conformally flat Riemannian metrics hðu; xaÞ1=4dxadxa

be Einstein with the scalar curvature equal to 4μ.
Observe that (5.19) belongs to the Robinson-Trautman
class, since the vector kμ ¼ δμv defines a null congruence of
geodesics such that

∂½μkν� ¼ 0; Lkgμν ¼
σ

2
gμν þ ξðμkνÞ;

σ ¼ 4

v
; ξμ ¼

�
∂vW −

2W
v

�
δuμ − σδvμ; ð5:20Þ

where the expansion σ (defined as in [101]) is clearly
nonvanishing.
For the gauge field strength F3, we will take the same

ansatz as for the other wavelike solutions, cf. Eq. (5.3). As
before, one finds that the ModMax self-duality condition
(4.7) is fulfilled if and only ifMab is given by (5.8). Hence,
we may concentrate on solving the Einstein equations. To
this aim, we note that the only nonzero component of the
ModMax energy momentum tensor of (5.3) is Tuu, i.e.,

2πGN

cosh γ
FμρσFν

ρσ ¼ 8πGNMabMab

cosh γv4
ffiffiffi
h

p δuμδ
u
ν

¼ 32πGNe�γλ2ðuÞ
v4

ffiffiffi
h

p δuμδ
u
ν : ð5:21Þ

Performing the explicit computations or using the results
given in the Appendix of [96], we find that the uv
component of the Einstein equations reduces to

Ruv−
1

2
Λguv¼

1

2

�
−
∂uh
vh

þ4∂vW
v

þ∂
2
vW−Λ

�
¼0: ð5:22Þ

Consequently,

W ¼ W1ðu; xaÞ
v3

þW2ðu; xaÞ þ v
∂uh
4h

þ v2

10
Λ; ð5:23Þ

where W1ðu; xaÞ and W2ðu; xaÞ are arbitrary functions
of the indicated variables. Plugging this result into the
diagonal components of the Einstein equations along the
four-dimensional conformally flat Einstein subspace (i.e.,
aa components), and performing either the explicit calcu-
lation or using the results in [96] one finds that (no
summation is implied)

Raa−
1

2
Λgaa¼h1=4ðμþ3W2Þ¼0; →W2ðu;xaÞ¼−

μ

3
;

ð5:24Þ

so W2ðu; xaÞ is constant and controlled by the spatial
curvature (recall that it is 4μ) of the four-dimensional
conformally flat sections. Using this result, one learns that

Rua ¼ −
∂aW1

2v4
¼ 0; → W1 ¼ W1ðuÞ: ð5:25Þ
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Finally, using the latter condition in the remaining compo-
nents of the Einstein equations we find that

−128πGNe�γλ2ðuÞh1=2 þ 8hW0
1 þ 5∂uhW1 ¼ 0: ð5:26Þ

The solution of this equation for h is

h ¼ 1

4W8=5
1

�
fðxaÞ þ

Z
128e�γπGNλ

2

5W1=5
1

du

�
2

; ð5:27Þ

where fðxaÞ is an arbitrary function of the transverse
coordinates xa. Consequently, the form of Wðu; v; xaÞ
given by (5.23), (5.24), and (5.25), and hðu; xaÞ in
(5.27) describe a Robinson-Trautman solution of the 6D
Einstein-ModMax system.

VI. STATIC BLACK AND EXTREMAL
DYONIC STRING SOLUTIONS

Let us now look for solutions of the Einstein-ModMax
system, Eqs. (2.23) [or (2.24)] and (3.8) in which we set
Λ ¼ 0, describing a black self-dual string. To this aim, as
suggested by the form of black string solutions in D ¼ 6
supergravities [65], let us assume the following ansatz for
the metric:

ds26 ¼
1

gðrÞ ð−fðrÞdt
2 þ dx2Þ þ gðrÞ

�
dr2

fðrÞ þ r2dΩ2
3

�
;

ð6:1Þ

where

dΩ2
3 ¼ dθ2 þ sin2 θdϕ2 þ sin2 θ sin2 ϕdψ2

is the round-sphere metric. For the 2-form gauge field
we take

A2 ¼ 2QKðrÞdt ∧ dxþ 2P sin2 θ cosϕdθ ∧ dψ ; ð6:2Þ

and

F3 ¼ dA2 ¼ 2Q�ϵ3 þ 2Pϵ3; ð6:3Þ

where dK
dr ¼ 1

r3gðrÞ2, ϵ3 ¼ sin2 θ sinϕdθ ∧ dϕ ∧ dψ is the

three-sphere volume form and �ϵ3 ¼ 1
r3gðrÞ2 dt ∧ dx ∧ dr

is its 6D Hodge dual. The string world sheet is parametrized
by the ðt; xÞ coordinates, and, as we will show below,Q and
P are related to the (equal) electric and magnetic charges of
the string, respectively.
First, let us analyze under which conditions the field

strength (6.3) satisfies the self-duality conditions (2.23)
[or (2.24)]. To this end it is convenient to gauge fix the

auxiliary field ∂μa ¼ −δ0μ. Then, for the ansatz (6.3), the
electric field E ¼ 1

2
Eμνdxμ ∧ dxν and the magnetic field

B ¼ 1
2
Bμνdxμ ∧ dxν are10

E ¼ 2Q

r3gðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp dx ∧ dr;

B ¼ 2P

r3gðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞgðrÞp dx ∧ dr; ð6:4Þ

and one can easily see that the invariant p [defined in (2.4)]
is zero. Hence, since s ≥ 0, Eq. (2.23) reduces to

Eμν ¼ eγBμν þ
sinh γ
s

ðB3Þμν; ð6:5Þ

which for (6.4) implies

P ¼ eγQ: ð6:6Þ

Consequently, the 3-form G3 introduced in (2.24) is

G3 ¼ 2Qeγ�ϵ3 þ 2Qϵ3 ¼ F�
3: ð6:7Þ

Observe that FμνρFμνρ ¼ 24
r6ðgðrÞÞ3 Q

2ðe2γ − 1Þ, so it is

nonzero unless γ ¼ 0, in which case F3 becomes Hodge
self-dual.
Finally, let us relate the constant Q to the physical

(Noether) electric and magnetic charges of the string.
As usual, these are defined [in our conventions and in
accordance with the gauge field equations (3.6)], as
follows:

Qe ¼
1

2

Z
S3
ιS3G

�
3; Qm ¼ 1

2

Z
S3
ιS3F3: ð6:8Þ

where ιS3 stands for the pullback of the embedding of S3

into the six-dimensional space-time. For the ModMax self-
dual black string solution we find that

Q ≔ Qe ¼ Qm ¼ 2π2Qeγ: ð6:9Þ

Replacing Q with the physical charge in (6.3) and (6.7)
we get

F3 ¼
1

π2
e−γQ�ϵ3 þ

1

π2
Qϵ3 ¼ G�

3: ð6:10Þ

For solving the Einstein equations we compute the
ModMax energy momentum tensor. The result is

Tμν ¼
e−γQ2

2π4r6gðrÞ3 ð−gab; gijÞ; ð6:11Þ

10We are taking the orientation given by εtxrθϕψ ¼ 1.
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where ða; bÞ stand for the indices ðt; x; rÞ and ði; jÞ are
those of the three-sphere. As a consistency check, note that
Eq. (2.24) is identically solved by (6.10) and (6.11).
Now let us turn to the Einstein equations (3.8). For

Λ ¼ 0, these become

Rμν − 8πGNTμν ¼ 0: ð6:12Þ
The components ðijÞ of these equations along the three-
sphere are satisfied if and only if

4g2ð1 − fÞ − 2rf0g2 þ r2fðg0Þ2

− rgðrf0g0 þ 3fg0 þ rfg00Þ − 8e−γQ2GN

π3r4
¼ 0; ð6:13Þ

where the prime stands for the derivative with respect
to the radial coordinate. Solving for g00ðrÞ in (6.13) and
substituting the result into the xx component of Einstein’s
equations (6.12), we get

rf0 þ 2f − 2 ¼ 0; ð6:14Þ
whose solution is

f ¼ 1 −
r20
r2
; ð6:15Þ

where r20 is a constant which we take to be non-negative in
order to obtain black configurations. On the other hand,
observe that the Ricci scalar associated with the metric (6.1)
has the following form:

R¼−
gð−6þ6fþ6rf0 þr2f00Þþrfð3g0 þrg00Þ

r2g2
; ð6:16Þ

Since the tracelessness of the ModMax energy-momentum
tensor in (6.12) requires that R ¼ 0, upon the substitution
of (6.15) into (6.16) we find that R ¼ 0 if and only if

3g0 þ rg00 ¼ 0: ð6:17Þ

The general solution to this linear ordinary differential
equation is

g ¼ g∞ þ g0
r2

: ð6:18Þ

After an appropriate rescaling of the coordinates one can set
g∞ ¼ 1, which we will further assume. This form of gðrÞ
fixes KðrÞ ¼ 1

2g0gðrÞ in (6.2) modulo a constant term.

Now Einstein’s equations (6.12) for the metric (6.1) with
fðrÞ and gðrÞ given in (6.15) and (6.18), and Tμν given in
(6.11) are all satisfied if

r20 ¼ −g0 þ
2GNe−γQ2

π3g0
: ð6:19Þ

Here r ¼ r0 is the location of the event horizon, and the
functions f and g now become

f ¼ 1þ 1

r2

�
g0 −

2GNe−γQ2

π3g0

�
; g ¼ 1þ g0

r2
: ð6:20Þ

We will take g0 ≥ 0 to avoid curvature singularities in the
region r > 0. Observe that whenever r20 > 0, the solution
possesses a regular nonextremal horizon placed at r ¼ r0,
whose near-horizon geometry is Rindler2 ×R × S3, while
in the case r0 ¼ 0 near r ¼ 0 the geometry is AdS3 × S3,
exactly as in the case of the corresponding extremal dyonic-
string solutions in D ¼ 6 supergravities.
The computation above shows that Eqs. (6.1), (6.3), (6.6),

and (6.20) describe a solution of the Einstein-ModMax
system of equations. From the form of fðrÞ in (6.20) we see
that this solution is endowed with an event horizon whenever

g20 ≤ e−γ
2GNQ2

π3
: ð6:21Þ

For γ ¼ 0 and when the bound is not saturated, this black-
string solution coincides with that considered in [63] which
can be oxidized to a solution of the Neveu-Schwarz (NS)-NS
sector of string theory (see, e.g., [102]).11 When the bound is
saturated, i.e.,

g20 ¼ e−γ
2GNQ2

π3
; ð6:22Þ

we have f ¼ 1 from (6.20), and the horizon shrinks to zero
since now r0 ¼ 0 (6.19). This solution describes the
ModMax counterpart of the solitonic self-dual string of
D ¼ 6 supergravities preserving half supersymmetry [63],
the supergravity solution being recovered at γ ¼ 0. Note that
for γ > 0 the effect of e−γ is to decrease the bound on g20,
similar to the effect of ModMax on the bound of the mass of
Reissner-Nordström black holes inD ¼ 4 [2–4]. Wewill see
below how this affects the Arnowitt-Deser-Misner (ADM)
mass of the string.
Let us now briefly consider the thermodynamics asso-

ciated with the ModMax black string configuration. The
black-string temperature TBS is computed as the periodicity
of the Euclidean time that ensures the regularity of the
Euclidean geometry. The result is

TBS ¼
r0

2πðr20 þ g0Þ
¼ π2g0

4GNe−γQ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GNe−γQ2

π3g0
− g0

s
;

ð6:23Þ

11For γ ¼ 0, our chargeQ is related to the analogous chargeQe

of [102] as follows Q ¼
ffiffiffiffiffi
8π
GN

q
Qe.
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Regarding the black-string entropy SBS (per unit length in
the x direction of the string), it is equal to the one fourth of
the area of the event horizon A ¼ RS3 r30gðr0Þϵ3 divided
by GN, since there are no higher-curvature corrections
involved:

SBS ¼
π2

2GN
r30

�
1þ g0

r20

�
¼ e−γQ2

πg0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GNe−γQ2

π3g0
− g0

s
:

ð6:24Þ

Finally, the ADM mass density MBS along the x direction
(i.e., the string tension T), computed using the prescription
described in [103], is

MBS ¼
π

2GN

�
g0 þ

3r20
4

�
¼ π

8GN

�
g0 þ

6GNe−γQ2

π3g0

�
:

ð6:25Þ

Note en passant that when r0 ¼ 0, which is the case of the
extremal string solution,

Mextr
BS ¼ π

2GN
g0 ¼ e−

γ
2

2jQjffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p : ð6:26Þ

This implies that the ratio of the ADM mass to the charge
of the extremal (solitonic) ModMax string differs from that
of the related supergravity solution by a factor of e−γ=2. The
effect of the factor e−γ=2 in this solution resembles the effect
of a constant dilaton eϕ0 in a self-dual string solution of a
6D supergravity discussed in [61,64].
In order to arrive at the first law of black-hole thermo-

dynamics, one needs to derive the corresponding chemical
potentials (for details see, e.g., [104]). On the one hand,
the “electric” chemical potential Φe associated with
F3 ¼ dA2 is

Φe ¼ lim
r→þ∞

ðA2Þtx − lim
r→r0

ðA2Þtx ¼
Q

ðg0 þ r20Þ
¼ πg0

4GNQ
;

ð6:27Þ

On the other hand, since due to Eq. (2.25) we have
F3 ¼ G�

3, then locally G�
3 ¼ dA2, and the “magnetic”

chemical potential Φm associated with G�
3 is equal to

Φe. Then, denoting the common value of the chemical
potential byΦ, we find that the following first law of black-
string thermodynamics is satisfied

dMBS ¼ TBSdSBS þ 2ΦdQ: ð6:28Þ

The factor of 2 in front of the chemical potential is due to
the equality between ðQe;ΦeÞ and ðQm;ΦmÞ (a conse-
quence of the ModMax self-duality condition).

A. Extremal wavy string

Additionally, let us show that there also exist solutions
describing extremal dyonic ModMax strings with waves
propagating along their world sheet similar to those
considered in [105]. We make the following ansatz for
the metric

ds26 ¼
1

gðrÞ ð2dudvþ hðu; rÞdu2Þ þ gðrÞðdr2 þ r2dΩ2
3Þ;

ð6:29Þ

demanding A2 and F3 to be as in (6.2) and (6.3). We also
take P and Q to be related by the ModMax nonlinear self-
duality condition (6.6) and to the physical string charge Q
by (6.9).
Computing the Ricci scalar of (6.29) and setting it to

zero, we obtain the same equation for gðrÞ as in the static
black string case (6.17), which implies

gðrÞ ¼ 1þ g0
r2

: ð6:30Þ

Now we observe that, as in the static extremal string case,
the angular (three-sphere) components of the Einstein
equations (3.8) with Λ ¼ 0 are solved if and only if g0
is related to the string charge Q as in (6.22). Then, all the
components of the Einstein equations are solved, with the
exception of the uu component. The condition we get for its
vanishing is

3∂rhþ r∂2rh ¼ 0: ð6:31Þ

The most general solution to this equation is hðu; rÞ ¼
cðuÞ þ fðuÞ

r2 , for arbitrary u-dependent functions c and f.
However, the function cðuÞ can be gauged away by a
redefinition of the v coordinate, and we are left with

hðu; rÞ ¼ fðuÞ
r2

: ð6:32Þ

Thus, we have shown that the 6D Einstein-ModMax system
admits an extremal self-dual string solution with waves
propagating along its world sheet.

VII. TOWARDS ROTATING STRINGS
IN 6D EINSTEIN-MODMAX THEORY

Finally, we would like to conclude this study of solutions
of the 6D Einstein-ModMax system with a preliminary
result towards the finding of the first rotating ModMax
black-string solutions that would generalize those found in
D ¼ 6 supergravities [68,72,73,106,107]. As it turns out,
deriving a complete solution of this type proves to be a
rather nontrivial problem. A similar issue has been encoun-
tered in four dimensions [9], where it was shown that a
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canonical slowly rotating black-hole ansatz does not solve
the equations of motion of generic nonlinear electrody-
namics theories coupled to GR.
So far, we have managed to find an exact solution which

we interpret as a “near horizon” limit of a rotating self-dual
extremal Einstein-ModMax string. As an ansatz for the
metric and the 3-form field strength of this solution, we take
the one similar to that considered for rotating black strings
in 6D supergravity [72]:

ds2 ¼ AðrÞð−e1 ⊗ e1 þ e2 ⊗ e2Þ þ
dr2

DðrÞ

þ r2

4DðrÞ ðσ
2
3 þ dθ2 þ sin2θdϕ2Þ; ð7:1Þ

F3 ¼
Qe−γ

π2
dðKðrÞdt ∧ dxÞ þ Q

8π2
sin θdθ ∧ dϕ ∧ dψ

þ dðWðrÞðdt − dxÞ ∧ σ3Þ; ð7:2Þ

e1¼dtþωðrÞσ3; e2¼dxþωðrÞσ3; σ3¼dψ −cosθdϕ;

ð7:3Þ

where Q is associated with the string charge as in (6.8)
and (6.9). For this solution, we found convenient to perform
a change of the angular coordinates with respect to the
static string case, to match directly with similar results in
the literature [72]. Namely, here S3 is parametrized as an S1

fiber over S2.
We find that the Einstein equations (3.8) (with Λ ¼ 0)

and the ModMax equations (2.24) are satisfied if the
functions AðrÞ, DðrÞ, KðrÞ, WðrÞ, and ωðrÞ have the
following form:

AðrÞ ¼ DðrÞ ¼ 2π2eγ=2r2ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
Q
; KðrÞ ¼ π3eγr2

4GNQ2
;

WðrÞ ¼ πJ
8Q

eγ=2; ωðrÞ ¼ JGNe−γ=2

2r2
; ð7:4Þ

where J is an arbitrary constant of dimension length−1,
which we will relate below to string angular momentum.
Observe that, in the limit J → 0, one recovers the near-
horizon geometry of the static extremal dyonic string
of Sec. VI.
For the functions (7.4), it turns out that the following

shift of the angular coordinate ψ

dψ ¼ dψ̂ þ π3eγ=2J
Q2

ðdt − dxÞ ð7:5Þ

brings the metric (7.1) to the form

ds2¼ 4π2eγ=2ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
Q
r2dudv−

π2
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
J2eγ=2

4Q3
du2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
Qe−γ=2

2π2
dr2

r2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
Qe−γ=2

8π2
ððdψ̂−cosθdϕÞ2þdθ2þsin2θdϕ2Þ;

ð7:6Þ

where, as in the case of wave solutions, u ¼ − 1ffiffi
2

p ðt − xÞ
and v ¼ 1ffiffi

2
p ðtþ xÞ. One can see that the metric (7.6)

corresponds to an AdS3 × S3 geometry, characteristic of
extremal near-horizon geometries of six-dimensional
strings, while the AdS part of the metric actually corre-
sponds to the rotating Bañados-Teitelboim-Zanelli (BTZ)
black hole [108]. It can be checked that for γ ¼ 0, the metric
(7.6) describes the near-horizon geometry of a supersym-
metric rotating extremal self-dual string with equal electric
and magnetic charge considered in [68,72].12 From this
comparison, we infer that in our solution J is associated with
the angular momentum per unit length of the string. To
guarantee that this is the proper physical interpretation of this
constant, one should find the fully fledged rotating solution
and analyze its asymptotic behavior, a feature that wemiss in
the near-horizon solution.
Consequently, it is natural to interpret the metric (7.6) as

the near-horizon geometry of a rotating string solution in
the 6D Einstein-ModMax system that is yet to be found.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have presented the first examples of
solutions of 6DModMax theory coupled to gravity. We have
concentrated on the study of waves and self-dual black string
solutions. On the one hand, we analyzed pp-wave, Siklos,
and Robinson-Trautman space-times, determining how the
ModMax parameter γ affects solutions with γ ¼ 0. On the
other hand, we studied black-string configurations and how
they differ from similar six-dimensional supergravity sol-
utions. In particular, we found a static self-dual black string
solution and showed that it satisfies the first law of
thermodynamics in which the dependence of the ADM
mass, temperature, and entropy of the black string on the
string charge is screened by a factor of e−γ=2 of the positive
ModMax parameter γ. Interestingly enough, the effect of the
factor e−γ=2 in this solution resembles the effect of a constant
dilaton eϕ0 in a self-dual string solution of a 6D supergravity
discussed in [61,64]. It would be of interest to elaborate on
this analogy elsewhere.

12Strictly speaking, the wouldbe horizon in that solution turns
out to be singular, since it corresponds to a curvature singularity.
Nevertheless, we may understand this solution as the extremal limit
of a proper black solution with a regular horizon. In this sense, one
may regard the geometry around r ¼ 0 as near horizon.
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There are several directions one may take for further
study of this theory. For instance, a nontrivial problem is to
find a fully fledged rotating extremal string solution in the
Einstein-ModMax system, whose near horizon limit was
obtained in Sec. VII. Another interesting problem is the full
classification of solutions of the Einstein-ModMax system
in the class of Robinson-Trautman space-times with an
aligned chiral 3-form field strength, generalizing those
obtained for γ ¼ 0 case in [59]. In yet other perspective,
there is a solution generating technique developed by
Garfinkle and Vachaspati [105,109] within the context of
supergravities, which allows one to add waves to an
existing solution possessing a null Killing vector without
changing other physical fields. The string solution with
propagating waves that we found in Sec. VI A suggests that
this method might also be generalized to 6D ModMax.
Another venue one can follow is to examine the dimen-

sional reduction of the found solutions and analyze the
corresponding solutions one gets in the four-dimensional
ModMax theory or its further reduction to three space-time
dimensions, and compare these results with those known in
the literature (see, e.g., [2–4,6,10,14]).
One more interesting problem is the supersymmetrization

of the 6D ModMax chiral 2-form theory and its coupling to
N ¼ ð1; 0Þ, D ¼ 6 supergravity. In four space-time dimen-
sions, an N ¼ 1 superconformal generalization of ModMax
electrodynamics was constructed and coupled to N ¼ 1,
D ¼ 4 supergravity [40,41] with the use of the N ¼ 1
superfield formalism, crucial for the accomplishment of this
construction. AnN ¼ 2 supersymmetric extension of the 4D
ModMax has not been completely successful yet, the main
technical difficulty being the fact that the full N ¼ 2
superspace measure is dimensionless and so must be the
superspace Lagrangian density as well, thus causing a
problem with having N ¼ 2 superconformal invariance. In
D ¼ 6 the simplest supersymmetry is N ¼ ð1; 0Þ which is
related to N ¼ 2, D ¼ 4 supersymmetry by dimensional
reduction. We therefore expect that the problem of the
supersymmetrization of the 6D ModMax and its coupling to
supergravity will be rather challenging, but exciting, also in
view of the fact that the superfield description ofN ¼ ð1; 0Þ,
D ¼ 6 supersymmetric theories is much more involved than
of the N ¼ 1, D ¼ 4 ones (see Ref. [110] for a Lagrangian
description of a linear chiral 2-form multiplet in an
N ¼ ð1; 0Þ, D ¼ 6 harmonic superspace [111,112]). As a
starting point one may study the possibility of coupling the
ModMax (anti)-chiral 2-form to another chiral 2-form field
and a dilaton, the fields which, together with the graviton,
constitute the bosonic part of the N ¼ ð1; 0Þ supergravity
coupled to a linear antichiral 2-formmultiplet (seeAppendix).
As an alternative approach to the supersymmetrization
problem, one may try to apply TT̄-like deformation tech-
niques [27,31] to the component action of [75] for the linear
chiral 2-form supermultiplet, facing however the problem of
on-shell closure of the supersymmetry transformations.

In another vein, it would also be interesting to explore
solutions of the 6DModMax system including higher-order
curvature corrections. To this aim, one could minimally
couple ModMax to higher-curvature gravities, such as
(generalized) quasitopological gravities [113–117] or their
upgraded cosmological versions [118]. One can also
examine the inclusion of nonminimal gravitational cou-
plings of ModMax following the strategy of [119–121].
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APPENDIX: THE RELATION BETWEEN TWO
FORMULATIONS OF N = ð1; 0Þ, D= 6

SUPERGRAVITY COUPLED TO A SINGLE
TENSOR MULTIPLET

The N ¼ ð1; 0Þ, D ¼ 6 supergravity under consideration
has two supermultiplets, the gravitational multiplet which
contains the graviton gμνðxÞ, a chiral 2-form field A0

μν and a
gravitino ψα

μðxÞ, and the tensor supermultiplet which
contains an antichiral 2-form field A1

μν, a scalar (dilaton)
field ϕðxÞ, and a spinorial field χαðxÞ (the index α labels a
symplectic Majorana-Weyl spinor representation of the 6D
Lorentz group). There are two Lagrangian formulations of
this theory. In the first one the chiral and antichiral 2-form
field are combined into a single nonchiral field Ãμν for
which the action has the conventional form [74]. In the
second formulation the chiral and antichiral field are treated
as a doublet AI

μν ¼ ðA0
μν; A1

μνÞ, and the action is constructed
with the use of the PST technique [75]. We would like to
elucidate the relation between these two formulations.
The bosonic part of the action of [74] in our normali-

zation of fields (and setting the gravitational constant
8πGN ¼ 1) is

S ¼
Z

d6x
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
∂μϕ∂

μϕ −
1

24
e−2ϕHμνρHμνρ

�
;

ðA1Þ
where Hμνρ ¼ 3∂½μÃνρ�.
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On the other hand, in the PST formulation the bosonic
part of the N ¼ ð1; 0Þ, D ¼ 6 supergravity action contain-
ing one chiral and one antichiral 2-form has the following
form [75] in our conventions and notation

S ¼
Z

d6x
ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
∂μϕ∂

μϕ

þ 1

4
ðηIJEI

μνBJμν −GIJðϕÞBI
μνBJμνÞ

�
; ðA2Þ

where BI
μν and EI

μν are as defined in (2.2) and (2.6) for each
of the two tensor field strengths FI

3 ¼ dAI
3 (I ¼ 0, 1),

ηIJ ¼
�
1 0

0 −1

�
; ðA3Þ

and

GIJðϕÞ ¼
 
coshð2ϕÞ sinhð2ϕÞ
sinhð2ϕÞ coshð2ϕÞ

!
: ðA4Þ

An SOð1; 1Þ group element matrix LJ
I ¼ ðLJ; LJ

1Þ has the
following form

LI
J ¼

�
coshϕ sinhϕ

sinhϕ coshϕ

�
ðA5Þ

So ηIJ ¼ LI
KηKLLJ

L, GIJ ¼ LI
KδKLLJ

L and

ðGIJÞ−1 ¼ ηIKGKLη
LJ: ðA6Þ

The “twisted” self-duality relations which one gets by
varying the above action with respect to AI

μν and solving the
corresponding equations of motion have the following form

EI
μν ¼ ηIKGKJðϕÞBJ

μν; ðA7Þ

which are equivalent to

FI
μνρ¼ηIKGKJðϕÞF�J

μνρ; F�I
μνρ¼ηIKGKJðϕÞFJ

μνρ: ðA8Þ

They are consistent with the Hodge duality operation
because of the property (A6) of GIJ. Note that for ϕ¼0
these equations disentangle and reduce to the self-duality of
F0
3 and the anti-self-duality of F1

3

F0
μνρ ¼ F�0

μνρ; F1
μνρ ¼ −F�1

μνρ: ðA9Þ

Let us now show how the self-duality relations (A8) can be
combined to produce the equation of motion for a nonchiral

2-form field strength that is obtained from the action (A1).
To this end we rewrite (A8) for each value of I ¼ ð0; 1Þ

F�0
μνρ ¼ coshð2ϕÞF0

μνρ þ sinhð2ϕÞF1
μνρ

F�1
μνρ ¼ − sinhð2ϕÞF0

μνρ − coshð2ϕÞF1
μνρ: ðA10Þ

Taking the sum of the above relations we have

e−2ϕðF0
μνρ − F1

μνρÞ ¼ F�0
μνρ þ F�1

μνρ: ðA11Þ

Acting now on the both sides with the covariant derivative
Dμ we get

∂μð
ffiffiffiffiffiffi
−g

p
e−2ϕðF0μνρ − F1μνρÞÞ ¼ 0: ðA12Þ

This is exactly the equation of motion for the non-chiral
gauge field which one obtains from the action (A1) if we set

Hμνρ ¼ F0
μνρ − F1

μνρ; Ãμν ¼ A0
μν − A1

μν: ðA13Þ

The relation (A11) is just the solution of the Eq. (A12) in
terms of the Hodge dual of the second linear combination
(i.e., the sum) of F0

3 and F1
3.

Let us now derive the energy-momentum tensor of the
fields FI

μνρ by varying the action (A2) with respect to the
metric gμν. The result is

Tμν ¼
1

4
gμνGIJBI

μνBJμν þ 1

2
vμvνGIJBI

μνBJμν

þ 1

4
GIJðBIBJÞμν − 2vðμpνÞ; ðA14Þ

where now

pμ ¼ −
1

8
εμνρσλκðBI

νρBJ
σλvκÞηIJ:

On the mass-shell (A7) the energy momentum tensor
reduces to that of Hμνρ

Tμνjon shell ¼
1

4
FI
ρλðμF

�Jρλ
νÞ ηIJ;

¼ 1

4
e−2ϕ

�
HμρλHν

ρλ −
1

6
gμνH2

�
; ðA15Þ

where to derive the expression on the right-hand side one
should use the relation (A11) and the definition (A13)
of Hμνρ.
One can also directly verify that the dilaton equations of

motion match as well. Indeed, the dilaton field equation
that follows from (A1) is

DμDμϕ ¼ −
1

12
e−2ϕHμνρHμνρ; ðA16Þ
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while that produced by (A2) is

DμDμϕ ¼ 1

4

dGIJðϕÞ
dϕ

BI
μνBJμν ¼ 1

4
e2ϕðB0

μν þ B1
μνÞ2 −

1

4
e−2ϕðB0

μν − B1
μνÞ2: ðA17Þ

The latter, using Eq. (A11) projected along vμ and the definition of (A13), can be rewritten as

DμDμϕ ¼ 1

4
e−2ϕ½ðE0

μν − E1
μνÞ2 − ðB0

μν − B1
μνÞ2�;

¼ 1

4
e−2ϕðHμνρvρHμνλvλ −H�

μνρvρH�μνλvλÞ≡ −
1

12
e−2ϕHμνρHμνρ; ðA18Þ

where to arrive at the final equality we used the identity (2.27) applied to Hμνρ.

We have thus shown that the bosonic sectors of the supergravity theories described by the action (A1) and (A2) are
classically equivalent. The addition of the fermionic sectors to these formulations would produce only some technical
complications for their comparison without changing the result.
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