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We study the classical Liouville field theory on Riemann surfaces of genus g > 1 in the presence of
vertex operators associated with branch points of orders m; > 1. In order to do so, we will consider the
generalized Schottky space &, ,(m) obtained as a holomorphic fibration over the Schottky space &, of the
(compactified) underlying Riemann surface. The fibers of &, ,(m) — &, correspond to configuration
spaces of n orbifold points of orders m = (my, ..., m,). Drawing on the previous work of Park et al.
[Adv. Math. 305, 856 (2017)] as well as Takhtajan and Zograf [Lett. Math. Phys. 109, 1119 (2018); 114, 60
(2024)], we define Hermitian metrics h; for tautological line bundles .#; over &, ,(m). These metrics
are expressed in terms of the first coefficient of the expansion of covering map J near each singular point
on the Schottky domain. Additionally, we define the regularized classical Liouville action S,, using
Schottky global coordinates on Riemann orbisurfaces with genus g > 1. We demonstrate that exp[S,, /7]

—1/m?
?“ M over &, ,(m).

Furthermore, we explicitly compute the first and second variations of the smooth real-valued function
T =S =yt (m; — ml’) logh; on the Schottky deformation space &, (m). We establish two key
results: (i) ., generates a combination of accessory and auxiliary parameters, and (ii) —.%,, acts as a
Kihler potential for a specific combination of Weil-Petersson and Takhtajan-Zograf metrics that appear in
the local index theorem for orbifold Riemann surfaces [Takhtajan and Zograf, Lett. Math. Phys. 109, 1119
(2018)]. The obtained results can then be interpreted in terms of the complex geometry of the Hodge line
bundle equipped with Quillen’s metric over the moduli space 2, (m) of Riemann orbisurfaces and the

serves as a Hermitian metric in the holomorphic Q-line bundle . =Q" | .Z

tree-level approximation of conformal Ward identities associated with quantum Liouville theory.

DOI: 10.1103/PhysRevD.110.046018

I. INTRODUCTION

Conformal field theory (CFT) in two dimensions has
found a wide range of applications in both physics and
mathematics. Perhaps, one of the most interesting appli-
cations of CFTs in mathematical physics is to the geometry
of surfaces: This is most clear in Liouville CFT, introduced
by Polyakov [1], which can be viewed as a quantum theory
of geometry in two dimensions [2,3]. This theory admits
two-dimensional surfaces of constant negative curvature
(possibly with sources) as its classical solutions. It is then
natural to consider these classical solutions as critical
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points of a certain functional defined on the space of all
smooth conformal metrics on a given Riemann surface. In
the context of string theory, this functional is known as the
Liouville action functional while its critical value is usually
called the classical Liouville action.

From a mathematical perspective, the connection
between Liouville theory and complex geometry of moduli
spaces of Riemann surfaces was first established by
Takhtajan and Zograf [4-6]. One novelty of their work
was the use of (Fuchsian or Schottky) projective structures
on Riemann surfaces to construct the Liouville action.
Zograf and Takhtajan proved that the classical Liouville
action is a Kihler potential for the Weill-Petersson (WP)
metric on moduli spaces of punctured Riemann spheres [5],
as well as on Schottky spaces of compact Riemann
surfaces [6]. In the case of punctured Riemann spheres,
the classical action is a generating function for the famous
accessory parameters of Klein and Poincaré. For compact
Riemann surfaces, the classical Liouville action is an
antiderivative of a one-form on the Schottky space given
by the difference of Fuchsian and Schottky projective

Published by the American Physical Society
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connections. In turn, this one-form is an antiderivative of
the Weil-Petersson symplectic two-form on the Schottky
space. See [7,8] for reviews of these results.

Later on, Takhtajan and Zograf introduced a new Kéhler
metric [9,10], called Takhtajan-Zograf (TZ) metric [11-13],
on the moduli space M, of punctured Riemann surfaces
in the process of deriving a local index theorem (in
Quillen’s form) for families of Cauchy-Riemann operators
(for its precise definition, see Sec. III A 3). In 2015, Park
et al. [14] found a Kihler potential h; for the ith TZ metric
in terms of the first coefficient of the Fourier expansion of a
covering map J near the ith puncture. The authors of [14]
also showed that these Kéhler potentials are essential for
defining classical Liouville actions that are invariant under
certain subgroups of the Teichmiiller modular group: An
appropriate definition of classical Liouville action on a
punctured Riemann surface needs a regularization pro-
cedure that introduces a “modular anomaly” (see [15]).
Kihler potentials h; are then essential in cancellation of
these anomalous contributions.

More recently, a generalization of local index theorem
(Theorem 1 of [10]) to the case of orbifold Riemann
surfaces [16], has lead Zograf and Takhtajan to introduce
yet another Kihler metric on the moduli space of Riemann
orbisurfaces. In order to avoid confusion, this new Kéhler
metric will be called the elliptic TZ metric while the one
introduced in [9,10] will be called the cuspidal TZ metric.!
Using the results of [14], Zograf and Takhtajan [16] also
found a Kéhler potential for the ith elliptic TZ metric in the
case of genus zero orbifold Riemann surfaces.

Motivated by the results of [14,16], this manuscript
explores the classical limit of Liouville field theory (LFT)
on orbifold Riemann surfaces with genus g > 1 using the
Schottky global coordinates.” Our main result can be
viewed as an extension of Theorems 1 and 2 of [14] to
the case of orbifold Riemann surfaces (both compact and
with punctures): While the authors of [14] considered the
classical Liouville action on (generalized) Schottky space
of punctured Riemann surfaces, we have to take into
account the contributions of orbifold points to the
Liouville action as well. Despite the fact that some aspects
of this generalization might be familiar to mathematicians
and experts, we have still chosen to include them here in
order to make this manuscript self-contained and more
accessible. In particular, while the method of proofs in this
work closely resemble those in [14—16] (and the references
therein), the details of calculations for the case of orbifolds,

"It was demonstrated by the authors of [16] that the elliptic TZ
metric converges to the cuspidal TZ metric in the limit that the
opening angle of corresponding elliptic fixed point approaches
Zero.

*While our main results are derived for the case of Riemann
orbisurfaces with genus g > 1, we still study genus zero Riemann
orbisurfaces to draw some important lessons.

to the best of our knowledge, have not appeared explicitly
anywhere in the literature.

From a mathematical perspective, our result provides
evidence that the connection between classical Liouville
action and Quillen’s metric in the Hodge line bundle
(see [15]) extends to the orbifold setting.3 From the point
of view of physics, the results of this paper have multiple
applications, many of which stem from the connection
between partition function of Liouville theory on a
Riemann surface with conical singularities and correlation
functions of Liouville vertex operators corresponding to
conical defects (see, e.g. [17-19]).

Studying CFTs like LFT on Riemann orbisurfaces with
genus g has additional reasons from the physics perspective.
One notable rationale comes from the fact that many
established constructions that relate geometry and entangle-
ment are based on bipartite entanglement. Examples of such
established results include the following: the emergence
of eternal black holes can be understood using quantum
entanglement between two copies of the boundary CFT in a
thermofield double (TFD) state [20]; the Ryu-Takayanagi
minimal area surface in AdS, anchored on the boundary of a
sub-region, determines the bipartite entanglement between
that sub-region and its complement in the dual theory [21];
the MERA ansatz reveals an additional dimension for
AdS spacetime in the direction of increasing or decreasing
(bipartite) entanglement [22]; and the linearized Einstein
equations can be derived from the (bipartite) entanglement of
the underlying quantum degrees of freedom [23]. However,
it is possible for the degrees of freedom to be entangled in a
multipartite manner, much like how many-point correlation
functions cannot be deduced from lower correlations. This is
evident in tripartite entangled states such as Greenberger-
Horne-Zeilinger and W states. These states (and some of
their deformations) are similar to the TFD state and can be
described by integrating over half of a higher genus surface
(with possible singularities). Another reason stems from the
Rényi entropies, S,. For a reduced density matrix p of a
spatial region A,

1 1
S, = ; log Tr(p") = 0 (logZ, —nlogZ,),

-n -n
where Z,, is the partition function on an orbifold Riemann
surface with nonzero genus and Z, symmetry. This
orbifold surface can be constructed by gluing together n
copies of the original system across the entangling region
A with some disjoint regions.4 The Schottky uniformiza-
tion suggests that distinct phases should be considered in
studying the Z,, partition function and, in order to prove the
RT formula, the extension of those distinct phases into a
quotient of Hz should be explored. Actually the dominant

’Some other mathematical implications of our result will be
highlighted in a forthcoming shorter version of this manuscript.
4See, e.g., [24].
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contribution, determined by the least action principle
based on the values in each phase, is important in
determining the wave function and proving the RT
formula.’ Accordingly, this implies that studying the
CFT on orbifold Riemann surfaces is especially instru-
mental in determining whether the assumption of replica
symmetry holds true in the dual gravitational system.

As another reason, it is worth noting that the correlation
functions of twist operators in a CFT have a connection to
partition functions on orbisurfaces with different genera;
specifically, a CFT that arises from the low energy limit
of a two-dimensional sigma model with a target space
of M"/S, (symmetric orbifold of n copies of M). This
relationship was highlighted in a paper by Lunin and
Mathur [27]. Interestingly, the sigma model with the
aforementioned target space can describe the low energy
behavior of the D1 — D5 system [28-30], which generates
a near horizon structure of AdS; x §3 x M,, as presented
in [31]. Thus, possessing knowledge about the Liouville
action on orbisurfaces can be highly advantageous for
gaining a better insight into not only the string theoretical
constructions of AdS;/CFT,, but also for addressing
important topics related to black hole physics, such as
microstate counting [32].

Given that we intend to allocate a part to extending our
findings from Riemann orbisurfaces to conical Riemann
surfaces, it is essential to outline here some motivations
behind this choice. One motivation ties into the importance
of investigating quantum gravity in three dimensions.
Previous research has shown [33,34]6 that if one only
considers smooth saddle points when calculating the
gravitational path integral in three-dimensional gravity,
the resulting regularized partition function is plagued by
two issues. First, the range of twists at a constant spin is
continuous rather than discrete. Second, when dealing with
high spins and energies near the edge of the spectrum, the
density of states becomes negative. The first difficulty can
potentially be resolved by considering recent findings that
suggest the dual theory of two-dimensional AdS gravity is
an ensemble of one-dimensional quantum mechanics
[37,38]. To address the issue of nonunitarity, it has been
proposed that extra contributions should be added to the
path integral over metrics, namely Seifert manifolds, which
are off-shell configurations [39].” It is particularly interest-
ing to note that through Kaluza-Klein reduction, the

For attempts in this direction, see [25,26].

®Pure gravity on global AdS; can be rewritten as two copies
of geometric quantization of a specific coadjoint orbit of the
Virasoro group [33,35]. For the path integral quantization of the
same coadjoint orbit and accordingly exploring the dual boun-
dary theory, see [36].

In another proposal, the three-dimensional theory is modified
by adding some special massive particles which it implies that
one should consider three-dimensional conical manifolds beside
the smooth saddles, see [40].

solutions of the derived two-dimensional theory are conical
Riemann surfaces.

The study of conical Riemann surfaces also plays a
crucial role in addressing a significant concern within the
realm of two-dimensional CFTs. Ideally, one aims to
resolve the constraints of conformal invariance and unitar-
ity to ascertain the permissible values for conformal
dimensions A; and operator product expansion (OPE)
coefficients. This pursuit would lead to a comprehensive
classification of two-dimensional CFTs. But since such
exhaustive classification does not exist (up to now), one can
at least explore the universal aspects of those data, i.e.,
those hold true in any conformal field theory. When all
scalar operators in three-point functions possess high
dimensions (i.e., they are “heavy”), a universal formula
for the averaged value of OPE coefficients emerges for
any unitary and compact two-dimensional CFT with a
central charge ¢ greater than 1, as detailed in Refs. [41,42]
(see also [43]). Notably, when 12A;/c¢ < 1, this formula
finds [42] a connection to the Dorn-Otto-Zamolodchikov-
Zamolodchikov formula for the structure constants of
vertex operators in Liouville theory. Actually, the classical
correlation function of Liouville vertex operators on a
Riemann surface with genus g can be linked to the on-shell
value of the Liouville action functional on the same
Riemann surface, albeit with the insertion of conical points
at the positions of those operators—effectively transform-
ing it into a conical Riemann surface. As a result, delving
into LFT on conical Riemann surfaces offers a dual benefit.
It not only allows us to investigate the universal features of
OPEs within two-dimensional CFTs but also sheds light on
certain facets of three-dimensional gravity in the presence
of heavy particles, a realm characterized by three-
dimensional geometry with conical defects.®

The aforementioned observation presents a different
aspect when examined within the context of the bulk dual.
Within semiclassical gravity, the wormhole amplitudes can
be understood as averaged solutions to the mentioned
CFT’s bootstrap constraints in the semiclassical limit
[44,45].9 To be more precise, the Euclidean wormhole
solutions provide connected contributions to the average of
products of CFT’s correlation functions.'® Moreover, by
initiating from a two-sphere boundary wormhole with
(n 4+ 1) massive particles going through the wormhole
and then analytically continuing the mass of (m + 1) of
them to the black hole regime, the two-sphere boundaries
are effectively joined at their (m + 1) pairs of insertion
points. This results in the creation of a genus-m handlebody

The operator with 12A;/c > 1 is dual to a black hole state.
See [43].

This interpretation differs from the random matrix interpre-
tation for 2D gravity, where averaging occurs across a family of
UV-complete quantum theories.

An alternative interpretation in terms of coarse graining in a
single CFT is provided by [46].
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with 2(n — m) conical singularities [44]."" Consequently,
the LFT on the single conical boundary of the handlebody
not only is connected to the analytical continuation of the
dimension of defect operators (mass of massive particles)
on two-boundary wormholes but also can shed light on the
statistical distribution of CFT’s data on some regime of
scaling dimensions.

Furthermore, it is established that there exist numerous
distinct families of black hole microstates, each comprising
an infinite number of members [47,48]. These families are
also closely related to geometries featuring Einstein-Rosen
bridges of potentially immense volume. Intriguingly, it has
been demonstrated that a substantial reduction in the
dimension of the Hilbert space can happen by adding
the contribution of wormhole saddle points in the gravi-
tational path integral. These wormholes yield minute yet
universal contributions to the quantum overlap of candidate
black hole microstates and shed light on the really
orthogonal ones [48]."2 Accordingly, this concept can also
help to resolve the problem [50] of growth of holographic
complexity at exponentially large times. Actually, some
of the microstates are created by massive particles with
masses below the black hole threshold, which reside behind
the horizon without altering the mass. Therefore, by
analytically continuing external operators to the black hole
regime in two-boundary wormholes, the LFT on conical
Riemann surfaces can also offer insights into the minute
overlaps between different microstates and, ultimately,
provide a deeper understanding of the Bekenstein-
Hawking entropy and holographic complexity.

Even more intriguingly, when one integrates out the
mentioned (on-shell) wormholes in three-dimensional
gravity coupled to sufficiently massive point particles, it
results in the emergence of random bulk three-point
interactions among these point particles. These interactions
exhibit the same statistical properties as the boundary OPE
coefficients [44]. As a consequence, it becomes apparent
that the LFT on conical Riemann surfaces can also be
utilized to investigate these random couplings within the
bulk effective field theory and to offer a controlled and
semiclassical way to realize the mechanism originally
proposed by Coleman, Giddings, and Strominger [51,52].

There are also other reasons to write this paper, which we
will mention in the Discussion section when more possible
applications for our results are explored.

Summary of results. Having motivated the importance of
studying Liouville theory on orbifold Riemann surfaces
(and, more generally, on Riemann surfaces with conical
singularities), we will now give a nontechnical summary of

"The parameters that define operator dimensions change into
moduli of the (conical) Riemann surface as the operators are
made heavy.

"See also [49].

our results."”> We start by explaining the two main chal-
lenges in defining the appropriate classical Liouville action
on a Riemann surface with conical singularities: (i) The first
difficulty arises from the divergence of the naive action near
each singular point. In order to deal with this problem, one
regulates the divergences by cutting out an infinitesimally
small disk around each singular point and adding appro-
priate boundary terms to the action to ensure a well-defined
variational principle around conical singularities (see, e.g.,
[5,53] and Remark 4.2). (ii) The second difficulty arises
only when the Riemann (orbi)surface of interest has non-
trivial topology: In this case, conformal anomaly forces
one to define the appropriate Liouville action on a planar
covering of this Riemann surface instead and the specific
choice of such a planar covering is equivalent to the choice
of a complex projective structure (see [6] as well as [7,8]);
as we will see in Sec. II, this fact manifests itself in the
transformation law of the Liouville energy-momentum
tensor under conformal transformations.

The regularization procedure needed to solve the first
difficulty results in a nontrivial transformation of the
regularized Liouville action under certain groups: For
the case of Riemann sphere with punctures, the regularized
Liouville action was shown to transform nontrivially under
the subgroup of mapping class group generated by the
permutations of punctures [15]. Intuitively, this is due to
the fact that such transformations can, in general, change
the radius of infinitesimally small circles around punctures.
A closely related phenomenon also happens for punctured
Riemann surfaces with genus g > 1 (see [14]): In this case,
one has to define the regularized Liouville action on a
planar covering of the punctured Riemann surface provided
by the Schottky uniformization of its compactification.
Each puncture has multiple representatives on this planar
covering which are related by the action of the covering
transformations (i.e., the Schottky group). Importantly,
the regularized Liouville action defined on this covering
can be shown [14] to be dependent on a specific choice
of a representative for each puncture—in other words, the
regularized Liouville action defined in this way is not
invariant under the action of the Schottky group. This could
be intuitively understood by drawing a (rough) similarity
between the action of Schottky group on representatives of
each puncture and that of permutations interchanging
different representatives.

Our first result can be understood as an explicit calcu-
lation of this nontrivial behavior of the regularized
Liouville action in the case of Riemann surfaces
with conical singularities (both for g =0 and ¢ > 1).14

A more technical review of our results is also provided in
Sec. II, while Secs. IV and V are devoted to proving these results.
For technical reasons, we only work with conical singular-
ities of angles 27z/m;, for N © m; > 1. However, we expect most
of our results to readily generalize to the case of Riemann
surfaces with more general conical singularities.
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While the big picture remains the same, the details of
calculations are more involved in this case due to the fact
that singular points are now weighted by their conical angles.

After understanding the behavior of regularized
Liouville action under symmetric or Schottky groups, a
mathematically natural question arises: Can we construct
an invariant object by starting from the regularized
Liouville action? Following [14], we answer this question
positively by constructing a natural object in terms of the
constant terms in the asymptotic expansion of Liouville
field near each singular point and showing that this object
transforms the same as regularized Liouville action under
both symmetric or Schottky groups. In turn, this shows that
the difference between regularized Liouville action and (a
constant multiple of) this new object is invariant under the
action of symmetric or Schottky groups. Alternatively, this
observation suggests that one is able to isolate the nontrivial
behavior of regularized Liouville action under the afore-
mentioned transformations: The regularized Liouville
action can be written as a sum of two terms, one of which
is invariant under the action of symmetric or Schottky
groups; we mention in passing that this form seems very
interesting in view of holography and we intend to study its
consequences for renormalized volume of handlebodies
with lines of conical defect in a future work.

Having found an “invariant Liouville action,” we turn to
studying its mathematical features by calculating its first
and second variations on the deformation space of (marked)
Schottky groups. From a physics perspective, one expects
these variations to be closely connected to the semiclassical
limit of conformal Ward identities (see, e.g., [7,19] for more
details). Our main results are then stated in Theorems 1
and 2 which can be regarded as generalizations of
Theorems 1 and 2 of [14] to the case of orbifold Riemann
surfaces. These results prove that the connection between
Liouville action and spectrum of Laplace operators (asso-
ciated with hyperbolic metric) generalizes to the case of
Riemann surfaces with conical singularities.

Related works. At this stage, we would like to make some
comments about the relation between our work and that of
other authors who have studied neighboring questions:

(1) In addition to the study of classical Liouville action
on generalized Schottky space of punctured Riemann
surfaces, Ref. [14] also studied Liouville theory on
punctured Riemann surfaces with quasi-Fuchsian
global coordinates. Moreover, the authors of [14]
have proved the holographic correspondence for
the case of punctured Riemann surfaces with both
Schottky and quasi-Fuchsian global coordinates."

The holographic correspondence for compact Riemann
surfaces has been proved a long time ago (see [54-56]) and
asserts that the renormalized volume of a hyperbolic three-
manifold, which is a purely three-dimensional quantity in its
definition, is equivalent with the classical Liouville action on its
conformal boundary—a purely two-dimensional quantity.

While Park and Teo [57] have already extended
the results of [14] to the case of orbifold Riemann
surfaces with quasi-Fuchsian global coordinates,'® a
rigorous study of Liouville action and holographic
correspondence for the case of Riemann orbisurfaces
with Schottky global coordinates has not appeared
anywhere in the literature. The present manuscript
aims to partially fill this gap: We study the classical
Liouville action on Schottky deformation space of
Riemann orbisurfaces but leave a rigorous proof
of the holographic correspondence to a future
work [58]."7

(i) Motivated by the study of quantum Hall states on
singular surfaces, Ref. [60] has studied the modular
invariant Liouville action on Riemann sphere
with conical singularities. For the special case of
Riemann orbisurfaces with genus g = 0, our results
are in agreement with that of Ref. [60].

(i) As we will further discuss in Sec. VI, the main
results of this paper (see Theorems 1 and 2) provide
strong evidence for a close connection between
classical Liouville action and (appropriately defined)
determinant of Laplacian on Riemann orbisurfaces
with genus g > 1; for Riemann sphere with conical
singularities, this connection has also been studied
by Kalvin (see, e.g., [61,62]).18 In this sense, our
results are closely related to the studies of the
Laplace-Beltrami operator on Riemann orbisurfaces
and its spectral properties [64,65]."

Structure of the paper. The structure of this work is as
follows: In Sec. II, we will briefly review the relationship
between correlation functions of heavy Liouville vertex
operators corresponding to branch points and the uniform-
ization theory of orbifold Riemann surfaces. Section III will
cover various topics related to the deformation theory of
Ahlfors and Bers. This will include a discussion of some
known facts about the geometry of Teichmiiller, Schottky,
and moduli spaces of Riemann orbisurfaces as well as some
variational formulas which we will need throughout this
manuscript. Section IV contains a detailed study of regu-
larized Liouville action and its geometric properties:
Section IVA studies the regularized classical action on

"®In particular, Ref. [57] also includes the proof of holographic
correspondence for the case of quasi-Fuchsian orbifolds. More-
over, from a physics perspective, such orbifolds have been
studied by Chandra, Collier, Hartman, and Maloney [44].

"While a rigorous proof of holographic correspondence is still
outstanding for the case of handlebody orbifolds, many refer-
ences have studied Einstein-Hilbert action on AdS; with conical
singularities in connection to correlation functions of Liouville
vertex operators (see, e.g., [43,59]).

More generally, see [63] for the derivation of a Polyakov-
type anomaly formula in this case.

From a physics perspective, the zeta-regularized determinant
of Laplacian on Riemann orbisurfaces has been recently studied
in [66].
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Riemann orbisurfaces of genus g =0 while Sec. IVB
focuses on the classical Liouville action defined for
Riemann orbisurfaces of genus g > 1. In Sec V, we will
first study Kéhler potentials h; for cuspidal and elliptic
Takhtajan-Zograf metrics on both M, and &, (m). In
particular, we will demonstrate that for certain special line
bundles -Z; equipped with Hermitian metrics h’", the first
Chern forms are related to the Kéhler form of TZ metrics
associated with elliptic and parabolic generators. Moreover,
we will show that the first Chern form of the Q-line bundle

_ 2
L=, Z ,(»1 ™) with Hermitian metric exp[S,./x] is
given by %(Uwp; here, S,, denotes the appropriately regu-

larized classical Liouville action. From these results, it is

. . . 2
casy to see that a specific combination wwp — w7, —

23 (my = s)wy ;. of Weil-Petersson and Takhtajan-

Zograf metrics has a global Kihler potential on &, ,(m)
given by &, =S, — Y " (m; — ml) log h;. Theorems 1
and 2 constitute the main findings of this paper and are
related to the first and second variations of .%,,. In Sec. VI,
we will provide a brief overview of some implications of our
findings and discuss potential pathways for future research.
Appendix A offers some mathematical background regard-
ing orbifold Riemann surfaces, while Appendix B delves
into geometric structures on such orbisurfaces. Moreover,
Appendix C outlines the derivation of various asymptotic
behaviors that are used throughout the main body of this
manuscript. Finally, for the convenience of the reader, a list
of symbols used throughout this text is also presented in
Appendix D.

II. CLASSICAL LIOUVILLE ACTION AND
UNIFORMIZATION THEORY

In this section, we will discuss the semiclassical limit of
quantum Liouville field theory on hyperbolic Riemann
orbisurfaces and its connection with the uniformization
theory. Let X be a compact Riemann surface of genus
g > 1. In the so-called geometric approach to quantum
Liouville theory, developed by Takhtajan in [2,17,18,67]
based on the original proposal by Polyakov [68],% the un-
normalized correlation functions of Liouville vertex oper-
ators with “charges” a; on the Riemann surface X are
defined by (we set A = 1)

(Ve (1) = Vi (50) = / Dye b7, (1)

C.M o(X)

where €. ,(X) is the space of all smooth conformal
metrics ¥ |du|*> on X\{x,, ..., x,} which have conical
singularities of angles 2z(1 — a;) at the insertion points,

*’See Refs. [69-73] for details regarding the relation between
geometric and standard approaches to Liouville CFT.

and Z4[w(u,u)] is the (regularized) Liouville action
functional which we intend to study.

When o;s take the special values l—nil‘_ for integers
m; > 2, vertex operators V. correspond to orbifold points
(or branch points) of orders m;; moreover, when m; is the
symbol oo, V. corresponds to a cusp. Then, the correlation
function (V,, (x)---V,, (x,)) of these twistlike vertex
operators can be interpreted as the partition function of LFT
on a (possibly punctured) Riemann orbisurface O of genus
g > 1. In this viewpoint, X plays the role of compactified
underlying Riemann surface of O, denoted by X 0, and the
collection of insertion points Sing(0) := {x;},_; ., CX
will be called the singular set of O. Then, the Riemann
orbisurface O can be characterized as the triple
(X,Sing(0),v), where v:Sing(0) = N> := (N\{1})u
{0} is the so-called branching function that assigns to
each singular point x; its corresponding branching order
m; €N for i = 1,...,n. Now, let X=X\ {x;|/m; =0}
be the underlying Riemann surface of O. A Riemann
orbisurface O can be equivalently characterized as a pair
(Xo, 2) where the so-called branch divisor,

9= {x;m} (1 - %) 2)

is a Q divisor on X, (see Sec. A 1d for more details).”!
When O has cusps, i.e., branch points of order m; = oo, we

will denote its compactification by O := (X, _@), where

7=+ > x. (3)

An orbifold Riemann surface O with g > 1 handles, n, > 3
conical points of orders 2<m; <---<m, < oo, and
n,>0 punctures is said to have the signature
(gsmy,....my in,).

Next, let O be an orbifold Riemann surface with
signature (g;m,...,m, ;n,) and let {(U,,u,)},ca be a
complex-analytic atlas on X, with charts U,, local
coordinates wu,: U, - C, and transition functions
Jap: Up(U, NU,) = u, (U, nU,). Denote by €.#(0)
the space of singular conformal metrics on X, representing
2. If X5¥ = X,\Sing(0) denotes the so-called regular
locus of O, every such metric ds*€%.#(0) is given
by a collection {e¥«|du,|*},ca, where the functions
W, €C®(U, N X8, R) satisfy

Waoga +10gld, P =w, onU,nU,NnXgE (4

2'By a Q divisor on a Riemann surface X, we simply mean
a formal linear combination of points on X with rational
coefficients.
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and near each singular point x; € U,, e¥« has the form

_ )
o2 g =i for m; < o
i )

() (5)

for m; = oo,

gl//a ~
S S
Jut —xi|2(10g [sta=2x; \)2

as u, — x;. According to the classical results of Picard
[74,75] and the more recent work of McOwen [76] and
Troyanov [77], when the Euler characteristic y(O) :=
#(Xo) —deg(?) =229 —n, = e, (1= 1/m;) s
negative—i.e., when O is hyperbolic—there exists a unique
singular conformal metric, called the hyperbolic metric, on
X o which represents the branch divisor & and has constant
Gaussian curvature —1 everywhere on X%, If we denote
this unique hyperbolic metric by dsj, = {e?|du,|*},c 4
and assuming that each open subset U, C X, includes at
most one singular point x; of order m;, the corresponding
function ¢, on U, satisfies the so-called Liouville equation
(see, e.g., [70])22

1 1
udnta=gen (1= )olu-x). (6

m;

which is equivalent to dsﬁyp having constant curvature —1
on X,¥ and satisfying asymptotics (5) near each singu-
lar point.

The problem is now to define (suitably regularized)
Liouville action functional on the Riemann orbisurface
O—a functional .%,,: €.#(0) — R such that its Euler-
Lagrange equation is the Liouville equation. However, it is
well known (see the discussion in [55]) that a general
mathematical definition of the Liouville action functional
on a Riemann orbisurface O of genus g > 1 is a nontrivial
problem. This is due to the fact that the classical Liouville
field ¢ is not a globally defined function on O but rather a
logarithm of the conformal factor of the metric. More
concretely, due to transformation law (4), local kinetic
terms |0, ¢,|*du, A dii, do not glue properly on
U,NnU,NnXg* and thus cannot be integrated over Xp°.
This means that “naive” Dirichlet type functional is
not well defined and cannot serve as an action for the
Liouville theory (it also diverges at the singular points). In
other words, the Liouville action functional cannot be
defined in terms of a Riemann orbisurface O alone and
additionally depends on the choice of a global coordinate
on X,®—a representation X,° = Qg/K, where K is a
Kleiman group with an invariant component Q C C and
Qg == Q\{fixed points}. As we will see in the next
subsection, for our purposes, it will be sufficient to consider

If the cone point x; is fixed to be at infinity, instead of the last
term on the right-hand side of (6), we have z(1 + 1)8(u, — x;).

m;

the case when K is either a Fuchsian group I" or a Schottky
group X.

Finally, let us mention that once the action functional is
defined, we can define the partition function (O), or rather
its free energy F, :=—1log(0), using the perturbative
expansion2

1 1 1
Fo =—1og(0) = —.% (0] +—logdet<Ao +§> + (h),

2nh 2
(7)

of the rhs of (1) around the classical solution ¢, where
L mlo] : D(K)/~— R (see Sec. IIl) is the regularized
classical Liouville action and A is the Laplace operator
of the hyperbolic metric acting on functions on O. In the
bulk of this paper, we will only concern the classical
contribution (i.e., contributions of order #7') to the free
energy [Fo, which is given by the classical Liouville
action .%,,.

A. Fuchsian and Schottky uniformizations

Consider a hyperbolic orbifold Riemann surface
0 = (Xp.2) with signature (g;my,...,m, ;n,) and fix
a base point x, € X,;°. Let us choose a standard system of
generators for the orbifold fundamental group,

(0 x*) <A],Bl,...,Ag,Bg,Cl,...,Cne,Pl,...,Pnp

g e p
crm=-..=ci =T[A.BIT]C, m_m>
i—=1 1

1 j=1 k=

where A;s, B;s, C;s, and P;s are homotopy classes of
loops based at x, and [A;,B;:=ABA'B!; see
Definition A.28 and the discussion following it for more
details. The Riemann orbisurface O with a distinguished
system of generators for its fundamental group z,(0O, x..),
up to inner automorphisms of z,(0, x, ), will be called a
marked Riemann orbisurface (see Fig. 1).

As a result of the Theorems A.7 and B.1, all hyperbolic
Riemann orbisurfaces are developable (or good in
Thurston’s language) and hence can be realized as a global
quotient [H/T"] where H := {z€C|Imz > 0} is the upper
half-plane and I' € PSL(2,R) is a Fuchsian group of the
first kind** with signature (g; my, ...,m,,e;np); this is a
direct consequence of the usual uniformization theorem
for ordinary Riemann surfaces. The holomorphic orbifold

“In order to write this perturbative expansion, we have to
tem!i)orarlly restore 7 in (1).

A Fuchsian group is said to be of first kind if its limit set is
the closed real line R U {0 }. Otherwise, a Fuchsian group is said
to be of the second kind.
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FIG. 1.
orbisurface with signature (g;my,...,
Riemann surface O together with a distinguished set of standard

Marked Riemann orbisurface. A marked Riemann

m, ;n,) is an orbifold

generators {A, A BBy Gy
its fundamental group 7,(0, x,).

C,;Pi.... P”p} for

covering map zr: H — O provides a Riemann orbisurface
O with the Fuchsian global coordinate, and the hyperbolic
metric a’sﬁyP €% .#(0) is a push forward of the Poincaré
metric (Imz)~2|dz|* on H by the covering map 7. From
this point of view, I" can be thought of as the fundamental
group of the Riemann orbisurface O = [H/I], and the
group isomorphism I'~ 7z;(0O) can be viewed as being
induced by the holonomy representation hol:z(0) —
PSL(2,R) of the orbifold hyperbolic structure.”

Such a Fuchsian group I' has a standard presentation,
corresponding to the standard generators of 7;(0) dis-
cussed above, which includes 2g hyperbolic generators

ay, P, ..., g, By n, elliptic generators 7y, ..., 7, of orders
my,...,m, , and n, parabolic generators Kl,.. Kn, - 2
Obviously, the generators of I" also satisfy

q né.’

[]le.51] H ka_ﬂ and 7' =1 (j=1....n,),

i=1
©)

where [@;, f;] := a;p;07' f7! and 1 is the identity element of
PSL(2,R). The Fuchsian group I, together with a distin-
guished system of generators,

{ag, . agBro o Byitis o Ty K

+Kn, o (10)
is called the marked Fuchsian group corresponding to the
Riemann orbisurface O = [H/T7.

The elliptic elements of I" will have fixed points in H and
are denoted by z{,...,z; while the fixed points of the

Note that, in the language of orbifold (G,X) structures
introduced in Appendix B, orbifold hyperbolic structures are, in
fact, (PSL(2,R), H) structures.

®A nonidentity element y €' is called hyperbolic, parabolic,
or elliptic if y is conjugated in PSL(2, R) to a dilation, horizontal
translation, or rotation, respectively. This is analogous to |tr(y)]
being greater than, equal, or less than 2, respectively.

parabolic elements lie in 0H =R U {0} and will be
denoted by z{,....z; . The images of these elliptic and
parabolic fixed points under the projection H - O 2 [H/T
will be the conical points x{,...,x; and punctures
x’l’ , ...,xf,’p of O, respectively. For our future convenience,
let us also introduce Sing,,(0) = v~ (m) for all m e N~!.
Note that | |, .- Sing,,(O) gives a canonical stratifica-

tion of the singular set Sing(O) = Supp(Z), and each
Sing,,(O) for m # oo represents the stratum of conical
points with stabilizer group Z,,. In addition, we will denote
by Sing,,(0) = v~'(c0) and Sing, (0) = |1 Sing,,(0)
the subset of cusps and conical points in Sing(O), respec-
tively. Finally, following [78], we will define the signature
type of O as the unordered set §:={s,}, o¢-1, Where
S,, == |Sing,,(0)| denotes the cardinality of the stratum of
singular points of order m. In particular, we have S, =
|Sing,| = n, and ), -1 S, = [Sing(0)| = n, + n,.

Remark 2.1. Sometimes, when we need to refer to
singular points (or fixed points) collectively, we will
denote them by xi,...,x, (respectively, zi,...,2,),
where n = n, + n,, is the total number of singular points
(or fixed points) and the indices are ordered such that
the corresponding orders of isotropy increase 2 < m; <
my, < --- < m, < oo. In this situation, the vector of orders
(my,...,m,) will be denoted by m. Note that with this
convention, the first n, singular points x;,...,x, will
always correspond to conical points x{, ..., x; while the
remaining n, > 0 singular points x,, i, ...,x, will corre-
spond to the punctures x7,...,x; of O.

Similar to Fuchsian groups, Schottky groups can also be
used to construct Riemann orbisurfaces. We begin with a
few definitions: A Kleinian group K is a discrete subgroup
of the Mobius group PSL(2,C) that acts properly dis-
continuously on a subset Q C € called the region of
discontinuity of K. The complement A = C\Q is called
the limit set of K. In this work, we are particularly
interested in Kleinian groups that are free, finitely gen-
erated, and strictly loxodromic; such Kleinian groups are
called Schottky groups and will be denoted by Z. It is well
known that for a Schottky group X of rank g, the limit set A
is a Cantor set”’ and the region of discontinuity Q = C\A is
a dense connected subset of C such that the Schottky group
¥ acts on Q freely, and the quotient space Q/X is a closed
Riemann surface X of genus g; this is called a Schottky
uniformization of X and, as a consequence of the retro-
section theorem [80] (see also [81,82]), every closed
Riemann surface has such a uniformization.

Now, let us consider uniformization of the compactified
underlying Riemann surface X, by a Schottky group . If
Q denotes the region of discontinuity of %, we can subtract
from it the preimages of cusps by the covering map

*"For more details on the geometry of limit sets, see Ref. [79].
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Q — X, to get another planar region Q. The space Q, will
uniformize the underlying Riemann surface X, and we will
denote the corresponding covering map Qy — X, = Q,/X
by my. Next, we can lift the branch divisor & by the
covering map 7. g, — X, to get another branch divisor,

w; €, (Sing,

which lives on the planar region €. Then, the pair (Q,, 2)
A
will define a planar Riemann orbisurface € such that

A A
s Q- 0 = Q/X is an orbifold covering map (see [83]
for more details). In addition, note that the restriction of 7
to Q¢ := Q)\SuppZ provides X}¢ with the Schottky
global coordinate such that the space €./ (0) is identified
with the affine subspace of C®(Q™¢, R) consisting of
functions y satisfying the condition

woo+log|d|> =y foralceX, (12)

and representing 2.

Let us now define a marked Schottky group as a Schottky
group X of rank g together with a choice of distinguished
relation-free system of generators Ly, ..., Lg for it. In fact,
a choice of marking for the Fuchsian group I" uniquely
determines a marked Schottky group (Z;L;.....L,).
If N is the smallest normal subgroup of I' containing
{ar,..oag. 71, 7, Ky, oK, } then E is isomorphic to
the quotient group I'/N. There is also a notion of
equivalence between two marked Schottky groups:
(Z:Ly,....L,) is said to be equivalent to (X'; L1, ..., L)
if and only if there exists a Mobius transformation
¢€PSL(2,C) such that L} =¢L;¢g™! for all i =1,...,g.
Then, the Schottky space ©, can be defined as the space of
equivalence classes of marked Schottky groups of genus g.
Now, we can introduce the generalized Schottky space
&, ,(m) of Riemann orbisurfaces, both with and without
punctures. It is regarded as a holomorphic fibration
J: ©,,(m) - &/, where the fibers represent configuration
spaces of n labeled points.28 Denote by Lj,...,L, the
system of generators in X corresponding to the cosets
PN, ..., B,N in I'. Normalizing the marked Schottky group
(%5 Ly, ...,Lg),29 we thereby associate with each marked

A
Schottky group (equivalently, with each O = Q/%) a point
in the generalized Schottky space @, (m).

BRor details, see Sec. III C.

By normalizing, we mean using the equivalence notion
of marked Schottky groups to set the attracting fixed points of
generators L, and L, as well as the repelling fixed point of
generator L equal to 0, 1, and oo, respectively; see Sec. III C for
more details.

The Schottky uniformization of an orbisurface O is
connected with the Fuchsian uniformization of it by the
following commutative diagram:

H—L 0

\ |- (13

@)

where each of the mappings is a holomorphic orbifold
covering (complex-analytic covering). The normal subgroup
N of T corresponds to the group of deck transformations of
the covering J. A deck transformation is a homeomorphism
deck:H — H, such that the diagram of the maps

H deck H

A

Q

commutes. The set of deck transformations forms a group
which is called the automorphism group of covering map,
Aut(J) (see Sec. A lc). Accordingly, the mapping J can
be regarded as a (meromorphic) function on H, which is
automorphic with respect to N—i.e., J o N = J. Moreover,
Jof,=L;oJ foralli=1,...,g.

B. Projective connections and
energy-momentum tensor

Let O = (Xo, Z) be a hyperbolic Riemann orbisurface
with signature (g;m,,...,m, ;n,), and let {(U,,u,)} be a
complex-analytic atlas on the underlying Riemann surface
Xo with local coordinates u,: U, - C and transition
functions u, = g,, ou;, on overlaps U, N U,. A (mero-
morphic) projective connection on O is a collection
R = {r,},e4 of holomorphic functions r, defined on each
U, N X% that satisfy

r, ="ry Ogab<glab)2 + SCh(gab; ub)’ (14)

on every intersection U, N U, N Xrgg and are compatible
with Z—ie., if x;€U, N Sing(0O) and u,(x;) =0,
we have

1-1/

m?
ro(u,) = 5. Lt (Jugl™) asu, - 0. (15)

In the above definition of projective connections, Sch(f; z)
denotes the Schwarzian derivative,

"3 1N\ 2
sniric) =27 -3 (1)’ (16)
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of a holomorphic function f(z) and can be intuitively
viewed as measuring the failure of f(z) to be the restriction
of a Mobius transformation. Such meromorphic projective
connections are in one-to-one correspondence with CP!
structures on O (see Sec. B 3 for more details).

Remark 2.2. We note that the coefficient &; :== 1 — 1/m?
of the leading singular term in the asymptotic behavior (15)
of projective connections near each singular point
x; €Sing(0) does not depend on the choice of chart or
complex coordinate u.

The above remark means that the difference between
two projective connections is a (meromorphic) quadratic
differential on O with only simple poles—i.e., a collection
Q ={qa}ses of holomorphic functions on each open

subset U, N X,® with the transformation law

qp = 44 ° Yar () (17)

and the asymptotic behavior ¢,(u,) = O(|u,|™") near
each singular point x; € U, N Sing(0) with u,(x;) = 0.
Conversely, we can add a meromorphic quadratic differ-
ential to a given projective connection to obtain a new
projective connection. Since we know that each Riemann
orbisurface has at least one CP! structure, i.e. the one given
by Poincaré-Koebe uniformization, we have the following
(see [84]).

Proposition 2.1 (Biswas). The space of all CP! struc-
tures on O, denoted by P(0), is an affine space for the
vector space of all meromorphic quadratic differentials on
O with at most simple poles at singularities.

These meromorphic projective connections on O have
the following physical interpretation: For the hyperbolic
metric dsp | = {e®aala)|du |}, < , on O, let us define the

following functions on each open subset U,:

1 - 1
5 (au,,(Pa)z and Ta = a%a(pa - 5 (aﬁa(pa)z'
(18)

The collections T, = {T,},cs and T, ={T,},c, are
the (2,0) and (0,2) components of the classical energy-
momentum tensor on O and are associated with the
quasiconformal transformations of the hyperbolic metric
(see, e.g., Appendix B of [19] for more details). In addition,
the functions T, (¢, (u,, i,)) satisfy the conservation law

aﬁaTa<§0a(uavﬁa)) =0, (19)

on each open subset U, N Xo° C X,,° and, as a result
of (5), have the asymptotic behavior

Ta = aﬁaqoa -

h
Tulue) =515+ Ol ™) as e, =0, (20)
utl
near each singular point x; €U, N Sing(O) with

u,(x;) = 0and h; = 1 — 1/m?. The property that functions

T,(u,) are meromorphic expresses the fact that the energy-
momentum tensor for the classical Liouville theory is
traceless and the coefficients /;/2 appearing in the above
asymptotics have the interpretation of conformal weights of
Liouville vertex operators corresponding to each singular
point [85]. Finally, it follows from (4) that on every overlap
U,NnU,N X5,

Th = Ta ogab(g;b)z + SCh(guh; ub)? (21)

which means that, by definition, T,(u) is a meromorphic
projective connection on O. Since the hyperbolic metric
dsﬁyp on O is a push forward of the Poincaré metric on H by
the covering map z-: H — O, a simple computation gives
T,(u) = {Sch(z;';u,)},c4. The multivalued analytic
function z': O — H is a locally univalent linear poly-
morphic function on O (this means that its branches are
connected by fractional linear transformations in I') and,
using the property Sch(¢(z);z) = 0 for all c€PSL(2,C),
as well as the Caley identity,

Sch(f o g;z) = Sch(f; g)(¢)* + Sch(g;2),  (22)

it is easy to verify directly that Sch(z';u,) are well-
defined functions on each subset U, N X,;¥, which satisfy
(21). Slightly abusing notations, we will write T',(u) =
Sch(zp!) and call it the Fuchsian projective connection on
O. Similarly, the Schottky global coordinate given by the

A A
orbifold covering map zy: Q — O = Q/%, produces the
so-called Schottky projective connection Sch(zz') on O.

Remark 2.3. While the Fuchsian projective connection is
canonically determined by the Riemann orbisurface O and
does not depend on the choice of marking for I, the
Schottky projective connection is defined only for marked
Riemann orbisurfaces and is uniquely determined by the
normal subgroup N CI' introduced in the previous
subsection.

It follows from the commutative diagram (13) and the
Caley identity (22) for the Schwarzian derivative that
the Fuchsian and Schottky projective connections are
related by

Sch(a';u,) = Sch(J~'w) o n5' (0, 75" )?
+ Sch(zz'su,) forallaeA, (23)

where w is the global coordinate on €. Therefore, the
collection

{5ch(J-1 cw) o x5! (0, 75! )2} (24)

acA

is a meromorphic quadratic differential on O and T',(w) :=
Sch(J~!;w) is a meromorphic automorphic form of weight
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4 for the Schottky group —i.e., T,(6(w))(¢')* = T, (w)
for all c € X.

With the above explanations in mind, we are now ready
to give a more technical summary of our main results: Let
T,,(m) be the Teichmiiller space of marked Riemann
orbisurfaces of genus g > 1 defined as the space of all
equivalence classes of marked Riemann orbisurfaces with
signature (g; my, ..., m, ; n,,).30 The affine spaces P(O) for
varying Riemann orbisurfaces O glue together to an affine
bundle &, (m) — T ,,(m), modeled over holomorphic
cotangent bundle of 7, ,(m). The Fuchsian projective
connection Sch(z!) gives a canonical section of the affine
bundle &, (m) — T, ,(m), while the Schottky projective
connection Sch(zz!) gives a canonical section of the
affine bundle &, (m) - &, ,(m). Their difference 2 :=
Sch(zg!) — Sch(zz!) can be viewed as a (1, 0)-form on the
Schottky space &, ,(m) and has the following interesting
properties (see Theorems 1 and 2): Let us denote by wwp
the symplectic form of the WP metric, and by w} ;, w,",
the symplectic forms of ith-elliptic, jth-cuspidal TZ metrics
on generalized Schottky space @, (m). Additionally, let 0
and 0 denote the (1, 0) and (0, 1) components of the exterior
differential d on the Schottky space &, ,(m)—i..,
d = 0+ 0. Then, we have

(i) 2 is o0-exact—i.e., there exists a smooth function

T m: ©,,(m) - R such that

2= %ay,,,. (25)

(i) 2 is a 0 antiderivative (hence, a d antiderivative) of
the following combination of WP and TZ symplectic
forms on &, (m):

42

3 T cus T -
02 =-v-1 <CUWP - TwTZp - 5; mihiw'er“Z,i>'

(26)

cusp ny cusp
Here, wr;” = Zj:l VAT

(iii) It follows immediately from the above two state-
ments that the function —.7,, is a Kéhler potential
for the special combination of WP and TZ metrics

on &, ,(m):
— 007\,
A7%  ur T .
=2v-I <CUWP - ?C()sz - E; mihinHZ,i> :

(27)

OFor details, see Sec. IIT A.

Before ending this section, and in order to avoid
confusion in the remainder of this manuscript, we feel
the need to talk about our notation for coordinate functions
on different spaces: In this section, we have used u, to
denote the coordinate function on each open subset
U, C Xo. However, in what follows, we will always use
w to denote the coordinate function on X,¥ when O has
genus g = 0. When the orbifold Riemann surface O has
genus g > 1, {u,},cs denotes the set of coordinate
functions on X, while w is used to denote the coordinate
function on Q" C C. This notation is meant to be
suggestive of the fact that the difference between

A
Schottky and Fuchsian uniformizations of O = Q/X is
effectively equivalent to Fuchsian uniformization of the

A
planar orbifold Q. Finally, throughout this manuscript, z
has always been used to denote the coordinate function on
the upper half-plane H.

III. GEOMETRY OF TEICHMULLER, MODULI,
AND SCHOTTKY SPACES

In this section, we will recall some well-known facts
about the deformation theory of Ahlfors and Bers. More
details can be found in [86—88].

A. Teichmiiller space 7 (I')

Let I" be a finitely generated Fuchsian group of the
first kind that uniformizes the hyperbolic orbifold Riemann
surface O with the signature (g;m;,...,m, ;n,). In this
situation, the Teichmiiller space of Riemann orbisurfaces
can be equivalently described as the Teichmiiller

space 7 (I') of Fuchsian groups with signature
(g;ml,...,mm;nl,)—i.e., the space of all equivalence
classes of marked Fuchsian groups with signature
(g;ml,...,mne;np).

A Beltrami differential for T is defined as u = pu(z)d.dz,
where p(z) is a complex-valued bounded measurable
function on H with the property that

:8 = u(z)

<

u(yz) forallyel’ and zeH. (28)

~

We will denote by A~""!(H,T), the complex Banach space
of Beltrami differentials for I'. Now, let D(I") denote the
open unit ball in A~""!(H,T), in the sense of the L® norm:

‘D(F)E{ﬂEA'l"(H,F)IHﬂ|m==§gﬁlﬂ(2)|<1}- (29)

3!Note that, in this situation, X, = € needs to be covered with
at least two coordinate charts while X;;* C C can be covered with

only one chart.
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For each y € D(I"), the Beltrami equation

0:/*(2) = u(2)9.f"(z),  z€H, (30)
is solvable in the class of quasiconformal homeomorphisms
of H onto itself, and any two solutions are connected
by a linear fractional transformation in PSL(2,R).
Let f# be a solution of Beltrami equation (30) that fixes
points 0, 1, co and define I'* := f# oo (f#)~!, where I'* is
a Fuchsian group with the same signature as I'. Thus,
each element y € D(T") gives a faithful representation g, of
I' in PSL(2,R) with 2g hyperbolic generators o :=
froa;o () and pie= frofio(f*)7), n, parabolic
elements & := f*ok; o (f*)7!, as well as n, elliptic ele-
ments 7 == f#or;o(f*)" of orders my, ..., m, , respec-
tively, satisfying the single relation

P ) ) ) (B o, = 1.

P

(31)

But one needs to define the equivalence classes of repre-
sentations ¢, since two representations ¢, and @,, are
called equivalent if they differ by an inner automorphism of
PSL(2,R)—i.e., if ¢,, = o, ¢~ for a Mdbius transfor-
mation ¢ € PSL(2, R). Accordingly, the Teichmiiller space
7 (I) is defined to be the set of all equivalence classes of
representations ¢,: I' = PSL(2,R), p€D(I'). In other
words,

T =2dT)/~, (32)

where p; ~u, if and only if fHoyo(fr)l =
frroyo(fr)~!  for all y€Tl (equivalently, if
f"1|r = f*|g)- The base point of 7 (I') is defined by
u =10 and it corresponds to the group I'. Last but not
least, the projection ®:D(I") - 7(I') induces a natural
complex-analytic manifold structure on 7 (I') which will be
described in Sec. III A 1.

Remark 3.1. Let I'j and I', be two cofinite Fuchsian
groups with the same signature, and let f:H — H be a
quasiconformal mapping such that I', = foI"; o f~!'. Then
f induces a mapping f*: 7 (T';) — 7 (I',) according to the
formula ¢, + ¢,,, where y; € D(I'}) and

_ Mﬂ) .
g 2_(1—u1<azf/azf)azf fed(l). (33)

This mapping is a complex-analytic isomorphism in the
natural complex structure on 7 (I';) and 7 (I';), which
makes a specific choice of base point inessential (see, e.g.,
Remark 3 of [5]).

Remark 3.2. Teichmiiller space 7 (I") can be interpreted
as the Teichmiiller space of marked Riemann orbisurfaces
with signature (g;m;,...,m, ;n,) by assigning to each
point ®(u)e7(I') a marked Riemann orbisurface
O* = [H/T#], with the orbisurface O = [H/I] playing
the role of a base point. It follows from Remark 3.1 that
the choice of a base point is inessential and, for this reason,
we will sometimes use the notation 7', (m) to denote the
Teichmiiller space of marked Riemann orbisurfaces with
signature (g; m, ...,mne;nl,,).32

1. Complex structure on T (I')

The complex structure on 7 (I") is uniquely characterized
by the fact that the mapping ®:D(T") — 7(I") is holo-
morphic. For a more explicit description of this canonical
complex-analytic structure, we consider the space
H>O(H,T) of holomorphic quadratic differentials (equiv—
alently, holomorphic cusp forms of weight 4) for I An
arbitrary element ¢ € H*°(H, T') has the form ¢ = ¢(z)dz>,
where ¢(z) is a bounded holomorphic function on H
that transforms according to the rule ¢(yz)y'(z)* = q(z)
for all yeF.34 The dimension of the space of

321t follows from the Bers-Greenberg theorem [89] that the
complex-analytic structure of 7 (I') does not depend on the
vector of orders—i.e., there exists a complex-analytic isomor-
phism between 7, ,(m) and the Teichmiiller space 7, of
punctured Riemann surface Xroeg. However, we will keep using
the notation 7, (m) for the Teichmiiller space of Riemann
orbisurfaces in order to emphasize that the natural Kihler
structure and the action of orbifold mapping class group on this
space does depend onm = (m,, ..., m,) through dependence on
the signature type of O.

By holomorphic cusp forms, we mean holomorphic
I'-automorphic forms on H with zero constant coefficient in
their Fourier expansions near the cusps of I'.

*As we will see in Sec. IIB 1, any element g € H2°(H,T)
corresponds to a meromorphic quadratic differential Q € H?(0)—
i.e., a meromorphic (2,0)-tensor on X, with simple poles at singular
points.
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square-integrable meromorphic & differentials on O, or cusp forms of weight 2k for I, is given by Riemann-Roch formula

for orbifolds:

2k-1D(g-1D+3

dimcHA0(0) = ¢ &
17

03

where |-] denotes the floor function (see Theorem 2.24
of [90]). In particular, the dimension of the Hilbert space of
cusp forms of weight 4 for I' is given by

dimcH**(H.T) =3g-3+n, +n,=39-3+n. (35)
The Kodaira-Serre pairing
o) =[] u@at)e (36)
F(T)

is well defined on the product of H2°(H,I') and
A~L(H,T). In the above equation, d?z = @dz Adz =
d(Rez) Ad(Imz) and F(I') C H denotes a fundamental
domain for the Fuchsian group I'. The subspace N/ (H,T") C
A~L(H,T) on which this pairing is degenerate coincides
with the kernel of the differential d® at 4 =0e€D(I).
Moreover, the space A~ (H,T")/AN(H,T) and H>°(H,T)
are dual with respect to the pairing (36). To realize
A-V(H,T)/N(H,T) as a subspace of A~M!'(H,T) we
define the complex antilinear mapping A: A" (H,T) —
H?O(H,T") with the help of the Bergman integral

Ao =[] FEas

its kernel coincides with N (H,T).
A H*(H,T) - A~LM(H,T) is given by

ue A VH(H,D);

(37)

The mapping

A(q)(z) = (Imz)’q(z), g€ A (H.I), (38)
and satisfies the condition AA* = id on H*°(H,I). In
other words, A* arrays the exact sequence
0—- N(H.T) o AN (HDAHO(H,T) - 0. (39)
This enables us to realize A~(H,I")/N(H,T) as the
subspace ‘H~''(H,T) = A*(H*O(H,T)) of A-LI(H,T)
with complex dimension 3g — 3 + n: the space of so-called
harmonic Beltrami differentials.
The fact that Kerd® = N (H,T) at 0 € D(I") implies that
®:D(I') - 7(I') maps a sufficiently small neighborhood
of the point 0 € H~!"!(H,T") N D(I) injectively into 7 (T")

k(=) | k= k> 1
k=1,
k=0,
k <0,

(34)

and can be regarded as a coordinate chart in a neighborhood
of ®(0) € 7(I'). More explicitly, this coordinate chart can
be described as follows: Let py, ..., u3, 3., denote a basis
in H_l'l([HL F) and let =Lyt T+ t3g—3+nﬂ3g—3+n be
any harmonic Beltrami differential with ||u||,, < 1. Then,
the correspondence (1, ...,t3,_3:,) > ®(u) defines the
so-called Bers coordinates in a neighborhood of the origin
®(0)e7(I'). The isomorphism 7 (I') =T (I*) (see
Remark 3.1) makes it possible to introduce similar coor-
dinates in a neighborhood of an arbitrary point
®(u) €T (T). As a result, the holomorphic tangent space
to 7(I') at the point ®(u) can be identified with
H~"1(H,T*)—the complex vector space of harmonic
Beltrami differentials for I'*. The pairing (36) lets us regard
H>O(H,T*), i.e., the vector space of holomorphic cusp
forms of weight 4 for I'#, as the holomorphic cotangent
space to T (') at the point ®(u). This collection of charts
gives the natural complex structure mentioned in the begin-
ning of this subsection, on the Teichmiiller space 7 (T").
Finally, we point out that one can always associate
3g—3 +n vector fields a% with the Bers’ coordinates
(t1,....135-31,) in a neighborhood of ®(0)e7 (I'). At
any other point ®(x) in this neighborhood, we have

2 o) = /4?)(” ), where the harmonic Beltrami differentials

/4;1)(” ) € H~"1(H,T*) are given by the formula

. Hi 0"
4 = Pl Kl WP

)otr). o

Here, the mapping Projy-11 denotes a projection onto the
subspace H~"!(H,T*) of harmonic Beltrami differentials.
Moreover, let gy, ..., q3,-31, be the basis in H*O(H,T),
dual to the basis yy, ..., pt3,_3, for H~"1(H,T). Then, at an
arbitrary point ®(u) in a neighborhood of the origin,

holomorphic one-forms dt; are represented by the holo-
. @

(ﬂ)—l.e., dtil(l)(/l) :q[ (ﬂ),

where the basis ¢7", ..., qg;(’_gﬂ € H*(H,T*) has the

property

morphic quadratic differentials q?

Projyao [ o 0S| =g (41)
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In the above equation, Proj,20 denotes a projection onto the
subspace H>°(H,T).

2. Variational formulas

In order to further explore the complex-analytic structure
of the Teichmiiller space, variational formulas of the
hyperbolic metric p(z)|dz|> on H play a significant role.
Let ¢* € A (H,T%) be a smooth family of automorphic
forms of weight (2k, 2¢) where € H~"!(H,T) denotes a
harmonic Beltrami differential and ¢ € C is a sufficiently
small parameter. We denote by (f%)*(¢®) the pullback of
the automorphic form ¢* with the unique diffeomorphism
S H — H that satisfies the Beltrami equation o: f*# =
(eu)a.f and fixes the points 0, 1, c0. We have

() () = * f“‘<a§j) (f)f

€ A (H,T). (42)

In particular, for the density p(z) = (Imz)™? of the
Poincaré metric, considered as a family of (1,1)-tensors,
one has

|0.f*
(Im f)?°
Let the Lie derivatives of the family ¢* in holomorphic

and antiholomorphic tangential directions, u and f, be
defined as

() (p) = (43)

def 0

/44”—*

L. ¢“if3

(f#)"(¢°) € AT (H.T),

€le=0

()" (¢°)

e=0

e AMHIHT).  (44)

The first variational formula for p(z) is given by the
following lemma due to Ahlfors [91].

Lemma 3.1 (Ahlfors). For any u€ H~"!(H,T), the Lie
derivatives of the density p(z) of the Poincaré metric in
both holomorphic and antiholomorphic tangential direc-
tions vanish:

Lp=Lp=0.

For the second variation of p, the following formula was
obtained by Wolpert (see Theorem 3.3 of [92]):

def 0%
TP=

HH _08105'2

(ferrer)y (p)

&1=€,=0

1 N, -1
=5p(Ao+—> ') =5p S (45)

where u, ' € H"!(H,T’). The I-automorphic function
fﬂ; is uniquely determined by

<Ao+ >f— uid - and // 1 = Po(a)dz < oo,

(46)

where A = —,0(1)‘1%;Z is the Laplace operator of the

hyperbolic metric acting on H*°(H, F).35

3. Kahler metrics on T (T')
(1) Weil-Petersson metric. Together with the complex

antilinear isomorphism ¢(z) — u(z) = p(z)~'q(z).
the pairing (36) defines the Petersson inner product

on Tg0)7 (T) = H™M(H,T):
/41»/42 WP—// ( )d Z,
/41,/4267'( M, T). (47)

The Petersson inner product on the tangent spaces
determines the Weil-Petersson Kihler metric on
7(I). Its Kéhler (1, 1)-form is a symplectic form
@Wwp ON T(F),

owp(p1,fia) = ?//ﬂr) (Ml(z)ﬂz(z)

— i1 (@) ) )z, (48)

where p, ptr € Te0)7 (). It is worth mentioning
that the Weil-Petersson metric is both invariant
under the Teichmiiller modular group Mod(I") and
real analytic.

(i1) Cuspidal Takhtajan-Zograf metric. In [93,94], a new
Kihler metric on 7 (I') was introduced by Takhtajan
and Zograf for the cases that the Fuchsian group I
has n, > 0 parabolic elements. Let us indicate the
fixed points of the parabolic generators «i, ..., k,, by
Znt1s s 2y ER U {00} For each zfl n,
denote by (k;) the cyclic subgroup of I’ generated
by «;, and let gi €PSL(2,R) be such that ¢;(c0) =
Zn+i and ¢7'kigi = (§5!). Let Ei(z,s) be the
Eisenstein-Maass series associated with the cusp
Zy,+i» Which is defined as (see Sec. III in [65])

Ei(zs)= Y Im(g'yz)'.  (49)

I\y € (x;)

The series is absolutely convergent for Res > 1, is
positive for s = 2, and satisfies the equation

See Sec. 2 of [93] for more detailed exposition.
*Note that ne+n, =n.
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(iif)

1
AoEi(z, 5) IZS(I —s)Ei(z,s). (50)
The inner product
(o) 5% = // Bz Dp(a)ePz,
i=1,...n, (51)
in H " (H,T), and the corresponding inner

products in all ‘H~"!'(H,I*), determines another
Hermitian metric on 7 (I') which is Kéhler for
-

each i=1,....n The metric (-, "), =
(v )zr + o+ '>CTUZS}:,IJ, called the cuspidal
Takhtajan-Zograf (TZ) metric, is invariant with
respect to the Teichmiiller modular group Mod(T")
(see Sec. III B). Let

cusp

\/__13_(1 3+n
D17, = 5 Z (s ) rz7dt; A di

(52)
2 4

be the symplectic form of the ith cuspidal TZ metric

cusp ____cusp cusp
and also define wr,” = wrz) + -+ w1z, . Ac-

cording to Lemma 2 of [93],

cusp

4
lim Im(gl )f,ujﬁk (g,-Z) - 3 </’l/a ﬂk>TZz’

Imz—o0

(53)

where y;, i €H™(H.T) and f - was defined in
Eq. (46), the cuspidal TZ metric pertains to the
second variation of the hyperbolic metric on H.
Elliptic Takhtajan-Zograf metric. As discussed in
[16,64], when the Fuchsian group has n, > 1 elliptic
generators 7y, ...,7, , the local index theorem of
Takhtajan and Zograf [93] for punctured Riemann
surfaces can be generalized to include elliptic fixed
points. In this case, the role of Eisenstein-Maass
series E;(z,s) associated with the cusp z, .; is
played by the automorphic Green’s function
Gy(z,z;;5) associated with the elliptic fixed point
zj, j=1,...,n,. More explicitly, for the elliptic
generator 7; of I' define

(1, 12)77; = // i (
F(r)

j=1,...,n,,

Dma(2)G(zj, 2)p(2)dz
(54)

where z; is the fixed point of 7;, and G(z.7') =
Go(z,7;2) is the integral kernel of the resolvent
(Ag +4)~". It was shown in Theorem 3 of [16] that
the metrics (-,-)§ ; are also Kéhler. In addition, if

we denote by (-, -)¢!! (s} the sum over all elliptic TZ
metrics (-,-)§; associated with the elliptic gener-
ators 7; that have the same order of isotropy m, we
expect (-, >?Sl} to be invariant under the action of

Teichmiiller modular group Mod(T"). Moreover, we
will denote by @S ; the symplectic (1, 1)-form

= 39-3
ell —17 3

s 2 5=

(uis i)y, 40 A di. (55)

Finally, the elliptic TZ metric is also intrinsically
related to the second variation of the hyperbolic
metric on H: The following result was proven by
Takhtajan and Zograf in Lemma 1, part (iii), of [16]:

3 0 0 ell
i e 0= (GG
s
(56)

where y;, € ' (H,T) and f,7 was defined
in Eq. (46).

B. Moduli spaces M, , and I, ,(m)

In the previous subsection, we have defined the
Teichmiiller space 7 (I') as the space of all equivalence
classes of representations ¢, : I' = PSL(2, R) and we have
seen that 7 (I') can be realized as a bounded complex
domain in C39~3*" via the so-called Bers embedding. Let
Aut, (T") denote the group of proper automorphisms of T,
which carry parabolic elements into parabolic elements and
elliptic elements of order m into elliptic elements with the
same order. The group Aut, (') acts on 7 (I") via

1(e,) = 0uot, 1€ Aut, (). (57)
That this is well defined, i.e., that i(g,) is equivalent to
another representation ¢, for some y, € D(T'), follows
from the fact that any automorphism : € Aut, (I") induces a
quasiconformal homeomorphism of H. The group Inn(T")
of inner automorphisms of I obviously acts on 7 (I") as the
identity. Let us remind that the factor group Mod(T') :=
Aut, (T')/Inn(T") is called the Teichmiiller modular group
and acts discretely on 7 (I') by complex-analytic auto-
morphisms that only change the marking of I'. Denote by
Mody(T") the subgroup of Mod(T") consisting of pure
mapping classes—i.e., those fixing the cusps and orbifold
points on O pointwise.37 The full Teichmiiller modular

The Teichmiiller modular group Mod(I") acting on 7 (I') can
be identified with the orbifold mapping class group MCG(O)
acting on 7, (m). Here, MCG(O) is defined as Homeo" (0)/
Homeo,(0), where Homeo"(O) is the group of orientation
preserving homeomorphisms of O (in the category of orbifolds),
and Homeoy(0) is its identity component.
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group Mod(T") is related to Mody(T") by the short exact
sequence

1 - Mody(I") = Mod(I') - Symm(s) — 1, (58)
where  Symm(s) := Symm(S,) x Symm(S3) X - - - X
Symm(s,,) denotes a subgroup of Symm(n) consisting
of all permutations that leave the signature type S =
{Sm}meget invariant [95]. Then, the quotient space
T (I')/Mod,(T') is isomorphic to the moduli space M,
of smooth algebraic curves of genus g with n =n, +n,
labeled points. According to (58), the Teichmiiller modular
group acts on M, via Symm(s) and the quotient
M, ,/Symm(s) is isomorphic to M, (m)—the true
moduli space of orbifold Riemann surfaces with signature
(gsmy,...omy ; ) Finally, we remark that both 7, (m)
and M, (m) depend not on the signature of O, but rather
on its signature type (see [78] for more details).

1. m(].n (m)

In the remainder of this subsection, we will focus on
the g = 0 case for the sake of simplicity and return to
g > 1 Riemann orbisurfaces in the next subsection. A
normalized orbifold Riemann surface with signature
(0;my,...,m, ;n,) is given by a pair O=
(C\{wp, 1+ oW, }. D) with 2 =37, (1——)w, such

that w,_,, w,_;, and w, are at 0, 1, oo, respectrvely

km;
Wi+ >R IJk (z z)
J(@) = i+ 5 I exp (-

Z? Y 1<c eXP(zm/_kZ)

‘Il

The first coefficients of the above expansions determine the
following smooth positive functions on M, ,:

P =1,
h; = ‘JY” i=n,4+1,...n—1,  (61)
‘J<_n1>2 1 =n.

Similar to the case of M, discussed at the beginning of
this subsection, the symmetric group Symm(s) acts on
My, to give M, (m) = M,,/Symm(s), the moduli
space of orbifold Riemann surfaces with signature
(O;ml,...,mne;nl,). In order to describe the action of
Symm(s) on M, in more detail, we will make the
simplifying assumption that the signature of orbifold

2~k
16](z=z;)

Accordingly, the moduli space M, =.%,(C)/PSL(2,C)
is given by the following domain in C"3:

Mo, = {(wl,...,

w; # wy fori;ék},

Wy_3) €C ’w,» £0,1 and

(59)

where .7, (C) is the configuration space of n = n, + n
labeled distinct points in C. We will show that Mo,n‘w

covered (in the complex-analytic sense) by the Teichmiiller
space of orbifold Riemann surfaces with signature
(O;ml,...,m,,e;n,,). This will enable us to express the
vector fields alwi on M, in terms of sections of the

P

holomorphic tangent bundle of Teichmiiller space.

Using Theorem A.7, we have O = [H/T, where T is
normalized such that the fixed points of ,,_,, k,_1, k,, are at
2,0 =0, z,_1 =1, and z,, = oo, respectively. Denote by
H* the union of H and all parabolic points of I". There is a
unique (universal) orbifold covering map J:H — O with
deck(J) = T,*' which extends to a holomorphic isomor-
phism [H*/TT= 0 = (C, 2) that fixes the points 0, 1, c0*
and has the property that w; = J(z;) fori = 1,...,n — 3.
The function J is univalent in any fundamental domain F
for I and has the following expansions near cusps and
conical singularities (for more details, see Appendix C):

(i=1,...n,),z2 -z,

) (i:ne+1,...,n—1), =7, (60)

7=z, = 0o.

*When all singular points have the same order of isotropy, the
situation will be similar to what has been previously studied by
Zo%raf [15].

We are assuming that the stratum of conical points
Sing,, (O) with largest order of isotropy 7y, € N>! has
cardinality of at least 3. The analysis in cases where this
assumption does not hold requires a change of notation, but
the fundarnental lessons remain the same.

“'What we have called /\/lo,, in this paper is isomorphic to
what has been denoted by W, in [5,15] and by Zn in [53].

“One might correctly want to identify the covering map J in
this subsection with the covering map zr in the commutative
diagram (13). Only for the reasons that will become clear later,
we decided to call the covering map in this subsection with J.

In the literature, the J is called Klien’s Hauptmodul.
Actually, it stands as the sole I'-automorphic function on H that
exhrbrts a simple pole at co and fixes 0 and 1.

“The Q divisor 2 refers to 2 + D i1 Wi
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Riemann surface O is given by (0;m,...,m,m’,...,m")
—_———
S s’
withs =s,, and ' = s, > 3. Let us first focus on ordered
s'-tuples (wy, wa, ..., wg) with each w; € Sing,,,. If none of

the points 0, 1 and oo are fixed in this set of points, then
Symm(s’) will simply be the group of permutations of s’
objects. This group is generated by the set of transpositions
{6:,11}57", whose action only involves interchanging w;
and w;; for i # &', and w; and wy for i = §'. The situation
will be a bit more complicated when the points 0, 1 and oo
are fixed among these points, namely, we have a sector of
the form {(w;,ws,...,wy_3,0,1,00) € Csl}. Then the
group Symm(s’) will be generated by the transpositions
{6;:41}%5" and the action of transpositions will be fol-
lowed by a PSL(2, C) transformation to ensure that the last
three coordinates in M, ,, remain 0, 1 and 0. If i < 8" — 3,
the transpositions will not affect the points 0, 1 and oo, thus
no further action of PSL(2, C) will be needed. If i = 8" — 3,
then the set of branch points will change to {(wy,ws, ...,
0,wg_3,1,00)}, and we need a transformation that will
take wg_3 = 0,1 - 1 and co — oo. This transformation is
Ys—3s-2 = (W—wg_3)/(1 —wg_3). Thus, in the end we

. . Wi =W/ _ Wl g =W _ Wl

will arrive at {(f_wij,..., Sljwsli 3,Ws/:il,0,1,oo)}.
Repeating the same procedure for i=s8'—2 and i=5'—1
will yield the transformations, ygy_,¢-; =1—w and

Ys—1.s = w/(w — 1). Putting all these together, the collec-
tive action of Symm(s’) on M, ,, can be expressed as

i1 (Wi W, oWy 3,0, 1, 00) = (W), ... g3, 0,1, 00)
such that
wi (k#ii+1), i<s —4,
Wi (k=1), i<s —4,
wiep (k=i+1), i<s -4,
W_Ws’—, .
Vvk = I—WSI,: (k < s - 4), i=¢8 - 3, (62)
W:/;S:;zl (k:SI_3)’ i: l_37
l—w, (k<§'=3), i=¢-2,
ik (k<e'=3),  i=¢-1

As we said, the effect of o}, ; € Symm(s’) on M,, is
followed by a y;;,; €PSL(2,C) on the orbifold Riemann
surface O with the coordinates w. This transformation is
actually an isomorphism that takes O to another orbifold
Riemann surface with the coordinates w = y,,,;(w). For
i <8 =4,y is simply the identity map. For the other
cases we have y;; i w—>Ww=(w—-wg_3)/(1 —wg_3),
i=8-3, yiiw-ow=Il-wi=¢s-2, and
Yiiz1: w—=w=w/(w—1) for i =’ — 1. If one wishes
to consider the variation of the objects defined on X under
the action of Symm(s’), one should study the effect of these
7i.i+1 on them. Now keeping 0, 1 and oo fixed in the Sing,,,
stratum, we consider ordered S-tuples (wy, wy, ..., wg) with

w; €Sing,, for all j =1,...,s, s := |Sing,,|, and m < m'.
Here, we no longer make any assumptions about s. Again,
the group Symm(s) is generated by the transpositions
{o;, H_l}?;} and their action simply involves interchanging
w; and wj, ;. Thus, the y; ;; | defined for this set will all be
identity, meaning that Symm(s) will not have any non-
trivial effect on 0. Moving forward, we can define the
direct product of the two symmetric groups Symm(s) x
Symm(s’) as ordered pairs (0,0’),0€ Symm(s),
o’ €Symm(s’). The group operations will then be
defined naturally on a pairwise basis, and this group acts

on Mg,

{(wy, ...owg) €C3} x {(Wy, Wy, ..., wg_3,0,1,00) GCS/}

= {(le s We, We i 1, We 25 vees Weir—3, 0, 1, 00)}

It is now clear that we have chosen to fix 0, 1, and oo in the
stratum Sing,,, in order to comply with our convention that
branch points are ordered with increasing order of isotropy.

In particular, the generators of the direct product group are

pairs of transpositions {(o; 1.0}, H)}j:_l]:’lzY ~!. The
action of these pairs on M, is defined by their separate

action on their corresponding subspace:

/
(gj,j+l voi‘i+1)(wl yeesWs,We i ] st+2~--’Ws+s’—3’Ovl’°°)
_ L
= (Uj,j+1 (Wl""’WS)’Ui,iJrl (Ws+1,Ws+2v s Weig-3,0, 1,00)>.

(63)

Similar to the cases with the single stratum, these trans-
positions should be followed by a transformation
Yjj+1:is1 EPSL(2,C) on the orbifold Riemann surface
O. For any j and i <s' —4, the corresponding trans-
formation is simply the identity map, and for the cases
with i =8 —3,8'—2,8' =1 and arbitrary j we have
Yjj+iii+1 s that is identical to y;;;,’s defined for the
stratum Sing,,,, with wg_5 replaced by wg ¢ _3. This means
that (63) can be expressed more explicitly by (o; ;1.
6;’,[+1)(W17 sy Ws, Wey 1, We g2, "'7WS+S’—3’O7 L, 00) - (wl’

cees Wey We i s Weias +-r Werg—3,0, 1, 00) such that

we (k#j,j+1,8+i,s+i+1), i<s' =4,V ],
Wil (k:JOIk:S+l), ISS/—4,V_],
wior (k=j+1lork=s+i+1), i<s'—4,V j,

= %ﬁ (k<s+s'—4), i=s'-3,Vj,
i (k=s+5'-3), i=s'-3,Vj,
1-w, (k<s+8'-3), i=s' -2V},
oy (k<s+8'-3), i=s' -1,V j.

(64)
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It is clear that one can continue developing larger
direct products with more strata by doing simple changes
to (64). It is natural that, similar to the case of the
single stratum, one needs to look at the related Mdbius
transformation when dealing with the variation of objects
with respect to the action of Symm(s). For the symmetric
group Symm(s’), one can define the one-cocycle
{fo} o esymm(s)- It is defined for the generators by

1 i=1,2,...,8 4,8 -2,
f{r’, » = (WS/—3 _ 1)h/(s/_2) i = S/ _ 3’
[BFw -1 i=s-1,

(65)

where h’/2 is the conformal weight corresponding to m’.
|

1

(Wsygm3 — 1)hs+h’(s’—2)

Flojpan) =

[T5e v = D TIRZ

where h/2, ' /2 are the conformal weights corresponding
to m, m’. Thus, we can see that the nontriviality of the one-
cocycle f is only due to the fixed points 0, 1 and oo, and if
none of them are involved in the permutation, the one-
cocycle will be trivial.

Remark 3.3. As we will see in Lemma 4.1, a simple way
to determine the one-cocycles f is to calculate the variation
of the Liouville action due to the transformation of M,
under the symmetric group. In other words, these one-
cocycles are basically the modular anomaly caused by the
noncovariance of the action under the effect of the
modular group.

As in [14,15], let {f, }, c symm(s) De the one-cocycle for
Symm(s) on M,,. These one-cocycles can be used to
define a holomorphic Q-line bundle over the moduli space
M, ,(m). To do so, one constructs the trivial bundle
My, x C and defines the action of Symm(s) on this
bundle by

(w.2) = (n-w, f,(w)2),

weM,,, z€C, neSymm(s). (68)

Then, the desired holomorphic Q-line bundle 4, =
(Mo, xC)/~ over moduli space IM,,(m)=M,,/

(Wi = 1>2h/

Note that if m’ — oo, namely the case of punctures, (65)
will be slightly different:

1 i=1,2,...8/=4,8' -2,
(wy_3—1)572) i=¢'-3, (66)

S w—1)? i=s'—1.

fo =

Oiit1

The action of the one-cocycle f, can be extended to a
general element in Symm(s’) by the product rule
foo, = (f(;/1 oa’z)f{,/z, 0,0, € Symm(s’). For the group
Symm(s), the effect of the one-cocycle on the generators
is trivial, namely f, = 1. Finally, for the direct product
J.j+1

group Symm(S) x Symm(s’) the one-cocycle will be given
for the generators by

i=12,..8-48-2Vj
i=s -3,V (67)
i=s -1,V J,

|
Symm(s) is defined by the identification (w,Z) ~
f,(w)z) for all n € Symm(s).

Lemma 3.2. Let O be a closed (i.e., n, = 0) orbifold
Riemann surface with signature (0; m,, ..., m,) and fix the
last three conical points to be at 0, 1, and oo (as always, we
assume that these three conical points belong to the same
stratum). Define a positive function,

(71'W,

h h —m,h
H= h'lnl 1 hl:ii] nflhnmn "

on M, . Then, the H determines a Hermitian metric in the
holomorphic Q-line bundle 4, over M, ,(m), where m;s
are the branching indices and h,/2 s are their correspond-
ing conformal weights.

Proof. We prove this lemma for the case where we have
only two strata of s branch points of order m and s’ branch
points of order m’. Furthermore, we assume that s’ > 3, and
the last three conical points in the stratum Sing,,, (m’ > m)
are chosen to be at 0, 1, co. In the end, we shall explain how
the rest of the cases can be dealt with similarly. We have
MO.n = {(Wl y e Wy We 15 W s ooy W -3, O’ 1)} For
simplicity of notation, we can, from now on, denote
s+ s’ =n in the proof. Each of the h;s can be viewed
as a function on C with the appropriate asymptotics [see
(61), part 3, in Lemma C.1 and Remark C.1]. Accordingly,
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N 1
logH = hmz <—210gm +2log2 — lim ((p(w) + (1 ——) log w—wk|2>>
m
k=1

wowy
n—1 1
+n'm Z (—210gm’ +2log2 — lim (go(w) + <1 ——,) log |w — wk|2>>
k=511 woW m
1
— W' (2 logm’ —2log2 + lim <(p(w) + <1 + —,) log |w|2>> (69)
w—00 m

Now we need to calculate the variation of log H under the effect of Symm(s) = Symm(s) x Symm(s’). For this, it suffices

to look at the effect of the generators {(c; 1,07, +1)}j f;gzs’_l. Considering the background we provided above on the

structure of the generators, variation is translated through the effect of the transformation y; ;. ;41:

AIOgH = log H[yj,jJrl;l',i+l] —log H (70)

By looking at (64), we see that the index j does not have any nontrivial effect, and we only have to worry about different
values of i. For i < s" — 3 the isomorphism y; ;.. ;1 is the identity so we, for this case, have AlogH = 0. The nontrivial
cases are i = s’ —3,i =5 —2, and i = s’ — 1. In the following, we study them separately:
(i) i =n—73 case:
The needed Mobius transformation is given by y; ji1.41 = (W —w,_3)/(1 — w,_3) in this case. For simplicity,
we denote this by just y. Thus, we write

AlogH = logHly] — logH

:—hmkzs:l< liny“wk( ( ——) log |y ( )_7(Wk)|2>>
)

it Z( i (9o + (1= ) toelrw) = 0w )

S \n=rln)

1
+ h'm’ g <11m < ) + <1 ——,> log|w—wk|2)>
Ko \WT m

—int i (00)+ (141 gl

r(w)=7y(eo

1
+ I'm’ lim <(p(w) + (1 + %> log |w|2>, (71)

w—00

where @ is the transformed counterpart of ¢ through the isomorphism y. From the invariance of the hyperbolic
metric, these two are related by

ow) = 5(rw)) + log | TN — 6 (w)) - 21og |1 — wps]. (72)

We also have
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log[y(w) —y(wi)| =log| 57| k<n—4,
log|y(w) = 7(0)| = log| =2~ k=n-3,
log [y(w) —y(wi)| = o (73)
log[y(w) —y(wps)| = log| 7502 k=n-2,
log|y(w) = 7(1)] = log| 25| k=n—1.

Note that in finding (73), we first included the transposition that exchanges w,_3 and w,_, = 0 and then included the
effect of y. Putting (72) and (73) together we look more closely at (71). The terms with k < n — 4 in the sum are quite
straightforward:

=Y (tim (000 + (1)t )
+ hm 1;1 (vvll)mwA <(p(w) + (1 - %) log |w — wk|2>)

o i <y(w>li%k)<¢(y(w)) T (1 —%) log [y(w) — V(Wk)|2))

k=s+1
n—4
+h’m’z lim ( p(w) + 1—i log [w — wy |?
@ 7 | log |w — wy
K=st1 \TME m

w—=Wwy

g 1
= —hm E lim ( 2log|l —=w,_3|+ (1 —— log
= \"-we m

s 1
+hm> <lim <<1 —> log |w—wk|2>>
k:l W—=Wy m

))

1- Wn-3

n—4
1 —w 2
NS <lim (210g|1 —wos| + (1 ——,> log |2~k ))
k=st1 T m l—w,3

n—4
1
+h'm' Z <lim ((1 ——,> 10g|w—wk|2>>
K=si1 \WTE m

= =2(hs + W (s'—4))log|1 —w,_3].

For k = n — 3, we have

L=ttt (a00)+ (1= )oglr6)=r(O)F ) o tim () + (1= Ytoghw—v57 )

r(w)—=7(0) WoW, 3

2 1
> +h/m/ lim <§0(W)+ <1——/> 10g|W—Wn_3|2>.
W—=W,_3 m

1
= _h/m/ylviil}) (qo(w) +2log|1—w,_s|+ (1 _W> log

1 —W,_3

For k = n -2,

==ttt tim (g0 + (10 ol <7l ) + 8t () + (1 toglo?)

¥ (w)=r (W
: ! n 13 1 2
) +h'm vlvlir(l) <(p(w) + <1 —%) log|w| > .

W—=Ww,_3

W=W, _3

1
=—h'm' lim ((p(w)+21og|1—wn_3|+<1——/> log
m 1-w,3
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Thus, we have
I, + 13 = =2h"log |1 —w,_3].

Also for k =n —1,
1 1
I, =-Wm lim (g?)(y(w)) + (1 ——,) log |y(w) — y(1)|2> + A'm'lim ((p(w) + (1 ——,) log |w — 1|2)
r(w)—y(1) m w—1 m
w—1

1 2 1
——h’m/vlviir}<2log|l—wn_3|+ <1_ﬁ> log T >+h/m/&iﬂ(<l_ﬁ> 10g|w—1|2>

= =2n"log |l —w,_3|.

Finally, for the contribution of infinity,

1 1
Is=—h'm' lim <(ﬁ(y(w)) + (1 + —/> log |y(w)|2> +hn'm lim ((p(w) + (1 + —) log |w|2)
7(w)—7(0) m V=00 m

1 — 1
= —h'm' lim (2log 1—w,_3|+ (1 +—/> log W= Vs ) + W'm’ lim ((1 +—> log |w|2>
W—00 m 1—w,_ W—00 m'
=2h'log |l —w,_3|.
Thus, we have for all j:
AlogH = ZI = =2(hs + W (s' = 2)) log|1 = w, 3| = =210 |f (4.0, ) (74)

where we used (67) in the last equality.
(i) i =n -2 case:
Now, we look at the case with i = n — 2 and again denote the morphism by y. We have y = 1 — w in this case.

Furthermore,
o) = plr0) +1og | T = Gy o)),
log [y(w) —y(wi)| =loglw—w| k<n-3,
log[y(w) —y(wi)| = ¢ log[y(w) —y(1)] =log[l —=w|  k=n=-2,
log [y(w) = 7(0)| = log |w| k=n-1.

Accordingly, it is quite clear that the variation is zero in this case, which is in agreement with the lemma.
(i) i =n—1 case:
The last and perhaps the most subtle case is the case with i = n — 1. Here we have y = w/(w — 1), and

= p(y(w)) + log ( I = ¢(r(w)) = 2log |1 —w/?
log [y(w wk>|—log!% k<n-2,

log [y (w) —
log [y(w) —y(o0)| = log‘ k=n-1.
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Using these we again decompose (71) and write for k < n —2:

=t tim (#000)+ (1 gl =700 ) )

wim=(tim (o014 (1, ogh=i)
it 8 (ot (3 (13 o )

+h'm' Z <hm< w)+<1——> log|w— wk|2>>
Pl W—wy

B /. ) 1 w—wy 2 /. )
= hmkz:;(vvlggk<210g|l w| +<1 m)log (=w) (- ))—khm;(WlLr{vlk((l >log|w Wyl >>
h'm'ni <lim (210 I w|2+(1 1)10 W 2))
S e\ ) [ T=w) (T =)
n /”—2 li 1 ! 1 2
()
n—2
:—2h210g|1—wk|2—2h’ > log|1—w[?
= k=s+1
n—3
:—2112:10g|1—wk|2 2h’Zlog|1 wil?,
k=1 k=s+1

where in the last equality, we used the fact that w,_, = 0. For k = n — 1 we have

T ! ! : ~ 1 2 ISET 1 )

I, =-Wm lim : plyw)) + (1 - log|y(w) —y(00)|* ) + W'm hn} pw)+ |1 - log|1 —w|
w—

r(w)=7y(eo
1 1 |2 1
= —h'm’ lim <(p(w) +2log |1 —w]* + <1 ——/) log | —— > + W'm'lim <(p(w) + (1 ——,) log |1 —w|2>,
w—0o m 1—-w w—1 m

and for the point at the infinity, we have
~ 1 1
Iy =—h'm" lim <(7)(}/(w)) + (1 + m’> log |y(w)|2> + h’m’v}i})n ((p(w) + <1 + m> log |w|2>

r(w)=y(1)
2 1
> + h'm’ lim (q)(w) + <1 +,) log |w2).
W—00 m

1
= —h’m’lim1 (go(w) +2log |1 —w]* + <1 +m’> log ] i

w— - W

Thus, we see that I, + I; = 0 and consequently again for all j:

w

K n—3
AlogH=>"T, = —2h210g|1 —wil2 =21 Y log |l —wil> = =21og £ (s, 0 ) (75)

i=1 = k=s+1

where we again used (67) in the last equality.
By putting together all of the cases above, we see that

AlogH =logHo (6, 11.0};,,) —logH = —2log |f(6,-,,-+1 o Y oi,j. (76)

)
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Had we chosen any other way to fix 0, 1 and oo by finding
the appropriate generators and one-cocycles, the calcula-
tions analogous to the one above would yield the same
result. In fact, the inclusion of A,m; in the definition of H
ensures that no matter how we choose to fix these points,
this lemma holds. Finally, the case with more kinds of
branch points can be derived inductively from the calcu-
lation above. Thus, (76) holds in general, and it means that
under the action of the elements of Symm(s), H transforms
according to the rule (Ho#)|f,|* = H. This means that H is
a Hermitian metric in the holomorphic Q-line bundle 4,
over M, ,(m). m
Remark 3.4. When O is a punctured orbifold Riemann
surface with signature (0;my, ..., m, in, > 3), the
Hermitian metric H on Q-line bundle 4, is defined as
(see (61)
H = e, e,
It is worth noting that the proof of Lemma 3.2 for the case
of punctured Riemann surfaces can be found in [14] and is
|

—2( ——) log |[w — w;| + log ——

p(w) =
—2log |w| —
,n—1. Also, we have**

with i=1,...,n, and j=n,+1,...

n—1

hi 4 Ci
— \2w—w;)? w—w;)’

(79)

1
T,(w) = dhp — 2(%90)2:

with h; =1fori=n,+1,...,n—1 and

1 Ch _
T,(w) :2—W2+$+(’)(|w| 4) asw— oo, (80)
where
h_J(i)
ci=— 1‘22, i=1,...,n,,
()
()
— ‘]2 -
Cj=_(151)>2, j=n,+1,....n—-1,
c =J(J) - 81
n—Y0 » ]_n’ ( )

“The Liouville’s theorem in complex analysis is used.

—2log |[w —w;| —2log ‘ log‘

just a matter of redoing the calculations above with the
appropriate one-cocycles.
The Poincaré metric on H can be push forwarded by the
covering map J:H — O to obtain the hyperbolic metric
»)|dw|? on orbifold Riemann surface O as follows:

‘J—l / 2
ow) = 11 77
= Ima ) 77)

The condition that the curvature is constant and equal to
—1, except at singularities, means that the function ¢(w)
satisfies the Liouville’s equation,

1
awaw€0 = 564)7 (78)

on Xrgg. Moreover, as discussed in Lemma C.1, one can
derive the following asymptotic behavior for ¢(w) near
cusps and conical singularities:

4|! \

‘o) wow,
(1) W= w;,
(wl™). w = oo,

[

are the so-called accessory parameters of the Fuchsian
differential equation. The accessory parameters c; =
cr(wi,.ooyw,_3) for k=1,. n can be regarded as
real-analytic functions on MOn In addition, the expan-
sion of (79) around w — oo gives

n—1 1
ch‘i‘izZ( +Cka>

IRAS
W3

wi (b + cowi) + O(lw| ™) as w — .

MH

»
Il

1

By equating the above expansion with (80), we get three
conditions on the accessory parameters:

n—1 n—1

ZCkIO, Z(hk—|—2ckwk): 1,

k=1 k=1
n—1
Z wi(hy + cpwi) = ¢y, (82)
k=1

“This is a consequence of the fact that the Liouville filed ¢ is a
real-analytic function on M, ,.
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which enables us to express c¢,_,, ¢,_1, and c¢,, explicitly in
terms of wy,...,w,_; and the remaining n — 3 accessory
parameters.

Consider the Riemann orbisurface O = [H/T] as a base
point in the Teichmiiller space 7 ,(m). Moreover, con-
sider the solution of the Beltrami equation (30) such that the
fixed points of k,,_,, k,_;,k, are at z,_, = 0, z,_; = 1, and
z, = o0. Then the generators &% ,,«i_, &, of I'" =
ffoTlo (ﬂ‘)‘1 will also have fixed points 0, 1, and oo,
respectively. Accordingly, the Riemann orbisurface
O* = [H/T*] can be uniquely and complex analytically
embedded in € in such a way that the punctures on O*
corresponding to the elements «._,, k4 |, and &) are
mapped into 0, 1, and co. Denote by J, the normalized
covering map J,: H — O* corresponding to this embed-

ding and let w{ = (J,of*)(z;). Then, the map
W:7T,(m) — C"3, defined by
Yod(u) = (wW,....,wh_3)eC"3, (83)

is well defined, and its image in C"~3 coincides with M ,.
According to the above considerations, we have the
following closed commutative diagram:

f#
H— H

Jl lJM (84)

o M. on

where F* is the mapping of O onto O*. From the above
commutative diagram, we can deduce that the F* is a
quasiconformal homeomorphism of C onto itself with

05 F* = Mo, F*, (85)
where
def 7y
M= (uoJ 5(14)w (86)

Consider the Beltrami differential ey, where
ue AN (H,I) and e is a sufficiently small complex
number. The function f%(z) is a real-analytic function of
e for each particular z € H. Let

fﬂ def < f€”> ’ f” def ( a_fsﬂ) : (87)
e=0 0 e=0
then (see Sec. V. C of [86])
= ——// R(Z,z)d?*7,
_:——// R(Z.2)d, (88)

)yt _ . zz=D)
R(Z7Z):/ +— _(ZI—Z)ZI(ZI—U' (89)

In turn, the function F*(w) is holomorphic with respect to &
for each particular w € C, and

) == [[ Mo )R

where F* is understood to be given by (0F* /0¢)|,_, and M
was defined by Eq. (86).% Proof of these assertions can be
found in [86,87,96]. Moreover, let

w,w)d*w, (90)

Ri(w) = =~ ROw.w)
_ wi(w; — 1) i —
=~ i =T} 1.

,n=3, (91

where R;s are linearly independent and generate the space
H?9(0). Denote by {Q;},_; ,_3 the basis in H*°(0)
biorthogonal to {R;};_;
(C27)—i.e., (R;. Q;) = &y where 6 is the Kronecker delta.

l]’
The desired basis in H™""! (H,T") & T¢(p)7 (I') has the form

.....

1i(z) = p(z) "' q;(2). (92)

where ¢;(z) = Q;0J(2)J'(z)* for i =1,...,n =3 form a
basis of the complex vector space H>*(H.,T') & T, 7 ().
These g;s are biorthogonal to r; = R; 0 JJ”? € H*(H,T)
with respect to the Petersson inner product.47 The basis

W er20m, ) and "W eHVIM.TH)  for
®(u) €T (I') can also be defined in a similar way. Then,
the following lemma connects the motion of punctures

and conical singularities on C with the geometry of
Teichmiiller space.

Lemma 3.3. For The mapping ¥:7 ,(m) - M, is a
complex-analytic covering, and we have

AW (") = =5 and

an=3.  (93)

*According to (85), 0;F = M. The Green-function equation
and solution for this equation are given by d;R(W,w) =
—z5(w',w) and (90), respectively. Therefore, the kernel
R(w',w), roughly speaking, inverts the action of the 0 operator
on Beltrami differentials on C. The precise statement (see
Lemma 5 of [53] and Sec. V. C of [86]) is essentially a version
of the Pompeiu formula.

In  the space 'H20([I-I],F), it is

(91 92) fff 141(2)q2(2)p ~1(z)d%z.

defined as
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Proof. Let us

d¥o (. (™)
of Lemma 3 in [5]; Remark 3.1 implies that it is sufficient to
verify this statement at the point ®(0). In a neighborhood
of ®(0) € 7 (I) the Bers’ coordinates (¢, ..., t,_3) € C"3
are determined in the basis u,, ..., p,_3 € H~"1(H,T) from
the expansion

start with proving the statement

= ﬁ which is actually repeating the proof

n—3
H = Z ti/ui? (94)
i=1

where y € H='1(H,T) N D(I). In these coordinates, the
mapping ¥ is given by

Fﬂ(wn—?a))’ (95)

where  (wy,...,w,3) =PYo®(0)eM,,. Since F*
depends complex analytically on 7, ..., f,_3, the mapping
Y is also complex analytic. We now compute its differ-
ential d¥ at the point ®(0) € 7 (I'): It follows from the
definitions of y; and M;, Eqs. (92) and (86), as well as
Eq. (77) that

v
(tl, ey tn_3)|—)(Fﬂ<W1), ceey

M; =pioJ™!

where Q; = ¢q; 0 J~'(J7!)"2. Then, using the above equa-
tion, the definition of R;s in (91), and Eq. (90), we get that

Pio) = [ MR

© | om0 =65 o7

This precisely means that in these coordinates the differ-
ential d‘{‘|q,(0) is given by the identity matrix—i.e.,
d¥o0)(1i) = =. Additionally, the
Yo 0) (dw;) = r; follows from d¥eq)(1;) =

ing that (1, 0)-forms dw; are dual to vector fields %

statement

9 -
B, by observ

and the quadratic differentials r; are dual to harmonic
Beltrami differentials y; with respect to the Kodaira-Serre
pairing (36)—i.e., (u;, ;) = &;;. Accordingly, it follows
from Eq. (93) that the mapping W is a local diffeo-
morphism. We now show that ¥ is a covering: For
n € Aut,(T), denote by z/ (i =1, ...,n,) the fixed points
of elliptic element #(z;) €T of order m; and by z)| . ; the
fixed points of the parabolic elements n(x )eF for

def
J=1, o, Let 8,(wi, .o w,)S(J(Z)), ..., J(2h); the
correspondence 17 > S, determines an epimorphism (i.e.,

a surjective group homomorphism) of the group Mod(I')

onto the product symmetric group Symm(S) % The kernel
of this epimorphism is Aut(¥) [5]. The mapping ¥ is
invariant under Aut(¥) and it is clear that
My, =Ty ,(m)/Aut(¥). Hence, ¥ is a covering with
automorphism group Aut(‘¥). m

Remark 3.5. On T, (m), each elliptic and cuspidal TZ
metric* remains unchanged under the automorphism group
of the covering ¥:7,(m) - M,,—i.e., the pure map-
ping classes Mod,. Furthermore, each metric establishes a
Kéhler metric on M ,,.

Remark 3.6. We can also rewrite the expression for
energy-momentum tensor (79) using R;(w),

J=x Y R (W), (98)

Sch(J!; Zh Ei(w
i=1

where

1 1

; 1,...,n—-1

Eilw) 2(w=w;)? 2w(w—1) ! e T

1 .
Ei(w) = 0 =T) i =n, (99)

and h; = 1 fori =n, + 1, ..., n. Accordingly, one can also
define the e¢;(z) = & oJJ”? on H. These functions are
actually the automorphic forms of weight 4 for I" and they
have nonvanishing constant terms at the singularities. Let
us obtain the equation (98) for the simplest case with one
branch point of order m at w; and three punctures at
wy, = 0, w3 = 1, and wy — o0, respectively. Solving (82) in
favor of c¢3 and ¢, gives

1 +/’l1 +2C1(Wl —W3)
2(wy —w3) '

c3=—(c1 + ), ) = —

By substituting the above relations in (79) and noting that
wy, = 0, w3 = 1, one obtains

1 1 1
T,=nh - —
v <2(w —w)? 2w(w— 1)) o
1 1
2(w—=1)2 2w(w-1)

1 Wl—l Wi
+C1 + - 5
w—w w w—1

which by using (99) and (91) is equal to (98). The desired
general case can be obtained in the same way.

+

*®As a concrete example, consider the case of n-punctured
sphere. In that case, the mapping class group Mod,, is given by
the brald group B, quotiented by its center [97].

“The ( 9y for i=1,..n, and ()35 . for
Jj=1..n,
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Corollary 3.1. The following statements are true:
(i) F'(0)=F(1)=0 and F'(w)=O(|w[*) asw — 0.
(ll) awFi = Mi = €_¢Qi.

(iii) The functions F?(w) have the following asymptotics:

Fi(w) =

wo,, F(c0) +(9< [ )

log |w|

Proof. Part (i) can be proved by using Eq. (90) and the
expression for R(w, w;) in (91). Part (ii) can also be proved
by using (90) and (96). The general idea of proof part
(ii1) can also be found in Remark 3 of [14]. [ ]

In Sec. IV, we will need the derivatives of ¢ with respect
to the variables wy, ..., w,_3 and the following lemma will
enable us to give a geometric description of them (see
Lemma 4 in [5]).

Lemma 3.4. The Liouville field ¢ is a continuously
differentiable function on M, ,, and

O+ Flo,0 +0,F =0, fori=1,...,n=3, (100)

Proof. Tt can be proved exactly in the same way as
Lemma 4 in [5]. Let I" be a Fuchsian group of the first kind
that uniformizes the orbifold Riemann surface O and let
f*(z) be the unique solution of the Beltrami equation (30)
with H=M(H,T) 2 u =ty + - + t,_3p,_3 that fixes
the points z, » =0, z,_; = 1, and z,, = co0. The function
Ft(w) = (J, o f*oJ7")(w) is differentiable with respect to
w on O and depends analytically on the Bers’ coordinates
ty, ..., t,_3. It follows from the commutative diagram (84)
that J, and J}, are continuously differentiable with respect
to the Bers’ coordinates t;,...,7,_3 and that suitable
branches of the functions J,' and (J; ')’ have this property
locally outside the set of singular points. The continuous
differentiability of ¢ on M, , now follows from Eq. (77)
and Lemma 3.3. As for Eq. (100), it is a reformulation of
Lemma 3.1 due to Ahlfors [91] on the vanishing of the first
variation of the area element in the Poincaré metric on O
under quasiconformal mappings corresponding to har-
monic Beltrami differentials: for any g€ H=""!(H,T),

8+ (w—w;)o,Fi(w;) + (’)(

) G Lan) s,
log;v_v{vl,j‘) (j=n+1,...,n=1) asw-w,
as w — oo.
|
0 90 |o.f*
Lp=— eH)x e =0. 101
/1:0 de Ezo(f ) (/0) Oe (ImeM)Q oo ( )

Let ¢”')|dw|? be the hyperbolic metric on the Riemann
orbisurface O* where

@' (w) = p(w; F¥(w1), ... F* (W, 3)).

From (84) one has

() (p) = () (L) (e”).
——

p

Then, using Eq. (42) as well as F*oJ = J, o f*, one gets

|azf”|2 y72 U 2
(Imf”)2 = exp((p/‘ on of )|az(‘]uof )|
=exp(¢t o F*ol)|o,F*oJ*|J)?. (102)
Finally, it follows from (101) that
v e(psﬂo]:wo oJ|aWFg/4 OJ|2|J/|2
e e=0
ot , ,
=T oo, =0,  (103)
e e=0

which by setting u = y; and recalling Lemma 3.3 [i.e.
d¥ o) (u;) = 9/0,,] gives us our desired result (100). m

Corollary 3.2. According to Lemma C.1, the d,, ¢ has the following asymptotic expansion near the singular points:

—(wo,p(w) +1)0,,Fi(w) +0 (1)

as w—w, = 00.

[ =80up(w) = (W= w))0p(w) + 1)0,F'(w) + 0 (1) as w = wy,.
w,¢(w) -

Proof. It follows from (100) and from the asymptotics of F’ (see Corollary 3.1). [
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Remark 3.7. One can also use the results of Ahlfors and
Wolpert mentioned in Sec. III A2, i.e., Lemma 3.1 and
Eq. (45), to calculate the variations of exp(¢@®(w)) on the
orbifold Riemann surfaces O = F®(0). To do so, let us
use the commutative diagram (84) once again to write

(F)“(e?) = (=) (f*)*(p)-

Then, it is easy to show that the variations of hyperbolic
metrics on Riemann orbisurfaces O% are given by the same
formulas in Sec. III A 2 but with p replaced by e? and f P
replaced by (J7')*(f,z) = fuzoJ~". Moreover, for any
a€R we have

(104)

(Fr)"(ex?) = ((F*)*(e”"))=. (105)

Therefore, we get the following formulas for the first and
second variations of exp(¢p®#(w)):

0
. Fer)* (e :0’
P
0? . : a
FEntefi)x ap™\ _— Lap :oJ_l, 106
aglag €] =£2=0( ) (e 26 fﬂﬂ ( )

C. Schottky space &, ,(m)

Let us start this subsection by recalling with more detail
how a compact Riemann surface X of genus g > 2 is
uniformized by a Schottky group. We begin with a few
well-known definitions. Schottky groups are an important
class of Kleinian groups: discrete subgroups of Mobius
group PSL(2,C) that act properly discontinuous on some
domain (called region of discontinuity) of the Riemann
sphere C. A Schottky group X is strictly loxodromic
Kleinian group which is also free and finitely generated
[98]. If we denote its limit set by A (which is a Cantor set)so
then the region of discontinuity Q = C\A would be
connected. Moreover, a Schottky group X of rank g will
be called marked if we choose a relation-free system of
generators L, ...,LgePSL(Z,C). There is also a notion
of equivalence between two marked Schottky groups:
(= Ly, ..., Lg) is equivalent to (i; Ly, ... I:g) if there exists
a Mobius transformation ¢ €PSL(2,C) such that L; =
¢L;c™' foralli =1, ..., g. The set of equivalence classes of
marked Schottky groups of genus g is called the Schottky
space of genus g and is denoted by @,. Similar to Fuchsian
groups, Schottky groups can be used to construct surfaces
since the action of £ on Q produces a compact Riemann
surface Q/%. An important result is that for every marked
Schottky group (X;Ly,....L,) there is a fundamental

*For more details on geometry of limit sets, see Ref. [79].

domain D' for ¥ in Q. This domain is a (connected)
region in € and it is bounded by 2¢ disjoint Jordan curves
Ci.....C,.Ch, ..., Cywith C; = =L;(C;), i = 1,...,g. The
orientations of C; and C! are opposite and related to
components of dD. The standard form for representation
of each L; is

(Li(W) —Eli) (w=b;) =4 (Li(W) - Z’i) (w=a;), wec,
(107)

where @; and b; are the respective attracting and repelling
fixed points of the loxodromic element L; and 0 < [4;| < 1
is the corresponding multiplier. Given this normal form,
one can explicitly construct the fundamental domain
D in the following waysz: Let us define the Mobius
transformations

. l;iW+C~li

w1’ (108)

Sa,5, (W)
satisfying ¢ ; (0)=a; and g, j (co) =b,, so that the gen-
erators L; of the marked Schottky group (X:L,...,L,) can
be written as

L, = g&iﬁgigﬂiggjgi fori=1,...,g. (109)

In the above equation, the Mdbius transformation ¢ is
defined by ¢; (w) = 4;w. Then, a fundamental domain for

(Z:Ly.....L,) is given by
def A, 7
D=C\ J(D; uD.,)). (110)
i=1
where
w—= al’
D; = {WEC" = | < |Ri|} = Ga,»,ia,»gRi(D)’
|W - b1|
w — Ei
D_;, = {WEC‘ | | < |R_i} = ggl,.j,iginng,,-(D)’

lw — &

(111)
Ciny is defined by ¢;,, (W) = —1/w, and D is the unit disk,

D ={weC|w| < 1}. (112)

Here R; and R_; represent the radii of disks D; and D_j;,
respectively, and satisfy5 }

S'However, this fundamental domain D is not uniquely
determined by the choice of marking for the Schottky group .

2For more details, see Appendix C of [99].

3Equation (113) makes clear the fact that, as mentioned in
footnote 51, the fundamental domain D cannot be uniquely
determined by a choice of marking for the Schottky group X.
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RiR—i:Ai for i = 1,...,g. (113)
The boundary 0D =U; C; U C} has components
Ci = gﬁi.EiGRi(C) and Ci = g&[,E[gianR,;(C)’ (114)

where C = 0D is the unit circle. In the rest of this article, we
will consistently presume that a marked Schottky group is
normalized. This means that @; equals 0, by is infinity, and a,
is 1. In particular, this means that co & D.

Under the canonical holomorphic map Q — Q/Z, the
boundary curves of a standard fundamental domain
described above are mapped onto smooth nonintersecting
simple closed curves ay,...,a, on the Riemann surface.
This motivates the following terminology introduced by
Bers [100]: A complete set of retrosections on a Riemann
surface of genus ¢ is a choice of g smooth simple
nonintersecting, homologically independent, closed curves
ay, ..., a,. We therefore see that a marked Schottky group,
together with the choice of a standard fundamental domain,
determines a Riemann surface with a complete set of
retrosections. A much more profound statement is that
every compact Riemann surface can be obtained in this
way, which is the content of the classical Koebe’s retro-
section theorem [101].

Theorem (Koebe). For every compact Riemann surface X
of genus g with a complete set of retrosections (aj, ..., a,),
there exists a marked Schottky group of genus g,
(% Ly, Lq) and a fundamental domain D c Q for X
with 2g boundary curves Cj,...,C,, C},...,C} such that
X = Q/X and the map Q — X sends both C; and C/ to a;.
Moreover, the marked Schottky group is unique up to
equivalence (Z;Ll,...,Lg)~(i;il,...,l~,g) defined before
as well as L; > L7

Remark 3.8. The above theorem implies that given a
compact Riemann surface X uniformized by the marked
Schottky group (X; Ly, ..., L,), we can take the homology
classes of Cy, ..., C, as the generators [a,],...,[a,] in the
symplectic basis of the first homology group H(X, Z).
However, determining a canonical basis for H,(X, Z), i.e.,
a symplectic basis {[a,], ..., [a/], [by]. ..., [b,]} with inter-
section pairings given by #([a;].[a;]) = 0 = #([b,]. [b;])
and #([a,]. [b;]) = &;;, depends also on the choice of b
cycles on the Riemann surface X. Therefore, we can choose
the elements [b,],...,[b,] in the canonical basis of
H,(X,Z) such that the projections of their representative
curves onto the marked Schottky group X are precisely the
marked generators L, ..., L o

Remark 3.9. The association between the set of normal-
ized marked Schottky groups and the Schottky space &,

found within C%3, is evidently bijective.”*

*The space &, is a finite covering of the moduli space M, of
compact Riemann surfaces.

For our purposes in the following sections, it will be
crucial to give another (equivalent) definition for the
Schottky space &,. Let A™1(Q,X) be the complex
Banach space of Beltrami differentials for X and, in analogy
with the Teichmiiller case, let us define the deformation
space D(Z) to be the open ball of radius 1 (in the sense of
L* norm) in A~"(Q, X):

D(E) ={pe A QY |ullo <1} (115)

A homeomorphism F of a plane domain  onto another
plane domain Q is said to be quasiconformal if it satisfies
the Beltrami equation at each point in Q. For each
peD(XL), let F* be the unique normalized [i.e., F¥(0)=0
and F*(1) = 1] solution of the corresponding Beltrami
equation on C that gives a quasiconformal homeomorphism
of C onto itself. Then, the restriction of F* to the region of
discontinuity Q C C gives the desired quasiconformal
homeomorphism F*: Q— Q¥ and each element yeD(X)
gives a faithful representation ¢, of X in PSL(2,C)
according to the formula ¢+ Ffogo o (F¥)!, ceX.
As mentioned before, two representations ¢, and g,
are equivalent if they differ by an inner automorphism
of PSL(2,C), ie., if O, = ggﬁlg‘l, ¢ePSL(2,0).
Accordingly, the Schottky space &, is defined to be
the set of equivalence classes of representations [g,]:X —
PSL(2,C), u € D(X). In other words,

©

IR

D(X)/~, (116)

g
where u; ~pu, if and only if Ffogo(FM)™! =
F2oco(F)~! for all 6€X (or equivalently,
Fri|, = Fr2],). At u = 0, one recovers the group X which
corresponds to the base point of &,.

The above alternative definition of Schottky space &,
gives us the opportunity to define also the generalized
Schottky space &, (m) for Riemann orbisurfaces with
signature (g;ml,...,mne;np). Let us consider the con-
figuration spaces 7 ,(QY/XV)=.%,(D!) with X/ =
FroXo(F*)~, ¥ = F*(Q) and the deformation space
of a marked Schottky group (X; Ly, ..., L) together with a

point (W, ..., Wy, ., Wy_11,....w,) € % ,(D),
DXLy, v Ly Wi, oWy Wy s s W)
— {(Iu;w’f, e Wh W W) €ATH(Q,X)

x Z,(D") llo <1}, (117)

where w/ = F¥(w;). Just as in the case of &, each
element p€D(X; Ly, ....,Liwy,...,w,) gives a faithful
representation ¢,  of (Z:Ly....,Lyiwy,...,w,) in
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PSL(2,C) x .#,(D*) according to the formula L;
FtoL;o(F*)™! for all marked generators L;EY, i=
l,....,g and w; = F¥(w;) for j = 1,...,n. Two represen-
tations are then equivalent, ¢, ~¢,,, if F‘'oL;o
(Fr)y='=FroL;o(F*)! for all i =1,...,g as well as
wi' =w}> for all j=1,...,n and the Schottky space
&, ,(m) is defined to be the set of equivalence classes
of representations [g,]
ES(Z;LD..., Wn)/"’.
(118)

@Q.n(m) LWy, eoes Wy s Wy (4, ene,

Let us remind that the Schottky uniformization of an
orbisurface O is connected with the Fuchsian uniformiza-
tion of it by the commutative diagram (13). Accordingly,
each marked Fuchsian group I' with signature
(gsmy,....,m, ,n,) corresponds to the unique marked
normalized Schottky group X ~I'/N with the domain of

A A
discontinuity Q such that H/T" = Q/% and this correspon-
dence determines the following map:

w: Tyn(m) — @, (m), (119)
by putting w; = J(z;) for i = 1,...,n.”> We can use this
map to understand the tangent and cotangent space to the
Schottky space &, ,(m): Elements of H*%(H,I") descend

to meromorphic quadratic differentials for X—i.e., auto-
morphic forms of weight 4 for X with simple poles at

A
singular points of Q. The space of meromorphic quadratic
A
differentials for £ will be denoted by H>°(€, X) and each
A
Q e H*(Q, %) has the form

Q(w)=(goJ ) (w)(J='(w))?. qeH**(H.I).  (120)

A
The vector space H>(Q,X) coincides with the holomor-
phic cotangent space T Q(O)@g,n(m) to &,,(m) at the

origin. This implies that the holomorphic tangent space
T 7o 0(0)@y0(m) is identified with the complex vector space

A
H'1(Q.,%) of harmonic Beltrami differentials.® Each

A
M eH 1 (Q,X) has the form

[ A
M(w) =e*™Q(w), QeH*(Q.X).  (121)
From Eq. (117), which implies that there exists a

fibration j: ©,,(m)— &, whose fibers over the points

>This map has the same role as the covering map ¥ in
Lemma 3.3 and is a complex covering map.
It is harmonic with respect to the hyperbolic metric on Q

To®(u)ES, are

T () @gn(m)  has

H?*0(Q,X). The standard basis in this subspace of
H?*9(Q,X) is given by the following holomorphic auto-
morphic forms of weight 4 for the Schottky group:

F,(Q4/2M), it follows that
a subspace ]*(T;O(D(O)@g)g

Pi(W), ... Py, 3(w) EHPO(Q.Z).  (122)

Moreover, the P;s actually coincide with the following
cotangent vectors:

diy. ....ddy. das. ... dag. dby. ... db, € 1 (T5 40/ @,).
(123)

The subspace that is isomorphic to T 4 >9 (D) corre-

sponds to the complement of j*(7% . ®(0) &, in

T:. @(O)@gﬁn(m)' This subspace is, in fact, the cotangent

space to the configuration space at (wy,...,w,). In other

words, we have

T 010/ Bon() = (T @) ® T 0 Fu(D).

(124)

It follows from Eq. (90) that a standard basis for

T coi0)7 Z,(D) is given by the following meromorphic

automorphic forms of weight 4:

*——ZR ow, w 2

which represent dw; for i=1,...,n. According to
the following pairing, which actually is an analog of
pairing (36)

)= [[ otimonen

-P3g—3+n(w)_

A
My, 5., (w) in H™(Q, Z) which
. . . a a
coincides with the tangent I
T 000y, Similarly, the corresponding bases in the
tangent and cotangent spaces to @, at an arbitrary point

can also be defined. This implies that Sch(J~';w) =
xRp(w) =

Psysii(w weQre,  (125)

(126)

we can obtain the dual basis for Py(w), ..

i.e., the basis M/ (w), ..
vectors

1(0,¢(w))?* can be decomposed as follows™":

Zh<§

39-3+n

7Y ciPi(w),  (127)

i=1

Sch(J=1;w)

TSee the asymptotic behavior of ¢(w) and its derivatives as
w — w; in Lemma C.1.
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where H s H

1 1 1
&iw) == - (W), 7| |7 (129)

) 2 {; <(aw -w;)?  ow(ow— 1)> o'(w) "
A ol A

fori=1,...n (128) € —— 0F
are meromorphic automorphic forms of weight 4 for where
Schottky group with the second order poles at X - w; and
Cls--vs C3g-34, are accessory parameters. Moreover, for the

. L. . . A

variations of hyperbolic metric we have the same formulas 05 F" = M(w)o,F* for weQ, (130)

introduced in Secs. III A2 and III B 1. Furthermore, the
formula (100) is also valid in this case. Finally, on 7, (m), ]
each cuspidal (- >Cu%P and elliptic (-,-)S, . metric remains  and F¥ is complex analytic in € and F* is given by a similar

TZ.i
invariant under the automorphism group of the covering equation with Eq. (90), where weé.
m: Ty,(m) > &, (m). Accordingly, each metric descends Before closing this section let us also mention that the
to a Kihler metric on &, (m). All these also imply that in ~ mapping J in diagram (13) has the following expansions
analogy with the commutative diagram (84), we have | near cusps and branch points of I' (see Appendix C):
Wi‘f'Z/?ozlJ;:)(%)kmi (i=1,...n), z-z
J(z) = ’ (131)

wit S I exp(—EEE) (i=ne+1an=1), 2oz

where w; = J(z;) fori=1,...,n— L. B If e(/’ |dw|2 denotes the push forward of the hyperbolic metric on H by the map J,

then the density of hyperbolic metric on Q lie., p(w) = e?™)] is once again given by Eq. (77), where ¢(w) is smooth
on Q¢ The function ¢(w) satisfies™

p(ow) = p(w) —log|o'(w)|*> forweQ™t, V ceX. (132)
According to Lemma C.1, it also has the following asymptotic form:

4|7 )‘ :3,

—2(1——)10g|w wi| +log——+0(1) w—w,
o(w) = { —2log |w— w]|—2log(1og( H+o W w), (133)

w

70 + O(lw|™), w — 0o,

—2log |w| — 2loglog

fori=1,...,n,and j=n,+1,....n—1.
Remark 3.10. It follows from the above asymptotics that (see statement 3 of Lemma C.1 for more details)

1
logh; = —2logm; +2log2 — lim ((p(w) + <1 ——> log|w—w,~|2>, i=1,...,n,,
m

w—=w; i

o)

2e 2
logh;, = lim <log|w—wi|2— ¢ > i=n,+1,....,n—1,
W, w—w;|
. 5 2%
logh, :JI-IBO log [w|* — ) (134)

with h; = | for i = 1,....n,, and h; = | for i = n, + 1,....n.%°

58Note that since X is normalized, co & Q.
*This equation follows from the invariance of hyperbolic metric on Q¢ under the action of E—i.e., e?™) dwdw = ¢ do(w)do(w)
for all c€X.
When there is no J available, [63] presents the identical expression for log h; in terms of the metric potential asymptotics.
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Finally, consider the points wy, ..., Lyw;, ..., w,, corre-
sponding to the branch points and cusps in
295 - PrZis ...,zn.él Near the point f;z;, the first coeffi-
cient in the expansion (131) of J(z) is given by L;c(w,-)J(I”.
7\ " for i =
1,....n, and h; = |J§l)|2 fori=n,+1,...,
tively, replaced with h,-|L§C(wt-)|% and h;|L}(w;)]>, when
sending w; to L,w;. Moreover, let us define .Z; as the ith
relative cotangent line bundle on &, ,(m), situated along
the fibers of the projection p;: &, ,(m) — Cf?:g,,,_l(m).()2
Given this understanding, we can establish the following
assertion.

Lemma 3.5. Hermitian metrics in the holomorphic
line bundles .#; for i = 1,...,n, are determined by the
quantities h(".

Proof. To prove this lemma for the branch points, we use
the transformation of h;’s under the action of the generators
L, of the Schottky group. As explained above, sending
Wises Wi ou Wy 0 Wi, oo, Lywy, oo wy, will result in h;

to be replaced by h;|L/(

Accordingly, the positive functions h; =

n are, respec-

w,)|m% Thus, we have

Alogh; (135)

1
= —log|L! (w,)|*.
108 1L

Smle] = lim

1
—271'2(1——) loge + 27n,loge + 4x(n, —2)10g10ge|)

i 1

where®

This means that h]" is a Hermitian metric in the line bundle
Z;. For the case of cusp, a similar method of proof is
applicable and we conclude that h;s will determine
Hermitian metric in the line bundle .Z;. m

IV. CLASSICAL LIOUVILLE ACTION

In this section, we study the classical Liouville action for
hyperbolic Riemann orbisurfaces with the genus g = 0 and
g > 1, separately. Before proceeding, we should mention
that all the proofs in Secs. [V and V are previously provided
for the case of punctured Riemann surfaces in [5,14]. When
it comes to calculations involving punctures, we can only
direct the reader to those articles. However, for the reader’s
convenience and to facilitate a clearer understanding of
distinctions in the presence of conical singularities, we find
it appropriate to present all proofs side by side.

A. Riemann orbisurfaces of genus 0

Let O be a marked Riemann orbisurface with signature
(0;my,...,m,_,n,) and let m denote the vector of orders
(my,...,m,). The regularized action functional for the
Liouville equation (78) in the presence of conical singu-
larities with conical angles 2z/m,,...,2x/m,  at
Wi, ..., w, together with punctures atw, .,...,w,_» =0,

_1 = 1,w, = oo is defined as follows (see [5,18,53]):

dw

ﬁm(// (|10,,|> + €**)d w+\/2_li (1_1> ]Q‘”(w—_w,._wd—wwi)

(136)

n—1
0. = C\ U {wllw—w;| < e} u{w|w|>e"},

i=1

and the circles

Ci = {wllw -

are oriented as a component of the boundary 00..

wi| = e}

Remark 4.1. When n, = 0, the appropriate classical Liouville action is given by

= lim

-1 1
[y
2 m, . woow

®'One can comprehend this by recognizing that J o, = L; o J.
®This projection forgets the w; for i = 1,...,n

*Note that lim,_, O, = O™ = X5t

lnl _
a 2 Z(p 1—-——
o=t (], (o venen TS (1-0) £ (555
n—1
1 1\2
2 1——) loge—2 — )1 .
ﬂz< m) oge ”( m) og€>

dw

dw
w—=w;

(137)
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Remark 4.2. Tt is worth providing some explanation regarding the action (136) and why the terms associated with conical
points appear different from those associated with the punctures. The contour integral in the first line of (136) is added to
ensure a well-defined variational principle around the conical singularities.64 The variation of this integral cancels the
boundary term arising from the variation of the bulk term. To ensure a well-defined variational principle around the
punctures, additional contour integrals must be considered, which are given by [18]

n—1 _
d
—E f < —cc>+g j{ < v —cc>
j=n.+1 j=n,+17C; 10g|W W]|

() T () 39

2 w 2 wlog |w|

More concretely, the classical Liouville action (136) in the presence of these additional contour integrals takes the form
[Eq. (8) of [18]]

are dv d

—hm(// (|0,@* + €*?)d w+— (1——)]4 (_ v
e—0" 2 — 3 w—=w; w-—=w;
” : }’{ ( dw ) V-1 (dw dw>

- o ———

A e (w—w)) log|w w| (w—w;)log|w—w;] 2 Jeo " \wooow

V=1 dw dw n 1\2
e — -2 1—— ) 1 , 139
> c;¢<w10g|w| w10g|w|> ”Z< m> °g€) (139)

where m; = oo fori = n, + 1, ..., n. By substituting the asymptotic form (133) of the Liouville field ¢ near punctures in the
contour integrals of (139), up to © (1) terms, one gets

74 ( - )+§§,fﬂ(<w-mi§w-wﬂ-cc)
L cc)—ﬁ (o

2 2 wlog |w|

cc) =4zn,loge +4n(n, —2)log|loge|. (140)

Since the contour integral (138) evaluated on shell is merely a divergent term, we can add it to the counterterm —2zn, log e
in (139) to get the Liouville action (136). The resulting regulating terms will have the opposite sign (i.e., plus sign instead of
minus sign) and correctly cancel the divergence coming from the bulk term lim,_ ¢+ [/ 0€|6w(p|2d2w.

Performing a similar calculation for the case of conical points, i.e., substituting the asymptotic form (133) of the Liouville
field ¢ near the conical points in the contour integral of (136), one observes that the result is given by

S8 1-2) foletaet) o[- 2) e -2 o

i=1

Notice that, apart from the divergent part, the above expression contains a finite part [i.e., 2z > _;(1 — ml) log h;] which

behaves nontrivially under quasiconformal transformations and therefore cannot be ignored (see Lemma 5.1 for more
details).”> We have decided to keep the line integrals around conical points in their integral form since this form is
more familiar in the literature on Liouville CFT and can also be used when the conical points are of a more general type (see,
e.g., [53]). Therefore, one arrives at the classical Liouville action (136).

% Alternatively, the line integrals are necessary in order to ensure the proper asymptotic behavior (133). See the explanation following
Eq. (8) of [18] for more details.
For both punctures and conical points, there are finite constant terms in the calculation of the contour integrals which can be safely
ignored. These terms are not written in Egs. (140) and (141).
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Theorem (Takhtajan and Zograf). For any fixed vector of orders m = (my, ..., m,,) such that Z?;l (1-L)+n,>2,
the function S,,: M, , — R is differentiable and /

1908
Ci:_ﬂaw”; foralli=1,....,n—3, (142)
where c;s are the accessory parameters defined by (81).%
Proof. Let
86 (W oo Wa3) = So2 (Wi, ooy W) + SV = 27(X), (143)
with®’

<(B)e V=T e 1 di d
3 (wl,...,wn_3):// O + 2= Z(l——)}{ (p(_ o )
O = mjj Jog \W=W; W=W;

5 ne 1 2
S = —27) <1 —> loge + 27(n — n,) loge + 4x(n — n, —2) log | loge|. (144)
- m;
Jj=1 J

For any ¢ > 0, the function S, is continuously differentiable on M, .. To prove this theorem, it suffices to show that £, Se
converges uniformly to —27¢; as € — 0 in a neighborhood of any point of the moduli space M, ,. More explicitly,
one needs to show that

“e 0S5, det 0
‘CﬂiSm = ow: = %

Se(w, . owri) = =2zc; fori=1,....n-3, (145)
e=0

. . . 68 - .
pointwise on the moduli space M, ,.” First, we can write

By V-1a

=— I.(¢), 146
an' 2 af,‘ e—0 6(8) ( )
where
I.(€) = (I[p] 0¥ o @) (ep;),
1 (w) = p(w; (Yo @) (en;)) = p(w; F#i(wy), ..., F¥(w,_3)),
Welwl Wn‘—IS
and

n, 1 dw dw
I‘ = a 2d d_ 1_7 - °
o= f] ouotan nane 3 (1-1) f o000

=1

See Theorem 1 in [5] for genus g = 0 punctured Riemann surfaces.
'In view of the Gauss-Bonnet formula for Riemann orbisurfaces [102,103]

g//oe‘/’dw A diw = 2n<i (1 —mi> +n, —2) = =27y (0).

j=1 7

%We remind the reader that the basis {,} for Te()7 (T') has been defined in Eq. (92).
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Accordingly, one gets

// |a o (w |2dedw+Z< __)f (pw(w)( d __ dwgﬂi), (147)
Fs)ll Fey,(cs) 7 j

=i
|
gﬁ\
=
=
|
=

with

n—1
F#i(0,) = C\ U {wllw —wi| < e} u{wllw|>e'},
k=1
Fei(C5) = {wljw = w| = e} (148)

The calculation of (146) can be done by almost verbatim repeating the corresponding computations in the proof of
Theorem 1 in [5]. Accordingly, let us now use the change of variable formula for differential forms, f P @ = Jy F* (o),

and the commutative diagram (84) to write

1 dw dw
(Feri)* (10,0 |>dw A dw) + ( —) f (Feri)* (go"”f < - - >>
// Z m; “(e) w—w W_Wjﬂl

Jj=1

— [ loupme g ) A dF)
06‘(6‘)

e 1 dFei dFeri
+Z<1 __> f ((pgﬂioF‘w")<(W> ~ ey, (W) eﬂ,»)
] m;) Jc(e) Feri(w) —w - FPi(w) —w)

j J

- // |0 0 Fi[2[0, Fo1 (1 = |eM|*)dw A dw
Oc(e)

w 1 0,,F# (e M;dw + dw) 9,,F(dw + eM;dw)
1 —— EHi o FEH —
+) ( m)%j@(tp ° )< — : — :

£l EH R "
W/‘z_wj‘ w Wj

where

n—1
= C\ U {wllw = w| < e} U {wllw| > e},
k=1
€ — i _ oM | —

In order to compute 0/ .(¢g)/de|e = 0, it is necessary to differentiate both the integrand and the integration domains O, (&)

and C5(e):
0
= // — // |0,,0|>dw A dW
€|.—0..) 0.(e)

0 0, FFi (g M;dw + dw)  9,,Fe (dw + eM,;dw)
+z< ) ba -

EHi
dw dw
— . 150
+Z< )08&o%f<>¢<w—wj W—Wj> 130

Wi — W W — W
The second and fourth terms in Eq. (150) can be computed using the formula for differentiating a given k form @ over a
smooth family of variable domains O(¢),

Iawf/f""' o F[2]0, Fo# [*(1 = [eM,|*)dw A diw +

((peﬂ[ o Fﬁ‘ﬂ;) <

0
9 // w:// iv(@), (151)
Oe|,_g 0.(e) 90,
———— ———
k f—1
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where iy(w) denotes the interior product of the k form @ with vector field V which is the vector field along 00,

corresponding to the family of curves d0,(¢). As a result, we get

ol. . . iy
Gwe = // [(awiaw(p + aqupFl)aw(p + (aw[aw§0 + awaﬂ/goFl)aw(p + |aw(p|26wFl]dW A dw
i O,

0, F# (e M;dw + dw) 9, F(dw + eM,-dv"v))

=3 [ 0P () - Fn)an
k=1 00;
(i 0 FeH) ( e i

SH{OTE
= m;) Jce O€|,_g Wk — Wi —

J J J

where the last term in Eq. (150) has vanished due to the fact that 0C; = @. By noting that

dw d d
7440(_ w_ __a >:—2]{ (p( W >—7{ awqolog|w—w,-|2dw—7§ Oz log |w — w;|*dw,
C;j w=w; WwW-=Ww; Cj w=Ww; C; ’ Cce

J

we have

— EHi

f{ (o o Fon) a,, Fe#i (éﬁidl—i— dw) 0, Fi(dw + eM;dw)
cs WeHi — w;"f wHi —w;

(152)

o, Fei(d M . dw
— 2 ]{ (¢ wsm)( wE (dw + eM,; W>> _ ?{ (B0 o o) log | F#i (w) — Fe¥i (w;) 20, F¥ (dw + eM dw)
CF C;

Féri (w) — F#i (w))

J

B B,

= a0 P log [F() = % 0, PO, FT (6, o -+ ).

B,

After simple calculations and using Lemma 3.4, one can see that

0 iy d M ;dw
— 31:27( awF’(w)( v )—27{ (,0( ’ W>+o(1)
0¢|,—g c w—w; o \wW—w;

0 . L

3% B, :% 02 F 10g|w—wj|2dw—}( dw(pdwF’(wj)dw—f 0,9M;log |w —w;|*dw + 0 (1),

Ele=0 G G o

0 . L

E B; :fc 0W¢Milogw—wj|2dv'v+]{c 6W0WF’log|w—wj|2dv'v—% 0:¢0,,F'(w;)dw 4 0 (1),
e=0 < € 3

J J J

as € — 0. This implies that

(B1+BZ+B3):—]{ OWF’<_ —— )—j{ 6WF’(w,-)d¢—27{ qa( >+0(1)
c w—w; w-—w; ce ' e \W—w;

. dw d
(Cio)_f aWF’(_ v )+o(1).

Therefore, according to the above result, for the third term in (152) we get

Oe

e=0
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—_— L EU;
Ws.ui —_ W;ﬂi W&ﬂ' - Wjﬂ

S (-4 2
— m; C;;ésgzo

j=1

e 1 v d
:—Z<1——>% 0WF’(_ v a )+0(1).

j=1

(1 0 o) <0F (M dw + dw) 9, F™ (dw + eMidvv))

Accordingly, Eq. (152) can be further simplified to get
ol,

/ / (00,00 + RpF ) + (0,050 + 0,050 )0, + 0,020, F']dw A d

W—WJ W—W]

Z/ o (b = om0 (1-50) f 0 (525 - 20) o

=1
Next, using Lemma 3.4, we have
0,0, + 02 F" = =090, F' — 0L F',
0,050 + 0,05,0F = —0,,00,F'" — 0,0, F',

which makes it possible to rewrite (154) as

0] . iy . iy
// —0,,00,,F" — 02 F 050 + (—0,,005F' — 050,,F)0,,¢ + |0W¢|20WF’}dw A dw

j=1 J

o N0 3
- 2020 — (0, 2)aWFl—2—(aw 6-VF’> —(aw am)
//0[< ® = (0,9) o \Ow @0l ) &~ (9,90,
n . . e 1 dw dw
- 0,02 (Fitw) = Fiw) i =S " (1-—) ¢ o F - 1
S [, o (P = Fom)an =5 (1-0) f ak (G20 -2 ) vo )

=1 J J

§|

%’I@

(awawFf)] dw A di

= // (20@(0 - (aw(p)2> a@FidW A dw —2/ 6W(p0ﬂ,Fidv‘v —/ aw(paWFidW _/ aw(ﬂawFidv_V
0, 3

€ € 05

1 I I Iy

y ne 1 _( dn d
—/ |aw¢|2Fldw+f_|aw¢|2dW—Z<1——)ja{_awFl<_ v >+0(1).
20, C? " m] é/ w—=Ww: w—=Ww:

=1 J J

Is

(153)

(154)

(155)

(156)

Let us compute each of the integrals /1, ..., I5 separately using Lemma C.1 and Corollary 3.1 as well as Egs. (79) and (80).

We begin with the integral /;:

I = / / (200 = (9,9)?) 95 Fidw A div = =2 / T, Fidw
0. 00,

- _2i‘f€ (2(W ﬁ"w/)z +- 9y ) (85 + (w = w))a, F/(w)) + -+ )dw

_Wj

25 e e [ O R L

j=ng+1 -

—2?{ <2W2+ + - )(waF’( )+ ---)dw
= 4nv—lc; + 271'\/—_1”2_: hd, Fi(wy) = 22v/=10,F'(00) + 0 (1) as € — 0.
k=1
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In the last line we have used the notation i, = 1 — l/m% fork=1,...,n,and hy = 1fork =n, + 1,...,n — 1. In addition,
we have

I, =-2 / 0,0, F'dw = -2 / 0, (W)M;(w)dw
20, 90,

n, 1 -1 —(j)
(C30) _ m; Cj G Van
- ZZ?{e w—w-+1—L+ 74) w W/| " w
j=17¢; / 4/

mj

) 217{ LU IR S [ '5“]5) w = willog2lw — wi| + -+ | di
— — C. .« e W W 0
€ 1l W—Wj J J g w= W/ w

Jj=n,+1 J lo 70 4 2]
1
1 1 S 2—(”)]" 1
_2]{ —— |1+ C’; <_| n|:1]l2 —1 0|g ||W| .)d‘,-v
c; w log JY_Y’R w o4 w
=0(1),

as € — 0. Let us now calculate 75 + I,:

Iy +1,=— A ., 0,0, Fidw — A . 0,00, Fidw = — A ., 0,,Fidp =0 (1),

as € — 0. Finally, we can turn to calculating /5:
Is = _/ |aw§0|2Fidw
20,
! . 1 .
= 27{ 10,0 * (Six + (W —wi)0, F (W) + -+ )dw — ]{ (— + - ) (w0, Fi(c0) 4 ---)dw
=1+ C; G

wl®

n—1
—% |0,,¢|*dw — 27/ — Z(l——) 0, F'(wy) + 22V —10,,F(c0) + 0 (1),
c:

as € » 0 with my = oo for k =n,+1,...,n— 1. As a result, we have
2 - = 2 2 |
I+ -+ Is = 4nV'=1c; = ¢ |0,0/7dw +22v=1) — o, Fiwy) +o (1), (157)
¢ j=1 j J

as € — 0. Moreover, by changing the conformal structure, the variation of counterterm action S¢ gives

aSCt—Zﬂ”i( >aF’( ) +o(1) ase—0. (158)

Notice that we have only taken into account the contributions coming from the regulating terms for conical points and not
the punctures. The reason for this can be traced back to Eq. (138). By doing similar analysis as in Eq. (153) for the contour
integrals in (138), it is easy to see that the quasiconformal transformations of these contour integrals are canceled by those of
the counterterm —2zn, log €. In other words, it is sufficient to only consider the quasiconformal transformations of the bulk
term for the case of punctures, which is in agreement with the analysis in [5].
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Now, using Egs. (156), (157), (143), and (158), and putting everything together, we arrive at our desired result:

ow i 2

a~s /—1 e 1 2 ..
Sin = <47t\/—1c,~ —% |0,,¢|?dWw + 27V -1 Z <1 - —> <—> 0, F'(w))
¢ =1 i/

N 7€ |a»v(p|2dw_2”\/jj§l: <1 —mi> (n%) 0 F! (w)) + o(l))

=2nc;+0(1) ase—0.

In order to complete the proof, it remains to show that
the remainder in the above formula can be estimated
uniformly in a neighborhood of an arbitrary point
(Wi, ..., w,_3) E Mg, Let T be a Fuchsian group unifor-
mizing the orbisurface O. Then, the Hauptmodule J,,
where y =ty + -+ + t,_3u,_3 € H VI (H,T), is contin-
uously differentiable with respect to the Bers’ coordinates ¢,
and its coefficients in an expansion similar to Eq. (60) have
the same property. From this, we can conclude with the help
of Eq. (77) and Lemma 3.3 that the remainders in the
second and fourth assertions of Lemma C.1 can be
estimated uniformly. Using the commutative diagram (84),
we can conclude that an analogous assertion is valid also
for the remainders in Corollary 3.1 for F’, and this
completes the proof of the theorem. L]

Remark 4.3. Theorem (142) means that > 7= (c;,dw; +
¢;dw;) is an exact one-form on M, with antiderivative
—Su/2nm.

In addition to Theorem (142), we can also generalize
Theorem 2 of [5] to include branch points: The Weil-
Petersson metric defined on 7 ,(m) in Sec. IIl A 3 can be
projected onto M, ,, since it is invariant under Aut(\P).
We will continue to call this metric obtained on M, the
Weil-Petersson metric and denote it with the same notation
(-,)wp- Then, we have the following theorem.

Theorem (Takhtajan and Zograf). For any fixed vector of
orders m = (my, ...,m,) such that 77 (1 —m%) +n,>2,
the function —S,, is a real-analytic Kdhler potential for the
metric (-, -)wp on M,,*:

3}
+T

J J

|

Proof. In order to prove this theorem, we have to prove
that the accessory parameters cy, ..., ¢,_3 are continuously
differentiable on M, ,, and

ac; 1<a 0

> fori,j=1,...n=3. (160)
WP

The proof of continuous differentiability of the functions c;
on M, follows readily from the definition of accessory
parameters (81) and continuous differentiability of the
Hauptmodule J with respect to the Ber’s coordinates.
We now turn to proving Eq. (160) in the same way as
for Theorem 2 in [5] where no branch point exists. Let
(w1, ...,w,_3) be an arbitrary point in M, , and let " be a
Fuchsian group uniformizing the orbisurface O. It follows
from the commutative diagram (84) that

Sch(Jg), o Fi;w) = Sch(f% o J; 2),

where y; is an element of the basis in H~"!(H,T") given
by Eq. (92), and € € C is sufficiently small. By using the
following well-known property of Schwarzian derivative,

Sch(A o B;w) = Sch(A; w) o BB + Sch(B; w),
we have

Sch(J5} s w) o Fe4i (0, Fe#i)* 4+ Sch(Fei; w)

eujo

= Sch(f®i;z) o J7N(J71)? 4+ Sch(J71; 2).

We can now differentiate both sides of the above equality
with respect to £ at the point € = 0, using Eq. (79) and the
fact that F¢/, and as a result wfﬂj , are holomorphic
functions of € at € = 0. The left-hand side gives

d
0, FeHi)? 4 =
5:0( " ) - 0

Sch(Fei;w)
0

e=|

00S,, = =2V —lwwyp. (159)
|
—|  (Sch(J5!:w) o F5(9, F#)* + Sch(F#s; w))
€le=0 !
OT e OF€ti
=21 40, T,
0g =0 og o0
d

g e=0 j—1

n—1 j n—1 Ef;
Z h; c; oc;”’
<2(w —wi)? * f”f) N Z ( 0

w—=Ww.

(161)

) 1
e=0 W_Wl

%See Theorem 2 in [5] for the genus g = O punctured Riemann surfaces.
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eu; ep; eu
where ¢,/ = c;(w, ', ...,w,

’+)- To compute the right-hand side, we will use the definition of Schwarzian derivative (16),

the fact that /0 of the functions d,f* and d2f* vanishes at ¢ = 0, and the well-known Ahlfors formula™® [86,91]

0
S o]

1
_qu‘,

where y; and g; are connected by the relation (92). Then, we have

0

= (Sch(fei;z) o J7H(J71)2 4+ Sch(J7!; 2))

e=0

= Lo )]
(3

1

1
==39;°07 () =-50;

. 5 (162)

Equating the left-hand side, (161), and the right-hand side, (162), and using Eq. (82), we get

w

(o
i=1 0g

’ 1 20
EO)W_Wi '1(05

_ ep;
n—3 <aci#/
7 \ 0E

I
(]

=~

i=1

9 e
OF Cho

1
+
e=0/ W—W,;
1
+
e=0/ W—W,;

0 n 2w
(5 (1-5-Ferwr

0 n 2o
[ =14= SN |
(aé( +2+;c, (v} ))

l+ 9 “’”/
o/ W o8 -

1
=0 W_l
) 1
w
=0

e=l

) 1
oo w—1

n-3

n—3 acfﬂ/
- Z( 0g

i=1

or

It now follows from the biorthogonality of the bases R; and
Q; as well as Lemma 3.3 that

dc; 1 Jd o
5= 2619:9 =5 (o e

which is what we wanted. Combining Eq. (160) and the
theorem 1is stated in Eq. (142), we can conclude that the
real-valued function —S,, is a potential for the Weil-
Petersson metric on M, ,,

S _ /0 0

owW; aw aw
while the function —S,, oW is a potential for the Weil-
Petersson metric on the Teichmiiller space T, (m). In

addition, the real analyticity of the Weil-Petersson metric
(see [91]) implies the real analyticity of the accessory

"The Abhlfors formula can be derived by comparing the
expression for f2(z ) given by Eq. (88), and the equality
AAN* = id discussed in Sec. IIT A 1.

) ( :
+
e—0/) \W—W;

w;—1 wi 1\ (91) acz%
SRy (%

i=1

. ) 1
e=0 [ 2 2
|

parameters cy,...,c,_3 and of their generating function
—Sm/27 on the space M. L

Remark 4.4. Equations (142) and (159) also give us a
proof that the Weil-Petersson metric is a Kéhler metric.

Finally, let M, ,(m) = M,,/Symm(s) be the moduli
space of orbifold Riemann surfaces with signature
(0;my,...,m, ;n,). One can generalize the results of
Sec. 1 of [15] to prove the following Lemma.

Lemma 4.1. A Hermitian metric in a holomorphic Q-line
bundle 4y, over M ,(m) is determined by exp[S,,/x],
so that

0o explSu/ ) = e, (163)

Proof. We first need to show that exp[S,/z] is a
Hermitian metric in the holomorphic Q-line bundle A,
defined in Sec. III B. To do so, we use the same repre-
sentation of Symm(s) introduced there. For our purposes, it
suffices to prove this lemma for the case where the
signature of orbifold Riemann surface O is given by
O;m,...,m,m',....om") with s=s, and s =y, > 3.

N —

K} s

Namely, we have only two kinds of points, s branch points
of order m and s’ branch points of order m’. Furthermore,
we will fix the last three points with order m’ > m to be
at 0,1,00. Then, the generators and one-cocycles of

Symm(s) = Symm(s) x Symm(s’) would be the same
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as the ones we introduced in Sec. III B. Moreover, in this case we have

VAT 1 dw dw
—1 (10,02 + e v — -
1’Igl*<// (19@F +endiw + 2 ; ( mk) ]{;¢<W—Wk W_Wk>

)

s+s

where

s+s'—1
0. =C\ +U {w|lw—wi| < e} u{w|jw| > e},
k=1
:{w||w—wk|:€}, k=1,2,....,s +s =1
ce = {wllw| =1/e}, (165)

and the circles are oriented as a component of d0,. Notice that we did not consider the counterterms in (164). Actually,
Symm(s) does not change the conformal family, and therefore the counterterms will not contribute to the variation under

the action of this group, and therefore writing them would be redundant. To study the variation of S,,[¢] under the action of
Symm(s), it suffices to study its variation under the generators {(o; 1.0}, +1)}§z;i’1=3,_1 of Symm(s). Considering the

background we provided in Sec. III B on the structure of the generators, variation is translated through the effect of the
transformation y; ;1. ;1. We have

ASulp] = Sulpl o (01, 07141) = Smlo)
= lim (@ {AS,(,P[(,;] + (1 - %) ASY (o] + <1 - %) ASS o] + <1 + %) ASY (9] }) ., (166)

where

ASm // (| Vij+t; ,,Hw§0|2 + efp)d(},j Jj+1:i, z+lw) A d(7/ J+1si, t+1w // |aw§0|2 + e(p)dw A dW

s A7 W) d(y; ivt:ie1W) dw dw
2 ~ NEREAES| il
ASﬁn)[QD]:Z{f: (ﬂ< g+t _ J i+ )_% go(_ S )}’
= \JC Vij+LiittW = Vjj+1ii+1 Wy Vij+Lii+1W = V) j+10i+1Wk ¢ W=Wr W=W
sEs'<l A7 W Adly: oy W
3 - Vij+1i W) (7). L, W) dw dw
ASS,,)[QO] _ Z {%: (p( oL+ _ jot it — (2 ’
k=st1 WJCE Vij+Lii+tW = Vi j+1ii+1Wk  Vjj+LiiraW — Vjj+1Lii+1Wk ¢ W=Wr W—=Wwg

AP o] :f{ ¢(d(yj.j+1;i.i+lw)_d(}’j,j+1;i,i+lw)> _7{ (p(d_W_d_W>
o Vjj+tii+1W Vjj+tii+1W o wow

and O,, C¢, @ are the transformed orbifold Riemann surface, circles, and Liouville field, respectively, such that

=C\ U‘,‘;‘i/ IntCi. By looking at (64), we see that the index j does not have any nontrivial effect and we only have to
worry about different values of i. For i < s" — 3, the transformation y; ;.. is given by the identity of PSL(2, C), so, for
these cases we have AS,, [¢] = 0. Accordingly, the only nontrivial cases are i = 5" — 3, 5" — 2, s — 1. Let us look at the case
with i = s/ — 3. Here we have the transformation yy_3 v, = (W —w, ¢_3)/(1 —w,, ¢_3) which for simplicity we call y.
Let us calculate each contribution in (166) separately L

"'For ASf,p[q)], the exponential terms give the same constants, and we can safely ignore them in variation.
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= // 10,,@[*d(yw) A d(7w) —// 10,,02dw A div
~ ] ., JerPiryPan nam) = [f io,opa n s
= // |0w(p|2dw A dw,
OO,

where Y’ = dy(w)/ow, and in the last line we used the invariance of the hyperbolic metric:

e?°rd(yw) A d(yw) = e?dw A dw = Goy +logly'|*> = ¢ = 0,p oy = 0,0, (167)

since ¥ = 1/(1 —w,,¢_3). The region y~!'(0,.)\O, contains a part of C bounded by the circles C; and Cj. Thus,
by integration by parts and using the equations of motion together with taking into account the orientation of these circles,

we have
s+s'—1
ASW el = ( ]{ POy div — % qodmodv‘v) + ( 7{ POgpdiv — ]{ rpawrpdv'v)- (168)
ot ce c ¢, ce

k ¢ s+’ s+s’

The explicit form of the circles C¢ is given by

o [vllw—pwil = e} = (wllw =i = el —wypgal) kst -1, .
O wllwl =1 = {wliwl = HT = wyesl} k=s+s.
Now, with the use of Egs. (168) and (169) and the asymptotic form of ¢ given by C.1, one can find"
(1) 12, , 1
ASy' @) = —4avV—-1(1—-— slog —4zv-1{1-—) (¢ = 1)log———
|1 - Ws+.\'/—3| m |] - Ws+s’—3|
2 1
+4nv -1 (1 +—,) log——m. (170)
m |1 = Wypy 3|

Next, for the ASf,% ) [p] we have
2 L dw) d(yw dw dw
35 = Y (£ (- ) f (52 -2
=1 e yYw — ywg YW — YWy 2 W —= W W =Wy
" de y'dw dw dw
Z (p—loglyP)| =—— - -¢ ol——-
k— (e YW =W YW =YW < \W =W W= Wy
dw dw dw dw
2(74 (0 2101wl (02 )= f (LT ),
= w — Wk w—=Wwp 2 w =Wy w =W

k

where we have used (167) and y’ = 1/(1 — wy, ¢_3). By using the asymptotics of ¢ given in Lemma C.1 and Eq. (169), the
above expression can be simplified to give

1

|1 - Ws+s’—3| .

1
ASP[p] = ~8mv/~1— s log (171)

"Note that the orientation of the contour around the point at infinity is opposite of the other points, hence the sign difference in the
last term.
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By identical calculation to that of ASY [p], we get

ASS [p) = 8\/_

Finally,

_(d
ASw[o] = j{ cp<

s+

-f ~togiy ) (L

s+

7 (s

l)log| (172)

I - Ws+s’—3| ‘

d(yw) _ d(yw) _]{ v _dw

yw yw e ,(p w w

y'dw y’dw 7{ dw dw

yw yw e /(p w w
S+s

dw dw dw dw
=]{ (@ +2log |1 = wyy %)<—_—)—]{ ¢<—_ ——),
ce w w §+;’ w w

s+

where in the last line we approximated w — w_ ¢_3 with w in
the denominator of the second term due to w having a large
absolute value. Again, using the asymptotics of ¢ from
Lemma C.1, Eq. (169) and taking into account the opposite
orientation of contours around the point at infinity, we have

ASPg] = —87:\/_ log

(173)
|1 - Wx+s’—3|

Putting (166), (170), (171), (172), and (173) together, we get
1
ASm[(/)] =2n <_2_ 1>S10g|1 _Ws+s’—3|
m

1
+2n<_'2—1><S’—2)10g|1—ws+s’—3|- (174)
m

By comparing (174) with Eq. (65), we can readily see that
for i = s =3,
ASy ]

= Sul0] 0 (Gkxs1:0)isr) = Sul0]

= ~2210g (5001, ) (175)
Doing the analogous calculations for i =s'—2,s' =3
would yield similar results. One can continue this proof
for the case with the direct product of the symmetric groups
of more strata inductively. Furthermore, had we chosen to fix
the points 0, 1 and oo in the other stratum or decided to deal
with punctures, we would still get the same result with minor
changes in the path of the proof. So, in principle, we proved
that under the action of any element n of Symm(s), S,
transforms according to the rule

on/z||fy* = exp[S/x]. (176)

xp[S,y

This means that exp[S,,/z] is a Hermitian metric in the
holomorphic Q-line bundle 4, defined in the Sec. Il B. As
we mentioned before, (175) shows that one-cocycles can be

viewed as the modular anomaly caused by the noncovariance
of the action under the effect of the modular group. To
complete the proof, we remind that the first Chern form
C1 (Ag.m- exp[Syu/7]) of the metrized Q-line bundle 4, with
a metric exp[S,,/x] is given by

c1omexpiSa/n) = -0 (22). a7

Thus using theorem is stated in Eq. (159), we find that

01 Voo e59[Su /) = e (179)

This statement completes the proof. [

B. Riemann orbisurfaces of genus > 1

Consider a marked normalized Schottky group of rank
g > 1 denoted by (%;L,, ..., Lg). The Liouville action, at
the classical level, is actually the on-shell value of the
Liouville action functional. For the case of a closed
Riemann surface with ¢g > 1, it was first defined by
Zograf and Takhtajan [6] (and was later interpreted by
Takhtajan and Teo [55] in cohomological language) to be
given by

= //D(|0w(p|2 + e?)d?w + gg ik Op (p)

(179)

where the one-form 6, (@) is given by

Lo o) (P B
HLI;I((,D) <¢——log|L | —log | 1] ><Lkdw—L—kdw

\4 LkE(Z;Ll,...,Lg). (180)
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In the above equations, D is the fundamental domain of (i) The variation 8S of the classical action S[g] has
the marked normalized Schottky group (Z;L;.....L,), the form
— |9 !
0D = Uiz (G v €, and 55791 tim Sl + tél//] — S[g]
) =0
Iy = 181
= alar = by) (181) / / 20,0, + )y, (183)

is the left-hand lower element in the matrix representation wher§ the Vanathn 5.1// € coo(g’ R? is .a smooth
of the generator L, € PSL(2,C) for k =2, ..., g. Notice function on Q which is automorphic with respect
that since we have chosen the marked Schottky group to 2. For _the, marked Schottky group.(Z;L 1’_‘“’L9)’
to be normalized, in particular @, =0 and b, = oo, the S[g] is independent of the specific choice of a

we have I, =0 and 6,-1(¢) = 0. Zograf and Takhtajan fundamental domain D.
! When the conical points and cusps are present, the area

integral in (179) diverges in the limits w — w; due to
asymptotics of Liouville field ¢ (see Lemma C.1) and the

(Theorems 1 and 2 of [6]) have proven that

3973 _ classical Liouville action needs to be regularized. Let us
0S=-2z) ¢;P; and 00S = -2V-lwwp. (182) . ]

i-1 define D as the pair (Dy, Z|p), where D, is defined as

D N Q and Z|p denotes the restriction of Z to D. Here,

where 0 and 0 are (1, 0) and (0, 1) components of the  We have assumed that all singular points wy, ..., w, belong

de Rham differential on &, (see Sec. III C). This implies O the interior of fundamental domain D. For sufficiently
. 74
that —S is actually a Kihler potential for the projection of ~ Small € > 0, define
the Weil-Petersson metric on &,. . o
Remark 4.5. The addition of the second term in the D. =D\ | D5, (184)
on-shell Liouville action (179) makes sure that: i=

with D€ {w||w w;| < €}. It follows from Lemma C.1 that the following limit exists:

& dw dw
S — 1 (10,02 + 2¢)d v—i }{ B

_2ﬂz< _—> loge+2nn,,(loge+210glog€|)>. (185)

Remark 4.6. When n,, = 0, the appropriate Sﬁ [p] is given by

reg

V=1 1 dw dw = 12
li (|0,0|? 20)d — 1-—— - -2 I—— 1 . 186

Now, we can define the regularized action as

Sl = Su i) =5, o1+ Y315 ] 0, (187)

A

Dreg k=2
This completes the definition of S, provided that all of the fixed points wy, ..., w, lie in the interior of the fundamental
domain—i.e., wy, ..., w, €IntD. The S,,(D;wy, ..., w,) depends on the choice of representatives in X - {wy, ..., w, } and no

longer determines a function on the Schottky space @, (m). Note that w; and L (w;) have the same order and are related by

A
the action of Symm(s) acting on Q. The geometric meaning of S, is given by the following Lemma (also see Lemma 3.5).

See footnote 53. .
"Note that lim,_o D, = Dy, Where D, = Do\Supp(Z|p).
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Lemma 4.2. The regularized Liouville action determines a Hermitian metric exp[S,, /] in the holomorphic Q-line bundle
L =@, L} over &,,(m).
Proof. To establish this claim for i =1, ..., n, it is adequate to demonstrate that we have

Su(Dswi, oo, Liwi, coowy,) = Sp(Dywy, ...owy,) = mh;log L) (w;)]?, (188)
where wy, ...,w, €IntD and wy, ..., Lyw;, ..., w, € IntD. Furthermore, it is sufficient to consider the case when
D = (D\Dy) U Li(Dy),
and Dy, C D is such that 9D, N 0D C C and w; € Dy, and all other w; € D\D, for j # i. Note that by a finite combination

of such transformations, any choice of a fundamental domain for £ can be obtained from D. The computation of (188)
closely follows the corresponding computation in the proof of Lemma 3 in [14] where no branch point was present. Let

g T 1 dw dw
I.(D;wy,...,w,) = = (|0p0)* + e?)dw A dw + ]{91 + (1——)% <_ —— >,
(Diwy e wy) //D€<| ol + o) N R (e R e

J

where we did not include the counterterms in the action due to the fact that the action of L; does not change the conformal
class. Since C’j = C; for j # k and C, = Cy — 0Dy, we have

Al = I.(D;wy, ... Lyw;, ...owy) = I(Dywy, ..., w,)
= // (|0,e|* + e*)dw A dw — // (|0@|* + e*)dw A dw — % 0,1 ()
Ly(Do)\D§ Do\Dj m, "

ne 1 dﬂ} dW dW dW
+25""<1_E> [7{ w(ﬁ/—m_w—L w-) _%eq"(w—v'v-_w—w')]'

<
J

According to Eq. (132) we have

Li((10,9]* + e”)dw A div) = (|0, + e?)dw A dip) o Ly|Li[?
= (|0,,¢|* + e?)dw A dw + o - (p), (189)

where, together with using the Stokes theorem, we get

ar— [[ (ou0P +enyiw naw— [[ (o +erawnav—§  0,.0)
DL (D) DD o ()

k i
< 1 Liwdw Liwdw dw dw
# 30 (1-) [ o tog i) (o - ) (L2 2 )
= m;) LJL'(€) w—Lyw; Lipw = Liw; o \W—w; w—w,

Since the third term’s integrand does not have a pole, its contribution will be of © (1) and it can be safely omitted.
Furthermore, the exponential term in the Liouville term gives the Euler characteristic and its contribution will be canceled
between related terms. Now, we can rewrite the above equation as

Al = // (16, 0l2)dw A div — // (10, )dw A di
D L7(D5)

k

n, 1
’ 51"(1__)[7{ ¢ — log |Li(w)[*) (95 log |Lyw — Lyw;[?
JZ:I: Nom L;‘(Cj>( gLy (w)I") (95 log [Lyw = Lyw|

dw d
o, toglLow=Low) - f (T2 (190)
e
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By noting that
o, log|Lyw — Lyw;|> = 9, log |w —w;|* + 0 (1),

we can write (190) as follows:

Al — // (10u?)dw A dib — // (10u02)dw A dib
D¢ L7Y(DS)

30 (1-0)[f . @ k—log|L§<(W)|2)(w(iWWj—W(iww)—j{;(ﬂ<w(iwwj—wciwwj)]. (101)

By doing the integration by parts and imposing the equations of motion together with considering the orientation of the
boundary circles, the first line in (191) becomes

/ (I0uel2)dw A di — / / (1,0/)dw A i = 74 90 div — 74 905 0d, (192)
; L71(5) ; &
where
€
= (il = Lowl = e} = {ulbo =il = 7. (193)

To be more precise, the right-hand side of (192) had an extra contribution,

1 1
—// pe?dw A dw — —// pe?dw A dw, (194)
2)J o 2JJ p;

which by defining y; = [w —w;|,a; =1 —1/m;, [y;]=:€ < y; < ¢e/Ljw;, this contribution for branch points and cusps

respectively becomes
a i 2-2q, a; z 2a;
1 2 idy. = i _ i1
// 2(1 1 Ogy yl ﬂ<2(1_ )Qyz (1_ ) 0gyl>
—2log|logy;| +

2 2
/ / log (y7log?y;)dy; = fr(2 + ; log | logyi\>
] yllog Vi log y; log y;

but both of them, and accordingly (194), vanish in the limit ¢ — 0. Now, by using the asymptotic form of ¢ from the
Lemma C.1 together with the relation (193), Eq. (192) is simplified to”

// (|0,0*)dw A div — // (|aw¢| dedw——4n\/_< —mi>210g|L;wi|. (195)

e/Liw;

€

e/Liw;

El

€

i

For the rest of the integrals in (191), again by using the asymptotics of ¢ from Lemma C.1 and (193), we have

< 1 dw dw dw dw
Sos(1- )| fo-toelionp) (2= ) - f (2 0]
= mJ L;](C;) W—Wj W—Wj ; W—Wj W—Wj

1 1
— 87v—1 (2—) log |Lyw,|. (196)
m m;

i

"The Df$ boundaries have the opposite orientation of the boundary of the fundamental domain.
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Now, combining (195) and (196) gives
Al = —4zxvV—1h;log |Lw;|.
So, in principle, we proved that

exp [Sm(f);wl, o Lewy oo owy) [ (zhy)]
2

wa)/ (zh)] | Liwil*,

= exp[Sp,(D;wy, ...,

which means that exp[S,,/z] is a Hermitian metric on
=" LM .
Combining Lemmas 4.2 and 3.5, we can deduce the
following statement.
Corollary 4.1. Put H=h"" ..
Then,

My, by,
LS (SRR P

S =S —nmlogH (197)
determines a smooth real-valued function on &, (m).
The above form of .¥,, can be easily understood by
demanding the Liouville action to be independent from the
choice of a representative in Z.{w, ..., w, }: It is clear from
commutative diagram (13) and the definition of regularized
Liouville action (187), that the problem of defining the
appropriate Liouville action on &, ,(m) is closely related

A
to the Fuchsian uniformization of Q. Then, the fact that
Q c C and the observation that, roughly speaking, the

A
action of Schottky group X on Q resembles that of
Symm($s) on a genus zero Riemann orbisurface,”® suggests
that the same pattern of “anomaly cancellation” observed in
Sec. III B 1 should also happen in this case.

V. POTENTIALS FOR WEIL-PETERSSON AND
TAKHTAJAN-ZOGRAF METRICS

In this section, following [14,16], we construct Kéhler
potentials for cuspidal and elliptic TZ metrics on M, ,, (see
Sec. IIT A 3). We will also prove that the first Chern forms

of the line bundles .#; over the Schottky space &, (m)

with Hermitian metrics h; are given by s-w$), for

"*More specifically, by acting each generator L, €% on a
singular point w; inside a particular fundamental domain D, we
will get another singular point with the same order of isotropy in a
different fundamental domain.

i=1,...n, and Jw7," for i = n, + 1,...,n. In addition,

we will show that %wwp is the first Chern form of the

Q-line bundle £ =@, .Zf-"' with Hermitian metric
exp[S,./z|, where the regularized classical Liouville
action S, is given by Eq. (187). Then, it follows readily

from these two results that the specific combination

47% _Cusp _ gV, ell
Wwp — 3~ W7y _221':1 mjhijZ.j

metric as well as cuspidal and elliptic Takhtajan-Zograf
metrics has a global Kihler potential on &, ,(m).

of Weil-Petersson

A. Potentials for cuspidal and elliptic TZ metrics
on M,,

As in Sec. III B, let I" be a marked normalized Fuchsian
group with signature (0;m,,...,m, ,n,) that uniformizes
the orbifold Riemann surface O and let J:H — O be the

2
Klien’s Hauptmodule. In addition, let h; = |J (1’)|'“i for
i=1,...n, h,= |J(1i)\2 for i=n,+1,....n—1, and
h, = |J(_”l)|2 be smooth positive functions on MO,n'77
Now, according to the expressions for logh; in

Remark 3.10, we prove the following lemma.
Lemma 5.1. For all k=1, ...,n — 3, we have

0 1 .
—loghi:—aka(W,-), = 17""”87
owy, m;

0 .
—logh; = d,,F*(w;),

198
P (198)

i=n,+1,...,n.

Proof. Consider the orbifold Riemann surface O = [H/T].
Using Lemma 3.3, it is sufficient to demonstrate that

dlog hi#
oe

and for all k =1,...,n —3. The following proof repeats
verbatim the proof of Lemma 4 in [14] for the case of
punctures. Using the fact that F** is holomorphic in & at
e = 0, Corollary 3.1, Eq. (106) and formulas in Remark 3.10
we get

{%aka(Wi) fori=1,...,n,,
- 0, F*(w;)

=0 fori=n,+1,...,n,

(199)

"See Eq. (61).
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1 i=1,...,n, case:

dlog hi*
o€

(&)

W, .
QW Wi ;

1
lim <(p€”" o FeHk | (1 - —) log | Fe#(w — w,-)|2>
m

0 1
= —lim {— ((pff‘k o Fet + (1 - —) log |Fe#(w — w,~)|2>}
w=w; | 0e|,_ m;
. 1\ F¥(w) = F*¥(w;
~ lim (awkfp T a,0F*(w) + (1 - _> M)
w—w; m; w—w;
(100) _ .. ok ok ok 1 ok
="— lim _aw¢F (W) - awF' (W) + aw(pF (W) + l—— aWF‘ (W)
wow; m;
Lo, (wy)
= — w:).
m; w 1

1

In going from the first line to the second line, we have interchanged the order of the limit w — w; and the
differentiation. This is allowed due to convergence in the above formula and the fact that the definition of h; is
uniform in a neighborhood of an arbitrary point (wy, ..., w,_3) € Mo,

() i=n,+1,...,n—1 case:

dlog hi* (9
oe oo \0e

2 _ ¢k o FHk (w)
2
lim (log |Fere(w —wy) |2 67>

e F (= wy)]

(o o\ |0 F (w)
=1 — log | Fex (w — w.)|? — 2(Femx *< —-I/J“k) v
9 =9 0, FeHt }
— lim {_ log(Fe(w —w;)) —2—2 2 (gwi(w)y}
w-w; | 0g|,_ (W — ;)2 08| oo \F ¥ (w —w;)
— i (FO — FA(wi) _ e ((w = w)9, F¥(w) — F¥(w) + F*(w;))
e W= w; (w = w;)|w —w;|

(iil)) i = n case:

dlog h;/*
oe

2 ok o Pk (w)
. e 2
lim <10g |F€I4k (W)‘Q — W)

9, Fere

oo}

L) )

(log |Fe;4k ‘2 _ Z(FE”")* (e‘%‘/"”k)

1
- e_j(ﬂ a
log(F#t(w) F (w)) =2

om0 W oe
) FK(w) e 20 () (wo,, F*(w) — Fk(w))|w|)
= lim - =
W—00 w w-w
- aWFk(w)

| |
As before, let 0 and 0 be the (1, 0) and (0, 1) components of de Rham differential d = 0 + d on M, .. We have
(see [14,16]) the following.
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Lemma (Takhtajan and Zograf). The functions —logh;, —logh; logh,, :M;, - R, for i=1,....,n, and j =

ne+1,...,n—1 are Kihler potential for TZ metrics % (-, -)$% ., % (-, )%“25 = s respectively’®:

_ - 8rv—1 - 8rv—1
dologh; = —v=Tafl},.  dologh; = —~S—aiyl,  dologh, = "t —wiy. (200)

Proof. We need to prove that for all j,k=1,...,n -3,

1/0 o \°l P
2 <aw,- ")Wk>Tz.i fori=1,...,n,,
0210 h. cusp .
_ g_,: %”<ai,ai> fori=n,+1,....,n—1,
0W10Wk Wi OV TZ,i
4/ 0 o0 \WP for i
—am (0 0 or i = n.
3 <3Wf"’wk>Tz.i

Let us consider the three cases i = 1,...,n,, i =n,+1,...,n—1, and i = n separately. The following proof repeats
verbatim the proof of Proposition 1 in [14] for the case of punctures. According to Sec. III A, Lemma 3.3 and Eq. (106), for

a given Riemann orbisurface O = [H/I'| one can write:
(i) i=1,...,n, case:

dlogh;  (dlog hf’”ﬁsk”k
ow;ow;, O€ 08,

02
lim —
w—*m{ (6;,»68,()
02
= lim -
wow; (08j0€k>

In the above equation, we have used the notation (eu) j& = €jHj + &gy Using the commutative diagram (84), one has

ej=g;,=0

(q)(£ﬂ>jk o F(Sﬂ)jk + (1 — 1) log |F(€ﬂ>jk (W — Wi)|2> }
m

i

ej=¢;=0

(Femrten) ().

ej=¢,=0

(Fé‘iﬂj+€kﬂk)* (e(ps-jlthrg-k#k) _ (J_l)*(fs_fﬂ_f+€k}lk)*(p)_
Taking the logarithm of the above formula, we get
PO o Ferems 1 log |9, Femrtam = log((fH 4 )" (p)) o J=! + log | (J-1)' P

Then, using the above equations together with Ahlfors formulas (101) and Wolpert’s formula (45), we have

log((f#1 1)’ (p)) 0™

ej=e;,=0

(az log " “”‘k)

2
- = lim ( - >
0¢ j0€y, eme=0 TV 0¢ jOEy

@51 . - L(2 2\

"8See the Proposition 1 in [14] for punctured Riemann surfaces.
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() i=n,+1,...,n—1 case:

o’logh;  (d*log 7t e
owom, Ok ;08

ej=e,=0
, 1 0

=2limq{—————

wow; | [w — w;| de;vE;

( F(su)_,k) * (e—%fp(““)fk (w))

ej=¢,=0
1 e %
comd] (BEmO V0| (ST
08,1 o \F 0 = w1)) 3ol o (=)

1 1
"2 lim < —Slogw = wilf 5, 047 () + 5 e

(00 =)0 0) = o) + i) (07 = )0uFECw) = FF() + F¥C))

_ N L
lw —w;| (W —w;)> lw—w;|[(w—w;)>

X

9 1 . log |[w — w;]
= —— lim —=—— Y% (Imec: i (Gi
2wt Im(g 0T (w)) (meie) e

. (4m [ 0 0 \wP
= zlim (Im¢;2) 5, (6i2) = 5 (5 -5~
ﬂwl_l;l‘;lo(mGIZ)fﬂjﬂk(GZZ) 3 <aw,»’6wk 70

where in the last line, we have used the fact that log |w — w;|/Im(¢7 ! o J7! (W) = =27 as w — w;.
(i) i = n case:

o*logh;  (d*log i e
B O¢ 08,

oW ;0Wy, ¢j=e,—0

2 | 0 FEmu
= lim log | F(emi|2 — 2 (Flemin)* (¢=h ™) | o ) w }
W—»oo{agjag'k £/=£k:0< g‘ ’ ( ) ( ) F<Eﬂ)/k ( )
. 0 L (e
=-2lim{ —— (Fleni)* (e ™)
w—>00 |w|6£j08k e—e4=0
re 2] (BEm)) (AT
dgjl, o\ F (W) ) 08l —o\ Fere(w)
(106) . ) e Foo e ™) (wo, Fi(w) — FI(w)) (W()WF ‘W) - F k(w))
=" lim { ——f,z 0oJ ' — i 7
wooo | 20| T 2 |w|wz [wiw2
_ iy J W 1og W] 1 1, loglw
= S g w700 = i e (i ()
. (534 / 0 0 \ P
=z lim (Imz)f, ; (z):<,> )
w—00 ik 3 aWj aWk TZ.n

In the above equation, we have used the fact that log [w|/Im(J~!(w)) = 27 as w — 0.

Using Lemmas 3.2 and (200), we can deduce the following corollary.
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Corollary 5.1. The function —logH=—-m h;logh,...—
m,_h,_,logh, 1—|—logh is a Kihler potential for the
combination ¥ w,” +3370 mh;efy . on My, (m).
The first Chern form of the Hermltlan holomorphic Q-line
bundle (4¢,,, H) over M, ,(m) is given by

N

Ci(dom- H) = ygalogH =—awy += Zm h. a)'e[‘“Z]'

(201)

Remark 5.1. In analogy with the famous accessory
parameters that are generated by S,,, the authors of [60]
have defined the so-called “auxiliary parameters” as’

1 oH

di = ﬁﬁl (202)

As emphasized in [60], the auxiliary parameters play an
equally important role as the accessory parameters. In
particular, it follows from the above corollary that an
analog of the relation (160) can be found between the
auxiliary parameters and Takhtajan-Zograf metrics.

Next, let us remind that the decomposition of r(z) is
given by

n—3

where

(204)

a; = / / Sch(J; z)pi(z)d*z
(D)

According to Sec. III B, for varying T', the r(z) determines a
(1, 0)-form r on 7, and the latter one is corresponding to
the (1, 0)-form 9,%

n—3
9= E aidwi,
i=1

on M, ,. Therefore, we also have the following.
Corollary 5.2. The function .%,,: M, , — R satisfies
0Ly = (205)

and

00.% ), = =2V —1 |wwp — a)%uZSp - —Z m;h a)rernzj}
(206)

To see (205), put ., = S,, —7logH and combine
Lemma 5.1 with the proof of Theorem (142) which gives

05y = 0S, —ﬂthdlogh _Z(OS )dw, ﬂzn:th( 10gh>dwl-

i=1 j=

n-3

:—ZﬂchW,—ﬂZZh L (w))dw, _2Z< e; +Zh

)dw, ZZadW, =29.

In the second line of the above equation, we noted that Eq. (90) implies that

:—//M w)o,R(W , w)d*w = —

which at the point w = w; is simplified to

=L

Then Eq. (206) can be obtained easily by using theorem
stated in Eq. (159) as well as Lemma is stated in Eq. (200).

Our definition of auxiliary parameters differs from that of
Ref. [60] by a factor of 1.

Gz

o] <w—1w>2‘w'<w}—1>)dzw/’

w==1 [ s man==-> [[ (.m0

|

Remark 5.2. According to Lemmas 3.2 and 4.1, the
functions H and expl[S,,/z] are Hermitian metrics in the
holomorphic Q-line bundle Ay, over M, (m). This
implies that .%,, = S,, — rlogH determines a function

89See Lemma 3.3.
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on M, (m).

4g? cusp gV, ell . .
For; —5) 5ymihjot;; in Eq. (200) with overall

Interestingly, the combination @wp —

factor of ﬁ appears also in the local index theorem for
orbifold Riemann surfaces for k = 0, 1. This is the sign that
the function .%,, can play the role of the Quillen’s metric in
the Hodge line bundle 4;, defined in [16]. We will explain a
little bit more about this observation in conclusion.

B. Chern forms and potentials on Schottky
space &, ,(m)

A
Let O = Q/X = [H/I'] and T be respectively an orbifold
Riemann surface and Fuchsian group of signature

(gsmy,....m, ;n,)and let J:H — SAZ be the corresponding
orbifold covering map. As we have explained in Sec. III C,
the automorphic form Sch(J=';w) of weight 4 for the
Schottky group can be projected to the subspace

A
HZ’O(Q’ Z) = Tj[o(b(0>@g,n (m)7

3g-3+n

2= bdw

i=1

3g-3+n

R(w) = Z biP;(w) =
p)

3g—3+n

S (Sch(J1). M) Pi(w),

: (207)

where P;,i=1,...,3g—3+n are given by (123) and (125)
and by using Eq. (127) we get

39g-3+n

Rw) = )

i=1

(—ﬂc,- 4 lej hi(é&). M») Pi(w)

= 7Ry (w) + Zn: hiR;(w). (208)

The definition of &); is provided by (128). The R(w)
coincides with a (1, O)-form 2 on the Schottky
pace ©,,(m):

= bld/ll +--- 4+ bgdllg + bg+1da3 +--- 4+ bzg_3dag + ng—Zde + -+ b3g_3dbg + bgg_zdwl +---+ b3y_3+ndw,,.

In the following two theorems, which can be regarded as
generalizations of Theorems 1 and 2 of [14], we will
explicitly describe canonical connections and curvature
forms of the Hermitian holomorphic (Q-)line bundles .%;
and . =@, .Z?

Theorem 1. Let 0 and 0 be (1, 0) and (0, 1) components
of the de Rham differential on Schottky space &, ,(m).
The following statements are true.

(i) On the Hermitian holomorphic line bundle

(:Z;,h"), the canonical connection is given by®!

2
dlogh! = —=R;.
n

(i) On the Hermitian holomorphic Q-line bundle
(&, eST"'), the canonical connection is given by

1
T

$'When m; = o0, we will simply ignore m; in the following
formula.

(209)

(iii) The function .7,: &, ,(m)— R given by
Eq. (197) satisfies

0.5 = 29.

Proof. We will prove each statement separately:
(1) In order to prove part (i), it is sufficient to show that

(d logh" >
o e=0

—%(gi’Mj) fori =1, e Ny,
12wy

fori=n,+1,...,n

Using Lemma 5.1, we have

<() logh:™ >
o e=0

Lo, Fi(w;) fori=1,....n,,
N aij(Wi)

(210)
fori=n,+1,...,n.
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(i)

On another side, according to (90) and (128), one can see

n) == [ [0 (G ) = 2

which by substituting in (210) gives the desired result.
To prove part (ii), we need to show that

0 . . .
% Su([LF o Ly Wi owidt) = =2me; fori=1,...,3g—3+n.
8820
We have
0 £l el £l el
L, Sm == Su([LY" . LSw L owfY)
I e e=0
V=1. o - 9S(ee
Tl e+ i @)

where S(V¢ is given in Eq. (144) and

dw d
6)—// . |0w(ps""\2dedW—|—Z% L) P + <1__>]{ (ps,l,( L_ Wg,,,),
Feti(De) =3 J P ( ck b Fovi (C%) w—w w=wi

where once again, we have used the Gauss-Bonnet formula for Riemann orbisurfaces [102,103],

B/ oo (=5) +n2)
— ce?dw A dw =27 29 + 1—— ) +n,-2) ==2my(X),
2 JJ P ; mi) "

to conclude that

Ve |
—E”I//e‘/’dw/\dv"t/:O.
2 D

The calculation of £, S,, closely follows the corresponding computation in the proof of Theorem 1 in [6], where
regularization at the punctures can be found in the proof of Theorem 1 in [5] and for branch points in the proof of
Theorem (142). More explicitly, by applying the change of variable formula [ iy @ = f F*(w) and noting to the

commutative diagram (129), one finds

15(8)_//A (Femi)* (|6 (pe"t|2dw/\dw —|—Z (FE”f)*(H( o) ((p‘f”t))

D.(e) k=2 7 Ck
T 1 dw dw
+ (1= ) £ (o (e )
; m;) Jese) w—wl w—w

- //A o
D.(¢)

EHiNIT Ep; EUiNII ll;
() = ALy
( ) o FéHi (LEM) o Feti

e 1 dFeHi(w) dFeHi(w)
+ 1__>f gogllioFglli <— i Leu o |
; < m; C;i(e)( ) Feti(w) — Wj_”i Feti (w) —wH

J

& I
2dFemi(w) A dFeri (w) + Z% (gfﬂ" o Féti — Elog [(LF) o Fe#i2 = log |1} |2>
k=2 Ci
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which by noting that dF®i(w) = d,,Fi(dw + eM;dw) and dFi(w) = 0,,F%#i(¢ M; dw + dw), it turns to
a=ﬂﬂvwww%%mwu—mmwAw

g (LT o e o
2 k !

k=
i
k=
g
Z a ¢£”LOF8”1 10g|( gﬂ’) OF6”1|2() FW‘(E'M dW+dW)
=2

]f @ o F log | (L) o Fo |0, F#« (dw + eM,dw)

fl (L) Fﬂ|2(m) o G (& B, dw + dw) + 81/ 15/:1 ¥ 2
0 1) o Feti Hi(g M; dw w av— o !
g ( S,M,) o Feti — g |

ER; el A
n Z <1 _1> jg (g% o Fom) <0 WF#(eM;dw +dw) 9, F (dw + ii\./l,dw)),
j=1 mj/ Jce) wi '

WeHi — w' W — W

A
where Cs are the usual components of dD and

A A n
=\ () o1(e)
Di(e) = {WEDHWW" —w| < e},
CS(e) = oDS(e {WED||W“" - we”‘| = e}

Just as in the proof of Theorem (142), to calculate 7%, we must differentiate both the integrand and the integration

A
domain D, (¢). Using Eq. (151), the second contribution gives

0 y
— // |0,0|2dw A dw = — 27{ 10,0 (Fi(w) — F(w)))dw, (212)
e=0 D.(e <

Oe|,._

where the boundaries 0D (¢) are oriented in a manner that is counter to the orientation of aﬁ. These boundaries also
oriented as a boundary of D$(¢). Moreover, the contribution from the variation of integral domain C? vanishes since
dC5 = @. The differentiation under the integral sign repeats the calculations done in the proof of Theorem 1 of [6]
almost word for word. The only change is that the integration domain has now changed to D.. Accordingly,

// w(p + () QOFI)av'vw + (av'vgbi + awav‘v(pFi)awq) + |aw§0|zawFi] dw A dw

B L’ )
—z;jgl)g 10,0 (F'(w) = Fi(w;))dw — ZZ% @'+ 0,F") Lfdw
j=179b;

k

’ /2 (Ly) + LyF! 125 i 1201 din
_Zj{c (0,¢" + RpF)log|L,|*dw + 9,9 wa+dwfplog|Lk| o, F'dw + d,¢log L} |*M;dw
k=2 / C« k

g Li l L//Fi
7{ { W'+ 0,050F") log [Li|* + 0, (")Lfk}dw
Ci

9. [ (LiY +LIFLT k 1 [ dw dw
i) R d 8rv/—1Y =k _ 1—— o Fi - 1
+Zj€k I + 87 Z Z( mj)ﬁ v (v‘v—wj W_Wj>+o( ),

=2 =
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where we have used Eq. (153) and the fact that F¥ and L;" are holomorphic in the variable & € C. As in the proof of
Theorem (142), we can use Lemma 3.4 and the equality 0;F = M, to rewrite the above equation as

// w(pa Fl angi)av‘v(pJf_<_aw(paWFi_awavT/Fi)aw(p+|aw(p|2awFi]dWAdW

. .. g L
-y ]{ 02 (F (w) - Fi(w,)) w23 ?{ 0, F ki
=1 Jops —=JC L;

(L) +LYF
L/

q 7£< L”) L’)L LiF +87r\/_2 Z(l——)% 0 Fl(wﬁu._wiww.>+o(l)‘

kzk =1 J J

g
—Z 7{ {(—awfpawFi—aaF")log|L;(2dw+aw¢ dw+ 0, ¢log|L,|?0,,Fidw+0,,0; F’log|L’|2dw]
— Jc,

(213)
A
Let us first compute the integral over D,:
/ / 0,00, = BNy + (~0,00,F = 3,050, + 0,00, ] dw A di

— / / . [(26;4;40 — (0,0)?)05F" — 2i (0,905 F")+0w(0,,00, F") — 9 (aw(pawFi)] dw A dw
D, ow ow

= 2//A T ,M;dw A dw =2 /A dwtpav—vl"idﬂ/—/A awtpdwl"?idw—/A 03¢0, Fidw,
D, oD, oD, aD,

1 163 I

where in the last line, we have used the definition of the energy-momentum 7', = Sch(J=';w) = 29 — 1 (0,9)* In
order to compute the integrals 1, I,, and /3, we need some useful identities. From the equality F®*i o L; = L o Fi
for k=1, ..., g, one can see that
FloL, =F'L} + Li,

o FloLiL, =0,F'Li + FL]+Li,

0pF' o LiL, = 0,F'L},
Moreover, from Eq. (132) one has

// T

I
L/ = aWQDﬂ aw(P OLkng + L:Z = av‘v(p

aw(p o LkL;c +—

A
Now, recalling that 0D, = [ 1(Cru C;C)} U [Uf’;Lfo], where C), = —L;(C;), together with implementing some
of the above identities we get

I, =-2 / - 0,90, Fidw
JaD,

n,

= —2Zq: f aw(pawFidW—Zi 7{ 0,0, Fidiv — 22 f 0,0, Fidi
k=2 7 Ck j=17C;

ne+j

= —2292 ?{ awF' dw 22 7{ oM, div — 22 f 0,,pM d,
= JC i j=1 7€,

ne+j
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where it can be simplified more by using the asymptotic expansions (C30):

L// / L// - C q(/) 2
I =2 f [( ) F "a F’]dw 2 j{ ( - —j—f—) L w—w| T | dW
1 kz: c, Z » w— Wj ‘ 4](11) J

1
-2 - 1

J=1 7 Chet log‘ e

—(n,+
X(J%ﬂmﬁ”

42 netd) w— an+j|10g W =W, j| +- )
1

) Y PR _18,2a78 og?wl o
al w 1og‘ﬂ w? 4 [wl

g
g L// ’ L//
=2 f [(—k) Fi+2ko, F’]dw+0 1
; Ck L;( Ll ( )
Moreover.

g n
I,=— [, 0,00,Fidw=— 7{ 0w(p0WFidw— j{ 0,,¢0,, Fidw

g L// L// Lz / LIIFl
= — E f [ o, F — (awqo >( s ] j{ 0,90, Fidw.
L’ L
k=2 i

Furthermore,

I; = /A 0,000, Fidw = — ?{ 05,000, Fidw — ]{ 0500, Fidw
: 3 2 1.

DE‘

g L// L// (Ll ) + L//Fl:| f‘
—_ - 0WF’ av-v i dW W a FldW
2 72 [L ( ¢ L/) L Z ey

k=2 k k

=~

Using the fact that

-3 § awrian=3  owaran==-3§ ardp=o0(1) ase-o.
j=1JC; j=1JC; j=17C;

we get

g L// / L/l g LII L// Li /+L//Fi
LthL+1=2) K ) Fi ka Fl}dw—z:?{ [L/awF' <0W¢—L—f‘>(k)Tk]dw
k k

k=2 k=2

9 // L// Li L//Fz
7( [ 0, F — (a )w#]dfv—ko(l).
Cy Lk
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Substituting the above results in Eq. (213), we get

_2// T,Mdw A div — ﬁg_|awrp|2(F"(w)—Ff(wj))dw
+;72 {am( ];dw-|-Lk dw> + log |L}[* (0% Fi'dw + 950 F’dw)} iﬁk Fi [2(2—%)’ (Z) ]dw
+§g:7€ (Ll()L,) )+ Ly, + 8z ‘/_Z ;;( —mi) ]{;OWF’(wiww‘wiww.)+‘9(1)- (214)

k=2

Using the fact that the left brackets in the second line in (214) can be written as

g (L L
Z]{ |:0WF1(Lf€dW+ "dw>+log|L|(a%vFlderaaFdw]: ]{ 0F’10g|L|)
k=2 Y Ck

one can see that this sum vanishes; the right brackets in the second line in (214) is also equal to 0, since

i]{ F{Z(LZ)/ (L;‘/>Td Zi% FIS h(L )d 0
i k) 2k w= 'Sc ;w)dw = 0.
k=2 4 Ck L;{ L;c k=2 4 Cr ¢

As for the first term in the third line of Eq. (214), since the contour C, encircles a zero of the function L/, i.e., the
point L;!(c0), we get from the Cauchy formula that

Liy +1 I
f (")#dw =81vV-1+ fork=2,..,g
a (L) I

therefore, the combination of first two terms in third line of Eq. (214) vanishes as well. Putting everything together,
one has

1@—2// T,Mdw A dw — 27{ 10,92 (Fi(w) — Fi(w;))dw
_Z (1 ——>]{ o, F <Wiww,‘wiww.> ro(l). (215)

J J

Using Eq. (211), the limit

e—=0

lim / / T, Midw A dw 2 —2y/ZTb,,
D,

and

> f 190f (F0) = Fwy ) am

Jj=1

e 1\2 Fi — Filw. np= Fl l 2(Fi — Fi(w.
< im (1——) ?{—(W) <2Wf dip + lim 2 7{ < 3 )+ ( <W2> b)) )dv’v
=0 4= m; < lw—w e=0 4 c lw— w/| [w—w;|*log [w —w,|

Fi Fi(oo) 2(Fi(w)—Fi
iy (E0)=Fle), 200 <°°>>)dw
e=0 Jee [w| |w|* log |w|
a 1\2_ ..
=27zv-1 g <1——> 0,F'(w;) withm; =00 forj=n,+1,...,n,
j=1 mj ( j) !
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accordingly, Eq. (215) is simplified to

B n 1\2 ..

It = —4v/=1b, = 22v-1> (1 ——) 0, F' (w))
- m;
= J

Finally, by putting everything together from (211), (216), and (158), we get

L, Sm=2b;+ 7Y hio,Fi(w;) =

=1

—2me; +2)  hi(&;
j=1

(iii) The proof of part (iii) follows readily from those of parts (i) and (ii).

Theorem 2. The following statements are also true:

1\. ..
—4nvV-1) (1 ——>awFl(wj). (216)
- m:;
j=1 J
M,’) + ”Z hJaWFl(W/)<5:2) - 277501'.
j=1
| |

(i) The first Chern form of the Hermitian holomorphic line bundle (.Z;, h!") is given by

¢ (L hi") =

1l P
—w?rzl, i=1,...,n,.

(i) The first Chern form of the Hermitian holomorphic Q-line bundle (., exp[S,,/x]) is given by

¢ (L, exp[Su/7])

(iii) The function .%,, = S,, — #log H satisfies

Proof. Since

V=1 _
T

l’l

the proof of part (i) is exactly the same as that of lemma
stated in Eq. (200). The proof of part (ii) can be obtained by
Theorem 1 and accordingly following similar analysis
with the Theorem (159). The last part immediately follows
from (i) and (ii). ]

VI. DISCUSSION AND SOME FUTURE
DIRECTIONS

This paper explores the semiclassical limit of Liouville
field theory on Riemann orbisurfaces of finite conformal
type (g > 1,n). This is accomplished through the use of
Schottky global coordinates. This study can be seen as
an extension of a previous work by Park, Takhtajan, and
Teo [14] in which they examined the classical Liouville
action on the Schottky space of compact Riemann surfaces
with only punctures. In this paper, we include the con-
tributions of orbifold points to the Liouville action.

In Sec. IVB, we noted that the Liouville action is
independent from a specific choice of fundamental

= — Wwp-
7[2

cusp L
- sz —_E m;h oty ]>

domain.. Corollary 4.1 already demonstrates that .7, =
S, — mlog H is not reliant on the choice of a representative
in Z.{w, ..., w, }; however, this can also be verified using
holography. The holographic principle for compact
Riemann surfaces X posits that the classical Liouville
action on such surfaces is equal to the renormalized
volume of a hyperbolic three-manifold M, where that
surface is its conformal boundary [54,55,104], extended
this principle to punctured (for both Schottky and quasi-
Fuchsian cases), and [44,57] to orbifold Riemann surfa-
ces (for only the quasi-Fuchsian case). However, this
principle is not yet proven for three-dimensional handle-
body orbifolds with Riemann orbisurfaces as their con-
formal boundary. Thus, in an upcoming paper [58], we
aim to demonstrate that the Liouville action .%, is linked
to the renormalized volume of the corresponding hyper-
bolic three-dimensional manifold M up to some constants
that do not rely on moduli parameters. This would also
imply that the Liouville action is independent of the
fundamental domain chosen.

Although the presented proofs only apply to orbifold
Riemann surfaces (i.e., conical points of angle 27z/m;), we
believe that most of our findings can be extended to
(hyperbolic) conical Riemann surfaces with genus g > 1.
Specifically, for weighted punctured Riemann surfaces, the
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modified classical Liouville action (with Schottky global
coordinates) is expected to be accurately given by .%,, with
a=(aj,...,a,) and the cone angles 27(1 — «;), where
each factor of (1 — mL) in ., is replaced by «;. Let us talk

about it in more detail here.

The weighted punctured Riemann surface (X, 2) is a
compact Riemann surface X together with an R-divisor
2 => " ,ax; such that the weights 0 <a; <1 are
associated to each puncture (or marked point) x;.
Hyperbolic metrics on weighted punctured Riemann sur-
faces have, by definition, conical singularities at the
punctures—for this reason, the pair (X, 2) is also called
a Riemann cone surface (or conical Riemann surface). The
existence and uniqueness of a conical hyperbolic metric
with prescribed singularities at a finite number of points on
a Riemann surface is a classical problem that is closely
related (and in special cases, is equivalent) to the famous
uniformization problem of Klein and Poincaré. Let us
remember that such metrics have been considered begin-
ning with the work of Picard [74]. Starting from the
classical results by Kazdan-Warner [105-107], the exist-
ence and uniqueness of conical hyperbolic metrics in every
conformal class on a (X, 2) were proved by McOwen [76]
and Troyanov [102]. The necessary and sufficient condition
for the existence of a hyperbolic conical metric according
to [76,102], is that the statement of the Gauss-Bonnet
theorem holds—in other words, the degree of the log-
canonical divisor Ky + & should be positive, where Ky
denotes the canonical divisor of X. The positivity of the
log-canonical divisor implies that )"  a; > 2. In this
case, the unique hyperbolic metric ds®> on X is said to
be compatible with the divisor Z if ds* is a Hermitian
metric of class C* on the punctured Riemann surface
Xieo - X\supp(Z) such that if u; is a holomorphic local
coordinate in a neighborhood U; of x;, then there exists a
real-analytic function ¢, (u;, #;), which is smooth on
U;\{x;}, and such that in U, the metric ds? is of the form

dS2 _ e(ﬂi|dui|2
fuy = xgPe
for 0 < a; <1 and
452 — e%i|du;|?
- 9
—2|u; — x;|* log? |u; — x;]

for a; = 1. Moreover, Area(X,ds*) = ndeg(Ky + 2) =
—ny(X, ), where y(X, 7) = y(X) — deg(2) is by defi-
nition the Euler-Poincaré characteristic of the Riemann
cone surface (X, Z). The dependence of these hyperbolic
cone metrics on the vector of weights @ = (ay, ..., a,) is
characterized by Proposition 2.2 of [108]. The (unique)
conical metrics of constant negative curvature (with fixed
weights) induce new Kéhler structures on the Teichmiiller

spaces of punctured Riemann surfaces that depend on the
cone angles: In [53], Takhtajan and Zograf introduced a
generalized Weil-Petersson metric, parametrized by the
vector of weights & = (a1, ...,,), on the moduli spaces
of n-pointed rational curves in the context of Liouville
actions. Later, a variation of hyperbolic conical metrics in
holomorphic families was studied by Schumacher and
Trapani in [108,109] (see also [110-112]). They showed
that it is still possible to introduce ‘“harmonic Beltrami
differentials” with respect to a hyperbolic conical metric,
together with a Kodaira-Spencer map needed for the
notion of a Weil-Petersson metric. To be more precise,
the generalized Kodaira-Spencer map derived in [108,109]
identifies the tangent and cotangent spaces to Teichmiiller
space T ,, ()" of Riemann cone surfaces (X, %) with
appropriately defined harmonic Beltrami differentials and
“holomorphic quadratic differentials” on the Riemann cone
surface. It turned out that for 0 < a; < 1, the generalized
Weil-Petersson metric depends in a smooth monotone way
on the weights ;. In particular, for a; — 0 one recovers the
Weil-Petersson metric for nonpunctured surfaces, while for
a; — 1, one gets the Weil-Petersson metric for Riemann
surfaces with cusps. Note that in the case of general conical
singularities, the monodromy group I" of the Fuchsian
differential equation is no longer discrete in PSL(2,R);
hence, 7, , (&) # 7T (I') (see [53,113] and Sec. 2.2 of [88]).
Moreover, one can consider the variation of hyperbolic
conical metrics in holomorphic families, studied in
[108,109], and introduce a generalized Takhtajan-Zograf
(TZ) metric. In particular, one should study the behavior
of the integral kernel of the Resolvant (A + 1/2)7! (see,
e.g., [ [114], § 8]). Although a conical singularity is simple,
its presence has a profound impact on the Laplace operator.
Unlike surfaces with smooth boundaries, the Laplace
operator no longer has a canonical self-adjoint extension.
Instead, it has many self-adjoint extensions, and these need
not be equivalent [115]. Probably the most notable self-
adjoint extension of the Laplace-Beltrami operator on a
Riemann surface with conical singularities is given by the
so-called Friedrichs extension (see, e.g. [61,116]). Using
the same method as in [108,109], one can show that this
generalized TZ metric depends in a smooth monotone way
on the weights 0 < a; < 1 and that, for a; = 1 — 1/m; with
integers 2 < m; < oo, it corresponds to the elliptic TZ
metric introduced in [16]. One can also construct a Kéhler
potential (~logH,) for these generalized TZ metrics in
terms of the solutions of Fuchsian differential equations.
To be more precise, Kihler potentials for generalized TZ
metric should be defined in terms of the coefficients of the
expansion [Eq. (9) of [53]] (alternatively, in terms of the
expansion of ¢ as in Egs. (1.2) and (1.5) of [61]). This
generalizes the results of [14] to the case of Riemann cone

The T g1 (@) is complex-analytically isomorphic to the Teich-
miiller space of n-pointed stable curves 7, (see e.g. [108,109]).
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surfaces. Lastly, regularized Liouville action S, should be
defined similar to [53] and the combination ., = S, —
nlog H, should define a function on &, , () [and M, , ()]
(see also Theorem 1.1 of [61]). Moreover, the different
asymptotic behavior should be derived using the Fuchsian
differential equation in analogy with Lemma 4 of [53].
This asymptotics can be used to derive the first and second
variations of ., = S, — mlog H,. It is worth remembering
that, when ¢ > 1, the regularized Liouville action S, has
to be defined on the Schottky fundamental domain with
the singularities removed; in this case, the fibration
J: ©,,(a) - &, allows us to write T, o0 )@g‘n(a) as

]*(T;Od) S, ® T, o0) 7 #,(D). This
makes 1t possible to use the methods of [6] on
7T, ®(0 )@g) while variations with respect to cone points

decomposition

should be carried out using a method similar to [53].
Accordingly, most of our findings can be extended to
conical Riemann surfaces with genus g > 1.

Finally, we mention some interpretations related to our

results and also future directions:

(1) For the marked Riemann surface with g > 1, one can
define a normalized basis vy, ..., v, of the space of
holomorphic one-forms—Abelian differentials of
the first kind, and the period matrix 1,83

/ Vp = Ok Tkk! :/ Vi's
I P

with
i
Imzy = (v, vp) = 2/ vkvk/e‘/’ ) dwdw.
D

By defining also det’ A, (zeta function regularized
determinant of the Laplace operator in the hyper-
bolic metric exp(¢)|dw|* acting on functions) and
S, = Sy m—o as function on the Schottky space &,
Zograf [15] has shown that there exists a holomor—
phic function §,: &, — C, such that

det/ AO
detIm~z

Sg
= Cge_m|%g 2’ (217)

with ¢, as a constant that depends just on the genus g
and

(218)

%QZHH 1+k

{r} &=0

where {y} runs over all the distinct primitive
conjugacy classes in I' (i.e., y €I, which cannot

®The 7 is called period matrix.

be written as the power of any other element of IR
excluding the identity, and ¢, is the multiplier of
v €T (g, +1/q, = |Try|). Now, by comparing our
result in part (iv) of Theorem 2,

2
Az cusp
3 = P17

n’(’
T
E ell
- 5 m h a)TZj)
=1

505”,,, = —2\/ <COWP

with [16]%

detImr V-1

- 4
601 - (a)wp i a)%uzw

d A() 671' 3
53 mihot )

we can generalize Zograf’s formula (217) using a

function g,,(m) on &, ,(m), ie., F,,(m):
©,,,(m) — C, such that

det’ Ao m

detimz Cyn(m)e ™ (F, ,(m)[?,  (219)

where ., = S,, — #logH is the classical general-
ized Liouville action and c,,(m) is a constant
depending only on g, n and m. It would be
interesting to find the explicit formula for the
function ', (m); its importance, particularly from
the perspective of physics, will be clear in the
following items.

(i) Zograf’s formula has an interesting geometric de-
scription in the context of the Quillen metric and
local index theorem. The Quillen metric on A, (the
determinant line bundle associated with the Cauchy-
Riemann operator 0,, usually called the Hodge line
bundle) is defined by

(HUHQUiH)Z _ detIm~z
! det/AO ’

84Equivalently, the set of simple closed geodesics on the

surface, and log{y} is the corresponding geodesic length.

In this case, one needs to extend the conditions f vy = O
to J;{akw} K = Ok

The explicit expression of this holomorphic anomaly for-
mula for the determinant of Laplacian on sphere with just three
conical singularities and on singular genus zero surfaces that can
be glued from copies of (hyperbolic, spherical, or flat) double
triangles has been found in [61,62], respectively. As a by-product,
for these cases, the accessory parameters, the Liouville action,
and logH are also explicitly evaluated. The dependence of the
determinant in Eq. (219) on the orders of conical singularities is
also highly nontrivial; see [63] in this direction.
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and accordingly, the first Chern form of the Hermi-
tian line bundle (4, [|v]|?"") over &, is given by

. 1
11
ci(Ars ||U||§2ul )= TﬂQwWP'

This observation provides the existence of an isom-
etry between the line bundle over I, determined by
carrying the Hermitian metric exp[S,/12z] and the
line bundle A; with the Quillen metric. More gen-
erally, Takhtajan and Zograf have studied the local
index theorem for families of 0 operators in the
orbifold setting [16]. The main result of this paper
(see Theorem 2 of [16]) is the following formula on
the moduli space M, ,(m) of punctured orbifold
Riemann surfaces O = [H/T:

'||Qum>_6k2—6k+l _l
k - 12”2 Wy p 9a)cusp

Ao (51

J

k—1 6k—5
({5

(220)

C (/11«

for k > 1. Here 4; is the determinant line bundle
associated with the Cauchy-Riemann operator oy
and is a holomorphic Mod(I')-invariant line
bundle on 7 (") whose fibers are given by the
determinant lines A™* kerd; ® (/\™*cokerdy)~!
while || - |2 = || - ||,/+/det A, denotes the Quillen
norm in A 7; since the determinant line bundle 4 is
Mod invariant, one can alternatively think of A;
as a holomorphic Q-line bundle on the moduli
space M, ,(m) = T (I')/Mod(T"). Finally, B;(x) =
x —1/2 and B,(x) = x*> — x + 1/6 are the first and
second Bernoulli polynomials, while {x} denotes
the fractional part of x € Q. It is clear from Eq. (220)
that for k = 1, the first Chern form of the determi-

nant line bundle A; with Quillen norm is given by

i _d4r? Ccusp _ g ell
o2 (owp =5 wr,” =535 mih;0%; ;). Compar-

ing this observation with our result in part (iv) of
Theorem 2 and noting to Theorem 3.1 of [15],
suggests that the following remark is correct.
Remark 6.1. The function .¥,, on the Schottky space
&,,,(m) determines a holomorphic Q-line bundle Ag., on
the moduli space M, (m) with Hermitian metric (-, -) g,
where (1, 1)g, = exp(-¥,,/127) [here, 1 is understood as
the corresponding section of the trivial bundle

Quill

"Hermition line bundles (A, || - ngm) and (A, || - ||}y ) are

isometrically isomorphic.

©,,(m)xC - &,,(m)]. The Hermitian Q-line bundle
(Asens (> *)sen) 18 isometrically isomorphic to the Hodge line
bundle (Agod; (- ) quir) over M, (m)—i.e., there exists an
isomorphism  1: Agq, = Apoa such  that (s, 8)qy, =
(tos,105)qy for every local section s of the bundle Agg.

While we do not attempt proving the above claim
rigorously, we would like to comment that it might be
possible to do so in analogy with the proof of Theorem 3.1
of [15]. In particular, a very interesting question is to
investigate whether it would be possible to determine the
constants ¢, and c in the following naive generalization:

f,(t) = exp<c Lt NSy —-Fmoy)

+3 (5”,,,(&) =T m(rt) + 2”\/—_1%))’ (221)

of f,s constructed in [15], such that Eq. (221) still defines a
one-cocycle of the action of Teichmiiller modular group
Mod(T") (see [15] for more details). In this formula,

y €Mod(I') denotes mapping classes, .7, is defied as
S mon where z: T ,,(m) - &,,(m) is a natural holo-
morphic cover, ¢, denotes a marked point in the
Teichmiiller space 7 ,,(m) while ¢ is any other point in
this space, and 0 denotes the (1, 0)-component of the
exterior differentiation operator on 7, (m).

Itis worth mentioning that the determinant line bundles and
Quillen metrics in the conical case have been constructed in
Sec. 6 of [108]. The curvature tensor of the Weil-Petersson
metric for Teichmiiller spaces of compact (or punctured)
Riemann surfaces was computed explicitly by Tromba [117]
and Wolpert [118]. In Sec. 7 of [108], the authors show the
analogous result for the weighted punctured case.

(iii) The function $, has an important rule to find the
physical wave function of three-dimensional pure
AdS quantum gravity and define the last ingredient
of canonical quantization, i.e., the scalar product
between the physical wave functions: the physical
norm should be invariant under the mapping class
group transformations. As we will see, it is achiev-
able via the Quillen norm as follows. Let us recall
that according to Eq. (217),

The determinant of the operator A is invariant under
large diffeomorphisms, and let us assume that under
Mod transformation, we have

detImz — detIm7 = |A|*> detImr,

S,—> S, =5,+B+3, (222)
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which imply that the function &, should transforms
as follows:

e%
gg - %fq = ﬁ%g

Now, if the matrix U{ , under large diffeomorphism,
relates wave functions defined in two coordinate
systems, i.e., ¥ = Uj-e‘%D‘Pj , then the functions

¥ = (F,)PW (223)

will transform as

¥ - ¢ =u P (224)
By noting Egs. (222), (223), and (224), the mapping
class group (MCG)-invariant scalar product of
physical wave functions ¥ can be defined based
on Quillen norm (see [119-121])

<l~P1’\~P2> = / det/ AO _D‘ill AN *‘i‘z.
T(2) detIm~

Accordingly, the function g, determines the physi-
cal wave functions of three-dimensional pure quan-
tum gravity and their MCG-invariant scalar product.

In light of the aforementioned observation and
taking into account the remarks in the Introduction
regarding the inclusion of massive particles in the
path integral of three-dimensional gravity (or con-
sidering three-dimensional Seifert manifolds whose
Kaluza-Klein reductions are related to conical Rie-
mann surfaces), the function &, ,(m) plays a crucial
role in defining the physical wave functions (and
their scalar product) of three-dimensional quantum
gravity in the presence of those massive particles (or
in the presence of Seifert manifold’s contribution).
This itself presents an intriguing problem warranting
further exploration. Apart from that, g, plays
another significant role in the connection between
the physical wave function of three-dimensional
pure gravity and dual two-dimensional Virasoro
conformal blocks. According to [122], the three-
dimensional physical wave functions, obeying the
Gauss law constraints, are conformal blocks of
quantum Liouville theory. Exploring this proposal
in the presence of conical singularities, based on our
results, is also an interesting problem, i.e., finding
the relation between the wave function of three-
dimensional AdS gravity in the presence of particles
with special masses and quantum Liouville theory
with some special vertex operators and even more to
determine whether the partition function of gravity
can indeed be decomposed into Virasoro characters.

@iv)

v)

(vi)

(vii)
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Our results are applicable to two-dimensional theories
of gravity such as deformed Jackiw-Teitelboim grav-
ity [39,66,123-127], where the gravitational path
integral can be written as an integral over the moduli
space of orbifold (conical) Riemann surfaces.
There are indications suggesting a potential link
between low dimensional de Sitter space and the
high temperature limit of the double scaled Sachdev-
Ye-Kitaev (SYK) model (DSSYK) [128-132]. For
instance, pure de Sitter space is thought to represent a
state of maximal entropy and DSSYK has a natural
maximal entropy state. Additionally, introducing a
localized mass m in three-dimensional de Sitter space
results in a conical singularity, while DSSYK exhibits
bounded energy. To elaborate further, the high tem-
perature limit of the coupled DSSYK (cDSSYK),
when subjected to an equal energy constraint, is
believed to correspond microscopically to three-
dimensional de Sitter gravity and the two-point
function of cDSSYK operators with dimension A
matches with the Green’s function of a massive
complex scalar field with mass squared m> =4A(1—
A) on three-dimensional de Sitter space. By reducing
three-dimensional de Sitter space to a circle, one can
derive two-dimensional (JT) gravity, which comprises
two spacelike Liouville conformal field theories with
a combined central charge of ¢ = 26. Imposing the
equal energy constraint between cDSSYK effectively
gauges this Virasoro symmetry. Since the vertex
operators of Liouville conformal field theories are
associated with conical defects, the inclusion of these
singularities is necessary to reproduce the micro-
scopic entropy of DSSYK and vice versa. Conse-
quently, it appears that conical geometries play a
pivotal role in the gravitational dual of the DSSYK
model and therefore our findings could contribute to a
more comprehensive understanding of this duality.
Our results, via an analytic continuation of the
classical Matschull process, have potential applica-
tion in the study of black hole production with a
nontrivial topology inside the horizon from the
collision of massive point particles with a certain
mass [59,133,1341.%

There is a rich mathematical theory—that of the
Selberg trace formula and its generalizations—
where the sum over elements y €I’ is used to
compute the spectrum of differential operators on
H/T. The Selberg zeta function Zg,(s,T’, ) asso-
ciated with the Riemann surface is

z (s = [TT] (1- u)gr).  (225)

{r} k=0

8 Also see [42,60,135-139] and Sec. 4 of [41].
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where U:I" —» U(1) be a unitary character. For
Res > 1, the above product admits a meromorphic
continuation to the complex s plane. According to
the Selberg trace formula, for the case where I'
has just hyperbolic and parabolic elements, it is
shown [140] that

det' Ag = Z4, (1),

where Zg,(s) = Zs,(s,I', U = 1). Hence, Zograf’s
formula (217) also gives a factorization of Z, (1) as
a function on &,. Accordingly, it would be in-
triguing to find a function akin to the Selberg
zeta function Zg,(s) acting on &, (m), utilizing
the generalized holomorphic factorization theorem
(219). That is important, at least, for finding the
contribution of one-loop effects to the partition
function of three-dimensional AdS gravity in the
presence of massive particles. Let us remind that
the one-loop partition function of pure three-
dimensional gravity is given by

l—lqop _ det D(1>
EY Vet O det OO

where [J?) is the kinetic operator for linearized
graviton (symmetric traceless) fluctuations around
the chosen background and V), () are related to
kinetic operators of vector ghost and Weyl mode,
respectively, since to compute the partition function
we must also include the Fadeev-Popov modes
arising due to gauge fixing. By computing each
one concretely, it is shown that [141]

T b

{r} k=0

1 —loop __
grdvny

(226)

When M = Hs/T is a solid torus, I' = Z, and {y}
consists of the generator of I' and its inverse, the
above formula reduces to

1 loop
gravny

Hll_ |2’

with ¢ = €277 ¥ Comparing (226) with (225) im-
plies that

1-loop __
Zgravnty

ZSZ <2)

¥Unlike the H,;/Z, the higher-loop contributions to the

(viii)

Let us also remind that, according to (218),
4 = Zs,(1). Hence, with knowledge of the func-
tion §,,(m), we can investigate the appropriate
function that assumes the role of Selberg zeta
function Zg,(s) in the presence of conical singular-
ities. Consequently, this exploration can also provide
insights into the contribution of conical singularities
to the one-loop gravity partition function. For the
special case M = H;/(Z x Z,,), it is shown [40]
that in the presence of conical singularities, the one-
loop partition function again is given by Zg,(s) but

sravy ~ 251 (1):
In this paper, we explored further the relation between
the modified classical Liouville action (i.e., the one
which its Euler-Lagrange equation admits the hyper-
bolic Riemann surfaces with conical singularities
as a solution), uniformization of orbifold Riemann
surfaces and complex geometry of moduli spaces.
One knows that the quantized Liouville theory can
potentially describe the quantum corrections to those
hyperbolic geometries (outside the singularities).
Accordingly, one approach to understanding two-
dimensional quantum gravity through quantum Liou-
ville theory is to demand that this theory takes
advantage of conformal symmetry akin to its classical
counterpart. If the conformal symmetry is also
symmetry of quantum Liouville theory, it should
show itself in the conformal Ward identities (CWIs)
for correlation functions of components of stress-
energy tensor with another operators. An important
point to consider is the space on which the Liouville
action functional is expressed. This choice signifi-
cantly impacts the form of the conformal Ward
identities (CWIs) and their implications.

Let us consider the simplest case, i.e., the Liouville
action on the moduli space M, and identifying X,
with V,, (x;)---V,, (x,) and restoring the A. Since
the S,, in (136) is a well-defined (single-valued)
function on M, ,, the quantum Liouville theory is
defined by

evaluated at a different point, i.e., Z

(X)) = / 'Dl//e_z,lr_hsm b, (227)
CMu(X)

where the partition function (X,,) is a real-valued
function on the M, ,. Moreover, we have

T = [ | PYT)mes. (2

To have conformal symmetry, one is required to prove

1 Ok (R) |
B T00Xw) =2 <<w—wi>2+<w—wl~>

O ) K

partition function may not vanish for the general case i—1
M = H;/T". At least for the handlebody geometries, there exists
a proposal to calculate all-loop expressions [142].

(229)
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where h,, (h) are considered as conformal dimen-

. a(m;)
sions of vertex operators V,, = e # ¥. Note that at
the tree level when A — 0,

(X)) ~ e~ 2mSnlo]
(T(W)Xp) ~ Ty (w)e 5ale,

he(m;) )

By substituting the above relations in (229), one

Comparing the above result with T,(w)=
Sch(J=';w), where Sch(J~';w) is given by (79),
implies that

1
hcl(ml-):hi:1——2, aw,_Sm:—Zn'ci, (231)
m*

1
which are in agreement with Theorem (142).
Moreover, the conformal symmetry at the quantum
level implies that the vertex operators and compo-
nents of the energy-momentum tensor satisfy the

gets [17,67] operator product expansion (OPE) of Belavin-

Polyakov-Zamolodchikov, for example,

%Tw(w) e~ Sm[#]
1 c(h)/2 1 2T(W)
n —T(wW)T(W) = +—
_ Z hcl(mi) n 1 o e—ﬁsm[(ﬂ]’ n2 (W) <W ) (W — W/)4 h (W _ W/)Z
= \2h(w—w;)? - (w—w;) ™ 11 /
-0, T
T T

which implies that
+ regular terms,

T,(w)= i (2(351(_’1;:))2 —%(W _1 o) 0y, Sm [(p]) %T(W)T(V_V/) = regular terms,
i=1 ! i
(230)| which yields the following CWIs;

Lty — S/ 1/ 2 I P

 TOTONX) = S ) (2 o, )oK,
1< hml(fl) 1 ,
P2 (o Gy ) T

M) =13 (0 L Y 7w, (232)
=1 i i

Let us show that our results also agree with the second CWI in (232) at the tree level. To see that, let us define the
normalized connected two-point function

~/ T ()
T T X — TONTEIXn) _ (TO0)X) (T X,) o)
By using (229) and its similar expression for (T'(W')X,,),
L =30 (@ o)
7 m _j:1 (‘/—V/_—;)z (W’—VV}) v‘v’/ m/»
the normalized connected correlation function (233) is simplified to
_ n n 1 1
T(w)T(W)X, = 0,, 05 log(X,,). 234
(TONT o = D3 s s o o ) (234)
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At the tree level, the right-hand side of the above
equation has an order of O(#7"). To find the same
order of 7 on the left-hand side, one can use the path
integral representation of the two-point function,

(T(W)T (W) X,)
= [ DT T @)
G y(X)
(235)
Let us expand the field y around its classical value ¢,

w(w) = p(w) + Vahdy(w) +

which implies that

1
Smlw] = Smlo] +7h / Syr <Ao + )51116"’d2w 4

%T(w) :%T,/, (w)+ \/iDW&//(w) +

with D,, = (0% — (9,,¢)d,,). Now, substituting the
above expansion in the right-hand side of (235), the
CWI (234) at the tree level becomes

2

7 DWDWG(W’ W/)

- Zﬂhzz (w—w;) w;)awidw;Sm[qv],

(236)

where G = 1/2(Ay + 1/2)7! is the propagator of
quantum Liouville theorem, Ay =—exp—@d?/0,,0;.
Moreover, by using the overall SL(2, C) symmetry to
normalize w,_, =0,w,_; = 1,w, = oo, the right-
hand side can be written as

1 n—-3 n-3 o

e ~2ah i=1 j=1 R(W’Wi)R<W/’W})aWiaW}Sm @],
P n-3 n-3

T 2niss lRi(W)Rj(W’)aw,-aw;Sm[cﬂ], (237)
= j=

where R(w, w;) and R; are defined in (89) and (91),
respectively. Therefore, according to Theorem 2, the
ths of (236) is (1, 1)-component of the curvature form
for the connection in the holomorphic line bundle
over the moduli. Through rigorous mathematical
computations [17,67], it can be demonstrated that
the left-hand side of Eq. (236) encompasses precisely
the identical information. However, a streamlined
approach can be employed to substantiate this claim
by using the principles of Friedan-Shenker modular
geometry [143]. Friedan and Shenker interpret the
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901f~ we
=¥YoWo CI)(O).
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expectation value (X) as a Hermitian metric in a
certain holomorphic line bundle over moduli space
and the quadratic differential (T(w)X),.dw? as a
(1, 0)-component of the canonical metric connection.
This interpretation aligns with the tree-level analysis
of the CWI (229) above. Moreover, they interpret
(T(W)T(W)X,) ,cdwdw as (1,1)-component of the
curvature form of that connection; as illustrated in
Eq. (237); this is also in agreement with the tree-level
analysis of (234) for the moduli space M ,,.

Now, one can utilize the aforementioned terminol-
ogy to find new constraints on Kihler geometry of
moduli space I, ,(m) by demanding that the CWIs
hold true when they are projected to this space.
Conversely, one can also use the known information
about Kihler geometry to find the “dynamical proof”
of the Virasoro symmetry of the Liouville theory.
Let us find one of those constraints by studying the
quantum Liouville theory and its associated CWIs on
the moduli space M ,(m). In comparison to the
previous case, two points should be highlighted. First,
to define the path integral representation of quantum
Liouville theory, one needs a Liouville functional
that is a well-defined (single-valued) function on the
moduli space M, (m). It is shown that, unlike the
function S,, that is not invariant under the action of
Symm(m), at least at the semiclassical limit, the
function .%,, has this property. Accordingly, for the
moduli space M, ,(m), instead of (227), we have

(Xp) = / Dye 3’ (238)
CMup(X)

Second, to check the counterpart of (229) for the
moduli space I ,(m), the automorphic form
Sch(J=!;w) should be projected to the subspace
Ty M, ,(m).”° In order to identify the appropriate

bases for T[O]Emo.n( m), one can get help from their
counterpart bases for T.}O@(O)Mo.n. In the semi-

classical limit 72 — 0, the projection of Sch(J~!;w)
on M, ,, according to (98), is given by

Mi) dWi

Mi)> dw,,  (239)

define the mapping ‘i’:./\/lo,n — My, then
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where R;(w) and &;(w) are defined by (91) and (99), respectively, and none of them are invariant under the action of

Symm(m). To find the projection of Sch(J~!;
of R;(w) and &;(w) which are given by

Ri(w) :—l Z

Yj.j+1 € Symm(m)

R<7j,j+1<w)7

w) on the space Tl Mo, (m), one needs the Symm(m)-invariant version

Wi)7},j+1 (W)27

1

- 7j.j+l(w)(7j,j+1(w) -

5 )02

(240)

- 1 1
Felw) = 2 (

2 Y+ Eszymm(m) (7j,j+1 (w) = wk)2
~ 1 1

(m) Y.+ W) (7} j+1

7jj+1 € Symm

withk=1,...,
signature of O is (O;m, ...,
Sch(J~!;w) on moduli space M, (m) is given by

(98]
(98]

n— n—.

(Sch(J=Yw), M;)dw

tng}

i

(98]

n—.

(ﬂci—i—(

where

121 , | 2 1
2 (yj,jJr](W)—Wi)z j,j+1( )

i=1y; ;. €Symm(m)

OECE

T(w). M;) ) dit;

7j.j+1 €Symm(m)

n—1andy;; (w) are defined in Sec. III B 1. In the above, just for simplicity, we assumed that the
m), but it can be easily extended to the general case. Accordingly, the projection of

(-ﬂZC]RJ +Zhjgj(W),Ml>dw
Jj=1

(241)

Z?z_ll hi - hn J//- )
}’j,j+1(W)(7j,j+1(W)—1) s

W), (242)

In the above, the dw;s are (1, 0) forms on cotangent space Tfo] M, ,(m). The counterpart of (229) for this case is

zm()n hcl(mi)

1 1

SIS

i=1y;;.1 €Symm

(m) <2(7’j,j+1 (w)

- w;)

22 1 0) (243)

2

awiym[fﬂo’

- w;)

which together with the relations (241) and (242)
gives information about the moduli space of Riemann
orbisurface O, i.e., a relation between accessory
parameters c¢; in (241) for the Fuchsian uniformiza-
tion and the first variation d, ., [¢]. It also provides
the opportunity to check the observed relation be-
tween the universal CWIs and Friedan-Shenker
modular geometry. It is noteworthy that, using the
same methodology, one can probe the Kéhler geom-
etry of moduli space M, ,(m) based on using the
equations (123), (125), (128), and (240).

Last but not least, it is shown [93] that the validity
of CWI (229) at one-loop approximation for the
genus g =0 case with just n, punctures yields a
formula for the first derivative of Zg,(2). Moreover, it
is shown [93] that when g # 0 with just n,, punctures,
the CWI (234) at the one-loop level is equivalent to
the local index theorem for the families of 0 operators
on the punctured Riemann surfaces. Based on the

(ix)
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above-examined cases, it would be interesting to
explore more the relation between CWIs for the
correlation functions

1 _
ATt wo)TTT(7)X,, ),
h&g<ng<» >

and uniformization of the Riemann surfaces and
complex geometry of Teichmiiller space 7, ,(m),
Schottky space &, (m), and Moduli spaces
M, M, ,(m) and more importantly two-
d1mens10nal quantum gravity. Moreover, the multi-
point correlation functions can provide further
evidence in favor of the profound role of Ward
identities in Friedan-Shenker modular geometry.

Also, very recently, it has been shown [144]
that asymptotic series (in powers of the central
charge) for expansion of two-dimensional conformal
blocks, involving the exchange of identity operator,
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necessitates the existence of nonperturbative
effects via resurgence analysis. In the dual three-
dimensional theory, this implies that the graviton
loop expansion is also an asymptotic series, and to
cure it, one needs to consider new saddle points,
which are particlelike states with large negative mass
(nonmanifold saddles with conical excesses). In this
paper, we focus on geometries with conical defects
(orbifold geometries), but studying the relation
between our work and [144] would be interesting.
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APPENDIX A: INTRODUCTION TO ORBIFOLD
RIEMANN SURFACES

Orbifolds lie at the intersection of many different areas of
mathematics and physics, including algebraic and differ-
ential geometry, as well as conformal field theory and string
theory. Orbifolds were first introduced into topology and
differential geometry by Satake [145], who called them
V-manifolds. Satake described them as a generalization of
smooth manifolds that are locally modeled on a quotient of
R" by the action of a finite group and generalized concepts
such as de Rham cohomology and the Gauss-Bonnet
theorem to orbifolds. Shortly after the original paper of
Satake, Baily introduced complex V-manifolds and gener-
alized both the Hodge decomposition theorem [146]
and Kodaira’s projective embedding theorem [147] to V-
manifolds. The concept of V-manifolds was later reinvented
by Thurston [148] under the name of “orbifolds” and the
notion of fundamental groups was generalized for these
objects. Even though orbifolds were already very important
objects in mathematics, the work of Dixon, Harvey, Vafa,
and Witten [149,150] as well as the subsequent work of
Dixon, Friedan, Martinec, and Shenker [151] lead to a
dramatic increase of interest in orbifolds among physicists.91

'Professor H. Arfaei was among the first string theorists
who quickly realized the significance of orbifolds in string
theory and worked on various aspects of their role within this
framework [152-154].

The main objective of this Appendix is to compile some
basic facts about orbifolds and fix some notations used
throughout this paper. Although we start with a general
setting, the main focus of this Appendix is on complex one-
dimensional orbifolds, called orbifold Riemann surfaces, as
they are the objects of study in the main body of this paper.

To motivate our interest in orbifold Riemann surfaces, let
us recall that ordinary Riemann surfaces are complex one-
dimensional algebro-geometric objects with a lot of good
properties: Geometrical facts about Riemann surfaces are
as “nice” as possible, and they often provide the intuition
and motivation for generalizations to more complicated
manifolds or varieties. The name “surface” comes from the
fact that every Riemann surface is a two-dimensional real
analytic manifold (i.e., a surface), but it contains more
structures: In fact, a Riemann surface is the simplest
example of a Kéhler manifold which means that it admits
three mutually compatible structures—a complex structure,
a Riemannian structure, and a symplectic structure. In
addition, the existence of nonconstant meromorphic func-
tions on these surfaces can be used to show that any
compact Riemann surface is a projective algebraic curve
and, therefore, can be given by polynomial equations inside
a projective space. Orbifold Riemann surfaces are the
natural generalization of Riemann surfaces in the orbifold
world. Just like their manifold counterparts, orbifold
Riemann surfaces can be viewed both as a complex
orbifold of dimension 1 (complex analysts viewpoint) or
as a smooth, proper Deligne-Mumford stack’® (over C) of
dimension 1 (algebraic geometers viewpoint). These orbi-
surfaces also admit Riemannian metrics and can be
regarded as the simplest examples of Kihler orbifolds.
When the emphasis is on the algebro-geometric viewpoint,
orbifold Riemann surfaces are usually called orbifold
curves or orbicurves.

The viewpoint that one takes on the singular points of an
orbifold depends a lot on what type of “space” one is
working with: When working in the topological realm, one
usually treats the orbifold singularities as an additional
structure—an orbifold structure—on an underlying topo-
logical space in the same way that one thinks of a smooth
structure as an additional structure on a topological mani-
fold (see [148,155-158]). In particular, a topological space
is allowed to have several different orbifold structures. On
the other hand, from an algebro-geometric viewpoint [159],
it is more convenient to consider (analytic or algebraic)
stacks as the proper notion of space. Such a stack is then
called an orbifold (be it an analytic or an algebraic one) if it

“2Deligne-Mumford stacks (or DM stacks) are an algebraic
generalization of orbifolds, and can be roughly thought of as an
“orbivariety” or “orbischeme.” Just as orbifolds are locally the
quotient of a manifold by a finite group, a DM stack can be
characterized as being “locally” the quotient of a scheme by a
finite group action.
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admits a covering by open substacks of the form [{//T],”
parametrizing families of I orbits in U, where U is the local
model for representable stacks (i.e., manifolds) and I" is a
finite subgroup of the automorphism group of U. This
second point of view treats an orbifold singularity as an
intrinsic structure of the space.

For us, the appropriate notion of space will be that of
analytic spaces [160], by which we mean a generalization
of complex manifolds that allow the presence of singular-
ities and are locally isomorphic to the common zero locus
of a finite collection of holomorphic functions. Our point
of view, which will be reflected in our introduction to
orbifolds, lies somewhere in between the two extremes
mentioned above: We will treat the subclass of codimension
> 2 orbifold singularities as the intrinsic structure of an
underlying complex analytic spaceg4 while the orbifold
singularities of codimension-1 still need to be treated as
additional structures on this analytic space (see [161] for
more details).

Throughout this paper, we will need to work with
different characterizations of orbifold Riemann surfaces
that have appeared in the literature: In order to introduce
orbifold geometric structures in Appendix B, we will need
to work with a definition of complex orbifolds based on
orbifold charts [162] while a characterization of Riemann
orbisurfaces as log pairs [163] will be more suitable for
studying orbifold metrics [76]. A third way of character-
izing Riemann orbisurfaces will be as Riemann surfaces
with signature and this viewpoint—which is closely related
to the notion of Riemann orbisurfaces as log pairs—is the
one that we have adapted in the main body of this paper.

Our presentation in this Appendix is closer to that of
Sec. 4 of Ref. [161], Appendix E of [164,165]. For more
details about other approaches, the reader is encouraged to
consult with [148,156—-158,166] among others.

1. Analytic geometry

We will start our introduction to complex orbifolds
with a quick review of some background information
about complex analytic spaces and analytic mappings—
particularly, ramified covering maps of analytic spaces. The
reader is advised to consult with Refs. [160,165,167-171]
for more details.

PIf M is a complex manifold of dimension n and I' C
Aut(M) c GL(n,C) is a finite subgroup of holomorphic auto-
morphisms of M which does not act freely (i.e., has fixed points
on M), the quotient space M/T" will have the structure of an
analytic stack (or, equivalently, of a complex orbifold) and we
will use the notation [M /T to mean M/T as an analytic orbifold/
stack. The notation M /T" will be reserved for the coarse moduli
space or the underlying analytic space of [M /T’| which will be a
variety with quotient singularities.

This underlying analytic space is actually the same as the
coarse moduli space of the orbifold regarded as an analytic stack.

a. Complex analytic spaces and analytic mappings

Let us start our review of complex analytic spaces with
defining a complex analytic subvariety.

Definition A.1 (Analytic subvariety). Let U be an open
subset of C" (or of any complex analytic manifold M)
and let X be a subset of U. We say that X is an analytic
subvariety in U if, for any point x in U, there exist a
neighborhood V of x and a finite number of holomorphic
functions f1, ..., f; on V such that

XnV:{zeV|f1(z):---=fk(z):0}.

In other words, in some open neighborhood of each point of
U, an analytic subvariety X C U is the set of common zeros
of a finite number of complex analytic functions. We call
Sf1s---, fr asystem of local defining functions for X and a
nonempty analytic subvariety of U which is locally defined
by a single (not identically zero) holomorphic function will
be called an analytic hypersurface in U. Finally, a sub-
variety X of U is called irreducible if it cannot be written as
aunion X = X; U X,, where X; are analytic subvarieties of
U properly contained in X.

As suggested before, complex analytic subvarieties can
be viewed as a generalization of complex (sub)manifolds
which allow for the presence of singularities.

Definition A.2 (Smooth and singular points of subvari-
eties). A point x on an analytic subvariety X is said to be
regular or smooth if it is possible to choose coordinates
(21 .-+, 2q4) in an open neighborhood V C U C C" of point
x such that locally X is a linear subspace {z € V|7, =
-+ =z, = 0}—i.e., if X N V is a k-dimensional submani-
fold of C". The set of all regular points of X is an open
dense subset of X and will be denoted by Reg(X). The
points of a subvariety that are not regular points are called
the singular points. The set X \Reg(X) of all singular points
of X will be denoted by Sing(X) and is called the singular
locus of X.

An analytic subvariety X will be called a smooth analytic
subvariety if X = Reg(X); evidently, a smooth analytic
variety is just a complex analytic manifold itself. When X is
an irreducible analytic subvariety, the complex dimension of
X is defined as the dimension of its smooth part Reg(X)
regarded as a complex manifold. More generally, if X is
reducible, the dimension of X is defined as the maximum of
the dimensions of its irreducible components. A reducible
analytic subvariety X is called pure dimensional if every
irreducible component of X has the same dimension.

It is clear that analytic subvariety X C U can be endowed
with the relative topology coming from U; however, the
main point in the study of analytic subvarieties is that one
should take into account consideration not only about the
topology of these analytic subvarieties but also about their
function-theoretic properties: For simplicity, let us take the
open set U C C" to be a sufficiently small open polydisc
A(e) such that an analytic subvariety X of A(e) can be
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determined as the set of common zeros of a finite number
of functions that are analytic throughout A(e). Under the
natural addition and multiplication of complex-valued
functions, the set of all holomorphic functions on A(e)
forms a ring 0, containing the constants ¢ € C"—hence
in fact a C algebra. The set of all analytic functions in A(€)
which vanish on X form an ideal J(X) in the ring Ox ),
called the ideal of X. Then, the ring of holomorphic
functions on X is given by the quotient ring
Oy = On(e)/S(X). It is easy to see that a subvariety X
of A(e) is irreducible precisely when the ideal J(X) is a
prime ideal in O, by which we mean (X) # Oy, () and
for any two holomorphic functions f, f' € O the state-
ment ff' € J(X) implies f € F(X) or f' € F(X) (or both).

Remark A.1. Let f, ..., fy €Ox«) be the system of
defining functions for general (i.e., not necessarily irre-
ducible) subvariety X. Then, the defining functions
Sf1s--, fr generate an ideal I in the D, which is
sometimes called the defining ideal for X. While all
holomorphic functions f € § vanish on X, i.e., § C J(X),
the inverse statement is not necessarily true—i.e., in
general §(X) € 3. However, provided that the polydisc
A(e) is small enough, an important fact is that all
holomorphic functions f € S (X) have a power which is
contained in . This motivates us to define the radical of 3
as the set

VS = {fe Oae) | f¥ €S for some positive integer ¥’ }.

This is again an ideal in D, and we have VS = 3(X).
When the defining ideal S is prime in D), we get

VS = S hence, § = S (X) exactly when X is irreducible.

More generally, when the open set U C C" is not
restricted to be small (or to be an open polydisc), the
above statements hold true in small neighborhoods of each
point x € X. For such local considerations, it is often
convenient to introduce the notion of germs: To make this
precise, consider two pairs (X, U) and (X', U’), where U,
U’ are open neighborhoods of the origin in C" and X, X’ are
analytic subvarieties of U, U’, respectively. The two pairs
(X,U) and (X', U’) are said to define the same germ of
analytic subvarieties at the origin in C" if there exists a
neighborhood WCUNU’ of O suchthat X n W = X' n W.
We will denote the germ of analytic subvariety X at 0 in C"
by [X],. Now, let O be the ring of holomorphic functions
in some open subset U C C" containing the origin.
Analogously, we can define an equivalence relation ~;
between two holomorphic functions f, ' € Oy, where
f ~o f' if there exists a neighborhood W of 0 such that
the restrictions of f and f' to W are identical—i.e.,
flw = f'lw- The equivalence class of a function f is called
the germ of holomorphic function f at the origin and
will be denoted by [f],. In addition, the quotient ring

Dy = Oy/~y will be the ring of germs of holomorphic
functions at the origin. >

Similar to the case of analytic subvariety of a sufficiently
small open polydisc, to each germ [X], of an analytic
subvariety at the origin in C" there is canonically asso-
ciated an ideal F([X],) in the local ring”® O¢n o which is
defined as the ideal of germs of all analytic functions
vanishing on the subvariety X representing the germ [X],,.
In the other direction, to each ideal I C Og¢ny there is
canonically associated a germ of an analytic subvariety at
the origin in C", called the locus of the ideal S and denoted
by [X(J)],- The germ [X(S)], is defined as the germ
represented by the analytic subvariety X = {z€ U|f/(z) =
-+ = fi(z) = 0} of the open set U C C", where f; € Oy
are analytic functions in U whose germs in Oy, generate
the ideal . Note that, similar to what we saw in
Remark A.1, F([X(S)],) = V'S and /S = S iff the ideal
F C Ocny is prime [equivalently, if the germ [X(J)], is
irreducible]. Finally, the residue class ring Ocn o/ ([X])
will now be denoted by Oy and will be called the ring of
germs of holomorphic functions on the subvariety X at the
origin in C".

Having learned how to think about the function-theoretic
properties of an analytic subvariety locally, we are now
ready to study those properties from a global perspective; it
is then convenient to think about sheaves of rings/ideals/
modules as we shall now explain: Let us start with the local
rings O¢n , of germs of holomorphic functions at any point
z€C". The set of rings D¢, for all points z € C" can be
taken to form the sheaf of germs of holomorphic functions
of n complex variables O¢x; the restriction O¢n|y, of the
sheaf of rings O¢n to any open set U C C" will be simply
denoted by &', Similarly, consider an analytic subvariety
X of an open subset U C C" and to each point z€ U
associate the ideal J([X],) C Ocn, of the germ of the
subvariety X at that point [if z ¢ X the ideal J([X],) is of
course the trivial ideal O¢x ]. The set of all ideals J([X],)
at any point z € U forms an analytic subsheaf’’ of the sheaf
Oy over the set U, which will be denoted by .#(X) and
called the sheaf of ideals of the analytic subvariety X.
Finally, the restriction to the subvariety X of the analytic
sheaf &/ .7 (X) will be called the the sheaf of germs of
holomorphic functions on the subvariety X and is denoted

“If we denote by C{z,, ...,z } the set of power series which
converge absolutely in some neighborhood of 0, this set also has
the structure of a ring. Since, as in the one variable case, f ~ f if
and only if f and f’ have the same power series expansion, we
may identify Oy with C{z, ...,z }-

°A commutative ring is called local if it has only one maximal
ideal. The unique maximal ideal of Dcno (equivalently,
C{zy, ..., z4}) corresponds to the set of all germs of holomorphic
functions that vanish at the origin (equivalently, the set of all
power series whose constant term vanishes).

An analytic sheaf over an open set U C C" is a sheaf of
modules over 0.
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by Oy; the local rings Oy, = Op./I([X],) at any point
x € X can then be viewed as the stalks of 0.

Locally, a germ of an analytic subvariety determines a
germ of a topological space and this space further possesses
a distinguished subring of the ring of germs of continuous
complex-valued functions, namely the ring of germs of
holomorphic functions on the subvariety. This observation
suggests that the correct way of characterizing an analytic
subvariety X is as a C-ringed space.

Definition A.3. A ringed space X is a pair (|X|, Oy)
consisting of a Hausdorff topological space |X| and a sheaf
of rings Oy on |X|, called the structure sheaf of X. It is
called a locally ringed space when, for every x € |X|, the
stalk Oy, is a local ring. Its maximal ideal is denoted by
my .. A locally ringed space is called a C-ringed space
when furthermore Oy is a sheaf of C algebras and, for
every x € |X|, there is an isomorphism O, /my , = C of C
algebras.

It is clear that for analytic subvarieties, the role of
structure sheaf is played by the sheaf of germs of hol-
omorphic functions on the subvariety.

The notion of an analytic subvariety as defined in A.1
depends quite essentially on a particular embedding in the
ambient space C". For example, the germ of an analytic
subvariety at the origin in C" can also be viewed as the
germ of an analytic subvariety at the origin in C**! through
the canonical embedding C" < C"*! but these will be
inequivalent germs of analytic subvarieties. It is thus
evident that there is a point to introducing an equivalence
relation among analytic subvarieties in order to investigate
those properties, which are to some extent independent of
the embeddings of these subvarieties in their ambient
complex number spaces.

Once again, for the sake of simplicity, let us consider
sufficiently small open polydiscs A™(e;) C C" and
A™(e,) CC™ such that analytic subvarieties X; C
A" (e;) and X, C A™(e,) can be determined as the set
of common zeros of a finite number of functions that are
analytic throughout A™ (e;) and A™(e,), respectively. A
continuous mapping between two such analytic subvari-
eties X; C A™(e;) and X, C A™(e;) is said to be a
complex analytic mapping f: X; — X, between these
two subvarieties if there is a holomorphic mapping
F: A" (e;) - A™(e,) such that the restriction of F to
the subvariety X; C A" (e;) is just f—ie., Fly =f.
Additionally, two analytic subvarieties X; C A" (e;) and
X, C A™(e,) are said to be analytically equivalent if
there are complex analytic mappings f: X; — X, and
g: X, — X; such that the compositions fog and go f
are the appropriate identity mappings. This notion of
equivalence thus allows one to speak of analytic subvari-
eties without reference to the spaces in which they are
embedded; an equivalence class is called an analytic
variety, and a space which has locally the structure of an
analytic variety is called an analytic space.

For global considerations, it is more convenient to
think about an analytic subvariety X as a C-ringed space
(|X|, @x). Complex analytic mappings f: X; = X,
between two subvarieties X; and X, are then viewed as
morphisms of C-ringed spaces between (|X,|, 0y, ) and
(1.1, Ox,).

Definition A.4 (Morphism of C-ringed spaces). A mor-
phism f: X; - X, of ringed spaces (|X,|,0%, ) and
(I1X5], Ox,) is a pair f = (|f], f*) consisting of a continu-
ous map

11X = X
and a homomorphism

f*: ﬁXz - |f|*(ﬁX|)

of sheaves of rings on X,. For any point x € X;, we think of
f¥ as the ring homomorphism

f30 Ox, 50 = Ox,

defined as the composition of the canonical homomor-
phisms

ﬁXz,f(x) - (‘f'*(ﬁ&))f(x) - ﬁXI.X‘

In case X and X, are locally ringed spaces, a morphism by
definition has to be local, that is, satisfy

f;(sz,f(x)) c My, x

for every x € X 1. A morphism of C-ringed spaces X and
X5, is a morphism of ringed spaces, where f* is furthermore
a homomorphism of sheaves of C algebras. In this case,
f¥ is automatically local for every x € X;.

It is an immediate consequence of this definition that
two analytic subvarieties X; and X, determine equivalent
varieties if and only if there is a fopological home-
omorphism |f|:|X;| = |X,| inducing an isomorphism
f*1 Ox,>|f].(Ox,) between the sheaves of C algebras.
Thus, the coherent analytic sheaf &'y on an analytic
subvariety X is the complete invariant determining equiv-
alence as varieties—hence, the name structure sheaf.

To build up complex analytic spaces, we construct local
models as follows: Let U C C" be an open subset, and
assume that .# is a coherent sheaf of &' ideals. Then

Supp(Oy/7) = {xe U‘<ﬁu/j)x #* 0}
is an analytic subset of U which we will denote by A. The

pair (A, (0 /.#)|3) is a C-ringed space, which is called a
local model of an analytic space.
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Definition A.5 (Complex analytic spaces and analytic
mappings). A complex analytic space, or an analytic space
for short, is a C-ringed space (|X|, Ox) satisfying the
following conditions:

(i) |X| is Hausdorff,

(i1) Forevery x € X, there is an open neighborhood V', of

x such that (V,, Oyl ) is isomorphic (as C-ringed
space) to some local model.
If X =(|X|,0x) and Y = (|Y|, Oy) are complex analytic
spaces, then any morphism,

(If

S (X

. Ox) = (Y

) ﬁY)?

of C-ringed spaces is called an analytic map (or holomor-
phic map).

Remark A.2. Note that any complex manifold M can be
considered as an analytic space (|M|, 0);) and holomor-
phic maps f: M — N between complex manifolds can be
extended to analytic mappings (|f|,f*): (M|, Oy) =
(IN]. ).

Let |X| be a topological space. Any analytic variety
(|U], Oy), where |U| is an open set in |X|, is called an
analytic chart on |X|. A family {(|U,|.0,.), 9} apen
consisting of complex charts on |X| and of C-algebra
isomorphisms,

* .
ab* Ol oj,| = Caliv v,

is called an analytic atlas on X, if {|U,|},c4 is an open
covering of |X|, and if furthermore

for all a,b,c€A (cocycle condition);

ab © Ipe = YJac
the maps g, are the gluing isomorphisms of the atlas.
Furthermore, we have the following lemma (see, e.g.,
Sec. 1.7 of [168] for the proof).

Lemma A.1 (Gluing lemma). Let {(|V;|, 0:), gi;}; ;e be
an analytic atlas on a Hausdorff topological space |X|.
Then, there exists a unique (up to isomorphism) complex
analytic space (|X|,0y) and C-algebra isomorphisms
fi1 Oxlyy, = O; for all i €1, such that

gy =Ffio(f;)

on every intersection |V;| N [V].

A complex analytic space Y is called an open complex
analytic subspace of X, if |Y| is an open subset of |X|, and
Oy = Oxly. In addition, Y is called a closed complex
analytic subspace of X, if there is a coherentideal ¢ C Oy
such that |Y| = Supp(Ox/ #) and Oy = (Ox/_#)|y. In
this case, there is a canonical analytic map determined by
the injection, which we denote by ¥ < X. A subset A of a
complex analytic space X is called analytic when there is a
coherent ideal ¢ C Oy such that A = Supp(Oy/ 7).

We now discuss several possibilities of how good
(respectively, how bad) a given analytic space X =
(IX], Ox) may behave at a point x € X. The situation is
optimal if x is a smooth point of X.

Definition A.6 (Smooth and singular points of analytic
spaces). A point x in an analytic space X = (|X|, O) is
called smooth or regular, if there exists a neighborhood V
of x in |X| and an open set U in some complex number
space C" such that (V,, Oxly ) and (U, Oy) are analyti-
cally isomorphic—i.e., if there exist analytic mappings

(If

S (Ve Oxly) - (U, Oy)  and
(lgl.97): (U, Oy) = (Vs Oxly,),

such that the compositions |[f|o|g|, |g|e|f], f*eg,
and g* o f* are the appropriate identity mappings. In other
words, a point x € X is smooth if and only if Oy , = O¢n ..
Of course, the singular locus is defined to be the set of all
nonsmooth points: Sing(X) = X\Reg(X).

When X is not necessarily smooth (i.e., has a nonempty
singular locus), we define the following notions regarding
the behavior of an analytic space X at a point x € X:

(1) The analytic space X is called irreducible at point x

if the stalk Oy, is an integral domain, otherwise X
is called reducible at x. All smooth points are
irreducible points, since for such a point x, the
stalk Oy , is isomorphic to the ring of convergent
power series C{z,,...,z,}. The analytic space X
will be called locally irreducible if all points of X
are irreducible; in particular, complex manifolds
are locally irreducible.

(i) The complex analytic space X is called reduced at x
if the stalk Oy, is a reduced ring—i.e., does not
contain nilpotent elements. All irreducible points are
reduced points of X. We call X a reduced analytic
space if X is reduced at all its points; this happens
when every local model for the space is defined
by a radical sheaf of ideals. An analytic space X,
which is not reduced has a reduction X,.4, which is a
reduced analytic space with the same underlying
topological space. There exists a canonical embed-
ding 1: X,.q @ X and every morphism from X to a
reduced analytic space factors through :. In particu-
lar, every analytic mapping f: Y — X of complex
analytic spaces induces a canonical analytic mor-
phism fi.q: Yieq =& Xweq Of their reductions such
that foiy =iyo frq, Where 1y: X & X and
ly: Yq © Y are the canonical embeddings. When
Y = Y4, the sheaf homomorphism component, f*,
of an analytic map (|f|.f*):(|Y]. Oy) — (IX|. O%)
is uniquely determined by its continuous mapping
component |f].

(iii) A reduced point x € X will be called a normal point
of X, if the stalk Oy, is integrally closed in its
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quotient ring. Smooth points are normal, and X is
irreducible at every normal point. An analytic space
X will be called normal if every point x€X is a
normal point; in a normal analytic space, the
singular locus has codimension at least two. Once
again, all non-normal analytic spaces can be
smoothed out into normal spaces in a canonical
way; this construction is called the normalization.
In the rest of this Appendix, we will mainly focus on
normal analytic spaces.

b. An intermezzo on line bundles and divisors

In this subsection, we will introduce the basic definitions
concerning line bundles and divisors. Although we are
mainly interested in complex analytic spaces, we will
mostly focus our attention to complex manifolds (i.e.,
smooth analytic spaces) to avoid complication; we will
comment on some of the subtleties of generalizing the
introduced notion to singular analytic spaces. We start with
reviewing the notions of connection, curvature, and Chern
classes for complex vector bundles (see [161,168,172,173]
for more details).

Complex vector bundles. Let M be a complex manifold
of dimension n. A complex vector bundle of rank r over M
is a smooth manifold E together with a continuous
map z: E — M such that there exists an open covering
V ={V,},ea of M with the following properties:

(i) for each a €A, there is a homeomorphism

Woi 7' (V)= Vy x €

with prow, = x where pr denotes the projection
V(l X Cr - V(l;
(ii) for each pair (a, ) €A x A, there is a C*® map

g*: VynVz— GL(r,C)
with

llfaollfﬁl(lL é‘) = (pv Sf/}(P)C) for
(p.{)EV,NV;xC.

We call y,, a trivialization of E on V,. We also call ¢* the
transition matrix of E on V,N Vg and the collection

{g* Hapyeaxa the system of transition matrices of E.
For each point p in V, N V; NV, we have the identity

g9 (p)g" (p) = g™ (p)

Thus, in particular, ¢**(p) = 1 (the identity matrix) and
@*(p) = (¢**(p))~!. We may think of the system
{(Varwar )} apyeaxa as defining a vector bundle
structure on E.

(cocycle condition).  (Al)

Conversely, if we are given an open covering V =
{Va}aea of M and a collection {g*} , 5 ¢ 44 Of C® maps,

g’ V,nVyz— GL(r,C),

satisfying the cocycle condition (Al) for peV,n
Vﬂ N Vy, we may construct a vector bundle as follows:
For (pg.l,) €V x C" and (pg.{p) €V x C, we define

(ParCa) ~ (pﬁ,C/;) if and only if

Pa = p/f(: p)
Ca = aﬂ(p)é.:/)’

Then, it is easy to see that this is an equivalence relation in
the disjoint union | |, (V, x C"). Now, let E be the quotient
space (||, (V4 x C"))/~. Then, since

(VaxC)/~=V,xC",

E has a vector bundle structure with {g'}, s caxa as a
system of transition matrices.

A complex vector bundle over a complex manifold M is
said to be holomorphic if E admits a system of transition
matrices {g* } (, 5) c axa Such that each g is holomorphic.
Note that in this case, E has the structure of a complex
manifold so that the projection z: E — M is a holomor-
phic submersion. We will come back to this point later
when we study holomorphic vector bundles on complex
analytic spaces.

Letz: E — M be a complex vector bundle of rank r and
V an open set in M. A smooth complex section of E on V is
aC®-maps: V — E|, =zn"'(V)suchthatzos = idy, the
identity map of V. A vector bundle, E, always admits the
zero section—i.e., the map M — E which assigns to each
point p €M the zero of the vector space E,. The set of C
complex sections of E on V is denoted by C*(V, E). This
has a natural structure of vector space by the operations
defined by (51 + s2)(p) = s1(p) + 52(p) and (cs)(p) =
cs(p) for sy, 55, and s in C*(V, E), c€C, and p € V. More
precisely, a section s on V can be described as follows: We
fix a system of transition matrices {¢”}, 5 caxa Of E on
an open covering V = {V,},c4. Using the C* diffeo-
morphism y,: E[, ™V, x C", we may write

wa(s(p)) = (p.s%(p)) for pevnV,,

where s* is a C*-map from V NV, into C". For each point
PEVNV,NVy we have

s*(p) = g (p)s"(p). (A2)

Conversely, suppose we have a system {s®},c, of C®
maps satisfying (A2). Then, by setting s(p)=
wa'(p,s*(p)) for pin V N V,, we have a section s over V.
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Fork=1,...,r,ak frame of E on an open set V C M is
a collection s = (s, ...,s;) of k sections s; of E on V
linearly independent at each point in V. An r frame is
simply called a frame. Note that a frame of £ on V
determines a trivialization of E over V.

Let us denote by &, the sheaf of germs of C*® complex
functions on M. If #: E — M is a C* complex vector
bundle of rank r over M, we denote by &(E) the sheaf of
germs of C® sections of E—i.e., the sheaf whose space of
sections on an open subset V C M is &(E)|y, = C*(V,E).
It is clear that &(E) is a &'y module. Furthermore, the sheaf
&(E) is a locally free &y module of rank r: There exists a
covering V = {V,},c4 of M and a sheaf isomorphism

va: E(E)ly, = &Y, &y =8y, @ Dby,
—_—

r

Then, we have transition isomorphisms o (1;//’;)‘1 :

&Yy — &}y defined on V, N Vg, and such isomorphism
is the multiplication by an invertible matrix with C*®
coefficients on V, N V. The concepts of complex vector
bundles and locally free &), modules are thus completely
equivalent.

If we are given some vector bundles, we may construct
new ones by algebraic operations. Thus, we let E; and E,
be complex vector bundles of rank r; and r, on M. We may
construct the direct sum E; @ E,, the tensor product
E, ® E,, and the homomorphism Hom(E,, E,). Note that
there is a natural isomorphism Hom(E|, E,) = E| ® E,.
We may also construct the complex conjugate E, and the
kth exterior power A\XE,. The bundles E, and E, can be
trivialized over the same covering V = {V,},c4 of M
(otherwise take a common refinement). If {gTﬁ Yapea and

e sea are the corresponding transition matrices of E,
and E,, then for example E; ® E,, /\kEl, E} are the
bundles defined by the transition matrices ¢ ® g%,
A, ((%)T)~" where “T” denotes transposition.

Connections and curvature. Now, for a C® complex
vector bundle E of rank r on M, we let A¥(V,E) be the
vector space of C® sections of (A*T*M) ® Eon V C M,
which are called differential forms on V with values in E.
Thus, A°(V,E) := C®(V, E) is the A°(V) := &), module
of C* sections of E.

Definition A.7 (Connection). A connection for E is a
C-linear map

V:AM,E) - A" (M,E)
satisfying

V(fs)=df @ s+ fV(s)

for fe A°%(M) and seA°(M,E).

A connection V is a local operator—i.e., if a section s is
identically 0 on an open set V C M, so is V(s). Thus, the
restriction of V to an open set V makes sense, and it is a
connection for E|y. In addition, from the above definition,
we conclude that if V,, ..., V, are connections for E and
f1s - fr are C* functions on M with Y°X | f; = 1, then

k| £iV; will also be a connection on E.

If V is a connection for E, it induces a C-linear map

V:AYM,E) - A*(M,E)
and satisfying

Viwo®s)=do ®s—w A V(s)
for o€ A'(M) and se€A°(M.E).

The composition
®=VoV:A"M,E) - A*(M,E)
is called the curvature of V. It is not difficult to see that

O(fs) = fO(s) for fe A°(M) and seA°(M.E).
The fact that a connection is a local operator allows us to
get local representations of it and its curvature by matrices
whose entries are differential forms. Thus, suppose that V
is a connection for a complex vector bundle E of rank r and
that E is trivial on V—i.e., E|, 2 V x C". If s = (51, ..., 5,)
is a frame of E on V, then we may write

=1
A,-jEAl(V) and fori=1,...,r.

We call A = (A;;) the connection matrix with respect to s.
For an arbitrary section s on V, we may write s =
i, fisi with f; being C* functions on V and we compute

V(s) = zr: (dfi + zr:fjAjz) ® ;.
=1

i=1

The connection V is trivial with respect to s, if and only if
A = 0. Thus, in this case we have V(s) =>"7_, df; ® s,.
Also, from the definition, we compute to get

O(s;) =Y 0, ®s; with 6;=dA;—> Ay AAy.
j=1 k=1

We call 6 = (0;;) the curvature matrix with respect to s.
If s = (s}, ...,s}) is another frame of E on V', we have
s; =21 9i;s; for some C® functions g;; on VN V"

The matrix g = (g;;) is nonsingular at each point of
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V n V. If we denote by A" and ¢ the connection and
curvature matrices of V with respect to s’, we obtain the
gauge transformation law
A'=gAg~'+9g7'dg and & =gdg~' onVnV'. (A3)
Now, suppose that (M, 7)’® is a complex manifold, and
E is a complex vector bundle on M. We can consider the

tensor product bundle AXT*M @ E, and we let &\ (E)
denote the sheaf of germs of smooth sections of
ART*M @ E. Smooth sections of this sheaf are (k, 1)
forms with values in E, the set of which we denote
by A (E). The connection V in E induces a connection,
also written as V, in A% (E). This connection arrays as
V = V10 @ VO giving maps

V0 ARD(E) - AKL(E)  and
v(o,l): A(k'”(E)—)A(k'lH)(E).

Theorem A.1. A smooth, complex vector bundle E over a
complex manifold M admits a holomorphic structure if and
only if there exists a connection V in E such that V! = 9.

The holomorphic structure in E is uniquely determined
by the condition V%! =0, and this condition says that
the (0, 2) component V%! o V0! of the curvature of V
vanishes.

Using partitions of unity, one easily sees that Hermitian
metrics exist on every complex vector bundle.

Definition A.8 (Hermitian metric). A Hermitian metric h
on a complex vector bundle E is an assignment of a
Hermitian inner product to each fiber £, of E that varies
smoothly with p. A connection V in FE is called a Hermitian
connection if Vi =0 for some Hermitian metric . A
vector bundle equipped with a Hermitian metric is often
called a Hermitian vector bundle.

We then have the following.

Proposition A.1. Let E be a holomorphic vector bundle
with a Hermitian metric /4. Then there exists a unique
Hermitian connection V such that V%! = 9. This unique
connection is called the “Hermitian connection.”

Chern forms. Consider the space M,,,(C) of complex
r x r matrices. For any M€ M,,,.(C), we define

det(M + A1) = 6,(M) + A6,_; (M) + - - + A "Lo (M) + A"

Clearly, for any i = 1, ..., r the function ¢;: M,,,.(C) - C
is a GL(r, C)-invariant, complex homogeneous polynomial
of deg(o;) = i. Note that o; is the ith elementary symmetric
function of the eigenvalues of M. In particular, ¢.(M) =
det(M) and o, (M) = tr(M). Since differential forms of even
degrees commute with one another with respect to the

%Here 7 denotes an (integrable) almost complex structure.

exterior product, we may treat the curvature two-form 6 as
an ordinary matrix whose entries are numbers. Thus, we
define the following.

Definition A.9 (Chern form). Let E — M be a rank r
complex vector bundle over M, and let V be a complex
connection on E with curvature two-form 6. For each
i=1,...,r we define the 2i-form

c;(E, V) =0 (EQ)
2n

and call it the ith Chern form of E.

Additionally, we have the following definition.

Definition A.10 (Chern classes). Given (E,V) and
any 1 <i<r, the ith Chern form c¢;(E,V) is closed.
Furthermore, if V' is another complex connection on E
the difference c¢;(E,V)—c¢;(E,V') is exact—i.e., the
cohomology class [c;(E, V)| € H%, (M) ~ H*(M,C) is
independent of V. The resulting cohomology class is called
the ith Chern class of E and is denoted by c¢;(E).

Remark A.3. It is known that ¢;(E) is in the image of the
canonical homomorphism

H*(M,Z) - H*(M,C).

In fact, it is possible to define ¢;(E) in H* (M, Z) using
the obstruction theory; it is the primary obstruction to
constructing r — i + 1 sections linearly independent every-
where (Sec. I of [173]).

Complex line bundles. Assume now that L. — M is a line
bundle (r = 1). Then, every collection of transition func-
tions {g* }apeaxa defines a Cech one-cocycle with
values in the multiplicative sheaf &7, of invertible C*®
complex functions on M. In fact, the definition of the Cech
differential (see, e.g., Sec. 1.3 of [174]) gives (5g)*" =
¢ (g*)~'g*, and we have 6g = 1 in view of (Al). Let y/,
be another family of trivializations and {¢g'”} , s)c axa the
associated cocycle (it is no loss of generality to assume that
both are defined on the same covering since we may
otherwise take a refinement). Then we have

ywhowy': V,xC—V,xC,
(p.8) = (P.ua(P)).  ua €3 (Vo).

It follows that ¢ = ¢'*u;' uz—i.e., the Cech one-cocycles
¢ and ¢ differ only by the Cech one-coboundary du.
Therefore, there exists a well-defined map which associates
to every complex line bundle L over M the Cech coho-
mology class {g™} , s caxa € H' (M, &) of its cocycle of
transition functions. It is easy to verify that the cohomology
classes associated to two complex line bundles L and L’ are
equal if and only if these bundles are isomorphic. It is also
clear that the multiplicative group structure on H' (M, &%,)
corresponds to the tensor product of line bundles (the

046018-73



TAGHAVI, NASEH, and ALLAMEH

PHYS. REV. D 110, 046018 (2024)

inverse of a line bundle being its dual). We may summarize
this discussion by the following.

Proposition A.2. The group of isomorphism classes of
complex C® line bundles is in one-to-one correspondence
with the Cech cohomology group H'(M, &3,).

Now, let V be a connection on L with curvature two-
form 6. The de Rham class [0] € H2,(M,C) does not
depend on the particular choice of V. If V is chosen to be
Hermitian with respect to a given Hermitian metric on L
(such a connection can always be constructed by means
of a partition of unity) then v/—160 is a real two-form,
thus [v/=160] € H2x (M, R).

Consider now the one-to-one correspondence given by
Proposition A.2 and the exponential short exact sequence
of sheaves on M,

exp .
—&5 — 0,

where the map 1 is 1(k) = 27\/—1k and the exponential
map sends the germ f of any complex C* function to
exp(f). Since &), is a fine sheaf,” we have H4(M, &) =0
for all ¢ > 0; in particular H'(M, &y;) = H*(M, &);) = 0.
So, the induced long exact cohomology sequence

S HV(M,Ey) - H (M, &)
- H*(M,Z) - H*(M,&y) — -+~

gives an isomorphism H' (M, &%,) ~ H*(M, Z) which says
that the topological invariant H*(M, Z) can be thought of
as the group of complex line bundles on M. This isomor-
phism is realized by associating to a complex line bundle L
its first Chern class ¢, (L).

The natural morphism

H*(M.Z) — H*(M,R) ~ H%,(M,R)

results in the following theorem.

Theorem A.2. The image of c¢(L) in H%z(M,R)
coincides with the de Rham cohomology class [v/—16]
associated to any (Hermitian) connection V on L.

Holomorphic vector bundles on analytic spaces. Let us
now generalize our discussion of holomorphic vector
bundles to those defined over complex analytic spaces.
We have the following.

Definition A.11 (Holomorphic vector bundle). Let
w: E — X be an analytic map between reduced analytic
spaces such that every fiber E, := 77! (x) over a point x € X

“A fine sheaf over a paracompact Hausdorff space M is one
with “partitions of unity.” More precisely, for any open cover of
the space M, we can find a family of homomorphisms from the
sheaf to itself with sum 1 such that each homomorphism is 0O
outside some element of the open cover (see, e.g., Def. 4.35
of [175] for more details).

is equipped with the structure of an r-dimensional complex
vector space. Then, z: E — X will be called a holomorphic
vector bundle of rank r on X if every point x € X has an
open neighborhood V in X such that the restricted map
g en1 vy Ely =V is (analytically) trivial—i.e., there

exists a biholomorphic map E|,—V x C’, called the
holomorphic trivialization of E over V, which maps every
fiber E, for x€V onto x x C" as an isomorphism of
complex vector spaces. A holomorphic vector bundle of
rank » = 1 on X is called a holomorphic line bundle on X.

An analytic map E — E' between holomorphic vector
bundles is called a bundle map if it is fiber preserving and if
all induced maps E, — F are linear; clearly, the holo-
morphic vector bundles with bundle maps as morphisms
form a category.

Assume now that E is a holomorphic vector bundle on X
of rank r. A holomorphic section of E over V C X is a
holomorphic map s: V — z7!(V) C E such that zos =
idy. If 77'(V) @V x C" then s is simply given by an
r-tuple of holomorphic functions on V. Hence, local
holomorphic sections in E determine, in a natural way, a
canonical presheaf on X which gives rise to the analytic
sheaf O'x(E) on X of germs of holomorphic sections in E.
Such a sheaf is always locally free of the same rank as the
rank of the vector bundle: 1f E|V is trivial, we have an
isomorphism O(E)|, = 0},. Tt follows that if E is the
trivial line bundle X x C, the sheaf 0(E = X x C) coin-
cides with the structure sheaf O’y of the complex analytic
space X. Moreover, the cohomology of a holomorphic
vector bundle E over X is defined to be the sheaf
cohomology of ¢'(E). In particular, we have

H'(X,0(E)) =T(X,E)

the space of global holomorphic sections of E.
To study the holomorphic line bundles on the analytic
space X, we consider the exact sequence

exp
— ﬁ}} - 0,

0> Z50y
where the maps : and exp are defined as before and 0%
denotes the sheaf of invertible elements in @'y—in
other words, the sheaf of nowhere-vanishing holomorphic
function on X. This induces a long exact sequence in
cohomology,

S HY(X, 6y) - H'(X, 0%)
SHX(X,Z) - HXX, Oy) = - -.

The group H' (X, 0% ) represents the group of holomorphic
line bundles on the analytic space X with group multipli-
cation being the tensor product, and the inverse bundle
being the dual bundle. This group is called the Picard
group of X and often denoted by Pic(X). As seen above, the
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connecting homomorphism ¢ takes a holomorphic line
bundle .Z to its first Chern class c¢;(-Z), and the group
H?(X,Z) is isomorphic to the group of topological com-
plex line bundles on X. So if H*(X, O) # 0, we see that
not every complex line bundle gives rise to a holomorphic
line bundle. Similarly, if H'(X,Oy) # 0, there can be
inequivalent holomorphic bundles associated to the same
complex line bundle. The kernel of the map 6 is denoted by
Pic’(X) and represents the subgroup of holomorphic line
bundles that are trivial topologically.

There is a holomorphic line bundle canonically asso-
ciated with every analytic space.

Definition A.12 (Canonical line bundle). Let X be a
reduced analytic space of dimension n. The nth exterior
power /\“TZ‘M)X is a holomorphic line bundle, called the

canonical line bundle and denoted by KCy. The dual or
inverse line bundle Ky' is called the anticanonical line
bundle.

When the underlying analytic space X is understood we
often write just IC for [Cy. It is easy to see that.

Proposition A.3. The first Chern class of Ky satisfies
c1(Ky) = —c1(X).

Meromorphic functions and divisors. There are two
equivalent ways to describe divisors on smooth complex
manifolds. However, they are not equivalent for singular
analytic spaces. We discuss both of these notions here.

Definition A.13 (Weil divisor). A Weil divisor D on an
analytic space X is a locally finite formal linear combina-
tion of irreducible analytic hypersurfaces H;

D= ZaiH,- with aiEZ,
i

where locally finite means that every point x € X has a
neighborhood intersecting only finitely many of the H;s. D
is said to be effective if a; > 0O for all i (not all a;s equal to
zero). For a Weil divisor D = ), a;H;, we set Supp(D) :=
U; H; and call it the support of D. Additionally, the
coefficient a; is called the multiplicity of D along H;
and will be denoted by multy, (D); we set multy (D) =0
for every other irreducible divisor H # H; V i. Finally, the
degree of D is denoted by deg(D) and is defined as the sum
of coefficients a,—i.e., deg(D) := >, multy (D) = >, a;.

Under the formal sum operation, Weil divisors form a
group called the divisor group and are denoted by Div(X).
It then follows, from Definition A.1 of hypersurfaces, that
a Weil divisor is described locally by the zero set of
holomorphic functions.

Now, let us recall that a meromorphic function on an
open set V C X is a ratio f/g of relatively prime holo-
morphic functions f and g on V. We will denote by .# y the
sheaf of meromorphic functions on X and by .#% the
subsheaf of not-identically-zero meromorphic functions.
We also denoted by 0% the subsheaf of invertible elements

in Oy and called it the sheaf of nowhere-vanishing
holomorphic functions. We have the following short,
exact sequence

0= 0y — My — My/O% = 0. (A4)
Then, we can define:

Definition A. 14 (Cartier divisor). A Cartier divisor on X
is a global section of the sheaf .#%/0y—i.e., an element
of the group H(X, .#%/0%). Any Cartier divisor can be
represented by giving an open covering V := {V,,}, o4 of X
and, for all @ € A, an element ¢* := f*/g* € .4 (V,) such
that ¢* = u’¢/ on any intersection V, NV, with
u? e 0%(V,n V). A Cartier divisor D on X is called
effective if it can be represented by the system
{(Var f*) }gea with all local equations f*e€T’(V,, Ox).
Additionally, two  systems  {(V,.¢%)},ea and
{(V},¢'")}pe represent the same Cartier divisor if and

only if on V, N V’ﬁ, ¢* and ¢'* differ by a multiplicative
factor in O%(V, N Vy). The Abelian group of Cartier
divisors on X will denoted by H(X,.#%/0%). If D, =
{(Vi )} aea and Dy = {(V}.#5)}pc p then Dy + Dy =

{(Ve N V3. b0 ucapen-

Since on a smooth analytic space X (i.e., a complex
manifold) the local rings Oy, are unique factorization
domains, Weil divisors and Cartier divisors coincide: If we
cover X by open sets {V,},c4 so that H; is defined by f¢
on V,, we have the meromorphic function ¢* = [[,(f%)%
which is determined by the expression of the Weil divisor
D =) ;a;H;. The systems {(V,,¢*)},ca would then
correspond to a Cartier divisor.

Theorem A.3. Let M be a smooth complex manifold.
Then there is an isomorphism

Div(M) =~ H'(M, .4,/ O7%)).

On smooth complex manifolds M, such as the regular
locus of an analytic space, we shall often identify Weil
divisors and Cartier divisors by just referring to a divisor,
Div(M). This isomorphism does not hold on singular
analytic spaces: Let X be a normal analytic space and
let D¢ =", a;H;® be a Weil divisor defined on the
regular locus Reg(X). Since the singular set of X has
codimension at least 2, the Remmert-Stein extension
theorem (see, e.g., page 181 of [168]) ensures that D¢
admits a unique extension to a Weil divisor D on X.
However, not every Cartier divisor on Reg(X) extends to a
Cartier divisor on X. Thus, the group of Cartier divisors
H°(X, .#%/ O%) on asingular analytic space X is identified
with a subgroup of Div(X).

Any global section ¢ €'(X, .#%) determines a princi-
pal Cartier divisor (¢) = {(X.¢)} by taking all local
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equations equal to ¢. Equivalently, if ¢ is a global
meromorphic function on X which can be written locally
as ¢ = f/g, we may consider a Weil divisor (¢) =
ord(f)Z; —ord(g)Z,, where Z, denotes the zero set of
the holomorphic function f and ord(f) denotes its order of
vanishing. Then, two divisors D and D’ on X are said to be
linearly equivalent, written D~T', if D' =D+ (¢),
where (¢) denotes the principal divisor defined by the
global meromorphic function ¢p. We denote by [D] the set of
all divisors on X that are linearly equivalent to D. It is called
the linear system of divisors defined by D. The common
intersection Ny ¢ p) D' is called the base locus of linear
system [D]. We will also denote by CI(X) the divisor class
group of Weil divisors modulo linear equivalence, and by
CaCl(X) the group of Cartier divisor classes (Cartier
divisors modulo principal divisors). On a singular analytic
space, the group CaCl(X) is generally a subgroup of the
divisor class group CI(X).

We now describe the relationship between line bundles
and divisors: From the short exact sequence (A4) one has

0— HY M, #)0%)/H (M, A x)
- H' (M, 0%) — H' (M, . #%).

This says that every divisor D on M determines a
holomorphic line bundle .#(D), and the line bundle
Z£(D) is holomorphically trivial if and only if D is a
principal divisor—i.e., the divisor (¢) of a global mero-
morphic function. The holomorphic line bundle .#(D) has
as the system of transition functions, the collection {u®} of
nowhere vanishing holomorphic functions u® € 0% (V, n
V) defined uniquely in terms of Cartier divisors in A.14. If
> ;a;H; is the Weil divisor corresponding to the Cartier
divisors D, we may write .Z(D) = ®.Z;" where .Z; :=
14

Z(H;) and .Z" denotes the tensor product of a; copies of
Z;, for a; > 0, and the tensor product of —a; copies of .Z},
for a; < 0. The quotient H*(M, 4%/ 0%)/H*(M, # ) is
precisely the Cartier divisor class group CaCl(M) defined
before. Furthermore, H' (M, .#%) = 0 if and only if every
holomorphic line bundle on M has a global meromorphic
section. In this case, we get an isomorphism between the
Cartier divisor class group and the Picard group. This
happens, for example, for smooth projective algebraic
varieties (such as Riemann surfaces).

Proposition A.4. Let X be a smooth projective algebraic
variety. Then, we have CI(X) ~ CaCl(X) ~ Pic(X).

Finally, let us finish this subsection by pointing out that if
each prime divisor (i.e., irreducible hypersurface) H; in a
Weil divisor D = ), a;H; is compact, up to linear equiv-
alence, D defines a homology class [D] = >, a;[H;] in
Hyy_»(M, Z). Furthermore, it is known that if M is
compact, the homology class [D]€ H,,_»,(M,Z) is the
Poincaré dual of the cohomology class ¢;(Z(D))e
H>(M,Z).

c. Finite group actions, quotient singularities,
and Galois coverings

Let Y = (|Y|,0y) be a reduced normal'” complex
analytic space and let I be a finite subgroup of the group
Aut(Y) of analytic automorphisms of Y. Our main goal in
this subsection is to study the analytic quotient of Y by the
group I'. More concretely, we want to construct a reduced
normal complex analytic space X = (|X|, Oy) together
with a surjective analytic map w: Y — X which is invari-
ant under '—i.e., woy = w for all y €T

Finite group actions and analytic quotients. Since any
analytic space Y has an underlying (Hausdorff) topological
space |Y|, we start our study of analytic quotients with a
few definitions regarding the action of a topological group
on a topological space.

Definition A.15 (Group action). A topological group I
induces a (left) group action on a topological space |Y| if
there is a map I x |Y| — |Y| such that

(1) For any ye€|Y|, (1,y)+~y where T€T is the

identity element.

(2) For any ye€|Y| and any two group elements

112 €L (v y) = (r1: (r2,9))-
We will usually write y - y or even y(y) instead of (y,y).
There is also a notion of right group action, which we will
avoid introducing.

Remark A.4. Throughout this paper, all groups are
assumed to act effectively, which means for every two
distinct elements in the group, there is some point in the
space at which they differ.

Given a group action I' x |Y| — |Y|, we can associate to
every element y€I' a homeomorphism i,: |Y| — |Y|
which is defined as ,(y) =y -y for all y €|Y|. The map
y +> 1, induces a group homomorphism 1:I" — Aut(|Y])
where Aut(]Y]) is the group of automorphisms of topo-
logical space |Y|. Conversely, it is easy to see that any
group homomorphism :I" — Aut(|Y]) yields a group
action I' x |Y| — |Y|, by setting y - y = 1,(y). Observe that
a group action is effective if and only if 1:T" — Aut(|Y]) is a
monomorphism.

Let us now run through some terms that are associated
with this group action: The isotropy subgroup, also called
the stabilizer subgroup, of any point y € |Y| is defined as
the set 'y :== {y €|y - y = y} and is a closed subgroup of
I. The action of I" on |Y| is said to be free if 'y = {1}, for
all ye|Y|. The set I'(y) := {y - y€|Y||ly €'} denotes the
orbit of point y. The action of " on |Y| is called transitive if
I'(y) = |Y| for any point y € |Y|—i.e., if for any two points
Y1, ¥, €|Y] there is an element y €T such that y - y; = y,.
Moreover, we call an action regular if it is both transitive
and free. We always denote by |Y|/I the set of all I" orbits

1%L et us remind that an analytic space is normal if every stalk

of the structure sheaf is a normal ring (meaning an integrally
closed integral domain). In a normal analytic space, the singular
locus has codimension of at least 2.
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in |Y|."" The orbit space |Y|/I" will be called the ropo-
logical quotient of |Y| by (the left action of) I and the
natural map |w|:|Y| - |Y|/T, sending y to its left orbit
I'(y), is called the corresponding quotient map. To make
the quotient map |w|:|Y| — |Y|/I" := |X| continuous for an
arbitrary topological I" action on | Y|, we have to endow |X]|
with the quotient topology: W C |X| is open, if and only if
|w|~1(W) is open in |Y|.

Remark A.5. For an open set V C |Y
also open for all y €I'. Hence,

, the image y(V) is

[ (V) = yrv)

is an open set—i.e., |w]|(V) is open in |X|. In other words,
the quotient map |w]|:|Y| — |X| is an open map. In
particular, if |@| is (locally) a bijective, it is (locally) a
homeomorphism.

Since analytic subvarieties (representing an analytic
variety) inherit a locally compact Hausdorff structure with
a countable basis from their ambient complex number
spaces, we shall assume that all topological spaces in the
present text have these properties, at least locally. However,
while patching local models together, we also want to avoid
the creation of new pathologies. Therefore, we always
assume |Y| to be globally Hausdorff and to have a
countable basis; in particular, all topological spaces in this
paper are paracompact. Then, we have to put strong
conditions on the action of group I' in order to make sure
that the topological quotient |Y|/T" preserves these proper-
ties (e.g., being Hausdorff). For this reason, we will always
assume that T" acts properly discontinuously on |Y| by
which we mean that for all compact sets V C |Y|, the set

{retir(v)nv + o}

is finite; this ensures that the topological quotient |Y|/T is
indeed a Hausdorff space. Note that finite groups always
have this property for trivial reasons.

Remark A.6. Since the finite group I' acts properly
discontinuously on |Y|, there exist for all y € |Y| (arbitrarily
small) neighborhoods V of y such that

y(Vy) =V, forallyerl,,
y(Vy,)nV, =@ forallyel'\l,.

It is then sufficient to construct the analytic quotient
of (V,,0yly) by I, for all y€Y (which is

"""More concretely, we should denote the set of all /eft I" orbits

in |Y| by “T'\|Y|” instead of “|¥|/T"” (the later should be reserved
for set of all right I" orbits). However, we will continue to use the
notation |Y|/I" with the understanding that it represents the
quotient of |Y| by the left action of T.

obviously identical with the quotient of U,cr y(Vy)
by I).1"?

When Y carries more structure, we are often compelled
to equip the quotient Y /I" with a comparable structure: Let
Y = (|Y|, Oy) be areduced complex analytic space and let
" be a finite subgroup of Auth), the group of complex
analytic automorphisms of Y % The orbit space X := Y/T
is then called the analytic quotient of Y by I' and is
constructed as follows: Define topologically |X| :=|Y|/T
and denote by |w]|:|Y| — |X| the corresponding (topologi-
cal) quotient map; according to Remark A.6, it is sufficient
to consider the case in which |Y| is small with respect to
y€|Y| and that I' =T is finite. Then, for W open in |X|,
the set |@|~! (W) is open and I invariant in | Y| such that we
can form the invariant algebra

Ox(W) = (Oy(lo|~'(W)))", (AS)
where I' acts in the obvious manner on the algebra
Oy(|@|~'(|U])) of holomorphic functions. Hence, we have
furnished the topological space |X| with a ringed structure
(|X], Ox). In order to see that (|X|,Oy) is indeed a
(reduced) complex analytic space, we need the following
local identity:

Oxjol(y) = Oy - (A6)

In fact, since |w| is finite and |w|™'(|@|(y)) = {y}.
we have

Oxjml(yy = lim HY(W,Oy) = lim H(jw|~'(W), Ox)"

Walw|(y) Walw|(y)

= [%)HO(IWI‘I(W), o' =0y, (A7)
Walm|(y
More concretely, we have the following theorem

(Theorem 8.1 of [169]).

Theorem A.4 (Analytic quotient). If T' acts properly
discontinuously on the reduced complex analytic space
Y, then there exists the analytic quotient X = Y/T". The
analytic quotient map w: Y — X is locally finite and
surjective and (near any point y) isomorphic to the quotient
map Y — Y/I'y, where I', denotes the finite stabilizer
subgroup of I' at y. In particular, the analytic algebra

. . L r,
O can be identified with the invariant algebra &/, for an
arbitrary point y € |w|™(x), and w}: Oy, — Oy, is just

L . I,
the finite inclusion &', < Oy .

211 fact, these spaces may be glued together (in a uniquely

determined manner) to a space which possesses the desired
property, if and only if the underlying topological space is
Hausdorff.

' As a general rule, Aut(Y) refers to the automorphisms of an
object Y in a category which will sometimes not be mentioned
explicitly, if in the given context there is no ambiguity.
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Remark A.7. If Oy, is reduced or an integral domain,

r, . . . .
ﬁ};ﬁy is obviously reduced or an integral domain for
arbitrary automorphism groups I';. Since the inclusion of

C algebras ﬁ;‘_'y & Oy, is a finite homomorphism for
finite groups Iy, both algebras have the same dimension.
Hence, under our standard assumptions, the analytic
quotient X = Y/I" has in x = w(y) the same dimension
as Y in y. We finally note that also normality will be
inherited from Y.

Quotient singularities. Anticipating the introduction of
complex orbifolds as objects which locally look like the
quotient of a complex manifold with a finite group action,
we turn to studying the singularities of an analytic quotient
of a complex manifold by a finite subgroup of its
holomorphic automorphisms. Such singularities are called
quotient singularities.

Definition A.16 (Quotient singularity). By a quotient
singularity, we understand a singular point x of an
analytic quotient X = Y/T", where Y is a smooth analytic
space and I' is a finite group action on Y by analytic
automorphisms.

Since a smooth analytic space is, in fact, a complex
analytic manifold, we will use M (instead of Y) to denote
such spaces. Following Cartan, one can then show that
quotient singularities are locally analytically isomorphic to
quotients of affine spaces by linear actions.

Theorem A.5 (Cartan). Each quotient singularity is
isomorphic to a quotient C" /T", where I' is a finite subgroup
of GL(n,C).

Let M be a complex analytic manifold and let I" be a
finite subgroup of its holomorphic automorphisms Aut(M).
We will denote the quotient singularity M /T" by X and the
corresponding analytic quotient map by w: M — X. Since
M is a complex manifold, it can be embedded in an ambient
complex number space C" and the structure sheaf &, is
given by the restriction Ocn|y,; in particular, the stalks
Oy, for all points p €M are isomorphic with the C
algebra Ocn , = C{zy, ..., 2, } of convergent power series
at that point. Then, it follows from Theorem A.4 and the
above Definition A.16 that quotient singularities are com-
pletely determined by the normal invariant algebra

I
Oxx= ﬁCq‘,p

for any point p € |@|~!(x). As the ring Oy, depends only
on the conjugacy class of I',,, the quotients for conjugate
groups are isomorphic. Hence, we consider only a repre-
sentative for each conjugacy class.

Definition A.17 (Reflection groups and small groups).
An element y € Aut(M), M a connected complex manifold,
is called a reflection (or, perhaps more precisely, a

'%This result can be applied to show that quotient singularities

are in fact algebraic in all dimensions.

pseudoreflection) if it is of finite order and if the (analytic)
fixpoint set,

Fix(y) == {peM|y - p = p}.

is of pure codimension-1 in M. A finite group I' C Aut(M)
is called a reflection group if it is generated by pseudore-
flections in Aut(M). Of course, an element y of finite order
in GL(n,C) is a reflection if and only if it leaves a
hyperplane in C" pointwise fixed; this is equivalent to y
having the eigenvalues 1 (of multiplicity n—1) and

2V -1
m

e =» —an mth root of unity with m > 2. On the other
hand, a finite subgroup I' ¢ GL(n, C) will be called small
if it contains no pseudoreflections.
Then, we have the following well-known result due to
Prill [176].
Theorem A.6 (Classification of quotients of complex
manifolds). Let ' € GL(n,C) be a finite subgroup. The
following two statements are true:
(i) The analytic quotient C"/I" is smooth if and only if
I' is a reflection group.

(i) There exists a small group F such that C"/T" and
C"/F are analytically isomorphic.

This, of course, is equivalent to the claim that the

L r, . . .
invariant algebra ¢ , is isomorphic to the convergent

power series ring C{z,, ..., z, } ifand only if I' € GL(n, C)
is a finite reflection group (see, e.g., Sec. 8.8 of [169] for
more details).

Proposition A.5 (Analytic spaces with at most quotient
singularities). An analytic space X = (|X|, O'y) admitting
only quotient singularities has the following properties:

(i) X = (]X|,Ox) is always a reduced normal ana-

lytic space.
(ii) The singular locus Sing(X) is a closed reduced
analytic subspace of X and has complex codimen-
sion at least two in X.

(iii) The smooth locus Reg(X) is a complex manifold
and a dense open subset of X.

Finally, since all finite subgroups of GL(1,C) = C* are
reflection groups, we have the following important corol-
lary to the above theorem.

Corollary A.1. If M is a one-dimensional complex
analytic manifold (i.e., a Riemann surface) and I C
Aut(M) is a finite subgroup of its holomorphic auto-
morphisms, the analytic quotient M/T" will always be a
smooth, complex analytic space—i.e., another Riemann
surface.

Ramified analytic coverings. As we saw in Theorem A .4,
an analytic quotient map w: ¥ — X := Y/I" between two
complex analytic spaces Y and X is locally finite and
surjective. This motivates us to study such analytic map-
pings in more detail (see, e.g., Sec. 7.2 of [168]).

Definition A.18 (Analytic covering map). A finite sur-
jective analytic map w: Y — X between irreducible ana-
lytic spaces is called an analytic covering. This means that
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S 7rcx , called the critical locus

there exists a thin subset
of the covering, such that

(i) @ (T) is thin in Y, and

(ii) the restriction @]y, ,-1): Y\@ ™' (T) = X\T is lo-

cally an analytic isomorphism.
The second condition means that for a sufficiently small
open neighborhood W, C X\T of any point x € X\7, the
inverse image w~'(W,) consists of a finite number of
components, called sheets of @, such that the restriction of
w to each component is a complex analytic isomorphism
between that component and W,.

Remark A.8. We will always assume that our analytic
spaces are irreducible so that “analytic covering” and
“finite analytic surjection” can be regarded as synonyms.

Ifw: Y — X is an analytic covering, the restriction of @
to the complement of critical locus is necessarily a finite-
sheeted covering map; the number of sheets of this
covering map will be called the (total) degree of the
analytic covering w and will be denoted by deg(w).
Additionally, for any point y € Y, there are arbitrarily small
open neighborhoods V, C Y of y such that the restriction
@|y, is also an analytic covering (see, e.g., Sec. 5 of [167]).

Since the degrees of these local analytic coverings can only
decrease as the neighborhoods V', shrink to the point y, it is
evident that the degree is the same for all sufficiently small
such neighborhoods; this common degree will be called the
ramification index (or the local degree or multiplicity)
of the mapping w at the point y, and will be denoted
by deg(y)-

Remark A.9. Note that if w: YZ1X is an analytic
covering of total degree d, then selecting any point
x € X and letting {y;};c; == @ '(x) C Y be the collection
of distinct points in the preimage of x, it follows
that 3, ¢, deg,, (y;) = d.

For any point y & w™!(T), it is clear that deg,(y) = 1.
However, in general, there may very well be points
y' €@ (T) for which deg,,(y') = 1. This is because not
all of the points of w~!(w(y')) need necessarily have the
same ramification index, even when the critical locus is
chosen to be as small as possible. Hence, one usually
introduces the subset

R, = {yeY|deg,(y) > 1}

of @w~!(T) which will be called the ramification locus of
the analytic covering w: Y — X and is a closed analytic
subspace of Y. The set B, := w(R,,) is called the branch-
ing locus of w and is a closed analytic subspace of X; note
that B,, is clearly a subset of the critical locus 7. An

'9A subset T C X is called thin if it has the property that each

point has a neighborhood on which some nonzero holomorphic
function vanishes. Since the set on which a holomorphic function
vanishes is closed and has an empty interior, a thin set is nowhere
dense, and the closure of a thin set is also thin.

analytic covering w: Y — X is said to branched at most at
T if the branch locus B, is contained in 7. In addition, the
analytic covering @ will be called unbranched, if B, is
empty. Observe that when X is singular, R, and B, can be
of codimension > 1, even when w is a nontrivial branched
covering. However, when X is a smooth, complex analytic
space, R, will be a hypersurface in Y, and B,, will be a
hypersurface in X.

Now, let w: Y — X be an analytic covering of normal
complex spaces. We define an automorphism of this
analytic covering as a complex analytic automorphism
f: Y = Y with the property that the diagram

Y—>Y

\ / (A8)
commutes—i.e., wo f = w. The group
Aut(w) = {f€AU(Y)|wo f = w} (A9)

of all such automorphisms of w: Y — X is called the
group of covering transformations or deck transforma-
tions. An analytic covering w: Y — X will be called a
Galois covering (or, in topologists language, regular
covering) if Aut(w) acts transitively on every fiber of
w; the group Aut(w) itself will be called the Galois group
of w and will be denoted by Gal(Y/X) or Gal(w). In this
case, the analytic quotient Y/Gal(w) is complex analyti-
cally equivalent to X and we get the following corollary of
Theorem A.4.

Corollary A.2. Every analytic quotient map @w: Y —
X :=Y/T is locally a Galois covering map.

When the branched analytic covering w: Y — X is
Galois, the total degree of w is given by the order of its
Galois group—i.e., deg(w) = #Gal(w). Consequently,
using the fact that the restriction of @ to any (sufficiently
small) neighborhood V, of a point y is again a branched
Galois covering, the ramification index of each pointy € Y
will be equal to the order of its stabilizer subgroup
Gal(w), = {y €Gal(w)|y -y = y}. Additionally, since
for any point y€Y the stabilizer subgroup of different
points in its Gal(w) orbit w ! (w(y)) vary only up to the
conjugation by elements of Gal(w), one can always choose
the critical locus 7 such that

R, = {yeY[#Gal(w), > 1} =w ' (T) and
B, =w(R,) =T
for any branched Galois covering w: Y — X. In this case,
we say that Galois covering w: Y — X is branched along

B.,. Moreover, since for an arbitrary lift y of any point
x€X the ramification index deg,(y) = #Gal(w), is
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independent of our choice of y € w~!(x), we can define the
branching index of w at any point x € X to be given by this
common value. More generally, one defines a branching
function for w: Y — X on X as

Vg X 3 x — #Gal(w), €N,

where y is any lift of x—i.e., y€w ! (x).

We are finally ready to introduce notions of ramification
divisor and branch divisor for a ramified Galois covering
w: Y — X between connected normal analytic spaces: Let
us start by defining

X':={x€Reg(X)|w ! (x)CReg(¥)} and Y'=w"'(X')

such that ¥’ and X’ are open analytic subsets of ¥ and X,
respectively, and their complements have codimension at
least 2. Then, the restriction @]y : Y — X' is a Galois
covering map between complex analytic manifolds. Next,

let us pick local coordinates zj, ..., z, on a neighborhood
V, of a point y €Y’ and let wy, ..., w, be the coordinates
around its image w(y)€X’. Then, w; = w;(zy, ..., 2y)

gives the local expression of @ near the point y and the set

()1

can be viewed as the ramification locus of the restriction
w|y—i.e., set of all points y € ¥’ around which @]y, is not

R = {yEY’

a biholomorphism. Notice that since both Y” and X’ are by
definition smooth, R’ is necessarily a hypersurface in Y'.
Since the complement of Y’ has codimension at least 2, the
Remmert-Stein extension theorem (see, e.g., page 181 of
[168]) ensures that the topological closure of this set will be
a hypersurface R, in Y. Additionally, since the Galois
covering w is finite, the set B, := w(R,) will be a
hypersurface in X. We will denote the irreducible compo-
nents of the hypersurface R, CY by R;; for each
irreducible hypersurface R; C Y, the image B; := w(R;)
is also an irreducible hypersurface in X such that B=J,5;.

Remark A.10. Observe that if Galois covering w: ¥ — X
is ramified only along a singular part of Y, the sets R,
and B, as defined above will be empty. Since we are
assuming that analytic spaces Y and X are normal (i.e., their
singular locus has codimension > 2), one concludes that
R By # @ if and only if Gal(w) contains at least one
pseudoreflection.

Now, let us consider the sets

Y":=Y'\ (Sing(R)Uw!(Sing(B))) and X":=w(Y").

Both subsets are open and have complements of codimen-
sion at least 2 in ¥ and X, respectively. Note that if y e Y”
either y € R or y belongs to one and only one irreducible
component R;. In the first case, we say that w is unramified

at y; then w is a local biholomorphism at y. In the latter case
(i.e., when y has ramification index > 1), let 'R; be the
unique irreducible component of R passing through y.
Then, there are local coordinates z;,...,z, on V C Y” and
Wi, ...,w, on W C X" centered at y and x = w(y) respec-
tively, such that locally R, nV ={z;, =0}, B;nW =
{w; =0} and

JWa = Zn)s

(A10)

Dy (2 2n) > (W =20 Wy = 20, ...

where m €N>!:=N\{1} denotes the ramification index
of @w at point y—i.e., m = deg,(y). For any irreducible
component R;, the ramification index deg,(y) =
#Gal(w), will be the same for all points y € R; N ¥"; this
common value is denoted by deg,,(R;) and will be called
the ramification index of w along R;. This enables us to
define the ramification divisor of a branched Galois
covering w as the formal linear combination

Ry =Y _(m; = )R, (A11)

i

where m; = deg_(R;) are the ramification indices (or
multiplicities) of @ along irreducible hypersurfaces (or
prime divisors) R,.

Remark A.11. The ramification divisor &% defined in this
way is an effective Weil divisor on Y. As we discussed
earlier, the notions of Weil and Cartier divisors coincide
only on smooth analytic spaces (e.g., on Y’). However,
when Y only contains quotient singularities, every Weil
divisor is Q Cartier by which we mean some multiple of it
is a Cartier divisor; such normal reduced analytic spaces are
said to be Q factorial (see [177] for more details).

When the ramified analytic covering @w: Y — X is
Galois, it is possible to define the branch divisor on X
as follows: As mentioned before, for each prime divisor R;
on Y, the image B; = w(R;) will be a prime divisor
on X. If v,;: X - N denotes the branching function
associated to the Galois covering w, the restriction
Volpax s BN X" — N will be a constant function for
each prime divisor 3;; this constant value will be denoted
by v, (B;) and is called the branching index of w along B;.
Then, we can define the branch divisor of Galois covering
w as the effective Q divisor

B, = Z (1 - um(lB,-)>B"'

Here, by a Q divisor, we simply mean a formal finite sum of
irreducible hypersurfaces with coefficients in Q (i.e., a Weil
divisor with rational coefficients). Note that with this
convention, Z,, = w*(%#,), that is, the ramification divi-
sor is the pullback of the branch divisor.
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FIG. 2. A model branched covering.

Let us finish our discussion of analytic coverings by
focusing on the very important example of branched Galois
coverings w: Y — X of one-dimensional complex analytic
spaces—i.e., when both analytic spaces X and Y are
Riemann surfaces. In that case, any nonconstant map
between compact Riemann surfaces is a finite branched
covering. Let f: Y — X be such a nonconstant, holomor-
phic map between compact Riemann surfaces Y and X. For
every y €Y there exist charts for f(y) such that the local
expression of the branched covering f is of the form
7 > 2", where m = deg,(y) is the ramification index of f
at point y, z is the local coordinate on the covering Riemann
surface Y, and w = z™ is the local coordinate on the base
Riemann surface X (see Fig. 2).

d. Complex analytic orbifolds

Let X, be an analytic space of dimension n admitting
only quotient singularities. An orbifold chart or local
uniformizing system on an open subset U C X is a tuple
(U,U,T,f) where connected and open set U C C" is
biholomorphic to the open unit ball B*, I' ¢ GL(n, C) is
a finite group acting effectively'® on U as holomorphic
automorphisms, and the ramified covering f: U-U,
called a folding map, is a I'-invariant map which induces

a biholomorphism U/T'=U. The pair (U,T) is called a
local model for U.

Definition A.19 (Analytic orbifold atlas). An analytic
orbifold atlas U on an analytic space X (admitting only

!%The condition that local uniformizing groups act effectively
is not always imposed in the literature, and there are occasions
when this requirement is too restrictive. However, since we are
exclusively concerned with effective orbifolds or reduced orbi-
Jolds in this paper, it is convenient to incorporate this condition
as part of our definition.

quotient singularities) is a collection { (U, Uy, Ty, fu) Yaca
charts on this analytic space such that the following
conditions are satisfied:

(i) {U,},e4 is an open cover of the underlying com-
plex space X,.

Gi) If (U,,U,.T,.f,) and (U,,U,.T,,f,) for a,b€A
are two orbifold charts with U, n U, # @, then
for each xeU,n U, there exists an orbifold
chart (U,,U,,T.,f.)EU that contains x—i.e.,
xeU.cU,nU,.

(iii) If (U,,U,.T,.f,) and (U,, U,,T,.f,) for a,b€A
are two orbifold charts with U, C U, then there
exists a holomorphic embedding,

called the change of charts (or embedding or
gluing map), such that the folding maps satisfy
f, = f, on,,. Moreover, for any three orbifold charts
labeled by a,b,c€A and having the property
U,cU,cU, the corresponding embeddings
should satisfy 17,. = 11,5 © 1p,-
Remark A.12. The choice of embedding #,,: U, < U,
is unique only up to the action of T',: Let (U,, U,.T,.f,)
and (U,,U,.T,.f,) be two orbifold charts on X with
U, C Uy If a1y : U, < U, are two embeddings, then
there exists a unique y €I}, such that ', =yon,,. As a
result, an embedding #,,: U, < U, induces a monomor-
phism'"" T ,,: T, - T, which is given by

Mab YV = Tab (7) O MNabs (AIZ)

that is 77,,(y%) = Yoy (¥)1a (%) for all y €T, and ¥ € U,.

An analytic orbifold atlas I/ is said to be a refinement of
another analytic orbifold atlas V if there exists an embed-
ding of every chart in ¢/ into some chart of V. This enables
us to define an equivalence relation between orbifold
atlases where two orbifold atlases are said to be equivalent
if they have a common refinement. Then,

Definition A.20 (Complex analytic orbifolds). A complex
analytic orbifold O of dimension n is a pair (X, [U])
where X, is the underlying (complex) analytic space with
at most finite quotient singularities and [{] is an equiv-
alence class of analytic orbifold atlases on X,. A one-
dimensional complex analytic orbifold will be called an
orbifold Riemann surface or a Riemann orbisurface.

Remark A.13. As in the manifold case, an orbifold atlas is
always contained in a unique maximal one and two orbifold
atlases are equivalent if, and only if, they are contained in
the same maximal atlas. Therefore, we can equivalently
define an analytic orbifold structure on a complex analytic

107 . S
We use the term “monomorphism” to mean an injective

group homomorphism.
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space X (with at most finite quotient singularities) as the
datum of a maximal (analytic) orbifold atlas on this space.

Remark A.14. Let O = (X, [U]) be a complex analytic
orbifold where X, is the underlying complex analytic
space. Remember that X, can be characterized as a
C-ringed space (|Xol|, Ox) where |X,| is a Hausdorff
paracompact topological space; we will denote the topo-
logical space |X,| simply by |O|. Then, one can define O
alternatively as a pair (|O|, [%]) where the charts of % are
now given by a quadruple (|U|, U, T, |f|). Here, |U| C |O|
denotes the underlying topological space of each open
analytic subset U C X, and |f| denotes the continuous map
associated with the I-invariant analytic map f = (|f], f*)
that induces a homeomorphism between |U| and U/T" as
topological spaces; as evident from our notation, the local
models (U,T) are defined as before. This alternative
definition of complex orbifolds is more common among
topologists and closely resembles the definition of a smooth
orbifold (where the only differences are in local models and
embeddings).

Local groups and canonical stratification. Consider a
point x € X, and a local chart (U,,U,.T,.f,) €U con-
taining x. In addition, let us choose ¥ € U, to be a particular
preimage of x and denote by I'; the subgroup of I', that
fixes X. As our choice of X € f;!(x) varies, the stabilizer
subgroup of ¥ varies only up to conjugation by the elements
of I',. Similarly, as our choice of U, containing x varies, the
stabilizer varies only up to conjugation by a transition map.
Therefore, we can define the isotropy group or the local
group T'y to be the conjugacy class of the stabilizer
subgroup I'; C T, for some X €, !(x). It is then clear that
local group I', for a point x € X, is independent of both the
chart, U,, and the lift x€ U,,.

Remark A.15. The main observation we would like to
make about this definition is that an orbifold chart
(U,U,T.f) contains more data than simply the analytic
quotient U/T". In particular, an orbifold chart “remembers”
the pseudoreflections contained in a local uniformizing
group I'; and their corresponding fixed-point sets.

This allows us to define the singular points of O as
points whose local isotropy group I', # {1}; those points
with T', = {1} are called regular points of O. The set
{xeXp|l'y #{1}} of singular points of O is called
the singular locus or the singular set of O and will be
denoted by Sing(0). It follows from Theorem A.6 (or
Remark A.15) that if any local uniformizing group contains
a pseudoreflection, the orbifold singular set Sing(O) will
be bigger than the singular set of the underlying analytic
space Sing(X,) and that Sing(0) = Sing(X,) if and only
if none of the local uniformizing groups contain a pseu-
doreflection. The subset of all orbifold regular points,
denoted by X% is an open dense subset of Xy; in
particular, since Sing(X,) C Sing(0), the orbifold regular
locus X% :== X\Sing(0) will always be a complex

submanifold of Reg(X,) = X \Sing(X,). The local isot-
ropy groups give a canonical stratification of X 5 by stating
that two points lie in the same stratum Sing;(O) if their
local groups are conjugate. Thus, we get a decomposition
of X, as

Xo=Xy"|;Sing;(0), Sing(0)=|,Sing;(0), (A13)
where the union is taken over all conjugacy classes. The
dense open subset of regular points, X, is sometimes
called the principal stratum and corresponds to the trivial
conjugacy class.

Analytic orbifold maps and orbifold covering. The
standard notion of structure preserving maps between
complex analytic orbifolds can be given in an analogous
manner to complex manifolds (see [146,147]). However,
it was not realized until recently (see, e.g., [178,179])
that certain problems arise with the usual definition of an
orbifold map; namely, as we will see later, this definition
does not, in general, induce morphisms of sheaves or
V-bundles. This led to the introduction of the notion of
“good maps” in [178].

Definition A.21 (Analytic orbifold maps). Let O =
(Xo.U) and O’ = (X),U') be two complex analytic
orbifolds (not necessarily of the same dimension). A
map f: O — O is said to be an analytic orbifold map
(or a holomorphic orbifold map) if f gives an analytic
mapping between the underlying complex analytic
spaces, denoted by (|f|,f*):(|Xol,Ox) = (|X,|, Ox).
which admits a local lift at each point x € X,: For
every pair of orbifold charts (U,,U,.T,.f,)€U and
(U, U,.T",.f,) €U containing an arbitrary point x € X
and its image f(x) € X, respectively, with f(U,) c U, the
orbifold map f induces a group homomorphism between
local isotropy groups f,: I', — F’f(x) and a holomorphic

f,-equivariant map f.: U, - U, such that the diagram

U, = o

I (Al4)

commutes (see Fig. 3). Moreover, a holomorphic orbifold
map fo, 1s said to be good if it is compatible with the
embeddings: If ,,: U, < U, is an embedding on O, then
there is an embedding Ff(na): U, < U, on O, such that
(1) .]ff]b OMNap = f(nu,b) Of[:/a’,\and
(i) f(oe © Nap) = fbe) © F (Map)-
Note that conditions (i) and (ii) imply that the composition
of good orbifold maps is again a good orbifold map.
Finally, a holomorphic orbifold map f,4,: O — O’ is
called an analytic orbifold automorphism (or an orbifold
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FIG. 3. A local lift corresponding to an orbifold map. Every
holomorphic orbifold map between two complex orbifolds
Sforn: O — O' consists of an analytic map f = (|f|, f*) between
the underlying analytic spaces together with a holomorphic
local lift which is given by a group homomorphism f,: ', —
I'f(.) between local isotropy groups at each point x € O and its
corresponding image f(x) € O" and a holomorphic f.-equivariant
map fz: U — U’ between local uniformizing neighborhoods.

biholomorphism) if it admits an analytic inverse. In this
case, we clearly have I', = F}(x) for all xe X =~ X'—i.e.,

biholomorphisms must preserve the orbifold stratification.

Remark A.16. Considering C or € as orbifolds with
an empty singular set, one can define holomorphic/
meromorphic orbifold functions on a complex orbifold O
as holomorphic orbifold maps f.4,: O — C or € (see
Remark A.24).

Now, we can easily define an orbifold Galois covering
using the above definitions.

Definition A.22 (Orbifold Galois covering). An orbifold
Galois covering wyy,: O = (X,V) - 0 = (X,U) is an
analytic orbifold map such that w: X — X is a Galois
analytic covering and Gal(w) C Aut(0).'”

In other words, the holomorphic orbifold map
@Wyp,: O = O is a projection map such that each point
x € X, has a neighborhood U = U/T for which connected
components V; of @' (U) are analytically isomorphic to
U/T; where I'; C T. Therefore, the restriction of projection
map @ to each sheet V, i.e., w|v[ . V; = U, corresponds to
the natural projection U/T"; — U/T" (see Fig. 4). By the
Galois group and degree of an orbifold Galois covering, we
mean its Galois group and degree as an analytic cover.
Finally, in cases that we need to keep track of base points
on covering and base spaces, we will use the notation

Worb

(0,%))-2(0.,x,) to refer to an orbifold covering for
which @ (%) = xo.

108Remember that for any orbifold O = (X,,U), we have

Aut(0) C Aut(Xy).

Global quotient orbifolds. As pointed out in
Remark A.12, the choice of embedding #,,: U, < U,
is in general not unique; so, the charts do not have to satisfy
a cocycle condition upstairs, though of course they do
downstairs where the open sets U, glue to give the analytic
space X, (see the discussion around Lemma A.1). That is,
the orbifold charts need not glue since an orbifold need not
be a global quotient by a finite group.

However, the most natural examples of complex orbi-
folds appear precisely when we take the quotient space
M/T of a complex manifold M by a finite subgroup
I' C Aut(M) of its analytic automorphisms.

Proposition A.6. If M is a complex manifold and I" is a
group acting holomorphically, effectively, and properly
discontinuously on M, the quotient M /I" has the structure
of a complex orbifold. Such orbifolds are called “(effective)
global quotient orbifolds” and we will denote them by
[M/T] in order to emphasize their orbifold structure.'”’

Proof. For any x&€ M/T, choose a point x€M that
projects onto x and let I'; := {y €['|yX = X} denote the
stabilizer subgroup (or isotropy subgroup) of X. Since the
action of I' on M is properly discontinuous, according to
Remark A.6, there exists a (small enough) neighborhood
U; C M containing ¥ such that y(U;) = Uy for all y €T
and U; N y(f] +) = @ for all elements of I' not in I';. Then,
the analytic quotient map w: M — M/T" will be a
(branched) Galois covering which induces a biholomor-
phism between an open analytic subset U C M/I" contain-
ing x and U;/T;. Then, the quadruple (U,, U;C,F;C,why;)
will be an orbifold chart on M/T" containing the point x. By
augmenting some cover {U,} of M/T via adjoining finite
intersections,“ one obtains a natural orbifold structure on
M /T induced by the atlas U = {(U,. U,.To. @l ) aea-

The corresponding embeddings #7,,,: U, < U, are induced
by transition functions on the complex manifold M and are
thus guaranteed to be holomorphic; this ensures that the
quotient orbifold [M/T'] = (M/T",U{) inherits a complex
structure that is uniquely determined by the complex
structure of M and the group I'. [

Since any complex manifold can also be regarded as a
complex orbifold for which all of the local uniformizing
groups I; are given by the trivial group {1}, the analytic
Galois covering map w: M — X, := M/T" is naturally
promoted to an orbifold Galois covering map wyy,: M —
O :=[M/T] for which T is the group of covering

1%More concretely, one must use the stack quotient to define
the global quotient orbifolds. This is due to the fact that, as we
have already seen, the analytic quotient defined in Theorem A.4
is unable to produce the codimension-1 orbifold singularities
created by the action of pseudoreflections contained in I'.
Therefore, with this notation, the analytic quotient M/T" plays
the role of the underlying analytic space of the complex orbifold
[M/T].

AOSee Chap. 14 of [148] for more details.
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FIG. 4. Orbifold covering. The part on the left compares the covering maps for manifolds and orbifolds. The part on the right shows
how the local groups of an orbifold and its covering orbifold are related.

transformations—i.e., Gal(w,y,) = I'. More generally, if I’
is a discrete subgroup of holomorphic automorphisms of a
complex manifold M that acts effectively and properly
discontinuously on it and if I is a subgroup of T, i.e.,
I"cT' c Aut(M), the holomorphic orbifold map [M/T"] —
[M/T] will be an orbifold Galois covering.

Remark A.17. When the manifold M in the above
construction of [M/T| is simply connected, M plays the
role of universal covering space and I" plays the role of
orbifold fundamental group.

Because of many nice features that global quotient
orbifolds share with ordinary manifolds, they were given
the name “good orbifolds” by Thurston (Chapter 14
of [148]).

Definition A.23 (Good orbifolds). A complex orbifold O
is called good or developable if it is analytically isomorphic
to a global quotient orbifold [M/T] in an orbifold sense
(T" is discrete but not necessarily finite). When the group I
is also finite, the orbifold O = [M/T] will be called very
good. In other words, a (complex) orbifold O is good
(respectively, very good) if and only if O has a covering
(respectively, finite covering) that is a (complex) manifold.
Otherwise, we have a bad orbifold.

Complex analytic orbifolds as log pairs. When local
isotropy groups contain pseudoreflections, each reflection
fixes a hyperplane in U, and the folding map f;: U; — U,
will have a ramification divisor %Z; on U; and a branch
divisor #; on U;. Let B;; denote the irreducible compo-
nents of the branch divisor %, and let m;; be the branching
index (or the multiplicity) of f; along each prime divisor B;;
such that %; = 3 (1 —m%j)B,-j. Then, the compatibility

condition between orbifold charts means that there are
global prime divisors B; C X and ramification indices m;
such that B;; = U; n B and m;; =m; (after suitable
reindexing). Therefore it will be convenient to codify
the above data by a single effective Q divisor,

(A15)

1
7= Y (1 ——)B,,
(0) "

B;cSing J

called the branch divisor of O. It turns out that a complex
orbifold O = (X,U) can be uniquely determined by the
pair (X, ), called a log pair: An orbifold atlas U =
{(U,, U, Ty, )} aca on a normal analytic space X, is
said to be compatible with 2 if every branch divisor %;
associated with the Galois coverings f; coincides with
2 N U;. Therefore, we can alternatively characterize
(although slightly inaccurately) a complex orbifold O as
being defined by the pair (X, 2). This point of view was
taken in [163].""!

As in Definition A.13, let us define the multiplicity
multy,(H) of & along any irreducible divisor H C X, as
the rational number 1 — mij, if H = B; for any j, and as 0 if

H # B; for all j. Then, we put

1

1 — mult,(H) (A16)

degy(H) =

and call it the branching index of 9 along H. Observe that

deggny, (Bi;) = degy, (Bj;) = my;,
and the branching index of & along any H # B; V j is
equal to 1. Then, Definition A.21 of analytic orbifold maps
is equivalent to the following one.

Definition A.24 (Analytic orbifold maps between log
pairs). Let (Y, Zy) and (X, Zx) be two complex orbifolds.
A finite analytic map f: Y — X between the underlying
analytic spaces is called an orbifold analytic map
forb (Y ‘QY) (X’QX) if

degy, (f(H))|degy, (H) - deg;(H).
for every irreducible hypersurface H C Y.

The notions of orbifold biholomorphism and orbifold

Galois covering can similarly be defined in this language.

"Traditional approaches studied either the singularities of a

normal analytic space X, or the singularities of a divisor Z on a
smooth analytic space, but did not concentrate on problems that
occur when both X and & are singular.
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In particular, a branched Galois covering w: ¥ — X will
be called an orbifold Galois covering @y : (¥, Zy) —
(X, 2x) if

degy, (w(H)) = degy, (H) - deg, (H),

for every irreducible hypersurface H C Y.

2. Orbifold Riemann surfaces

Now that we have seen the basic definitions for the case
of an n-dimensional complex orbifold let us specialize to
the case of n = 1 where everything greatly simplifies (see,
e.g., Appendix E of [164,180] for more details). The most
significant simplification comes from the fact that, by
Corollary A.1, every one-dimensional complex analytic
space is smooth. In other words, the underlying analytic
space of an orbifold Riemann surface is an ordinary (i.e.,
smooth) Riemann surface. Moreover, the orbifold charts on
a Riemann surface can always be chosen to have the form
(D.D. Z,,.f;), where D C C is the unit disk, Z,, denotes
the cyclic group of order m; > 2 which acts on D in the
standard way as the m;th roots of unity, and the folding map
f;: D—D/Z, =D is a branched Galois covering of the
form z — 7™ (see Fig. 2).

Additionally, observe that (Q) divisors on Riemann
surfaces are nothing but a formal linear combination of
points with coefficients in Q or z.'"? Therefore, we have
the following.

Definition A.25 (Orbifold Riemann surface). A closed
orbifold Riemann surface O is a pair (X, Z) consisting
of a closed Riemann surface X, called the underlying
Riemann surface structure of O, together with a branch
divisor 9 =37, csing(0) (1 —7r)%;, where x; €Sing(0)
are pairwise distinct marked points on X, called the
conical points, and each integer m; > 2 is the correspond-
ing branching index (or the order of isotropy) of the conical
point Xx;.

Remark A.18. The above definition of a closed
Riemann orbisurface can be generalized to include
punctured orbifold Riemann surfaces as well. Formally,
cusps can be viewed as a limit m — oo (or equivalently
cone angle 2z/m — 0) of a conical singularity on a
Riemann orbisurface (see Fig. 5). However, this limit
is singular and cannot be blindly taken from the formulas
for conical singularities.

The above definition makes it clear that the whole theory
of orbifold Riemann surfaces can be phrased in terms of
Riemann surfaces with signature, where the signature is the
map Xy — N U {oo} taking a point to its order.

Definition A.26 (Riemann surfaces with signature). By a
Riemann surface with signature we mean a Riemann

12q: .
Since Riemann surfaces are smooth, we do not have to

differentiate between Weil and Cartier divisors.

Conical point

FIG. 5. Cusps as limits of cone points. Formally, cusps can be
viewed as a limit m — oo (or cone angle 8,, = 2z/m — 0) of a
conical singularity on a Riemann orbisurface.

surface X of finite type'"” (g, n) together with an assign-

ment of a branching index m; to each marked point;
these branching indices m; are either integers > 2 or the
symbol co. The signature of O is the tuple (g; my, ...,m,),
where ¢ is the genus of X, and branching indices m; are
ordered such that 2 <m; <m, <--- < m,,.

Remark A.19. More precisely, by assigning the branch-
ing index 1 to every other point (except the marked
points), we can define a Riemann surface with signature
as a pair (X,v) where v:X - N U {oo} is a branching
function. Note that if U = {(U;,D,Z,,.f;)};c; is an
orbifold atlas on X which is compatible with v, the
restriction v/| v, 18 precisely the same as the branching
function associated to the branched Galois covering f;—
ie., vy =y,

Let (X,7) and (X, v) be two orbifold Riemann surfaces.
A Galois branched covering map @w: X — X is said to
yield an orbifold Galois covering woy,: (X,7) — (X,v) if

v(w(%)) = (%) deg,, (%) for all x€X. (A17)

Note that a conical point x; € Sing(X,v) may be obtained
in two different ways:

(1) If % ¢ Sing(X, ) but it is a ramification point of @
with ramification index deg,, (%) > 1, then w(%) is a
conical point of order deg, (%).

(2) If ¥ €Sing(X, 7) and the local degree of w at ¥; is
given by deg,,(%;) > 1, then w(X;) is also a conical
point of order 7(%;) deg,,(X;). As a result, we will
always have |Sing(X, )| < [Sing(X,v)|.

When the branching function Z(x) is the trivial branching
function 7 = 1, we conclude.

Proposition A.7. Let w: X — X be a branched Galois
covering between two Riemann surfaces. The base
Riemann surface X can be naturally given the structure
of a (developable) Riemann orbisurface O = (X,v,,),
where v, : X — N is the branching function associated
to the branched Galois covering w. Note that
0 = [X/Gal(w)].

"5A Riemann surface X is said to be of finite type if X is a

(stable) Riemann surface (with or without nodes) such that either
n =0 and X is compact, or n > 1 and X is compact except for n
punctures.
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3. Universal orbifold covering and orbifold
fundamental group

In Remark A.17, we have briefly mentioned universal
covers of good orbifolds. However, even when an orbifold
O is not necessarily assumed to be developable, it is rather
easy to define a universal covering orbifold of O in much
the same way as one defines the universal covering of
manifolds and the same uniqueness property holds in the
orbifold case as well.

Definition A.27 (Universal covering orbifold). An orbi-
fold Galois covering

W10 = O (A18)
is called a universal orbifold covering of O if for any other
orbifold covering

w 0 — 0

orb

(A19)

there exists a lifting of w,y, to an orbifold covering map
@’ . O — O such that the diagram

orb *

O
w(/)/rb
Worb Ou (AZO)
wgrb
O

commutes.

In the case of developable orbifolds O = [M/T],
any (unramified) manifold covering M — M gives an
orbifold covering by composition with the quotient map
M — [M/T]. In particular, the universal covering of M
gives rise to a universal orbifold covering of O, and the
orbifold fundamental group is given by the short exact
sequence

1>z (M)—>r(0)->T->1. (A21)

Once again, the situation is particularly nice for the case
of orbifold Riemann surfaces.

Theorem A.7 (Theorem E.1 of [164]). With the following
two exceptions, every orbifold Riemann surface of finite
type O = (X, Z) admits as the universal cover either the
Riemann sphere C, the complex plane C, or the hyperbolic
plane H which is necessarily a finite Galois branched
covering and is unique up to conformal isomorphism over
Xo; this is a consequence of the classical uniformization
theorem. The only exceptions, called “bad” orbisurfaces in
Thurston’s terminology, are given by

(i) Teardrop orbisurface: Riemann sphere C with just

one ramified point (see Fig. 6), or

FIG. 6. Bad orbisurfaces. The top part shows the (3)-teardrop
orbisurface, which consists of the tuple (C, 2 = 3N) where the
Riemann sphere € is the underlying Riemann surface and the north
pole N is the only marked point with multiplicity 3. The bottom
part shows the (3,4)-spindle orbisurface that is given by the tuple
(C, 2 = 3N + 48) where now both the north pole N and the south
pole S are marked points with inequivalent cone orders. Note that
the (my) teardrop can be viewed as the (my, 1) spindle. Both of
these orbisurfaces are bad orbisurfaces in the sense that they admit
no Riemann surface as their universal covering.

(i) Spindle orbisurface: Riemann sphere € with two
ramified points for which the ramification indices
are different (see Fig. 6).

Remark A.20. The statement that every developable
Riemann orbisurface of finite type is finitely covered by
C, C, or H is equivalent to asserting that any finitely
generated, discrete subgroup I' of (orientation-preserving)
isometries  Isom*(C) = PSL(2,C), Isom*(C), or
Isom™ (H) = PSL(2,R) with quotient space of finite type
has a torsion-free subgroup of finite index. The conjugacy
classes of torsion in I" correspond to the conical points of
[X/T7, for X € {C, C,H}, and one obtains a torsion-free
subgroup of finite index of I" by avoiding these (finite
number of) conjugacy classes. The resulting torsion-free
subgroup is precisely the fundamental group of the under-
lying Riemann surface, z;(Xy).

More generally, Thurston proved that every orbifold O
has a universal cover regardless of being developable or not
(see Prop. 13.2.4 of [148]) and also defined the orbifold
fundamental group 7z,(O) as the group of covering trans-
formations of its universal covering.

Definition A.28 (Orbifold fundamental group). The
orbifold fundamental group m(O) of an orbifold O is
the Galois group of its universal covering.
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= ==’ o= =7

[0?] = [id]

FIG. 7. Orbifold covering and homotopy classes of loops. This
figure compares the loops around a ramified point of index 3 on
an orbifold Riemann surface with those around the preimage of
this cone point on the covering space. We can see that circling
once around the preimage of the ramification point on the
covering (orbi)surface is equivalent to circling 3 times around
the ramified point on the base orbisurface.

We need an interpretation of 7z, (O) in terms of homotopy
classes of loops in O. However, defining the correct notion
of homotopy would be an issue: For instance, a disk D,, &
[D/Z,,] with one cone point of order m has as its universal
covering a nonsingular disk, with covering transformation
group Z,, acting by rotations. Thus, intuitively, a loop in
D,, winding m times around the cone point should be null
homotopic (see Fig. 7).

In order to introduce the correct notion of orbifold
homotopy, it is more convenient to view the complex
n-dimensional orbifold O as a smooth (oriented) real
orbifold of dimension 2n and work with the topologist
definition of an orbifold (see Remark A.14): Let O =
(|0, %) be a smooth orbifold and let (|U|, T c R*",T" C
SO(2n), |f|) € Z be an orbifold chart on the underlying
topological space |O|. Then, ([0,1] x|U|,[0,1] x U,T,
id x |f]), where y €T acts on [0,1] x U via y(t,x) =
(t,yx) is an orbifold chart on [0, 1] x O. The collection
of all such orbifold charts forms an orbifold atlas, giving
[0, 1] x O the structure of a smooth orbifold. It thus makes
sense to say that two orbifold maps

forb’fgrb: 0 - 0/

are homotopic in the category of orbifolds if there is an
orbifold map

F:0.1]x0 = 0", F(t.x) = F,(x)

with FO = forb and Fl = i)rb‘

Armed with the notion of homotopy of orbifold maps,
one can define the orbifold fundamental group =;(O)
exactly as one does for the usual fundamental group, just
replacing homotopies by orbifold homotopies. One should
note that any two orbifold maps which are homotopic as
orbifold maps are also homotopic as maps between
topological spaces, but that the converse does not need
to be true. In fact, there are plenty of orbifolds which are
simply connected as topological spaces but whose orbifold
fundamental group is nontrivial—i.e., there are orbifold
maps £: S I O which, as orbifold maps, are not homo-
topic to the constant map. See, e.g., Sec. 2.3 of [181] and
Sec. 2.2 of [182] for more details.

At this stage, the reader might wonder how one can
compute fundamental groups of orbifolds. This can be
done by studying the fundamental group of the regular
locus O\Sing(0). Indeed, if singular locus Sing(O)
has real codimension at least two (which is always the
case if O is complex), then O\Sing(0) is connected, and
we have a surjective homomorphism 7z;(0O\Sing(0)) -
71(0) induced by inclusion O\Sing(0O) < O. The surjec-
tivity of this homomorphism comes from the fact that
any loop on O can be perturbed to avoid the singular locus.
To compute 7;(0), we only need to find the kernel of
71 (0O\Sing(0)) - 7;(0)—i.e., which elements of
71(0\Sing(0)) get killed. For the special case of orbifold
Riemann surfaces, we can use the orbifold Seifert—van
Kampen theorem to arrive at the following proposition (see,
e.g., [148,156] for more details).114

Proposition A.8. The group z;(0) is the quotient of
71(0\Sing(0)) by the group normally generated by the
elements py*, for all x € Sing(0), where m, := #I', is the
order of the local isotropy group of x and u, is a meridian
around x.

Thus, if O is an orbifold Riemann surface with
signature (g;my,...,m, ;n,), 7(0) can be presented as
(see Figs. 1 and 8)

g9 e nl)
71'1(0,)(*) = <A1, Blv ...,Ag, Bg,Cl, ceey Cng’ Pl, ceey Pnp C’lnl [ — Cr:e — H[Ai’ Bt] HC]H Pk = 1d>, (A22)
i=1 =1 k=l

where A;s and B;s are homotopy classes of loops (based at
x,) that span H, (X, Z), C;s and P;s are meridians around
conical points and cusps, respectively, the commutator
[A;,,B;] is defined as A;B/A7'B;!, and the relation

ALBITT G [1;2, P« = id comes from cutting
open O along the chosen basis for z;(0, x,).

"While the proof of the following proposition requires more

complicated machinery for orbifolds of general dimension, the
conclusion of Proposition A.8 is valid in all dimensions.
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FIG. 8.

4. Orbifold Euler characteristic
and Riemann-Hurwitz formula

The orbifold Euler characteristic is a generalization of
the notion of Euler characteristic for manifolds that
includes contributions coming from nontrivial automor-
phisms. In particular, while every manifold has an integer
Euler characteristic, the orbifold Euler characteristic is, in
general a rational number. In this subsection, we will only
focus on studying the orbifold Euler characteristic for the
case of developable Riemann orbisurfaces.'"” As we will
see, the Euler characteristic has an important connection to
branched Galois coverings, and this allows us to calculate
the orbifold Euler characteristic for developable orbifold
Riemann surfaces using the so-called Riemann-Hurwitz
formula.

For simplicity, let us start by only considering closed
Riemann surfaces. We remember from elementary top-
ology that a closed Riemann surface Y has only one
topological invariant, which we may take to be its genus
g. In this case, the Euler characteristic of Y, denoted by
x(Y), is found by triangulating ¥ and using the formula
X(Y) = Fyes = Eqges + Verices- As expected, the result only
depends on the genus g and is given by y(Y) =2 —2g.
Now, let w: Y — X be a Galois covering map between
closed Riemann surfaces. There is a formula relating the
various invariants involved: the genus of Y, the genus of X,
the degree of @, and the amount of ramification. .

Theorem A.8 (Riemann-Hurwitz relation). Let w: Y —X
be a branched Galois covering map of degree d—i.e.,
deg(w) = #Gal(Y/X) = d. We have the relation

x(Y) = dly(X) — deg(#,)],

where Z,, =3, cp (1 - ﬁ)xj is the branch divisor

associated to the branched Galois
and deg(#) = 5, cp. (1 = ).

covering 1w

"The interested reader can consult Ref. [183] for more
general cases.

Byl 7 A

Cut open

along loops

Orbifold fundamental group. A choice of generators for the homotopy group of a surface with marked points.

Proof. Here, we will provide a simple topological proof
of the Riemann-Hurwitz (RH) formula' ', Choose a suffi-
ciently small triangulation of X so that each triangle is
contained in an evenly covered neighborhood and such that
every branch point of w is a vertex in this triangulation.
Then, as mentioned above, y(X) = F — E+ V, where F,
E, and V are the number of faces, edges, and vertices
(respectively) of the chosen triangulation. Since w: ¥ — X
is surjective, the pullback of this triangulation is clearly a
triangulation of Y. Thus, we just need to count the number
of faces, edges, and vertices of this pulled-back triangu-
lation to calculate the Euler characteristic of Y. We denote
these numbers by F, E, and V, respectively.

The pullback of each evenly covered neighborhood will
contain d copies of the triangle contained within it. Thus,
we have d faces and d edges—i.e., F = dF and E = dE.
Naively, one would expect there to be d vertices as well;
however, since a branch point x; € B, has

[ () =d= ) (degy(y) = 1) = d/vg(x))
yvi€ew ! (x))
(A23)
distinct preimages, we have''’
V=dv- Y (degy(y;) - 1)
YiERm
dv d (Vg(x;) = 1) (A24)
= — D‘lﬂ .
x,€B w (%)) !

"®One can also prove the RH relation by using a mixture of the

Gauss-Bonnet formula and topological considerations (Sec. 2.1
of [184]) or by using the relation Ky = w* Ky + %, between the
corresponding canonical divisors. We will come back to this point
later in this Appendix.

117
Note that Zy;eRm = X:XJ-EB,‘7 Z}'iew‘l(xj)'
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Therefore,

(A25)

Remark A.21. The RH relation proved above assumes
that the branched covering @w is Galois. However, it is
possible to write the RH relation in a way which is true for
all branched coverings regardless of whether they are
Galois or not. We have to pay attention to two main
differences in this case: (i) For a general branched covering
the degree d of the covering is not necessarily equivalent to
the order of the covering transformation group; in general,
d < #Aut(w) with equality happening only when @ is
Galois. (ii) When w is not required to be Galois, the
ramification indices of ramified points y,,y, € w !(x)
need not be the same. Therefore, the last equalities in
both (A23) and (A24) are not true in this general setting; in
fact, when w is not necessarily Galois, we cannot even
define branching indices and branch divisors. However,
we can still write V = dV — 3", (deg,(y;) — 1) which
results in the following form for RH relation:

x(Y) = dy(X) — deg(Z ).

This form of the Riemann-Hurwitz formula holds true for a
general branched covering and is obviously equivalent to
the previous form when w is Galois.

Now, let the orbifold Riemann surface O = (X, 2)
be a developable Riemann orbisurface with signature
(gsmy,....m, ;n,). Any such orbifold Riemann surface
is finitely covered by a Riemann surface Y such that & is
the branch divisor of the branched Galois covering
w: Y — Xy Then, it immediately follows from
Proposition A.7 that there exists a corresponding orbifold

Galois covering @y, : yZo = (X, 2) and it is natural
to define the orbifold Euler characteristic of O by using the
equation y(Y) = dy(0). Hence, we get

=x(Xo) — deg(7)

:2—2g—np—§ne: (1—’71) (A26)

i=1

In the following subsection, we will derive this relation in
an equivalent way using the notion of orbifold canonical
divisor.

Let us end this subsection by making Theorem A.7
a little sharper. It immediately follows from equation

x(Y) = dy(O) that the Euler characteristic of a developable
Riemann orbisurface O should have the same sign as the
Euler characteristic of its universal covering. Hence, we
have the following corollary.

Corollary A.3. Let O be a closed (or possibly punctured)
orbifold Riemann surface, which is not a teardrop or a
spindle. Then, O admits H, C, or € as its universal covering
if and only if y(0) <0, y(0)=0, or x(O)>0,
respectively.

The orbifold Riemann surfaces with y(O) < 0 are called
hyperbolic and are the main focus of our study in the main
body of this paper. Notice that all hyperbolic Riemann
surfaces are, by definition, developable.

5. Orbisheaves, orbibundles, and orbidivisors

The notions of bundle theory, and more generally, sheaf
theory, are fundamental to doing geometry on any object.
Fortunately, these notions and many other usual differential
geometric concepts can be generalized to the orbifold case
with the help of orbifold maps (see, e.g., Sec. 4.2 of [161]).

V-bundles. In this section, we define holomorphic vector
V-bundles (or orbibundles) as a reasonable generalization
of holomorphic vector bundles over complex manifolds.
Remember that we defined a rank r holomorphic vector
bundle £ over an analytic space X as an analytic map
7. E — X such that 7 is locally a projection V x C" — V.
Similarly, a holomorphic vector V-bundle of rank r over
an orbifold O = (X,U) should be thought of as a pair
(E=(E,V), 7o :E > O) where £ is a complex orbifold
and 7y, is an analytic orbifold map. Thus, starting from an
analytic map z: E — X between the underlying analytic
spaces, our task reduces to the construction of the appro-
priate local lifts of = (as in Definition A.21).

Definition A.29 (Holomorphic vector V-bundle). Let
O = (X,U) be a complex orbifold. A holomorphic vector
V-bundle (or a holomorphic vector orbibundle) of rank r
over O is a collection of holomorphic vector bundles
#,: E, - U, with fiber C" for each orbifold chart
(U,,U,.T,.f,) of O, together with a collection of group
homomorphisms 7,: I', = 7,(I',) defining an action of
I, on E, by (ordinary) holomorphic bundle maps,
such that:

(i) Each 7, is I', equivariant, so that the following

diagram is commutative for any y €I',:

= e
0, —— U,

(ii) For any holomorphic embedding #,,: U, < U, of
charts on O, there exists a holomorphic bundle
isomorphism
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ﬁab: Ea - Eblrlah(fla) = ﬁa_l(’//ab(fja»’ such that ﬁab
is 7, equivariant. . y
(iii) For two embeddings Mab U, U, and
Mpe - Ub < Uc’ we have ’/Iab OMpe = ”ab Onbc
Remark A.22. The total (underlying) analytic space E of
an orbibundle is obtained from the local bundles £, in the
following way: Choosing small enough orbifold charts on
O, there always exists a local trivialization £, =~ U, x C"
such that 7,: U, x C" — U, is a holomorphic projection
on the first factor and the action of 7, (I",) on U, x C’ is
diagonalized—i.e., for any pair (¥,v) € U, x C" and any
A (7 - X, Ta (}/) :
T,: T, » GL(r,C) is a monomorphism. Then, we have a
branched Galois covering f2: E, — E, = E,/7,(T',). As
aresult, since 7%, is I, equivariant, we get a unique analytic
projection map n,: E, — U, such that the following
diagram commutes:

y €Ty, we have 7,(y) - (X,v) := v), where

Ea@Ea

\L"a Ta

U, —= 0,

Now, we can glue the analytic varieties E, in the following
way, stemming from the gluing condition on X: Let
(U,.U0,.T,.f,) and (U, U,.T,.f,) be any two orbifold
charts in U with U,NnU,#@ and let xeU,n U,
be a point. Then, according to Definition A.19, there
always exists another orbifold chart (U,C U,n
U,,,f]c,l“c,f YeuU containing x such that embeddings

: U, U, and 5.,: U. < U, induce bundle biholo-
morphlsms floa: E. > E aly,(o,) and ey E - Eb|”l<-b<Ub>'
Gluing E, and E, accordmg to this data results in a
complex orbifold £ with an underlying analytic space E
and an analytic orbifold map 7z,;,: £ - O, which is
determined by the analytic map n: E — X (obtained by
gluing analytic projection maps 7z, = 7z g,) and local
lifts 7,: E, — U,.

The next concept needed to define is holomorphic
sections of holomorphic vector V-bundles. Defining this
is easy globally: A section of £ in orbibudle z,4: &€ — O
is a holomorphic orbifold map s: O — £ satisfying
o ©S = idp. Locally, this concept can be defined as
follows.

Definition A.30 (Sections of V-bundles). If we consider
the holomorphic vector V-bundle z.y,: & - O, a holo-
morphic section of £ can be defined in either of the
following two equivalent ways:

(1) s: O — & is a holomorphic orbifold map satisfy-

ing myp, 08 = idy.

(2) A collection of I ,-equivariant holomorphic sections
s,: U, - E, such that for any embedding
Nap: U, < U, the following diagram commutes:

E nab(Ua)

E, —,
T ﬂab(Ua)
U,

—> nab(U )

To glue the local sections s; to the global section
s: O - & one should demand the equivariance of the
local sections. We will call a local holomorphic section

: U, - E, T, invariant (as opposed to ', equivariant)
1f yos, =5, Given the local holomorphic sections

: U, = E, of a holomorphic vector V-bundle 5 we
can always construct I',-invariant local sections o by
“averaging over the group”—i.e., we define an invariant
local section by

(A27)

Notice that this determines a well-defined map from the
(fa).(sa"):
U, — E,. Gluing these invariant local sections over each
orbifold chart, we obtain global invariant sections and view
them interchangeably as invariant objects on U,s or as
objects on Us. However, note that smoothness in the
orbifold sense is somewhat different from ordinary smooth-
ness, and holomorphic invariant sections can have singular
behavior (although usually in a controlled way) when
viewed as objects on the open analytic subsets U,,.

Remark A.23. Consider the easiest (but still important)
example of a trivial holomorphic line V-bundle: This line
V-bundle is given by trivial holomorphic line bundles
E,~ U, xC on each local uniformizing neighborhood
U, together with a trivial action of I, on the second
factor—i.e., T,(I,) = 1€GL(1,C). Then, clearly E, =
U, x C and the total space & is just O x C. Holomorphic
sections of this bundle clearly are in a one-to-one corre-
spondence with analytic orbifold maps from O to C
endowed with the trivial orbifold structure. So, according
to Remark A.16, they seem to be a good candidate for a
structure orbisheaf on O; however, in order to get coherent
sheaves on the underlying space X, nonetheless, we have
to deal with invariant sections of the trivial holomorphic
line bundles U, x C — U, or sheaves F, on the local
uniformizing neighborhoods U,,.

All of the standard notions of the tangent bundle,
cotangent bundle, and the different associated tensor

underlying analytic space X, namely sy :=
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bundles have V-bundle analogs: On every local uniformiz-
ing neighborhood U,, take the holomorphic tangent
bundle T'00U =~ U x C" and for any change of charts
Nap: U, < U, on O, construct the corresponding bundle
biholomorphism 7,1 T'°U, — T'°U,|, ., by defining
it to be given by #,, on the first factor and the Jacobian
Jac[,) on the second one. If we denote by (01, ..., a\")

the local coordinate basis on each Tl*ofja, the Jacobian
matrix Jac[y,,] € GL(n, C) is defined as

b
al(c ) O Mab

o\

(Jac[nap))is =

Remark A.24. Locally, around any point x € X, the fiber
(z}9)=1(x) c T'00 is not biholomorphic to C", but is
biholomorphic to a small neighborhood of x € X p—i.e., in
general (z'0)~!(x) = C"/T',. This is because, in a local
(Ve

orb
chart, the actions of y €', on U, and of Jac(y) on Tg?
are essentially the same. On the other hand, the underlying
analytic space of T'Y0 is not necessarily the ordinary
tangent space T'9X,,.

The above construction obviously generalizes to the
antiholomorphic tangent V-bundle 7! 0, holomorphic and
antiholomorphic cotangent V-bundles, symmetric and anti-
symmetric tensor V-bundles of type (k, [), etc. Particularly,
if O has dimension n, we denote the highest exterior power
of the holomorphic cotangent V-bundle, A"T7 (O, by K,
and call it the orbifold canonical bundle. Additionally, one
can easily generalize notions such as Riemannian and
Hermitian metrics, orbifold ( p, q)-differential forms,
Hermitian and Chern connections, Chern forms, etc., to
the orbifold setting. We will come back to these notions in
the next subsections.

Remark A.25. Notice that all of the above definitions
simplify for the case of developable orbifolds O = [M/T].
In this case, we can always view objects defined on O—
such as tensors, differential forms, connections, etc.—as
globally defined ordinary objects defined on M that are
invariant under the action of I'. We will come back to this
point in the later subsections when we study differential
forms and metrics on hyperbolic Riemann orbisurfaces in
greater detail.

Now, consider a Weil divisor D on the underlying
analytic space X,. We can lift its restriction DN U, to
a divisor D ¢, on the local uniformizing neighborhood U,
by D[]a = f;1(D n U,). The collection of all such divisors
DU(, on each U, defines an orbidivisor (or a Baily divisor)
on the orbifold O (see, e.g., Def. 4.4.11 [161]) for more

details). In fact, we have the following proposition.
Proposition A.9. The branch divisor Z or more generally

any Q divisor on X, of the form Zi%Di, where m; is a

ramification index and b;€Z, lifts to an orbidivisor
on O = (Xp,U).

A divisor obtained as the lift of a branch divisor is called
a ramification divisor. The following is straightforward.

Proposition A.10. To each Baily divisor D on
the orbifold O, there corresponds a complex line V-bundle
Z (D).

The most important Baily divisor on a complex orbifold
O is the orbifold canonical divisor KC, which is any Baily
divisor associated to the canonical orbibundle K. In the
presence of a branch divisor &, an orbifold canonical
divisor Cy is not the same (meaning not linearly equiv-
alent) as the canonical divisor Cy of the underlying analytic
space Xp. In fact we have (for proof see Prop. 4.4.15
of [161]).

Proposition A.11. The orbifold canonical divisor X and
canonical divisor Iy of its underlying analytic space are
related by

1
ICO n Ui Ef;k(K:X n Uz) +Z(1 _;>fr(pj N Uz)
5 .

J

In terms of the orbifold rational Chern class, the above
equation implies

c1(0)==c(Kp)

:—cl(ICX)—zj:(l —mi) c(Z(D)))eH*(X.Q).
ai(X)

Let O = (X, Z) be a good orbifold Riemann surface.
An orbifold canonical divisor is given by

Ko = tKx + 2. (A28)

where Ky is an ordinary canonical divisor on the under-
lying Riemann surface X. Thus, if g denotes the genus of X,
the orbifold Chern number (obtained by integrating the first
Chern character over X) is

c1(0) = —deg(Ky) = —deg(Ky) — deg(2)

:2—2g—nl,—i<l —%),

i=1

(A29)

which equals the orbifold Euler characteristic y(O) defined
before (this follows from the equivalence of the top Chern
class with the Euler class).

Orbisheaves. We first introduce the notion of an
orbisheaf following Definition 4.2.1 of [161]. Similar
to V-bundles, Orbifold sheaves or orbisheaves consist of
a sequence of sheaves defined on the disjoint union | |, U,
of the local uniformizing neighborhoods that satisfy certain
compatibility conditions with respect to the local unifor-
mizing groups and embeddings.
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Definition A.31 (Orbisheaf). Let O = (Xo,U) be a
complex orbifold. An orbisheaf F, on O consists of a
collection of sheaves {F,},c defined over each local
uniformizing neighborhood U, of O, such that for each
embedding #,,: U, < U, there exists an isomorphism of
sheaves 77, : F, — (1125)* (F), which is functorial.

Let F, be an orbisheaf on O, and (U,,U,,T,.f,) an
orbifold chart. Then, one can define an action of I', on
the sheaf F,, which says that F, is a I',-equivariant
sheaf on U,. So, every orbisheaf F, is equivariant
under the local uniformizing groups I',. We now have
the following.

Definition A.32 (Structure orbisheaf). The structure
orbisheaf O, of an orbifold O is the orbisheaf defined
by the collection of structure sheaves O defined on

each local uniformizing neighborhood U,. The structure
orbisheaf &y is well defined since each embedding
Hap: U, < U, induces an isomorphism & 7,~Ma)" (Og,)
by sending f € Oy, ; to f oz, € (1) (Op,)-

This definition evidently does not align with the
holomorphic sections of the trivial line V-bundle nor
does it yield a sheaf on the underlying space X,.
Therefore, we need to utilize local I' ,-invariant sections
(in contrast to I', equivariant) of such sheaves and then
assemble them across X, (Lemma 4.2.4 of [161]).
Accordingly, Fy are defined as sheaves on X, which
are invariant local sections of orbisheaves F. In this
regard, H(U,, 0 )"« ~ H*(U,, Ox) holds for the struc-
ture sheaves. For a coherent orbisheaf F, of 0O
modules, the I',-invariant sections are coherent sheafs
of Oy modules. Interestingly, this helps one to construct
the orbisheaf cohomology. But one should note that this
cohomology only probes the topology of the underlying
analytic space X,. Hence, a more complicated notion of
cohomology, the so-called Chen-Ruan cohomology, of an
orbifold is needed to probe the full topological features of
an orbifold. See e.g., [166,178] for more details.

There are several important orbisheaves on complex
orbifolds that we shall work with: First, there is the
structure orbisheaf & defined in A.32, where each Oy
is the sheaf of holomorphic functions on U,. Similarly,
there is the meromorphic orbisheaf .#, consisting of
meromorphic functions on each local uniformizing neigh-
borhood U,. Finally, there is the canonical orbisheaf of a
complex orbifold: On a complex orbifold O of complex
dimension n, we denote by Q¥ the orbisheaf of holomor-
phic differential k forms on O. This is the orbisheaf
constructed from the collection of ordinary canonical
sheaves Q’lij on each orbifold uniformizing neighborhood

U,. @k is a locally free orbisheaf of rank (%).

Definition A.33 (Canonical orbisheaf). The canonical
orbisheaf of a complex orbifold O of complex dimension n
is the orbisheaf Q.

6. Orbifold metrics

In this section, we delve into the examination of metrics
on orbifolds. It is clear that, for each U; on (X, U), this
metric should be defined as a I';-invariant metric.

Definition A.34 (Hermitian orbifold metrics). A
Hermitian metric, h, on a complex orbifold O = (X, U)
can be characterized as a family of I',-invariant (local)
Hermitian metrics ﬁg« defined on each neighborhood U,
such that the change of charts are Hermitian isometries.
A complex orbifold with a Hermitian metric is called a
Hermitian orbifold.

Remark A.26. A slight modification of the usual partition
of unity arguments assures us that every complex orbifold
admits a Hermitian metric (see [185] for more details).

Remark A.27. There is a beautiful connection between
the preceding discussion and the geometry of the situation
which is provided by the Gauss-Bonnet theorem: Consider
a good compact orbifold Riemann surface O which is
expressed as [X/I] where Xe{C,C,H} and T <
Isom™(X) is discrete group. There exists a canonical
constant curvature Hermitian metric on X which induces
a Hermitian metric of constant curvature on O. O has a
well-defined area A(O) which has the same naturality
property under finite coverings as the Euler number, i.e.,
if O is an orbifold covering of O of degree d, then
A(O) = d-A(O). Hence, we can the use the fact that O
is finitely covered by some Riemann surface and apply the
usual Gauss-Bonnet theorem to this Riemann surface. In
particular, if O is [C/T7], we deduce that A(O) = 2zy(0)
and if O is [H/T], we deduce that A(O) = —2zy(O).

More generally, one can define Hermitian metric on
every holomorphic V-bundle.

Definition A.35 (Hermitian metrics on holomorphic
V-bundles). Let O = (Xy,U) be a complex orbifold and
o, . € = O aholomorphic vector V-bundle. A Hermitian
orbifold metric h on & is a collection of local T',-invariant
Hermitian metrics 711;“ on each local holomorphic vector
bundle £, — U,, such that all embeddings are Hermitian
isometries.

Finally, let £ - O be a holomorphic vector V-bundle
endowed with a Hermitian metric h. A Hermitian con-
nection V on & is defined to be a collection {V,} of
I",-equivariant Hermitian connections supported on each
local uniformizing neighborhood U, such that V,s are
compatible with changes of charts. Then, the first Chern
class or degree of a V-bundle can be defined using Chern-
Weil theory; notice that the degree of a V-bundle is a
rational number. Sobolev spaces and Hodge theory for
V-bundles follow in the same way.

Let O = (Xy, Z) be an orbifold Riemann surface. We
say that a Hermitian metric of class co on the underlying
Riemann surface X, is compatible with the branch divisor
2 = > (1 = 1/m;)x; if in a holomorphic local coordinate
system centered at x; the metric is of the form
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4]dw|?

= - - 2
cone m2|lb|2—2/m(l_|w|2/m)

dw|?
d82 — |duw]
cusp — (Jw] log [wl)

FIG.9. Rotation symmetric coordinates. Model cusp, C, ., and model cone, C,, ., are shown in e neighborhoods of the parabolic and
elliptic fixed points (i.e., at height € in rs coordinates w, Ww). The hyperbolic metrics, ds?‘;usp and ds2,,., in rotation symmetric coordinates,
w and W, are also shown in neighborhoods of cusps and cones, respectively.

(p(u)/|u>=2/m)|dul* for m; # oo, whereas it is of the form
p(u)/|u|*log?(|u|=2))|du|? if m; = oco. Here, p is continu-
ous at the marked points and positive. The cone angle is
27 /m;, including the complete case with angle zero. Let Ky
be the canonical divisor of X,; the orbifold Riemann
surface is called stable, if the degree of the divisor Ky + &
is positive. In this case, by a result of McOwen [76]
and Troyanov [102,186], there exists a unique conical
metric dsﬁyp(g) on X in the given conformal class, which
has constant curvature —1 and prescribed cone angles.
Moreover, Vol(Xo,ds;,(2))/n = deg(Kx + ) =
—x(0), where by definition y(0) = y(Xy) — deg(2) is
the Euler characteristic of the Riemann orbisurface
0 - (Xo, 9)

a. Hyperbolic metric on Riemann orbisurfaces

The Poincaré metric on H,

(A30)

is the unique (up to multiplicative constant) Riemannian

metric that is invariant under PSL(2, R), and descends to a

Riemannian metric on O = [H/I']. As a metric on O, it has

singularities at the elliptic and parabolic fixed points. One

can describe the local geometry of a hyperbolic cusp and a

hyperbolic cone using a distinguished holomorphic coor-

dinate w [called rotationally symmetric (rs) by Wolpert
[13,187]] that is unique up to a constant of modulus 1:

(1) The model cusp: Let Cy, denote an infinite (non-

compact) cusp.’ '® A fundamental domain for C, in

the H is given by the set {z€H|0 < Rez < 1} and

by identifying the boundary points Rez = 0 with

Rez = 1—i.e., Cy, & S' x R*. The isotropy group

that corresponds to the above fundamental domain

consists of Z acting by addition. Let C. ., the

hyperbolic cusp with apex at infinity and horocycle

at height ¢, denote the submanifold of C,, obtained

18Gee Lemma 2.1.1 of [188].

(i)

046018-93

by restricting the previous fundamental domain to
Imz > e—i.e., Co = S! X [¢, 0). This fundamen-
tal domain can be endowed with the Poincaré metric,

dz|?
dstp = A%
Scusp (Imz)z

(A31)

Observe that this is a complete metric of Gaussian
curvature —1 and finite volume, Vol(C,,.) = e.

The hyperbolic cusp Cy . can equivalently be
presented as a Riemann surface with boundary,
parametrized by the complex coordinate w = e/%%,
valued in the punctured disk D*(0,e>). The
hyperbolic metric can then be written as

5 |dw]|?
B = utogher A

The coordinate w is uniquely determined by this
condition, up to a factor of modulus 1. Following
[13,187], we will call w an rs coordinate in a
neighborhood of a parabolic fixed point (see Fig. 9).
The model cone: For a given positive integer m, let
C,, denote the infinite hyperbolic cone of angle
2r/ m.'""’ One can realize C, as a half-infinite
cylinder S! x R*, equipped with the constant cur-
vature —1 metric,

dsZe = 2n 2—|dz|2
cone m ) sinh[2](32Imz)’

In contrast to the cusp case, this metric is not
complete. A suitable change of variables provides
a parametrization of the hyperbolic cone by C,, =
(0, 00) x (0, 27] with coordinates (p, 8). The metric
in this coordinate becomes

(A33)

ds2e = dp? + m~2sinh[2](p)d6?, (A34)

19Gee Sec. 2 of [189].
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having volume form

*1 = m~!sinh(p)dp A d6. (A35)
A fundamental domain for C,, in the hyperbolic
unit disk D is provided by a sector with a vertex
at the origin and with angle 27z/m—i.e.,
{up €D|0 < arg(up) < 22}. The hyperbolic metric
on C,, is the metric induced onto the fundamental
domain (viewed as a subset of the D endowed
with its complete hyperbolic metric). The isotropy
group which corresponds to this fundamental do-
main is the group Z,, consisting of the numbers
exp(\/—_127z:j/m) for j=1,2,...,m acting by
multiplication. As before, let the hyperbolic cone
of angle 27/m and a boundary at height €, C,, . =
S! x [e,00) be the submanifold of C, obtained
by restricting the (p,6) coordinate to 0 <p <
cosh[—1](1 +em/2x). A fundamental domain for
Cpn.c in the unit disk model is obtained by adding the

restriction that |u| < \/em/(4x + em). An elemen-

tary calculation shows that the volume of this
manifold is finite and is given by vol(C,,.) = €.
Finally, the hyperbolic cone can also be seen as a
Riemann surface with boundary, parametrized by the
complex coordinate w € D*(0, R), such that

4|dw|?
m2|‘;{}|2—2/m(1 _ |W|2/m)2 :

(A36)

2 —
ds cone —

As for the case of the cusp, a coordinate W with this
property is unique up to a factor of modulus 1
and was also called [64] an rs coordinate after
Wolpert [13,187] (see Fig. 9). The parameter R can
be easily obtained by computing and comparing
volumes in different coordinates. In particular, as
em — 0, we have R ~ (em/4x)™/>.

7. Orbifold differential forms and automorphic forms

In this section, we will study differential forms on
hyperbolic Riemann orbisurfaces in more detail (see,
e.g., [16,93,190] for more details). We start by defining
orbifold differential forms on a general complex orbifold as
a collection of invariant differential forms on each local
uniformizing neighborhood.

Definition A.36 (Orbifold differential forms). If O =
(Xo.U) is a complex orbifold with an atlas of analytic
orbifold charts U = {(U,, Ua,Fa,fa)}aeA, we can define
a complex orbifold k-form ¢ on O as a collection of local

The % in Eq. (A35) is the Hodge star, and the notation *1
emphasizes that the volume form is the Hodge dual of the
constant map on the manifold.

I-invariant complex k forms {¢g"},c, defined on each

local uniformizing neighborhood U, such that every (;{ is
preserved by all the change of charts. We say that the
complex orbifold k form ¢ is bigraded of type (p, q), with
k= p+gq, if ¢ is an invariant section of the V-bundle
NPT 0 = (\PT7,0) A (N\1T,0). We will denote
the vector space of all such orbifold (p,q) forms on O
by EP4(0).

Remark A.28. Integration theory also goes through: Let
(U,,U,.T,,f,) €U be an orbifold chart and let ¢ be an
orbifold differential from compactly supported on V C X.
The characterization of ¢ as a collection of local
I,-invariant differential forms {¢y°} that are supported
on each U,, enables us to define the integration of ¢

over V as
1 o
¢ = / ¢llus
// =y #, 7' (U,nV)

where we have used partitions of unity to write the integral
over V as a sum of integrals over V. n U,. So, all of the
standard integration techniques, such as Stokes’ theorem,
are equally valid on orbifolds.

Now, consider a hyperbolic orbifold Riemann surface O
and let K, (# Kyx) denote its holomorphic cotangent
V-bundle (or its orbifold canonical bundle). For any
k,l€Z, an orbifold (k,[) differential on O is defined as
an element of A*(0):=T(0,K% ® K,)—the vector
space of smooth global sections of line V-bundle
K% ® KL."”' For any pair of non-negative integers p
and ¢, there exists an isomorphism between the space
Er4(0,K% ® K)) of orbifold differential forms of type
(p. q) with coefficients in the line V-bundle K% ® K', and
the complex vector space A%°(0, Klgp ® I_(IOM).

Every hyperbolic Riemann orbisurface O can be realized
as an orbifold quotient of the upper half-plane H =
{z€C|lmz > 0} by a finite discrete subgroup group I
of its (orientation preserving) isometries Isom™(H) =
PSL(2,R), called a Fuchsian group. Then, using the
realization of O as [H/I], one can identify every orbifold
(k,1) differential with a I'-automorphic form of weight
(2k,21) on H: An automorphic form of weight (2k, 21) for
I' is a I'-invariant global section of the line bundle
Kl ® Ky'. We will denote the space of I'-automorphic
forms of weight (2k, 21) by A*!(H,T'); an arbitrary element
¢ of AX!(H,T) has the form ¢ = ¢(z)dz*dz!, where ¢(z)
transforms according to the rule ¢(yz2)y'(2)*/(z)' = ¢(2)
for all yeI and z € H.

(A37)

"*'Whenever k or [ are negative, we understand K% = (T0)7*

and K, := (TO)™".
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FIG. 10. Geometric structure on manifolds. A geometric (G, X)
structure on a complex manifold M is given by an atlas of
holomorphic charts such that open neighborhoods are biholo-
morphic to open subsets of X and transition maps are given by
restrictions of elements of G.

APPENDIX B: GEOMETRIC STRUCTURES
ON ORBIFOLDS

1. Basic definitions and some theorems

In [191] Ehresmann studied what he called locally
homogeneous spaces. More precisely, a locally homo-
geneous geometry on a manifold M gives a (G, X) structure
on M in the following sense described by Ehresmann. Let
X be a (homogeneous) complex manifold—called the
model space—and let G be a group acting effectively,
transitively, and holomorphically on X. A holomorphic
(G.X) structure on a complex manifold M is given
by an open cover {U,},c4 of M with holomorphic
charts f,: U, > X such that the transition maps
faofy': f,(U.NU,) — §,(U, N U,) are given (on each
connected component) by the restriction of an element
g..» € G (see Fig. 10). Note that any geometric feature of X
which is invariant by the symmetry group G has an intrinsic
meaning on the manifold M equipped with a (G, X)
structure.

There exists a useful globalization of the coordinate
charts of a geometric structure in terms of the universal
covering space and the fundamental group. The (G, X)-
coordinate atlas {(U,,f,)},c4 is replaced by a universal
covering space M with its group of deck transformations
7y (M): The coordinate charts f,: U, — X are replaced by
a globally defined map dev: M — X called a developing
map (see Fig. 11). In addition, the developing map is
equivariant with respect to the actions of z;(M):

devoy = hol(y) o dev, (B1)
where yenm (M) is a deck transformation and hol:
7 (M) - G is called a holonomy representation—i.e.,
the coordinate changes are replaced by the holonomy
homomorphism. The resulting developing pair (dev, hol)
is unique up to composition/conjugation by elements in G,
i.e., up to (dev,hol(-)) = (godev, ghol(-)g~!) transforma-
tions. This determines the structure. In this section, we will
introduce (G, X) structures on orbifolds. Simply put, a
(G,X) orbifold is locally modeled on X modulo finite

FIG. 11.

Development pair.

subgroups of G. We will start by giving a definition of
geometric structures on orbifolds based on atlases of charts,
as well as using developing maps from the universal
orbifold covering. Then, we will introduce and study the
deformation spaces of these orbifold (G, X) structures in
analogy with Goldman’s work [192—194] for the manifold
case. Some of the most important examples of these
geometric structures on orbifolds are provided by projec-
tive structures as well as hyperbolic, Euclidean, or spherical
structures; we will end this section by studying these
specific examples and the relation between them. See
[195,196] for more on orbifold geometric structures.

In order to give a precise definition of an orbifold
geometric structure modeled by the pair (G, X), we need
to introduce the notion of (holomorphic) orbifold (G, X)
charts: Let O = (X,,U) be a complex orbifold and let
U C X, be an open subset of X, with a local model (U, T).
Then, a holomorphic (G,X) chart on U is defined to be
given by a pair (f, ), where f: U < X gives a holomor-
phic embedding of local uniformizing neighborhood U into
the model space X (equivalently, f: U -V C X is a
holomorphic isomorphism onto an open subset of X)
and is considered as a local X coordinate on V while
€: I' - G is an injective group homomorphism (equiv-
alently, a group isomorphism between the local uniformiz-
ing group I" and a finite subgroup of G).

Definition B.1 [Orbifold (G,X) structures]. Let U :=
{(U,,U,,Ty,f,)},ca denote an orbifold atlas that induces
an orbifold structure on X,. A holomorphic orbifold
(G,X) atlas on X, that is compatible with orbifold atlas
U is given by a collection of holomorphic (G, X) charts
{(f.: U, = X,6,: T, = G)},ea such that holomorphic
embeddings 7,,: U, = U, are realized as elements
2,5 €G and monomorphisms Y,,: I'; < I', are given
by conjugations y > g, 0yog ) for all ye€Tl,. The
datum of a holomorphic orbifold (G, X) atlas compatible
with the maximal complex orbifold atlas, U,,, defines a
holomorphic (G, X) structure on complex orbifold
O = (Xp,Upnay)- If a complex orbifold O admits a
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holomorphic (G, X) structure, one can always choose a
local model (U,,T,) for each open set U, C X, where
U, c XandT', < G;notice that if we require the collection
{(U, cX,T, <G)} to be a set of local models for a
complex orbifold, the space X should itself admit a
complex structure and the action of group G on X should
be given by holomorphic automorphisms. When there is no
risk of confusion, we will say that a maximal orbifold atlas
Upax = {(U,, U, cX,T, <G,f,)},cs induces a com-
plex orbifold (G, X) structure on X .

Once again, the definition of complex orbifold (G, X)
structures simplifies considerably for the case of Riemann
orbisurfaces (orbifold Riemann surfaces) due to the
restricted nature of singular points in one complex
dimension.

Definition B.2 [Complex (G, X) structures on Riemann
orbisurfaces]. Let O = (X, Z) be a Riemann orbisurface.
A complex (G, X) structure on the Riemann orbisurface O
is given by a (G, X) structure on its underlying Riemann
surface X such that the complex structure that is induced
on X, by the (G, X) structure coincides with the already
existent complex structure on X,.

A holomorphic orbifold (G,X) map f: O - O' is a

holomorphic orbifold map OLO’ such that its holomorphic
local lift at each point x € X, is given by a pair of maps

between local models (U,,T,) Vefd (T, I, )> where the

group homomorphism f,: T, — F}.O ) is induced by
conjugation y, > g, 07, °g,4 for all y, €T, and holo-
morphic f,-equivariant map f,: U, — U, is given by a
restriction of g€ G. Note that if O is a complex orbifold
and f: O — O’ is a holomorphic orbifold map to another
complex orbifold O’ equipped with a (holomorphic) (G, X)
structure ¢, we can pull back the (G, X) structure &’ on 0’
to another (G,X) structure f*(®’) on O such that f
becomes a (G, X) map. In particular, a complex (G, X)
structure on an orbifold O induces a complex (G,X)
structure on its covering orbifolds through a pullback by
the covering map.

Theorem B.1 (Thurston). When G is a group of biholo-
morphisms of a complex manifold X, then every complex
(G, X) orbifold is good.

Remark B.1.If G is a subgroup of a linear group, then O
is very good by Selberg’s lemma provided that O has a
finitely generated fundamental group. In particular, all
geometric orbifold Riemann surfaces are very good—
i.e., finitely covered by a manifold.

Next, we note that the idea of developing map extends to
orbifolds with complex geometric structures.

Theorem B.2. Let O be a (G, X) orbifold, where (G, X)
is a complex analytic geometry. Then, there exists a
developing map

dev: O —» X

defined on the universal covering O and a holonomy
representation hol: z;(0O) — G such that

devoy = hol(y) odev
for any deck transformation y € 7, (O).

2. Hierarchy of geometric structures

Often one geometric structure contains or refines another
geometry as follows. Suppose that G and G’ act transitively
on X and X/, respectively, and X/ X’ is a local biholo-
morphism which is equivariant with respect to a homomor-
phism G G'—i.e., for each g€ G, the following diagram

x L x
gl lF(g) (B2)
f

X — X

commutes. Then (by composition with f and F) every
(G, X) structure determines a (G’, X’) structure. There are
many important examples of this correspondence, most of
which occur when f is an embedding. For example, when f
is the identity map and G C G’ is a subgroup preserving
some extra structure on X = X/, then every (G, X) structure
is a fortiori an (G', X') structure. A more important example
for us is the relation between projective and hyperbolic
structures: In this case the map f: H < CP' will be an
embedding and PSL(2, R) can be viewed as the subgroup of
PSL(2,C) which leaves the subspace H C CP! invariant.
Therefore, every hyperbolic structure determines a projective
structure.

3. Orbifold CP! structure and projective connections

Let O = (X, %) be a hyperbolic orbifold Riemann
surface with signature (g;my,...,m, ;n,). A CP' struc-
ture or complex projective structure on the Riemann
orbisurface O is an orbifold (G, X) structure on its under-
lying Riemann surface X, with X =CP! and G =
PSL(2, C) such that the complex structure on X, induced
by the CP! structure coincides with the given complex
structure on this Riemann surface (see Appendix B 1 for
more details). Similar to other orbifold (G, X) structures, a
CP!' structure on O can be equivalently described as a
developing pair (dev,hol) where dev: O — CP! is the
developing map defined on the universal cover O =~ H
and hol:z;(0) — PSL(2,C) is the holonomy or mono-
dromy representation such that developing map is a hol-
equivariant immersion.

Since any hyperbolic Riemann orbisurface is develop-
able, there exists a finite Galois covering

w: Y - Xp" (B3)
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such that w is unramified over Xo¢ = X9\ Sing, (0), and
for each x; € Sing, (O), the order of ramification at every
point of w‘l(x,-) is v(x;) = my—i.e., w induces a hol-
omorphic orbifold covering map ¥ — O. Let us, for the
sake of simplicity, take O to be a compact Riemann
orbisurface so that Y is a closed Riemann surface of genus
§; the case with punctures follows from the formal limit
m — 0. Let H be the group of deck transformations or the
Galois group for w such that O = [Y/H|; we have
H C Aut(Y), where Aut(Y) denotes the group of holomor-
phic automorphisms of Y. Now, let us fix a projective
structure P on the closed Riemann surface Y and consider
the convex combination

1
PH = h*P

#HheH

(B4)

where h*P denotes the pullback of CP' structure P by
holomorphic automorphism h, #H is the order of H, and the
average is defined using the convex structure of the space
P(Y) of all projective structures on ¥ compatible with its
complex structure. Note that this projective structure P¥ on
Y is clearly left invariant by the action of H on Y.

We will now construct an orbifold projective structure on
Xo using PH (see [84,197]): Let {(Ua,fa)}aeA be a
maximal CP' atlas on Y, where open subsets U, of Y
left invariant by the action of H on Y and CP'-coordinate
functions f,: U, — V, c CP! are holomorphic isomor-
phisms compatible with the projective structure P,
Consider the ramified coverings
V,>U,~U,/H, C X,. (B5)

wof,!

Then, the collection of ramified coverings {@of,'},c4
combines together to define an orbifold projective structure
on X,,. Indeed, that they define a CP! structure on O is an
immediate consequence of the facts that P is left invariant
by the action on Y of the Galois group H and w is ramified
exactly over Sing(O) with m; = v(x;) as the order of
ramification over each x; € Sing(0). Note that one conse-
quence of this construction is that the space of all CP!
structures on O compatible with its complex structure,
P(0), is the fixed point locus for the action of H on
P(Y)—i.e., P(O) = PH(Y) C P(Y).

Itis well known that if { (T}, )}, is a CP' atlas on a
compact Riemann surface Y that defines a complex
projective structure PEP(Y) and {(U,,ii,: U, —C)},ca
is any atlas of holomorphic charts on this Riemann surface,
the collection of holomorphic functions {Sch(f',;i,)},
defined on overlaps U’b n U,, give what is known as a
“(holomorphic) projective connection” on Y. Let
{(U,,ii,)},ca be any complex-analytic atlas on Y with

local coordinates ii,: U, - C and transition functions
i, = gmpoil, on U,nU, A holomorphic projective
connection R on Y is in general defined as a collection
{#4} 44 of holomorphic functions 7, supported on U, that
satisfy
rb - 7' oguh( ) + SCh(gab’ uh) (B6)
on every intersection U, N U,,. One can conversely show
that any projective connection R on Y defines a CP!
structure P € P(Y) as follows (see, e.g., Proposition 3.3
of [198]): Let R = {¥,},c4 be a holomorphic projective
connection with respect to complex-analytic atlas
{(U,,it,)}4ca- On each open subset U,, let {, be any
solution of the equation
SCh(Ca; ﬁa) =T, (B7)
The holomorphic functions ¢, have nowhere vanishing
derivatives, so that we can assume they are injective up to
shrinking U,s. Then, the new coordinates {¢,0il,},ca
define the same complex structure on Y. In addition,
the Schwarzian derivatives Sch((, o ii,; {0 i) can easily
be shown to vanish by using Sch(fog;z)=
Sch(f;9(2))(¢)*> + Sch(g;z).  This  implies  that
{(U,,8401014)}yeq is an atlas of complex projective
structure. A different choice of atlas or a different collection
of solutions {, would define the same complex projective
structure. Therefore, one concludes that the set of holo-
morphic projective connections R on a Riemann surface Y
is in bijection with the set of CP' structures on Y.
Similar to the way that we have constructed orbifold CP!
structures on X, using H-invariant projective structures P
on the covering Riemann surface Y, we can try to construct
projective connections on X, by starting from H-invariant
projective connections on Y. More concretely, let
{(U,,i1,)},ea be a complex-analytic atlas on Y and let
R be a holomorphic projective connection corresponding
to the H-invariant CP' structure P € PH(Y). The pro-
jective connection R” is given by a collection {77}, 4 of
holomorphlc functions 7 supported on each open subset
U, that are invariant under the action of Galois groups
H, C H of restrictions | : v,-U,=2U,/H, C X,
and satisfy (B6) on every overlap U, n U,. Let U, be an
open subset containing only one ramification point of the
covering w: Y — X, with multiplicity m, such that
H, = Gal(w|y ) = Z,, . If 7 is one of the holomorphic
functions defining R that is supported on U, and is left
invariant by the Galois group Z,, for w|U U,- U, =
U,/ Z,, CXp, then i descends, by the map w|l~jn, to a
meromorphic function with at most a pole of order 2 at
singular point x, € U,. In other words, 77 = (@l ) Tas
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where r, is a meromorphic function on U, with pole only at
x, of order at most 2. In fact, if x, € U,, is a singular point
of order m, and u,(x,) = 0, the behavior of r, near this
singularity is given by

1—1/m?

ra(uta) =
a a utzl

+(u ) asu, 0. (BS)
If m, # oo, the monodromy in PSL(2,C) around this
regular singularity will be given by multiplication with
era while if m, = oo, the monodromy around this singu-
larity will be given by a nontrivial parabolic element. The
collection {r,},c4 of such meromorphic functions will
define a quasibounded projective connection R on the
underlying Riemann surface X which is in bijection with
orbifold CP! structure on this surface (see e.g. [199-201]
for more details). A quasibounded projective connection R
naturally determines a second-order linear differential
equation on the Riemann surface X, the Fuchsian differ-
ential equation

dy, 1
a | - -0,
du? + 7Y

(B9)

where {Y,},c4 is understood and as a multivalued mero-
morphic differential of order —1/2 on X,,.

Last but not least, the difference between two projective
connections is a meromorphic quadratic differential with
only simple poles—i.e., a collection {g,},c, of mero-
morphic functions on each open subset U, € X, with the
transformation law

4y = 4a° gab(dah)z’ (BIO)
|

(i) Asymptotic form of @(w) near cusps:

(W) = {—210g|w—wi|—2log|logw—wi||+(’)(1)(w,~¢oo),
v —2log |w| — 2loglog |w| + O(1),

(i) Asymptotic form of @(w) near cones:

o(w) = { =2(1 =) loghw —wil + O(1)  (wi # 0). w—w,

One can also derive these asymptotics by studying the
mapping J, called Klein’s Hauptmodule, as a meromorphic
function on H which is automorphic with respect to the
Fuchsian group I'—i.e.,

forzeéH and Vyerl.

J(rz) = J(z) (C4)

For the sake of simplicity, let us assume that the Fuchsian
group I" has genus 0; we can choose a standard system of n,,

and the additional condition that g,(u,) = (Ju,|™") as
u, — 0, if x,€U, is a singular point and u,(x,) = 0.
Conversely, we can add a meromorphic quadratic differ-
ential to a given quasibounded projective connection R to
obtain a new quasibounded projective connection. Since we
know that each Riemann orbisurface has at least one CP!
structure, the one given by Poincaré-Koebe uniformization,
we will have Proposition 2.1 (see [84]).

APPENDIX C: ASYMPTOTICS NEAR ELLIPTIC
AND PARABOLIC FIXED POINTS

In this Appendix, we will sketch the derivation of the
asymptotics of the Liouville field ¢ in a neighborhood of
each of the parabolic and elliptic points (see Sec. 2 of [64]
as well as the proof of lemma 2 in [5] and lemma 4 in [53]).
One of the remarkable corollaries of the uniformization
theorem is that the orbifold Riemann surface O™¢ has a
unique metric of constant curvature —1 compatible with
the complex structure. It is the projection on O of the
Poincaré metric (Imz)~2|dz|> on H and has the form
ds? = ¢?™)|dw|>. The condition that the curvature is
constant and equal to —1 means that the function ¢ satisfies
the Liouville’s equation on O"¢,

1
0,059 = Ee‘/’. (C1)
The two asymptotic forms of metric (A32) and (A36) in an
€ neighborhood of cusps and cones enable us to find the
asymptotic form of the Liouville field ¢ near these para-
bolic and elliptic fixed points:

w— w,
(€2)
w — o0;
(C3)
|
elliptic generators 7, ..., 7, of orders m,...,m, and n,

parabolic generators i, ...,k, (n,+n, =n) satisfying
the single relation 7, ---7, x| Ky, = L. Let zy,...,2,, € ®
and z, 41, ....2, ER U {oo} be the fixed points of elliptic
and parabolic generators, respectively, which project into
Wisooos Wy s Wy s e Wy eC. We will assume that
2,2 =0,z,01 =1, and z, = oo, which can always be
achieved by conjugation with PSL(2,R). The elements
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Ty, ...,T,, and Ky .ok, are then represented in their

matrix form as

<Zi -4z (4= I)Zizi)
T, = s

1-— /1,‘ /1,'2,‘ - Z,’
2
P < V0t j2netj  =OntjZn 4 )
j — B
On,+j L =64 20,4,

(C5)

1 s,
Kp, = >
r 0 1

with i=1,...,n, and jzl,...,np—l. In the above
2z 2ri

equation, 4;,...,4, =em,...,e™ are called the multi-
pliers of 7y, ...,7, and §, ,y,...,5, ER are called rrans-
lation lengths of ky, cos Kp, - Therefore, according to the
Eq. (C4) and using (C5), it is easy to see that in a
neighborhood of each elliptic point z;, i=1,...,n,
with ramification index m;, the Hauptmodule can be
expanded as

© . — 5.\ km;
@) =w+ 3 S0 <_Z Zt) ,
k=1

Z—Zi

(Co)

J(giz) =

The hyperbolic metric e?*)|dw|*> on O is given by

-1 w 112
o?w) — 70'; J‘(l()w |))2, (C10)

and satisfies the Liouville’s equation (78). In order to find
the asymptotic behavior of the Liouville field ¢(w) near
branch points and cusps, we need to study the multivalued
analytic function J=': O — H which is a locally univalent
linearly polymorphic function'* on O. Let us first calculate

- 1\ 1 J(i>
Up=J~"(w) = <T)> (w=wyi ———2—
J nm: i

Then, by using the definitions Up, we have

I (0) = 5y 29Tz (2

J\

and in a neighborhood of each of the parabolic points z;,
i=n,+1,....,n—1:

J(z) = w; + ijf(:) exp <_|§7|[(z\/ik)> 7

k=1

Similarly, in a neighborhood of the parabolic point z,, = oo,
the function J(z) can be expanded as

J@) =30 A e (c8)

k=1

()

In Egs. (C6), (C7), and (C8), the coefficients ng), J(_"]) #0
because the mapping J is univalent in any fundamental
domain for I If we choose elements Snytjr-+16n €
PSL(2,R) such that ¢, ,;(c0) = z, ., and

B 1 +1
g”e+jKjgne+j = 0 1 ’

for j =1,...,n,, we can also rewrite (C7) and (C8) in the
form

wt Y2 I exp(2av=Tkz), i=n,+ L.n—1,
S IV exp(22v/=Tkz).

i =n.

the expansion of J~! (w) near elliptic fixed points. To do so,
we will rewrite the expansion (C6) as

[es]

J=wi+ > T upk,
k=1

(C11)

where i = 1,...,n, and Up = (z — z;)/(z — Z;) is the coor-
dinate on D instead of H. Formally, by inverting the above
power series, we get

o =2m VI L (N 3m,
ik Z2mid s () (43my)

—w) 4 (C12)

i)\4+-L (
2mi (7))

(0
(C13)

'22] inearly polymorphic means that the branches of this function are connected by linear fractional transformations in T".
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We can use the same method to find the expansion of J~!
near cusps as well. Near parabolic points by rewriting the
equations (C7) and (C8) as a power series in ij, =

exp(— ‘(szj’l’(\z/_‘_;j)) and 1, = exp(”“(g_'z), we get

J {W]—i_zzo]‘]/((j)lf’ j:ne—i—l"-wn—l,
)= .
tho:—l‘]](j)lf, j: n.

As before, we can formally invert the above power series
G=n,+1,....n-1)

()
1 J3 2
=) =)
/7 @)
N2 _ 40G) ()
2(J -J7J
+ (3) A 51 3 (w w4 o wow,,
()
n) (n) y(n) (n) (¢ y(n)\2 _ 4(n) 4(n)
J JJ J J -JJ
ln:_1+_\l/v20+_l((0)1,v3 11)+ C wooo

and again using the definitions ¢4, and ¢,, to see
G=n,+1,....,n-1)

%)

@)

Let us identify the accessory parameters as (see Lemma 1 of [5] and Lemma 3 of [53])

hiJy)

c;=-— ’022, i=1,....n,,
(V)
(i)
J

¢, =- 2_2, i=n,+1,....n—1,
@

anJ(()i), 1=n,

(N2 _ 40) 40) 1
J ST —

(n) (n) 10 7(m)\2 _ 4(n) 5(n)
19, I Jo& U
2mv/ -1 IOg w + w + w2 + » W 0o

where h;/2=(1—1/m?)/2 is the conformal weight of the twist operators corresponding to branch points [85].
Accordingly, we can summarize the asymptotic behavior of the J~!(w) near conical singularities and cusps (i = 1, ..., n,,

j=n,+1,....n—-1)

€1
zi +2v—1Imz; (W_.w’)’”f (1 — i (w—w;) + - -), w = w;,

7

— w—w; -1
J7H(w) = Zj—z”“aﬁ—l(log(ﬁ)—cj(w—wj)+~--> , W= w;

‘(S”‘ ‘I<—"1) Cn
zﬂm(log(v)ﬂL;ﬂL"')’ w = 00.

(C14)

Finally, we are ready to derive the asymptotic behavior of the Liouville filed ¢(w) and its derivatives using Eq. (C10) and

the above expansion near the cones and cusps.
Lemma C.1. The function ¢(w) has the following properties:
(1) %@ =3 (0,9)* = Sch(J™";w).
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2) Fori=1,...,n,and j=n,+1,...,n—1,
—2(1 ——) log [w — w;| +log4u I ‘o) wow
p(w) = —2log|w —w,| —210g‘10g |+ o(1) W= W,
—2log |w| — 2loglog {V + O(w|™), w = 0.
@3) Fori=1,...,n,and j=n,+1,...,n—1,
a0
I = lim e?™)|w — w,[* 7
m; wow;
; 2e"5"
P = lim exp(log\w—wﬂ2 —7>,
W=W; |W—Wj|
) _ow)
7P = lim exp <10g |w|? —L)
iz v
4) Fori=1,...,n,and j=n,+1,...,n -1,
—ime et o(l) W= w;,
0,p(w) = —W+W1< (log e ) ) +c;+0(1) wow,
1 A
_;<1—|—< @) >— +O(‘W‘2)a w — 0.
) Fori=1,...,n,and j=n,+1,...,n—1,
1
G T W= Wi
1 1 1 .
Row) = { Tl TGt T g T W T
] l
2¢, W = oo.

Proof. Parts 2-5 follow from (C10) and (C14). Also,
the part 1 follows from parts 2-5 and the definition of
Schwarzian derivative in (16). [

Remark C.1. In this paper, we sometimes need to study
the behavior of objects in the case when the point at the
infinity is a conical point. So it is good to clear things out in
that case as well. In this remark, we assume that the point
w, is a conical point at infinity. Instead of (C6) we have

= > 5 ugk.

k=—1

By inverting this expansion, we arrive at

1 1 1
+ =+ — + i R
wh D ow?r T ow?log \JE‘T)\ w?log? \J(T)\ ’
—1 _

my

1
<J(_”])> mp JE)”)
+ - 7

a1 /1 1\ -
o= ()41 () *
w m, w

which, according to the Lemma 3 of [53], it implies that in
the case of the conical point at the infinity, the accessory
parameter becomes

cp = h,,Jé”), (C15)
with i, = 1 — 1/m2. The next point of interest is part 3 of

Lemma C.1 which implies that for conical points w; that are
not at infinity, we have
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e o 4 o2
h, = |J<1’>|mf = — lim e )|y — w,| T,
m; wow

This expression is also subject to a slight change for h;
when w; — co. Considering Up = (z —z;)/(z —Z;) and
J7H(w) =z to write Uy = (J7'(w) —z;)/(z — Z;) implies

that
e (1
J_I(W) =Z; + 2 —IIle- ((J(_nl)> <—)
w

e
(J(_rll))mn J(()n) 1 1+m—ln
P () ),

m, w

Now from (C10) and the equation above we have

w4 Gy (12
e@():m_%l(J_l)n<;> _|_

Accordingly,

, 2
h, = [J% [ = n;,, lim e |wP ) (C16)

1. Quadratic and Beltrami differentials

In this Appendix, we will study the behavior of quadratic
differentials, i.e., cusp forms of weight 4, and harmonic
Beltrami differentials, automorphic forms of weight
(-2, 2), near elliptic and parabolic fixed points and connect
them with functions on the Riemann orbisurface O (see
[101,202] for more details). Let us begin by studying the
behavior of quadratic differential ¢(z) € H*°(H,T) as
z — oo: Parabolic generator K, €D with the fixed point

Z, = oo has the following normal form [see (C5)]:
Kn],(z) =z+ 6}1’

ie., it is a translation by §&,. Therefore, the equation

q(x, 2)K), (2)* = q(z) satisfied by the quadratic differ-

entlal g(z) can be translated as
q(z+38,) = q(z). (C17)

It is then easy to verify that the following Fourier series

expansion,
I 2nv/—1kz
a2) =>4 )CXP<T>’

k=1

(C18)

satisfies Eq. (C17) and therefore represents the behavior of
q(z) near z,, = oo. In order to study the behavior of g(z)

near the fixed points of other parabolic generators

Kisooes Ky 1, WE note that the Mdbius transformation
1
PSL(2, R)Bg,1€+j(z) :_71 J: la- anp_l’
Z Zn(,Jrj
sends that fixed point to oo and we have

oy KiGn,+7(2) = 2+ 8, 4. As a result, the normal form
of the parabolic generators «; for j=1,...,
given by

n,—11s

! ! +6
- netjo
T netj LT Lnetj

k;(2)
and we have that ¢(z) satisfies

q(z (Z Zn +J) ) 1
nﬁ_l 1+ 5}1 +j( Zn,+j) (1 + 5n€+j(z - Zne+j))4

=q(2),

near parabolic points z, 41, ...,Z,-1. Therefore, as z —> z;
the quadratic differential has the following Fourier series
expansion:

9z z—z)“zqk x (

i=n,+1,...,n—1.

2nrk>
16;](z = z;)

(C19)

To study the behavior of differentials near the elliptic fixed
points zj, ..., z,,, it is easier to first use the unit disk model
of the hyperbolic plane. Let 7; €I be an elliptic generator
of order m; with fixed points z; € H and z; € H. Then, the
Mobius transformation,

PSL(2,

R)S¢(z) =—, i=1,...n, (C20)

sends the points (z;,7;) to (0, 00) and therefore ¢;'7,¢;(z)
fixes both 0 and co and should be given by ¢; '7,¢;(z) = A;z.
For elliptic generators, the multiplier A; can be determined
to be the m;th primitive root of unity, i.e.,
A; = exp(2z\/—1/m;), via the use of condition 7" = 1.
Therefore, the normal form of the elliptic generators 7; of
order m; is given by

7i(z) = z;
7i(z2) = %

w/17 —Z;

=e ™ i=1,...,n,.

Z— Z,‘
The Mobius transformations (C20) give the standard
isomorphism ¢;: H — Dj; let us denote the coordinate

on D by up=c¢;(z) and the push forward of the
density of Poincaré metric, p(z)=(Imz)™%, by
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p(up) = 4(1 — |up|?)~2. Similarly, if we denote the push forward of ¢(z) € H**(H,T) with g(up)€H>*°(D,T),
it satisfies

q(A:Up)A; = q(up).
It is easy to see that the solution to the above equation has the following power series form in Up:
g(up) = Y q;/ug" as up = 0, (1)
k=1

since 47" = 1. We can also find the pullback of ¢(up) € H*°(D,T') to H>°(H,T) by using g(up)dup? = ¢(z)dz>—i.e.,
q(z) = q(up)(F2)°,

4 Imz ) (n+)) (Z -z )kmi—Z )
Z i=1,...,n,, C22
o) =~ 2 Z S : (€22)
which satisfies the equation

_ —2zi+Zi(hiztzithiz) 7. 4
<—zz,~ +Zi(diz+ 2z + /Iizi)> 5 \ 2= DAz i
i

2(Ahi=1) =z +7% z—z)" = q(z).

We can summarize the behavior of ¢(z) € H>°(H,T") near branch points and cusps as

kmi—2 .
ZImZzL Zk g (ﬁ) m (i=1,...,n,), 7= 7

a(2) = { R ep (- L) (i=no+1an=1) 2oz (€23)
e CXP(M\‘{;—‘]CZ), 7 — .

Using the complex antilinear isomorphism H2°(H,T) = H~"!(H,T") given by ¢(z) - u(z) = p(z)"'q(z),'> we have

m m km;=2 , .
~ APl e g (2)" =1, 2 2,
- (Imz o =(i) 27V =1k - 1 -1 . C24
uE@) = | EE T ep(BRE) (=notln=1). -z, (€24)
(Imz)?>"% 1‘1k exp( z”rkz), 7 — o,

where we have used the fact that z,, ,; = z,,4; €R for j=1,...,n, — 1. The mapping,
q(z) = Q(w) = (goJ")(w) (I~ (w)")%, (C25)
determines a linear isomorphism of spaces H>?(H,T") and H>°(0) and the inverse mapping is given by
O(w) = q(z) = (QoJ)(2)J'(2)*. (C26)

The Petersson inner product in H>°(H, T') can be carried over to H>%(0) by setting (Q;, 0,) S (Q)0JJ?,Q,0JJ"?) for all
Q.. 0, €H*Y(0), so that

(01.05) = / / Q)T (. (c27)

' Equivalently, ¢(up) — #(Up) = p(Up)~'¢(Up) induces the isomorphism H2%(D,T) = H~'1(D,T).
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It follows from Eq. (C23) and (C14) that
o n)
n) 2 k 0, J n o, 1 n 2
S G E)
=1 1, 2r w a1\ w w

i) S (5)
)

LARYS J—n1) 1 |5n|2J(_nl)(2cn6]§n) +g5" ")

R

= o -F—k O(w|™) asw — oo,
and
-4
27y —1 1
Q(W) = <_ |5 | W )
i log(T') —ci(w=w;) +---
1
) 2nv -1k |5| w=w
x;qk exp(— 51 ey log —cilw=w;) +---
< 2mv/-1 -1 )2
o w=w; +o
|6 (w = w;)log? C)
S 2 (i) 1
= —|l|—ql.-—+(’)(|w—wi|_2), (i=n,+1,....n—1) asw—->w;.
47z2J(]l) w—=w;
Similarly, near branch points wy, ...,w, we have

Q(w) = (go I )(w)(T~'(w)')*,

where J™': O — D is the inverse of Klien’s Hauptmodule in the unit disk model of the hyperbolic plane.

equations (C12) and (C21), we get

km;—2

We can summarize the behavior of Q(w) € H>%(0) near conical singularities and punctures as follows:

(i)

m?'](li) 'W—_lw,- + O(l) (l =1, ...,I’le), w— w;,
— 824" )
0(w) = § ~BL4 e Ol 2), (= net Loan = 1), w =,
1
2 ,(n) y(n)
- Ol W oo,
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Finally, using the complex antilinear isomorphism H>%(0) = H~""!(0) given by Q(w) > M(w) = e~*™)Q(w), we have

(i)
1
B

)

47

_(i)
— ‘51"2‘/[‘
Mw) =4 " awd?

(i=n,+1,...,n-1),

_ \5;1\21?(1")7(_”1) _log?|w|
[

S5+ O(|w[log?(wl)

472 [w

_2 :
w=wi"Tm e+ O(w=—w]) (i=1,...

“Jw = willog?|lw — w;| + O(log?|w — w;)

(C30)

Using the definition (86) as well as Eqgs. (C14) and (C24), one can independently check the above asymptotic behaviors

for M(w).
APPENDIX D: LIST OF SYMBOLS IN THE MAIN TEXT
g Genus of a corresponding surface, or rank of a Schottky group
n, Number of elliptic fixed points or branch points
n, Number of parabolic fixed points or punctures
n Number of all marked points, namely n, + n,
m; Orders of the marked points
m n-tuple of all branching indices for an orbifold, i.e. (m, ..., m,)
h;/2 Conformal weights corresponding to the marked points, i.e., 1 — #
NEt Natural numbers with the inclusion of co and omission of 1 [
D Unit disk in C
X Riemann surface without singularities
(0] Orbifold Riemann surface
o Orbifold Riemann surface deformed by u
Xo Underlying Riemann surface of O
X5t Regular locus of O
X0 Compactified underlying Riemann surface
K Kleinian group
r Fuchsian group
™ Fuchsian group deformed by y
z Schottky group
N Smallest normal subgroup of I" containing {a, ...,a,, 7|, ....7, . k], ...,Knp}
(0, x,) Fundamental group of an orbifold based at x,
Z, Cyclic group of order m
Aut, (') Group of proper automorphisms of I'
Inn(T) Group of inner automorphisms
MCG(0) Mapping class group, namely Homeo " (0)/Homeo;;(O)
Mod(T) Teichmiiller modular group of T, i.e., Aut,(I')/Inn(I") = Out™ (")
Homeo™ (0) Group of orientation preserving homeomorphisms of O in the category of orbifolds, which has Homeo:,(0) as its
identity component
Out™(I) Group of outer automorphisms of I' ~ 7 (O)
MCG,(0) Group of pure mapping classes of O
Mod,(I) Group of pure mapping classes of I"
Symm(s;) Symmetric group associated with the stratum of order m;
Symm(s) Product symmetric group Symm(s,) x Symm(S3) X - - - X Symm(S,,)
deck Group of covering or deck transformations
H, First homology group
Q Region of discontinuity of Schottky group X
Q Region of discontinuity with pre-images of cusps subtracted
N ~
O (Q.2)
e Q\Supp(7)
A Limit set of a Kleinian group, i.e. @\Q
F Fundamental domain of a Fuchsian group
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Appendix D (Continued)

SERSEECES!

[

SNNASNR TODDS 9~
X =

g

Sing(0)
Sing,,(0)
Sing, (O)

(%)
3

a2
RS

@x@e@ F@mmN§§N~5<ﬁ~l~\l@3tm

Q@ T <
C§§GQQQ

Fundamental domain of a Schottky group
DnQ

(Dy. 7p) )
Regularized singular fundamental domain of a Schottky group defined by D\ U?_, D¢

An element of a Fuchsian group

An element of a Schottky group

An element of a symmetric group

Homotopy class of loops around a handle

Homotopy class of loops around a hole

Homotopy class of loops around a branch point

Homotopy class of loops around a puncture

Hyperbolic generators of a Fuchsian group

Elliptic generator of a Fuchsian group

Parabolic generator of a Fuchsian group

Generator of a Schottky group

Attracting and repelling fixed points of the loxodromic element L;

Multiplier of the loxodromic element L;

A retrosection of a Riemann surface

One-cocycle associated with an element 7 € Symm(s)

Set of all singular points for an orbifold O

Set of singular points of order m for an orbifold O, i.e., v (m)

Set of singular points of finite order for an orbifold O, i.e., ||z Sing,,(0)

Cardinality of the stratum of singular points of order m € N~

Signature type of an orbifold O, which is the unordered set of cardinalities of all strata, i.e., {S,,},, cq>!

Branching function which assigns to each singular point its corresponding branching order

Marked points on the Riemannian orbifold

Elliptic and parabolic fixed points of a Fuchsian group, respectively

Images of the elliptic and parabolic fixed points of a Fuchsian group, under the projection H — O = [H/T], respectively

Coordinates on the upper half-plane

Global coordinates on Q

Singular points on an orbifold, namely branch points for i =1, ..., n,, and cusps for i =n, +1,...,n

Bers coordinates

Small complex parameter for variation

Small real parameter for regularization

Space of all smooth conformal metrics ¢¥(“®|du|* on X\{x,,...,x,} which have conical singularities of angles
27(1 — ;) at the insertion points

Space of singular conformal metrics on X, representing &

Branch divisor

Branch divisor corresponding to the lift of the original & under the Schottky group

Open subset in X,

Coordinate function on an orbifold chart

Coordinate on unit disk

Transition function between two orbifold coordinate charts, U, and U,

Smooth functions

(Classical) Liouville field

Liouville action functional for nonzero genus

Liouville action functional for zero genus

Free energy defined through the action functional on an orbifold

Laplace operator

Orbifold covering map between H anAd an orbifold O that provides it with the Fuchsian global coordinates

Orbifold covering map between € or Q and an orbifold O which restricted toA Q¢ gives the Schottky global coordinates

Depending on the context, the orbifold covering map between H and Q or €, namely Klein’s Hauptmodul, or orbifold
covering map between H and O

The epimorphism I' - X which maps f;s to L;s and all a;s, ;s, and 7;s to 1

Orbifold covering map between H and an underlying Riemann surface O*
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J](:) The kth order coefficient of J’s expansion a12round the ith marked point

h; Smooth functions on M, defined by |J§1)|W fori=1,...,n,, \J(l’)|2 fori=n,+1,...,n—1, and |J(_"1)|2 fori=n

A Complex antilinear mapping between A~'!(H, ") and H?°(H,T") defined through the Bergman integral

e, Schottky space of genus g, i.e., the set of equivalence classes of representations [g,|:X — PSL(2,C), u € D(Z).

&, (m) Generalized Schottky space of genus ¢ and n marked points, corresponding to m = (my, ..., m,)

T yn(m) Teichmiiller space of marked Riemann orbisurfaces of genus g > 1, corresponding to m = (m,, ..., m,,)

7() Teichmiiller space defined as the set of equivalence classes of representations [g,]:I" = PSL(2,R), u € D(I')

Py p(m) Affine bundle 2, ,(m) — T ;,,(m), that the Fuchsian projective connection Sch(z') gives a canonical section for it or
P,.(m) - &, ,(m) which has the Schottky projective connection Sch(zz') as a canonical section

M, ,(m) Moduli space of Riemannian orbifold with signature (g;m;, ..., m, ;n,) that is isomorphic to 7 (I')/Mod(I")

Mg, Moduli space of smooth complex algebraic curves of genus g with n labeled points, i.e. 7 (I')/Mod,(I")

R Projective connection

Ty Elements of a projective connection

Sch(f;z) Schwartzian derivative of f with respect to z

L, Ly Lie derivative in holomorphic and antiholomorphic tangential directions, 4 and j

(0] Quadratic differential

qa Holomorphic functions constructing a quadratic differential

u Beltrami differentials for a Fuchsian group

M Functions defined by (u OJ_I)%’ which construct the analog of the Beltrami equation for F*

Ui Basis element for harmonic differentials in H~"!(H,T)

M; Basis element for harmonic differentials in H~"!(0)

qi Basis element for quadratic differentials in 7>°(H,T")

R; Linearly independent elements that generate the space H>°(0)

0; Basis element for quadratic differentials in Hz*o(?) biorthogonal to R;

P; Basis element for quadratic differentials in H>%(Q, )

& Terms multiplying to conformal weights in the energy-momentum tensor expansion for zero genus

& Terms multiplying to conformal weights in the energy-momentum tensor expansion for nonzero genus

v Normalized basis of the space of holomorphic one-forms—Abelian differentials of the first kind

¢ An element of A% (H,T) R

R(w) Projection of the automorphic form Sch(J~';w) of weight 4 for the Schottky group to the subspace H>*%(Q, X)
T;Oq)(o)@g’n(m)

; Coefficients of the projection R(w)

Projyue Projection operator onto H*¢(H,T’)

A~U(H,T)  Complex Banach space of the Beltrami differentials for I

A7M(Q,%)  Complex Banach space of the Beltrami differentials for £

() Open ball of radius 1 in A= (H,T)

114

D(T) Open ball of radius 1 in A™1(Q, %)

Hzfo([H], I Space of cusp forms of weight 4 for the group I'—equivalently, meromorphic (2, 0)-tensors/quadratic differentials on the
Riemann orbisurface O

720 ( é’ ) Meromorphic quadratic differential for Schottky group X

HO(H,T) Cusp forms of weight 2k for I'

H~'(H,I) Harmonic Beltrami differentials, that are a subspace A*(H>?(H,TI)) of A_l'l([l-I],F)A

HL( é ) Space of harmonic Beltrami differentials with respect to the hyperbolic metric on Q

H20(0) Space of quadratic differentials on an orbifold

H-L1(0) Space of harmonic differentials on an orbifold

A (H,T) Smooth family of automorphic forms of weight (2k,2¢), or (k,£) tensors on an orbifold O

0] Mapping from D(T") to 7, (i)

y Mapping from 7 ,(m) to C"=3, defined by (W o®)(u) = (w/,...,wh_;)€C"3

n Mapping from 7, (m) to &, (m)

N(H,T) Kernel of the differential d® at the point 0 € D(I')

P(0) Space of all CP! structures on a complex orbifold O

T, Tq, (2, 0) and (0, 2) components of the classical energy-momentum tensor on an orbifold O

T, T, Components of the classical energy-momentum tensor on each chart U,
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gravity
V"i ’ Vmi
T(w)

he(m;)

Difference between the Fuchsian and Schottky projective connections, i.e., Sch(zp!) — Sch(zz!)
Symplectic form of the Weil-Petersson metric

Symplectic form of ith-cuspidal Takhtajan-Zograf metric

Symplectic form of ith-elliptic Takhtajan-Zograf metric

Petersson inner product on Ty, 7, ,(m) = H™"!(H,I*)

ith-cuspidal Takhtajan-Zograf (TZ) inner product

The invariant inner product under Mod(I'), i.e. (-, )P = (-, -){"F 4 4 (-, )P

ith-elliptic Takhtajan-Zograf (TZ) inner product

Quillen metric on A,

Quillen norm on 4;

Hermitian metric on Ag,

Hodge line bundle over M,

Holomorphic line bundle over I,

Holomorphic Q-line bundle over 3, B
Hodge line bundle, i.e., the determinant line bundle associated with the Cauchy-Riemann operator 0,
Determinant line bundle associated with the Cauchy-Riemann operator 0,

Hodge line bundle (Ayoqs (" ) quit)

Solution of Beltrami equation corresponding to a Beltrami differential y

Quasiconformal mapping that satisfies F¥*oJ = J, o f*

The derivatives (£ f)| _,. (£ f)],_,. respectively

Holonomy representation

Representations of Fuchsian or Schottky group corresponding to a Beltrami differential y;

Density of a hyperbolic metric on H

Eisenstein-Mass series associated with the cusp z, 4,

Hermitian metric defined on the holomorphic line bundle A, (s) defined by h'l"‘hI o h:Z"fh"" hy o hyy h;! for zero

h my, h
genus and, h"™ ---h,"h, ,---h, for nonzero genus

Accessory parameters

Regularization circles around branch points and punctures

Jordan curves constructing the boundary of the Schottky fundamental domain

Disks of radius e around branch points and punctures

The region outside the regularizing disks, i.e., C\J = {w||lw — w;| < e} U {w||w| > 7!}

Holomorphic fibration between &, (m) andA@g whose fibers are configuration spaces of n labeled points
Configuration space of complex n-tuples in C

ith relative dualizing sheaf on &, (m) or the ith tautological line bundle

Q-line bundle defined by ®”_, f[‘

First Chern class

First Chern form of a vector bundle £

Boundary one-form of Takhtajan-Zograf action

Left-hand lower element in the matrix representation of the generator L, € PSL(2,C) for k =2,...,g
Degree of a divisor

Quotient as an analytic orbifold/stack

Period matrix

Zeta function regularized determinant of the Laplace operator in the hyperbolic metric exp(¢@)|dw|? acting on functions
The function from &, to C given by &y = [[;,; [120 (1 = ¢,™)

Multiplier of y €T’

Generalization of &, to &, (m)

Second Bernoulli polynomial

Selberg zeta function

One-loop partition function of three-dimensional gravity

Liouville vertex operators with charges «;
Conformal energy momentum tensor
Conformal dimensions of vertex operators V.
Classical limit of h,,,
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{5%:

=
~

LSS

oy I P e
§ A
3 >

SKREE

le¥e
SRS

Dimension or rank of different objects

Genus of an orbifold Riemann surface

Number of elliptic fixed points or branch points

Number of parabolic fixed points or punctures

Number of all marked points, namely, n, + n,

Orders of the marked points

Quotient as an analytic orbifold/stack

Analytic subvariety

Ringed space or complex analytic space

Underlying topological space of an analytic space X

Reduction of an analytic space

Vector bundles of different kind

Complex conjugate of a vector bundle

Space of complex r X r matrices

Complex line bundle

Holomorphic line bundle

Canonical line bundle, i.e., nth exterior power /\“T?I’O)X

Canonical orbidivisor

Anticanonical line bundle, i.e., the dual or inverse line bundle of Ky

Holomorphic line bundle corresponding to a divisor

Complex analytic orbifold

Underlying complex analytic space for an orbifold

Orbifold regular locus or the principal stratum

A complex model space

A system of local defining functions for an analytic subvariety

Set of all regular point of a subvariety X

Singular locus or the set of singular points of of a subvariety X, i.e., X\Reg(X)

A small polydisc

Ring of all holomorphic functions on A(e)

Ring of holomorphic functions on a subvariety X, i.e., Oa()/S(X)

Ring of holomorphic functions in some open subset U C C" containing the origin

Ring of germs of holomorphic functions at the origin

Ring of germs of holomorphic functions on the subvariety X defined by Ocn o/ ([X]y)

Ideal of the subvariety X, i.e., ideal of all vanishing functions in X in the ring D)

Defining ideal of a subvariety X, i.e., ideal formed by the set of defining functions of X

Radical ideal of a subvariety X, i.e., {f € DA(€)|f"' € S for some positive integer k'}

Ideal canonically associated to a germ [X], of an analytic subvariety at the origin defined as the ideal of germs of
all analytic functions vanishing on the subvariety X representing the germ [X],

Maximal ideal of a ringed space X

Coherent ideal used in the definition of the closed complex analytic subspace

Germ of analytic subvariety X at 0 in C"

Germ of holomorphic function f at the origin

Locus of the ideal S, i.e., a germ of an analytic subvariety at the origin in C" canonically associated to an ideal
I € Ocrp

Sheaf of germs of holomorphic functions of n complex variables and its restriction to U C C", respectively

Sheaf of ideals of the analytic subvariety X

Sheaf of germs of holomorphic functions on the subvariety X, i.e., 0/ (X)

Coherent sheaf of 0 ideals

Sheaf of germs of C* complex functions on a complex manifold M

Direct sum sheaf defined by &, @ - D &y

~—~——

Sheaf of germs of C* sections of a VrCCtOI‘ bundle E
Sheaf of germs of smooth sections of AMT*M ® E

Multiplicative sheaf of invertible C* complex functions on a complex manifold M
Analytic sheaf on X of germs of holomorphic sections in E
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dev
hol
¢

>0
[
CIEIES

—~

B!
2

Pic(X)

Pic?(X)
Div(X)

HO(X. .4}/ O%)

Sheaf of nowhere-vanishing holomorphic functions, i.e., sheaf of invertible elements in Oy
Sheaf of meromorphic functions on X

Subsheaf of not identically zero meromorphic functions on X

Orbisheaf

Sheaves that construct an orbisheaf F

Structure orbisheaf of an orbifold O

Sheaves on X, coming from invariant local sections of orbisheaves F
Canonical orbisheaf of a complex orbifold O of complex dimension n
Morphism of C-ringed spaces

Gluing isomorphisms in a analytic atlas

Transition matrix of a vector bundle E

Trivialization of a vector bundle £ on an open set V,,

The projection from E to the base space in the definition of a vector bundle
The projection V, x C" — V, in the definition of a vector bundle
Connecting homomorphism for a holomorphic line bundle .¥

System of transition functions for the holomorphic line bundle -# (D)
Surjective analytic map invariant under I"

Quotient map sending y to its left orbit I'(y)

Change of charts for an orbifold

Monomorphism between I', and I';, in orbifolds

Analytic orbifold automorphism

Orbifold Galois covering

Orbifold projection map in the definition of orbibundles

Holomorphic bundle isomorphism in the definition of orbibundles
Monomorphism in the definition of orbibundles

Transition maps for a (G, X) structure

Developing map

Holonomy representation

Injective group homomorphism between I and G in a (G, X) structure
Klein’s Hauptmodule, i.e., a meromorphic function on H which is automorphic with respect to the Fuchsian

group I
Smooth complex section of vector bundle £ or holomorphic section of a holomorphic vector bundle £
k frame of vector bundle E, i.e., a collection (s, ...,s;) of k sections s; of vector bundle E on V linearly

independent at each point in V

Homomorphism of vector bundles E, and E,

kth exterior power of a vector bundle

Vector space of C* sections of (A*T*M) ® E on V C M, which are called differential forms on V with values in
the vector bundle £

Vector space of smooth sections of this sheaf are (k, [)-forms with values in E

Connection of a vector bundle E or A*)(E)

I",~equivariant Hermitian connections supported on each local uniformizing neighborhood U, such that Vs are
compatible with changes of charts

Curvature of a connection V, i.e., VoV

Connection matrix with respect to a frame

Curvature matrix with respect to a frame

Gauge transformation matrix

Hermitian metric on a complex vector bundle E

Hermitian metric on a complex orbifold

I’ ,-invariant (local) Hermitian metrics used in the definition of h

ith Chern form of a vector bundle E

ith Chern class of a vector bundle £

Picard group of X, i.e., the group H' (X, 0’%) which is the group of holomorphic line bundles on the analytic space
X with group multiplication being the tensor product, and the inverse bundle being the dual bundle

Kernel of the connecting homomorphism & for a holomorphic line bundle .#

Divisor group, i.e., the group constructed via the formal sum of Weil divisors

Abelian group of Cartier divisors on X
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CI(X)
CaCl(X)
r

Aut(w)

Gal(Y/X), Gal(w)
4
Isom™

E

SERCES
o
SN
-

1§§ S;h;jsla

ST S s

<HmDOWP> S

i

£ra(0)

AP1(0, K% ® K')
ERLH,T)

Divisor class group of Weil divisors modulo linear equivalence

Group of Cartier divisor classes, i.e., Cartier divisors modulo principal divisors

A finite subgroup of the group Aut(X) of analytic automorphisms of X

Isotropy subgroup or stabilizer subgroup of y

Orbit of a point y

Fixpoint set

Thin subset

Ramification locus of an analytic covering

Branching locus of an analytic covering, i.e., w(R,,)

Group of covering transformations or deck transformations, i.e., group of all automorphisms of an analytic
covering

Galois group of an analytic covering, i.e., Aut(w)

Fundamental group

Group of orientation preserving isometries

Divisor

Weil or Cartier divisors on a smooth complex manifold M

Weil divisor defined on Reg(X)

Principal Cartier divisor or orbifold k-form

Prime divisors or irreducible hypersurfaces

Ramification divisor of an analytic covering

Branching divisor of an analytic covering

Branch divisor of an orbifold

Irreducible analytic hypersurface

Support of a Weil divisor, i.e., U; H;

Multiplicity of a Weil divisor D, i.e., the coefficient g; in its definition

Degree of a Weil divisor, i.e., >, multy (D) = >, ¢,

Zero set of a holomorphic function f

Order of vanishing of a holomorphic function f

Linear system of divisors defined by D, i.e., the set of all divisors on X that are linearly equivalent to D

Degree of an analytic covering

Order of a group

Branching function of a covering

Ramification indices of a covering @ along irreducible hypersurfaces R;

Log pair

Charts on an orbifold Riemann surface

Branching index of an orbifold Riemann surface

Open subset in X, in the definition of orbifold

Open subset in C" in the definition of orbifold

Subgroup of GL(n, C) in the definition of orbifold

Folding map in the definition of orbifold

Orbifold atlas

Maximal orbifold atlas

Equivalence class of analytic orbifold atlases on X,

Isotropy group or the local group

Order of the local isotropy group

Homotopy class of loops around a handle

Homotopy class of loops around a hole

Homotopy class of loops around a branch point

Homotopy class of loops around a puncture

Number of faces

Number of edges

Number of vertices

I' ,-invariant complex k-forms used in the definition of the orbifold k-form

Vector space of all orbifold (p, ¢)-forms on an orbifold O

Vector space of smooth differential forms of type (p,q) on O with values in K% ® K,

Hilbert space of automorphic forms of weight (2k, 27) with the natural scalar product (¢, ¢,) = f X D1ap~ k0T
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HE(X) Space of harmonic (k, £) differentials that are square integrable with respect to the hyperbolic metric on X = H/T"

P Complex structure

P Projective structure

P Projective structure fixed by the convex combination 7> < h*P

Sch Schwarzian derivative

qa Elements of a quadratic differential

¢ Liouville field

a;, Bi Hyperbolic generators of a Fuchsian group

T; Elliptic generator of a Fuchsian group

K; Parabolic generator of a Fuchsian group

Ai Multipliers of elliptic generators of a Fuchsian group

0; Translation length of parabolic generators of a Fuchsian group

Jgf) The kth order coefficient of J’s expansion around the ith marked point

¢ Accessory parameters

h; Conformal weight corresponding to the order of a marked point m;

H2O(H,T) Space of cusp forms of weight 4 for the group I'—equivalently, meromorphic (2, 0)-tensors/quadratic
differentials on the Riemann orbisurface O

HU(H,T) Harmonic Beltrami differentials, that are a subspace A*(H>°(H,T’)) of A~M(H,T)

H20(0) Space of quadratic differentials on an orbifold

H-L1(0) Space of harmonic differentials on an orbifold

q(z) An element of H>°(H,T)

u(z) An element of H~"!(H,T)

o(w) An element of H>(0)

M(w) An element of H~""1(0)
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