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Gauging isometries of four-dimensional N ¼ 2 supergravity theories yields an N ¼ 2 supersymmetric
theory with a scalar potential. In this paper, we study the well-known constraints for four-dimensional
N ¼ 2 Minkowski vacua of such theories. We propose that classically a projective special Kähler
submanifold of the projective Kähler target space of the ungauged theory describes the moduli space of the
complex scalar fields of massless vector multiplets forN ¼ 2Minkowski vacua configurations, which then
receives quantum corrections from integrating out massive fields. Subloci of projective special Kähler
manifolds appear as supersymmetric flux vacua in the context of type IIB Calabi–Yau threefold
compactifications with background fluxes as well. While these flux vacua equations arise from the
critical locus of an N ¼ 1 superpotential, we show that these equations can also be obtained from the
N ¼ 2 supersymmetric Minkowski vacuum equations of gauged N ¼ 2 supergravity theories upon
gauging suitable isometries in the semiclassical universal hypermultiplet sector of type IIB string Calabi–
Yau threefold compactifications. Thus, we give an intrinsic N ¼ 2 supersymmetric interpretation to the
flux vacua equations.
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I. INTRODUCTION

It is well established that the low-energy effective action
of type IIB string theory compactified on a smooth Calabi–
Yau threefold is an ungauged four-dimensional N ¼ 2

supergravity theory with a moduli space of N ¼ 2 super-
symmetric Minkowski vacua [1,2]. Such ungauged N ¼ 2
supergravity theories consist of a single gravity multiplet,
nv vector multiplets, and nh hypermultiplets [3,4]. The
scalar fields of the vector multiplets and the hypermultiplets
parametrize a projective Kähler manifold MK of complex
dimension nv and a quaternionic Kähler manifold MQ of
real dimension 4nh, respectively. In the context of Calabi–
Yau compactifications the projective Kähler target space
manifold MK is identified with the complex structure
moduli space of the Calabi–Yau threefold [5–7], whereas a
semiclassical approximation of the quaternion Kähler
manifoldMQ is obtained from the universal hypermultiplet
and the complexified quantum Kähler moduli space of

complex dimension ðnh − 1Þ of the Calabi–Yau threefold
via the c map [8–10].
In this work, we want to study Calabi–Yau threefolds

with higher-dimensional complex structure moduli spaces
MK that possess lower-dimensional projective Kähler
submoduli spaces SK ⊂ MK . Such projective Kähler sub-
moduli spaces SK furnish again suitable target spaces of
ungauged four-dimensional N ¼ 2 supergravity theories
with dimC SK vector multiplets. Instead of considering a
N ¼ 2 supergravity theory with the vector multiplet target
space SK directly, we want to realize the target space SK as
the space of N ¼ 2 supersymmetric Minkowski vacua of a
scalar potential in the vector multiplet sector arising from a
gauged four-dimensional N ¼ 2 supergravity theory [3,4].
Examples of projective special Kähler submanifolds SK

are extremal transition loci in the complex structure moduli
space of Calabi–Yau threefolds [11–13]. Other examples
appear for families of Calabi–Yau threefolds with enhanced
discrete symmetries, such as the complex structure moduli
space SK of the one-parameter Dwork family of quintic
Calabi–Yau threefolds with the ðZ5Þ3 Greene–Plesser
symmetry [14], which is embedded in the complex struc-
ture moduli space MK of the 101-parameter family of
generic quintic Calabi–Yau threefolds.
The motivation for studying projective special Kähler

submanifolds from the N ¼ 2 supergravity perspective is
twofold. Firstly, we suggest a physical mechanism that
allows us to localize in the infrared to a projective Kähler
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target submanifold SK ⊂ MK of the large vector multiplet
target space manifoldMK . Secondly, such a construction is
motivated by string compactifications on Calabi–Yau three-
folds with background fluxes. Flux vacua of string com-
pactifications on Calabi–Yau threefolds—as for instance
recently studied with modern arithmetic methods in
Refs. [15–18]—are expected either to be truncated N ¼ 1
Calabi–Yau orientifold compactifications [19,20] or to cor-
respond toN ¼ 2 gauged supergravity theories [21–25]. It is
the latter scenario that we want to entertain here from the
supergravity perspective.
The conditions for supersymmetric flux vacua in Calabi–

Yau threefolds are typically formulated as the critical locus
of a flux induced superpotential, which per se is a notion of
N ¼ 1 supersymmetric theories [20,21,26]. These flux
vacua are also closely related to the supersymmetric
attractors in the context of supersymmetric black hole
solutions [27,28], which can be given a Hodge-theoretic
formulation in the context of complex structure moduli
spaces of Calabi–Yau threefolds. The main result of this
work is that the flux vacua equations—which arise from the
critical locus of an N ¼ 1 superpotential—can also be
obtained from gauging a pair of isometries in the universal
hypermultiplet sector of N ¼ 2 supergravity theories of
type IIB Calabi–Yau threefold compactifications, which is
a manifest N ¼ 2 supersymmetric construction.

II. SUBLOCI OF PROJECTIVE
SPECIAL KÄHLER MANIFOLDS

To describe the projective special Kähler target space
manifold MK of an ungauged N ¼ 2 supergravity theory
with nv vector multiplets, we consider the 2ðnv þ 1Þ-
dimensional (complex) vector space V with the real
symplectic basis ðαI; βJÞ, I; J ¼ 0;…; nv, and the sym-
plectic skew-symmetric pairing hαI; βJi ¼ δJI , hαI; αJi ¼ 0,
hβI; βJi ¼ 0. The vector space V together with its the
canonical C� action preserving the symplectic structure
admits a C� equivariant holomorphic Lagrangian immer-
sion of a conical special Kähler manifold McK ⊂ V of
complex codimension 1. Then the quotient space MK ¼
McK=C� gives rise to a projective special Kähler manifold
MK of complex dimension nv. The details of this con-
structions are developed in Refs. [29,30].1

Locally, the projective special Kähler manifold MK is
characterized by the complex vector

ΩðX0;…; XnvÞ ¼ XIαI − FJβ
J: ð1Þ

Here XI , I ¼ 0;…; nv, are the complex projective coor-
dinates and FJ, J ¼ 0;…; nv, are the derivatives of the
holomorphic prepotential FðX0;…; XnvÞ given by

FI ¼
∂F
∂XI : ð2Þ

The holomorphic prepotential FðX0;…; XnvÞ is of homo-
geneous degree 2, i.e.,

FðλX0;…; λXnvÞ ¼ λ2FðX0;…; XnvÞ: ð3Þ

Geometrically, the zero locus of the degree 2 prepoten-
tial FðX0;…; XnvÞ describes locally the C�-equivariant
Lagrangian immersion of the conical special Kähler mani-
fold McK ↪ V [30].
The imaginary part of the complex symmetric matrix

FIJ ¼ ∂
2F

∂XI
∂XJ has signature ðnv; 1Þ [32]. Furthermore, the

real and positive Kähler potential K of the projective
special Kähler manifold MK reads as

K ¼ − log ihΩ̄;Ωi; ð4Þ

which gives rise to a positive definite Hermitian Kähler
metric

Gi|̄ðz; z̄Þ¼
∂
2K

∂zi∂z̄|̄
; i;j¼ 1;…;nv; ð5Þ

in terms of a choice of affine local coordinates

zi ¼ Xi

X0
; i¼ 1;…;nv: ð6Þ

We consider now a projective special Kähler submani-
fold SK of complex dimension s, 1 ≤ s < nv. Let S ⊂ V be
a 2ðsþ 1Þ-dimensional symplectic subvector space of the
symplectic vector space V, which we assume without loss
of generality to be spanned by the basis vectors ðαA; βBÞ,
A;B ¼ 0;…; s. Furthermore, the affine coordinates
zi ¼ ðxa; ymÞ, a ¼ 1;…; s, m ¼ 1;…; nv − s, are given by

xa ¼Xa

X0
; ym¼Xsþm

X0
: ð7Þ

Then we define a projective special Kähler submanifold SK
as the sublocus ym ¼ 0, if for all xa

FAJjym¼0¼ 0; A¼ 0;…;s; J¼ sþ1;…;nv; ð8Þ

and the imaginary parts of the ðsþ 1Þ × ðsþ 1Þ-matrix
Fabjym¼0, a; b ¼ 0;…; s, and the ðnv − sÞ × ðnv − sÞ-
matrix Fsþm;sþnjym¼0, m; n ¼ 1;…; nv − s, are nondegen-
erate with signatures ðs; 1Þ and ðnv − s; 0Þ, respectively.
Then the complex vector Ω restricted to ym ¼ 0 yields the
Kähler potential KSK ,

KSK ðx1;…; xsÞ ¼ − log ihΩ̄;Ωijym¼0; ð9Þ
1See also Ref. [31] for an equivalent construction of a

projective special Kähler manifold.

HANS JOCKERS and SÖREN KOTLEWSKI PHYS. REV. D 110, 046019 (2024)

046019-2



which is the local Kähler potential of the projective special
Kähler submanifold SK . Note that the conditions (8) are
equivalent to

Xsþm¼ 0; FsþmðX0;…;Xs;0;…;0Þ¼ 0; ð10Þ

for all m ¼ 1;…; nv − s. This means that the symplectic
pairs consisting of the homogeneous coordinates Xsþm and
derivatives of the prepotential Fsþm have to vanish along
the submanifold SK .
In the context of compactifications of type IIB string

theory on a Calabi–Yau threefold the projective special
Kähler manifoldMK is the complex structure moduli space
of the Calabi–Yau threefold. The symplectic basis ðαI; βJÞ
is identified with a basis of three-form cohomology classes
generating H3ðX;RÞ, and its symplectic structure arises
from the skew-symmetric intersection pairing onH3ðX;RÞ.
The complex vector Ω becomes the nowhere vanishing
holomorphic (3,0) form generating the one-dimensional
Dolbeault cohomology class Hð3;0ÞðXÞ, and—as a conse-
quence of Griffiths’s transversality [33–35]—the deriva-
tives ∂I1 � � � ∂IkΩðX0;…; XnvÞ of ΩðX0;…; XnvÞ with
respect to the projective coordinates XI, I ¼ 0;…; nv,
for arbitrary but finitely many I1;…; Ik span the complex
cohomology group H3ðX;CÞ ¼ H3ðX;RÞ ⊗ C, i.e.,

H3ðX;CÞ ¼ ⟪∂I1 � � � ∂IkΩðX0;…; XnvÞ⟫: ð11Þ

A projective special Kähler subspace SK of the entire
complex structure moduli space MK is now characterized
in terms of Griffiths’s transversality by the property that the
space of cohomology classes S is given by

S¼⟪∂A1
� � �∂Ak

ΩðX0;…;XnvÞ⟫jym¼0
⊂H3ðX;CÞ: ð12Þ

Here the derivatives ∂Ai
are taken with respect to the first

(sþ 1) projective coordinates XAi , 0;…; s, only. If
dimC S < dimC H3ðX;CÞ, S furnishes a sub-Hodge struc-
ture of H3ðX;CÞ. Note that this is a highly nongeneric
condition, because taking successive derivatives of Ω along
an arbitrary coordinate direction zi at any random point in
the complex structure moduli space generically generates
the entire three-form cohomology. Namely, generically we
have H3ðX;CÞ ≃ ⟪Ω; ∂ziΩ; ∂2ziΩ; ∂

3
ziΩ; ∂

4
ziΩ;…⟫.

Note that the arithmetic attractor loci introduced in
Refs. [27,28] realize nontrivial zero-dimensional subloci
in the vector multiplet target space, which in our setup can
be viewed as zero-dimensional projective special Kähler
submanifolds. These attractor loci enjoy a physical inter-
pretation in the context of the attractor mechanism, which
describes black hole solutions of N ¼ 2 supergravity [36].

III. 4D N = 2 SUPERGRAVITY THEORIES

Our aim is now to construct a four-dimensional N ¼ 2
supergravity theory with the projective special Kähler
manifold MK as its target space in the vector multiplet
sector together with a scalar potential V that dynamically
constrains the flat directions of the scalar fields in the vector
multiplet sector to the projective special Kähler submani-
fold SK ⊂ MK . In other words, we want to construct an
N ¼ 2 supergravity theory with target space MK , whose
moduli space of supersymmetric N ¼ 2 Minkowski vacua
is parametrized in the vector multiplet sector by the
submanifold SK .
As opposed to four-dimensional ungaugedN ¼ 1 super-

gravity theories, which admit a holomorphic superpotential
of the N ¼ 1 chiral multiplets resulting in a scalar
potential, the four-dimensional ungauged N ¼ 2 super-
gravity theories cannot have a scalar potential for any of
their scalar fields. As a consequence, all scalar fields of
ungauged N ¼ 2 supergravity theories parametrize flat
directions of a real ð2nv þ 4nhÞ-dimensional moduli space
of four-dimensionalN ¼ 2Minkowski vacua. This moduli
space factors into MK ×MQ [3,4], where MK is the
projective special Kähler moduli space of complex dimen-
sion nv of the vector multiplet sector, and MQ is the
quaternionic Kähler moduli space of the hypermultiplet
sector. As a consequence, it is not possible to lift the flat
directions of the scalar degrees of freedom within the
framework of ungauged N ¼ 2 supergravity theories. In
particular, it is impossible to constrain with effective
ungauged N ¼ 2 supergravity theories the projective
special Kähler target space MK of the vector multiplet
scalar fields to a submanifold SK.
However, a scalar potential is generated in gaugedN ¼ 2

supergravity theories [3,4,21,37,38]. Let zi, i ¼ 1;…; nv,
be the complex scalar fields of the vector multiplets, qu,
u ¼ 1;…; 4nH, the real scalar fields of the hypermultiplets,
and AI

μ, I ¼ 0;…; nv, the ðnv þ 1Þ-electric gauge fields of
the graviphoton in the gravity multiplet and of the gauge
fields in the nv vector multiplet.
In order to describe gaugings of magnetic gauge fields

as well, we follow Refs. [37,38] and consider in addition
to the electric vector fields their dual magnetic gauge
fields Bμ;J [38], as proposed in Ref. [21]. For ease of
notation, we combine the electric and the magnetic vector
fields into the 2ðnv þ 1Þ vector fields ðCΛ

μ Þ ¼ ðAI
μ; Bμ;JÞ,

Λ ¼ 1;…; 2ðnv þ 1Þ. Similarly, we pair the projective
special Kähler coordinates XI with their derivatives
of the prepotential FJ into ðZΛÞ ¼ ðXI; FJÞ, Λ ¼
1;…; 2ðnv þ 1Þ. We call the quantities ZΛ—which are
all of homogenous degree 1 with respect to the projective
coordinates XI—the periods of the projective special
Kähler target space MK .
Let us now assume that the target spacesMK andMQ of

the scalar fields in the vector and hypermultiplet sectors
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possess continuous symmetries, which in turn give rise to
Killing vector fields kiλðzÞ∂i in MK and k̃u

λ̃
ðqÞ∂u in MQ.

Here the indices λ and λ̃ label the symmetries of MK and
MQ, respectively. We arrive at an N ¼ 2 gauged super-
gravity theory upon gauging (some of) these isometries by
introducing the gauge covariant derivatives for the vector
multiplet scalar fields [3,4,37,38]

Dμzi¼ ∂μzi−CΛ
μ kiΛðzÞ; kiΛðzÞ¼Θλ

Λk
i
λðzÞ; ð13Þ

and for the hypermultiplet scalar fields

Dμqu¼ ∂μqu−CΛ
μ k̃

u
ΛðqÞ; k̃uΛðqÞðqÞ¼ Θ̃λ̃

Λk̃
u
λ̃
ðqÞ: ð14Þ

In these gauge covariant derivatives the constants Θλ
Λ and

Θ̃λ̃
Λ denote the embedding tensor to the gauge fields [38],

which represents the choice of representation for the gauge
group of the vector multiplets and hypermultiplets, respec-
tively. The vector fields kiΛðzÞ∂i and k̃uΛðqÞ∂u with index
Λ ¼ 1;…; 2ðnv þ 1Þ, denote the Killing vectors that
appear in the covariant derivatives as governed by their
embedding tensors.
Since the scalar fields zi reside in the vector multiplet,

they must transform in the adjoint representation with
respect to the gauge symmetry [37,38]. This imposes strong
constraints on the vector multiplet embedding tensor Θλ

Λ,
which also implies that the scalar fields zi can never be
gauged for Abelian vector multiplets.
In order for the resulting theory to be N ¼ 2

supersymmetric, additional terms appear in the gauged
N ¼ 2 supergravity Lagrangian. In particular, the
gauged N ¼ 2 supergravity theory possesses the scalar
potential [3,4,21,37,38]

Vðz; qÞ ¼ eKðzÞ
�
2kZ̄ΛðzÞkiΛðzÞk2MK

þ 4kZ̄ΛðzÞk̃uΛðqÞk2MQ

þ trk∇iZ̄ΛðzÞPΛðqÞk2MK
−
3

2
trjZΛðzÞPΛðqÞj2

�
:

ð15Þ

Here k · kMK
and k · kMQ

are the norms of the special
Kähler metric gi|̄ðzÞ ¼ ∂i∂|̄KðzÞ of MK , and the quater-
nionic Kähler metric guvðqÞ of MQ, ∇i ¼ ∂i þ KiðzÞ
is the Kähler covariant derivative of MK, and
PΛðqÞ ¼ ðPa

ΛðqÞÞ, a ¼ 1; 2; 3, is the triplet of suð2Þ
Lie algebra valued Killing prepotentials and the trace
trð·Þ refers to the positive definite bilinear Killing form of
the suð2Þ Lie algebra acting on the Lie-algebra valued
Killing prepotentials PΛ. The Killing prepotentials
PΛðqÞ obey

−2k̃uΛðqÞKa
uvðqÞ ¼ ∇vPa

ΛðqÞ; a ¼ 1; 2; 3: ð16Þ

Here ∇vPa
Λ ¼ ∂vPa

Λ þ ϵabcωb
vPc

Λ is the SUð2Þ-covariant
derivative with respect to the subgroup SUð2Þ ≃ Spð1Þ
of the holonomy SpðnÞ · Spð1Þ of the quanternionic
Kähler manifold MQ, and Ka ¼ dωa þ 1

2
ϵabcωb ∧ ωc

is the curvature of the connection ωa
v. For more details

on the scalar potential Vðz; qÞ, see for instance
Refs. [3,4,21,37,38].
As the cosmological constant vanishes in a Minkowski

vacuum, it is necessary that the scalar potential vanishes as
well. Except for the last term in the scalar potential (15), all
remaining contributions are non-negative. It is further
shown in Refs. [37,38] that for an N ¼ 2 supersymmetric
Minkowski vacuum, the nonpositive term in the scalar
potential Vðz; qÞ must also vanish by itself. Therefore,
altogether we have that for an N ¼ 2 supersymmetric
Minkowski vacua the conditions

0 ¼ ZΛðzÞPΛðqÞ; 0 ¼ ∇|̄Z̄ΛðzÞPΛðqÞ;
0 ¼ Z̄ΛðzÞk̃uΛðqÞ; 0 ¼ Z̄ΛðzÞkiΛðzÞ ð17Þ

need to be obeyed. The constraint 0 ¼ Z̄ΛðzÞkiΛðzÞ gives a
relation only among the vector multiplet scalars, whereas
the constraints from the gauging of the isometries on the
quaternionic Kähler manifold realize interactions between
the vector multiplets and the hypermultiplets. Upon
inserting the differential equation (16) for the Killing
vectors k̃uΛðqÞ, these three relations can be equivalently
formulated as

0 ¼ ZΛðzÞPΛðqÞ; 0 ¼ ZΛðzÞ∂vPΛðqÞ;
0 ¼ ∂iZΛðzÞPΛðqÞ: ð18Þ

These conditions are indeed equivalent since the triplet of
curvature two-form Ka

uv are invertible for any a ¼ 1; 2; 3.
This can be seen by noting that Ka

uvðqÞ can be expressed in
terms of the quaternionic Kähler metric guwðqÞ and the
triplet of almost complex structures JaðqÞ, a ¼ 1; 2; 3, on
MQ as Ka

uvðqÞ ¼ guwðqÞðJaðqÞÞwv [4].

IV. SPACE OF N = 2 MINKOWSKI VACUA

Given a solution to the N ¼ 2 Minkowski vacuum
equations (17) in terms of expectation values of the scalar
fields z and q, the deformations to these expectation values
preserving Eqs. (17) correspond to flat directions of the
scalar potential (15) and give rise to N ¼ 2 massless
multiplets. The remaining obstructed deformations of
the scalar fields—not in accordance with the N ¼ 2
Minkowski vacuum equations (17)—generically assemble
themselves into massive N ¼ 2 multiplets [38]. The
obtained low-energy effective theory of the massless
N ¼ 2 multiplets furnishes an N ¼ 2 supergravity theory
of massless fields with a projective special Kähler and a
quanternionic Kähler target space for the vector multiplets
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and the hypermultiplets, respectively. We propose that
semiclassically the vector multiplet target space is a
projective special Kähler submanifold SK of the target
space MK of the ungauged supergravity theory. At the
quantum level the geometry SK receives one-loop pertur-
bative and nonperturbative quantum corrections from
integrating out the massive N ¼ 2 multiplets [39,40].
More specifically, let us now discuss the possible differ-

ent gaugings and their resultingN ¼ 2Minkowski vacuum
structure. We distinguish between gaugings of isometries in
the projective special Kähler target space manifoldMK and
of isometries in the quanternionic Kähler target space
manifold MQ.
As discussed in Refs. [37,38], gauging isometries of the

projective special Kähler manifold are constrained such
that the scalar field zi can only transform nontrivially in
the adjoint representation of a non-Abelian compact
gauge group. For generic loci, where the induced non-
negative term kZ̄ΛðzÞkiΛðzÞk2MK

in the scalar potential (15)
vanishes, the non-Abelian gauge group is broken to its
maximal torus, and the moduli space of the N ¼ 2
supersymmetric Minkowski vacuum realizes the Coulomb
branch of the non-Abelian N ¼ 2 gauge theory coupled to
gravity. For nongenericN ¼ 2 supersymmetric Minkowski
vacua there can still be an unbroken non-Abelian gauge
subgroup. For the various strata in the Coulomb branch
the Higgs mechanism generates a mass for the broken gauge
fields, which combine with the massive scalar fields into
short massive Bogomol'nyi–Prasad–Sommerfield (BPS)
vector multiplets [38]. Assuming that integrating out these
massive BPS vector multiplets yields again an effective
N ¼ 2 supersymmetric supergravity theory in terms of a
Lagrangian description, the masslessN ¼ 2 vector multip-
lets are again governed by a projective special Kähler target
space manifold of smaller dimension than MK . The
obtained effective prepotential F is not simply a classical
reduction of the prepotential of the original target space
MK , but in addition it receives a one-loop correction and
further nonperturbative instanton corrections from integrat-
ing out the massive multiplets [39].
The remaining terms in the scalar potential (15) of

gauged N ¼ 2 supergravity theories stem from gaugings
of isometries of the quanternionic Kähler manifold MQ.
For N ¼ 2 supersymmetric Minkowski vacua these gaug-
ings impose the remaining three types of constraints (18),
which involve both the scalar fields from the vector and
the hypermultiplet sector of the N ¼ 2 gauged super-
gravity theory. As a consequence, constraining the pro-
jective special Kähler manifold MK to a submanifold
SK in this way requires a quaternionic special Kähler
manifold with suitable isometries. We discuss these
gaugings and their resulting N ¼ 2 Minkowski vacua
in the context of N ¼ 2 supergravity theories arising
form Calabi–Yau threefold compactifications in the next
section.

V. GAUGED TYPE IIB CALABI–YAU
THREEFOLD COMPACTIFICATIONS

The low-energy effective action of type IIB string theory
compactified on a Calabi–Yau threefold yields an ungauged
four-dimensional N ¼ 2 supergravity theory [1,2]. In such
compactifications, the complex structure moduli of the
Calabi–Yau threefold realize the nV vector multiplets, and
the Calabi–Yau Kähler moduli give rise to nH − 1 hyper-
multiplets that combine with the universal hypermultiplet
(containing the dilaton) to the nH hypermultiplets of the
N ¼ 2 supergravity theory.
To discuss gaugings of such a hypermultiplet sector, we

need to have a handle on the quaternionic Kähler manifold
MQ for such compactifications. The structure of the
quaternionic Kähler manifold from Calabi–Yau compacti-
fications is of a very special type and can be constructed
semiclassically via the c map from the complex structure
moduli space of the mirror Calabi–Yau manifold [8–10].
For any Calabi–Yau threefold compactification of type IIB
string theory, the resulting quaternionic Kähler manifolds
always contain the universal hypermultipet sector, whose
scalar fields correspond to the complex axiodilaton and (the
duals of) the complex two-dimensional two-form tensor
field arising from the B field and the Ramond–Ramond
two-form field. The remaining nH − 1 hypermultiplets are
comprised of the complexified Kähler moduli of the
Calabi–Yau threefold and the internal B field and the
Ramond–Ramond two-form fields of the compactification
Calabi–Yau threefold. The semiclassical quaternionic target
spaces MQ constructed via the c map exhibit a rich
structure of isometries [9], which can be gauged. On the
quantum level, the semiclassical quaternionic target space
geometry receives intricate corrections that are challenging
to compute; see for instance the reviews [41,42].
In this paper, we focus on gaugings of the semiclassical

universal hypermultiplet, and leave the discussion for other
gaugings to future work.2 Our motivation for considering
gaugings in the universal hypermultiplet sector is twofold:
On the one hand, the universal hypermultiplet does not
depend on the geometry of the specific Calabi–Yau three-
fold. Hence, the gaugings of the universal hypermultiplet
sector are applicable to any Calabi–Yau threefold compac-
tification of type IIB string theory. On the other hand and
more importantly for us, gaugings of the universal hyper-
multiplet sector are closely related to the flux vacua
equations of Calabi–Yau geometries recently analyzed in
Refs. [15–18] by modern arithmetic techniques. Thus, the
goal of the remainder of this section is to exhibit a

2More general gaugings of the hypermultiplet sector of the
low-energy effective action of M theory compactified on a
Calabi–Yau threefold are studied in Refs. [43–47]. These five-
dimensional low-energy effective supergravity theories relate to
the four-dimensional N ¼ 2 gauged supergravity theories dis-
cussed in this note via further dimensional reduction on a circle.
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connection between such flux vacua and the universal
hypermultiplet gaugings of four-dimensional N ¼ 2
gauged supergravity theories.
TheN ¼ 2 flux vacuum equations arise from the critical

locus of the flux generated N ¼ 1 superpotential W of the
form [26,48]

Wðz; τÞ ¼
Z

ðF − τHÞ ∧ ΩðzÞ; ð19Þ

where H and F are the Neveu–Schwarz and Ramond–
Ramond background three-form fluxes, τ is the complex
axiodilaton, and Ω is the holomorphic (3,0) form of the
Calabi–Yau threefold. This superpotential is given by a
semiclassical analysis and receives perturbative and non-
perturbative quantum corrections [48–52]. Spelled out in
Refs. [15–18,21] the critical locus of flux vacua yield the
constraints

ZΛðzÞfΛ ¼ 0; ZΛðzÞhΛ ¼ 0;�
∂iZΛðzÞ�ðfΛ − τhΛÞ ¼ 0: ð20Þ

Here the (in suitable units) rational coefficients fΛ and hΛ
are the flux quanta of the three-form background fluxes F
and H, respectively. The first two equations arise from the
requirement that the superpotential and the derivative with
respect to the axiodilaton vanish in a flux vacuum, whereas
the last equation is obtained from the requirement that the
gradient of the superpotential W with respect to the
complex structure moduli zi ought to vanish as well. In
the context of N ¼ 2 supergravity theories, the flux-
induced superpotential (19) relates to a complex linear
combination of two real components of the triplet of the
Killing prepotentials PΛ [21,51]. Owing to the prominent
appearance of the axiodilaton in the flux vacuum equa-
tions (20), it is natural to consider the Killing prepotentials
attributed to the universal hypermultiplet.
The quaternionic geometry of the universal hypermul-

tiplet is well studied (see for instance Refs. [53–56]), and
it can be described in terms of the coset space
SUð2; 1Þ=SðUð2Þ × Uð1ÞÞ. As opposed to a generic qua-
ternionic Kähler manifold, which is not Kähler, the semi-
classical universal quaternionic Kähler manifold is actually
a Kähler manifold, whose complex local coordinates are
the complex coordinate C associated to the two-form
tensors of the universal hypermultiplet and the complex
coordinate S, which reads as

S ¼ e−ϕ þ iσ þ CC̄: ð21Þ

Here ϕ and σ are the real dilaton and the real axion of the
universal hypermultiplet. In terms of the complex coor-
dinates the Kähler potential KQ of the universal hyper-
multiplet then takes the form

KQ ¼ − log ½Sþ S̄ − 2CC̄�; ð22Þ

which results in the Kähler metric

ds2 ¼ eKQ
�
dSdS̄ − 2CdSdC̄ − 2C̄dS̄dC

þ 2ðSþ S̄ÞdCdC̄�: ð23Þ

The continuous isometries of the quaternionic Kähler
manifold of the universal hypermultiplet constitute the real
shift symmetry σ → σ þ s, s∈R, the Uð1Þ rotation of the
complex variable C, and the symmetry C → Cþ ϵ,
S → Sþ 2Cϵ̄þ ϵ2, ϵ∈C. Altogether, these four real iso-
metries yield the respective four real Killing vectors,

k̃1 ¼ ið∂S − ∂S̄Þ; k̃2 ¼
i
2
ðC∂C − C̄∂C̄Þ;

k̃3 ¼
1

2
ð∂C þ ∂C̄Þ −

i
2
ImCð∂S − ∂S̄Þ;

k̃4 ¼ −
i
2
ð∂C − ∂C̄Þ þ

i
2
ReCð∂S − ∂S̄Þ: ð24Þ

Solving the Killing vector equation (16), we arrive at the
associated real suð2Þ-valued Killing prepotentials,

P1 ¼
1

2
eϕiσ3;

P2 ¼ −eϕ=2ðReCiσ1 þ ImCiσ2Þ þ 1

2
ð1 − eϕCC̄Þiσ3;

P3 ¼ eϕ=2iσ2 þ eϕImCiσ3;

P4 ¼ eϕ=2iσ1 þ eϕReCiσ3; ð25Þ

where the generators of the Lie algebra suð2Þ are given by
iσa, a ¼ 1; 2; 3, with the Pauli matrices σa.
Let us now construct a gauged N ¼ 2 supergravity

theory that makes contact with the flux vacua equa-
tions (20). We pick two independent isometries of the
universal hypermultiplet sector that correspond to two
Killing prepotentials Pð1ÞðS; CÞ and Pð2ÞðS; CÞ, which
are functions of the complex fields S and C. With respect
to these two isometries we gauge the vector multiplets by
choosing the embedding tensor Θ̃λ̃

Λ such that the Killing
prepotentials contracted with the embedding tensor become

PΛðS; CÞ ¼ fΛPð1ÞðS; CÞ − hΛPð2ÞðS; CÞ; ð26Þ

in terms of the flux quanta fΛ and hΛ. Recall that the Killing
prepotentials Pð1ÞðS; CÞ and Pð2ÞðS; CÞ take values in the
Lie algebra suð2Þ. As a result for independent isometries
and for generic expectation values of the scalar fields S and
C, these two Killing prepotentials realize linearly indepen-
dent suð2Þ Lie algebra elements. As a consequence, the
N ¼ 2 Minkowski vacuum constraints (18) yield, for
generic expectation values of S and C, the equations
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ZΛðzÞfΛ ¼ 0; ZΛðzÞhΛ ¼ 0;

∂iZΛðzÞfΛ ¼ 0; ∂iZΛðzÞhΛ ¼ 0: ð27Þ

These constraints are more restrictive than the flux vacuum
equation (20) because—owing to the linearly independent
prepotentials Pð1ÞðS; CÞ and Pð2ÞðS; CÞ—the gradients of
the periods ZΛðzÞfΛ and ZΛðzÞhΛ are forced to vanish
separately. However, for the flux vacua equations (20) only
the linear combination of the gradients—as governed by the
expectation value of the axiodilaton—must be zero.
However, the comparison of the generic vacua condi-

tions (27) with the flux vacua equations (20) does not
involve the same number of degrees of freedom because the
N ¼ 2 universal hypermultiplet depends on the expect-
ation value of four real scalar fields, whereas the N ¼ 1
complex axiodilaton τ consists only of two real scalar
fields. Therefore, we impose the condition that the expect-
ation values of the scalar fields S and C are restricted such
that Lie algebra valued prepotentials Pð1ÞðS; CÞ and
Pð2ÞðS; CÞ become linearly dependent. That is to say the
Lie algebra valued Killing prepotentials Pð1ÞðS; CÞ and
Pð2ÞðS; CÞ viewed as three-dimensional real vectors
become parallel in the Lie algebra suð2Þ, i.e.,

ðS;CÞ∈T ; T ¼fðS;CÞjPð1ÞkPð2Þg: ð28Þ

We expect that the space T of such expectation values is of
real dimension 2 because the alignment of two three-
dimensional vectors requires two real degrees of freedom
out of the four real degrees of freedom of the universal
hypermultiplet. Thus this condition matches the two real
degrees of freedom of the axiodilaton τ in the flux vacua
equations (20). Therefore, we call this condition the
axiodilaton nongenericity constraint. It implies that
Eq. (26) restricted to the expectation values of T becomes

PΛðS; CÞjT ¼ ðfΛ − τT hΛÞPð1ÞðS; CÞjT ; ð29Þ

where τT is a function of the nongeneric expectation values
ðS; CÞ in the set T of the axiodilaton nongenericity
constraint. Note, however, the gradient of Eq. (26) with
respect to the universal hypermultiplet fields S and C
restricted to T still remains a sum of two linearly
independent Lie algebra valued quantities because the
Killing prepotentials Pð1Þ and Pð2Þ are by assumption
associated to two independent isometries. As a result, by
imposing the axiodilaton nongenericity constraint, we
arrive at the N ¼ 2 Minkowski vacua equations,

ZΛðzÞfΛ ¼ 0; ZΛðzÞhΛ ¼ 0;

∂iZΛðzÞðfΛ − τT hΛÞ ¼ 0 for ðS; CÞ∈ T : ð30Þ

These equations agree with the flux vacua equations (20)
upon identifying the N ¼ 1 axiodilaton field τ with the

constrained hypermultiplet function τT for the nongeneric
expectation values of ðS; CÞ∈ T .
Let us illustrate this class of gauging with an explicit

choice of universal hypermultiplet isometries that is given
in terms of the Killing prepotentials of Eq. (25) by

Pð1Þ ¼ P1; Pð2Þ ¼ P2: ð31Þ

Hence, we can read off directly that Pð1ÞkPð2Þ if and only if
ReðCÞ ¼ ImðCÞ ¼ 0, and we conclude that

T ¼ fðS; 0ÞjS∈Cg: ð32Þ

As proposed in the general discussion, this implies that
only 2 real degrees of freedom of the universal hyper-
multiplet remain unconstrained along the axiodilaton non-
genericity locus T . Moreover, on this space of nongeneric
expectation values, we find

P2jT ¼ e−ϕP1jT ; ð33Þ

such that Eq. (29) reduces to

PΛðS; CÞjT ¼ ðfΛ þ e−ϕhΛÞPð1ÞðS; CÞjT : ð34Þ

Thus, for this choice of gauging and the nongeneric choice
of expectation values ðS; CÞ∈ T , the N ¼ 2 Minkowski
vacuum constraints [Eq. (18)] are realized by

ZΛðzÞfΛ ¼ 0; ZΛðzÞhΛ ¼ 0;

∂iZΛðzÞðfΛ − e−ϕhΛÞ ¼ 0: ð35Þ

In contrast to the previous discussion we obtain that the
constrained hypermultiplet function τT ¼ e−ϕ does not
encode both remaining degrees of freedom of the universal
hypermultiplet, but only the real dilation ϕ. The axion σ is
unconstrained by these vacuum conditions.
The property that the constrained hypermultiplet func-

tion τT is independent of the real axion σ is not specific to
the considered choices of Killing prepotentials Pð1Þ and
Pð2Þ in this explicit example. Instead, it is a consequence of
the shift symmetry of σ, which at the classical level
prohibits a functional dependence of τT on the real axion
σ—also for any other two choices of a pair of isometries.
However, upon truncating to the N ¼ 1 setting, the field
dependent function τT must always become a holomorphic
function of 2 real scalar degrees of freedom because the
N ¼ 1 superpotential is a holomorphic function of N ¼ 1
chiral fields. We expect that the nongeneric dependence of
the function τT on a single real degree of freedom does not
occur once quantum corrections are taken into account.
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VI. DISCUSSION AND CONCLUSIONS

In this paper, we consider the interplay between gauged
isometries of the target spaces of N ¼ 2 gauged super-
gravities and the resulting semiclassical spaces of N ¼ 2
Minkowski vacua, which are the critical loci of the gauged
N ¼ 2 supergravity theories. We propose that—after inte-
grating out all massive degrees of freedom in such N ¼ 2
Minkowski vacua and under the assumption that the remain-
ing massless degrees of freedom enjoy a Lagrangian
description—the scalar fields of the masslessN ¼ 2 vector
multiplets parametrize a projective special Kähler target
space, which arises as a quantum deformation of a submani-
fold of the projective special Kähler manifold that is
associated to the ungauged N ¼ 2 supergravity theory.
We focus on those four-dimensionalN ¼ 2 supergravity

theories which are obtained as low-energy effective theories
of type IIB string compactifications. Such supergravity
theories possess a universal hypermultiplet sector, and we
study explicitly gauging isometries of this sector. We show
that the critical locus of the N ¼ 1 flux-induced super-
potential of Calabi–Yau threefolds arises also from the
N ¼ 2 vacuum equations of the supergravity theory by
gauging two independent isometries in the universal hyper-
multiplet sector.
Our motivation for studying the gauged N ¼ 2 super-

gravity theories obtained from the isometries of the universal
hypermultiplet sector is that such gaugings do not depend on
the specific details of the chosen Calabi–Yau threefold
compactification space. Nevertheless, we believe that gaug-
ing more general quaternionic isometries is an interesting
research direction to pursue. In particular, we expect that
extremal transitions between topologically distinct Calabi–
Yau threefolds in the context of type IIB string compacti-
fications are realized in terms of gaugedN ¼ 2 supergravity
theories, in which both projective special Kähler and
quaternionic Kähler isometries beyond the universal hyper-
multiplet sector are gauged. For such gauged supergravity
theories the space ofN ¼ 2Minkowski vacua realizes in the
Higgs branch the projective special Kähler submanifold,
which is a submanifold of the projective special Kähler
manifold of the Coulomb branch. In the field theory limit,

the interesting works [11–13] discuss in detail the con-
nection between the geometric Calabi–Yau extremal tran-
sitions and their realization in terms of type IIB string theory
compactifications. Formulating these extremal transitions in
the context of an effective gauged N ¼ 2 supergravity
description promises an interesting interplay between the
projective special Kähler and the quanternionic Kähler
manifolds of the vector multiplet and hypermultiplet sectors
beyond the field theory limit discussed in Refs. [11–13].3
Finally, let us remark that stringy quantum corrections to

the low-energy effective N ¼ 2 theories of Calabi–Yau
compactifications are expected to break the target space
isometries of the ungauged N ¼ 2 supergravity theories.
We believe that there is an interplay between such quantum
corrections and the gauging of isometries along the lines of
Ref. [57], where the gauging of isometries modifies the
zero mode structure of symmetry breaking instantons. A
detailed understanding of the relationship between non-
perturbatively broken target space isometries and gauged
N ¼ 2 supergravity theories possibly reveals a nontrivial
interplay between quantum effects in the vector multiplet
and in the hypermultiplet sector, which may, for instance,
have geometric implications in enumerative geometry for
pairs of Calabi–Yau threefolds that are connected via
extremal transitions.
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