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We study the classical Liouville field theory on Riemann surfaces of genus g > 1 in the presence of
vertex operators associated with branch points of orders mi > 1. In order to do so, we will consider the
generalized Schottky spaceSg;nðmÞ obtained as a holomorphic fibration over the Schottky spaceSg of the
(compactified) underlying Riemann surface. The fibers of Sg;nðmÞ → Sg correspond to configuration
spaces of n orbifold points of orders m ¼ ðm1;…; mnÞ. Drawing on the previous work of Park et al.
[Adv. Math. 305, 856 (2017)] as well as Takhtajan and Zograf [Lett. Math. Phys. 109, 1119 (2018); 114, 60
(2024)], we define Hermitian metrics hi for tautological line bundles L i over Sg;nðmÞ. These metrics
are expressed in terms of the first coefficient of the expansion of covering map J near each singular point
on the Schottky domain. Additionally, we define the regularized classical Liouville action Sm using
Schottky global coordinates on Riemann orbisurfaces with genus g > 1. We demonstrate that exp½Sm=π�
serves as a Hermitian metric in the holomorphic Q-line bundle L ¼⊗n

i¼1L
⊗ð1−1=m2

i Þ
i over Sg;nðmÞ.

Furthermore, we explicitly compute the first and second variations of the smooth real-valued function
Sm ¼ Sm − π

P
n
i¼1ðmi − 1

mi
Þ log hi on the Schottky deformation space Sg;nðmÞ. We establish two key

results: (i) Sm generates a combination of accessory and auxiliary parameters, and (ii) −Sm acts as a
Kähler potential for a specific combination of Weil-Petersson and Takhtajan-Zograf metrics that appear in
the local index theorem for orbifold Riemann surfaces [Takhtajan and Zograf, Lett. Math. Phys. 109, 1119
(2018)]. The obtained results can then be interpreted in terms of the complex geometry of the Hodge line
bundle equipped with Quillen’s metric over the moduli space Mg;nðmÞ of Riemann orbisurfaces and the
tree-level approximation of conformal Ward identities associated with quantum Liouville theory.
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I. INTRODUCTION

Conformal field theory (CFT) in two dimensions has
found a wide range of applications in both physics and
mathematics. Perhaps, one of the most interesting appli-
cations of CFTs in mathematical physics is to the geometry
of surfaces: This is most clear in Liouville CFT, introduced
by Polyakov [1], which can be viewed as a quantum theory
of geometry in two dimensions [2,3]. This theory admits
two-dimensional surfaces of constant negative curvature
(possibly with sources) as its classical solutions. It is then
natural to consider these classical solutions as critical

points of a certain functional defined on the space of all
smooth conformal metrics on a given Riemann surface. In
the context of string theory, this functional is known as the
Liouville action functional while its critical value is usually
called the classical Liouville action.
From a mathematical perspective, the connection

between Liouville theory and complex geometry of moduli
spaces of Riemann surfaces was first established by
Takhtajan and Zograf [4–6]. One novelty of their work
was the use of (Fuchsian or Schottky) projective structures
on Riemann surfaces to construct the Liouville action.
Zograf and Takhtajan proved that the classical Liouville
action is a Kähler potential for the Weill–Petersson (WP)
metric on moduli spaces of punctured Riemann spheres [5],
as well as on Schottky spaces of compact Riemann
surfaces [6]. In the case of punctured Riemann spheres,
the classical action is a generating function for the famous
accessory parameters of Klein and Poincaré. For compact
Riemann surfaces, the classical Liouville action is an
antiderivative of a one-form on the Schottky space given
by the difference of Fuchsian and Schottky projective
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connections. In turn, this one-form is an antiderivative of
the Weil-Petersson symplectic two-form on the Schottky
space. See [7,8] for reviews of these results.
Later on, Takhtajan and Zograf introduced a new Kähler

metric [9,10], called Takhtajan-Zograf (TZ) metric [11–13],
on the moduli space Mg;n of punctured Riemann surfaces
in the process of deriving a local index theorem (in
Quillen’s form) for families of Cauchy-Riemann operators
(for its precise definition, see Sec. III A 3). In 2015, Park
et al. [14] found a Kähler potential hi for the ith TZ metric
in terms of the first coefficient of the Fourier expansion of a
covering map J near the ith puncture. The authors of [14]
also showed that these Kähler potentials are essential for
defining classical Liouville actions that are invariant under
certain subgroups of the Teichmüller modular group: An
appropriate definition of classical Liouville action on a
punctured Riemann surface needs a regularization pro-
cedure that introduces a “modular anomaly” (see [15]).
Kähler potentials hi are then essential in cancellation of
these anomalous contributions.
More recently, a generalization of local index theorem

(Theorem 1 of [10]) to the case of orbifold Riemann
surfaces [16], has lead Zograf and Takhtajan to introduce
yet another Kähler metric on the moduli space of Riemann
orbisurfaces. In order to avoid confusion, this new Kähler
metric will be called the elliptic TZ metric while the one
introduced in [9,10] will be called the cuspidal TZ metric.1

Using the results of [14], Zograf and Takhtajan [16] also
found a Kähler potential for the ith elliptic TZ metric in the
case of genus zero orbifold Riemann surfaces.
Motivated by the results of [14,16], this manuscript

explores the classical limit of Liouville field theory (LFT)
on orbifold Riemann surfaces with genus g > 1 using the
Schottky global coordinates.2 Our main result can be
viewed as an extension of Theorems 1 and 2 of [14] to
the case of orbifold Riemann surfaces (both compact and
with punctures): While the authors of [14] considered the
classical Liouville action on (generalized) Schottky space
of punctured Riemann surfaces, we have to take into
account the contributions of orbifold points to the
Liouville action as well. Despite the fact that some aspects
of this generalization might be familiar to mathematicians
and experts, we have still chosen to include them here in
order to make this manuscript self-contained and more
accessible. In particular, while the method of proofs in this
work closely resemble those in [14–16] (and the references
therein), the details of calculations for the case of orbifolds,

to the best of our knowledge, have not appeared explicitly
anywhere in the literature.
From a mathematical perspective, our result provides

evidence that the connection between classical Liouville
action and Quillen’s metric in the Hodge line bundle
(see [15]) extends to the orbifold setting.3 From the point
of view of physics, the results of this paper have multiple
applications, many of which stem from the connection
between partition function of Liouville theory on a
Riemann surface with conical singularities and correlation
functions of Liouville vertex operators corresponding to
conical defects (see, e.g. [17–19]).
Studying CFTs like LFT on Riemann orbisurfaces with

genus g has additional reasons from the physics perspective.
One notable rationale comes from the fact that many
established constructions that relate geometry and entangle-
ment are based on bipartite entanglement. Examples of such
established results include the following: the emergence
of eternal black holes can be understood using quantum
entanglement between two copies of the boundary CFT in a
thermofield double (TFD) state [20]; the Ryu-Takayanagi
minimal area surface in AdS, anchored on the boundary of a
sub-region, determines the bipartite entanglement between
that sub-region and its complement in the dual theory [21];
the MERA ansatz reveals an additional dimension for
AdS spacetime in the direction of increasing or decreasing
(bipartite) entanglement [22]; and the linearized Einstein
equations can be derived from the (bipartite) entanglement of
the underlying quantum degrees of freedom [23]. However,
it is possible for the degrees of freedom to be entangled in a
multipartite manner, much like how many-point correlation
functions cannot be deduced from lower correlations. This is
evident in tripartite entangled states such as Greenberger-
Horne-Zeilinger and W states. These states (and some of
their deformations) are similar to the TFD state and can be
described by integrating over half of a higher genus surface
(with possible singularities). Another reason stems from the
Rényi entropies, Sn. For a reduced density matrix ρ of a
spatial region A,

Sn ¼
1

1 − n
log TrðρnÞ ¼ 1

1 − n
ðlogZn − n logZ1Þ;

where Zn is the partition function on an orbifold Riemann
surface with nonzero genus and Zn symmetry. This
orbifold surface can be constructed by gluing together n
copies of the original system across the entangling region
A with some disjoint regions.4 The Schottky uniformiza-
tion suggests that distinct phases should be considered in
studying the Zn partition function and, in order to prove the
RT formula, the extension of those distinct phases into a
quotient of H3 should be explored. Actually the dominant

1It was demonstrated by the authors of [16] that the elliptic TZ
metric converges to the cuspidal TZ metric in the limit that the
opening angle of corresponding elliptic fixed point approaches
zero.

2While our main results are derived for the case of Riemann
orbisurfaces with genus g > 1, we still study genus zero Riemann
orbisurfaces to draw some important lessons.

3Some other mathematical implications of our result will be
highlighted in a forthcoming shorter version of this manuscript.

4See, e.g., [24].
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contribution, determined by the least action principle
based on the values in each phase, is important in
determining the wave function and proving the RT
formula.5 Accordingly, this implies that studying the
CFT on orbifold Riemann surfaces is especially instru-
mental in determining whether the assumption of replica
symmetry holds true in the dual gravitational system.
As another reason, it is worth noting that the correlation

functions of twist operators in a CFT have a connection to
partition functions on orbisurfaces with different genera;
specifically, a CFT that arises from the low energy limit
of a two-dimensional sigma model with a target space
of Mn=Sn (symmetric orbifold of n copies of M). This
relationship was highlighted in a paper by Lunin and
Mathur [27]. Interestingly, the sigma model with the
aforementioned target space can describe the low energy
behavior of theD1 −D5 system [28–30], which generates
a near horizon structure of AdS3 × S3 ×M4, as presented
in [31]. Thus, possessing knowledge about the Liouville
action on orbisurfaces can be highly advantageous for
gaining a better insight into not only the string theoretical
constructions of AdS3=CFT2, but also for addressing
important topics related to black hole physics, such as
microstate counting [32].
Given that we intend to allocate a part to extending our

findings from Riemann orbisurfaces to conical Riemann
surfaces, it is essential to outline here some motivations
behind this choice. One motivation ties into the importance
of investigating quantum gravity in three dimensions.
Previous research has shown [33,34]6 that if one only
considers smooth saddle points when calculating the
gravitational path integral in three-dimensional gravity,
the resulting regularized partition function is plagued by
two issues. First, the range of twists at a constant spin is
continuous rather than discrete. Second, when dealing with
high spins and energies near the edge of the spectrum, the
density of states becomes negative. The first difficulty can
potentially be resolved by considering recent findings that
suggest the dual theory of two-dimensional AdS gravity is
an ensemble of one-dimensional quantum mechanics
[37,38]. To address the issue of nonunitarity, it has been
proposed that extra contributions should be added to the
path integral over metrics, namely Seifert manifolds, which
are off-shell configurations [39].7 It is particularly interest-
ing to note that through Kaluza-Klein reduction, the

solutions of the derived two-dimensional theory are conical
Riemann surfaces.
The study of conical Riemann surfaces also plays a

crucial role in addressing a significant concern within the
realm of two-dimensional CFTs. Ideally, one aims to
resolve the constraints of conformal invariance and unitar-
ity to ascertain the permissible values for conformal
dimensions Δi and operator product expansion (OPE)
coefficients. This pursuit would lead to a comprehensive
classification of two-dimensional CFTs. But since such
exhaustive classification does not exist (up to now), one can
at least explore the universal aspects of those data, i.e.,
those hold true in any conformal field theory. When all
scalar operators in three-point functions possess high
dimensions (i.e., they are “heavy”), a universal formula
for the averaged value of OPE coefficients emerges for
any unitary and compact two-dimensional CFT with a
central charge c greater than 1, as detailed in Refs. [41,42]
(see also [43]). Notably, when 12Δi=c < 1, this formula
finds [42] a connection to the Dorn-Otto-Zamolodchikov-
Zamolodchikov formula for the structure constants of
vertex operators in Liouville theory. Actually, the classical
correlation function of Liouville vertex operators on a
Riemann surface with genus g can be linked to the on-shell
value of the Liouville action functional on the same
Riemann surface, albeit with the insertion of conical points
at the positions of those operators—effectively transform-
ing it into a conical Riemann surface. As a result, delving
into LFTon conical Riemann surfaces offers a dual benefit.
It not only allows us to investigate the universal features of
OPEs within two-dimensional CFTs but also sheds light on
certain facets of three-dimensional gravity in the presence
of heavy particles, a realm characterized by three-
dimensional geometry with conical defects.8

The aforementioned observation presents a different
aspect when examined within the context of the bulk dual.
Within semiclassical gravity, the wormhole amplitudes can
be understood as averaged solutions to the mentioned
CFT’s bootstrap constraints in the semiclassical limit
[44,45].9 To be more precise, the Euclidean wormhole
solutions provide connected contributions to the average of
products of CFT’s correlation functions.10 Moreover, by
initiating from a two-sphere boundary wormhole with
(nþ 1) massive particles going through the wormhole
and then analytically continuing the mass of (mþ 1) of
them to the black hole regime, the two-sphere boundaries
are effectively joined at their (mþ 1) pairs of insertion
points. This results in the creation of a genus-m handlebody

5For attempts in this direction, see [25,26].
6Pure gravity on global AdS3 can be rewritten as two copies

of geometric quantization of a specific coadjoint orbit of the
Virasoro group [33,35]. For the path integral quantization of the
same coadjoint orbit and accordingly exploring the dual boun-
dary theory, see [36].

7In another proposal, the three-dimensional theory is modified
by adding some special massive particles which it implies that
one should consider three-dimensional conical manifolds beside
the smooth saddles, see [40].

8The operator with 12Δi=c > 1 is dual to a black hole state.
See [43].

9This interpretation differs from the random matrix interpre-
tation for 2D gravity, where averaging occurs across a family of
UV-complete quantum theories.

10An alternative interpretation in terms of coarse graining in a
single CFT is provided by [46].
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with 2ðn −mÞ conical singularities [44].11 Consequently,
the LFT on the single conical boundary of the handlebody
not only is connected to the analytical continuation of the
dimension of defect operators (mass of massive particles)
on two-boundary wormholes but also can shed light on the
statistical distribution of CFT’s data on some regime of
scaling dimensions.
Furthermore, it is established that there exist numerous

distinct families of black hole microstates, each comprising
an infinite number of members [47,48]. These families are
also closely related to geometries featuring Einstein-Rosen
bridges of potentially immense volume. Intriguingly, it has
been demonstrated that a substantial reduction in the
dimension of the Hilbert space can happen by adding
the contribution of wormhole saddle points in the gravi-
tational path integral. These wormholes yield minute yet
universal contributions to the quantum overlap of candidate
black hole microstates and shed light on the really
orthogonal ones [48].12 Accordingly, this concept can also
help to resolve the problem [50] of growth of holographic
complexity at exponentially large times. Actually, some
of the microstates are created by massive particles with
masses below the black hole threshold, which reside behind
the horizon without altering the mass. Therefore, by
analytically continuing external operators to the black hole
regime in two-boundary wormholes, the LFT on conical
Riemann surfaces can also offer insights into the minute
overlaps between different microstates and, ultimately,
provide a deeper understanding of the Bekenstein-
Hawking entropy and holographic complexity.
Even more intriguingly, when one integrates out the

mentioned (on-shell) wormholes in three-dimensional
gravity coupled to sufficiently massive point particles, it
results in the emergence of random bulk three-point
interactions among these point particles. These interactions
exhibit the same statistical properties as the boundary OPE
coefficients [44]. As a consequence, it becomes apparent
that the LFT on conical Riemann surfaces can also be
utilized to investigate these random couplings within the
bulk effective field theory and to offer a controlled and
semiclassical way to realize the mechanism originally
proposed by Coleman, Giddings, and Strominger [51,52].
There are also other reasons to write this paper, which we

will mention in the Discussion section when more possible
applications for our results are explored.
Summary of results. Having motivated the importance of

studying Liouville theory on orbifold Riemann surfaces
(and, more generally, on Riemann surfaces with conical
singularities), we will now give a nontechnical summary of

our results.13 We start by explaining the two main chal-
lenges in defining the appropriate classical Liouville action
on a Riemann surface with conical singularities: (i) The first
difficulty arises from the divergence of the naive action near
each singular point. In order to deal with this problem, one
regulates the divergences by cutting out an infinitesimally
small disk around each singular point and adding appro-
priate boundary terms to the action to ensure a well-defined
variational principle around conical singularities (see, e.g.,
[5,53] and Remark 4.2). (ii) The second difficulty arises
only when the Riemann (orbi)surface of interest has non-
trivial topology: In this case, conformal anomaly forces
one to define the appropriate Liouville action on a planar
covering of this Riemann surface instead and the specific
choice of such a planar covering is equivalent to the choice
of a complex projective structure (see [6] as well as [7,8]);
as we will see in Sec. II, this fact manifests itself in the
transformation law of the Liouville energy-momentum
tensor under conformal transformations.
The regularization procedure needed to solve the first

difficulty results in a nontrivial transformation of the
regularized Liouville action under certain groups: For
the case of Riemann sphere with punctures, the regularized
Liouville action was shown to transform nontrivially under
the subgroup of mapping class group generated by the
permutations of punctures [15]. Intuitively, this is due to
the fact that such transformations can, in general, change
the radius of infinitesimally small circles around punctures.
A closely related phenomenon also happens for punctured
Riemann surfaces with genus g > 1 (see [14]): In this case,
one has to define the regularized Liouville action on a
planar covering of the punctured Riemann surface provided
by the Schottky uniformization of its compactification.
Each puncture has multiple representatives on this planar
covering which are related by the action of the covering
transformations (i.e., the Schottky group). Importantly,
the regularized Liouville action defined on this covering
can be shown [14] to be dependent on a specific choice
of a representative for each puncture—in other words, the
regularized Liouville action defined in this way is not
invariant under the action of the Schottky group. This could
be intuitively understood by drawing a (rough) similarity
between the action of Schottky group on representatives of
each puncture and that of permutations interchanging
different representatives.
Our first result can be understood as an explicit calcu-

lation of this nontrivial behavior of the regularized
Liouville action in the case of Riemann surfaces
with conical singularities (both for g ¼ 0 and g > 1).14

11The parameters that define operator dimensions change into
moduli of the (conical) Riemann surface as the operators are
made heavy.

12See also [49].

13A more technical review of our results is also provided in
Sec. II, while Secs. IVand Vare devoted to proving these results.

14For technical reasons, we only work with conical singular-
ities of angles 2π=mi, for N ∋ mi > 1. However, we expect most
of our results to readily generalize to the case of Riemann
surfaces with more general conical singularities.
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While the big picture remains the same, the details of
calculations are more involved in this case due to the fact
that singular points are nowweighted by their conical angles.
After understanding the behavior of regularized

Liouville action under symmetric or Schottky groups, a
mathematically natural question arises: Can we construct
an invariant object by starting from the regularized
Liouville action? Following [14], we answer this question
positively by constructing a natural object in terms of the
constant terms in the asymptotic expansion of Liouville
field near each singular point and showing that this object
transforms the same as regularized Liouville action under
both symmetric or Schottky groups. In turn, this shows that
the difference between regularized Liouville action and (a
constant multiple of) this new object is invariant under the
action of symmetric or Schottky groups. Alternatively, this
observation suggests that one is able to isolate the nontrivial
behavior of regularized Liouville action under the afore-
mentioned transformations: The regularized Liouville
action can be written as a sum of two terms, one of which
is invariant under the action of symmetric or Schottky
groups; we mention in passing that this form seems very
interesting in view of holography and we intend to study its
consequences for renormalized volume of handlebodies
with lines of conical defect in a future work.
Having found an “invariant Liouville action,” we turn to

studying its mathematical features by calculating its first
and second variations on the deformation space of (marked)
Schottky groups. From a physics perspective, one expects
these variations to be closely connected to the semiclassical
limit of conformalWard identities (see, e.g., [7,19] for more
details). Our main results are then stated in Theorems 1
and 2 which can be regarded as generalizations of
Theorems 1 and 2 of [14] to the case of orbifold Riemann
surfaces. These results prove that the connection between
Liouville action and spectrum of Laplace operators (asso-
ciated with hyperbolic metric) generalizes to the case of
Riemann surfaces with conical singularities.
Related works. At this stage, we would like to make some

comments about the relation between our work and that of
other authors who have studied neighboring questions:

(i) In addition to the study of classical Liouville action
on generalized Schottky space of punctured Riemann
surfaces, Ref. [14] also studied Liouville theory on
punctured Riemann surfaces with quasi-Fuchsian
global coordinates. Moreover, the authors of [14]
have proved the holographic correspondence for
the case of punctured Riemann surfaces with both
Schottky and quasi-Fuchsian global coordinates.15

While Park and Teo [57] have already extended
the results of [14] to the case of orbifold Riemann
surfaces with quasi-Fuchsian global coordinates,16 a
rigorous study of Liouville action and holographic
correspondence for the case of Riemann orbisurfaces
with Schottky global coordinates has not appeared
anywhere in the literature. The present manuscript
aims to partially fill this gap: We study the classical
Liouville action on Schottky deformation space of
Riemann orbisurfaces but leave a rigorous proof
of the holographic correspondence to a future
work [58].17

(ii) Motivated by the study of quantum Hall states on
singular surfaces, Ref. [60] has studied the modular
invariant Liouville action on Riemann sphere
with conical singularities. For the special case of
Riemann orbisurfaces with genus g ¼ 0, our results
are in agreement with that of Ref. [60].

(iii) As we will further discuss in Sec. VI, the main
results of this paper (see Theorems 1 and 2) provide
strong evidence for a close connection between
classical Liouville action and (appropriately defined)
determinant of Laplacian on Riemann orbisurfaces
with genus g > 1; for Riemann sphere with conical
singularities, this connection has also been studied
by Kalvin (see, e.g., [61,62]).18 In this sense, our
results are closely related to the studies of the
Laplace-Beltrami operator on Riemann orbisurfaces
and its spectral properties [64,65].19

Structure of the paper. The structure of this work is as
follows: In Sec. II, we will briefly review the relationship
between correlation functions of heavy Liouville vertex
operators corresponding to branch points and the uniform-
ization theory of orbifold Riemann surfaces. Section III will
cover various topics related to the deformation theory of
Ahlfors and Bers. This will include a discussion of some
known facts about the geometry of Teichmüller, Schottky,
and moduli spaces of Riemann orbisurfaces as well as some
variational formulas which we will need throughout this
manuscript. Section IV contains a detailed study of regu-
larized Liouville action and its geometric properties:
Section IVA studies the regularized classical action on

15The holographic correspondence for compact Riemann
surfaces has been proved a long time ago (see [54–56]) and
asserts that the renormalized volume of a hyperbolic three-
manifold, which is a purely three-dimensional quantity in its
definition, is equivalent with the classical Liouville action on its
conformal boundary—a purely two-dimensional quantity.

16In particular, Ref. [57] also includes the proof of holographic
correspondence for the case of quasi-Fuchsian orbifolds. More-
over, from a physics perspective, such orbifolds have been
studied by Chandra, Collier, Hartman, and Maloney [44].

17While a rigorous proof of holographic correspondence is still
outstanding for the case of handlebody orbifolds, many refer-
ences have studied Einstein-Hilbert action on AdS3 with conical
singularities in connection to correlation functions of Liouville
vertex operators (see, e.g., [43,59]).

18More generally, see [63] for the derivation of a Polyakov-
type anomaly formula in this case.

19From a physics perspective, the zeta-regularized determinant
of Laplacian on Riemann orbisurfaces has been recently studied
in [66].
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Riemann orbisurfaces of genus g ¼ 0 while Sec. IV B
focuses on the classical Liouville action defined for
Riemann orbisurfaces of genus g > 1. In Sec V, we will
first study Kähler potentials hi for cuspidal and elliptic
Takhtajan-Zograf metrics on both M0;n and Sg;nðmÞ. In
particular, we will demonstrate that for certain special line
bundles L i equipped with Hermitian metrics hmi

i , the first
Chern forms are related to the Kähler form of TZ metrics
associated with elliptic and parabolic generators. Moreover,
we will show that the first Chern form of the Q-line bundle

L ¼⊗n
i¼1 L

ð1−1=m2
i Þ

i with Hermitian metric exp½Sm=π� is
given by 1

π2
ωWP; here, Sm denotes the appropriately regu-

larized classical Liouville action. From these results, it is
easy to see that a specific combination ωWP − 4π2

3
ωcusp
TZ −

π
2

Pne
j¼1ðmi − 1

mi
Þωell

TZ;j of Weil-Petersson and Takhtajan-
Zograf metrics has a global Kähler potential on Sg;nðmÞ
given by Sm ¼ Sm − π

P
n
i¼1ðmi − 1

mi
Þ loghi. Theorems 1

and 2 constitute the main findings of this paper and are
related to the first and second variations of Sm. In Sec. VI,
we will provide a brief overview of some implications of our
findings and discuss potential pathways for future research.
Appendix A offers some mathematical background regard-
ing orbifold Riemann surfaces, while Appendix B delves
into geometric structures on such orbisurfaces. Moreover,
Appendix C outlines the derivation of various asymptotic
behaviors that are used throughout the main body of this
manuscript. Finally, for the convenience of the reader, a list
of symbols used throughout this text is also presented in
Appendix D.

II. CLASSICAL LIOUVILLE ACTION AND
UNIFORMIZATION THEORY

In this section, we will discuss the semiclassical limit of
quantum Liouville field theory on hyperbolic Riemann
orbisurfaces and its connection with the uniformization
theory. Let X be a compact Riemann surface of genus
g > 1. In the so-called geometric approach to quantum
Liouville theory, developed by Takhtajan in [2,17,18,67]
based on the original proposal by Polyakov [68],20 the un-
normalized correlation functions of Liouville vertex oper-
ators with “charges” αi on the Riemann surface X are
defined by (we set ℏ ¼ 1)

hVα1ðx1Þ � � �VαnðxnÞi ¼
Z
CM αðXÞ

Dψe−
1
2πS α½ψ �; ð1Þ

where CM αðXÞ is the space of all smooth conformal
metrics eψðu;ūÞjduj2 on Xnfx1;…; xng which have conical
singularities of angles 2πð1 − αiÞ at the insertion points,

and S α½ψðu; ūÞ� is the (regularized) Liouville action
functional which we intend to study.
When αis take the special values 1 − 1

mi
for integers

mi ≥ 2, vertex operators Vαi correspond to orbifold points
(or branch points) of orders mi; moreover, when mi is the
symbol∞, Vαi corresponds to a cusp. Then, the correlation
function hVm1

ðx1Þ � � �Vmn
ðxnÞi of these twistlike vertex

operators can be interpreted as the partition function of LFT
on a (possibly punctured) Riemann orbisurface O of genus
g > 1. In this viewpoint, X plays the role of compactified
underlying Riemann surface of O, denoted by X̂O, and the
collection of insertion points SingðOÞ ≔ fxigi¼1;…;n ⊂ X
will be called the singular set of O. Then, the Riemann
orbisurface O can be characterized as the triple
ðX; SingðOÞ; νÞ, where ν∶SingðOÞ → N̂>1 ≔ ðNnf1gÞ ∪
f∞g is the so-called branching function that assigns to
each singular point xi its corresponding branching order
mi ∈ N̂>1 for i ¼ 1;…; n. Now, let XO≔ X̂Onfxijmi¼∞g
be the underlying Riemann surface of O. A Riemann
orbisurface O can be equivalently characterized as a pair
ðXO;DÞ where the so-called branch divisor,

D ≔
X

fxijmi<∞g

�
1 −

1

νðxiÞ
�
xi; ð2Þ

is a Q divisor on XO (see Sec. A 1 d for more details).21

WhenO has cusps, i.e., branch points of ordermi ¼ ∞, we
will denote its compactification by Ô ≔ ðX̂O; D̂Þ, where

D̂ ≔ D þ
X

fxijmi¼∞g
xi: ð3Þ

An orbifold Riemann surfaceOwith g > 1 handles, ne ≥ 3
conical points of orders 2 ≤ m1 ≤ � � � ≤ mne < ∞, and
np ≥ 0 punctures is said to have the signature
ðg;m1;…; mne ; npÞ.
Next, let O be an orbifold Riemann surface with

signature ðg;m1;…; mne ; npÞ and let fðUa; uaÞga∈A be a
complex-analytic atlas on XO with charts Ua, local
coordinates ua∶ Ua → C, and transition functions
gab∶ ubðUa ∩ UbÞ → uaðUa ∩ UbÞ. Denote by CM ðOÞ
the space of singular conformal metrics on XO representing
D . If Xreg

O ≔ X̂OnSingðOÞ denotes the so-called regular
locus of O, every such metric ds2 ∈CM ðOÞ is given
by a collection feψa jduaj2ga∈A, where the functions
ψa ∈ C∞ðUa ∩ Xreg

O ;RÞ satisfy

ψa ∘ gab þ log jg0abj2 ¼ ψb on Ua ∩ Ub ∩ Xreg
O ; ð4Þ

20See Refs. [69–73] for details regarding the relation between
geometric and standard approaches to Liouville CFT.

21By a Q divisor on a Riemann surface X, we simply mean
a formal linear combination of points on X with rational
coefficients.
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and near each singular point xi ∈Ua, eψa has the form

eψa ≃

8>><>>:
4m−2

i jua−xij
2
mi

−2�
1−jua−xij

2
mi

�
2 for mi < ∞;

1
jua−xij2ðlog jua−xijÞ2 for mi ¼ ∞;

ð5Þ

as ua → xi. According to the classical results of Picard
[74,75] and the more recent work of McOwen [76] and
Troyanov [77], when the Euler characteristic χðOÞ ≔
χðXOÞ − degðDÞ ¼ 2 − 2g − np −

Pne
i¼1ð1 − 1=miÞ is

negative—i.e., whenO is hyperbolic—there exists a unique
singular conformal metric, called the hyperbolic metric, on
XO which represents the branch divisor D and has constant
Gaussian curvature −1 everywhere on Xreg

O . If we denote
this unique hyperbolic metric by ds2hyp ≔ feφa jduaj2ga∈A

and assuming that each open subset Ua ⊂ XO includes at
most one singular point xi of order mi, the corresponding
function φa on Ua satisfies the so-called Liouville equation
(see, e.g., [70])22

∂ua∂ūaφa ¼
1

2
eφa − π

�
1 −

1

mi

�
δðua − xiÞ; ð6Þ

which is equivalent to ds2hyp having constant curvature −1
on Xreg

O and satisfying asymptotics (5) near each singu-
lar point.
The problem is now to define (suitably regularized)

Liouville action functional on the Riemann orbisurface
O—a functional Sm∶ CM ðOÞ → R such that its Euler-
Lagrange equation is the Liouville equation. However, it is
well known (see the discussion in [55]) that a general
mathematical definition of the Liouville action functional
on a Riemann orbisurface O of genus g > 1 is a nontrivial
problem. This is due to the fact that the classical Liouville
field φ is not a globally defined function on O but rather a
logarithm of the conformal factor of the metric. More
concretely, due to transformation law (4), local kinetic
terms j∂uaφaj2dua ∧ dūa do not glue properly on
Ua ∩ Ub ∩ Xreg

O and thus cannot be integrated over Xreg
O .

This means that “naive” Dirichlet type functional is
not well defined and cannot serve as an action for the
Liouville theory (it also diverges at the singular points). In
other words, the Liouville action functional cannot be
defined in terms of a Riemann orbisurface O alone and
additionally depends on the choice of a global coordinate
on Xreg

O —a representation Xreg
O ≅ ΩK=K, where K is a

Kleinian group with an invariant component Ω ⊂ C and
ΩK ≔ Ωnffixed pointsg. As we will see in the next
subsection, for our purposes, it will be sufficient to consider

the case when K is either a Fuchsian group Γ or a Schottky
group Σ.
Finally, let us mention that once the action functional is

defined, we can define the partition function hOi, or rather
its free energy FO ≔ − loghOi, using the perturbative
expansion23

FO ¼ − loghOi ¼ 1

2πℏ
Sm½φ� þ

1

2
logdet

�
Δ0 þ

1

2

�
þ ðℏÞ;

ð7Þ

of the rhs of (1) around the classical solution φ, where
Sm½φ�∶DðKÞ=∼ → R (see Sec. III) is the regularized
classical Liouville action and Δ0 is the Laplace operator
of the hyperbolic metric acting on functions on O. In the
bulk of this paper, we will only concern the classical
contribution (i.e., contributions of order ℏ−1) to the free
energy FO, which is given by the classical Liouville
action Sm.

A. Fuchsian and Schottky uniformizations

Consider a hyperbolic orbifold Riemann surface
O ¼ ðXO;DÞ with signature ðg;m1;…; mne ;npÞ and fix
a base point x� ∈Xreg

O . Let us choose a standard system of
generators for the orbifold fundamental group,

π1ðO;x�Þ¼
�
A1;B1;…;Ag;Bg;C1;…;Cne ;P1;…;Pnp

����
Cm1

1 ¼���¼C
mne
ne ¼

Yg
i¼1

½Ai;Bi�
Yne
j¼1

Cj

Ynp
k¼1

Pk¼ id

�
;

ð8Þ

where Ais, Bis, Cjs, and Pks are homotopy classes of
loops based at x� and ½Ai;Bi� ≔ AiBiA−1

i B−1
i ; see

Definition A.28 and the discussion following it for more
details. The Riemann orbisurface O with a distinguished
system of generators for its fundamental group π1ðO; x�Þ,
up to inner automorphisms of π1ðO; x�Þ, will be called a
marked Riemann orbisurface (see Fig. 1).
As a result of the Theorems A.7 and B.1, all hyperbolic

Riemann orbisurfaces are developable (or good in
Thurston’s language) and hence can be realized as a global
quotient ½H=Γ� where H ≔ fz∈CjIm z > 0g is the upper
half-plane and Γ ⊂ PSLð2;RÞ is a Fuchsian group of the
first kind24 with signature ðg;m1;…; mne ; npÞ; this is a
direct consequence of the usual uniformization theorem
for ordinary Riemann surfaces. The holomorphic orbifold

22If the cone point xi is fixed to be at infinity, instead of the last
term on the right-hand side of (6), we have πð1þ 1

mi
Þδðua − xiÞ.

23In order to write this perturbative expansion, we have to
temporarily restore ℏ in (1).

24A Fuchsian group is said to be of first kind if its limit set is
the closed real lineR ∪ f∞g. Otherwise, a Fuchsian group is said
to be of the second kind.
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covering map πΓ∶ H → O provides a Riemann orbisurface
O with the Fuchsian global coordinate, and the hyperbolic
metric ds2hyp ∈CM ðOÞ is a push forward of the Poincaré
metric ðIm zÞ−2jdzj2 on H by the covering map πΓ. From
this point of view, Γ can be thought of as the fundamental
group of the Riemann orbisurface O ≅ ½H=Γ�, and the
group isomorphism Γ ≃ π1ðOÞ can be viewed as being
induced by the holonomy representation hol∶π1ðOÞ →
PSLð2;RÞ of the orbifold hyperbolic structure.25

Such a Fuchsian group Γ has a standard presentation,
corresponding to the standard generators of π1ðOÞ dis-
cussed above, which includes 2g hyperbolic generators
α1; β1;…; αg; βg, ne elliptic generators τ1;…; τne of orders
m1;…; mne , and np parabolic generators κ1;…; κnp .

26

Obviously, the generators of Γ also satisfy

Yg
i¼1

½αi;βi�
Yne
j¼1

τj
Ynp
k¼1

κk ¼ 1 and τ
mj

j ¼ 1 ðj¼ 1;…; neÞ;

ð9Þ

where ½αi; βi� ≔ αiβiα
−1
i β−1i and 1 is the identity element of

PSLð2;RÞ. The Fuchsian group Γ, together with a distin-
guished system of generators,

fα1;…; αg; β1;…; βg; τ1;…; τne ; κ1;…; κnpg; ð10Þ

is called the marked Fuchsian group corresponding to the
Riemann orbisurface O ≅ ½H=Γ�.
The elliptic elements of Γ will have fixed points in H and

are denoted by ze1;…; zene while the fixed points of the

parabolic elements lie in ∂H ¼ R ∪ f∞g and will be
denoted by zp1 ;…; zpnp. The images of these elliptic and
parabolic fixed points under the projectionH → O ≅ ½H=Γ�
will be the conical points xc1;…; xcne and punctures
xp1 ;…; xpnp of O, respectively. For our future convenience,
let us also introduce SingmðOÞ ≔ ν−1ðmÞ for all m∈ N̂>1.
Note that ⨆m∈ N̂>1 SingmðOÞ gives a canonical stratifica-
tion of the singular set SingðOÞ≡ SuppðD̂Þ, and each
SingmðOÞ for m ≠ ∞ represents the stratum of conical
points with stabilizer group Zm. In addition, we will denote
by Sing∞ðOÞ ≔ ν−1ð∞Þ and Sing⋏ðOÞ ≔⨆m≠∞ SingmðOÞ
the subset of cusps and conical points in SingðOÞ, respec-
tively. Finally, following [78], we will define the signature
type of O as the unordered set s ≔ fsmgm∈ N̂>1 , where
sm ≔ jSingmðOÞj denotes the cardinality of the stratum of
singular points of order m. In particular, we have s∞ ¼
jSing∞j ¼ np and

P
m∈ N̂>1 sm ¼ jSingðOÞj ¼ ne þ np.

Remark 2.1. Sometimes, when we need to refer to
singular points (or fixed points) collectively, we will
denote them by x1;…; xn (respectively, z1;…; zn),
where n ¼ ne þ np is the total number of singular points
(or fixed points) and the indices are ordered such that
the corresponding orders of isotropy increase 2 ≤ m1 ≤
m2 ≤ � � � ≤ mn ≤ ∞. In this situation, the vector of orders
ðm1;…; mnÞ will be denoted by m. Note that with this
convention, the first ne singular points x1;…; xne will
always correspond to conical points xc1;…; xcne while the
remaining np ≥ 0 singular points xneþ1;…; xn will corre-
spond to the punctures xp1 ;…; xpnp of O.
Similar to Fuchsian groups, Schottky groups can also be

used to construct Riemann orbisurfaces. We begin with a
few definitions: A Kleinian group K is a discrete subgroup
of the Möbius group PSLð2;CÞ that acts properly dis-
continuously on a subset Ω ⊂ Ĉ called the region of
discontinuity of K. The complement Λ ¼ ĈnΩ is called
the limit set of K. In this work, we are particularly
interested in Kleinian groups that are free, finitely gen-
erated, and strictly loxodromic; such Kleinian groups are
called Schottky groups and will be denoted by Σ. It is well
known that for a Schottky group Σ of rank g, the limit set Λ
is a Cantor set27 and the region of discontinuityΩ ¼ ĈnΛ is
a dense connected subset of Ĉ such that the Schottky group
Σ acts on Ω freely, and the quotient space Ω=Σ is a closed
Riemann surface X of genus g; this is called a Schottky
uniformization of X and, as a consequence of the retro-
section theorem [80] (see also [81,82]), every closed
Riemann surface has such a uniformization.
Now, let us consider uniformization of the compactified

underlying Riemann surface X̂O by a Schottky group Σ. If
Ω denotes the region of discontinuity of Σ, we can subtract
from it the preimages of cusps by the covering map

FIG. 1. Marked Riemann orbisurface. A marked Riemann
orbisurface with signature ðg;m1;…; mne ; npÞ is an orbifold
Riemann surface O together with a distinguished set of standard
generators fA1;…;Ag;B1;…;Bg;C1;…;Cne ;P1;…;Pnpg for
its fundamental group π1ðO; x�Þ.

25Note that, in the language of orbifold ðG;XÞ structures
introduced in Appendix B, orbifold hyperbolic structures are, in
fact, ðPSLð2;RÞ;HÞ structures.

26A nonidentity element γ ∈Γ is called hyperbolic, parabolic,
or elliptic if γ is conjugated in PSLð2;RÞ to a dilation, horizontal
translation, or rotation, respectively. This is analogous to jtrðγÞj
being greater than, equal, or less than 2, respectively. 27For more details on the geometry of limit sets, see Ref. [79].
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Ω → X̂O to get another planar regionΩ0. The spaceΩ0 will
uniformize the underlying Riemann surface XO and we will
denote the corresponding covering map Ω0 → XO ≅ Ω0=Σ
by π0. Next, we can lift the branch divisor D by the
covering map π0∶ Ω0 → XO to get another branch divisor,

D̃ ≔
X

wi ∈ π−1
0
ðSing⋏ðOÞÞ

�
1 −

1

νðπΣðwiÞÞ
�
wi; ð11Þ

which lives on the planar region Ω0. Then, the pair ðΩ0; D̃Þ
will define a planar Riemann orbisurface Ω

⋏
such that

πΣ∶ Ω
⋏
→ O ≅ Ω

⋏
=Σ is an orbifold covering map (see [83]

for more details). In addition, note that the restriction of π0
to Ωreg ≔ Ω0nSuppD̃ provides Xreg

O with the Schottky
global coordinate such that the space CM ðOÞ is identified
with the affine subspace of C∞ðΩreg;RÞ consisting of
functions ψ satisfying the condition

ψ ∘ σ þ log jσ0j2 ¼ ψ for all σ ∈Σ; ð12Þ

and representing D̃ .
Let us now define amarked Schottky group as a Schottky

group Σ of rank g together with a choice of distinguished
relation-free system of generators L1;…; Lg for it. In fact,
a choice of marking for the Fuchsian group Γ uniquely
determines a marked Schottky group ðΣ;L1;…; LgÞ.
If N is the smallest normal subgroup of Γ containing
fα1;…;αg; τ1;…; τne ; κ1;…; κnpg then Σ is isomorphic to
the quotient group Γ=N. There is also a notion of
equivalence between two marked Schottky groups:
ðΣ;L1;…; LgÞ is said to be equivalent to ðΣ0;L0

1;…; L0
gÞ

if and only if there exists a Möbius transformation
ς∈PSLð2;CÞ such that L0

i ¼ ςLiς
−1 for all i ¼ 1;…; g.

Then, the Schottky spaceSg can be defined as the space of
equivalence classes of marked Schottky groups of genus g.
Now, we can introduce the generalized Schottky space
Sg;nðmÞ of Riemann orbisurfaces, both with and without
punctures. It is regarded as a holomorphic fibration
|∶ Sg;nðmÞ → Sg, where the fibers represent configuration
spaces of n labeled points.28 Denote by L1;…; Lg the
system of generators in Σ corresponding to the cosets
β1N;…; βgN in Γ. Normalizing the marked Schottky group
ðΣ;L1;…; LgÞ,29 we thereby associate with each marked

Schottky group (equivalently, with each O ≅ Ω
⋏
=Σ) a point

in the generalized Schottky space Sg;nðmÞ.

The Schottky uniformization of an orbisurface O is
connected with the Fuchsian uniformization of it by the
following commutative diagram:

ð13Þ

where each of the mappings is a holomorphic orbifold
covering (complex-analytic covering). The normal subgroup
N of Γ corresponds to the group of deck transformations of
the covering J. A deck transformation is a homeomorphism
deck∶H → H, such that the diagram of the maps

commutes. The set of deck transformations forms a group
which is called the automorphism group of covering map,
AutðJÞ (see Sec. A 1 c). Accordingly, the mapping J can
be regarded as a (meromorphic) function on H, which is
automorphic with respect to N—i.e., J ∘N ¼ J. Moreover,
J ∘ βi ¼ Li ∘ J for all i ¼ 1;…; g.

B. Projective connections and
energy-momentum tensor

Let O ¼ ðXO;DÞ be a hyperbolic Riemann orbisurface
with signature ðg;m1;…; mne ; npÞ, and let fðUa; uaÞg be a
complex-analytic atlas on the underlying Riemann surface
XO with local coordinates ua∶ Ua → C and transition
functions ua ¼ gab ∘ ub on overlaps Ua ∩ Ub. A (mero-
morphic) projective connection on O is a collection
R ¼ fraga∈A of holomorphic functions ra defined on each
Ua ∩ Xreg

O that satisfy

rb ¼ ra ∘ gabðg0abÞ2 þ Schðgab; ubÞ; ð14Þ

on every intersection Ua ∩ Ub ∩ Xreg
O and are compatible

with D—i.e., if xi ∈Ua ∩ SingðOÞ and uaðxiÞ ¼ 0,
we have

raðuaÞ ¼
1 − 1=m2

i

2u2a
þ ðjuaj−1Þ as ua → 0: ð15Þ

In the above definition of projective connections, Schðf; zÞ
denotes the Schwarzian derivative,

Schðf; zÞ ≔ f000

f0
−
3

2

�
f00

f0

�
2

; ð16Þ

28For details, see Sec. III C.
29By normalizing, we mean using the equivalence notion

of marked Schottky groups to set the attracting fixed points of
generators L1 and L2 as well as the repelling fixed point of
generator L1 equal to 0, 1, and ∞, respectively; see Sec. III C for
more details.
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of a holomorphic function fðzÞ and can be intuitively
viewed as measuring the failure of fðzÞ to be the restriction
of a Möbius transformation. Such meromorphic projective
connections are in one-to-one correspondence with CP1

structures on O (see Sec. B 3 for more details).
Remark 2.2. We note that the coefficient hi ≔ 1 − 1=m2

i
of the leading singular term in the asymptotic behavior (15)
of projective connections near each singular point
xi ∈SingðOÞ does not depend on the choice of chart or
complex coordinate u.
The above remark means that the difference between

two projective connections is a (meromorphic) quadratic
differential on O with only simple poles—i.e., a collection
Q ¼ fqaga∈A of holomorphic functions on each open
subset Ua ∩ Xreg

O with the transformation law

qb ¼ qa ∘ gabðg0abÞ2; ð17Þ
and the asymptotic behavior qaðuaÞ ¼ Oðjuaj−1Þ near
each singular point xi ∈Ua ∩ SingðOÞ with uaðxiÞ ¼ 0.
Conversely, we can add a meromorphic quadratic differ-
ential to a given projective connection to obtain a new
projective connection. Since we know that each Riemann
orbisurface has at least one CP1 structure, i.e. the one given
by Poincaré-Koebe uniformization, we have the following
(see [84]).
Proposition 2.1 (Biswas). The space of all CP1 struc-

tures on O, denoted by PðOÞ, is an affine space for the
vector space of all meromorphic quadratic differentials on
O with at most simple poles at singularities.
These meromorphic projective connections on O have

the following physical interpretation: For the hyperbolic
metric ds2hyp ¼ feφaðua;ūaÞjduaj2ga∈A onO, let us define the
following functions on each open subset Ua:

Ta ¼ ∂
2
uaφa −

1

2
ð∂uaφaÞ2 and T̄a ¼ ∂

2
ūaφa −

1

2
ð∂ūaφaÞ2:

ð18Þ
The collections Tφ ¼ fTaga∈A and T̄φ ¼ fT̄aga∈A are
the (2,0) and (0,2) components of the classical energy-
momentum tensor on O and are associated with the
quasiconformal transformations of the hyperbolic metric
(see, e.g., Appendix B of [19] for more details). In addition,
the functions Taðφaðua; ūaÞÞ satisfy the conservation law

∂ūaTaðφaðua; ūaÞÞ ¼ 0; ð19Þ
on each open subset Ua ∩ Xreg

O ⊂ Xreg
O and, as a result

of (5), have the asymptotic behavior

TaðuaÞ ¼
hi
2u2a

þOðjuaj−1Þ as ua → 0; ð20Þ

near each singular point xi ∈Ua ∩ SingðOÞ with
uaðxiÞ ¼ 0 and hi ¼ 1 − 1=m2

i . The property that functions

TaðuaÞ are meromorphic expresses the fact that the energy-
momentum tensor for the classical Liouville theory is
traceless and the coefficients hi=2 appearing in the above
asymptotics have the interpretation of conformal weights of
Liouville vertex operators corresponding to each singular
point [85]. Finally, it follows from (4) that on every overlap
Ua ∩ Ub ∩ Xreg

O ,

Tb ¼ Ta ∘ gabðg0abÞ2 þ Schðgab; ubÞ; ð21Þ

which means that, by definition, TφðuÞ is a meromorphic
projective connection on O. Since the hyperbolic metric
ds2hyp onO is a push forward of the Poincaré metric onH by
the covering map πΓ∶ H → O, a simple computation gives
TφðuÞ ¼ fSchðπ−1Γ ; uaÞga∈A. The multivalued analytic
function π−1Γ ∶ O → H is a locally univalent linear poly-
morphic function on O (this means that its branches are
connected by fractional linear transformations in Γ) and,
using the property SchðςðzÞ; zÞ ¼ 0 for all ς∈PSLð2;CÞ,
as well as the Caley identity,

Schðf ∘ g; zÞ ¼ Schðf; gÞðg0Þ2 þ Schðg; zÞ; ð22Þ

it is easy to verify directly that Schðπ−1Γ ; uaÞ are well-
defined functions on each subset Ua ∩ Xreg

O , which satisfy
(21). Slightly abusing notations, we will write TφðuÞ ¼
Schðπ−1Γ Þ and call it the Fuchsian projective connection on
O. Similarly, the Schottky global coordinate given by the

orbifold covering map πΣ∶ Ω
⋏
→ O ≅ Ω

⋏
=Σ, produces the

so-called Schottky projective connection Schðπ−1Σ Þ on O.
Remark 2.3. While the Fuchsian projective connection is

canonically determined by the Riemann orbisurface O and
does not depend on the choice of marking for Γ, the
Schottky projective connection is defined only for marked
Riemann orbisurfaces and is uniquely determined by the
normal subgroup N ⊂ Γ introduced in the previous
subsection.
It follows from the commutative diagram (13) and the

Caley identity (22) for the Schwarzian derivative that
the Fuchsian and Schottky projective connections are
related by

Schðπ−1Γ ; uaÞ ¼ SchðJ−1;wÞ ∘ π−1Σ ð∂uaπ−1Σ Þ2
þ Schðπ−1Σ ; uaÞ for all a∈A; ð23Þ

where w is the global coordinate on Ω. Therefore, the
collection n

SchðJ−1;wÞ ∘ π−1Σ ð∂uaπ−1Σ Þ2
o
a∈A

ð24Þ

is a meromorphic quadratic differential on O and TφðwÞ ≔
SchðJ−1;wÞ is a meromorphic automorphic form of weight
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4 for the Schottky group Σ—i.e., TφðσðwÞÞðσ0Þ2 ¼ TφðwÞ
for all σ ∈Σ.
With the above explanations in mind, we are now ready

to give a more technical summary of our main results: Let
T g;nðmÞ be the Teichmüller space of marked Riemann
orbisurfaces of genus g > 1 defined as the space of all
equivalence classes of marked Riemann orbisurfaces with
signature ðg;m1;…; mne ; npÞ.30 The affine spaces PðOÞ for
varying Riemann orbisurfaces O glue together to an affine
bundle Pg;nðmÞ → T g;nðmÞ, modeled over holomorphic
cotangent bundle of T g;nðmÞ. The Fuchsian projective
connection Schðπ−1Γ Þ gives a canonical section of the affine
bundle Pg;nðmÞ → T g;nðmÞ, while the Schottky projective
connection Schðπ−1Σ Þ gives a canonical section of the
affine bundle Pg;nðmÞ → Sg;nðmÞ. Their difference Q ≔
Schðπ−1Γ Þ − Schðπ−1Σ Þ can be viewed as a (1, 0)-form on the
Schottky space Sg;nðmÞ and has the following interesting
properties (see Theorems 1 and 2): Let us denote by ωWP

the symplectic form of the WP metric, and by ωell
TZ;i, ω

cusp
TZ;j,

the symplectic forms of ith-elliptic, jth-cuspidal TZ metrics
on generalized Schottky space Sg;nðmÞ. Additionally, let ∂
and ∂ denote the (1, 0) and (0, 1) components of the exterior
differential d on the Schottky space Sg;nðmÞ—i.e.,
d ¼ ∂þ ∂. Then, we have

(i) Q is ∂-exact—i.e., there exists a smooth function
Sm∶ Sg;nðmÞ → R such that

Q ¼ 1

2
∂Sm: ð25Þ

(ii) Q is a ∂ antiderivative (hence, a d antiderivative) of
the following combination of WP and TZ symplectic
forms on Sg;nðmÞ:

∂Q ¼ −
ffiffiffiffiffiffi
−1

p �
ωWP −

4π2

3
ωcusp
TZ −

π

2

Xne
i¼1

mihiωell
TZ;i

�
:

ð26Þ

Here, ωcusp
TZ ¼Pnp

j¼1 ω
cusp
TZ;j.

(iii) It follows immediately from the above two state-
ments that the function −Sm is a Kähler potential
for the special combination of WP and TZ metrics
on Sg;nðmÞ:

− ∂∂Sm

¼ 2
ffiffiffiffiffiffi
−1

p �
ωWP −

4π2

3
ωcusp
TZ −

π

2

Xne
i¼1

mihiωell
TZ;i

�
:

ð27Þ

Before ending this section, and in order to avoid
confusion in the remainder of this manuscript, we feel
the need to talk about our notation for coordinate functions
on different spaces: In this section, we have used ua to
denote the coordinate function on each open subset
Ua ⊂ XO. However, in what follows, we will always use
w to denote the coordinate function on Xreg

O when O has
genus g ¼ 0.31 When the orbifold Riemann surface O has
genus g > 1, fuaga∈A denotes the set of coordinate
functions on XO while w is used to denote the coordinate
function on Ωreg ⊂ C. This notation is meant to be
suggestive of the fact that the difference between

Schottky and Fuchsian uniformizations of O ≅ Ω
⋏
=Σ is

effectively equivalent to Fuchsian uniformization of the

planar orbifold Ω
⋏
. Finally, throughout this manuscript, z

has always been used to denote the coordinate function on
the upper half-plane H.

III. GEOMETRY OF TEICHMÜLLER, MODULI,
AND SCHOTTKY SPACES

In this section, we will recall some well-known facts
about the deformation theory of Ahlfors and Bers. More
details can be found in [86–88].

A. Teichmüller space T ðΓÞ
Let Γ be a finitely generated Fuchsian group of the

first kind that uniformizes the hyperbolic orbifold Riemann
surface O with the signature ðg;m1;…; mne ; npÞ. In this
situation, the Teichmüller space of Riemann orbisurfaces
can be equivalently described as the Teichmüller
space T ðΓÞ of Fuchsian groups with signature
ðg;m1;…;mne ;npÞ—i.e., the space of all equivalence
classes of marked Fuchsian groups with signature
ðg;m1;…; mne ; npÞ.
A Beltrami differential for Γ is defined as μ ≔ μðzÞ∂zdz̄,

where μðzÞ is a complex-valued bounded measurable
function on H with the property that

μðγzÞ γ
0ðzÞ
γ0ðzÞ ¼ μðzÞ for all γ ∈Γ and z∈H: ð28Þ

We will denote by A−1;1ðH;ΓÞ, the complex Banach space
of Beltrami differentials for Γ. Now, let DðΓÞ denote the
open unit ball in A−1;1ðH;ΓÞ, in the sense of the L∞ norm:

DðΓÞ≡


μ∈A−1;1ðH;ΓÞjkμk∞≔ sup

z∈H
jμðzÞj<1

�
: ð29Þ

30For details, see Sec. III A.

31Note that, in this situation, XO ≅ Ĉ needs to be covered with
at least two coordinate charts while Xreg

O ⊂ C can be covered with
only one chart.
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For each μ∈DðΓÞ, the Beltrami equation

∂zfμðzÞ ¼ μðzÞ∂zfμðzÞ; z∈H; ð30Þ

is solvable in the class of quasiconformal homeomorphisms
of H onto itself, and any two solutions are connected
by a linear fractional transformation in PSLð2;RÞ.
Let fμ be a solution of Beltrami equation (30) that fixes
points 0; 1;∞ and define Γμ ≔ fμ ∘Γ ∘ ðfμÞ−1, where Γμ is
a Fuchsian group with the same signature as Γ. Thus,
each element μ∈DðΓÞ gives a faithful representation ϱμ of
Γ in PSLð2;RÞ with 2g hyperbolic generators αμi ≔
fμ ∘ αi ∘ ðfμÞ−1 and βμi ≔ fμ ∘ βi ∘ ðfμÞ−1, np parabolic
elements κμi ≔ fμ ∘ κi ∘ ðfμÞ−1, as well as ne elliptic ele-
ments τμi ≔ fμ ∘ τi ∘ ðfμÞ−1 of orders m1;…; mne , respec-
tively, satisfying the single relation

αμ1β
μ
1ðαμ1Þ−1ðβμ1Þ−1 �� �αμgβμgðαμgÞ−1ðβμgÞ−1τμ1 �� �τμneκμ1 � � �κμnp ¼1:

ð31Þ

But one needs to define the equivalence classes of repre-
sentations ϱμ since two representations ϱμ1 and ϱμ2 are
called equivalent if they differ by an inner automorphism of
PSLð2;RÞ—i.e., if ϱμ2 ¼ ςϱμ1ς

−1 for a Möbius transfor-
mation ς∈PSLð2;RÞ. Accordingly, the Teichmüller space
T ðΓÞ is defined to be the set of all equivalence classes of
representations ϱμ∶ Γ → PSLð2;RÞ, μ∈DðΓÞ. In other
words,

T ðΓÞ ≅ DðΓÞ=∼; ð32Þ

where μ1 ∼ μ2 if and only if fμ1 ∘ γ ∘ ðfμ1Þ−1 ¼
fμ2 ∘ γ ∘ ðfμ2Þ−1 for all γ ∈Γ (equivalently, if
fμ1 jR ¼ fμ2 jR). The base point of T ðΓÞ is defined by
μ ¼ 0 and it corresponds to the group Γ. Last but not
least, the projection Φ∶DðΓÞ → T ðΓÞ induces a natural
complex-analytic manifold structure on T ðΓÞwhich will be
described in Sec. III A 1.
Remark 3.1. Let Γ1 and Γ2 be two cofinite Fuchsian

groups with the same signature, and let f∶H → H be a
quasiconformal mapping such that Γ2 ¼ f ∘Γ1 ∘ f−1. Then
f induces a mapping f�∶ T ðΓ1Þ → T ðΓ2Þ according to the
formula ϱμ1 ↦ ϱμ2 , where μ1 ∈DðΓ1Þ and

μ2 ¼
�
μ1 − ð∂z̄f=∂zfÞ
1 − μ1ð∂z̄f=∂zfÞ

∂zf

∂zf̄

�
∘ f−1 ∈DðΓ2Þ: ð33Þ

This mapping is a complex-analytic isomorphism in the
natural complex structure on T ðΓ1Þ and T ðΓ2Þ, which
makes a specific choice of base point inessential (see, e.g.,
Remark 3 of [5]).
Remark 3.2. Teichmüller space T ðΓÞ can be interpreted

as the Teichmüller space of marked Riemann orbisurfaces
with signature ðg;m1;…; mne ; npÞ by assigning to each
point ΦðμÞ∈ T ðΓÞ a marked Riemann orbisurface
Oμ ≅ ½H=Γμ�, with the orbisurface O ≅ ½H=Γ� playing
the role of a base point. It follows from Remark 3.1 that
the choice of a base point is inessential and, for this reason,
we will sometimes use the notation T g;nðmÞ to denote the
Teichmüller space of marked Riemann orbisurfaces with
signature ðg;m1;…; mne ; npÞ.32

1. Complex structure on T ðΓÞ
The complex structure on T ðΓÞ is uniquely characterized

by the fact that the mapping Φ∶DðΓÞ → T ðΓÞ is holo-
morphic. For a more explicit description of this canonical
complex-analytic structure, we consider the space
H2;0ðH;ΓÞ of holomorphic quadratic differentials (equiv-
alently, holomorphic cusp forms of weight 4) for Γ.33 An
arbitrary element q∈H2;0ðH;ΓÞ has the form q ¼ qðzÞdz2,
where qðzÞ is a bounded holomorphic function on H
that transforms according to the rule qðγzÞγ0ðzÞ2 ¼ qðzÞ
for all γ ∈Γ.34 The dimension of the space of

32It follows from the Bers-Greenberg theorem [89] that the
complex-analytic structure of T ðΓÞ does not depend on the
vector of orders—i.e., there exists a complex-analytic isomor-
phism between T g;nðmÞ and the Teichmüller space T g;n of
punctured Riemann surface Xreg

O . However, we will keep using
the notation T g;nðmÞ for the Teichmüller space of Riemann
orbisurfaces in order to emphasize that the natural Kähler
structure and the action of orbifold mapping class group on this
space does depend onm ¼ ðm1;…; mnÞ through dependence on
the signature type of O.

33By holomorphic cusp forms, we mean holomorphic
Γ-automorphic forms on H with zero constant coefficient in
their Fourier expansions near the cusps of Γ.

34As we will see in Sec. III B 1, any element q∈H2;0ðH;ΓÞ
corresponds to ameromorphic quadratic differentialQ∈H2;0ðOÞ—
i.e., a meromorphic (2,0)-tensor onXO with simple poles at singular
points.
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square-integrable meromorphic k differentials on O, or cusp forms of weight 2k for Γ, is given by Riemann-Roch formula
for orbifolds:

dimCHk;0ðOÞ ¼

8>>>>><>>>>>:
ð2k − 1Þðg − 1Þ þPne

i¼1

j
k
�
1 − 1

mi


k
þ ðk − 1Þnp; k > 1;

g; k ¼ 1;

1; k ¼ 0;

0; k < 0;

ð34Þ

where b·c denotes the floor function (see Theorem 2.24
of [90]). In particular, the dimension of the Hilbert space of
cusp forms of weight 4 for Γ is given by

dimCH2;0ðH;ΓÞ ¼ 3g − 3þ ne þ np ¼ 3g − 3þ n: ð35Þ

The Kodaira-Serre pairing

ðμ; qÞ ≔
ZZ

F ðΓÞ
μðzÞqðzÞd2z; ð36Þ

is well defined on the product of H2;0ðH;ΓÞ and

A−1;1ðH;ΓÞ. In the above equation, d2z≡ ffiffiffiffi
−1

p
2

dz ∧ dz̄ ¼
dðRezÞ ∧ dðIm zÞ and F ðΓÞ ⊂ H denotes a fundamental
domain for the Fuchsian group Γ. The subspaceN ðH;ΓÞ ⊂
A−1;1ðH;ΓÞ on which this pairing is degenerate coincides
with the kernel of the differential dΦ at μ ¼ 0∈DðΓÞ.
Moreover, the space A−1;1ðH;ΓÞ=N ðH;ΓÞ and H2;0ðH;ΓÞ
are dual with respect to the pairing (36). To realize
A−1;1ðH;ΓÞ=N ðH;ΓÞ as a subspace of A−1;1ðH;ΓÞ we
define the complex antilinear mapping Λ∶A−1;1ðH;ΓÞ →
H2;0ðH;ΓÞ with the help of the Bergman integral

ΛðμÞðzÞ¼12

π

ZZ
H

μðξÞ
ðξ̄−zÞ4d

2ξ; μ∈A−1;1ðH;ΓÞ; ð37Þ

its kernel coincides with N ðH;ΓÞ. The mapping
Λ�∶ H2;0ðH;ΓÞ → A−1;1ðH;ΓÞ is given by

Λ�ðqÞðzÞ ¼ ðIm zÞ2qðzÞ; q∈A2;0ðH;ΓÞ; ð38Þ

and satisfies the condition ΛΛ� ¼ id on H2;0ðH;ΓÞ. In
other words, Λ� arrays the exact sequence

0 → N ðH;ΓÞ ↪ A−1;1ðH;ΓÞΛ⃗H2;0ðH;ΓÞ → 0: ð39Þ

This enables us to realize A−1;1ðH;ΓÞ=N ðH;ΓÞ as the
subspace H−1;1ðH;ΓÞ ¼ Λ�ðH2;0ðH;ΓÞÞ of A−1;1ðH;ΓÞ
with complex dimension 3g − 3þ n: the space of so-called
harmonic Beltrami differentials.
The fact that KerdΦ ¼ N ðH;ΓÞ at 0∈DðΓÞ implies that

Φ∶DðΓÞ → T ðΓÞ maps a sufficiently small neighborhood
of the point 0∈H−1;1ðH;ΓÞ ∩ DðΓÞ injectively into T ðΓÞ

and can be regarded as a coordinate chart in a neighborhood
of Φð0Þ∈ T ðΓÞ. More explicitly, this coordinate chart can
be described as follows: Let μ1;…; μ3g−3þn denote a basis
in H−1;1ðH;ΓÞ and let μ ¼ t1μ1 þ � � � þ t3g−3þnμ3g−3þn be
any harmonic Beltrami differential with kμk∞ < 1. Then,
the correspondence ðt1;…; t3g−3þnÞ ↦ ΦðμÞ defines the
so-called Bers coordinates in a neighborhood of the origin
Φð0Þ∈ T ðΓÞ. The isomorphism T ðΓÞ ≅ T ðΓμÞ (see
Remark 3.1) makes it possible to introduce similar coor-
dinates in a neighborhood of an arbitrary point
ΦðμÞ∈ T ðΓÞ. As a result, the holomorphic tangent space
to T ðΓÞ at the point ΦðμÞ can be identified with
H−1;1ðH;ΓμÞ—the complex vector space of harmonic
Beltrami differentials for Γμ. The pairing (36) lets us regard
H2;0ðH;ΓμÞ, i.e., the vector space of holomorphic cusp
forms of weight 4 for Γμ, as the holomorphic cotangent
space to T ðΓÞ at the point ΦðμÞ. This collection of charts
gives the natural complex structure mentioned in the begin-
ning of this subsection, on the Teichmüller space T ðΓÞ.
Finally, we point out that one can always associate

3g − 3þ n vector fields ∂

∂ti
with the Bers’ coordinates

ðt1;…; t3g−3þnÞ in a neighborhood of Φð0Þ∈ T ðΓÞ. At
any other point ΦðμÞ in this neighborhood, we have
∂

∂ti
jΦðμÞ ¼ μΦðμÞ

i , where the harmonic Beltrami differentials

μΦðμÞ
i ∈H−1;1ðH;ΓμÞ are given by the formula

μΦðμÞ
i ¼ ProjH−1;1

��
μi

1 − jμj2
∂zfμ

∂zfμ

�
∘ ðfμÞ−1

�
: ð40Þ

Here, the mapping ProjH−1;1 denotes a projection onto the
subspace H−1;1ðH;ΓμÞ of harmonic Beltrami differentials.
Moreover, let q1;…; q3g−3þn be the basis in H2;0ðH;ΓÞ,
dual to the basis μ1;…; μ3g−3þn forH−1;1ðH;ΓÞ. Then, at an
arbitrary point ΦðμÞ in a neighborhood of the origin,
holomorphic one-forms dti are represented by the holo-

morphic quadratic differentials qΦðμÞ
i —i.e., dtijΦðμÞ ¼qΦðμÞ

i ,

where the basis qΦðμÞ
1 ;…; qΦðμÞ

3g−3þn ∈H2;0ðH;ΓμÞ has the
property

ProjH2;0

h
qΦðμÞ
i ∘ fμð∂zfμÞ2

i
¼ qi: ð41Þ
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In the above equation, ProjH2;0 denotes a projection onto the
subspace H2;0ðH;ΓÞ.

2. Variational formulas

In order to further explore the complex-analytic structure
of the Teichmüller space, variational formulas of the
hyperbolic metric ρðzÞjdzj2 on H play a significant role.
Let ϕε ∈Ak;lðH;ΓεμÞ be a smooth family of automorphic
forms of weight ð2k; 2lÞ where μ∈H−1;1ðH;ΓÞ denotes a
harmonic Beltrami differential and ε∈C is a sufficiently
small parameter. We denote by ðfεμÞ�ðϕεÞ the pullback of
the automorphic form ϕε with the unique diffeomorphism
fεμ∶ H → H that satisfies the Beltrami equation ∂z̄fεμ ¼
ðεμÞ∂zfεμ and fixes the points 0; 1;∞. We have

ðfεμÞ�ðϕεÞ ¼ ϕε ∘ fεμ
�
∂fεμ

∂z

�
k
�
∂fεμ

∂z

�l

∈Ak;lðH;ΓÞ: ð42Þ
In particular, for the density ρðzÞ ¼ ðIm zÞ−2 of the
Poincaré metric, considered as a family of (1,1)-tensors,
one has

ðfεμÞ�ðρÞ ¼ j∂zfεμj2
ðIm fεμÞ2 : ð43Þ

Let the Lie derivatives of the family ϕε in holomorphic
and antiholomorphic tangential directions, μ and μ̄, be
defined as

Lμϕ≡def ∂
∂ε

����
ε¼0

ðfεμÞ�ðϕεÞ∈Akþ1;lðH;ΓÞ;

Lμ̄ϕ≡def ∂
∂ε̄

����
ε¼0

ðfεμÞ�ðϕεÞ∈Ak;lþ1ðH;ΓÞ: ð44Þ

The first variational formula for ρðzÞ is given by the
following lemma due to Ahlfors [91].
Lemma 3.1 (Ahlfors). For any μ∈H−1;1ðH;ΓÞ, the Lie

derivatives of the density ρðzÞ of the Poincaré metric in
both holomorphic and antiholomorphic tangential direc-
tions vanish:

Lμρ ¼ Lμ̄ρ ¼ 0:

For the second variation of ρ, the following formula was
obtained by Wolpert (see Theorem 3.3 of [92]):

L
μμ0ρ≡

def ∂
2

∂ε1∂ε̄2

����
ε1¼ε2¼0

ðfε1μþε2μ
0 Þ�ðρÞ

¼ 1

2
ρ

�
Δ0 þ

1

2

�
−1
ðμμ0Þ≡ 1

2
ρ · f

μμ0 ; ð45Þ

where μ; μ0 ∈H−1;1ðH;ΓÞ. The Γ-automorphic function
f
μμ0 is uniquely determined by

�
Δ0 þ

1

2

�
f
μμ0 ¼ μμ0 and

ZZ
F ðΓÞ

jf
μμ0 j2ρðzÞd2z <∞;

ð46Þ

where Δ0 ≔ −ρðzÞ−1 ∂
2

∂z∂z̄ is the Laplace operator of the
hyperbolic metric acting on H0;0ðH;ΓÞ.35

3. Kähler metrics on T ðΓÞ
(i) Weil-Petersson metric. Together with the complex

antilinear isomorphism qðzÞ ↦ μðzÞ ¼ ρðzÞ−1qðzÞ,
the pairing (36) defines the Petersson inner product
on TΦð0ÞT ðΓÞ ≅ H−1;1ðH;ΓÞ:

hμ1; μ2iWP ¼
ZZ

F ðΓÞ
μ1ðzÞμ2ðzÞρðzÞd2z;

μ1; μ2 ∈H−1;1ðH;ΓÞ: ð47Þ

The Petersson inner product on the tangent spaces
determines the Weil-Petersson Kähler metric on
T ðΓÞ. Its Kähler (1, 1)-form is a symplectic form
ωWP on T ðΓÞ,

ωWPðμ1; μ2Þ ¼
ffiffiffiffiffiffi
−1

p

2

ZZ
F ðΓÞ

�
μ1ðzÞμ2ðzÞ

− μ1ðzÞμ2ðzÞ


ρðzÞd2z; ð48Þ

where μ1; μ2 ∈TΦð0ÞT ðΓÞ. It is worth mentioning
that the Weil-Petersson metric is both invariant
under the Teichmüller modular group ModðΓÞ and
real analytic.

(ii) Cuspidal Takhtajan-Zograf metric. In [93,94], a new
Kähler metric on T ðΓÞ was introduced by Takhtajan
and Zograf for the cases that the Fuchsian group Γ
has np > 0 parabolic elements. Let us indicate the
fixed points of the parabolic generators κ1;…; κnp by
zneþ1;…; zn ∈R ∪ f∞g.36 For each i ¼ 1;…; np
denote by hκii the cyclic subgroup of Γ generated
by κi, and let ςi ∈PSLð2;RÞ be such that ςið∞Þ ¼
zneþi and ς−1i κiςi ¼ ð1

0
�1
1
Þ. Let Eiðz; sÞ be the

Eisenstein-Maass series associated with the cusp
zneþi, which is defined as (see Sec. III in [65])

Eiðz; sÞ ¼
X

Γnγ ∈ hκii
Imðς−1i γzÞs: ð49Þ

The series is absolutely convergent for Res > 1, is
positive for s ¼ 2, and satisfies the equation

35See Sec. 2 of [93] for more detailed exposition.
36Note that ne þ np ¼ n.
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Δ0Eiðz; sÞ ¼
1

4
sð1 − sÞEiðz; sÞ: ð50Þ

The inner product

hμ1; μ2icuspTZ;i ¼
ZZ

F ðΓÞ
μ1ðzÞμ2ðzÞEiðz; 2ÞρðzÞd2z;

i ¼ 1;…; np; ð51Þ

in H−1;1ðH;ΓÞ, and the corresponding inner
products in all H−1;1ðH;ΓμÞ, determines another
Hermitian metric on T ðΓÞ which is Kähler for
each i ¼ 1;…; np. The metric h·; ·icuspTZ ¼
h·; ·icuspTZ;1 þ � � � þ h·; ·icuspTZ;np

, called the cuspidal
Takhtajan-Zograf (TZ) metric, is invariant with
respect to the Teichmüller modular group ModðΓÞ
(see Sec. III B). Let

ωcusp
TZ;i ¼

ffiffiffiffiffiffi
−1

p

2

X3g−3þn

j;k¼1

hμj; μkicuspTZ;idtj ∧ dtk ð52Þ

be the symplectic form of the ith cuspidal TZ metric
and also define ωcusp

TZ ¼ ωcusp
TZ;1 þ � � � þ ωcusp

TZ;np
. Ac-

cording to Lemma 2 of [93],

lim
Im z→∞

ImðςizÞfμjμ̄kðςizÞ ¼
4

3
hμj; μkicuspTZ;i;

i ¼ 1;…; np; ð53Þ

where μj; μk ∈H−1;1ðH;ΓÞ and f
μμ0 was defined in

Eq. (46), the cuspidal TZ metric pertains to the
second variation of the hyperbolic metric on H.

(iii) Elliptic Takhtajan-Zograf metric. As discussed in
[16,64], when the Fuchsian group has ne > 1 elliptic
generators τ1;…; τne , the local index theorem of
Takhtajan and Zograf [93] for punctured Riemann
surfaces can be generalized to include elliptic fixed
points. In this case, the role of Eisenstein-Maass
series Eiðz; sÞ associated with the cusp zneþi is
played by the automorphic Green’s function
G0ðz; zj; sÞ associated with the elliptic fixed point
zj, j ¼ 1;…; ne. More explicitly, for the elliptic
generator τj of Γ define

hμ1; μ2iellTZ;j ¼
ZZ

F ðΓÞ
μ1ðzÞμ2ðzÞGðzj; zÞρðzÞd2z;

j ¼ 1;…; ne; ð54Þ

where zj is the fixed point of τj, and Gðz; z0Þ≡
G0ðz; z0; 2Þ is the integral kernel of the resolvent
ðΔ0 þ 1

2
Þ−1. It was shown in Theorem 3 of [16] that

the metrics h·; ·iellTZ;j are also Kähler. In addition, if

we denote by h·; ·iellfsmg the sum over all elliptic TZ

metrics h·; ·iellTZ;j associated with the elliptic gener-
ators τj that have the same order of isotropy m, we
expect h·; ·iellfsmg to be invariant under the action of
Teichmüller modular group ModðΓÞ. Moreover, we
will denote by ωell

TZ;j the symplectic (1, 1)-form

ωell
TZ;j ¼

ffiffiffiffiffiffi
−1

p

2

X3g−3þn

l;k¼1

hμl; μkiellTZ;jdtl ∧ dtk: ð55Þ

Finally, the elliptic TZ metric is also intrinsically
related to the second variation of the hyperbolic
metric on H: The following result was proven by
Takhtajan and Zograf in Lemma 1, part (iii), of [16]:

lim
w→wj

fμlμ̄k ∘J−1ðwÞ¼
�

∂

∂wl
;
∂

∂wk

�
ell

TZ;j
; j¼1;…;ne;

ð56Þ
where μl; μk ∈H−1;1ðH;ΓÞ and f

μμ0 was defined

in Eq. (46).

B. Moduli spaces Mg;n and Mg;nðmÞ
In the previous subsection, we have defined the

Teichmüller space T ðΓÞ as the space of all equivalence
classes of representations ϱμ∶ Γ → PSLð2;RÞ and we have
seen that T ðΓÞ can be realized as a bounded complex
domain in C3g−3þn via the so-called Bers embedding. Let
Aut�ðΓÞ denote the group of proper automorphisms of Γ,
which carry parabolic elements into parabolic elements and
elliptic elements of order m into elliptic elements with the
same order. The group Aut�ðΓÞ acts on T ðΓÞ via

{ðϱμÞ ¼ ϱμ ∘ {; {∈Aut�ðΓÞ: ð57Þ
That this is well defined, i.e., that {ðϱμÞ is equivalent to
another representation ϱμ{ for some μ{ ∈DðΓÞ, follows
from the fact that any automorphism {∈Aut�ðΓÞ induces a
quasiconformal homeomorphism of H. The group InnðΓÞ
of inner automorphisms of Γ obviously acts on T ðΓÞ as the
identity. Let us remind that the factor group ModðΓÞ ≔
Aut�ðΓÞ=InnðΓÞ is called the Teichmüller modular group
and acts discretely on T ðΓÞ by complex-analytic auto-
morphisms that only change the marking of Γ. Denote by
Mod0ðΓÞ the subgroup of ModðΓÞ consisting of pure
mapping classes—i.e., those fixing the cusps and orbifold
points on O pointwise.37 The full Teichmüller modular

37The Teichmüller modular group ModðΓÞ acting on T ðΓÞ can
be identified with the orbifold mapping class group MCGðOÞ
acting on T g;nðmÞ. Here, MCGðOÞ is defined as HomeoþðOÞ=
Homeo0ðOÞ, where HomeoþðOÞ is the group of orientation
preserving homeomorphisms of O (in the category of orbifolds),
and Homeo0ðOÞ is its identity component.
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group ModðΓÞ is related to Mod0ðΓÞ by the short exact
sequence

1 → Mod0ðΓÞ → ModðΓÞ → SymmðsÞ → 1; ð58Þ

where SymmðsÞ ≔ Symmðs2Þ × Symmðs3Þ × � � � ×
Symmðs∞Þ denotes a subgroup of SymmðnÞ consisting
of all permutations that leave the signature type s ¼
fsmgm∈ N̂>1 invariant [95]. Then, the quotient space
T ðΓÞ=Mod0ðΓÞ is isomorphic to the moduli space Mg;n

of smooth algebraic curves of genus g with n ¼ ne þ np
labeled points. According to (58), the Teichmüller modular
group acts on Mg;n via SymmðsÞ and the quotient
Mg;n=SymmðsÞ is isomorphic to Mg;nðmÞ—the true
moduli space of orbifold Riemann surfaces with signature
ðg;m1;…; mne ; npÞ.38 Finally, we remark that both T g;nðmÞ
and Mg;nðmÞ depend not on the signature of O, but rather
on its signature type (see [78] for more details).

1. M0;nðmÞ
In the remainder of this subsection, we will focus on

the g ¼ 0 case for the sake of simplicity and return to
g > 1 Riemann orbisurfaces in the next subsection. A
normalized orbifold Riemann surface with signature
ð0;m1;…; mne ; npÞ is given by a pair O ¼
ðCnfwneþ1;…; wng;DÞ with D ¼Pne

i¼1ð1 − 1
mi
Þwi such

that wn−2, wn−1, and wn are at 0, 1, ∞, respectively.39

Accordingly, the moduli space M0;n¼FnðĈÞ=PSLð2;CÞ
is given by the following domain in Cn−3:

M0;n ¼
n
ðw1;…; wn−3Þ∈Cn−3

���wi ≠ 0; 1 and

wi ≠ wk for i ≠ k
o
; ð59Þ

where FnðĈÞ is the configuration space of n ¼ ne þ np
labeled distinct points in Ĉ. We will show that M0;n

40 is
covered (in the complex-analytic sense) by the Teichmüller
space of orbifold Riemann surfaces with signature
ð0;m1;…; mne ; npÞ. This will enable us to express the
vector fields ∂

∂wi
on M0;n in terms of sections of the

holomorphic tangent bundle of Teichmüller space.
Using Theorem A.7, we have O ≅ ½H=Γ�, where Γ is

normalized such that the fixed points of κn−2; κn−1; κn are at
zn−2 ¼ 0, zn−1 ¼ 1, and zn ¼ ∞, respectively. Denote by
H� the union of H and all parabolic points of Γ. There is a
unique (universal) orbifold covering map J∶H → O with
deckðJÞ ≅ Γ,41 which extends to a holomorphic isomor-
phism ½H�=Γ�⃗≅ Ô ¼ ðĈ; D̂Þ that fixes the points 0; 1;∞42

and has the property that wi ¼ JðziÞ for i ¼ 1;…; n − 3.43

The function J is univalent in any fundamental domain F
for Γ and has the following expansions near cusps and
conical singularities (for more details, see Appendix C):

JðzÞ ¼

8>>>>><>>>>>:
wi þ

P∞
k¼1 J

ðiÞ
k

�
z−zi
z−z̄i



kmi ði ¼ 1;…; neÞ; z → zi;

wi þ
P∞

k¼1 J
ðiÞ
k exp

�
− 2π

ffiffiffiffi
−1

p
k

jδijðz−ziÞ



ði ¼ ne þ 1;…; n − 1Þ; z → zi;P∞
k¼−1 J

ðnÞ
k exp

�
2π
ffiffiffiffi
−1

p
kz

jδnj



z → zn ¼ ∞:

ð60Þ

The first coefficients of the above expansions determine the
following smooth positive functions on M0;n:

hi ¼

8>>>>><>>>>>:

���JðiÞ1 ��� 2mi i ¼ 1;…; ne;���JðiÞ1 ���2 i ¼ ne þ 1;…; n − 1;���JðnÞ−1

���2 i ¼ n:

ð61Þ

Similar to the case of Mg;n discussed at the beginning of
this subsection, the symmetric group SymmðsÞ acts on
M0;n to give M0;nðmÞ ¼ M0;n=SymmðsÞ, the moduli
space of orbifold Riemann surfaces with signature
ð0;m1;…; mne ; npÞ. In order to describe the action of
SymmðsÞ on M0;n in more detail, we will make the
simplifying assumption that the signature of orbifold

38When all singular points have the same order of isotropy, the
situation will be similar to what has been previously studied by
Zograf [15].

39We are assuming that the stratum of conical points
Singmmax

ðOÞ with largest order of isotropy mmax ∈ N̂>1 has
cardinality of at least 3. The analysis in cases where this
assumption does not hold requires a change of notation, but
the fundamental lessons remain the same.

40What we have called M0;n in this paper is isomorphic to
what has been denoted by Wn in [5,15] and by Zn in [53].

41One might correctly want to identify the covering map J in
this subsection with the covering map πΓ in the commutative
diagram (13). Only for the reasons that will become clear later,
we decided to call the covering map in this subsection with J.

42In the literature, the J is called Klien’s Hauptmodul.
Actually, it stands as the sole Γ-automorphic function on H that
exhibits a simple pole at ∞ and fixes 0 and 1.

43The Q divisor D̂ refers to D þPn
j¼neþ1 wj.
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Riemann surface O is given by ð0;m;…; m|fflfflfflffl{zfflfflfflffl}
s

; m0;…; m0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s0

Þ

with s≡ sm and s0 ≡ sm0 > 3. Let us first focus on ordered
s0-tuples ðw1; w2;…; ws0 Þ with each wi ∈Singm0 . If none of
the points 0, 1 and ∞ are fixed in this set of points, then
Symmðs0Þ will simply be the group of permutations of s0
objects. This group is generated by the set of transpositions
fσi;iþ1gs0−1i¼1 , whose action only involves interchanging wi

and wiþ1 for i ≠ s0, and w1 and ws0 for i ¼ s0. The situation
will be a bit more complicated when the points 0, 1 and ∞
are fixed among these points, namely, we have a sector of
the form fðw1; w2;…; ws0−3; 0; 1;∞Þ∈Cs0 g. Then the
group Symmðs0Þ will be generated by the transpositions
fσi;iþ1gs0−1i¼1 and the action of transpositions will be fol-
lowed by a PSLð2;CÞ transformation to ensure that the last
three coordinates inM0;n remain 0, 1 and∞. If i < s0 − 3,
the transpositions will not affect the points 0, 1 and∞, thus
no further action of PSLð2;CÞwill be needed. If i ¼ s0 − 3,
then the set of branch points will change to fðw1; w2;…;
0; ws0−3; 1;∞Þg, and we need a transformation that will
take ws0−3 → 0; 1 → 1 and ∞ → ∞. This transformation is
γs0−3;s0−2 ¼ ðw − ws0−3Þ=ð1 − ws0−3Þ. Thus, in the end we
will arrive at fðw1−ws0−3

1−ws0−3
;…; ws0−4−ws0−3

1−ws0−3
; ws0−3
ws0−3−1

; 0; 1;∞Þg.
Repeating the same procedure for i¼s0−2 and i¼s0−1
will yield the transformations, γs0−2;s0−1 ¼ 1 − w and
γs0−1;s0 ¼ w=ðw − 1Þ. Putting all these together, the collec-
tive action of Symmðs0Þ on M0;n, can be expressed as
σi;iþ1ðw1; w2;…; ws0−3; 0; 1;∞Þ ¼ ðw̃1;…; w̃s0−3; 0; 1;∞Þ
such that

w̃k ¼

8>>>>>>>>>>>><>>>>>>>>>>>>:

wk ðk ≠ i; iþ 1Þ; i ≤ s0 − 4;

wkþ1 ðk ¼ iÞ; i ≤ s0 − 4;

wk−1 ðk ¼ iþ 1Þ; i ≤ s0 − 4;
w−ws0−3
1−ws0−3

ðk ≤ s0 − 4Þ; i ¼ s0 − 3;
ws0−3

ws0−3−1
ðk ¼ s0 − 3Þ; i ¼ s0 − 3;

1 − wk ðk ≤ s0 − 3Þ; i ¼ s0 − 2;
wk

wk−1
ðk ≤ s0 − 3Þ; i ¼ s0 − 1:

ð62Þ

As we said, the effect of σ0i;iþ1 ∈Symmðs0Þ on M0;n is
followed by a γi;iþ1 ∈PSLð2;CÞ on the orbifold Riemann
surface O with the coordinates w. This transformation is
actually an isomorphism that takes O to another orbifold
Riemann surface with the coordinates w̃ ¼ γi;iþ1ðwÞ. For
i ≤ s0 − 4, γi;iþ1 is simply the identity map. For the other
cases we have γi;iþ1∶ w → w̃ ¼ ðw − ws0−3Þ=ð1 − ws0−3Þ;
i ¼ s0 − 3, γi;iþ1∶ w → w̃ ¼ 1 − w; i ¼ s0 − 2, and
γi;iþ1∶ w → w̃ ¼ w=ðw − 1Þ for i ¼ s0 − 1. If one wishes
to consider the variation of the objects defined on X under
the action of Symmðs0Þ, one should study the effect of these
γi;iþ1 on them. Now keeping 0, 1 and∞ fixed in the Singm0

stratum, we consider ordered s-tuples ðw1; w2;…; wsÞ with

wj ∈Singm for all j ¼ 1;…; s, s ≔ jSingmj, and m < m0.
Here, we no longer make any assumptions about s. Again,
the group SymmðsÞ is generated by the transpositions
fσj;jþ1gs−1j¼1 and their action simply involves interchanging
wj and wjþ1. Thus, the γj;jþ1 defined for this set will all be
identity, meaning that SymmðsÞ will not have any non-
trivial effect on O. Moving forward, we can define the
direct product of the two symmetric groups SymmðsÞ ×
Symmðs0Þ as ordered pairs ðσ; σ0Þ; σ ∈SymmðsÞ;
σ0 ∈Symmðs0Þ. The group operations will then be
defined naturally on a pairwise basis, and this group acts
on M0;n,

fðw1;…; wsÞ∈Csg × fðw1; w2;…; ws0−3; 0; 1;∞Þ∈Cs0g
¼ fðw1;…; ws; wsþ1; wsþ2;…; wsþs0−3; 0; 1;∞Þg:

It is now clear that we have chosen to fix 0, 1, and∞ in the
stratum Singm0 in order to comply with our convention that
branch points are ordered with increasing order of isotropy.
In particular, the generators of the direct product group are
pairs of transpositions fðσj;jþ1; σ0i;iþ1Þgj¼s−1;i¼s0−1

j¼1;i¼1 . The
action of these pairs on M0;n is defined by their separate
action on their corresponding subspace:

ðσj;jþ1;σ0i;iþ1Þðw1;…;ws;wsþ1;wsþ2;…;wsþs0−3;0;1;∞Þ
¼
�
σj;jþ1ðw1;…;wsÞ;σ0i;iþ1ðwsþ1;wsþ2;…;wsþs0−3;0;1;∞Þ



:

ð63Þ

Similar to the cases with the single stratum, these trans-
positions should be followed by a transformation
γj;jþ1;i;iþ1 ∈PSLð2;CÞ on the orbifold Riemann surface
O. For any j and i ≤ s0 − 4, the corresponding trans-
formation is simply the identity map, and for the cases
with i ¼ s0 − 3; s0 − 2; s0 − 1 and arbitrary j we have
γj;jþ1;i;iþ1’s that is identical to γi;iþ1’s defined for the
stratum Singm0 , with ws0−3 replaced by wsþs0−3. This means
that (63) can be expressed more explicitly by ðσj;jþ1;
σ0i;iþ1Þðw1;…; ws; wsþ1; wsþ2;…; wsþs0−3; 0; 1;∞Þ ¼ ðw̃1;
…; w̃s; w̃sþ1; w̃sþ2;…; w̃sþs0−3; 0; 1;∞Þ such that

w̃k¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

wk ðk≠ j;jþ1;sþ i;sþ iþ1Þ; i≤s0−4;∀ j;

wkþ1 ðk¼ j or k¼sþ iÞ; i≤s0−4;∀ j;

wk−1 ðk¼ jþ1 or k¼sþ iþ1Þ; i≤s0−4;∀ j;
wk−wsþs0−3
1−wsþs0−3

ðk≤sþs0−4Þ; i¼s0−3;∀ j;
wsþs0−3

wsþs0−3−1
ðk¼sþs0−3Þ; i¼s0−3;∀ j;

1−wk ðk≤sþs0−3Þ; i¼s0−2;∀ j;
wk

wk−1
ðk≤sþs0−3Þ; i¼s0−1;∀ j:

ð64Þ
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It is clear that one can continue developing larger
direct products with more strata by doing simple changes
to (64). It is natural that, similar to the case of the
single stratum, one needs to look at the related Möbius
transformation when dealing with the variation of objects
with respect to the action of SymmðsÞ. For the symmetric
group Symmðs0Þ, one can define the one-cocycle
ffσ0 gσ0 ∈Symmðs0Þ. It is defined for the generators by

fσ0i;iþ1
¼

8>><>>:
1 i ¼ 1; 2;…; s0 − 4; s0 − 2;

ðws0−3 − 1Þh0ðs0−2Þ i ¼ s0 − 3;Qs0−3
k¼1 ðwk − 1Þ2h0 i ¼ s0 − 1;

ð65Þ

where h0=2 is the conformal weight corresponding to m0.

Note that if m0 → ∞, namely the case of punctures, (65)
will be slightly different:

fσ0i;iþ1
¼

8>><>>:
1 i¼1;2;…s0−4;s0−2;

ðws0−3−1Þðs0−2Þ i¼s0−3;Qs0−3
k¼1 ðwk−1Þ2 i¼s0−1:

ð66Þ

The action of the one-cocycle fσ0 can be extended to a
general element in Symmðs0Þ by the product rule
fσ0

1
σ0
2
¼ ðfσ0

1
∘ σ02Þfσ02 , σ01; σ

0
2 ∈Symmðs0Þ. For the group

SymmðsÞ, the effect of the one-cocycle on the generators
is trivial, namely fσj;jþ1

¼ 1. Finally, for the direct product
group SymmðsÞ × Symmðs0Þ the one-cocycle will be given
for the generators by

fðσj;jþ1;σ0i;iþ1
Þ ¼

8>><>>:
1 i ¼ 1; 2;…s0 − 4; s0 − 2; ∀ j

ðwsþs0−3 − 1Þhsþh0ðs0−2Þ i ¼ s0 − 3; ∀ jQs
k¼1ðwk − 1Þ2hQs0−3

k¼sþ1ðwk − 1Þ2h0 i ¼ s0 − 1; ∀ j;

ð67Þ

where h=2; h0=2 are the conformal weights corresponding
to m, m0. Thus, we can see that the nontriviality of the one-
cocycle f is only due to the fixed points 0, 1 and ∞, and if
none of them are involved in the permutation, the one-
cocycle will be trivial.
Remark 3.3. As we will see in Lemma 4.1, a simple way

to determine the one-cocycles f is to calculate the variation
of the Liouville action due to the transformation of M0;n

under the symmetric group. In other words, these one-
cocycles are basically the modular anomaly caused by the
noncovariance of the action under the effect of the
modular group.
As in [14,15], let ffηgη∈SymmðsÞ be the one-cocycle for

SymmðsÞ on M0;n. These one-cocycles can be used to
define a holomorphic Q-line bundle over the moduli space
M0;nðmÞ. To do so, one constructs the trivial bundle
M0;n × C and defines the action of SymmðsÞ on this
bundle by

ðw; z̃Þ ↦ ðη · w; fηðwÞz̃Þ;
w∈M0;n; z̃∈C; η∈SymmðsÞ: ð68Þ

Then, the desired holomorphic Q-line bundle λ0;m ¼
ðM0;n × CÞ=∼ over moduli space M0;nðmÞ ¼ M0;n=

SymmðsÞ is defined by the identification ðw; z̃Þ ∼ ðη · w;
fηðwÞz̃Þ for all η∈SymmðsÞ.
Lemma 3.2. Let O be a closed (i.e., np ¼ 0) orbifold

Riemann surface with signature ð0;m1;…; mnÞ and fix the
last three conical points to be at 0, 1, and∞ (as always, we
assume that these three conical points belong to the same
stratum). Define a positive function,

H ¼ hm1h1
1 � � � hmn−1hn−1

n−1 h−mnhn
n ;

onM0;n. Then, the H determines a Hermitian metric in the
holomorphic Q-line bundle λ0;m over M0;nðmÞ, where mis
are the branching indices and hi=2 s are their correspond-
ing conformal weights.
Proof. We prove this lemma for the case where we have

only two strata of s branch points of order m and s0 branch
points of orderm0. Furthermore, we assume that s0 > 3, and
the last three conical points in the stratum Singm0 (m0 > m)
are chosen to be at 0, 1,∞. In the end, we shall explain how
the rest of the cases can be dealt with similarly. We have
M0;n ¼ fðw1;…; ws; wsþ1; wsþ2;…; wsþs0−3; 0; 1Þg. For
simplicity of notation, we can, from now on, denote
sþ s0 ¼ n in the proof. Each of the hks can be viewed
as a function on C with the appropriate asymptotics [see
(61), part 3, in Lemma C.1 and Remark C.1]. Accordingly,
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logH ¼ hm
Xs
k¼1

�
−2 logmþ 2 log 2 − lim

w→wk

�
φðwÞ þ

�
1 −

1

m

�
log jw − wkj2

��

þ h0m0 Xn−1
k¼sþ1

�
−2 logm0 þ 2 log 2 − lim

w→wk

�
φðwÞ þ

�
1 −

1

m0

�
log jw − wkj2

��
− h0m0

�
2 logm0 − 2 log 2þ lim

w→∞

�
φðwÞ þ

�
1þ 1

m0

�
log jwj2

��
: ð69Þ

Now we need to calculate the variation of logH under the effect of SymmðsÞ ¼ SymmðsÞ × Symmðs0Þ. For this, it suffices
to look at the effect of the generators fðσj;jþ1; σ0i;iþ1Þgj¼s−1;i¼s0−1

j¼1;i¼1 . Considering the background we provided above on the
structure of the generators, variation is translated through the effect of the transformation γj;jþ1;i;iþ1:

Δ logH ¼ logH½γj;jþ1;i;iþ1� − logH: ð70Þ

By looking at (64), we see that the index j does not have any nontrivial effect, and we only have to worry about different
values of i. For i < s0 − 3 the isomorphism γj;jþ1;i;iþ1 is the identity so we, for this case, have Δ logH ¼ 0. The nontrivial
cases are i ¼ s0 − 3; i ¼ s0 − 2, and i ¼ s0 − 1. In the following, we study them separately:

(i) i ¼ n − 3 case:
The needed Möbius transformation is given by γj;jþ1;i;iþ1 ¼ ðw − wn−3Þ=ð1 − wn−3Þ in this case. For simplicity,

we denote this by just γ. Thus, we write

Δ logH ¼ logH½γ� − logH

¼ −hm
Xs
k¼1

�
lim

γðwÞ→γðwkÞ

�
φ̃ðγðwÞÞ þ

�
1 −

1

m

�
log jγðwÞ − γðwkÞj2

��
þ hm

Xs
k¼1

�
lim
w→wk

�
φðwÞ þ

�
1 −

1

m

�
log jw − wkj2

��

− h0m0 Xn−1
k¼sþ1

�
lim

γðwÞ→γðwkÞ

�
φ̃ðγðwÞÞ þ

�
1 −

1

m0

�
log jγðwÞ − γðwkÞj2

��

þ h0m0 Xn−1
k¼sþ1

�
lim
w→wk

�
φðwÞ þ

�
1 −

1

m0

�
log jw − wkj2

��
− h0m0 lim

γðwÞ→γð∞Þ

�
φ̃ðγðwÞÞ þ

�
1þ 1

m0

�
log jγðwÞj2

�
þ h0m0 lim

w→∞

�
φðwÞ þ

�
1þ 1

m0

�
log jwj2

�
; ð71Þ

where φ̃ is the transformed counterpart of φ through the isomorphism γ. From the invariance of the hyperbolic
metric, these two are related by

φðwÞ ¼ φ̃ðγðwÞÞ þ log

���� ∂γðwÞ
∂w

����2 ¼ φ̃ðγðwÞÞ − 2 log j1 − wn−3j: ð72Þ

We also have
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log jγðwÞ − γðwkÞj ¼

8>>>>>>>>><>>>>>>>>>:

log jγðwÞ − γðwkÞj ¼ log
��� w−wk
1−wn−3

��� k ≤ n − 4;

log jγðwÞ − γð0Þj ¼ log
��� w
1−wn−3

��� k ¼ n − 3;

log jγðwÞ − γðwn−3Þj ¼ log
��� w−wn−3
1−wn−3

��� k ¼ n − 2;

log jγðwÞ − γð1Þj ¼ log
��� w−1
1−wn−3

��� k ¼ n − 1:

ð73Þ

Note that in finding (73), we first included the transposition that exchanges wn−3 and wn−2 ¼ 0 and then included the
effect of γ. Putting (72) and (73) together we look more closely at (71). The terms with k ≤ n − 4 in the sum are quite
straightforward:

I1 ¼ −hm
Xs
k¼1

�
lim

γðwÞ→γðwkÞ

�
φ̃ðγðwÞÞ þ

�
1 −

1

m

�
log jγðwÞ − γðwkÞj2

��
þ hm

Xs
k¼1

�
lim
w→wk

�
φðwÞ þ

�
1 −

1

m

�
log jw − wkj2

��

− h0m0 Xn−4
k¼sþ1

�
lim

γðwÞ→γðwkÞ

�
φ̃ðγðwÞÞ þ

�
1 −

1

m0

�
log jγðwÞ − γðwkÞj2

��

þ h0m0 Xn−4
k¼sþ1

�
lim
w→wk

�
φðwÞ þ

�
1 −

1

m0

�
log jw − wkj2

��

¼ −hm
Xs
k¼1

�
lim
w→wk

�
2 log j1 − wn−3j þ

�
1 −

1

m

�
log

���� w − wk

1 − wn−3

����2��
þ hm

Xs
k¼1

�
lim
w→wk

��
1 −

1

m

�
log jw − wkj2

��

− h0m0 Xn−4
k¼sþ1

�
lim
w→wk

�
2 log j1 − wn−3j þ

�
1 −

1

m0

�
log

���� w − wk

1 − wn−3

����2��

þ h0m0 Xn−4
k¼sþ1

�
lim
w→wk

��
1 −

1

m0

�
log jw − wkj2

��
¼ −2ðhsþ h0ðs0 − 4ÞÞ log j1 − wn−3j:

For k ¼ n − 3, we have

I2¼−h0m0 lim
γðwÞ→γð0Þ

�
φ̃ðγðwÞÞþ

�
1−

1

m0

�
logjγðwÞ−γð0Þj2

�
þh0m0 lim

w→wn−3

�
φðwÞþ

�
1−

1

m0

�
logjw−wn−3j2

�
¼−h0m0 lim

w→0

�
φðwÞþ2logj1−wn−3jþ

�
1−

1

m0

�
log

���� w
1−wn−3

����2�þh0m0 lim
w→wn−3

�
φðwÞþ

�
1−

1

m0

�
logjw−wn−3j2

�
:

For k ¼ n − 2,

I3¼−h0m0 lim
γðwÞ→γðwn−3Þ

�
φ̃ðγðwÞÞþ

�
1−

1

m0

�
logjγðwÞ−γðwn−3Þj2

�
þh0m0 lim

w→0

�
φðwÞþ

�
1−

1

m0

�
log jwj2

�
¼−h0m0 lim

w→wn−3

�
φðwÞþ2 logj1−wn−3jþ

�
1−

1

m0

�
log

����w−wn−3

1−wn−3

����2�þh0m0 lim
w→0

�
φðwÞþ

�
1−

1

m0

�
logjwj2

�
:
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Thus, we have

I2 þ I3 ¼ −2h0 log j1 − wn−3j:

Also for k ¼ n − 1,

I4 ¼ −h0m0 lim
γðwÞ→γð1Þ

�
φ̃ðγðwÞÞ þ

�
1 −

1

m0

�
log jγðwÞ − γð1Þj2

�
þ h0m0 lim

w→1

�
φðwÞ þ

�
1 −

1

m0

�
log jw − 1j2

�
¼ −h0m0 lim

w→1

�
2 log j1 − wn−3j þ

�
1 −

1

m0

�
log

���� w − 1

1 − wn−3

����2�þ h0m0 lim
w→1

��
1 −

1

m0

�
log jw − 1j2

�
¼ −2h0 log j1 − wn−3j:

Finally, for the contribution of infinity,

I5 ¼ −h0m0 lim
γðwÞ→γð∞Þ

�
φ̃ðγðwÞÞ þ

�
1þ 1

m0

�
log jγðwÞj2

�
þ h0m0 lim

w→∞

�
φðwÞ þ

�
1þ 1

m0

�
log jwj2

�
¼ −h0m0 lim

w→∞

�
2 log j1 − wn−3j þ

�
1þ 1

m0

�
log

����w − wn−3

1 − wn−3

����2�þ h0m0 lim
w→∞

��
1þ 1

m0

�
log jwj2

�
¼ 2h0 log j1 − wn−3j:

Thus, we have for all j:

Δ logH ¼
X5
i¼1

Ii ¼ −2ðhsþ h0ðs0 − 2ÞÞ log j1 − wn−3j ¼ −2 log jfðσj;jþ1;σ0n−3;n−2Þj; ð74Þ

where we used (67) in the last equality.
(ii) i ¼ n − 2 case:

Now, we look at the case with i ¼ n − 2 and again denote the morphism by γ. We have γ ¼ 1 − w in this case.
Furthermore,

φðwÞ ¼ φ̃ðγðwÞÞ þ log

���� ∂γðwÞ
∂w

����2 ¼ φ̃ðγðwÞÞ;

log jγðwÞ − γðwkÞj ¼

8>><>>:
log jγðwÞ − γðwkÞj ¼ log jw − wkj k ≤ n − 3;

log jγðwÞ − γð1Þj ¼ log j1 − wj k ¼ n − 2;

log jγðwÞ − γð0Þj ¼ log jwj k ¼ n − 1:

Accordingly, it is quite clear that the variation is zero in this case, which is in agreement with the lemma.
(iii) i ¼ n − 1 case:

The last and perhaps the most subtle case is the case with i ¼ n − 1. Here we have γ ¼ w=ðw − 1Þ, and

φðwÞ ¼ φ̃ðγðwÞÞ þ log

���� ∂γðwÞ
∂w

����2 ¼ φ̃ðγðwÞÞ − 2 log j1 − wj2;

log jγðwÞ − γðwkÞj ¼
8<: log jγðwÞ − γðwkÞj ¼ log

��� w−wk
ð1−wÞð1−wkÞ

��� k ≤ n − 2;

log jγðwÞ − γð∞Þj ¼ log
��� 1
1−w

��� k ¼ n − 1:
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Using these we again decompose (71) and write for k ≤ n − 2:

Ĩ1¼−hm
Xs
k¼1

�
lim

γðwÞ→γðwkÞ

�
φ̃ðγðwÞÞþ

�
1−

1

m

�
logjγðwÞ−γðwkÞj2

��
þhm

Xs
k¼1

�
lim
w→wk

�
φðwÞþ

�
1−

1

m

�
logjw−wkj2

��

−h0m0 Xn−2
k¼sþ1

�
lim

γðwÞ→γðwkÞ

�
φ̃ðγðwÞÞþ

�
1−

1

m0

�
logjγðwÞ−γðwkÞj2

��

þh0m0 Xn−2
k¼sþ1

�
lim
w→wk

�
φðwÞþ

�
1−

1

m0

�
logjw−wkj2

��

¼−hm
Xs
k¼1

�
lim
w→wk

�
2log j1−wj2þ

�
1−

1

m

�
log

���� w−wk

ð1−wÞð1−wkÞ
����2��þhm

Xs
k¼1

�
lim
w→wk

��
1−

1

m

�
logjw−wkj2

��

−h0m0 Xn−2
k¼sþ1

�
lim
w→wk

�
2log j1−wj2þ

�
1−

1

m0

�
log

���� w−wk

ð1−wÞð1−wkÞ
����2��

þh0m0 Xn−2
k¼sþ1

�
lim
w→wk

��
1−

1

m0

�
logjw−wkj2

��

¼−2h
Xs
k¼1

logj1−wkj2−2h0
Xn−2
k¼sþ1

log j1−wkj2

¼−2h
Xs
k¼1

logj1−wkj2−2h0
Xn−3
k¼sþ1

log j1−wkj2;

where in the last equality, we used the fact that wn−2 ¼ 0. For k ¼ n − 1 we have

Ĩ2 ¼ −h0m0 lim
γðwÞ→γð∞Þ

�
φ̃ðγðwÞÞ þ

�
1 −

1

m0

�
log jγðwÞ − γð∞Þj2

�
þ h0m0 lim

w→1

�
φðwÞ þ

�
1 −

1

m0

�
log j1 − wj2

�
¼ −h0m0 lim

w→∞

�
φðwÞ þ 2 log j1 − wj2 þ

�
1 −

1

m0

�
log

���� 1

1 − w

����2�þ h0m0 lim
w→1

�
φðwÞ þ

�
1 −

1

m0

�
log j1 − wj2

�
;

and for the point at the infinity, we have

Ĩ3 ¼ −h0m0 lim
γðwÞ→γð1Þ

�
φ̃ðγðwÞÞ þ

�
1þ 1

m0

�
log jγðwÞj2

�
þ h0m0 lim

w→∞

�
φðwÞ þ

�
1þ 1

m0

�
log jwj2

�
¼ −h0m0 lim

w→1

�
φðwÞ þ 2 log j1 − wj2 þ

�
1þ 1

m0

�
log

���� w
1 − w

����2�þ h0m0 lim
w→∞

�
φðwÞ þ

�
1þ 1

m0

�
log jwj2

�
:

Thus, we see that Ĩ2 þ Ĩ3 ¼ 0 and consequently again for all j:

Δ logH ¼
X3
i¼1

Ĩi ¼ −2h
Xs
k¼1

log j1 − wkj2 − 2h0
Xn−3
k¼sþ1

log j1 − wkj2 ¼ −2 log jfðσj;jþ1;σ0n−1;nÞj; ð75Þ

where we again used (67) in the last equality.
By putting together all of the cases above, we see that

Δ logH ¼ logH ∘ ðσj;jþ1; σ0i;iþ1Þ − logH ¼ −2 log jfðσj;jþ1;σ0i;iþ1
Þj; ∀ i; j: ð76Þ
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Had we chosen any other way to fix 0, 1 and ∞ by finding
the appropriate generators and one-cocycles, the calcula-
tions analogous to the one above would yield the same
result. In fact, the inclusion of hkmk in the definition of H
ensures that no matter how we choose to fix these points,
this lemma holds. Finally, the case with more kinds of
branch points can be derived inductively from the calcu-
lation above. Thus, (76) holds in general, and it means that
under the action of the elements of SymmðsÞ, H transforms
according to the rule ðH ∘ ηÞjfηj2 ¼ H. This means thatH is
a Hermitian metric in the holomorphic Q-line bundle λ0;m
over M0;nðmÞ. ▪
Remark 3.4. When O is a punctured orbifold Riemann

surface with signature ð0;m1;…; mne ; np > 3Þ, the
Hermitian metric H on Q-line bundle λ0;m is defined as
(see (61)

H ¼ hm1h1
1 � � � hmnehne

ne hneþ1 � � � hn−1h−1n :

It is worth noting that the proof of Lemma 3.2 for the case
of punctured Riemann surfaces can be found in [14] and is

just a matter of redoing the calculations above with the
appropriate one-cocycles.
The Poincaré metric on H can be push forwarded by the

covering map J∶H → O to obtain the hyperbolic metric
eφðwÞjdwj2 on orbifold Riemann surface O as follows:

eφðwÞ ¼

���J−1ðwÞ0���2
ðIm J−1ðwÞÞ2 : ð77Þ

The condition that the curvature is constant and equal to
−1, except at singularities, means that the function φðwÞ
satisfies the Liouville’s equation,

∂w∂w̄φ ¼ 1

2
eφ; ð78Þ

on Xreg
O . Moreover, as discussed in Lemma C.1, one can

derive the following asymptotic behavior for φðwÞ near
cusps and conical singularities:

φðwÞ ¼

8>>>>><>>>>>:
−2
�
1 − 1

mi



log jw − wij þ log 4jJðiÞ

1
j− 2

mi

m2
i

þ O ð1Þ w → wi;

−2 log jw − wjj − 2 log
��� log��� w−wj

JðjÞ
1

������þ O ð1Þ w → wj;

−2 log jwj − 2 log log
��� w
JðnÞ−1

���þOðjwj−1Þ; w → ∞;

with i¼1;…;ne and j¼neþ1;…;n−1. Also, we have44

TφðwÞ ¼ ∂
2
wφ −

1

2
ð∂wφÞ2 ¼

Xn−1
i¼1

�
hi

2ðw − wiÞ2
þ ci
w − wi

�
;

ð79Þ

with hi ¼ 1 for i ¼ ne þ 1;…; n − 1 and

TφðwÞ ¼
1

2w2
þ cn
w3

þOðjwj−4Þ as w → ∞; ð80Þ

where

ci ≡ −
hiJ

ðiÞ
2�

JðiÞ1


2
; i ¼ 1;…; ne;

cj ≡ −
JðjÞ2�
JðjÞ1



2
; j ¼ ne þ 1;…; n − 1;

cn ≡ JðjÞ0 ; j ¼ n; ð81Þ

are the so-called accessory parameters of the Fuchsian
differential equation. The accessory parameters ck ¼
ckðw1;…; wn−3Þ for k ¼ 1;…; n, can be regarded as
real-analytic functions on M0;n.

45 In addition, the expan-
sion of (79) around w → ∞ gives

TφðwÞ ¼
1

w

Xn−1
k¼1

ck þ
1

w2

Xn−1
k¼1

�
hk
2
þ ckwk

�

þ 1

w3

Xn−1
k¼1

wkðhk þ ckwkÞ þOðjwj−4Þ as w→∞:

By equating the above expansion with (80), we get three
conditions on the accessory parameters:

Xn−1
k¼1

ck ¼ 0;
Xn−1
k¼1

ðhk þ 2ckwkÞ ¼ 1;

Xn−1
k¼1

wkðhk þ ckwkÞ ¼ cn; ð82Þ

44The Liouville’s theorem in complex analysis is used.

45This is a consequence of the fact that the Liouville filed φ is a
real-analytic function on M0;n.
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which enables us to express cn−2, cn−1, and cn explicitly in
terms of w1;…; wn−1 and the remaining n − 3 accessory
parameters.
Consider the Riemann orbisurface O ≅ ½H=Γ� as a base

point in the Teichmüller space T 0;nðmÞ. Moreover, con-
sider the solution of the Beltrami equation (30) such that the
fixed points of κn−2; κn−1; κn are at zn−2 ¼ 0, zn−1 ¼ 1, and
zn ¼ ∞. Then the generators κμn−2; κ

μ
n−1; κ

μ
n of Γμ ¼

fμ ∘Γ ∘ ðfμÞ−1 will also have fixed points 0, 1, and ∞,
respectively. Accordingly, the Riemann orbisurface
Oμ ≅ ½H=Γμ� can be uniquely and complex analytically
embedded in Ĉ in such a way that the punctures on Oμ

corresponding to the elements κμn−2, κμn−1, and κμn are
mapped into 0, 1, and ∞. Denote by Jμ the normalized
covering map Jμ∶ H → Oμ corresponding to this embed-
ding and let wμ

i ¼ ðJμ ∘ fμÞðziÞ. Then, the map
Ψ∶T 0;nðmÞ → Cn−3, defined by

Ψ ∘ΦðμÞ ¼ ðwμ
1;…; wμ

n−3Þ∈Cn−3; ð83Þ
is well defined, and its image in Cn−3 coincides withM0;n.
According to the above considerations, we have the
following closed commutative diagram:

ð84Þ

where Fμ is the mapping of O onto Oμ. From the above
commutative diagram, we can deduce that the Fμ is a
quasiconformal homeomorphism of C onto itself with

∂w̄Fμ ¼ M∂wFμ; ð85Þ
where

M≡defðμ ∘ J−1Þ ðJ
−1Þ0

ðJ−1Þ0 : ð86Þ

Consider the Beltrami differential εμ, where
μ∈A−1;1ðH;ΓÞ and ε is a sufficiently small complex
number. The function fεμðzÞ is a real-analytic function of
ε for each particular z∈H. Let

ḟμþ≡def
�
∂

∂ε
fεμ
�����

ε¼0

; ḟμ−≡def
�
∂

∂ε̄
fεμ
�����

ε¼0

; ð87Þ

then (see Sec. V. C of [86])

ḟμþ ¼ −
1

π

Z Z
H
μðz0ÞRðz0; zÞd2z0;

ḟμ− ¼ −
1

π

Z Z
H
μðz0ÞRðz0; zÞd2z0; ð88Þ

where

Rðz0;zÞ≡def 1

z0−z
þz−1

z0
−

z
z0−1

¼ zðz−1Þ
ðz0−zÞz0ðz0−1Þ : ð89Þ

In turn, the function FμðwÞ is holomorphic with respect to ε
for each particular w∈C, and

ḞμðwÞ ¼ −
1

π

ZZ
C
Mðw0ÞRðw0; wÞd2w0; ð90Þ

where Ḟμ is understood to be given by ð∂Fεμ=∂εÞjε¼0 andM
was defined by Eq. (86).46 Proof of these assertions can be
found in [86,87,96]. Moreover, let

RiðwÞ ¼ −
1

π
Rðw;wiÞ

¼ −
wiðwi − 1Þ

πðw − wiÞwðw − 1Þ ; i ¼ 1;…; n − 3; ð91Þ

where Ris are linearly independent and generate the space
H2;0ðOÞ. Denote by fQigi¼1;…;n−3 the basis in H2;0ðOÞ
biorthogonal to fRigi¼1;…;n−3 in the sense of inner product
(C27)—i.e., hRi;Qji ¼ δij, where δij is the Kronecker delta.
The desired basis inH−1;1ðH;ΓÞ ≅ TΦð0ÞT ðΓÞ has the form

μiðzÞ ¼ ρðzÞ−1qiðzÞ; ð92Þ

where qiðzÞ ¼ Qi ∘ JðzÞJ0ðzÞ2 for i ¼ 1;…; n − 3 form a
basis of the complex vector spaceH2;0ðH;ΓÞ ≅ T�

Φð0ÞT ðΓÞ.
These qis are biorthogonal to ri ¼ Ri ∘ JJ02 ∈H2;0ðH;ΓÞ
with respect to the Petersson inner product.47 The basis

qΦðμÞ
i ∈H2;0ðH;ΓμÞ and μΦðμÞ

i ∈H−1;1ðH;ΓμÞ for
ΦðμÞ∈ T ðΓÞ can also be defined in a similar way. Then,
the following lemma connects the motion of punctures
and conical singularities on Ĉ with the geometry of
Teichmüller space.
Lemma 3.3. For The mapping Ψ∶T 0;nðmÞ → M0;n is a

complex-analytic covering, and we have

dΨΦðμÞðμΦðμÞ
i Þ ¼ ∂

∂wμ
i

and

Ψ�
ΦðμÞðdwμ

i Þ ¼ rΦðμÞ
i ; i ¼ 1;…; n − 3: ð93Þ

46According to (85), ∂w̄Ḟ ¼ M. The Green-function equation
and solution for this equation are given by ∂w̄Rðw0; wÞ ¼
−πδðw0; wÞ and (90), respectively. Therefore, the kernel
Rðw0; wÞ, roughly speaking, inverts the action of the ∂ operator
on Beltrami differentials on Ĉ. The precise statement (see
Lemma 5 of [53] and Sec. V. C of [86]) is essentially a version
of the Pompeiu formula.

47In the space H2;0ðH;ΓÞ, it is defined as
hq1; q2i ¼

R R
F ðΓÞq1ðzÞq2ðzÞρ−1ðzÞd2z.
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Proof. Let us start with proving the statement

dΨΦðμÞðμΦðμÞ
i Þ ¼ ∂

∂wμ
i
which is actually repeating the proof

of Lemma 3 in [5]; Remark 3.1 implies that it is sufficient to
verify this statement at the point Φð0Þ. In a neighborhood
of Φð0Þ∈ T ðΓÞ the Bers’ coordinates ðt1;…; tn−3Þ∈Cn−3

are determined in the basis μ1;…; μn−3 ∈H−1;1ðH;ΓÞ from
the expansion

μ ¼
Xn−3
i¼1

tiμi; ð94Þ

where μ∈H−1;1ðH;ΓÞ ∩ DðΓÞ. In these coordinates, the
mapping Ψ is given by

ðt1;…; tn−3Þ↦
Ψ ðFμðw1Þ;…; Fμðwn−3ÞÞ; ð95Þ

where ðw1;…; wn−3Þ ¼ Ψ ∘Φð0Þ∈M0;n. Since Fμ

depends complex analytically on t1;…; tn−3, the mapping
Ψ is also complex analytic. We now compute its differ-
ential dΨ at the point Φð0Þ∈ T ðΓÞ: It follows from the
definitions of μi and Mi, Eqs. (92) and (86), as well as
Eq. (77) that

Mi ¼ μi ∘ J−1 ðJ
−1Þ0

ðJ−1Þ0 ¼ ðIm J−1Þ2qi ∘ J−1 ðJ
−1Þ0

ðJ−1Þ0 ¼ e−φQi;

ð96Þ

where Qi ¼ qi ∘ J−1ðJ−1Þ02. Then, using the above equa-
tion, the definition of Ris in (91), and Eq. (90), we get that

ḞμiðwjÞ¼
ZZ

C
MiðwÞRjðwÞd2w

¼ð96Þ
ZZ

C
e−φQiRjðwÞd2w ¼ðC27ÞhRj;Qii¼δij: ð97Þ

This precisely means that in these coordinates the differ-
ential dΨjΦð0Þ is given by the identity matrix—i.e.,
dΨΦð0ÞðμiÞ ¼ ∂

∂wi
. Additionally, the statement

Ψ�
Φð0ÞðdwiÞ ¼ ri follows from dΨΦð0ÞðμiÞ ¼ ∂

∂wi
by observ-

ing that (1, 0)-forms dwi are dual to vector fields ∂

∂wi

and the quadratic differentials ri are dual to harmonic
Beltrami differentials μi with respect to the Kodaira-Serre
pairing (36)—i.e., ðμi; rjÞ ¼ δij. Accordingly, it follows
from Eq. (93) that the mapping Ψ is a local diffeo-
morphism. We now show that Ψ is a covering: For
η∈Aut�ðΓÞ, denote by zηi ði ¼ 1;…; neÞ the fixed points
of elliptic element ηðτiÞ∈Γ of order mi and by zηneþj the
fixed points of the parabolic elements ηðκjÞ∈Γ for

j ¼ 1;…; np. Let sηðw1;…; wnÞ≡defðJðzη1Þ;…; JðzηnÞÞ; the
correspondence η ↦ sη determines an epimorphism (i.e.,
a surjective group homomorphism) of the group ModðΓÞ

onto the product symmetric group SymmðsÞ.48 The kernel
of this epimorphism is AutðΨÞ [5]. The mapping Ψ is
invariant under AutðΨÞ and it is clear that
M0;n ¼ T 0;nðmÞ=AutðΨÞ. Hence, Ψ is a covering with
automorphism group AutðΨÞ. ▪
Remark 3.5. On T 0;nðmÞ, each elliptic and cuspidal TZ

metric49 remains unchanged under the automorphism group
of the covering Ψ∶T 0;nðmÞ → M0;n—i.e., the pure map-
ping classes Mod0. Furthermore, each metric establishes a
Kähler metric on M0;n.
Remark 3.6. We can also rewrite the expression for

energy-momentum tensor (79) using RiðwÞ,

SchðJ−1;wÞ ¼
Xn
i¼1

hiEiðwÞ − π
Xn−3
i¼1

ciRiðwÞ; ð98Þ

where

EiðwÞ ¼
1

2ðw − wiÞ2
−

1

2wðw − 1Þ ; i ¼ 1;…; n − 1;

EiðwÞ ¼
1

2wðw − 1Þ ; i ¼ n; ð99Þ

and hi ¼ 1 for i ¼ ne þ 1;…; n. Accordingly, one can also
define the eiðzÞ ¼ Ei ∘ JJ02 on H. These functions are
actually the automorphic forms of weight 4 for Γ and they
have nonvanishing constant terms at the singularities. Let
us obtain the equation (98) for the simplest case with one
branch point of order m at w1 and three punctures at
w2 ¼ 0, w3 ¼ 1, and w4 → ∞, respectively. Solving (82) in
favor of c3 and c2 gives

c3 ¼ −ðc1 þ c2Þ; c2 ¼ −
1þ h1 þ 2c1ðw1 − w3Þ

2ðw2 − w3Þ
:

By substituting the above relations in (79) and noting that
w2 ¼ 0, w3 ¼ 1, one obtains

Tφ ¼ h1

�
1

2ðw − w1Þ2
−

1

2wðw − 1Þ
�
þ 1

2w2

þ 1

2ðw − 1Þ2 −
1

2wðw − 1Þ

þ c1

�
1

w − w1

þ w1 − 1

w
−

w1

w − 1

�
;

which by using (99) and (91) is equal to (98). The desired
general case can be obtained in the same way.

48As a concrete example, consider the case of n-punctured
sphere. In that case, the mapping class group Mod0;n is given by
the braid group Bn quotiented by its center [97].

49The h·; ·iellTZ;i for i ¼ 1;…; ne and h·; ·icuspTZ;neþj for
j ¼ 1;…; np.

CLASSICAL LIOUVILLE ACTION AND UNIFORMIZATION OF … PHYS. REV. D 110, 046018 (2024)

046018-25



Corollary 3.1. The following statements are true:
(i) Ḟið0Þ¼ Ḟið1Þ¼0 and ḞiðwÞ¼Oðjwj2Þ asw →∞.
(ii) ∂wḞi ¼ Mi ¼ e−φQi.
(iii) The functions ḞiðwÞ have the following asymptotics:

ḞiðwÞ ¼

8>>>>><>>>>>:
δij þ ðw − wjÞ∂wḞiðwjÞ þO

� jw−wjj
log jw−wjj



ðj ¼ 1;…; neÞ as w → wj;

δij þ ðw − wjÞ∂wḞiðwjÞ þO
� jw−wjj
log jw−wjj



ðj ¼ ne þ 1;…; n − 1Þ as w → wj;

w∂wḞið∞Þ þO
�

jwj
log jwj



as w → ∞:

Proof. Part (i) can be proved by using Eq. (90) and the
expression for Rðw;wiÞ in (91). Part (ii) can also be proved
by using (90) and (96). The general idea of proof part
(iii) can also be found in Remark 3 of [14]. ▪
In Sec. IV, we will need the derivatives of φ with respect

to the variables w1;…; wn−3 and the following lemma will
enable us to give a geometric description of them (see
Lemma 4 in [5]).
Lemma 3.4. The Liouville field φ is a continuously

differentiable function on M0;n, and

∂wi
φþ Ḟi

∂wφþ ∂wḞi ¼ 0; for i ¼ 1;…; n − 3; ð100Þ

Proof. It can be proved exactly in the same way as
Lemma 4 in [5]. Let Γ be a Fuchsian group of the first kind
that uniformizes the orbifold Riemann surface O and let
fμðzÞ be the unique solution of the Beltrami equation (30)
with H−1;1ðH;ΓÞ ∋ μ ¼ t1μ1 þ � � � þ tn−3μn−3 that fixes
the points zn−2 ¼ 0, zn−1 ¼ 1, and zn ¼ ∞. The function
FμðwÞ ¼ ðJμ ∘ fμ ∘ J−1ÞðwÞ is differentiable with respect to
w on O and depends analytically on the Bers’ coordinates
t1;…; tn−3. It follows from the commutative diagram (84)
that Jμ and J0μ are continuously differentiable with respect
to the Bers’ coordinates t1;…; tn−3 and that suitable
branches of the functions J−1μ and ðJ−1μ Þ0 have this property
locally outside the set of singular points. The continuous
differentiability of φ on M0;n now follows from Eq. (77)
and Lemma 3.3. As for Eq. (100), it is a reformulation of
Lemma 3.1 due to Ahlfors [91] on the vanishing of the first
variation of the area element in the Poincaré metric on O
under quasiconformal mappings corresponding to har-
monic Beltrami differentials: for any μ∈H−1;1ðH;ΓÞ,

Lμρ ¼ ∂

∂ε

����
ε¼0

ðfεμÞ�ðρÞ ¼ ∂

∂ε

j∂zfεμj2
ðIm fεμÞ2

����
ε¼0

¼ 0: ð101Þ

Let eφ
μðwÞjdwj2 be the hyperbolic metric on the Riemann

orbisurface Oμ where

φμðwÞ ¼ φðw;Fμðw1Þ;…; Fμðwn−3ÞÞ:

From (84) one has

ðfμÞ�ðρÞ ¼ ðfμÞ�ðJμÞ�ðeφμÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ρ

:

Then, using Eq. (42) as well as Fμ ∘ J ¼ Jμ ∘ fμ, one gets

j∂zfμj2
ðIm fμÞ2 ¼ expðφμ ∘ Jμ ∘ fμÞj∂zðJμ ∘ fμÞj2

¼ expðφμ ∘Fμ ∘ JÞj∂wFμ ∘ Jj2jJ0j2: ð102Þ

Finally, it follows from (101) that

∂

∂ε

����
ε¼0

eφ
εμ ∘Fεμ ∘ ∘ Jj∂wFεμ ∘ Jj2jJ0j2

¼ ∂φεμ

∂ε

����
ε¼0

þ ∂wφḞμ þ ∂wḞμ ¼ 0; ð103Þ

which by setting μ ¼ μi and recalling Lemma 3.3 [i.e.
dΨΦð0ÞðμiÞ ¼ ∂=∂wi

] gives us our desired result (100). ▪

Corollary 3.2. According to Lemma C.1, the ∂wi
φ has the following asymptotic expansion near the singular points:

∂wi
φðwÞ ¼

(
−δij∂wφðwÞ − ððw − wjÞ∂wφðwÞ þ 1Þ∂wḞiðwÞ þ O ð1Þ as w → wj≠n;

−ðw∂wφðwÞ þ 1Þ∂wḞiðwÞ þ O ð1Þ as w → wn ¼ ∞:

Proof. It follows from (100) and from the asymptotics of Ḟi (see Corollary 3.1). ▪
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Remark 3.7. One can also use the results of Ahlfors and
Wolpert mentioned in Sec. III A 2, i.e., Lemma 3.1 and
Eq. (45), to calculate the variations of expðφεμðwÞÞ on the
orbifold Riemann surfaces Oεμ ¼ FεμðOÞ. To do so, let us
use the commutative diagram (84) once again to write

ðFμÞ�ðeφμÞ ¼ ðJ−1Þ�ðfμÞ�ðρÞ: ð104Þ

Then, it is easy to show that the variations of hyperbolic
metrics on Riemann orbisurfacesOεμ are given by the same
formulas in Sec. III A 2 but with ρ replaced by eφ and fμμ̃
replaced by ðJ−1Þ�ðfμ ¯̃μÞ ¼ fμ ¯̃μ ∘ J−1. Moreover, for any
a∈R we have

ðFμÞ�ðeaφμÞ ¼ ððFμÞ�ðeφμÞÞa: ð105Þ

Therefore, we get the following formulas for the first and
second variations of expðφεμðwÞÞ:

∂

∂ε

����
ε¼0

ðFεμÞ�ðeaφεμÞ¼0;

∂
2

∂ε1∂ε2

����
ε1¼ε2¼0

ðFε1μþε2μ̃Þ�ðeaφεμÞ¼a
2
eaφfμ ¯̃μ∘J−1: ð106Þ

C. Schottky space Sg;nðmÞ
Let us start this subsection by recalling with more detail

how a compact Riemann surface X of genus g ≥ 2 is
uniformized by a Schottky group. We begin with a few
well-known definitions. Schottky groups are an important
class of Kleinian groups: discrete subgroups of Möbius
group PSLð2;CÞ that act properly discontinuous on some
domain (called region of discontinuity) of the Riemann
sphere Ĉ. A Schottky group Σ is strictly loxodromic
Kleinian group which is also free and finitely generated
[98]. If we denote its limit set by Λ (which is a Cantor set)50

then the region of discontinuity Ω ¼ ĈnΛ would be
connected. Moreover, a Schottky group Σ of rank g will
be called marked if we choose a relation-free system of
generators L1;…; Lg ∈PSLð2;CÞ. There is also a notion
of equivalence between two marked Schottky groups:
ðΣ;L1;…; LgÞ is equivalent to ðΣ̃; L̃1;…; L̃gÞ if there exists
a Möbius transformation ς∈PSLð2;CÞ such that L̃i ¼
ςLiς

−1 for all i ¼ 1;…; g. The set of equivalence classes of
marked Schottky groups of genus g is called the Schottky
space of genus g and is denoted bySg. Similar to Fuchsian
groups, Schottky groups can be used to construct surfaces
since the action of Σ on Ω produces a compact Riemann
surface Ω=Σ. An important result is that for every marked
Schottky group ðΣ;L1;…; LgÞ there is a fundamental

domain D51 for Σ in Ω. This domain is a (connected)
region in Ĉ and it is bounded by 2g disjoint Jordan curves
C1;…; Cg; C0

1;…; C0
g with C0

i ¼ −LiðCiÞ, i ¼ 1;…; g. The
orientations of Ci and C0

i are opposite and related to
components of ∂D. The standard form for representation
of each Li is�
LiðwÞ− ãi

�ðw− b̃iÞ¼ λi
�
LiðwÞ− b̃i



ðw− ãiÞ; w∈Ĉ;

ð107Þ

where ãi and b̃i are the respective attracting and repelling
fixed points of the loxodromic element Li and 0 < jλij < 1
is the corresponding multiplier. Given this normal form,
one can explicitly construct the fundamental domain
D in the following way52: Let us define the Möbius
transformations

ςãi;b̃iðwÞ ¼
b̃iwþ ãi
wþ 1

; ð108Þ

satisfying ςãi;b̃ið0Þ¼ ãi and ςãi;b̃ið∞Þ¼ b̃i, so that the gen-
erators Li of the marked Schottky group ðΣ;L1;…;LgÞ can
be written as

Li ¼ ςãi;b̃iςλiς
−1
ãi;b̃i

for i ¼ 1;…; g: ð109Þ

In the above equation, the Möbius transformation ςλi is
defined by ςλiðwÞ ¼ λiw. Then, a fundamental domain for
ðΣ;L1;…; LgÞ is given by

D≡def Ĉ n ⋃
g

i¼1

ðDi ∪ D−iÞ; ð110Þ

where

Di ¼


w∈C

���� jw − ãij
jw − b̃ij

< jRij
�

¼ ςãi;b̃iςRi
ðDÞ;

D−i ¼


w∈C

���� jw − b̃ij
jw − ãij

< jR−ij
�

¼ ςãi;b̃iςinvςR−i
ðDÞ;

ð111Þ

ςinv is defined by ςinvðwÞ ¼ −1=w, and D is the unit disk,

D ¼ fw∈Cjjwj < 1g: ð112Þ

Here Ri and R−i represent the radii of disks Di and D−i,
respectively, and satisfy53

50For more details on geometry of limit sets, see Ref. [79].

51However, this fundamental domain D is not uniquely
determined by the choice of marking for the Schottky group Σ.

52For more details, see Appendix C of [99].
53Equation (113) makes clear the fact that, as mentioned in

footnote 51, the fundamental domain D cannot be uniquely
determined by a choice of marking for the Schottky group Σ.
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RiR−i ¼ λi for i ¼ 1;…; g: ð113Þ

The boundary ∂D ¼∪i Ci ∪ C0
i has components

Ci ¼ ςãi;b̃iςRi
ðCÞ and C0

i ¼ ςãi;b̃iςinvςR−i
ðCÞ; ð114Þ

where C ¼ ∂D is the unit circle. In the rest of this article, we
will consistently presume that a marked Schottky group is
normalized. This means that ã1 equals 0, b̃1 is infinity, and ã2
is 1. In particular, this means that ∞ ∉ D.
Under the canonical holomorphic map Ω → Ω=Σ, the

boundary curves of a standard fundamental domain
described above are mapped onto smooth nonintersecting
simple closed curves a1;…; ag on the Riemann surface.
This motivates the following terminology introduced by
Bers [100]: A complete set of retrosections on a Riemann
surface of genus g is a choice of g smooth simple
nonintersecting, homologically independent, closed curves
a1;…; ag. We therefore see that a marked Schottky group,
together with the choice of a standard fundamental domain,
determines a Riemann surface with a complete set of
retrosections. A much more profound statement is that
every compact Riemann surface can be obtained in this
way, which is the content of the classical Koebe’s retro-
section theorem [101].
Theorem (Koebe). For every compact Riemann surface X

of genus g with a complete set of retrosections ða1;…; agÞ,
there exists a marked Schottky group of genus g,
ðΣ;L1;…; LgÞ, and a fundamental domain D ⊂ Ω for Σ
with 2g boundary curves C1;…; Cg; C0

1;…; C0
g such that

X ¼ Ω=Σ and the map Ω → X sends both Ci and C0
i to ai.

Moreover, the marked Schottky group is unique up to
equivalence ðΣ;L1;…;LgÞ∼ðΣ̃;L̃1;…;L̃gÞ defined before
as well as Li ↦ L−1

i .
Remark 3.8. The above theorem implies that given a

compact Riemann surface X uniformized by the marked
Schottky group ðΣ;L1;…; LgÞ, we can take the homology
classes of C1;…; Cg as the generators ½a1�;…; ½ag� in the
symplectic basis of the first homology group H1ðX;ZÞ.
However, determining a canonical basis for H1ðX;ZÞ, i.e.,
a symplectic basis f½a1�;…; ½ag�; ½b1�;…; ½bg�g with inter-
section pairings given by #ð½ai�; ½aj�Þ ¼ 0 ¼ #ð½bi�; ½bj�Þ
and #ð½ai�; ½bj�Þ ¼ δij, depends also on the choice of b
cycles on the Riemann surface X. Therefore, we can choose
the elements ½b1�;…; ½bg� in the canonical basis of
H1ðX;ZÞ such that the projections of their representative
curves onto the marked Schottky group Σ are precisely the
marked generators L1;…; Lg.
Remark 3.9. The association between the set of normal-

ized marked Schottky groups and the Schottky space Sg,
found within C3g−3, is evidently bijective.54

For our purposes in the following sections, it will be
crucial to give another (equivalent) definition for the
Schottky space Sg. Let A−1;1ðΩ;ΣÞ be the complex
Banach space of Beltrami differentials for Σ and, in analogy
with the Teichmüller case, let us define the deformation
space DðΣÞ to be the open ball of radius 1 (in the sense of
L∞ norm) in A−1;1ðΩ;ΣÞ:

DðΣÞ ¼ fμ∈A−1;1ðΩ;ΣÞ
���kμk∞ < 1g: ð115Þ

A homeomorphism F of a plane domain Ω onto another
plane domain Ω̃ is said to be quasiconformal if it satisfies
the Beltrami equation at each point in Ω. For each
μ∈DðΣÞ, let Fμ be the unique normalized [i.e., Fμð0Þ¼0
and Fμð1Þ ¼ 1] solution of the corresponding Beltrami
equation onC that gives a quasiconformal homeomorphism
of C onto itself. Then, the restriction of Fμ to the region of
discontinuity Ω ⊂ C gives the desired quasiconformal
homeomorphism Fμ∶Ω→Ωμ and each element μ∈DðΣÞ
gives a faithful representation ϱμ of Σ in PSLð2;CÞ
according to the formula σ ↦ Fμ ∘ σ ∘ ∘ ðFμÞ−1, σ ∈Σ.
As mentioned before, two representations ϱμ1 and ϱμ2
are equivalent if they differ by an inner automorphism
of PSLð2;CÞ, i.e., if ϱμ2 ¼ ςϱμ1ς

−1, ς∈PSLð2;CÞ.
Accordingly, the Schottky space Sg is defined to be
the set of equivalence classes of representations ½ϱμ�∶Σ →
PSLð2;CÞ, μ∈DðΣÞ. In other words,

Sg ≅ DðΣÞ=∼; ð116Þ

where μ1 ∼ μ2 if and only if Fμ1 ∘ σ ∘ ðFμ1Þ−1 ¼
Fμ2 ∘ σ ∘ ðFμ2Þ−1 for all σ ∈Σ (or equivalently,
Fμ1 jΛ ¼ Fμ2 jΛ). At μ ¼ 0, one recovers the group Σ which
corresponds to the base point of Sg.
The above alternative definition of Schottky space Sg

gives us the opportunity to define also the generalized
Schottky space Sg;nðmÞ for Riemann orbisurfaces with
signature ðg;m1;…; mne ; npÞ. Let us consider the con-
figuration spaces FnðΩμ=ΣμÞ ¼ FnðDμÞ with Σμ ¼
Fμ ∘Σ ∘ ðFμÞ−1;Ωμ ¼ FμðΩÞ and the deformation space
of a marked Schottky group ðΣ;L1;…; LgÞ together with a
point ðw1;…; wne ; wneþ1;…; wnÞ∈FnðDÞ,

DðΣ;L1;…; Lg;w1;…; wne ;wneþ1;…; wnÞ
¼
n
ðμ;wμ

1;…; wμ
ne ;w

μ
neþ1;…; wμ

nÞ∈A−1;1ðΩ;ΣÞ

×FnðDμÞ��kμk∞ < 1
o
; ð117Þ

where wμ
i ¼ FμðwiÞ. Just as in the case of Sg, each

element μ∈DðΣ;L1;…; Lg;w1;…; wnÞ gives a faithful
representation ϱμ of ðΣ;L1;…; Lg;w1;…; wnÞ in

54The spaceSg is a finite covering of the moduli spaceMg of
compact Riemann surfaces.
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PSLð2;CÞ ×FnðDμÞ according to the formula Li ↦
Fμ ∘Li ∘ ðFμÞ−1 for all marked generators Li ∈Σ, i ¼
1;…; g and wj ↦ FμðwjÞ for j ¼ 1;…; n. Two represen-
tations are then equivalent, ϱμ1 ∼ϱμ2 , if Fμ1 ∘Li∘
ðFμ1Þ−1¼Fμ2 ∘Li∘ðFμ2Þ−1 for all i ¼ 1;…; g as well as
wμ1
j ¼ wμ2

j for all j ¼ 1;…; n and the Schottky space
Sg;nðmÞ is defined to be the set of equivalence classes
of representations ½ϱμ�

Sg;nðmÞ ≅ DðΣ;L1;…; Lg;w1;…; wne ;wneþ1;…; wnÞ= ∼ :

ð118Þ

Let us remind that the Schottky uniformization of an
orbisurface O is connected with the Fuchsian uniformiza-
tion of it by the commutative diagram (13). Accordingly,
each marked Fuchsian group Γ with signature
ðg;m1;…; mne; npÞ corresponds to the unique marked
normalized Schottky group Σ ≃ Γ=N with the domain of

discontinuity Ω
⋏
such that H=Γ ≅ Ω

⋏
=Σ and this correspon-

dence determines the following map:

π∶ T g;nðmÞ → Sg;nðmÞ; ð119Þ

by putting wi ¼ JðziÞ for i ¼ 1;…; n.55 We can use this
map to understand the tangent and cotangent space to the
Schottky space Sg;nðmÞ: Elements of H2;0ðH;ΓÞ descend
to meromorphic quadratic differentials for Σ—i.e., auto-
morphic forms of weight 4 for Σ with simple poles at

singular points of Ω
⋏
. The space of meromorphic quadratic

differentials for Σ will be denoted by H2;0ðΩ⋏ ;ΣÞ and each

Q∈H2;0ðΩ⋏ ;ΣÞ has the form

QðwÞ¼ðq∘J−1ÞðwÞðJ−1ðwÞ0Þ2; q∈H2;0ðH;ΓÞ: ð120Þ

The vector space H2;0ðΩ⋏ ;ΣÞ coincides with the holomor-
phic cotangent space T�

π ∘Φð0ÞSg;nðmÞ to Sg;nðmÞ at the

origin. This implies that the holomorphic tangent space
Tπ ∘Φð0ÞSg;nðmÞ is identified with the complex vector space

H−1;1ðΩ⋏ ;ΣÞ of harmonic Beltrami differentials.56 Each

M∈H−1;1ðΩ⋏ ;ΣÞ has the form

MðwÞ ¼ e−φðwÞQðwÞ; Q∈H2;0ðΩ
⋏
;ΣÞ: ð121Þ

From Eq. (117), which implies that there exists a
fibration |∶Sg;nðmÞ→Sg whose fibers over the points

π ∘ΦðμÞ∈Sg are FnðΩμ=ΣμÞ, it follows that
T�
π ∘Φð0ÞSg;nðmÞ has a subspace |�ðT�

π ∘Φð0ÞSgÞ ≅
H2;0ðΩ;ΣÞ. The standard basis in this subspace of
H2;0ðΩ;ΣÞ is given by the following holomorphic auto-
morphic forms of weight 4 for the Schottky group:

P1ðwÞ;…; P3g−3ðwÞ∈H2;0ðΩ;ΣÞ: ð122Þ

Moreover, the Pis actually coincide with the following
cotangent vectors:

dλ1;…; dλg; da3;…; dag; db2;…; dbg ∈ |�ðT�
π ∘Φð0ÞSgÞ:

ð123Þ

The subspace that is isomorphic to T�
π ∘Φð0ÞFnðDÞ corre-

sponds to the complement of |�ðT�
π ∘Φð0Þ Sg) in

T�
π ∘Φð0ÞSg;nðmÞ. This subspace is, in fact, the cotangent

space to the configuration space at ðw1;…; wnÞ. In other
words, we have

T�
π ∘Φð0ÞSg;nðmÞ ≅ |�ðT�

π ∘Φð0ÞSgÞ ⊕ T�
π ∘Φð0ÞFnðDÞ:

ð124Þ

It follows from Eq. (90) that a standard basis for
T�
π ∘Φð0ÞFnðDÞ is given by the following meromorphic

automorphic forms of weight 4:

P3g−3þiðwÞ¼−
1

π

X
σ∈Σ

Rðσw;wiÞσ0ðwÞ2; w∈Ωreg; ð125Þ

which represent dwi for i ¼ 1;…; n. According to
the following pairing, which actually is an analog of
pairing (36)

ðQ;MÞ ¼
ZZ

D
QðwÞMðwÞd2w; ð126Þ

we can obtain the dual basis for P1ðwÞ;…P3g−3þnðwÞ—
i.e., the basis M1ðwÞ;…M3g−3þnðwÞ in H−1;1ðΩ⋏ ;ΣÞ which
coincides with the tangent vectors ∂

∂w1
;…; ∂

∂wn
∈

Tπ ∘Φð0ÞSg;n. Similarly, the corresponding bases in the
tangent and cotangent spaces to Sg;n at an arbitrary point
can also be defined. This implies that SchðJ−1;wÞ ¼
∂
2
wφðwÞ − 1

2
ð∂wφðwÞÞ2 can be decomposed as follows57:

SchðJ−1;wÞ ¼
Xn
i¼1

hiE iðwÞ − π
X3g−3þn

i¼1

ciPiðwÞ; ð127Þ

55This map has the same role as the covering map Ψ in
Lemma 3.3 and is a complex covering map.

56It is harmonic with respect to the hyperbolic metric on Ω
⋏
.

57See the asymptotic behavior of φðwÞ and its derivatives as
w → wi in Lemma C.1.

CLASSICAL LIOUVILLE ACTION AND UNIFORMIZATION OF … PHYS. REV. D 110, 046018 (2024)

046018-29



where

E iðwÞ ¼
1

2

X
σ ∈Σ

�
1

ðσw − wiÞ2
−

1

σwðσw − 1Þ
�
σ0ðwÞ2;

for i ¼ 1;…; n ð128Þ
are meromorphic automorphic forms of weight 4 for
Schottky group with the second order poles at Σ · wi and
c1;…; c3g−3þn are accessory parameters. Moreover, for the
variations of hyperbolic metric we have the same formulas
introduced in Secs. III A 2 and III B 1. Furthermore, the
formula (100) is also valid in this case. Finally, on T g;nðmÞ,
each cuspidal h·; ·icuspTZ;i and elliptic h·; ·iellTZ;i metric remains
invariant under the automorphism group of the covering
π∶ T g;nðmÞ → Sg;nðmÞ. Accordingly, each metric descends
to a Kähler metric on Sg;nðmÞ. All these also imply that in
analogy with the commutative diagram (84), we have

ð129Þ

where

∂w̄Fμ ¼ MðwÞ∂wFμ for w∈Ω
⋏
; ð130Þ

and Fεμ is complex analytic in ε and Ḟμ is given by a similar

equation with Eq. (90), where w∈Ω
⋏
.

Before closing this section let us also mention that the
mapping J in diagram (13) has the following expansions
near cusps and branch points of Γ (see Appendix C):

JðzÞ ¼

8>><>>:
wi þ

P∞
k¼1 J

ðiÞ
k

�
z−zi
z−z̄i



kmi ði ¼ 1;…; neÞ; z → zi;

wi þ
P∞

k¼1 J
ðiÞ
k exp

�
− 2π

ffiffiffiffi
−1

p
k

jδijðz−ziÞ



ði ¼ ne þ 1;…; n − 1Þ; z → zi;
ð131Þ

where wi ¼ JðziÞ for i ¼ 1;…; n − 1.58 If eφðwÞjdwj2 denotes the push forward of the hyperbolic metric on H by the map J,

then the density of hyperbolic metric on Ω
⋏
[i.e., ρðwÞ ¼ eφðwÞ] is once again given by Eq. (77), where φðwÞ is smooth

on Ωreg. The function φðwÞ satisfies59

φðσwÞ ¼ φðwÞ − log jσ0ðwÞj2 for w∈Ωreg; ∀ σ ∈Σ: ð132Þ
According to Lemma C.1, it also has the following asymptotic form:

φðwÞ ¼

8>>>>><>>>>>:
−2
�
1 − 1

mi



log jw − wij þ log 4jJðiÞ

1
j− 2

mi

m2
i

þ O ð1Þ w → wi;

−2 log jw − wjj − 2 log
��� log��� w−wj

JðiÞ
1

������þ O ð1Þ w → wj;

−2 log jwj − 2 log log
��� w
JðnÞ−1

���þOðjwj−1Þ; w → ∞;

ð133Þ

for i ¼ 1;…; ne and j ¼ ne þ 1;…; n − 1.
Remark 3.10. It follows from the above asymptotics that (see statement 3 of Lemma C.1 for more details)

log hi ¼ −2 logmi þ 2 log 2 − lim
w→wi

�
φðwÞ þ

�
1 −

1

mi

�
log jw − wij2

�
; i ¼ 1;…; ne;

log hi ¼ lim
w→wi

�
log jw − wij2 −

2e−
φðwÞ
2

jw − wij
�
; i ¼ ne þ 1;…; n − 1;

log hn ¼ lim
w→∞

�
log jwj2 − 2e−

φðwÞ
2

jwj
�
: ð134Þ

with hi ¼ jJðiÞ1 j 2
mi for i ¼ 1;…; ne, and hi ¼ jJðiÞ1 j2 for i ¼ ne þ 1;…; n.60

58Note that since Σ is normalized, ∞ ∉ Ω.
59This equation follows from the invariance of hyperbolic metric onΩreg under the action of Σ—i.e., eφðwÞdwdw̄ ¼ eφðσwÞdσðwÞdσðwÞ

for all σ ∈Σ.
60When there is no J available, [63] presents the identical expression for log hi in terms of the metric potential asymptotics.
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Finally, consider the points w1;…; Lkwi;…; wn, corre-
sponding to the branch points and cusps in
z1;…; βkzi;…; zn.

61 Near the point βkzi, the first coeffi-

cient in the expansion (131) of JðzÞ is given by L0
kðwiÞJðiÞ1 .

Accordingly, the positive functions hi ¼ jJðiÞ1 j 2
mi for i ¼

1;…; ne and hi ¼ jJðiÞ1 j2 for i ¼ ne þ 1;…; n are, respec-

tively, replaced with hijL0
kðwiÞj

2
mi and hijL0

kðwiÞj2, when
sending wi to Lkwi. Moreover, let us define L i as the ith
relative cotangent line bundle on Sg;nðmÞ, situated along
the fibers of the projection pi∶ Sg;nðmÞ → Sg;n−1ðmÞ.62
Given this understanding, we can establish the following
assertion.
Lemma 3.5. Hermitian metrics in the holomorphic

line bundles L i for i ¼ 1;…; ne are determined by the
quantities hmi

i .
Proof. To prove this lemma for the branch points, we use

the transformation of hi ’s under the action of the generators
Lk of the Schottky group. As explained above, sending
w1;…; wi;…; wne to w1;…; Lkwi;…; wne will result in hi
to be replaced by hijL0

kðwiÞj
2
mi. Thus, we have

Δ log hi ¼
1

mi
log jL0

kðwiÞj2: ð135Þ

This means that hmi
i is a Hermitian metric in the line bundle

L i. For the case of cusp, a similar method of proof is
applicable and we conclude that his will determine
Hermitian metric in the line bundle L i. ▪

IV. CLASSICAL LIOUVILLE ACTION

In this section, we study the classical Liouville action for
hyperbolic Riemann orbisurfaces with the genus g ¼ 0 and
g > 1, separately. Before proceeding, we should mention
that all the proofs in Secs. IVand Vare previously provided
for the case of punctured Riemann surfaces in [5,14]. When
it comes to calculations involving punctures, we can only
direct the reader to those articles. However, for the reader’s
convenience and to facilitate a clearer understanding of
distinctions in the presence of conical singularities, we find
it appropriate to present all proofs side by side.

A. Riemann orbisurfaces of genus 0

Let O be a marked Riemann orbisurface with signature
ð0;m1;…; mne ; npÞ and let m denote the vector of orders
ðm1;…; mnÞ. The regularized action functional for the
Liouville equation (78) in the presence of conical singu-
larities with conical angles 2π=m1;…; 2π=mne at
w1;…; wne together with punctures at wneþ1;…; wn−2 ¼ 0;
wn−1 ¼ 1; wn ¼ ∞ is defined as follows (see [5,18,53]):

Sm½φ� ¼ lim
ϵ→0þ

�ZZ
Oϵ

ðj∂wφj2 þ e2φÞd2wþ
ffiffiffiffiffiffi
−1

p

2

Xne
i¼1

�
1 −

1

mi

�I
Cϵ
i

φ

�
dw̄

w̄ − w̄i
−

dw
w − wi

�

− 2π
Xne
i¼1

�
1 −

1

mi

�
2

log ϵþ 2πnp log ϵþ 4πðnp − 2Þ log j log ϵj
�
; ð136Þ

where63

Oϵ ¼ Cn ⋃
n−1

i¼1

fwjjw − wij < ϵg ∪ fwjjwj > ϵ−1g;

and the circles

Cϵ
i ¼ fwjjw − wij ¼ ϵg

are oriented as a component of the boundary ∂Oϵ.
Remark 4.1. When np ¼ 0, the appropriate classical Liouville action is given by

Sm½φ� ¼ lim
ϵ→0þ

�ZZ
Oϵ

ðj∂wφj2 þ e2φÞd2wþ
ffiffiffiffiffiffi
−1

p

2

Xn−1
i¼1

�
1 −

1

mi

�I
Cϵ
i

φ

�
dw̄

w̄ − w̄i
−

dw
w − wi

�

þ
ffiffiffiffiffiffi
−1

p

2

�
1þ 1

mn

�I
Cϵ
n

φ

�
dw̄
w̄

−
dw
w

�
− 2π

Xn−1
i¼1

�
1 −

1

mi

�
2

log ϵ − 2π

�
1þ 1

mn

�
2

log ϵ

�
: ð137Þ

61One can comprehend this by recognizing that J ∘ βk ¼ Lk ∘ J.
62This projection forgets the wi for i ¼ 1;…; n.
63Note that limϵ→0 Oϵ ¼ Oreg ¼ Xreg

O .
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Remark 4.2. It is worth providing some explanation regarding the action (136) and why the terms associated with conical
points appear different from those associated with the punctures. The contour integral in the first line of (136) is added to
ensure a well-defined variational principle around the conical singularities.64 The variation of this integral cancels the
boundary term arising from the variation of the bulk term. To ensure a well-defined variational principle around the
punctures, additional contour integrals must be considered, which are given by [18]

ffiffiffiffiffiffi
−1

p

2

Xn−1
j¼neþ1

I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
− cc

�
þ

ffiffiffiffiffiffi
−1

p

2

Xn−1
j¼neþ1

I
Cϵ
j

φ

�
dw̄

ðw̄ − w̄jÞ log jw − wjj
− cc

�

−
ffiffiffiffiffiffi
−1

p

2

I
Cϵ
n

φ

�
dw̄
w̄

− cc

�
−

ffiffiffiffiffiffi
−1

p

2

I
Cϵ
n

φ

�
dw̄

w̄ log jwj − cc

�
: ð138Þ

More concretely, the classical Liouville action (136) in the presence of these additional contour integrals takes the form
[Eq. (8) of [18]]

Sm½φ� ¼ lim
ϵ→0þ

�ZZ
Oϵ

ðj∂wφj2 þ e2φÞd2wþ
ffiffiffiffiffiffi
−1

p

2

Xn−1
i¼1

�
1 −

1

mi

�I
Cϵ
i

φ

�
dw̄

w̄ − w̄i
−

dw
w − wi

�

þ
ffiffiffiffiffiffi
−1

p

2

Xn−1
j¼neþ1

I
Cϵ
j

φ

�
dw̄

ðw̄ − w̄jÞ log jw − wjj
−

dw
ðw − wjÞ log jw − wjj

�
−

ffiffiffiffiffiffi
−1

p

2

I
Cϵ
n

φ

�
dw̄
w̄

−
dw
w

�

−
ffiffiffiffiffiffi
−1

p

2

I
Cϵ
n

φ

�
dw̄

w̄ log jwj −
dw

w log jwj
�
− 2π

Xn
i¼1

�
1 −

1

mi

�
2

log ϵ

�
; ð139Þ

wheremi ¼ ∞ for i ¼ ne þ 1;…; n. By substituting the asymptotic form (133) of the Liouville field φ near punctures in the
contour integrals of (139), up to O ð1Þ terms, one gets

ffiffiffiffiffiffi
−1

p

2

Xn−1
j¼neþ1

I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
− cc

�
þ

ffiffiffiffiffiffi
−1

p

2

Xn−1
j¼neþ1

I
Cϵ
j

φ

�
dw̄

ðw̄ − w̄jÞ log jw − wjj
− cc

�

−
ffiffiffiffiffiffi
−1

p

2

I
Cϵ
n

φ

�
dw̄
w̄

− cc

�
−

ffiffiffiffiffiffi
−1

p

2

I
Cϵ
n

φ

�
dw̄

w̄ log jwj − cc

�
¼ 4πnp log ϵþ 4πðnp − 2Þ log j log ϵj: ð140Þ

Since the contour integral (138) evaluated on shell is merely a divergent term, we can add it to the counterterm −2πnp log ϵ
in (139) to get the Liouville action (136). The resulting regulating terms will have the opposite sign (i.e., plus sign instead of
minus sign) and correctly cancel the divergence coming from the bulk term limϵ→0þ

RR
Oϵ
j∂wφj2d2w.

Performing a similar calculation for the case of conical points, i.e., substituting the asymptotic form (133) of the Liouville
field φ near the conical points in the contour integral of (136), one observes that the result is given by

ffiffiffiffiffiffi
−1

p

2

Xn−1
i¼1

�
1 −

1

mi

�I
Cϵ
i

φ

�
dw̄

w̄ − w̄i
−

dw
w − wi

�
¼ 4π

Xne
i¼1

��
1 −

1

mi

�
2

log ϵþ 1

2

�
1 −

1

mi

�
log hi

�
þ O ð1Þ: ð141Þ

Notice that, apart from the divergent part, the above expression contains a finite part [i.e., 2π
P

ið1 − 1
mi
Þ log hi] which

behaves nontrivially under quasiconformal transformations and therefore cannot be ignored (see Lemma 5.1 for more
details).65 We have decided to keep the line integrals around conical points in their integral form since this form is
more familiar in the literature on Liouville CFTand can also be used when the conical points are of a more general type (see,
e.g., [53]). Therefore, one arrives at the classical Liouville action (136).

64Alternatively, the line integrals are necessary in order to ensure the proper asymptotic behavior (133). See the explanation following
Eq. (8) of [18] for more details.

65For both punctures and conical points, there are finite constant terms in the calculation of the contour integrals which can be safely
ignored. These terms are not written in Eqs. (140) and (141).
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Theorem (Takhtajan and Zograf). For any fixed vector of orders m ¼ ðm1;…; mnÞ such that
Pne

j¼1ð1 − 1
mj
Þ þ np > 2,

the function Sm∶ M0;n → R is differentiable and

ci ¼ −
1

2π

∂Sm
∂wi

for all i ¼ 1;…; n − 3; ð142Þ

where cis are the accessory parameters defined by (81).66

Proof. Let

S̃ϵmðw1;…; wn−3Þ ¼ S̃ðBÞϵm ðw1;…; wn−3Þ þ S̃ðctÞϵ − 2πχðXÞ; ð143Þ

with67

S̃ðBÞϵm ðw1;…; wn−3Þ ¼
ZZ

Oϵ

j∂wφj2d2wþ
ffiffiffiffiffiffi
−1

p

2

Xne
j¼1

�
1 −

1

mj

�I
Cϵ
i

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

�

S̃ðctÞϵ ¼ −2π
Xne
j¼1

�
1 −

1

mj

�
2

log ϵþ 2πðn − neÞ log ϵþ 4πðn − ne − 2Þ log j log ϵj: ð144Þ

For any ϵ > 0, the function S̃ϵm is continuously differentiable onM0;n. To prove this theorem, it suffices to show that Lμi S̃
ϵ
m

converges uniformly to −2πci as ϵ → 0 in a neighborhood of any point of the moduli space M0;n. More explicitly,
one needs to show that

Lμi S̃
ϵ
m ¼ ∂S̃ϵm

∂wi
≡def ∂

∂ε

����
ε¼0

S̃ϵmðwεμi
1 ;…; wεμi

n−3Þ ¼ −2πci for i ¼ 1;…; n − 3; ð145Þ

pointwise on the moduli space M0;n.
68 First, we can write

∂S̃ðBÞϵm

∂wi
¼

ffiffiffiffiffiffi
−1

p

2

∂

∂ε

����
ε¼0

IϵðεÞ; ð146Þ

where

IϵðεÞ ¼ ðIϵ½φ� ∘Ψ ∘ΦÞðεμiÞ;
φεμiðwÞ ¼ φðw; ðΨ ∘ΦÞðεμiÞÞ ¼ φðw;Fεμiðw1Þ|fflfflfflffl{zfflfflfflffl}

w
εμi
1

;…; Fεμiðwn−3Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
w
εμi
n−3

Þ;

and

Iϵ½φ� ¼
ZZ

Oϵ

j∂wφj2dw ∧ dw̄þ
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
i

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
:

66See Theorem 1 in [5] for genus g ¼ 0 punctured Riemann surfaces.
67In view of the Gauss-Bonnet formula for Riemann orbisurfaces [102,103]ffiffiffiffiffiffi

−1
p

2

Z Z
O
eφdw ∧ dw̄ ¼ 2π

�Xne
j¼1

�
1 −

1

mj

�
þ np − 2

�
¼ −2πχðOÞ:

68We remind the reader that the basis fμig for TΦð0ÞT ðΓÞ has been defined in Eq. (92).
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Accordingly, one gets

IϵðεÞ ¼
ZZ

Fεμi ðOϵÞ
j∂wφεμiðwÞj2dw ∧ dw̄þ

Xne
j¼1

�
1 −

1

mj

�I
Fεμi ðCϵ

jÞ
φεμiðwÞ

�
dw̄

w̄ − wεμi
j

−
dw

w − wεμi
j

�
; ð147Þ

with

FεμiðOϵÞ ¼ Cn ⋃
n−1

k¼1

fwjjw − wεμi
k j < ϵg ∪ fwjjwj > ϵ−1g;

FεμiðCϵ
jÞ ¼ fwjjw − wεμi

j j ¼ ϵg: ð148Þ

The calculation of (146) can be done by almost verbatim repeating the corresponding computations in the proof of
Theorem 1 in [5]. Accordingly, let us now use the change of variable formula for differential forms,

R
FðXÞ ω ¼ RX F�ðωÞ,

and the commutative diagram (84) to write

IϵðεÞ ¼
ZZ

OϵðεÞ
ðFεμiÞ�ðj∂wφεμi j2dw ∧ dw̄Þ þ

Xne
j¼1

�
1 −

1

mj

�I
Cϵ
jðεÞ

ðFεμiÞ�
�
φεμi

�
dw̄

w̄ − wεμi
j

−
dw

w − wεμi
j

��
¼
ZZ

OϵðεÞ
j∂wφεμi ∘Fεμi j2dFεμiðwÞ ∧ dFεμiðwÞ

þ
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
jðεÞ

ðφεμi ∘FεμiÞ
�

dFεμiðwÞ
FεμiðwÞ − wεμi

j

−
dFεμiðwÞ

FεμiðwÞ − wεμi
j

�
¼
ZZ

OϵðεÞ
j∂wφεμi ∘Fεμi j2j∂wFεμi j2ð1 − jεMij2Þdw ∧ dw̄

þ
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
jðεÞ

ðφεμi ∘FεμiÞ
�
∂wFεμiðε̄Mi dwþ dwÞ

wεμi − wεμi
j

−
∂wFεμiðdwþ εMidw̄Þ

wεμi − wεμi
j

�
;

where

OϵðεÞ ¼ Cn ⋃
n−1

k¼1

fwjjwεμi − wεμi
i j < ϵg ∪ fwjjwεμi j > ϵ−1g;

Cϵ
jðεÞ ¼ fwjjwεμi − wεμi

j j ¼ ϵg: ð149Þ

In order to compute ∂IϵðεÞ=∂εjε ¼ 0, it is necessary to differentiate both the integrand and the integration domains OϵðεÞ
and Cϵ

jðεÞ:

∂

∂ε

����
ε¼0

IϵðεÞ ¼
ZZ

Oϵ

∂

∂ε

����
ε¼0

j∂wφεμi ∘Fεμi j2j∂wFεμi j2ð1 − jεMij2Þdw ∧ dw̄þ ∂

∂ε

����
ε¼0

ZZ
OϵðεÞ

j∂wφj2dw ∧ dw̄

þ
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂

∂ε

����
ε¼0

ðφεμi ∘FεμiÞ
�
∂wFεμiðε̄Mi dwþ dwÞ

wεμi − wεμi
j

−
∂wFεμiðdwþ εMidw̄Þ

wεμi − wεμi
j

�

þ
Xne
j¼1

�
1 −

1

mj

�
∂

∂ε

����
ε¼0

I
Cϵ
jðεÞ

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
: ð150Þ

The second and fourth terms in Eq. (150) can be computed using the formula for differentiating a given k form ω over a
smooth family of variable domains OðεÞ,

∂

∂ε

����
ε¼0

Z
� � �
Z
OϵðεÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

k

ω ¼
Z

� � �
Z
∂Oϵ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k−1

iVðωÞ; ð151Þ
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where iVðωÞ denotes the interior product of the k form ω with vector field V which is the vector field along ∂Oϵ

corresponding to the family of curves ∂OϵðεÞ. As a result, we get

∂Iϵ
∂wi

¼
ZZ

Oϵ

½ð∂wi
∂wφþ ∂

2
wφḞiÞ∂w̄φþ ð∂wi

∂w̄φþ ∂w∂w̄φḞiÞ∂wφþ j∂wφj2∂wḞi�dw ∧ dw̄

−
Xn
k¼1

Z
∂Oϵ

k

j∂wφj2ðḞiðwÞ − ḞiðwkÞÞdw̄

þ
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂

∂ε

����
ε¼0

ðφεμi ∘FεμiÞ
�
∂wFεμiðε̄Mi dwþ dwÞ

wεμi − wεμi
j

−
∂wFεμiðdwþ εMidw̄Þ

wεμi − wεμi
j

�
; ð152Þ

where the last term in Eq. (150) has vanished due to the fact that ∂Cϵ
j ¼ ∅. By noting that

I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
¼ −2

I
Cϵ
j

φ

�
dw

w − wj

�
−
I
Cϵ
j

∂wφ log jw − wjj2dw −
I
Cϵ
j

∂w̄φ log jw − wjj2dw̄;

we have

I
Cϵ
j

ðφεμi ∘FεμiÞ
�
∂wFεμiðε̄Mi dwþ dwÞ

wεμi − wεμi
j

−
∂wFεμiðdwþ εMidw̄Þ

wεμi − wεμi
j

�
¼ −2

I
Cϵ
j

ðφεμi ∘FεμiÞ
�
∂wFεμiðdwþ εMidw̄Þ
FεμiðwÞ − FεμiðwjÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B1

−
I
Cϵ
j

ð∂wφεμi ∘FεμiÞ log jFεμiðwÞ − FεμiðwjÞj2∂wFεμiðdwþ εMidw̄Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B2

−
I
Cϵ
j

ð∂w̄φεμi ∘FεμiÞ log jFεμiðwÞ − FεμiðwjÞj2∂wFεμiðε̄Mi dwþ dwÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B3

:

After simple calculations and using Lemma 3.4, one can see that

∂

∂ε

����
ε¼0

B1 ¼ 2

I
Cϵ
j

∂wḞiðwÞ
�

dw
w − wj

�
− 2

I
Cϵ
j

φ

�
Midw̄
w − wj

�
þ O ð1Þ

∂

∂ε

����
ε¼0

B2 ¼
I
Cϵ
j

∂
2
wḞi log jw − wjj2dw −

I
Cϵ
j

∂wφ∂wḞiðwjÞdw −
I
Cϵ
j

∂wφMi log jw − wjj2dw̄þ O ð1Þ;

∂

∂ε

����
ε¼0

B3 ¼
I
Cϵ
j

∂wφMi log jw − wjj2dw̄þ
I
Cϵ
j

∂w̄∂wḞi log jw − wjj2dw̄ −
I
Cϵ
j

∂w̄φ∂wḞiðwjÞdw̄þ O ð1Þ;

as ϵ → 0. This implies that

∂

∂ε

����
ε¼0

ðB1 þ B2 þ B3Þ ¼ −
I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
−
I
Cϵ
j

∂wḞiðwjÞdφ − 2

I
Cϵ
j

φ

�
Midw̄
w − wj

�
þ O ð1Þ

¼ðC30Þ −
I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ:

Therefore, according to the above result, for the third term in (152) we get
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Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂

∂ε

����
ε¼0

ðφεμi ∘FεμiÞ
�
∂wFεμiðε̄Mi dwþ dwÞ

wεμi − wεμi
j

−
∂wFεμiðdwþ εMidw̄Þ

wεμi − wεμi
j

�

¼ −
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ: ð153Þ

Accordingly, Eq. (152) can be further simplified to get

∂Iϵ
∂wi

¼
ZZ

Oϵ

�ð∂wi
∂wφþ ∂

2
wφḞiÞ∂w̄φþ ð∂wi

∂w̄φþ ∂w∂w̄φḞiÞ∂wφþ j∂wφj2∂wḞi
�
dw ∧ dw̄

−
Xn
k¼1

Z
∂Oϵ

k

j∂wφj2
�
ḞiðwÞ − ḞiðwkÞ

�
dw̄ −

Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ: ð154Þ

Next, using Lemma 3.4, we have

∂wi
∂wφþ ∂

2
wφḞi ¼ −∂wφ∂wḞi − ∂

2
wḞi;

∂wi
∂w̄φþ ∂w∂w̄φḞi ¼ −∂wφ∂w̄Ḟi − ∂w̄∂wḞi; ð155Þ

which makes it possible to rewrite (154) as

∂Iϵ
∂wi

¼
ZZ

Oϵ

h
ð−∂wφ∂wḞi − ∂

2
wḞiÞ∂w̄φþ ð−∂wφ∂w̄Ḟi − ∂w̄∂wḞiÞ∂wφþ j∂wφj2∂wḞi

i
dw ∧ dw̄

−
Xn
k¼1

Z
∂Oϵ

k

j∂wφj2
�
ḞiðwÞ − ḞiðwkÞ



dw̄ −

Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ

¼
ZZ

Oϵ

��
2∂2wφ − ð∂wφÞ2



∂w̄Ḟi − 2

∂

∂w

�
∂wφ∂w̄Ḟi



þ ∂

∂w̄

�
∂wφ∂wḞi



−

∂

∂w

�
∂w̄φ∂wḞi


�
dw ∧ dw̄

−
Xn
k¼1

Z
∂Oϵ

k

j∂wφj2
�
ḞiðwÞ − ḞiðwkÞ



dw̄ −

Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ

¼
ZZ

Oϵ

�
2∂2wφ − ð∂wφÞ2



∂w̄Ḟidw ∧ dw̄|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I1

−2
Z
∂Oϵ

∂wφ∂w̄Ḟidw̄|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I2

−
Z
∂Oϵ

∂wφ∂wḞidw|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I3

−
Z
∂Oϵ

∂w̄φ∂wḞidw̄|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I4

−
Z
∂Oϵ

j∂wφj2Ḟidw̄|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I5

þ
I
Cϵ
i

j∂wφj2dw̄ −
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ: ð156Þ

Let us compute each of the integrals I1;…; I5 separately using Lemma C.1 and Corollary 3.1 as well as Eqs. (79) and (80).
We begin with the integral I1:

I1 ¼
ZZ

Oϵ

�
2∂2wφ − ð∂wφÞ2

�
∂w̄Ḟidw ∧ dw̄ ¼ −2

Z
∂Oϵ

TφḞidw

¼ −2
Xne
j¼1

I
Cϵ
j

�
hj

2ðw − wjÞ2
þ cj
w − wj

þ � � �
��

δij þ ðw − wjÞ∂wḞiðwjÞ þ � � ��dw
− 2

Xn−1
j¼neþ1

I
Cϵ
j

�
1

2ðw − wjÞ2
þ cj
w − wj

þ � � �
��

δij þ ðw − wjÞ∂wḞiðwjÞ þ � � ��dw
− 2

I
Cϵ
n

�
1

2w2
þ cn
w3

þ � � �
��

w∂wḞið∞Þ þ � � ��dw
¼ 4π

ffiffiffiffiffiffi
−1

p
ci þ 2π

ffiffiffiffiffiffi
−1

p Xn−1
k¼1

hk∂wḞiðwkÞ − 2π
ffiffiffiffiffiffi
−1

p
∂wḞið∞Þ þ O ð1Þ as ϵ → 0:
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In the last line we have used the notation hk ¼ 1 − 1=m2
k for k ¼ 1;…; ne and hk ¼ 1 for k ¼ ne þ 1;…; n − 1. In addition,

we have

I2 ¼ −2
Z
∂Oϵ

∂wφ∂w̄Ḟidw̄ ¼ −2
Z
∂Oϵ

∂wφðwÞMiðwÞdw̄

¼ðC30Þ − 2
Xne
j¼1

I
Cϵ
j

 
−

1 − 1
mj

w − wj
þ cj
1 − 1

mj

þ � � �
! 

q̄ðjÞ1

4J̄ðjÞ1

· jw − wjj1−
2
mj þ � � �

!
dw̄

− 2
Xn−1

j¼neþ1

I
Cϵ
j

0B@−
1

w − wj

0B@1þ 1

log
��� w−wj

JðjÞ
1

���
1CAþ cj þ � � �

1CA − jδjj2q̄ðjÞ1

4π2J̄ðjÞ1

· jw − wjjlog2jw − wjj þ � � �
!
dw̄

− 2

I
Cϵ
n

0B@−
1

w

0B@1þ 1

log
��� w
JðnÞ−1

���
1CA −

cn
w2

þ � � �

1CA�− jδnj2q̄ðnÞ1 J̄ðnÞ−1
4π2

·
log2jwj
jwj þ � � �

�
dw̄

¼ O ð1Þ;

as ϵ → 0. Let us now calculate I3 þ I4:

I3 þ I4 ¼ −
Z
∂Oϵ

∂wφ∂wḞidw −
Z
∂Oϵ

∂w̄φ∂wḞidw̄ ¼ −
Z
∂Oϵ

∂wḞidφ ¼ O ð1Þ;

as ϵ → 0. Finally, we can turn to calculating I5:

I5 ¼ −
Z
∂Oϵ

j∂wφj2Ḟidw̄

¼ −
Xn−1
k¼1

I
Cϵ
k

j∂wφj2
�
δik þ ðw−wkÞ∂wḞiðwkÞ þ � � ��dw̄−

I
Cϵ
n

�
1

jwj2 þ � � �
��

w∂wḞið∞Þ þ � � ��dw̄
¼ −

I
Cϵ
i

j∂wφj2dw̄−
Xn−1
k¼1

I
Cϵ
k

 �
1− 1

mk

�
2

jw−wkj2
þ � � �

!�ðw−wkÞ∂wḞiðwkÞ þ � � ��dw̄−
I
Cϵ
n

�
1

jwj2 þ � � �
��

w∂wḞið∞Þ þ � � ��dw̄
¼ −

I
Cϵ
i

j∂wφj2dw̄− 2π
ffiffiffiffiffiffi
−1

p Xn−1
k¼1

�
1−

1

mk

�
2

∂wḞiðwkÞ þ 2π
ffiffiffiffiffiffi
−1

p
∂wḞið∞Þ þO ð1Þ;

as ϵ → 0 with mk ¼ ∞ for k ¼ ne þ 1;…; n − 1. As a result, we have

I1 þ � � � þ I5 ¼ 4π
ffiffiffiffiffiffi
−1

p
ci −

I
Cϵ
i

j∂wφj2dw̄þ 2π
ffiffiffiffiffiffi
−1

p Xne
j¼1

�
−

2

m2
j
þ 2

mj

�
∂wḞiðwjÞ þ O ð1Þ; ð157Þ

as ϵ → 0. Moreover, by changing the conformal structure, the variation of counterterm action S̃ϵct gives

∂S̃ϵct
∂wi

¼ −2π
Xne
j¼1

�
1 −

1

mj

�
2

∂wḞiðwjÞ þ O ð1Þ as ϵ → 0: ð158Þ

Notice that we have only taken into account the contributions coming from the regulating terms for conical points and not
the punctures. The reason for this can be traced back to Eq. (138). By doing similar analysis as in Eq. (153) for the contour
integrals in (138), it is easy to see that the quasiconformal transformations of these contour integrals are canceled by those of
the counterterm −2πnp log ϵ. In other words, it is sufficient to only consider the quasiconformal transformations of the bulk
term for the case of punctures, which is in agreement with the analysis in [5].
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Now, using Eqs. (156), (157), (143), and (158), and putting everything together, we arrive at our desired result:

∂S̃ϵm
∂wi

¼
ffiffiffiffiffiffi
−1

p

2

�
4π

ffiffiffiffiffiffi
−1

p
ci −

I
Cϵ
i

j∂wφj2dw̄þ 2π
ffiffiffiffiffiffi
−1

p Xne
j¼1

�
1 −

1

mj

��
2

mj

�
∂wḞiðwjÞ

þ
I
Cϵ
i

j∂wφj2dw̄ − 2π
ffiffiffiffiffiffi
−1

p Xne
j¼1

�
1 −

1

mj

��
2

mj

�
∂wḞiðwjÞ þ O ð1Þ

�
¼ −2πci þ O ð1Þ as ϵ → 0:

In order to complete the proof, it remains to show that
the remainder in the above formula can be estimated
uniformly in a neighborhood of an arbitrary point
ðw1;…; wn−3Þ∈M0;n. Let Γ be a Fuchsian group unifor-
mizing the orbisurface O. Then, the Hauptmodule Jμ,
where μ ¼ t1μ1 þ � � � þ tn−3μn−3 ∈H−1;1ðH;ΓÞ, is contin-
uously differentiable with respect to the Bers’ coordinates ti
and its coefficients in an expansion similar to Eq. (60) have
the same property. From this, we can conclude with the help
of Eq. (77) and Lemma 3.3 that the remainders in the
second and fourth assertions of Lemma C.1 can be
estimated uniformly. Using the commutative diagram (84),
we can conclude that an analogous assertion is valid also
for the remainders in Corollary 3.1 for Ḟi, and this
completes the proof of the theorem. ▪
Remark 4.3. Theorem (142) means that

P
n−3
i¼1 ðcidwi þ

c̄idw̄iÞ is an exact one-form on M0;n with antiderivative
−Sm=2π.
In addition to Theorem (142), we can also generalize

Theorem 2 of [5] to include branch points: The Weil-
Petersson metric defined on T 0;nðmÞ in Sec. III A 3 can be
projected onto M0;n, since it is invariant under AutðΨÞ.
We will continue to call this metric obtained on M0;n the
Weil-Petersson metric and denote it with the same notation
h·; ·iWP. Then, we have the following theorem.
Theorem (Takhtajan and Zograf). For any fixed vector of

orders m¼ðm1;…;mnÞ such that
Pne

j¼1ð1 − 1
mj
Þ þ np > 2,

the function −Sm is a real-analytic Kähler potential for the
metric h·; ·iWP on M0;n

69:

∂∂Sm ¼ −2
ffiffiffiffiffiffi
−1

p
ωWP: ð159Þ

Proof. In order to prove this theorem, we have to prove
that the accessory parameters c1;…; cn−3 are continuously
differentiable on M0;n, and

∂ci
∂w̄j

¼ 1

2π

�
∂

∂wi
;
∂

∂wj

�
WP

for i; j ¼ 1;…; n − 3: ð160Þ

The proof of continuous differentiability of the functions ci
on M0;n follows readily from the definition of accessory
parameters (81) and continuous differentiability of the
Hauptmodule J with respect to the Ber’s coordinates.
We now turn to proving Eq. (160) in the same way as
for Theorem 2 in [5] where no branch point exists. Let
ðw1;…; wn−3Þ be an arbitrary point in M0;n and let Γ be a
Fuchsian group uniformizing the orbisurface O. It follows
from the commutative diagram (84) that

Sch
�
J−1εμj ∘Fεμj ;w

� ¼ Schðfεμj ∘ J−1; zÞ;
where μj is an element of the basis in H−1;1ðH;ΓÞ given
by Eq. (92), and ε∈C is sufficiently small. By using the
following well-known property of Schwarzian derivative,

SchðA ∘B;wÞ ¼ SchðA;wÞ ∘BB02 þ SchðB;wÞ;
we have

Sch
�
J−1εμj ;w

� ∘Fεμjð∂wFεμjÞ2 þ SchðFεμj ;wÞ
¼ Schðfεμj ; zÞ ∘ J−1ðJ−1Þ02 þ SchðJ−1; zÞ:

We can now differentiate both sides of the above equality
with respect to ε̄ at the point ε ¼ 0, using Eq. (79) and the
fact that Fεμj , and as a result w

εμj
i , are holomorphic

functions of ε at ε ¼ 0. The left-hand side gives

∂

∂ε̄

����
ε¼0

�
Sch
�
J−1εμj ;w

� ∘Fεμjð∂wFεμjÞ2 þ SchðFεμj ;wÞ�
¼ ∂Tφεμj

∂ε̄

����
ε¼0

þ ∂wTφ
∂Fεμj

∂ε̄

����
ε¼0

þ Tφ
∂

∂ε̄

����
ε¼0

ð∂wFεμjÞ2 þ ∂

∂ε̄

����
ε¼0

SchðFεμj ;wÞ

¼ ∂

∂ε̄

����
ε¼0

Xn−1
i¼1

�
hi

2ðw − w
εμj
i Þ2 þ

c
εμj
i

w − w
εμj
i

�
¼
Xn−1
i¼1

�
∂c

εμj
i

∂ε̄

����
ε¼0

�
1

w − wi
; ð161Þ

69See Theorem 2 in [5] for the genus g ¼ 0 punctured Riemann surfaces.
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where c
εμj
i ¼ ciðwεμj

1 ;…; w
εμj
n−3Þ. To compute the right-hand side, we will use the definition of Schwarzian derivative (16),

the fact that ∂=∂ε̄ of the functions ∂zfεμj and ∂
2
zfεμj vanishes at ε ¼ 0, and the well-known Ahlfors formula70 [86,91]

∂

∂ε̄
∂
3
zfεμj

����
ε¼0

¼ −
1

2
qj;

where μj and qj are connected by the relation (92). Then, we have

∂

∂ε̄

����
ε¼0

�
Schðfεμj ; zÞ ∘ J−1ðJ−1Þ02 þ SchðJ−1; zÞ� ¼ ∂

∂ε̄
½∂3zfεμj ∘ J−1ðJ−1Þ02�

���
ε¼0

¼ −
1

2
qj ∘ J−1ðJ−1Þ02 ¼ −

1

2
Qj: ð162Þ

Equating the left-hand side, (161), and the right-hand side, (162), and using Eq. (82), we get

Xn−1
i¼1

�
∂c

εμj
i

∂ε̄

����
ε¼0

�
1

w − wi
¼
Xn−3
i¼1

�
∂c

εμj
i

∂ε̄

����
ε¼0

�
1

w − wi
þ
�
∂

∂ε̄
c
εμj
n−2

����
ε¼0

�
1

w
þ
�
∂

∂ε̄
c
εμj
n−1

����
ε¼0

�
1

w − 1

¼
Xn−3
i¼1

�
∂c

εμj
i

∂ε̄

����
ε¼0

�
1

w − wi
þ
�
∂

∂ε̄

�
−1þ n

2
þ
Xn−3
i¼1

c
εμj
i ðwεμj

i − 1Þ
�����

ε¼0

�
1

w

þ
�
∂

∂ε̄

�
1 −

n
2
−
Xn−3
i¼1

c
εμj
i w

εμj
i

�����
ε¼0

�
1

w − 1

¼
Xn−3
i¼1

�
∂c

εμj
i

∂ε̄

����
ε¼0

��
1

w − wi
þ wi − 1

w
−

wi

w − 1

�
¼ð91Þ − π

Xn−3
i¼1

�
∂c

εμj
i

∂ε̄

����
ε¼0

�
Ri ¼ −

1

2
Qj;

or

Xn−3
i¼1

�
∂c

εμj
i

∂ε̄

����
ε¼0

�
Ri ¼

1

2π
Qj:

It now follows from the biorthogonality of the bases Ri and
Qj as well as Lemma 3.3 that

∂ci
∂w̄j

¼ 1

2π
hQi;Qji ¼

1

2π

�
∂

∂wi
;
∂

∂wj

�
WP

;

which is what we wanted. Combining Eq. (160) and the
theorem is stated in Eq. (142), we can conclude that the
real-valued function −Sm is a potential for the Weil-
Petersson metric on M0;n,

−
∂Sm
∂wiw̄j

¼
�

∂

∂wi
;
∂

∂wj

�
WP

;

while the function −Sm ∘Ψ is a potential for the Weil-
Petersson metric on the Teichmüller space T 0;nðmÞ. In
addition, the real analyticity of the Weil-Petersson metric
(see [91]) implies the real analyticity of the accessory

parameters c1;…; cn−3 and of their generating function
−Sm=2π on the space M0;n. ▪
Remark 4.4. Equations (142) and (159) also give us a

proof that the Weil-Petersson metric is a Kähler metric.
Finally, let M0;nðmÞ ¼ M0;n=SymmðsÞ be the moduli

space of orbifold Riemann surfaces with signature
ð0;m1;…; mne ; npÞ. One can generalize the results of
Sec. 1 of [15] to prove the following Lemma.
Lemma 4.1. A Hermitian metric in a holomorphic Q-line

bundle λ0;m over M0;nðmÞ is determined by exp½Sm=π�,
so that

c1ðλ0;m; exp½Sm=π�Þ ¼
1

π2
ωWP: ð163Þ

Proof. We first need to show that exp½Sm=π� is a
Hermitian metric in the holomorphic Q-line bundle λ0;m
defined in Sec. III B. To do so, we use the same repre-
sentation of SymmðsÞ introduced there. For our purposes, it
suffices to prove this lemma for the case where the
signature of orbifold Riemann surface O is given by
ð0;m;…; m|fflfflfflffl{zfflfflfflffl}

s

; m0;…; m0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s0

Þ with s≡ sm and s0 ≡ sm0 > 3.

Namely, we have only two kinds of points, s branch points
of order m and s0 branch points of order m0. Furthermore,
we will fix the last three points with order m0 > m to be
at 0; 1;∞. Then, the generators and one-cocycles of
SymmðsÞ ¼ SymmðsÞ × Symmðs0Þ would be the same

70The Ahlfors formula can be derived by comparing the
expression for ḟ

μj
− ðzÞ, given by Eq. (88), and the equality

ΛΛ� ¼ id discussed in Sec. III A 1.
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as the ones we introduced in Sec. III B. Moreover, in this case we have

Sm½φ� ¼ lim
ϵ→0þ

�ZZ
Oϵ

ðj∂wφj2 þ eφÞd2wþ
ffiffiffiffiffiffi
−1

p

2

Xsþs0−1

k¼1

�
1 −

1

mk

�I
Cϵ
k

φ

�
dw̄

w̄ − w̄k
−

dw
w − wk

�

þ
ffiffiffiffiffiffi
−1

p

2

�
1þ 1

m0

�I
Cϵ
sþs0

φ

�
dw̄
w̄

−
dw
w

��
; ð164Þ

where

Oϵ ¼ Cn ⋃
sþs0−1

k¼1

�
w
��jw − wkj < ϵ

�
∪
�
w
��jwj > ϵ−1

�
;

Cϵ
k ¼

�
w
��jw − wkj ¼ ϵ

�
; k ¼ 1; 2;…; sþ s0 − 1

Cϵ
sþs0 ¼

�
w
��jwj ¼ 1=ϵ

�
; ð165Þ

and the circles are oriented as a component of ∂Oϵ. Notice that we did not consider the counterterms in (164). Actually,
SymmðsÞ does not change the conformal family, and therefore the counterterms will not contribute to the variation under
the action of this group, and therefore writing them would be redundant. To study the variation of Sm½φ� under the action of
SymmðsÞ, it suffices to study its variation under the generators fðσj;jþ1; σ0i;iþ1Þgj¼s−1;i¼s0−1

j¼1;i¼1 of SymmðsÞ. Considering the
background we provided in Sec. III B on the structure of the generators, variation is translated through the effect of the
transformation γj;jþ1;i;iþ1. We have

ΔSm½φ� ¼ Sm½φ� ∘ ðσk;kþ1; σ0i;iþ1Þ − Sm½φ�

¼ lim
ϵ→0þ

� ffiffiffiffiffiffi
−1

p

2



ΔSð1Þm ½φ� þ

�
1 −

1

m

�
ΔSð2Þm ½φ� þ

�
1 −

1

m0

�
ΔSð3Þm ½φ� þ

�
1þ 1

m0

�
ΔSð4Þm ½φ�

��
; ð166Þ

where

ΔSð1Þm ½φ� ¼
ZZ

Õϵ

ðj∂γj;jþ1;i;iþ1wφ̃j2 þ eφ̃Þdðγj;jþ1;i;iþ1wÞ ∧ dðγj;jþ1;i;iþ1wÞ −
ZZ

Oϵ

ðj∂wφj2 þ eφÞdw ∧ dw̄;

ΔSð2Þm ½φ� ¼
Xs
k¼1


I
C̃ϵ
k

φ̃

�
dðγj;jþ1;i;iþ1wÞ

γj;jþ1;i;iþ1w − γj;jþ1;i;iþ1wk

−
dðγj;jþ1;i;iþ1wÞ

γj;jþ1;i;iþ1w − γj;jþ1;i;iþ1wk

�
−
I
Cϵ
k

φ

�
dw̄

w̄ − w̄k
−

dw
w − wk

��
;

ΔSð3Þm ½φ� ¼
Xsþs0−1

k¼sþ1


I
C̃ϵ
k

φ̃

�
dðγj;jþ1;i;iþ1wÞ

γj;jþ1;i;iþ1w − γj;jþ1;i;iþ1wk
−

dðγj;jþ1;i;iþ1wÞ
γj;jþ1;i;iþ1w − γj;jþ1;i;iþ1wk

�
−
I
Cϵ
k

φ

�
dw

w̄ − w̄k
−

dw
w − wk

��
;

ΔSð4Þm ½φ� ¼
I
C̃ϵ
sþs0

φ̃

�
dðγj;jþ1;i;iþ1wÞ
γj;jþ1;i;iþ1w

−
dðγj;jþ1;i;iþ1wÞ
γj;jþ1;i;iþ1w

�
−
I
Cϵ
sþs0

φ

�
dw̄
w̄

−
dw
w

�
;

and Õϵ, C̃ϵ
k, φ̃ are the transformed orbifold Riemann surface, circles, and Liouville field, respectively, such that

Õϵ ¼ Cn ∪sþs0
k¼1 IntC̃ϵ

k. By looking at (64), we see that the index j does not have any nontrivial effect and we only have to
worry about different values of i. For i < s0 − 3, the transformation γj;jþ1;i;iþ1 is given by the identity of PSLð2;CÞ, so, for
these cases we haveΔSm½φ� ¼ 0. Accordingly, the only nontrivial cases are i ¼ s0 − 3; s0 − 2; s0 − 1. Let us look at the case
with i ¼ s0 − 3. Here we have the transformation γs0−3;s0−2 ¼ ðw − wsþs0−3Þ=ð1 − wsþs0−3Þ which for simplicity we call γ.
Let us calculate each contribution in (166) separately71:

71For ΔSð1Þm ½φ�, the exponential terms give the same constants, and we can safely ignore them in variation.
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ΔSð1Þm ½φ� ¼
ZZ

Õϵ

j∂γwφ̃j2dðγwÞ ∧ dðγwÞ −
ZZ

Oϵ

j∂wφj2dw ∧ dw̄

¼
ZZ

γ−1ðÕϵÞ
j∂wφ̃ ∘ γj2jγ0j−2ðjγ0j2dw ∧ dw̄Þ −

ZZ
Oϵ

j∂wφj2dw ∧ dw̄

¼
ZZ

γ−1ðÕϵÞnOϵ

j∂wφj2dw ∧ dw̄;

where γ0 ¼ ∂γðwÞ=∂w, and in the last line we used the invariance of the hyperbolic metric:

eφ̃ ∘ γdðγwÞ ∧ dðγwÞ ¼ eφdw ∧ dw̄ ⇒ φ̃ ∘ γ þ log jγ0j2 ¼ φ ⇒ ∂wφ̃ ∘ γ ¼ ∂wφ; ð167Þ

since γ0 ¼ 1=ð1 − wsþs0−3Þ. The region γ−1ðÕϵÞnOϵ contains a part of C bounded by the circles C̃k and Ck. Thus,
by integration by parts and using the equations of motion together with taking into account the orientation of these circles,
we have

ΔSð1Þm ½φ� ¼
Xsþs0−1

k¼1

�I
C̃ϵ
k

φ∂w̄φdw̄ −
I
Cϵ
k

φ∂w̄φdw̄
�
þ
�I

C̃ϵ
sþs0

φ∂w̄φdw̄ −
I
Cϵ
sþs0

φ∂w̄φdw̄
�
: ð168Þ

The explicit form of the circles C̃ϵ
k is given by

C̃ϵ
k ¼

( fwjjγw − γwkj ¼ ϵg ¼ fwjjw − wkj ¼ ϵj1 − wsþs0−3jg k ≤ sþ s0 − 1;�
wjjγwj ¼ 1

ϵ

� ¼ �wjjwj ¼ 1
ϵ j1 − wsþs0−3j

�
k ¼ sþ s0:

ð169Þ

Now, with the use of Eqs. (168) and (169) and the asymptotic form of φ given by C.1, one can find72

ΔSð1Þm ½φ� ¼ −4π
ffiffiffiffiffiffi
−1

p �
1 −

1

m

�
2

s log
1

j1 − wsþs0−3j
− 4π

ffiffiffiffiffiffi
−1

p �
1 −

1

m0

�
2

ðs0 − 1Þ log 1

j1 − wsþs0−3j

þ 4π
ffiffiffiffiffiffi
−1

p �
1þ 1

m0

�
2

log
1

j1 − wsþs0−3j
: ð170Þ

Next, for the ΔSð2Þm ½φ� we have

ΔSð2Þm ½φ� ¼
Xs
k¼1

�I
C̃ϵ
k

φ̃

�
dðγwÞ

γw − γwk
−

dðγwÞ
γw − γwk

�
−
I
Cϵ
k

φ

�
dw̄

w̄ − w̄k
−

dw
w − wk

��

¼
Xs
k¼1

�I
C̃ϵ
k

ðφ − log jγ0j2Þ
�

γ0dw̄
γw − γwk

−
γ0dw

γw − γwk

�
−
I
Cϵ
k

φ

�
dw̄

w̄ − w̄k
−

dw
w − wk

��
¼
Xs
k¼1

�I
C̃ϵ
k

ðφþ 2 log j1 − wsþs0−3jÞ
�

dw̄
w̄ − w̄k

−
dw

w − wk

�
−
I
Cϵ
k

φ

�
dw̄

w̄ − w̄k
−

dw
w − wk

��
;

where we have used (167) and γ0 ¼ 1=ð1 − wsþs0−3Þ. By using the asymptotics of φ given in Lemma C.1 and Eq. (169), the
above expression can be simplified to give

ΔSð2Þm ½φ� ¼ −8π
ffiffiffiffiffiffi
−1

p 1

m
s log

1

j1 − wsþs0−3j
: ð171Þ

72Note that the orientation of the contour around the point at infinity is opposite of the other points, hence the sign difference in the
last term.
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By identical calculation to that of ΔSð2Þm ½φ�, we get

ΔSð3Þm ½φ� ¼ −8π
ffiffiffiffiffiffi
−1

p 1

m0 ðs0 − 1Þ log 1

j1 − wsþs0−3j
: ð172Þ

Finally,

ΔSð4Þm ½φ� ¼
I
C̃ϵ
sþs0

φ̃

�
dðγwÞ
γw

−
dðγwÞ
γw

�
−
I
Cϵ
sþs0

φ

�
dw̄
w̄

−
dw
w

�

¼
I
C̃ϵ
sþs0

ðφ − log jγ0j2Þ
�
γ0dw̄
γw

−
γ0dw
γw

�
−
I
Cϵ
sþs0

φ

�
dw̄
w̄

−
dw
w

�
¼
I
C̃ϵ
sþs0

ðφþ 2 log j1 − wsþs0−3jÞ
�
dw̄
w̄

−
dw
w

�
−
I
Cϵ
sþs0

φ

�
dw̄
w̄

−
dw
w

�
;

where in the last linewe approximatedw − wsþs0−3 withw in
the denominator of the second term due to w having a large
absolute value. Again, using the asymptotics of φ from
Lemma C.1, Eq. (169) and taking into account the opposite
orientation of contours around the point at infinity, we have

ΔSð4Þm ½φ� ¼ −8π
ffiffiffiffiffiffi
−1

p 1

m0 log
1

j1 − wsþs0−3j
: ð173Þ

Putting (166), (170), (171), (172), and (173) together, we get

ΔSm½φ�¼2π

�
1

m2
−1

�
s logj1−wsþs0−3j

þ2π

�
1

m02−1

�
ðs0−2Þlog j1−wsþs0−3j: ð174Þ

By comparing (174) with Eq. (65), we can readily see that
for i ¼ s0 − 3,

ΔSm½φ� ¼ Sm½φ� ∘ ðσk;kþ1; σ0i;iþ1Þ − Sm½φ�
¼ −2π log jfðσk;kþ1;σ0i;iþ1

Þj: ð175Þ

Doing the analogous calculations for i ¼ s0 − 2; s0 − 3
would yield similar results. One can continue this proof
for the case with the direct product of the symmetric groups
of more strata inductively. Furthermore, had we chosen to fix
the points 0, 1 and∞ in the other stratum or decided to deal
with punctures, we would still get the same result with minor
changes in the path of the proof. So, in principle, we proved
that under the action of any element η of SymmðsÞ, Sm
transforms according to the rule

exp½Sm ∘ η=π�jfηj2 ¼ exp½Sm=π�: ð176Þ

This means that exp½Sm=π� is a Hermitian metric in the
holomorphicQ-line bundle λ0;m defined in the Sec. III B. As
we mentioned before, (175) shows that one-cocycles can be

viewed as the modular anomaly caused by the noncovariance
of the action under the effect of the modular group. To
complete the proof, we remind that the first Chern form
c1ðλ0;m; exp½Sm=π�Þ of the metrized Q-line bundle λ0;m with
a metric exp½Sm=π� is given by

c1ðλ0;m; exp½Sm=π�Þ ¼ −
ffiffiffiffiffiffi
−1

p

2π
∂∂

�
Sm
π

�
: ð177Þ

Thus using theorem is stated in Eq. (159), we find that

c1ðλ0;m; exp½Sm=π�Þ ¼
1

π2
ωWP: ð178Þ

This statement completes the proof. ▪

B. Riemann orbisurfaces of genus > 1

Consider a marked normalized Schottky group of rank
g > 1 denoted by ðΣ;L1;…; LgÞ. The Liouville action, at
the classical level, is actually the on-shell value of the
Liouville action functional. For the case of a closed
Riemann surface with g > 1, it was first defined by
Zograf and Takhtajan [6] (and was later interpreted by
Takhtajan and Teo [55] in cohomological language) to be
given by

S½φ� ¼
ZZ

D
ðj∂wφj2 þ eφÞd2wþ

ffiffiffiffiffiffi
−1

p

2

Xg
k¼2

I
Ck

θL−1
k
ðφÞ;

ð179Þ

where the one-form θL−1
k
ðφÞ is given by

θL−1
k
ðφÞ ¼

�
φ −

1

2
log jL0

kj2 − log jlkj2
��

L00
k

L0
k
dw −

L00
k

L0
k

dw̄

�
;

∀ Lk ∈ ðΣ;L1;…; LgÞ: ð180Þ
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In the above equations, D is the fundamental domain of
the marked normalized Schottky group ðΣ;L1;…; LgÞ,
∂D ¼ ⋃g

k¼1ðCk ∪ C0
kÞ, and

lk ¼
1 − λkffiffiffiffiffi

λk
p ðak − bkÞ

ð181Þ

is the left-hand lower element in the matrix representation
of the generator Lk ∈PSLð2;CÞ for k ¼ 2;…; g. Notice
that since we have chosen the marked Schottky group
to be normalized, in particular a1 ¼ 0 and b1 ¼ ∞,
we have l1 ¼ 0 and θL−1

1
ðφÞ ¼ 0. Zograf and Takhtajan

(Theorems 1 and 2 of [6]) have proven that

∂S ¼ −2π
X3g−3
i¼1

ciPi and ∂∂S ¼ −2
ffiffiffiffiffiffi
−1

p
ωWP; ð182Þ

where ∂ and ∂ are (1, 0) and (0, 1) components of the
de Rham differential on Sg (see Sec. III C). This implies
that −S is actually a Kähler potential for the projection of
the Weil-Petersson metric on Sg.
Remark 4.5. The addition of the second term in the

on-shell Liouville action (179) makes sure that:

(i) The variation δS of the classical action S½φ� has
the form

δS½φ�≡def lim
t→0

S½φþ tδψ � − S½φ�
t

¼
ZZ

D
ð−2∂w̄∂wφþ eφÞδψd2w; ð183Þ

where the variation δψ ∈ C∞ðΩ;RÞ is a smooth
function on Ω which is automorphic with respect
to Σ. For the marked Schottky group ðΣ;L1;…; LgÞ,
the S½φ� is independent of the specific choice of a
fundamental domain D.73

When the conical points and cusps are present, the area
integral in (179) diverges in the limits w → wi due to
asymptotics of Liouville field φ (see Lemma C.1) and the
classical Liouville action needs to be regularized. Let us

define D
⋏

as the pair ðD0; D̃ jDÞ, where D0 is defined as
D ∩ Ω0 and D̃ jD denotes the restriction of D̃ to D. Here,
we have assumed that all singular points w1;…; wn belong
to the interior of fundamental domain D. For sufficiently
small ϵ > 0, define74

D
⋏
ϵ ¼ D

⋏
n ⋃

n

i¼1

Dϵ
i ; ð184Þ

with Dϵ
i≡deffwjjw − wij < ϵg. It follows from Lemma C.1 that the following limit exists:

S
D
⋏
reg

½φ� ¼ lim
ϵ→0þ

�ZZ
D
⋏
ϵ

ðj∂wφj2 þ e2φÞd2wþ
ffiffiffiffiffiffi
−1

p

2

Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

�

− 2π
Xne
j¼1

�
1 −

1

mj

�
2

log ϵþ 2πnpðlog ϵþ 2 log j log ϵjÞ
�
: ð185Þ

Remark 4.6. When np ¼ 0, the appropriate S
D
⋏
reg

½φ� is given by

lim
ϵ→0þ

�ZZ
D
⋏
ϵ

ðj∂wφj2 þ e2φÞd2wþ
ffiffiffiffiffiffi
−1

p

2

Xn
j¼1

�
1 −

1

mj

�I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
− 2π

Xn
i¼1

�
1 −

1

mj

�
2

log ϵ

�
: ð186Þ

Now, we can define the regularized action as

Sm½φ� ¼ SmðD;w1;…; wnÞ ¼ S
D
⋏
reg

½φ� þ
ffiffiffiffiffiffi
−1

p

2

Xg
k¼2

I
Ck

θL−1
k
ðφÞ: ð187Þ

This completes the definition of Sm provided that all of the fixed points w1;…; wn lie in the interior of the fundamental
domain—i.e., w1;…; wn ∈ IntD. The SmðD;w1;…; wnÞ depends on the choice of representatives in Σ · fw1;…; wng and no
longer determines a function on the Schottky spaceSg;nðmÞ. Note that wi and LkðwiÞ have the same order and are related by

the action of SymmðsÞ acting on Ω
⋏
. The geometric meaning of Sm is given by the following Lemma (also see Lemma 3.5).

73See footnote 53.
74Note that limϵ→0 D

⋏
ϵ ¼ Dreg where Dreg ≔ D0nSuppðD̃ jDÞ.
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Lemma 4.2. The regularized Liouville action determines a Hermitian metric exp½Sm=π� in the holomorphicQ-line bundle
L ¼⊗n

i¼1 L
hi
i over Sg;nðmÞ.

Proof. To establish this claim for i ¼ 1;…; n, it is adequate to demonstrate that we have

SmðD̃;w1;…; Lkwi;…; wnÞ − SmðD;w1;…; wnÞ ¼ πhi log jL0
kðwiÞj2; ð188Þ

where w1;…; wn ∈ IntD and w1;…; Lkwi;…; wn ∈ IntD̃. Furthermore, it is sufficient to consider the case when

D̃ ¼ ðDnD0Þ ∪ LkðD0Þ;

and D0 ⊂ D is such that ∂D0 ∩ ∂D ⊂ Ck and wi ∈D0, and all other wj ∈DnD0 for j ≠ i. Note that by a finite combination
of such transformations, any choice of a fundamental domain for Σ can be obtained from D. The computation of (188)
closely follows the corresponding computation in the proof of Lemma 3 in [14] where no branch point was present. Let

IϵðD;w1;…; wnÞ ¼
ZZ

D
⋏
ϵ

ðj∂wφj2 þ eφÞdw ∧ dw̄þ
Xg
k¼2

I
Ck

θL−1
k
ðφÞ þ

Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
;

where we did not include the counterterms in the action due to the fact that the action of Lk does not change the conformal
class. Since C̃j ¼ Cj for j ≠ k and C̃k ¼ Ck − ∂D0, we have

ΔIϵ ¼ IϵðD̃;w1;…; Lkwi;…; wnÞ − IϵðD;w1;…; wnÞ

¼
ZZ

LkðD0ÞnD̃ϵ
i

ðj∂wφj2 þ eφÞdw ∧ dw̄ −
ZZ

D0nDϵ
i

ðj∂wφj2 þ eφÞdw ∧ dw̄ −
I
∂D0

θL−1
k
ðφÞ

þ
Xne
j¼1

δij

�
1 −

1

mj

��I
C̃ϵ
j

φ

�
dw̄

w̄ − Lkwj
−

dw
w − Lkwj

�
−
I
Cϵ
j

φ

�
dw

w̄ − w̄j
−

dw
w − wj

��
:

According to Eq. (132) we have

L�
kððj∂wφj2 þ eφÞdw ∧ dw̄Þ ¼ ððj∂wφj2 þ eφÞdw ∧ dw̄Þ ∘LkjL0

kj2
¼ ðj∂wφj2 þ eφÞdw ∧ dw̄þ dθL−1

k
ðφÞ; ð189Þ

where, together with using the Stokes theorem, we get

ΔIϵ ¼
ZZ

D0nL−1
k ðD̃ϵ

i Þ
ðj∂wφj2 þ eφÞdw ∧ dw̄ −

ZZ
D0nDϵ

i

ðj∂wφj2 þ eφÞdw ∧ dw̄ −
I
∂L−1

k ðD̃ϵ
i Þ
θL−1

k
ðφÞ

þ
Xne
j¼1

δij

�
1 −

1

mj

��I
L−1
k ðC̃ϵ

jÞ
ðφ − log jL0

kwj2Þ
�

L0
kwdw̄

Lkw − Lkwj
−

L0
kwdw

Lkw − Lkwj

�
−
I
Cϵ
j

φ

�
dw

w̄ − w̄j
−

dw
w − wj

��
:

Since the third term’s integrand does not have a pole, its contribution will be of O ð1Þ and it can be safely omitted.
Furthermore, the exponential term in the Liouville term gives the Euler characteristic and its contribution will be canceled
between related terms. Now, we can rewrite the above equation as

ΔIϵ ¼
ZZ

Dϵ
i

ðj∂wφj2Þdw ∧ dw̄ −
ZZ

L−1
k ðD̃ϵ

i Þ
ðj∂wφj2Þdw ∧ dw̄

þ
Xne
j¼1

δij

�
1 −

1

mj

��I
L−1
k ðC̃ϵ

jÞ
ðφ − log jL0

kðwÞj2Þð∂w̄ log jLkw − Lkwjj2

−∂w log jLkw − Lkwjj2Þ −
I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

��
: ð190Þ
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By noting that

∂w log jLkw − Lkwjj2 ¼ ∂w log jw − wjj2 þ O ð1Þ;

we can write (190) as follows:

ΔIϵ ¼
ZZ

Dϵ
i

ðj∂wφj2Þdw ∧ dw̄ −
ZZ

L−1
k ðD̃ϵ

i Þ
ðj∂wφj2Þdw ∧ dw̄

þ
Xne
j¼1

δij

�
1 −

1

mj

��I
L−1
k ðC̃ϵ

jÞ
ðφ − log jL0

kðwÞj2Þ
�

dw̄
w̄ − w̄j

−
dw

w − wj

�
−
I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

��
: ð191Þ

By doing the integration by parts and imposing the equations of motion together with considering the orientation of the
boundary circles, the first line in (191) becomesZZ

Dϵ
i

ðj∂wφj2Þdw ∧ dw̄ −
ZZ

L−1
k ðD̃ϵ

i Þ
ðj∂wφj2Þdw ∧ dw̄ ¼

I
Cϵ
i

φ∂w̄φdw̄ −
I
C̃ϵ
i

φ∂w̄φdw̄; ð192Þ

where

C̃ϵ
i ¼ fwjjLkw − Lkwij ¼ ϵg≡



wjjw − wij ¼

ϵ

L0
kwi

�
: ð193Þ

To be more precise, the right-hand side of (192) had an extra contribution,

1

2

ZZ
L−1
k ðD̃ϵ

i Þ
φeφdw ∧ dw̄ −

1

2

ZZ
Dϵ

i

φeφdw ∧ dw̄; ð194Þ

which by defining yi ¼ jw − wij; αi ¼ 1 − 1=mi; ½yi�≕ ϵ ≤ yi ≤ ϵ=L0
kwi, this contribution for branch points and cusps

respectively becomes

−
2π

2

ZZ
½yi�

1

y2αi−1i

log y2αii dyi ¼ π

�
αi

2ð1 − αiÞ2
y2−2αii −

αi
ð1 − αiÞ

y2−2αii log yi

�����ϵ=L0
kwi

ϵ

−
2π

2

ZZ
½yi�

1

yilog2yi
log ðy2i log2yiÞdyi ¼ π

�
2þ 2

log yi
− 2 log j log yij þ

2

log yi
log j log yij

�����ϵ=L0
kwi

ϵ

;

but both of them, and accordingly (194), vanish in the limit ϵ → 0. Now, by using the asymptotic form of φ from the
Lemma C.1 together with the relation (193), Eq. (192) is simplified to75ZZ

Dϵ
i

ðj∂wφj2Þdw ∧ dw̄ −
ZZ

L−1
k ðD̃ϵ

i Þ
ðj∂wφj2Þdw ∧ dw̄ ¼ −4π

ffiffiffiffiffiffi
−1

p �
1 −

1

mi

�
2

log jL0
kwij: ð195Þ

For the rest of the integrals in (191), again by using the asymptotics of φ from Lemma C.1 and (193), we have

Xne
j¼1

δij

�
1 −

1

mj

��I
L−1
k ðC̃ϵ

jÞ
ðφ − log jL0

kðwÞj2Þ
�

dw̄
w̄ − w̄j

−
dw

w − wj

�
−
I
Cϵ
j

φ

�
dw̄

w̄ − w̄j
−

dw
w − wj

��
¼ 8π

ffiffiffiffiffiffi
−1

p �
1

m2
i
−

1

mi

�
log jL0

kwij: ð196Þ

75The Dϵ
i boundaries have the opposite orientation of the boundary of the fundamental domain.
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Now, combining (195) and (196) gives

ΔIϵ ¼ −4π
ffiffiffiffiffiffi
−1

p
hi log jL0

kwij:

So, in principle, we proved that

exp
�
SmðD̃;w1;…; Lkwi;…; wnÞ=ðπhiÞ

�
¼ exp½SmðD;w1;…; wnÞ=ðπhiÞ�jL0

kwij2;

which means that exp½Sm=π� is a Hermitian metric on
L ¼⊗npþne

i¼1 L hi
i . ▪

Combining Lemmas 4.2 and 3.5, we can deduce the
following statement.
Corollary 4.1. Put H ¼ hm1h1

1 � � � hmnehne
ne hneþ1 � � � hn.

Then,

Sm ¼ Sm − π logH ð197Þ

determines a smooth real-valued function on Sg;nðmÞ.
The above form of Sm can be easily understood by

demanding the Liouville action to be independent from the
choice of a representative in Σ:fw1;…; wng: It is clear from
commutative diagram (13) and the definition of regularized
Liouville action (187), that the problem of defining the
appropriate Liouville action on Sg;nðmÞ is closely related

to the Fuchsian uniformization of Ω
⋏
. Then, the fact that

Ω ⊂ Ĉ and the observation that, roughly speaking, the

action of Schottky group Σ on Ω
⋏

resembles that of
SymmðsÞ on a genus zero Riemann orbisurface,76 suggests
that the same pattern of “anomaly cancellation” observed in
Sec. III B 1 should also happen in this case.

V. POTENTIALS FOR WEIL-PETERSSON AND
TAKHTAJAN-ZOGRAF METRICS

In this section, following [14,16], we construct Kähler
potentials for cuspidal and elliptic TZ metrics onM0;n (see
Sec. III A 3). We will also prove that the first Chern forms
of the line bundles L i over the Schottky space Sg;nðmÞ
with Hermitian metrics hi are given by 1

2π ω
ell
TZ;i for

i ¼ 1;…; ne and 4
3
ωcusp
TZ;i for i ¼ ne þ 1;…; n. In addition,

we will show that 1
π2
ωWP is the first Chern form of the

Q-line bundle L ¼⊗n
i¼1 L

hi
i with Hermitian metric

exp½Sm=π�, where the regularized classical Liouville
action Sm is given by Eq. (187). Then, it follows readily
from these two results that the specific combination
ωWP − 4π2

3
ωcusp
TZ − π

2

Pne
j¼1mjhjωell

TZ;j of Weil-Petersson
metric as well as cuspidal and elliptic Takhtajan-Zograf
metrics has a global Kähler potential on Sg;nðmÞ.

A. Potentials for cuspidal and elliptic TZ metrics
on M0;n

As in Sec. III B, let Γ be a marked normalized Fuchsian
group with signature ð0;m1;…; mne ; npÞ that uniformizes
the orbifold Riemann surface O and let J∶H → O be the

Klien’s Hauptmodule. In addition, let hi ¼ jJðiÞ1 j 2
mi for

i ¼ 1;…; ne, hi ¼ jJðiÞ1 j2 for i ¼ ne þ 1;…; n − 1, and

hn ¼ jJðnÞ−1 j2 be smooth positive functions on M0;n.
77

Now, according to the expressions for loghi in
Remark 3.10, we prove the following lemma.
Lemma 5.1. For all k ¼ 1;…; n − 3, we have

∂

∂wk
log hi ¼

1

mi
∂wḞkðwiÞ; i ¼ 1;…; ne;

∂

∂wk
log hi ¼ ∂wḞkðwiÞ; i ¼ ne þ 1;…; n: ð198Þ

Proof. Consider the orbifold Riemann surfaceO ≅ ½H=Γ�.
Using Lemma 3.3, it is sufficient to demonstrate that

�
∂ loghεμki

∂ε

�����
ε¼0

¼

 1

mi
∂wḞkðwiÞ for i ¼ 1;…; ne;

∂wḞkðwiÞ for i ¼ ne þ 1;…; n;

ð199Þ

and for all k ¼ 1;…; n − 3. The following proof repeats
verbatim the proof of Lemma 4 in [14] for the case of
punctures. Using the fact that Fεμk is holomorphic in ε at
ε ¼ 0, Corollary 3.1, Eq. (106) and formulas in Remark 3.10
we get

76More specifically, by acting each generator Lk ∈Σ on a
singular point wi inside a particular fundamental domain D, we
will get another singular point with the same order of isotropy in a
different fundamental domain. 77See Eq. (61).
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(i) i ¼ 1;…; ne case:

�
∂ log hεμki

∂ε

�����
ε¼0

¼ −
�
∂

∂ε

�����
ε¼0

lim
w→wi

�
φεμk ∘Fεμk þ

�
1 −

1

mi

�
log jFεμkðw − wiÞj2

�
¼ − lim

w→wi



∂

∂ε

����
ε¼0

�
φεμk ∘Fεμk þ

�
1 −

1

mi

�
log jFεμkðw − wiÞj2

��
¼ − lim

w→wi

�
∂wk

φþ ∂wφḞkðwÞ þ
�
1 −

1

mi

�
ḞkðwÞ − ḞkðwiÞ

w − wi

�
¼ð100Þ − lim

w→wi

�
−∂wφḞkðwÞ − ∂wḞkðwÞ þ ∂wφḞkðwÞ þ

�
1 −

1

mi

�
∂wḞkðwÞ

�
¼ 1

mi
∂wḞkðwiÞ:

In going from the first line to the second line, we have interchanged the order of the limit w → wi and the
differentiation. This is allowed due to convergence in the above formula and the fact that the definition of hi is
uniform in a neighborhood of an arbitrary point ðw1;…; wn−3Þ∈M0;n.

(ii) i ¼ ne þ 1;…; n − 1 case:

�
∂ log hεμki

∂ε

�����
ε¼0

¼
�
∂

∂ε

�����
ε¼0

lim
w→wi

 
log jFεμkðw − wiÞj2 −

2e−
φεμk ∘Fεμk ðwÞ

2

jFεμkðw − wiÞj

!

¼ lim
w→wi



∂

∂ε

����
ε¼0

�
log jFεμkðw − wiÞj2 − 2ðFεμkÞ�

�
e−

1
2
φεμk

���� ∂wFεμkðwÞ

Fεμkðw − wiÞ
������

¼ lim
w→wi



∂

∂ε

����
ε¼0

logðFεμkðw − wiÞÞ − 2
e−

1
2
φ

ðw̄ − w̄iÞ12
∂

∂ε

����
ε¼0

�
∂wFεμkðwÞ

Fεμkðw − wiÞ
�1

2

�
¼ lim

w→wi

�
ḞkðwÞ − ḞkðwiÞ

w − wi
−
e−

1
2
φðwÞððw − wiÞ∂wḞkðwÞ − ḞkðwÞ þ ḞkðwiÞÞ

ðw − wiÞjw − wij
�

¼ ∂wḞkðwiÞ:

(iii) i ¼ n case:

�
∂ log hεμkn

∂ε

�����
ε¼0

¼
�
∂

∂ε

�����
ε¼0

lim
w→∞

 
log jFεμkðwÞj2 − 2e−

φεμk ∘Fεμk ðwÞ
2

jFεμkðwÞj

!

¼ lim
w→∞



∂

∂ε

����
ε¼0

�
log jFεμk j2 − 2ðFεμkÞ��e−1

2
φεμk
����� ∂wFεμk

Fεμk

�����ðwÞ�
¼ lim

w→∞



∂

∂ε

����
ε¼0

logðFεμkðwÞFεμkðwÞÞ − 2
e−

1
2
φ

w
1
2

∂

∂ε

����
ε¼0

�
∂wFεμkðwÞ
FεμkðwÞ

�1
2

�
¼ lim

w→∞

�
ḞkðwÞ
w

−
e−

1
2
φðwÞðw∂wḞkðwÞ − ḞkðwÞÞjwj

w2w̄

�
¼ ∂wḞkð∞Þ:

▪
As before, let ∂ and ∂ be the (1, 0) and (0, 1) components of de Rham differential d ¼ ∂þ ∂ on M0;n. We have

(see [14,16]) the following.

CLASSICAL LIOUVILLE ACTION AND UNIFORMIZATION OF … PHYS. REV. D 110, 046018 (2024)

046018-47



Lemma (Takhtajan and Zograf). The functions − log hi;− loghj; log hn; ∶M0;n → R>0 for i ¼ 1;…; ne and j ¼
ne þ 1;…; n − 1 are Kähler potential for TZ metrics 1

2
h·; ·iellTZ;i, 4π

3
h·; ·icuspTZ;j, − 4π

3
h·; ·icuspTZ;n, respectively

78:

∂∂ log hi ¼ −
ffiffiffiffiffiffi
−1

p
ωell
TZ;i; ∂∂ loghj ¼ −

8π
ffiffiffiffiffiffi
−1

p

3
ωcusp
TZ;j; ∂∂ log hn ¼

8π
ffiffiffiffiffiffi
−1

p

3
ωcusp
TZ;n: ð200Þ

Proof. We need to prove that for all j; k ¼ 1;…; n − 3,

−
∂
2 log hi
∂wj∂w̄k

¼

8>>>>><>>>>>:

1
2

D
∂

∂wj
; ∂

∂wk

E
ell

TZ;i
for i ¼ 1;…; ne;

4π
3

D
∂

∂wj
; ∂

∂wk

E
cusp

TZ;i
for i ¼ ne þ 1;…; n − 1;

− 4π
3

D
∂

∂wj
; ∂

∂wk

E
cusp

TZ;i
for i ¼ n:

Let us consider the three cases i ¼ 1;…; ne, i ¼ ne þ 1;…; n − 1, and i ¼ n separately. The following proof repeats
verbatim the proof of Proposition 1 in [14] for the case of punctures. According to Sec. III A, Lemma 3.3 and Eq. (106), for
a given Riemann orbisurface O ≅ ½H=Γ� one can write:

(i) i ¼ 1;…; ne case:

−
∂ loghi
∂wj∂w̄k

¼ −
�
∂ log h

εjμjþεkμk
i

∂εj∂ε̄k

�����
εj¼εk¼0

¼ lim
w→wi


�
∂
2

∂εj∂ε̄k

�����
εj¼εk¼0

�
φðεμÞjk ∘FðεμÞjk þ

�
1 −

1

mi

�
log jFðεμÞjkðw − wiÞj2

��
¼ lim

w→wi

�
∂
2

∂εj∂ε̄k

�����
εj¼εk¼0

ðFεjμjþεkμkÞ�ðφÞ:

In the above equation, we have used the notation ðεμÞjk ¼ εjμj þ εkμk. Using the commutative diagram (84), one has

ðFεjμjþεkμkÞ�
�
eφ

εjμjþεkμk


¼ ðJ−1Þ�ðfεjμjþεkμkÞ�ðρÞ:

Taking the logarithm of the above formula, we get

φεjμjþεkμk ∘Fεjμjþεkμk þ log j∂wFεjμjþεkμk j2 ¼ logððfεjμjþεkμkÞ�ðρÞÞ ∘ J−1 þ log jðJ−1Þ0j2:

Then, using the above equations together with Ahlfors formulas (101) and Wolpert’s formula (45), we have

−
�
∂
2 log h

εjμjþεkμk
i

∂εj∂ε̄k

�����
εj¼εk¼0

¼ lim
w→wi

�
∂
2

∂εj∂ε̄k

�����
εj¼εk¼0

logððfεjμjþεkμkÞ�ðρÞÞ ∘ J−1

¼ð45Þ 1
2
lim
w→wi

fμjμ̄k ∘ J−1ðwÞ ¼
1

2

�
∂

∂wj
;
∂

∂wk

�
ell

TZ;i
:

78See the Proposition 1 in [14] for punctured Riemann surfaces.
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(ii) i ¼ ne þ 1;…; n − 1 case:

−
∂
2 log hi
∂wj∂w̄k

¼ −
�
∂
2 log h

εjμjþεkμk
i

∂εj∂ε̄k

�����
εj¼εk¼0

¼ 2 lim
w→wi



1

jw − wij
∂
2

∂εjvε̄k

����
εj¼εk¼0

�
FðεμÞjk


��
e−

1
2
φðεμÞjk ðwÞ



þ e−

1
2
φðwÞ ∂

∂εj

����
εj¼0

�
∂wFεjμjðwÞ

Fεjμjðw − wiÞ
�1

2 ∂

∂ε̄k

����
εk¼0

�
∂wFεkμkðwÞ

Fεkμkðw − wiÞ

�1
2
�

¼ð106Þ lim
w→wi

8<:−
1

2
log jw − wijfμjμ̄k ∘ J−1ðwÞ þ

1

2
e−

1
2
φðwÞ

×

�ðw − wiÞ∂wḞjðwÞ − ḞjðwÞ þ ḞjðwiÞ
�

jw − wijðw̄ − w̄iÞ12

�
ðw − wiÞ∂wḞkðwÞ − ḞkðwÞ þ ḞkðwiÞ



jw − wijðw − wiÞ12

9=;
¼ðC9Þ − 1

2
lim
w→∞

log jw − wij
Imðς−1i ∘ J−1ðwÞÞ ðIm ςizÞfμjμ̄kðςizÞ

¼ π lim
w→∞

ðIm ςizÞfμjμ̄kðςizÞ ¼
ð53Þ 4π

3

�
∂

∂wj
;
∂

∂wk

�
cusp

TZ;i
;

where in the last line, we have used the fact that log jw − wij=Imðς−1i ∘ J−1ðwÞÞ ¼ −2π as w → wi.
(iii) i ¼ n case:

∂
2 logh1
∂wj∂w̄k

¼
�
∂
2 log h

εjμjþεkμk
1

∂εj∂ε̄k

�����
εj¼εk¼0

¼ lim
w→∞



∂
2

∂εj∂ε̄k

����
εj¼εk¼0

�
log
��FðεμÞjk

��2 − 2
�
FðεμÞjk���e−1

2
φðεμÞjk ����� ∂wFðεμÞjk

FðεμÞjk

�����ðwÞ�

¼ −2 lim
w→∞

8<: 1

jwj
∂
2

∂εj∂ε̄k

����
εj¼εk¼0

�
FðεμÞjk���e−1

2
φðεμÞjk �

þ e−
1
2
φðwÞ ∂

∂εj

����
εj¼0

�
∂wFεjμjðwÞ
FεjμjðwÞ

�1
2 ∂

∂ε̄k

����
εk¼0

�
∂wFεkμkðwÞ
FεkμkðwÞ

�1
2

9=;
¼ð106Þ lim

w→∞

8<:e−
1
2
φðwÞ

2jwj fμjμk ∘ J−1 −
e−

1
2
φðwÞ

2

�
w∂wḞjðwÞ − ḞjðwÞ�

jwjw̄1
2

�
w∂wḞkðwÞ − ḞkðwÞ



jwjw1

2

9=;
¼ lim

w→∞


jwj log jwj
2jwj fμjμ̄kðJ−1ðwÞÞ

�
¼ðC9Þ 1

2
lim
w→∞

log jwj
ImðJ−1ðwÞÞ ðIm zÞfμjμ̄kðzÞ

¼ π lim
w→∞

ðIm zÞfμjμ̄kðzÞ ¼
ð53Þ 4π

3

�
∂

∂wj
;
∂

∂wk

�
cusp

TZ;n
:

In the above equation, we have used the fact that log jwj=ImðJ−1ðwÞÞ ¼ 2π as w → ∞.
▪

Using Lemmas 3.2 and (200), we can deduce the following corollary.
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Corollary 5.1. The function −logH¼−m1h1 logh1…−
mn−1hn−1 loghn−1þ loghn is a Kähler potential for the
combination 4π

3
ωcusp
TZ þ 1

2

Pne
j¼1mjhjωell

TZ;j on M0;nðmÞ.
The first Chern form of the Hermitian holomorphic Q-line
bundle ðλ0;m;HÞ over M0;nðmÞ is given by

c1ðλ0;m;HÞ ¼
ffiffiffiffiffiffi
−1

p

2π
∂∂ logH ¼ 4π

3
ωcusp
TZ þ 1

2

Xne
j¼1

mjhjωell
TZ;j:

ð201Þ

Remark 5.1. In analogy with the famous accessory
parameters that are generated by Sm, the authors of [60]
have defined the so-called “auxiliary parameters” as79

di ≔
1

H
∂H
∂wi

: ð202Þ

As emphasized in [60], the auxiliary parameters play an
equally important role as the accessory parameters. In
particular, it follows from the above corollary that an
analog of the relation (160) can be found between the
auxiliary parameters and Takhtajan-Zograf metrics.
Next, let us remind that the decomposition of rðzÞ is

given by

rðzÞ ¼
Xn−3
i¼1

airiðzÞ; ð203Þ

where

ai ¼
ZZ

F ðΓÞ
SchðJ; zÞμiðzÞd2z: ð204Þ

According to Sec. III B, for varying Γ, the rðzÞ determines a
(1, 0)-form r on T 0;n and the latter one is corresponding to
the (1, 0)-form ϑ,80

ϑ ¼
Xn−3
i¼1

aidwi;

on M0;n. Therefore, we also have the following.
Corollary 5.2. The function Sm∶ M0;n → R satisfies

∂Sm ¼ 2ϑ ð205Þ

and

∂∂Sm ¼ −2
ffiffiffiffiffiffi
−1

p �
ωWP −

4π2

3
ωcusp
TZ −

π

2

Xne
j¼1

mjhjωell
TZ;j

�
:

ð206Þ

To see (205), put Sm ¼ Sm − π logH and combine
Lemma 5.1 with the proof of Theorem (142) which gives

∂Sm ¼ ∂Sm − π
Xn
j¼1

mjhj∂ loghj ¼
Xn−3
i¼1

�
∂Sm
∂wi

�
dwi − π

Xn
j¼1

Xn−3
i¼1

mjhj

�
∂

∂wi
log hj

�
dwi

¼ −2π
Xn−3
i¼1

cidwi − π
Xn−3
i¼1

Xn
j¼1

hjḞi
wðwjÞdwi ¼ 2

Xn−3
i¼1

�
−πci þ

Xn
j¼1

hjðE j;MiÞ
�
dwi¼3.62

Xn−3
i¼1

aidwi ¼ 2ϑ:

In the second line of the above equation, we noted that Eq. (90) implies that

Ḟi
wðwÞ ¼ −

1

π

ZZ
C
Miðw0Þ∂wRðw0; wÞd2w0 ¼ −

1

π

ZZ
C
Miðw0Þ

�
1

ðw0 − wÞ2 −
1

w0ðw0 − 1Þ
�
d2w0;

which at the point w ¼ wj is simplified to

Ḟi
wðwjÞ ¼ −

1

π

ZZ
C
MiðwÞ

�
1

ðw − wjÞ2
−

1

wjðwj − 1Þ
�
d2w ¼ −

2

π

ZZ
C
MiðwÞE jðwÞd2w ¼ −

2

π

ZZ
C
ðE j;MiÞ:

Then Eq. (206) can be obtained easily by using theorem
stated in Eq. (159) as well as Lemma is stated in Eq. (200).

Remark 5.2. According to Lemmas 3.2 and 4.1, the
functions H and exp½Sm=π� are Hermitian metrics in the
holomorphic Q-line bundle λ0;m over M0;nðmÞ. This
implies that Sm ¼ Sm − π logH determines a function

79Our definition of auxiliary parameters differs from that of
Ref. [60] by a factor of 1

2
. 80See Lemma 3.3.
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on M0;nðmÞ. Interestingly, the combination ωWP −
4π2

3
ωcusp
TZ − π

2

Pne
j¼1mjhjωell

TZ;j in Eq. (206) with overall
factor of 1

12π appears also in the local index theorem for
orbifold Riemann surfaces for k ¼ 0, 1. This is the sign that
the functionSm can play the role of the Quillen’s metric in
the Hodge line bundle λ1, defined in [16]. We will explain a
little bit more about this observation in conclusion.

B. Chern forms and potentials on Schottky
space Sg;nðmÞ

Let O ≅ Ω
⋏
=Σ ¼ ½H=Γ� and Γ be respectively an orbifold

Riemann surface and Fuchsian group of signature

ðg;m1;…; mne ; npÞ and let J∶H → Ω
⋏
be the corresponding

orbifold covering map. As we have explained in Sec. III C,
the automorphic form SchðJ−1;wÞ of weight 4 for the
Schottky group can be projected to the subspace

H2;0ðΩ⋏ ;ΣÞ ≅ T�
π ∘Φð0ÞSg;nðmÞ,

RðwÞ ¼
X3g−3þn

i¼1

biPiðwÞ ¼
X3g−3þn

i¼1

ðSchðJ−1Þ;MiÞPiðwÞ;

ð207Þ

where Pi;i¼1;…;3g−3þn are given by (123) and (125)
and by using Eq. (127) we get

RðwÞ ¼
X3g−3þn

i¼1

�
−πci þ

Xn
j¼1

hjðE j;MiÞ
�
PiðwÞ

≡ πR0ðwÞ þ
Xn
j¼1

hjRjðwÞ: ð208Þ

The definition of E j is provided by (128). The RðwÞ
coincides with a (1, 0)-form Q on the Schottky
pace Sg;nðmÞ:

Q ¼
X3g−3þn

i¼1

bidwi

¼ b1dλ1 þ � � � þ bgdλg þ bgþ1da3 þ � � � þ b2g−3dag þ b2g−2db2 þ � � � þ b3g−3dbg þ b3g−2dw1 þ � � � þ b3g−3þndwn:

ð209Þ

In the following two theorems, which can be regarded as
generalizations of Theorems 1 and 2 of [14], we will
explicitly describe canonical connections and curvature
forms of the Hermitian holomorphic (Q-)line bundles L i

and L ¼⊗n
i¼1 L

hi
i .

Theorem 1. Let ∂ and ∂ be (1, 0) and (0, 1) components
of the de Rham differential on Schottky space Sg;nðmÞ.
The following statements are true.

(i) On the Hermitian holomorphic line bundle
ðL i; h

mi
i Þ, the canonical connection is given by81

∂ log hmi
i ¼ −

2

π
Ri:

(ii) On the Hermitian holomorphic Q-line bundle

ðL ; e
Sm
π Þ, the canonical connection is given by

1

π
∂Sm ¼ 2R0:

(iii) The function Sm∶ Sg;nðmÞ → R given by
Eq. (197) satisfies

∂Sm ¼ 2Q:

Proof. We will prove each statement separately:
(i) In order to prove part (i), it is sufficient to show that

�
∂ log h

εμj
i

∂ε

�����
ε¼0

¼
(
− 2

πmi
ðE i;MjÞ for i ¼ 1;…; ne;

− 2
π ðE i;MjÞ for i ¼ ne þ 1;…; n:

Using Lemma 5.1, we have

�
∂ logh

εμj
i

∂ε

�����
ε¼0

¼
(

1
mi
∂wḞjðwiÞ for i ¼ 1;…; ne;

∂wḞjðwiÞ for i ¼ ne þ 1;…; n:
ð210Þ81When mi ¼ ∞, we will simply ignore mi in the following

formula.
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On another side, according to (90) and (128), one can see

π∂wḞjðwiÞ ¼ −
Z Z

D
⋏ MjðwÞ

�
1

ðw − wiÞ2
−

1

wðw − 1Þ
�
d2w ¼ −2ðE i;MjÞ;

which by substituting in (210) gives the desired result.
(ii) To prove part (ii), we need to show that

∂

∂ε

����
ε¼0

Smð½Lεμi
1 ;…; Lεμi

g �;wεμi
1 ;…; wεμi

n Þ ¼ −2πci for i ¼ 1;…; 3g − 3þ n:

We have

LμiSm ¼ ∂

∂ε

����
ε¼0

Smð½Lεμi
1 ;…; Lεμi

g �;wεμi
1 ;…; wεμi

n Þ

¼
ffiffiffiffiffiffi
−1

p

2
lim
ϵ→0

∂

∂ε

����
ε¼0

IϵðεÞ þ lim
ϵ→0

∂S̃ðctÞϵ

∂wi
; ð211Þ

where S̃ðctÞϵ is given in Eq. (144) and

IϵðεÞ¼
ZZ

Fεμi ðD
⋏
ϵÞ
j∂wφεμi j2dw∧dw̄þ

Xg
k¼2

I
Fεμi ðCkÞ

θðLεμi
k Þ−1ðφεμiÞþ

Xne
j¼1

�
1−

1

mj

�I
Fεμi ðCϵ

jÞ
φεμi

�
dw̄

w̄−wεμi
j

−
dw

w−wεμi
j

�
;

where once again, we have used the Gauss-Bonnet formula for Riemann orbisurfaces [102,103],ffiffiffiffiffiffi
−1

p

2

ZZ
Fεμi ðD

⋏
Þ
eφ

εμidw ∧ dw̄ ¼ 2π

�
2gþ

Xne
j¼1

�
1 −

1

mj

�
þ np − 2

�
¼ −2πχðXÞ;

to conclude that ffiffiffiffiffiffi
−1

p

2
Lμi

Z Z
D
⋏ e

φdw ∧ dw̄ ¼ 0:

The calculation of LμiSm closely follows the corresponding computation in the proof of Theorem 1 in [6], where
regularization at the punctures can be found in the proof of Theorem 1 in [5] and for branch points in the proof of
Theorem (142). More explicitly, by applying the change of variable formula

R
FðD

⋏
Þ
ω ¼ R

D
⋏ F�ðωÞ and noting to the

commutative diagram (129), one finds

IϵðεÞ ¼
ZZ

D
⋏
ϵðεÞ

ðFεμiÞ��j∂wφεμi j2dw ∧ dw̄
�þXg

k¼2

I
Ck

ðFεμiÞ��θðLεμi
k Þ−1ðφεμiÞ�

þ
Xne
j¼1

�
1−

1

mj

�I
Cϵ
jðεÞ

ðFεμiÞ�
�
φεμi

�
dw̄

w̄−wεμi
j

−
dw

w−wεμi
j

��

¼
ZZ

D
⋏
ϵðεÞ

j∂wφεμi ∘Fεμi j2dFεμiðwÞ ∧ dFεμiðwÞ þ
Xg
k¼2

I
Ck

�
φεμi ∘Fεμi −

1

2
log jðLεμi

k Þ0 ∘Fεμi j2 − log jlεμik j2
�

×

�ðLεμi
k Þ00 ∘Fεμi

ðLεμi
k Þ0 ∘Fεμi

dFεμiðwÞ− ðLεμi
k Þ00 ∘Fεμi

ðLεμi
k Þ0 ∘Fεμi

dFεμiðwÞ
�

þ
Xne
j¼1

�
1−

1

mj

�I
Cϵ
jðεÞ

ðφεμi ∘FεμiÞ
�

dFεμiðwÞ
FεμiðwÞ−wεμi

j

−
dFεμiðwÞ

FεμiðwÞ−wεμi
j

�
;
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which by noting that dFεμiðwÞ ¼ ∂wFεμiðdwþ εMidw̄Þ and dFεμiðwÞ ¼ ∂wFεμiðε̄Mi dwþ dwÞ, it turns to

IϵðεÞ ¼
ZZ

D
⋏
ϵðεÞ

j∂wφεμi ∘Fεμi j2j∂wFεμi j2ð1 − jεMij2Þdw ∧ dw̄

− 2
Xg
k¼2

I
Ck

φεμi ∘Fεμi
ðLεμi

k Þ00 ∘Fεμi

ðLεμi
k Þ0 ∘Fεμi

∂wFεμiðε̄Mi dwþ dwÞ

−
Xg
k¼2

I
Ck

∂wφ
εμi ∘Fεμi log jðLεμi

k Þ0 ∘Fεμi j2∂wFεμiðdwþ εMidw̄Þ

−
Xg
k¼2

I
Ck

∂w̄φ
εμi ∘Fεμi log jðLεμi

k Þ0 ∘Fεμi j2∂wFεμiðε̄Mi dwþ dwÞ

þ
Xg
k¼2

I
Ck

log jðLεμi
k Þ0 ∘Fεμi j2 ðL

εμi
k Þ00 ∘Fεμi

ðLεμi
k Þ0 ∘Fεμi

∂wFεμiðε̄Mi dwþ dwÞ þ 8π
ffiffiffiffiffiffi
−1

p Xg
k¼2

log jlεμik j2

þ
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
jðεÞ

ðφεμi ∘FεμiÞ
�
∂wFεμiðε̄Mi dwþ dwÞ

wεμi − wεμi
j

−
∂wFεμiðdwþ εMidw̄Þ

wεμi − wεμi
j

�
;

where Cks are the usual components of ∂D
⋏
and

D
⋏
ϵðεÞ ¼ D

⋏
n ⋃

n

i¼1

Dϵ
i ðεÞ;

Dϵ
i ðεÞ ¼

�
w∈D

��jwεμi − wεμi
i j < ϵ

�
;

Cϵ
jðεÞ ¼ ∂Dϵ

jðεÞ ¼
�
w∈D

��jwεμi − wεμi
j j ¼ ϵ

�
:

Just as in the proof of Theorem (142), to calculate İiϵ, we must differentiate both the integrand and the integration

domain D
⋏
ϵðεÞ. Using Eq. (151), the second contribution gives

∂

∂ε

����
ε¼0

ZZ
D
⋏
ϵðεÞ

j∂wφj2dw ∧ dw̄ ¼ −
Xn
j¼1

I
∂Dϵ

jðεÞ
j∂wφj2

�
ḞiðwÞ − ḞiðwjÞ

�
dw̄; ð212Þ

where the boundaries ∂Dϵ
jðεÞ are oriented in a manner that is counter to the orientation of ∂D

⋏
ϵ. These boundaries also

oriented as a boundary of Dϵ
jðεÞ. Moreover, the contribution from the variation of integral domain Cε

j vanishes since
∂Cϵ

j ¼ ∅. The differentiation under the integral sign repeats the calculations done in the proof of Theorem 1 of [6]
almost word for word. The only change is that the integration domain has now changed to Dϵ. Accordingly,

İiϵ ¼
ZZ

D
⋏
ϵ

�ð∂wφ̇i þ ∂
2
wφḞiÞ∂w̄φþ ð∂w̄φ̇i þ ∂w∂w̄φḞiÞ∂wφþ j∂wφj2∂wḞi

�
dw ∧ dw̄

−
Xn
j¼1

I
∂Dϵ

j

j∂wφj2
�
ḞiðwÞ − ḞiðwjÞ

�
dw̄ − 2

Xg
k¼2

I
Ck

ðφ̇i þ ∂wφḞiÞL
00
k

L0
k

dw̄

−
Xg
k¼2

I
Ck

�
ð∂wφ̇i þ ∂

2
wφḞiÞ log jL0

kj2dwþ ∂wφ
ðL̇i

kÞ0 þ L00
kḞ

i

L0
k

dwþ ∂wφ log jL0
kj2∂wḞidwþ ∂wφ log jL0

kj2Midw̄

�

−
Xg
k¼2

I
Ck

�
ð∂w̄φ̇i þ ∂w∂w̄φḞiÞ log jL0

kj2 þ ∂wφ
ðL̇i

kÞ0 þ L00
kḞ

i

L0
k

�
dw̄

þ
Xg
k¼2

I
Ck

ðL̇i
kÞ0 þ L00

kḞ
i

L0
k

L00
k

L0
k

dw̄þ 8π
ffiffiffiffiffiffi
−1

p Xg
k¼2

l̇ik
lk
−
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ;

CLASSICAL LIOUVILLE ACTION AND UNIFORMIZATION OF … PHYS. REV. D 110, 046018 (2024)

046018-53



where we have used Eq. (153) and the fact that Fεμi and Lεμi
k are holomorphic in the variable ε∈C. As in the proof of

Theorem (142), we can use Lemma 3.4 and the equality ∂w̄Ḟi ¼ Mi to rewrite the above equation as

İiϵ¼
ZZ

D
⋏
ϵ

�ð−∂wφ∂wḞi−∂
2
wḞiÞ∂w̄φþð−∂wφ∂w̄Ḟi−∂w∂w̄ḞiÞ∂wφþj∂wφj2∂wḞi

�
dw∧dw̄

−
Xn
j¼1

I
∂Dϵ

j

j∂wφj2
�
ḞiðwÞ− ḞiðwjÞ

�
dw̄þ2

Xg
k¼2

I
Ck

∂wḞiL
00
k

L0
k

dw̄

−
Xg
k¼2

I
Ck

�
ð−∂wφ∂wḞi−∂

2
wḞiÞlog jL0

kj2dwþ∂wφ
ðL̇i

kÞ0þL00
kḞ

i

L0
k

dwþ∂wφ log jL0
kj2∂wḞidwþ∂w∂w̄Ḟi logjL0

kj2dw̄
�

−
Xg
k¼2

I
Ck

�
∂wφ−

L00
k

L0
k

�ðL̇i
kÞ0þL00

kḞ
i

L0
k

dw̄þ8π
ffiffiffiffiffiffi
−1

p Xg
k¼2

l̇ik
lk
−
Xne
j¼1

�
1−

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄− w̄j
−

dw
w−wj

�
þO ð1Þ:

ð213Þ

Let us first compute the integral over D
⋏
ϵ:ZZ

D
⋏
ϵ

�ð−∂wφ∂wḞi − ∂
2
wḞiÞ∂w̄φþ ð−∂wφ∂w̄Ḟi − ∂w∂w̄ḞiÞ∂wφþ j∂wφj2∂wḞi

�
dw ∧ dw̄

¼
ZZ

D
⋏
ϵ

�
ð2∂2wφ − ð∂wφÞ2Þ∂w̄Ḟi − 2

∂

∂w

�
∂wφ∂w̄Ḟi

�þ∂w̄
�
∂wφ∂wḞi

�
−

∂

∂w

�
∂w̄φ∂wḞi

��
dw ∧ dw̄

¼ 2

ZZ
D
⋏
ϵ

TφMidw ∧ dw̄−2
Z
∂D
⋏
ϵ

∂wφ∂w̄Ḟidw̄|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I1

−
Z
∂D
⋏
ϵ

∂wφ∂wḞidw|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I2

−
Z
∂D
⋏
ϵ

∂w̄φ∂wḞidw̄|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I3

;

where in the last line, we have used the definition of the energy-momentum Tφ ¼ SchðJ−1;wÞ ¼ ∂
2
wφ − 1

2
ð∂wφÞ2. In

order to compute the integrals I1, I2, and I3, we need some useful identities. From the equality Fεμi ∘Lk ¼ Lεμi
k ∘Fεμi

for k ¼ 1;…; g, one can see that

Ḟi ∘Lk ¼ ḞiL0
k þ L̇i

k;

∂wḞi ∘LkL0
k ¼ ∂wḞiL0

k þ ḞiL00
k þ L̇i

k;

∂w̄Ḟi ∘LkL0
k ¼ ∂w̄ḞiL0

k;

Moreover, from Eq. (132) one has

∂wφ ∘LkL0
k þ

L00
k

L0
k
¼ ∂wφ; ∂w̄φ ∘LkL0

k þ
L00
k

L0
k

¼ ∂w̄φ:

Now, recalling that ∂D
⋏
ϵ ¼

�
⋃g

k¼1ðCk ∪ C0
kÞ
�
∪
�
⋃nþl

i¼1C
ϵ
i

�
, where C0

k ¼ −LkðCkÞ, together with implementing some
of the above identities we get

I1 ¼ −2
Z
∂D
⋏
ϵ

∂wφ∂w̄Ḟidw̄

¼ −2
Xg
k¼2

I
Ck

∂wφ∂w̄Ḟidw̄ − 2
Xne
j¼1

I
Cϵ
j

∂wφ∂w̄Ḟidw̄ − 2
Xnp
j¼1

I
Cϵ
neþj

∂wφ∂w̄Ḟidw̄

¼ −2
Xg
k¼2

I
Ck

∂w̄Ḟi L
00
k

L0
k
dw̄ − 2

Xne
j¼1

I
Cϵ
j

∂wφMidw̄ − 2
Xnp
j¼1

I
Cϵ
neþj

∂wφMidw̄;
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where it can be simplified more by using the asymptotic expansions (C30):

I1 ¼ 2
Xg
k¼2

I
Ck

��
L00
k

L0
k

�0
Ḟi þ L00

k

L0
k
∂wḞi

�
dw − 2

Xne
j¼1

I
Cϵ
j

�
−

1 − 1
mj

w − wj
þ cj
1 − 1

mj

þ � � �
� 

q̄ðjÞ1

4J̄ðjÞ1

· jw − wjj1−
2
mj þ � � �

!
dw̄

− 2
Xnp−1
j¼1

I
Cϵ
neþj

0B@−
1

w − wneþj

0B@1þ 1

log
��� w−wneþj

JðneþjÞ
1

���
1CAþ � � �

1CA
×

�
−
jδneþjj2q̄ðneþjÞ

1

4π2J̄ðneþjÞ
1

· jw − wneþjjlog2jw − wneþjj þ � � �
�
dw̄

− 2

I
Cϵ
n

0B@−
1

w

0B@1þ 1

log
��� w
JðnÞ−1

���
1CA −

cn
w2

þ � � �

1CA�− jδnj2q̄ðnÞ1 J̄ðnÞ−1
4π2

·
log2jwj
jwj þ � � �

�
dw̄

¼ 2
Xg
k¼2

I
Ck

��
L00
k

L0
k

�0
Ḟi þ L00

k

L0
k
∂wḞi

�
dwþ O ð1Þ:

Moreover,

I2 ¼ −
Z
∂D
⋏
ϵ

∂wφ∂wḞidw ¼ −
Xg
k¼2

I
Ck

∂wφ∂wḞidw −
Xn
j¼1

I
Cϵ
j

∂wφ∂wḞidw

¼ −
Xg
k¼2

I
Ck

�
L00
k

L0
k
∂wḞi −

�
∂wφ −

L00
k

L0
k

� ðL̇i
kÞ0 þ L00

kḞ
i

L0
k

�
dw −

Xn
j¼1

I
Cϵ
j

∂wφ∂wḞidw:

Furthermore,

I3 ¼ −
Z
∂D
⋏
ϵ

∂w̄φ∂wḞidw̄ ¼ −
Xg
k¼2

I
Ck

∂w̄φ∂wḞidw̄ −
Xn
j¼1

I
Cϵ
j

∂w̄φ∂wḞidw̄

¼ −
Xg
k¼2

I
Ck

�
L00
k

L0
k

∂wḞi −
�
∂w̄φ −

L00
k

L0
k

� ðL̇i
kÞ0 þ L00

kḞ
i

L0
k

�
dw̄ −

Xn
j¼1

I
Cϵ
j

∂w̄φ∂wḞidw̄:

Using the fact that

−
Xn
j¼1

I
Cϵ
j

∂wφ∂wḞidw −
Xn
j¼1

I
Cϵ
j

∂w̄φ∂wḞidw̄ ¼ −
Xn
j¼1

I
Cϵ
j

∂wḞidφ ¼ O ð1Þ as ϵ → 0;

we get

I1 þ I2 þ I3 ¼ 2
Xg
k¼2

I
Ck

��
L00
k

L0
k

�0
Ḟi þ L00

k

L0
k
∂wḞi

�
dw −

Xg
k¼2

I
Ck

�
L00
k

L0
k
∂wḞi −

�
∂wφ −

L00
k

L0
k

� ðL̇i
kÞ0 þ L00

kḞ
i

L0
k

�
dw

−
Xg
k¼2

I
Ck

�
L00
k

L0
k

∂wḞi −
�
∂w̄φ −

L00
k

L0
k

� ðL̇i
kÞ0 þ L00

kḞ
i

L0
k

�
dw̄þ O ð1Þ:
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Substituting the above results in Eq. (213), we get

İiϵ ¼ 2

ZZ
D
⋏
ϵ

TφMidw ∧ dw̄ −
Xn
j¼1

I
Cϵ
j

j∂wφj2
�
ḞiðwÞ − ḞiðwjÞ

�
dw̄

þ
Xg
k¼2

I
Ck

�
∂wḞi

�
L00
k

L0
k
dwþ L00

k

L0
k

dw̄

�
þ log jL0

kj2
�
∂
2
wḞidwþ ∂w̄∂wḞidw̄

��þXg
k¼2

I
Ck

Ḟi

�
2

�
L00
k

L0
k

�0
−
�
L00
k

L0
k

�
2
�
dw

þ
Xg
k¼2

I
Ck

ðL̇i
kÞ0 þ L00

k

ðL0
kÞ2

dwþ 8π
ffiffiffiffiffiffi
−1

p Xg
k¼2

l̇ik
lk
−
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ: ð214Þ

Using the fact that the left brackets in the second line in (214) can be written as

Xg
k¼2

I
Ck

�
∂wḞi

�
L00
k

L0
k
dwþ L00

k

L0
k

dw̄

�
þ log jL0

kj2ð∂2wḞidwþ ∂w̄∂wḞidw̄Þ
�
¼
Xg
k¼2

I
Ck

d
�
∂wḞi log jL0

kj2


;

one can see that this sum vanishes; the right brackets in the second line in (214) is also equal to 0, since

Xg
k¼2

I
Ck

Ḟi

�
2

�
L00
k

L0
k

�0
−
�
L00
k

L0
k

�
2
�
dw ¼ 2

Xg
k¼2

I
Ck

ḞiSchðLk;wÞdw ¼ 0:

As for the first term in the third line of Eq. (214), since the contour Ck encircles a zero of the function L0
k, i.e., the

point L−1
k ð∞Þ, we get from the Cauchy formula thatI

Ck

ðL̇i
kÞ0 þ L00

k

ðL0
kÞ2

dw ¼ −8π
ffiffiffiffiffiffi
−1

p l̇ik
lk

for k ¼ 2;…; g;

therefore, the combination of first two terms in third line of Eq. (214) vanishes as well. Putting everything together,
one has

İiϵ ¼ 2

ZZ
D
⋏
ϵ

TφMidw ∧ dw̄ −
Xn
j¼1

I
Cϵ
j

j∂wφj2
�
ḞiðwÞ − ḞiðwjÞ

�
dw̄

−
Xne
j¼1

�
1 −

1

mj

�I
Cϵ
j

∂wḞi

�
dw̄

w̄ − w̄j
−

dw
w − wj

�
þ O ð1Þ: ð215Þ

Using Eq. (211), the limit

lim
ϵ→0

ZZ
D
⋏
ϵ

TφMidw ∧ dw̄ ¼ð207Þ−2
ffiffiffiffiffiffi
−1

p
bi;

and

lim
ϵ→0

Xn
j¼1

I
Cϵ
j

j∂wφj2
�
ḞiðwÞ − ḞiðwjÞ

�
dw̄

¼C:1 lim
ϵ→0

Xne
j¼1

�
1 −

1

mj

�
2
I
Cϵ
j

ḞiðwÞ − ḞiðwjÞ
jw − wjj2

dw̄þ lim
ϵ→0

Xnp−1
j¼1

I
Cϵ
j

�
ḞiðwÞ − ḞiðwjÞ

jw − wjj2
þ 2ðḞiðwÞ − ḞiðwjÞÞ
jw − wjj2 log jw − wjj

�
dw̄

þ lim
ϵ→0

I
Cϵ
n

�
ḞiðwÞ − Ḟið∞Þ

jwj2 þ 2ðḞiðwÞ − Ḟið∞ÞÞ
jwj2 log jwj

�
dw̄

¼ 2π
ffiffiffiffiffiffi
−1

p Xn
j¼1

�
1 −

1

mj

�
2

∂wḞiðwjÞ with mj ¼ ∞ for j ¼ ne þ 1;…; n;
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accordingly, Eq. (215) is simplified to

İiϵ ¼ −4
ffiffiffiffiffiffi
−1

p
bi − 2π

ffiffiffiffiffiffi
−1

p Xn
j¼1

�
1 −

1

mj

�
2

∂wḞiðwjÞ − 4π
ffiffiffiffiffiffi
−1

p Xne
j¼1

�
1 −

1

mj

�
∂wḞiðwjÞ: ð216Þ

Finally, by putting everything together from (211), (216), and (158), we get

LμiSm ¼ 2bi þ π
Xn
j¼1

hj∂wḞiðwjÞ ¼ −2πci þ 2
Xn
j¼1

hjðE j;MiÞ þ π
Xn
j¼1

hj∂wḞiðwjÞ ¼ð5.2Þ − 2πci:

(iii) The proof of part (iii) follows readily from those of parts (i) and (ii).
▪

Theorem 2. The following statements are also true:
(i) The first Chern form of the Hermitian holomorphic line bundle ðL i; h

mi
i Þ is given by

c1ðL i;h
mi
i Þ ¼ mi

2π
ωell
TZ;i; i ¼ 1;…; ne:

(ii) The first Chern form of the Hermitian holomorphic Q-line bundle ðL ; exp½Sm=π�Þ is given by

c1ðL ; exp½Sm=π�Þ ¼
1

π2
ωWP:

(iii) The function Sm ¼ Sm − π logH satisfies

−∂∂Sm ¼ 2
ffiffiffiffiffiffi
−1

p �
ωWP −

4π2

3
ωcusp
TZ −

π

2

Xne
j¼1

mjhjωell
TZ;j

�
:

Proof. Since

c1ðL i;h
mi
i Þ ¼

ffiffiffiffiffiffi
−1

p

2π
∂∂ loghmi

i ;

the proof of part (i) is exactly the same as that of lemma
stated in Eq. (200). The proof of part (ii) can be obtained by
Theorem 1 and accordingly following similar analysis
with the Theorem (159). The last part immediately follows
from (i) and (ii). ▪

VI. DISCUSSION AND SOME FUTURE
DIRECTIONS

This paper explores the semiclassical limit of Liouville
field theory on Riemann orbisurfaces of finite conformal
type ðg > 1; nÞ. This is accomplished through the use of
Schottky global coordinates. This study can be seen as
an extension of a previous work by Park, Takhtajan, and
Teo [14] in which they examined the classical Liouville
action on the Schottky space of compact Riemann surfaces
with only punctures. In this paper, we include the con-
tributions of orbifold points to the Liouville action.
In Sec. IV B, we noted that the Liouville action is

independent from a specific choice of fundamental

domain.. Corollary 4.1 already demonstrates that Sm ¼
Sm − π logH is not reliant on the choice of a representative
in Σ:fw1;…; wng; however, this can also be verified using
holography. The holographic principle for compact
Riemann surfaces X posits that the classical Liouville
action on such surfaces is equal to the renormalized
volume of a hyperbolic three-manifold M, where that
surface is its conformal boundary [54,55,104], extended
this principle to punctured (for both Schottky and quasi-
Fuchsian cases), and [44,57] to orbifold Riemann surfa-
ces (for only the quasi-Fuchsian case). However, this
principle is not yet proven for three-dimensional handle-
body orbifolds with Riemann orbisurfaces as their con-
formal boundary. Thus, in an upcoming paper [58], we
aim to demonstrate that the Liouville action Sm is linked
to the renormalized volume of the corresponding hyper-
bolic three-dimensional manifoldM up to some constants
that do not rely on moduli parameters. This would also
imply that the Liouville action is independent of the
fundamental domain chosen.
Although the presented proofs only apply to orbifold

Riemann surfaces (i.e., conical points of angle 2π=mi), we
believe that most of our findings can be extended to
(hyperbolic) conical Riemann surfaces with genus g > 1.
Specifically, for weighted punctured Riemann surfaces, the
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modified classical Liouville action (with Schottky global
coordinates) is expected to be accurately given byS α with
α ¼ ðα1;…;αnÞ and the cone angles 2πð1 − αiÞ, where
each factor of ð1 − 1

mi
Þ in Sm is replaced by αi. Let us talk

about it in more detail here.
The weighted punctured Riemann surface ðX;DÞ is a

compact Riemann surface X together with an R-divisor
D ¼Pn

i¼1 αixi such that the weights 0 < αi ≤ 1 are
associated to each puncture (or marked point) xi.
Hyperbolic metrics on weighted punctured Riemann sur-
faces have, by definition, conical singularities at the
punctures—for this reason, the pair ðX;DÞ is also called
a Riemann cone surface (or conical Riemann surface). The
existence and uniqueness of a conical hyperbolic metric
with prescribed singularities at a finite number of points on
a Riemann surface is a classical problem that is closely
related (and in special cases, is equivalent) to the famous
uniformization problem of Klein and Poincaré. Let us
remember that such metrics have been considered begin-
ning with the work of Picard [74]. Starting from the
classical results by Kazdan-Warner [105–107], the exist-
ence and uniqueness of conical hyperbolic metrics in every
conformal class on a ðX;DÞ were proved by McOwen [76]
and Troyanov [102]. The necessary and sufficient condition
for the existence of a hyperbolic conical metric according
to [76,102], is that the statement of the Gauss-Bonnet
theorem holds—in other words, the degree of the log-
canonical divisor KX þD should be positive, where KX
denotes the canonical divisor of X. The positivity of the
log-canonical divisor implies that

P
n
i¼1 αi > 2. In this

case, the unique hyperbolic metric ds2 on X is said to
be compatible with the divisor D if ds2 is a Hermitian
metric of class C∞ on the punctured Riemann surface
Xreg∶ XnsuppðDÞ such that if ui is a holomorphic local
coordinate in a neighborhood Ui of xi, then there exists a
real-analytic function φiðui; ūiÞ, which is smooth on
Uinfxig, and such that in Ui the metric ds2 is of the form

ds2 ¼ eφi jduij2
jui − xij2αi

;

for 0 < αi < 1 and

ds2 ¼ eφi jduij2
−2jui − xij2 log2 jui − xij

;

for αi ¼ 1. Moreover, AreaðX; ds2Þ ¼ π degðKX þDÞ ¼
−πχðX;DÞ, where χðX;DÞ ¼ χðXÞ − degðDÞ is by defi-
nition the Euler-Poincaré characteristic of the Riemann
cone surface ðX;DÞ. The dependence of these hyperbolic
cone metrics on the vector of weights α ¼ ðα1;…; αnÞ is
characterized by Proposition 2.2 of [108]. The (unique)
conical metrics of constant negative curvature (with fixed
weights) induce new Kähler structures on the Teichmüller

spaces of punctured Riemann surfaces that depend on the
cone angles: In [53], Takhtajan and Zograf introduced a
generalized Weil-Petersson metric, parametrized by the
vector of weights α ¼ ðα1;…; αnÞ, on the moduli spaces
of n-pointed rational curves in the context of Liouville
actions. Later, a variation of hyperbolic conical metrics in
holomorphic families was studied by Schumacher and
Trapani in [108,109] (see also [110–112]). They showed
that it is still possible to introduce “harmonic Beltrami
differentials” with respect to a hyperbolic conical metric,
together with a Kodaira-Spencer map needed for the
notion of a Weil-Petersson metric. To be more precise,
the generalized Kodaira-Spencer map derived in [108,109]
identifies the tangent and cotangent spaces to Teichmüller
space T g;nðαÞ82 of Riemann cone surfaces ðX;DÞ with
appropriately defined harmonic Beltrami differentials and
“holomorphic quadratic differentials” on the Riemann cone
surface. It turned out that for 0 < αi < 1, the generalized
Weil-Petersson metric depends in a smooth monotone way
on the weights αi. In particular, for αi → 0 one recovers the
Weil-Petersson metric for nonpunctured surfaces, while for
αi → 1, one gets the Weil-Petersson metric for Riemann
surfaces with cusps. Note that in the case of general conical
singularities, the monodromy group Γ of the Fuchsian
differential equation is no longer discrete in PSLð2;RÞ;
hence, T g;nðαÞ ≠ T ðΓÞ (see [53,113] and Sec. 2.2 of [88]).
Moreover, one can consider the variation of hyperbolic
conical metrics in holomorphic families, studied in
[108,109], and introduce a generalized Takhtajan-Zograf
(TZ) metric. In particular, one should study the behavior
of the integral kernel of the Resolvant ðΔ0 þ 1=2Þ−1 (see,
e.g., [ [114], § 8]). Although a conical singularity is simple,
its presence has a profound impact on the Laplace operator.
Unlike surfaces with smooth boundaries, the Laplace
operator no longer has a canonical self-adjoint extension.
Instead, it has many self-adjoint extensions, and these need
not be equivalent [115]. Probably the most notable self-
adjoint extension of the Laplace-Beltrami operator on a
Riemann surface with conical singularities is given by the
so-called Friedrichs extension (see, e.g. [61,116]). Using
the same method as in [108,109], one can show that this
generalized TZ metric depends in a smooth monotone way
on the weights 0 < αi < 1 and that, for αi ¼ 1 − 1=mi with
integers 2 ≤ mi < ∞, it corresponds to the elliptic TZ
metric introduced in [16]. One can also construct a Kähler
potential (∼ logHα) for these generalized TZ metrics in
terms of the solutions of Fuchsian differential equations.
To be more precise, Kähler potentials for generalized TZ
metric should be defined in terms of the coefficients of the
expansion [Eq. (9) of [53]] (alternatively, in terms of the
expansion of φ as in Eqs. (1.2) and (1.5) of [61]). This
generalizes the results of [14] to the case of Riemann cone

82The T g;nðαÞ is complex-analytically isomorphic to the Teich-
müller space of n-pointed stable curves T g;n (see e.g. [108,109]).
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surfaces. Lastly, regularized Liouville action Sα should be
defined similar to [53] and the combination S α ¼ Sα −
π logHα should define a function onSg;nðαÞ [andMg;nðαÞ]
(see also Theorem 1.1 of [61]). Moreover, the different
asymptotic behavior should be derived using the Fuchsian
differential equation in analogy with Lemma 4 of [53].
This asymptotics can be used to derive the first and second
variations ofS α ¼ Sα − π logHα. It is worth remembering
that, when g > 1, the regularized Liouville action Sα has
to be defined on the Schottky fundamental domain with
the singularities removed; in this case, the fibration
|∶ Sg;nðαÞ → Sg allows us to write T�

π ∘Φð0ÞSg;nðαÞ as

|�ðT�
π ∘Φð0ÞSgÞ ⊕ T�

π ∘Φð0ÞFnðDÞ. This decomposition

makes it possible to use the methods of [6] on
|�ðT�

π ∘Φð0ÞSgÞ while variations with respect to cone points

should be carried out using a method similar to [53].
Accordingly, most of our findings can be extended to
conical Riemann surfaces with genus g > 1.
Finally, we mention some interpretations related to our

results and also future directions:
(i) For the marked Riemann surface with g > 1, one can

define a normalized basis v1;…; vg of the space of
holomorphic one-forms—Abelian differentials of
the first kind, and the period matrix τ,83Z

αk

vk0 ¼ δkk0 ; τkk0 ¼
Z
βk

vk0 ;

with

Im τkk0 ¼ hvk; vk0 i ¼
i
2

Z
D
vkv̄k0eϕðwÞdwdw̄:

By defining also det0 Δ0 (zeta function regularized
determinant of the Laplace operator in the hyper-
bolic metric expðφÞjdwj2 acting on functions) and
Sg ¼ Sg;m¼0 as function on the Schottky space Sg,
Zograf [15] has shown that there exists a holomor-
phic function Fg∶ Sg → C, such that

det0 Δ0

det Im τ
¼ cge−

Sg
12πjFgj2; ð217Þ

with cg as a constant that depends just on the genus g
and

Fg ¼
Y
fγg

Y∞
k¼0

ð1 − q1þk
γ Þ; ð218Þ

where fγg runs over all the distinct primitive
conjugacy classes in Γ (i.e., γ ∈Γ, which cannot

be written as the power of any other element of Γ),84

excluding the identity, and qγ is the multiplier of
γ ∈Γ (qγ þ 1=qγ ¼ jTrγj). Now, by comparing our
result in part ðivÞ of Theorem 2,

∂∂Sm ¼ −2
ffiffiffiffiffiffi
−1

p �
ωWP −

4π2

3
ωcusp
TZ

−
π

2

Xne
j¼1

mjhjωell
TZ;j

�
;

with [16]85

∂∂ log
det Im τ
det0Δ0

¼ −
ffiffiffiffiffiffi
−1

p

6π

�
ωWP −

4π2

3
ωcusp
TZ

−
π

2

Xne
j¼1

mjhjωell
TZ;j

�
;

we can generalize Zograf’s formula (217) using a
function Fg;nðmÞ on Sg;nðmÞ, i.e., Fg;nðmÞ∶
Sg;nðmÞ → C, such that

det0 Δ0

det Im τ
¼ cg;nðmÞe−Sm

12π jFg;nðmÞj2; ð219Þ

where Sm ¼ Sm − π logH is the classical general-
ized Liouville action and cg;nðmÞ is a constant
depending only on g, n and m. It would be
interesting to find the explicit formula for the
function Fg;nðmÞ; its importance, particularly from
the perspective of physics, will be clear in the
following items.86

(ii) Zograf’s formula has an interesting geometric de-
scription in the context of the Quillen metric and
local index theorem. The Quillen metric on λ1 (the
determinant line bundle associated with the Cauchy-
Riemann operator ∂1, usually called the Hodge line
bundle) is defined by�

kvkQuill1



2 ¼ det Im τ

det0Δ0

;

83The τ is called period matrix.

84Equivalently, the set of simple closed geodesics on the
surface, and logfγg is the corresponding geodesic length.

85In this case, one needs to extend the conditions
R
αk
vk0 ¼ δkk0

to
R
fαk;κk;τkg vk0 ¼ δkk0 .

86The explicit expression of this holomorphic anomaly for-
mula for the determinant of Laplacian on sphere with just three
conical singularities and on singular genus zero surfaces that can
be glued from copies of (hyperbolic, spherical, or flat) double
triangles has been found in [61,62], respectively. As a by-product,
for these cases, the accessory parameters, the Liouville action,
and logH are also explicitly evaluated. The dependence of the
determinant in Eq. (219) on the orders of conical singularities is
also highly nontrivial; see [63] in this direction.
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and accordingly, the first Chern form of the Hermi-
tian line bundle ðλ1; kvkQuill1 Þ over Sg is given by

c1ðλ1; kvkQuill1 Þ ¼ 1

12π2
ωWP:

This observation provides the existence of an isom-
etry between the line bundle overMg determined by
carrying the Hermitian metric exp½Sg=12π� and the
line bundle λ1 with the Quillen metric. More gen-
erally, Takhtajan and Zograf have studied the local
index theorem for families of ∂ operators in the
orbifold setting [16]. The main result of this paper
(see Theorem 2 of [16]) is the following formula on
the moduli space Mg;nðmÞ of punctured orbifold
Riemann surfaces O ¼ ½H=Γ�:

c1
�
λk;k ·kQuillk



¼6k2−6kþ1

12π2
ωWP−

1

9
ωcusp

þ 1

4π

Xne
j¼1

�
2ðk−1ÞB1

�

k−1

mj

��
−mjB2

�

k−1

mj

��
þ6k−5

6mj

�
ωell
j ;

ð220Þ
for k ≥ 1. Here λk is the determinant line bundle
associated with the Cauchy-Riemann operator ∂k
and is a holomorphic ModðΓÞ-invariant line
bundle on T ðΓÞ whose fibers are given by the
determinant lines ⋀max ker ∂k ⊗ ð⋀maxcoker∂kÞ−1
while k · kQuillk ¼ k · kk=

ffiffiffiffiffiffiffiffiffiffiffiffi
detΔk

p
denotes the Quillen

norm in λk
87; since the determinant line bundle λk is

Mod invariant, one can alternatively think of λk
as a holomorphic Q-line bundle on the moduli
space Mg;nðmÞ ¼ T ðΓÞ=ModðΓÞ. Finally, B1ðxÞ ¼
x − 1=2 and B2ðxÞ ¼ x2 − xþ 1=6 are the first and
second Bernoulli polynomials, while fxg denotes
the fractional part of x∈Q. It is clear from Eq. (220)
that for k ¼ 1, the first Chern form of the determi-
nant line bundle λ1 with Quillen norm is given by
1

12π2
ðωWP − 4π2

3
ωcusp
TZ − π

2

Pne
j¼1mjhjωell

TZ;jÞ. Compar-
ing this observation with our result in part (iv) of
Theorem 2 and noting to Theorem 3.1 of [15],
suggests that the following remark is correct.

Remark 6.1. The function Sm on the Schottky space
Sg;nðmÞ determines a holomorphic Q-line bundle λSch on
the moduli space Mg;nðmÞ with Hermitian metric h·; ·iSch,
where h1; 1iSch ¼ expðSm=12πÞ [here, 1 is understood as
the corresponding section of the trivial bundle

Sg;nðmÞ × C → Sg;nðmÞ]. The Hermitian Q-line bundle
ðλSch; h·; ·iSchÞ is isometrically isomorphic to the Hodge line
bundle ðλHod; h·; ·iQuilÞ over Mg;nðmÞ—i.e., there exists an
isomorphism {∶ λSch → λHod such that hs; siSch ¼
h{ ∘ s; { ∘ siQuil for every local section s of the bundle λSch.
While we do not attempt proving the above claim

rigorously, we would like to comment that it might be
possible to do so in analogy with the proof of Theorem 3.1
of [15]. In particular, a very interesting question is to
investigate whether it would be possible to determine the
constants cγ and c in the following naive generalization:

fγðtÞ ¼ exp

�
c
Z

t

t�
∂ðS̃m − S̃m ∘ γÞ

þ c
2

�
S̃mðt�Þ − S̃mðγt�Þ þ 2π

ffiffiffiffiffiffi
−1

p
cγ

��
; ð221Þ

of fγs constructed in [15], such that Eq. (221) still defines a
one-cocycle of the action of Teichmüller modular group
ModðΓÞ (see [15] for more details). In this formula,
γ ∈ModðΓÞ denotes mapping classes, S̃m is defied as
Sm ∘ π where π∶ T g;nðmÞ → Sg;nðmÞ is a natural holo-
morphic cover, t� denotes a marked point in the
Teichmüller space T g;nðmÞ while t is any other point in
this space, and ∂ denotes the (1, 0)-component of the
exterior differentiation operator on T g;nðmÞ.
It isworthmentioning that the determinant line bundles and

Quillen metrics in the conical case have been constructed in
Sec. 6 of [108]. The curvature tensor of the Weil-Petersson
metric for Teichmüller spaces of compact (or punctured)
Riemann surfaces was computed explicitly by Tromba [117]
and Wolpert [118]. In Sec. 7 of [108], the authors show the
analogous result for the weighted punctured case.
(iii) The function Fg has an important rule to find the

physical wave function of three-dimensional pure
AdS quantum gravity and define the last ingredient
of canonical quantization, i.e., the scalar product
between the physical wave functions: the physical
norm should be invariant under the mapping class
group transformations. As we will see, it is achiev-
able via the Quillen norm as follows. Let us recall
that according to Eq. (217),

det0 Δ0

det Im τ
¼ cge−

Sg
12πjFgj2:

The determinant of the operatorΔ0 is invariant under
large diffeomorphisms, and let us assume that under
Mod transformation, we have

det Im τ → det Im τ0 ¼ jAj2 det Im τ;

Sg → S0g ¼ Sg þBþ B̄; ð222Þ
87Hermition line bundles ðλk; k · kQuillk Þ and ðλ1−k; k · kQuill1−k Þ are

isometrically isomorphic.
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which imply that the function Fg should transforms
as follows:

Fg → F0
g ¼

eB

A
Fg:

Now, if the matrix Uj
i , under large diffeomorphism,

relates wave functions defined in two coordinate
systems, i.e., Ψ0i ¼ Ui

je
−BDΨj, then the functions

Ψ̃i ¼ ðFgÞDΨi ð223Þ

will transform as

Ψ̃i → Ψ̃0i ¼ A−DUi
jΨ̃

j: ð224Þ

By noting Eqs. (222), (223), and (224), the mapping
class group (MCG)-invariant scalar product of
physical wave functions Ψ̃ can be defined based
on Quillen norm (see [119–121])

hΨ̃1; Ψ̃2i ¼
Z
T ðΣÞ

�
det0 Δ0

det Im τ

�
−D

¯̃Ψ1 ∧ �Ψ̃2:

Accordingly, the function Fg determines the physi-
cal wave functions of three-dimensional pure quan-
tum gravity and their MCG-invariant scalar product.
In light of the aforementioned observation and

taking into account the remarks in the Introduction
regarding the inclusion of massive particles in the
path integral of three-dimensional gravity (or con-
sidering three-dimensional Seifert manifolds whose
Kaluza-Klein reductions are related to conical Rie-
mann surfaces), the function Fg;nðmÞ plays a crucial
role in defining the physical wave functions (and
their scalar product) of three-dimensional quantum
gravity in the presence of those massive particles (or
in the presence of Seifert manifold’s contribution).
This itself presents an intriguing problem warranting
further exploration. Apart from that, Fg plays
another significant role in the connection between
the physical wave function of three-dimensional
pure gravity and dual two-dimensional Virasoro
conformal blocks. According to [122], the three-
dimensional physical wave functions, obeying the
Gauss law constraints, are conformal blocks of
quantum Liouville theory. Exploring this proposal
in the presence of conical singularities, based on our
results, is also an interesting problem, i.e., finding
the relation between the wave function of three-
dimensional AdS gravity in the presence of particles
with special masses and quantum Liouville theory
with some special vertex operators and even more to
determine whether the partition function of gravity
can indeed be decomposed into Virasoro characters.

(iv) Our results are applicable to two-dimensional theories
of gravity such as deformed Jackiw-Teitelboim grav-
ity [39,66,123–127], where the gravitational path
integral can be written as an integral over the moduli
space of orbifold (conical) Riemann surfaces.

(v) There are indications suggesting a potential link
between low dimensional de Sitter space and the
high temperature limit of the double scaled Sachdev-
Ye-Kitaev (SYK) model (DSSYK) [128–132]. For
instance, pure de Sitter space is thought to represent a
state of maximal entropy and DSSYK has a natural
maximal entropy state. Additionally, introducing a
localized massm in three-dimensional de Sitter space
results in a conical singularity, while DSSYK exhibits
bounded energy. To elaborate further, the high tem-
perature limit of the coupled DSSYK (cDSSYK),
when subjected to an equal energy constraint, is
believed to correspond microscopically to three-
dimensional de Sitter gravity and the two-point
function of cDSSYK operators with dimension Δ
matches with the Green’s function of a massive
complex scalar field with mass squared m2¼4Δð1−
ΔÞ on three-dimensional de Sitter space. By reducing
three-dimensional de Sitter space to a circle, one can
derive two-dimensional (JT) gravity, which comprises
two spacelike Liouville conformal field theories with
a combined central charge of c ¼ 26. Imposing the
equal energy constraint between cDSSYK effectively
gauges this Virasoro symmetry. Since the vertex
operators of Liouville conformal field theories are
associated with conical defects, the inclusion of these
singularities is necessary to reproduce the micro-
scopic entropy of DSSYK and vice versa. Conse-
quently, it appears that conical geometries play a
pivotal role in the gravitational dual of the DSSYK
model and therefore our findings could contribute to a
more comprehensive understanding of this duality.

(vi) Our results, via an analytic continuation of the
classical Matschull process, have potential applica-
tion in the study of black hole production with a
nontrivial topology inside the horizon from the
collision of massive point particles with a certain
mass [59,133,134].88

(vii) There is a rich mathematical theory—that of the
Selberg trace formula and its generalizations—
where the sum over elements γ ∈Γ is used to
compute the spectrum of differential operators on
H=Γ. The Selberg zeta function ZSzðs;Γ;UÞ asso-
ciated with the Riemann surface is

ZSzðs;Γ;UÞ ¼
Y
fγg

Y∞
k¼0

�
1 −UðγÞqsþk

γ



; ð225Þ

88Also see [42,60,135–139] and Sec. 4 of [41].
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where U∶Γ → Uð1Þ be a unitary character. For
Res > 1, the above product admits a meromorphic
continuation to the complex s plane. According to
the Selberg trace formula, for the case where Γ
has just hyperbolic and parabolic elements, it is
shown [140] that

det0Δ0 ≃ Z0
Szð1Þ;

where ZSzðsÞ≡ ZSzðs;Γ;U ¼ 1Þ. Hence, Zograf’s
formula (217) also gives a factorization of Z0

Szð1Þ as
a function on Sg. Accordingly, it would be in-
triguing to find a function akin to the Selberg
zeta function ZSzðsÞ acting on Sg;nðmÞ, utilizing
the generalized holomorphic factorization theorem
(219). That is important, at least, for finding the
contribution of one-loop effects to the partition
function of three-dimensional AdS gravity in the
presence of massive particles. Let us remind that
the one-loop partition function of pure three-
dimensional gravity is given by

Z1−loop
gravity ¼ det□ð1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det□ð2Þ det□ð0Þp ;

where □
ð2Þ is the kinetic operator for linearized

graviton (symmetric traceless) fluctuations around
the chosen background and □

ð1Þ;□ð0Þ are related to
kinetic operators of vector ghost and Weyl mode,
respectively, since to compute the partition function
we must also include the Fadeev-Popov modes
arising due to gauge fixing. By computing each
one concretely, it is shown that [141]

Z1−loop
gravity ¼

Y
fγg

Y∞
k¼0

1

j1 − q2þk
γ j : ð226Þ

When M ¼ H3=Γ is a solid torus, Γ ¼ Z, and fγg
consists of the generator of Γ and its inverse, the
above formula reduces to

Z1−loop
gravity ðτ; τ̄Þ ¼

Y∞
k¼2

1

j1 − qkj2 ;

with q ¼ e2πiτ.89 Comparing (226) with (225) im-
plies that

Z1−loop
gravity ¼ Z−1

Sz ð2Þ:

Let us also remind that, according to (218),
Fg ¼ ZSzð1Þ. Hence, with knowledge of the func-
tion Fg;nðmÞ, we can investigate the appropriate
function that assumes the role of Selberg zeta
function ZSzðsÞ in the presence of conical singular-
ities. Consequently, this exploration can also provide
insights into the contribution of conical singularities
to the one-loop gravity partition function. For the
special case M ¼ H3=ðZ × ZmÞ, it is shown [40]
that in the presence of conical singularities, the one-
loop partition function again is given by ZSzðsÞ but
evaluated at a different point, i.e., Z1−loop

gravity ∼ Z−1
Sz ð1Þ.

(viii) In this paper, we explored further the relation between
the modified classical Liouville action (i.e., the one
which its Euler-Lagrange equation admits the hyper-
bolic Riemann surfaces with conical singularities
as a solution), uniformization of orbifold Riemann
surfaces and complex geometry of moduli spaces.
One knows that the quantized Liouville theory can
potentially describe the quantum corrections to those
hyperbolic geometries (outside the singularities).
Accordingly, one approach to understanding two-
dimensional quantum gravity through quantum Liou-
ville theory is to demand that this theory takes
advantage of conformal symmetry akin to its classical
counterpart. If the conformal symmetry is also
symmetry of quantum Liouville theory, it should
show itself in the conformal Ward identities (CWIs)
for correlation functions of components of stress-
energy tensor with another operators. An important
point to consider is the space on which the Liouville
action functional is expressed. This choice signifi-
cantly impacts the form of the conformal Ward
identities (CWIs) and their implications.

Let us consider the simplest case, i.e., the Liouville
action on the moduli space M0;n and identifying Xm

with Vm1
ðx1Þ � � �Vmn

ðxnÞ and restoring the ℏ. Since
the Sm in (136) is a well-defined (single-valued)
function on M0;n, the quantum Liouville theory is
defined by

hXmi ¼
Z
CMmðXÞ

Dψe−
1

2πℏSm½ψ �; ð227Þ

where the partition function hXmi is a real-valued
function on the M0;n. Moreover, we have

hTðwÞXmi¼
Z
CMmðXÞ

DψTðψÞðwÞe− 1
2πℏSm½ψ �: ð228Þ

To have conformal symmetry, one is required to prove

1

ℏ
hTðwÞXmi¼

Xn
i¼1

�
hmi

ðℏÞ
ðw−wiÞ2

þ 1

ðw−wiÞ
∂wi

�
hXmi;

ð229Þ

89Unlike the H3=Z, the higher-loop contributions to the
partition function may not vanish for the general case
M ¼ H3=Γ. At least for the handlebody geometries, there exists
a proposal to calculate all-loop expressions [142].
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where hmi
ðℏÞ are considered as conformal dimen-

sions of vertex operators Vmi
¼ e

αðmiÞ
ℏ ψ . Note that at

the tree level when ℏ → 0,

hXmi ∼ e−
1

2πℏSm½φ�;

hTðwÞXmi ∼ TφðwÞe− 1
2πℏSm½φ�;

hmi
ðℏÞ ∼ hclðmiÞ

2ℏ
:

By substituting the above relations in (229), one
gets [17,67]

1

ℏ
TφðwÞe− 1

2πℏSm½φ�

¼
Xn
i¼1

�
hclðmiÞ

2ℏðw − wiÞ2
þ 1

ðw − wiÞ
∂wi

�
e−

1
2πℏSm½φ�;

which implies that

TφðwÞ ¼
Xn
i¼1

�
hclðmiÞ

2ðw−wiÞ2
−

1

2π

1

ðw−wiÞ
∂wi

Sm½φ�
�
:

ð230Þ

Comparing the above result with TφðwÞ ¼
SchðJ−1;wÞ, where SchðJ−1;wÞ is given by (79),
implies that

hclðmiÞ¼hi¼1−
1

m2
i
; ∂wi

Sm¼−2πci; ð231Þ

which are in agreement with Theorem (142).
Moreover, the conformal symmetry at the quantum

level implies that the vertex operators and compo-
nents of the energy-momentum tensor satisfy the
operator product expansion (OPE) of Belavin-
Polyakov-Zamolodchikov, for example,

1

ℏ2
TðwÞTðw0Þ ¼ cðℏÞ=2

ðw − w0Þ4 þ
1

ℏ
2Tðw0Þ

ðw − w0Þ2

þ 1

ℏ
1

ðw − w0Þ ∂w0Tðw0Þ

þ regular terms;

1

ℏ2
TðwÞT̄ðw̄0Þ ¼ regular terms;

which yields the following CWIs:

1

ℏ2
hTðwÞTðw0ÞXmi ¼

cðℏÞ=2
ðw − w0Þ4 hXmi þ

1

ℏ

�
2

ðw − w0Þ2 þ
1

ðw − w0Þ ∂w0

�
hTðw0ÞXmi

þ 1

ℏ

Xn
i¼1

�
hmi

ðℏÞ
ðw − wiÞ2

þ 1

ðw − wiÞ
∂wi

�
hTðw0ÞXmi;

1

ℏ2
hTðwÞT̄ðw̄0ÞXmi ¼

1

ℏ

Xn
i¼1

�
hmi

ðℏÞ
ðw − wiÞ2

þ 1

ðw − wiÞ
∂wi

�
hT̄ðw̄0ÞXmi: ð232Þ

Let us show that our results also agree with the second CWI in (232) at the tree level. To see that, let us define the
normalized connected two-point function

hTðwÞT̄ðw̄0ÞXminc ¼
hTðwÞT̄ðw̄0ÞXmi

hXmi
−
hTðwÞXmi

hXmi
hT̄ðw̄0ÞXmi

hXmi
: ð233Þ

By using (229) and its similar expression for hT̄ðw̄0ÞXmi,

1

ℏ
hT̄ðw̄0ÞXmi ¼

Xn
j¼1

�
h̄mj

ðℏÞ
ðw̄0 − w̄0

jÞ2
þ 1

ðw̄0 − w̄0
jÞ
∂w̄0

j

�
hXmi;

the normalized connected correlation function (233) is simplified to

hTðwÞT̄ðw̄0ÞXminc ¼
Xn
i¼1

Xn
j¼1

1

ðw − wiÞ
1

ðw̄0 − w̄0
jÞ
∂wi

∂w̄0
j
loghXmi: ð234Þ
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At the tree level, the right-hand side of the above
equation has an order of Oðℏ−1Þ. To find the same
order of ℏ on the left-hand side, one can use the path
integral representation of the two-point function,

hTðwÞT̄ðw̄0ÞXmi

¼
Z
CMmðXÞ

DψTðψÞðwÞT̄ðψÞðw̄0Þe− 1
2πℏSm½ψ �:

ð235Þ
Let us expand the field ψ around its classical value φ,

ψðwÞ ¼ φðwÞ þ
ffiffiffiffiffiffi
πℏ

p
δψðwÞ þ � � �

which implies that

Sm½ψ �¼Sm½φ�þπℏ
Z

δψ

�
Δ0þ

1

2

�
δψeφd2wþ���

1

ℏ
TðwÞ¼ 1

ℏ
TφðwÞþ

ffiffiffi
π

ℏ

r
DwδψðwÞþ���

with Dw ¼ ð∂2w − ð∂wφÞ∂wÞ. Now, substituting the
above expansion in the right-hand side of (235), the
CWI (234) at the tree level becomes

2π

ℏ
DwDw̄0Gðw;w0Þ

¼ −
1

2πℏ

Xn
i¼1

Xn
j¼1

1

ðw − wiÞ
1

ðw̄0 − w̄0
jÞ
∂wi

∂w̄0
j
Sm½φ�;

ð236Þ
where G ¼ 1=2ðΔ0 þ 1=2Þ−1 is the propagator of
quantum Liouville theorem, Δ0¼−exp−φ∂2=∂w∂w̄.
Moreover, by using the overall SLð2;CÞ symmetry to
normalize wn−2 ¼ 0; wn−1 ¼ 1; wn ¼ ∞, the right-
hand side can be written as

rhs ¼ −
1

2πℏ

Xn−3
i¼1

Xn−3
j¼1

Rðw;wiÞRðw̄0; w̄0
jÞ∂wi

∂w̄0
j
Sm½φ�;

¼ −
π

2ℏ

Xn−3
i¼1

Xn−3
j¼1

RiðwÞRjðw̄0Þ∂wi
∂w̄0

j
Sm½φ�; ð237Þ

where Rðw;wiÞ and Ri are defined in (89) and (91),
respectively. Therefore, according to Theorem 2, the
rhs of (236) is (1, 1)-component of the curvature form
for the connection in the holomorphic line bundle
over the moduli. Through rigorous mathematical
computations [17,67], it can be demonstrated that
the left-hand side of Eq. (236) encompasses precisely
the identical information. However, a streamlined
approach can be employed to substantiate this claim
by using the principles of Friedan-Shenker modular
geometry [143]. Friedan and Shenker interpret the

expectation value hXi as a Hermitian metric in a
certain holomorphic line bundle over moduli space
and the quadratic differential hTðwÞXincdw2 as a
(1, 0)-component of the canonical metric connection.
This interpretation aligns with the tree-level analysis
of the CWI (229) above. Moreover, they interpret
hTðwÞT̄ðw̄0ÞXmincdwdw̄ as (1,1)-component of the
curvature form of that connection; as illustrated in
Eq. (237); this is also in agreement with the tree-level
analysis of (234) for the moduli space M0;n.

Now, one can utilize the aforementioned terminol-
ogy to find new constraints on Kähler geometry of
moduli space M0;nðmÞ by demanding that the CWIs
hold true when they are projected to this space.
Conversely, one can also use the known information
about Kähler geometry to find the “dynamical proof”
of the Virasoro symmetry of the Liouville theory.
Let us find one of those constraints by studying the
quantum Liouville theory and its associated CWIs on
the moduli space M0;nðmÞ. In comparison to the
previous case, two points should be highlighted. First,
to define the path integral representation of quantum
Liouville theory, one needs a Liouville functional
that is a well-defined (single-valued) function on the
moduli space M0;nðmÞ. It is shown that, unlike the
function Sm that is not invariant under the action of
SymmðmÞ, at least at the semiclassical limit, the
function Sm has this property. Accordingly, for the
moduli space M0;nðmÞ, instead of (227), we have

hXmi ¼
Z
CMmðXÞ

Dψe−
1

2πℏSm½ψ �: ð238Þ

Second, to check the counterpart of (229) for the
moduli space M0;nðmÞ, the automorphic form
SchðJ−1;wÞ should be projected to the subspace
T�
½0�M0;nðmÞ.90 In order to identify the appropriate

bases for T�
½0�M0;nðmÞ, one can get help from their

counterpart bases for T�
Ψ ∘Φð0ÞM0;n. In the semi-

classical limit ℏ → 0, the projection of SchðJ−1;wÞ
on M0;n, according to (98), is given by

Xn−3
i¼1

ðSchðJ−1;wÞ;MiÞdwi

¼
Xn−3
i¼1

�
−π
Xn−3
j¼1

cjRjðwÞ þ
Xn
j¼1

hjEjðwÞ;Mi

�
dwi

¼
Xn−3
i¼1

�
−πci þ

Xn
j¼1

hjðEjðwÞ;MiÞ
�
dwi; ð239Þ

90If we define the mapping Ψ̃∶M0;n → M0;n, then
½0�≡ Ψ̃ ∘Ψ ∘Φð0Þ.
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where RjðwÞ and EjðwÞ are defined by (91) and (99), respectively, and none of them are invariant under the action of
SymmðmÞ. To find the projection of SchðJ−1;wÞ on the space T�

½0�M0;nðmÞ, one needs the SymmðmÞ-invariant version
of RiðwÞ and EiðwÞ which are given by

R̃iðwÞ ¼ −
1

π

X
γj;jþ1 ∈SymmðmÞ

Rðγj;jþ1ðwÞ; wiÞγ0j;jþ1ðwÞ2;

Ẽ kðwÞ ¼
1

2

X
γj;jþ1 ∈ SymmðmÞ

�
1

ðγj;jþ1ðwÞ − wkÞ2
−

1

γj;jþ1ðwÞðγj;jþ1ðwÞ − 1Þ
�
γ0j;jþ1ðwÞ2;

ẼnðwÞ ¼
1

2

X
γj;jþ1 ∈ SymmðmÞ

1

γj;jþ1ðwÞðγj;jþ1ðwÞ − 1Þ γ
0
j;jþ1ðwÞ2 ð240Þ

with k ¼ 1;…; n − 1 and γj;jþ1ðwÞ are defined in Sec. III B 1. In the above, just for simplicity, we assumed that the
signature of O is ðO;m;…; mÞ, but it can be easily extended to the general case. Accordingly, the projection of
SchðJ−1;wÞ on moduli space M0;nðmÞ is given by

Xn−3
i¼1

ðSchðJ−1;wÞ;MiÞdw̃i ¼
Xn−3
i¼1

 
−π
Xn−3
j¼1

cjR̃jðwÞ þ
Xn
j¼1

hjẼjðwÞ;Mi

!
dw̃i

¼
Xn−3
i¼1

�
−πci þ ðTsðwÞ;MiÞ



dw̃i; ð241Þ

where

TsðwÞ¼
1

2

Xn−1
i¼1

X
γj;jþ1∈SymmðmÞ

hi
ðγj;jþ1ðwÞ−wiÞ2

γ0j;jþ1ðwÞ2−
1

2

X
γj;jþ1∈SymmðmÞ

P
n−1
i¼1 hi−hn

γj;jþ1ðwÞðγj;jþ1ðwÞ−1Þγ
0
j;jþ1ðwÞ2: ð242Þ

In the above, the dw̃is are (1, 0) forms on cotangent space T�
½0�M0;nðmÞ. The counterpart of (229) for this case is

TM0;nðmÞ
φ ðwÞ ¼

Xn
i¼1

X
γj;jþ1 ∈SymmðmÞ

 
hclðmiÞ

2ðγj;jþ1ðwÞ − wiÞ2
−

1

2π

1

ðγj;jþ1ðwÞ − wiÞ
∂w̃i

Sm½φ�
!
; ð243Þ

which together with the relations (241) and (242)
gives information about the moduli space of Riemann
orbisurface O, i.e., a relation between accessory
parameters ci in (241) for the Fuchsian uniformiza-
tion and the first variation ∂w̃i

Sm½φ�. It also provides
the opportunity to check the observed relation be-
tween the universal CWIs and Friedan-Shenker
modular geometry. It is noteworthy that, using the
same methodology, one can probe the Kähler geom-
etry of moduli space Mg;nðmÞ based on using the
equations (123), (125), (128), and (240).
Last but not least, it is shown [93] that the validity

of CWI (229) at one-loop approximation for the
genus g ¼ 0 case with just np punctures yields a
formula for the first derivative of ZSzð2Þ. Moreover, it
is shown [93] that when g ≠ 0 with just np punctures,
the CWI (234) at the one-loop level is equivalent to
the local index theorem for the families of ∂ operators
on the punctured Riemann surfaces. Based on the

above-examined cases, it would be interesting to
explore more the relation between CWIs for the
correlation functions

1

ℏ2

�Y
k¼0

TðwkÞ
Y
l¼0

T̄ðw̄0
lÞXm

�
;

and uniformization of the Riemann surfaces and
complex geometry of Teichmüller space T g;nðmÞ,
Schottky space Sg;nðmÞ, and Moduli spaces
Mg;n;Mg;nðmÞ and more importantly two-
dimensional quantum gravity. Moreover, the multi-
point correlation functions can provide further
evidence in favor of the profound role of Ward
identities in Friedan-Shenker modular geometry.

(ix) Also, very recently, it has been shown [144]
that asymptotic series (in powers of the central
charge) for expansion of two-dimensional conformal
blocks, involving the exchange of identity operator,

CLASSICAL LIOUVILLE ACTION AND UNIFORMIZATION OF … PHYS. REV. D 110, 046018 (2024)

046018-65



necessitates the existence of nonperturbative
effects via resurgence analysis. In the dual three-
dimensional theory, this implies that the graviton
loop expansion is also an asymptotic series, and to
cure it, one needs to consider new saddle points,
which are particlelike states with large negative mass
(nonmanifold saddles with conical excesses). In this
paper, we focus on geometries with conical defects
(orbifold geometries), but studying the relation
between our work and [144] would be interesting.
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APPENDIX A: INTRODUCTION TO ORBIFOLD
RIEMANN SURFACES

Orbifolds lie at the intersection of many different areas of
mathematics and physics, including algebraic and differ-
ential geometry, as well as conformal field theory and string
theory. Orbifolds were first introduced into topology and
differential geometry by Satake [145], who called them
V-manifolds. Satake described them as a generalization of
smooth manifolds that are locally modeled on a quotient of
Rn by the action of a finite group and generalized concepts
such as de Rham cohomology and the Gauss-Bonnet
theorem to orbifolds. Shortly after the original paper of
Satake, Baily introduced complex V-manifolds and gener-
alized both the Hodge decomposition theorem [146]
and Kodaira’s projective embedding theorem [147] to V-
manifolds. The concept of V-manifolds was later reinvented
by Thurston [148] under the name of “orbifolds” and the
notion of fundamental groups was generalized for these
objects. Even though orbifolds were already very important
objects in mathematics, the work of Dixon, Harvey, Vafa,
and Witten [149,150] as well as the subsequent work of
Dixon, Friedan, Martinec, and Shenker [151] lead to a
dramatic increase of interest in orbifolds among physicists.91

The main objective of this Appendix is to compile some
basic facts about orbifolds and fix some notations used
throughout this paper. Although we start with a general
setting, the main focus of this Appendix is on complex one-
dimensional orbifolds, called orbifold Riemann surfaces, as
they are the objects of study in the main body of this paper.
To motivate our interest in orbifold Riemann surfaces, let

us recall that ordinary Riemann surfaces are complex one-
dimensional algebro-geometric objects with a lot of good
properties: Geometrical facts about Riemann surfaces are
as “nice” as possible, and they often provide the intuition
and motivation for generalizations to more complicated
manifolds or varieties. The name “surface” comes from the
fact that every Riemann surface is a two-dimensional real
analytic manifold (i.e., a surface), but it contains more
structures: In fact, a Riemann surface is the simplest
example of a Kähler manifold which means that it admits
three mutually compatible structures—a complex structure,
a Riemannian structure, and a symplectic structure. In
addition, the existence of nonconstant meromorphic func-
tions on these surfaces can be used to show that any
compact Riemann surface is a projective algebraic curve
and, therefore, can be given by polynomial equations inside
a projective space. Orbifold Riemann surfaces are the
natural generalization of Riemann surfaces in the orbifold
world. Just like their manifold counterparts, orbifold
Riemann surfaces can be viewed both as a complex
orbifold of dimension 1 (complex analysts viewpoint) or
as a smooth, proper Deligne-Mumford stack92 (over C) of
dimension 1 (algebraic geometers viewpoint). These orbi-
surfaces also admit Riemannian metrics and can be
regarded as the simplest examples of Kähler orbifolds.
When the emphasis is on the algebro-geometric viewpoint,
orbifold Riemann surfaces are usually called orbifold
curves or orbicurves.
The viewpoint that one takes on the singular points of an

orbifold depends a lot on what type of “space” one is
working with: When working in the topological realm, one
usually treats the orbifold singularities as an additional
structure—an orbifold structure—on an underlying topo-
logical space in the same way that one thinks of a smooth
structure as an additional structure on a topological mani-
fold (see [148,155–158]). In particular, a topological space
is allowed to have several different orbifold structures. On
the other hand, from an algebro-geometric viewpoint [159],
it is more convenient to consider (analytic or algebraic)
stacks as the proper notion of space. Such a stack is then
called an orbifold (be it an analytic or an algebraic one) if it

91Professor H. Arfaei was among the first string theorists
who quickly realized the significance of orbifolds in string
theory and worked on various aspects of their role within this
framework [152–154].

92Deligne-Mumford stacks (or DM stacks) are an algebraic
generalization of orbifolds, and can be roughly thought of as an
“orbivariety” or “orbischeme.” Just as orbifolds are locally the
quotient of a manifold by a finite group, a DM stack can be
characterized as being “locally” the quotient of a scheme by a
finite group action.
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admits a covering by open substacks of the form ½Ũ=Γ�,93
parametrizing families of Γ orbits in Ũ, where Ũ is the local
model for representable stacks (i.e., manifolds) and Γ is a
finite subgroup of the automorphism group of Ũ. This
second point of view treats an orbifold singularity as an
intrinsic structure of the space.
For us, the appropriate notion of space will be that of

analytic spaces [160], by which we mean a generalization
of complex manifolds that allow the presence of singular-
ities and are locally isomorphic to the common zero locus
of a finite collection of holomorphic functions. Our point
of view, which will be reflected in our introduction to
orbifolds, lies somewhere in between the two extremes
mentioned above: Wewill treat the subclass of codimension
≥ 2 orbifold singularities as the intrinsic structure of an
underlying complex analytic space94 while the orbifold
singularities of codimension-1 still need to be treated as
additional structures on this analytic space (see [161] for
more details).
Throughout this paper, we will need to work with

different characterizations of orbifold Riemann surfaces
that have appeared in the literature: In order to introduce
orbifold geometric structures in Appendix B, we will need
to work with a definition of complex orbifolds based on
orbifold charts [162] while a characterization of Riemann
orbisurfaces as log pairs [163] will be more suitable for
studying orbifold metrics [76]. A third way of character-
izing Riemann orbisurfaces will be as Riemann surfaces
with signature and this viewpoint—which is closely related
to the notion of Riemann orbisurfaces as log pairs—is the
one that we have adapted in the main body of this paper.
Our presentation in this Appendix is closer to that of

Sec. 4 of Ref. [161], Appendix E of [164,165]. For more
details about other approaches, the reader is encouraged to
consult with [148,156–158,166] among others.

1. Analytic geometry

We will start our introduction to complex orbifolds
with a quick review of some background information
about complex analytic spaces and analytic mappings—
particularly, ramified covering maps of analytic spaces. The
reader is advised to consult with Refs. [160,165,167–171]
for more details.

a. Complex analytic spaces and analytic mappings

Let us start our review of complex analytic spaces with
defining a complex analytic subvariety.
Definition A.1 (Analytic subvariety). Let U be an open

subset of Cn (or of any complex analytic manifold M)
and let X be a subset of U. We say that X is an analytic
subvariety in U if, for any point x in U, there exist a
neighborhood V of x and a finite number of holomorphic
functions f1;…; fk on V such that

X ∩ V ¼ �z∈V
��f1ðzÞ ¼ � � � ¼ fkðzÞ ¼ 0

�
:

In other words, in some open neighborhood of each point of
U, an analytic subvariety X ⊂ U is the set of common zeros
of a finite number of complex analytic functions. We call
f1;…; fk a system of local defining functions for X and a
nonempty analytic subvariety of U which is locally defined
by a single (not identically zero) holomorphic function will
be called an analytic hypersurface in U. Finally, a sub-
variety X ofU is called irreducible if it cannot be written as
a union X ¼ X1 ∪ X2, where Xi are analytic subvarieties of
U properly contained in X.
As suggested before, complex analytic subvarieties can

be viewed as a generalization of complex (sub)manifolds
which allow for the presence of singularities.
Definition A.2 (Smooth and singular points of subvari-

eties). A point x on an analytic subvariety X is said to be
regular or smooth if it is possible to choose coordinates
ðz1;…; znÞ in an open neighborhood V ⊂ U ⊂ Cn of point
x such that locally X is a linear subspace fz∈Vjzkþ1 ¼
� � � ¼ zn ¼ 0g—i.e., if X ∩ V is a k-dimensional submani-
fold of Cn. The set of all regular points of X is an open
dense subset of X and will be denoted by RegðXÞ. The
points of a subvariety that are not regular points are called
the singular points. The set XnRegðXÞ of all singular points
of X will be denoted by SingðXÞ and is called the singular
locus of X.
An analytic subvariety X will be called a smooth analytic

subvariety if X ¼ RegðXÞ; evidently, a smooth analytic
variety is just a complex analytic manifold itself. When X is
an irreducible analytic subvariety, the complex dimension of
X is defined as the dimension of its smooth part RegðXÞ
regarded as a complex manifold. More generally, if X is
reducible, the dimension of X is defined as the maximum of
the dimensions of its irreducible components. A reducible
analytic subvariety X is called pure dimensional if every
irreducible component of X has the same dimension.
It is clear that analytic subvariety X ⊂ U can be endowed

with the relative topology coming from U; however, the
main point in the study of analytic subvarieties is that one
should take into account consideration not only about the
topology of these analytic subvarieties but also about their
function-theoretic properties: For simplicity, let us take the
open set U ⊂ Cn to be a sufficiently small open polydisc
ΔðϵÞ such that an analytic subvariety X of ΔðϵÞ can be

93If M is a complex manifold of dimension n and Γ ⊂
AutðMÞ ⊂ GLðn;CÞ is a finite subgroup of holomorphic auto-
morphisms of M which does not act freely (i.e., has fixed points
on M), the quotient space M=Γ will have the structure of an
analytic stack (or, equivalently, of a complex orbifold) and we
will use the notation ½M=Γ� to meanM=Γ as an analytic orbifold/
stack. The notation M=Γ will be reserved for the coarse moduli
space or the underlying analytic space of ½M=Γ� which will be a
variety with quotient singularities.

94This underlying analytic space is actually the same as the
coarse moduli space of the orbifold regarded as an analytic stack.

CLASSICAL LIOUVILLE ACTION AND UNIFORMIZATION OF … PHYS. REV. D 110, 046018 (2024)

046018-67



determined as the set of common zeros of a finite number
of functions that are analytic throughout ΔðϵÞ. Under the
natural addition and multiplication of complex-valued
functions, the set of all holomorphic functions on ΔðϵÞ
forms a ringOΔðϵÞ containing the constants c∈Cn—hence
in fact a C algebra. The set of all analytic functions in ΔðϵÞ
which vanish on X form an ideal IðXÞ in the ring OΔðϵÞ,
called the ideal of X. Then, the ring of holomorphic
functions on X is given by the quotient ring
OX ≔ OΔðϵÞ=IðXÞ. It is easy to see that a subvariety X
of ΔðϵÞ is irreducible precisely when the ideal IðXÞ is a
prime ideal inOΔðϵÞ, by which we meanIðXÞ ≠ OΔðϵÞ and
for any two holomorphic functions f; f0 ∈OΔðϵÞ the state-
ment ff0 ∈IðXÞ implies f∈IðXÞ or f0 ∈IðXÞ (or both).
Remark A.1. Let f1;…; fk ∈OΔðϵÞ be the system of

defining functions for general (i.e., not necessarily irre-
ducible) subvariety X. Then, the defining functions
f1;…; fk generate an ideal I in the OΔðϵÞ which is
sometimes called the defining ideal for X. While all
holomorphic functions f∈I vanish on X, i.e., I ⊆ IðXÞ,
the inverse statement is not necessarily true—i.e., in
general IðXÞ⊈I. However, provided that the polydisc
ΔðϵÞ is small enough, an important fact is that all
holomorphic functions f∈IðXÞ have a power which is
contained inI. This motivates us to define the radical ofI
as the set

ffiffiffiffi
I

p
≔
�
f∈OΔðϵÞ

��fk0 ∈I for some positive integer k0
�
:

This is again an ideal in OΔðϵÞ and we have
ffiffiffiffi
I

p ¼ IðXÞ.
When the defining ideal I is prime in OΔðϵÞ, we getffiffiffiffi
I

p ¼ I; hence, I ¼ IðXÞ exactly when X is irreducible.
More generally, when the open set U ⊂ Cn is not

restricted to be small (or to be an open polydisc), the
above statements hold true in small neighborhoods of each
point x∈X. For such local considerations, it is often
convenient to introduce the notion of germs: To make this
precise, consider two pairs ðX;UÞ and ðX0; U0Þ, where U,
U0 are open neighborhoods of the origin inCn and X, X0 are
analytic subvarieties of U, U0, respectively. The two pairs
ðX;UÞ and ðX0; U0Þ are said to define the same germ of
analytic subvarieties at the origin in Cn if there exists a
neighborhoodW⊆U∩U0 of 0 such that X ∩ W ¼ X0 ∩ W.
We will denote the germ of analytic subvariety X at 0 in Cn

by ½X�0. Now, let OU be the ring of holomorphic functions
in some open subset U ⊂ Cn containing the origin.
Analogously, we can define an equivalence relation ∼0

between two holomorphic functions f; f0 ∈OU, where
f ∼0 f0 if there exists a neighborhood W of 0 such that
the restrictions of f and f0 to W are identical—i.e.,
fjW ¼ f0jW . The equivalence class of a function f is called
the germ of holomorphic function f at the origin and
will be denoted by ½f�0. In addition, the quotient ring

OU;0 ≔ OU=∼0 will be the ring of germs of holomorphic
functions at the origin.95

Similar to the case of analytic subvariety of a sufficiently
small open polydisc, to each germ ½X�0 of an analytic
subvariety at the origin in Cn there is canonically asso-
ciated an ideal Ið½X�0Þ in the local ring96 OCn;0 which is
defined as the ideal of germs of all analytic functions
vanishing on the subvariety X representing the germ ½X�0.
In the other direction, to each ideal I ⊆ OCn;0 there is
canonically associated a germ of an analytic subvariety at
the origin in Cn, called the locus of the idealI and denoted
by ½XðIÞ�0. The germ ½XðIÞ�0 is defined as the germ
represented by the analytic subvariety X ¼ fz∈Ujf1ðzÞ ¼
� � � ¼ fkðzÞ ¼ 0g of the open set U ⊂ Cn, where fi ∈OU
are analytic functions in U whose germs in OU;0 generate
the ideal I. Note that, similar to what we saw in
Remark A.1, Ið½XðIÞ�0Þ ¼

ffiffiffiffi
I

p
and

ffiffiffiffi
I

p ¼ I iff the ideal
I ⊆ OCn;0 is prime [equivalently, if the germ ½XðIÞ�0 is
irreducible]. Finally, the residue class ring OCn;0=Ið½X�0Þ
will now be denoted by OX;0 and will be called the ring of
germs of holomorphic functions on the subvariety X at the
origin in Cn.
Having learned how to think about the function-theoretic

properties of an analytic subvariety locally, we are now
ready to study those properties from a global perspective; it
is then convenient to think about sheaves of rings/ideals/
modules as we shall now explain: Let us start with the local
ringsOCn;z of germs of holomorphic functions at any point
z∈Cn. The set of rings OCn;z for all points z∈Cn can be
taken to form the sheaf of germs of holomorphic functions
of n complex variables OCn ; the restriction OCn jU of the
sheaf of rings OCn to any open set U ⊂ Cn will be simply
denoted by OU. Similarly, consider an analytic subvariety
X of an open subset U ⊂ Cn and to each point z∈U
associate the ideal Ið½X�zÞ ⊆ OCn;z of the germ of the
subvariety X at that point [if z ∉ X the ideal Ið½X�zÞ is of
course the trivial ideal OCn;z]. The set of all ideals Ið½X�zÞ
at any point z∈U forms an analytic subsheaf97 of the sheaf
OU over the set U, which will be denoted by I ðXÞ and
called the sheaf of ideals of the analytic subvariety X.
Finally, the restriction to the subvariety X of the analytic
sheaf OU=I ðXÞ will be called the the sheaf of germs of
holomorphic functions on the subvariety X and is denoted

95If we denote by Cfz1;…; zng the set of power series which
converge absolutely in some neighborhood of 0, this set also has
the structure of a ring. Since, as in the one variable case, f ∼0 f0 if
and only if f and f0 have the same power series expansion, we
may identify OU;0 with Cfz1;…; zng.

96A commutative ring is called local if it has only one maximal
ideal. The unique maximal ideal of OCn;0 (equivalently,
Cfz1;…; zng) corresponds to the set of all germs of holomorphic
functions that vanish at the origin (equivalently, the set of all
power series whose constant term vanishes).

97An analytic sheaf over an open set U ⊂ Cn is a sheaf of
modules over OU.
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by OX; the local rings OX;x ¼ OU;x=Ið½X�xÞ at any point
x∈X can then be viewed as the stalks of OX.
Locally, a germ of an analytic subvariety determines a

germ of a topological space and this space further possesses
a distinguished subring of the ring of germs of continuous
complex-valued functions, namely the ring of germs of
holomorphic functions on the subvariety. This observation
suggests that the correct way of characterizing an analytic
subvariety X is as a C-ringed space.
Definition A.3. A ringed space X is a pair ðjXj;OXÞ

consisting of a Hausdorff topological space jXj and a sheaf
of rings OX on jXj, called the structure sheaf of X. It is
called a locally ringed space when, for every x∈ jXj, the
stalk OX;x is a local ring. Its maximal ideal is denoted by
mX;x. A locally ringed space is called a C-ringed space
when furthermore OX is a sheaf of C algebras and, for
every x∈ jXj, there is an isomorphismOX;x=mX;x ≅ C of C
algebras.
It is clear that for analytic subvarieties, the role of

structure sheaf is played by the sheaf of germs of hol-
omorphic functions on the subvariety.
The notion of an analytic subvariety as defined in A.1

depends quite essentially on a particular embedding in the
ambient space Cn. For example, the germ of an analytic
subvariety at the origin in Cn can also be viewed as the
germ of an analytic subvariety at the origin in Cnþ1 through
the canonical embedding Cn ↪ Cnþ1 but these will be
inequivalent germs of analytic subvarieties. It is thus
evident that there is a point to introducing an equivalence
relation among analytic subvarieties in order to investigate
those properties, which are to some extent independent of
the embeddings of these subvarieties in their ambient
complex number spaces.
Once again, for the sake of simplicity, let us consider

sufficiently small open polydiscs Δn1ðϵ1Þ ⊂ Cn1 and
Δn2ðϵ2Þ ⊂ Cn2 such that analytic subvarieties X1 ⊂
Δn1ðϵ1Þ and X2 ⊂ Δn2ðϵ2Þ can be determined as the set
of common zeros of a finite number of functions that are
analytic throughout Δn1ðϵ1Þ and Δn2ðϵ2Þ, respectively. A
continuous mapping between two such analytic subvari-
eties X1 ⊂ Δn1ðϵ1Þ and X2 ⊂ Δn2ðϵ2Þ is said to be a
complex analytic mapping f∶ X1 → X2 between these
two subvarieties if there is a holomorphic mapping
F∶ Δn1ðϵ1Þ → Δn2ðϵ2Þ such that the restriction of F to
the subvariety X1 ⊂ Δn1ðϵ1Þ is just f—i.e., FjX1

¼ f.
Additionally, two analytic subvarieties X1 ⊂ Δn1ðϵ1Þ and
X2 ⊂ Δn2ðϵ2Þ are said to be analytically equivalent if
there are complex analytic mappings f∶ X1 → X2 and
g∶ X2 → X1 such that the compositions f ∘ g and g ∘ f
are the appropriate identity mappings. This notion of
equivalence thus allows one to speak of analytic subvari-
eties without reference to the spaces in which they are
embedded; an equivalence class is called an analytic
variety, and a space which has locally the structure of an
analytic variety is called an analytic space.

For global considerations, it is more convenient to
think about an analytic subvariety X as a C-ringed space
ðjXj;OXÞ. Complex analytic mappings f∶ X1 → X2

between two subvarieties X1 and X2 are then viewed as
morphisms of C-ringed spaces between ðjX1j;OX1

Þ and
ðjX2j;OX2

Þ.
Definition A.4 (Morphism of C-ringed spaces). A mor-

phism f∶ X1 → X2 of ringed spaces ðjX1j;OX1
Þ and

ðjX2j;OX2
Þ is a pair f ¼ ðjfj; f�Þ consisting of a continu-

ous map

jfj∶jX1j → jX2j

and a homomorphism

f�∶ OX2
→ jfj�ðOX1

Þ

of sheaves of rings on X2. For any point x∈X1, we think of
f�x as the ring homomorphism

f�x∶ OX2;fðxÞ → OX1;x

defined as the composition of the canonical homomor-
phisms

OX2;fðxÞ →
�jfj�ðOX1

Þ�fðxÞ → OX1;x:

In case X1 and X2 are locally ringed spaces, a morphism by
definition has to be local, that is, satisfy

f�xðmX2;fðxÞÞ ⊂ mX1;x

for every x∈X1. A morphism of C-ringed spaces X1 and
X2 is a morphism of ringed spaces, where f� is furthermore
a homomorphism of sheaves of C algebras. In this case,
f�x is automatically local for every x∈X1.
It is an immediate consequence of this definition that

two analytic subvarieties X1 and X2 determine equivalent
varieties if and only if there is a topological home-
omorphism jfj∶jX1j → jX2j inducing an isomorphism

f�∶ OX2
→
≅ jfj�ðOX1

Þ between the sheaves of C algebras.
Thus, the coherent analytic sheaf OX on an analytic
subvariety X is the complete invariant determining equiv-
alence as varieties—hence, the name structure sheaf.
To build up complex analytic spaces, we construct local

models as follows: Let U ⊂ Cn be an open subset, and
assume that I is a coherent sheaf of OU ideals. Then

SuppðOU=I Þ ¼ �x∈U
��ðOU=I Þx ≠ 0

�
is an analytic subset of U which we will denote by Ã. The
pair ðÃ; ðOU=I ÞjÃÞ is a C-ringed space, which is called a
local model of an analytic space.
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Definition A.5 (Complex analytic spaces and analytic
mappings). A complex analytic space, or an analytic space
for short, is a C-ringed space ðjXj;OXÞ satisfying the
following conditions:

(i) jXj is Hausdorff,
(ii) For every x∈X, there is an open neighborhood Vx of

x such that ðVx;OXjVx
Þ is isomorphic (as C-ringed

space) to some local model.
If X ¼ ðjXj;OXÞ and Y ¼ ðjYj;OYÞ are complex analytic
spaces, then any morphism,

ðjfj; f�Þ∶ðjXj;OXÞ → ðjYj;OYÞ;

of C-ringed spaces is called an analytic map (or holomor-
phic map).
Remark A.2. Note that any complex manifold M can be

considered as an analytic space ðjMj;OMÞ and holomor-
phic maps f∶ M → N between complex manifolds can be
extended to analytic mappings ðjfj; f�Þ∶ðjMj;OMÞ →
ðjNj;ONÞ.
Let jXj be a topological space. Any analytic variety

ðjUj;OUÞ, where jUj is an open set in jXj, is called an
analytic chart on jXj. A family fðjUaj;OaÞ; g�abga;b∈A

consisting of complex charts on jXj and of C-algebra
isomorphisms,

g�ab∶ ObjjUaj∩jUbj → OajjUaj∩jUbj;

is called an analytic atlas on X, if fjUajga∈A is an open
covering of jXj, and if furthermore

g�ab ∘ g�bc ¼ g�ac for all a; b; c∈A ðcocycle conditionÞ;

the maps g�ab are the gluing isomorphisms of the atlas.
Furthermore, we have the following lemma (see, e.g.,
Sec. 1.7 of [168] for the proof).
Lemma A.1 (Gluing lemma). Let fðjVij;O iÞ; g�ijgi;j∈ I be

an analytic atlas on a Hausdorff topological space jXj.
Then, there exists a unique (up to isomorphism) complex
analytic space ðjXj;OXÞ and C-algebra isomorphisms
f�i ∶ OXjjVij → O i for all i∈ I, such that

g�ij ¼ f�i ∘ ðf�jÞ−1

on every intersection jVij ∩ jVjj.
A complex analytic space Y is called an open complex

analytic subspace of X, if jYj is an open subset of jXj, and
OY ¼ OXjY . In addition, Y is called a closed complex
analytic subspace of X, if there is a coherent idealJ ⊂ OX

such that jYj ¼ SuppðOX=JÞ and OY ¼ ðOX=JÞjY . In
this case, there is a canonical analytic map determined by
the injection, which we denote by Y ↪ X. A subset A of a
complex analytic space X is called analytic when there is a
coherent ideal J ⊂ OX such that A ¼ SuppðOX=JÞ.

We now discuss several possibilities of how good
(respectively, how bad) a given analytic space X ¼
ðjXj;OXÞ may behave at a point x∈X. The situation is
optimal if x is a smooth point of X.
Definition A.6 (Smooth and singular points of analytic

spaces). A point x in an analytic space X ¼ ðjXj;OXÞ is
called smooth or regular, if there exists a neighborhood Vx
of x in jXj and an open set U in some complex number
space Cn such that ðVx;OXjVx

Þ and ðU;OUÞ are analyti-
cally isomorphic—i.e., if there exist analytic mappings

ðjfj; f�Þ∶ðVx;OXjVx
Þ → ðU;OUÞ and

ðjgj; g�Þ∶ðU;OUÞ → ðVx;OXjVx
Þ;

such that the compositions jfj ∘ jgj, jgj ∘ jfj, f� ∘ g�,
and g� ∘ f� are the appropriate identity mappings. In other
words, a point x∈X is smooth if and only if OX;x ≅ OCn;x.
Of course, the singular locus is defined to be the set of all
nonsmooth points: SingðXÞ ¼ XnRegðXÞ.
When X is not necessarily smooth (i.e., has a nonempty

singular locus), we define the following notions regarding
the behavior of an analytic space X at a point x∈X:

(i) The analytic space X is called irreducible at point x
if the stalk OX;x is an integral domain, otherwise X
is called reducible at x. All smooth points are
irreducible points, since for such a point x, the
stalk OX;x is isomorphic to the ring of convergent
power series Cfz1;…; zng. The analytic space X
will be called locally irreducible if all points of X
are irreducible; in particular, complex manifolds
are locally irreducible.

(ii) The complex analytic space X is called reduced at x
if the stalk OX;x is a reduced ring—i.e., does not
contain nilpotent elements. All irreducible points are
reduced points of X. We call X a reduced analytic
space if X is reduced at all its points; this happens
when every local model for the space is defined
by a radical sheaf of ideals. An analytic space X,
which is not reduced has a reduction Xred, which is a
reduced analytic space with the same underlying
topological space. There exists a canonical embed-
ding ι∶ Xred ↪ X and every morphism from X to a
reduced analytic space factors through ι. In particu-
lar, every analytic mapping f∶ Y → X of complex
analytic spaces induces a canonical analytic mor-
phism fred∶ Yred → Xred of their reductions such
that f ∘ ιY ¼ ιX ∘ fred, where ιX∶ Xred ↪ X and
ιY∶ Yred ↪ Y are the canonical embeddings. When
Y ¼ Yred, the sheaf homomorphism component, f�,
of an analytic map ðjfj; f�Þ∶ðjYj;OYÞ → ðjXj;OXÞ
is uniquely determined by its continuous mapping
component jfj.

(iii) A reduced point x∈X will be called a normal point
of X, if the stalk OX;x is integrally closed in its
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quotient ring. Smooth points are normal, and X is
irreducible at every normal point. An analytic space
X will be called normal if every point x∈X is a
normal point; in a normal analytic space, the
singular locus has codimension at least two. Once
again, all non-normal analytic spaces can be
smoothed out into normal spaces in a canonical
way; this construction is called the normalization.

In the rest of this Appendix, we will mainly focus on
normal analytic spaces.

b. An intermezzo on line bundles and divisors

In this subsection, we will introduce the basic definitions
concerning line bundles and divisors. Although we are
mainly interested in complex analytic spaces, we will
mostly focus our attention to complex manifolds (i.e.,
smooth analytic spaces) to avoid complication; we will
comment on some of the subtleties of generalizing the
introduced notion to singular analytic spaces. We start with
reviewing the notions of connection, curvature, and Chern
classes for complex vector bundles (see [161,168,172,173]
for more details).
Complex vector bundles. Let M be a complex manifold

of dimension n. A complex vector bundle of rank r overM
is a smooth manifold E together with a continuous
map π∶ E → M such that there exists an open covering
V ¼ fVαgα∈A of M with the following properties:

(i) for each α∈A, there is a homeomorphism

ψα∶ π−1ðVαÞ→∼ Vα × Cr

with pr ∘ψα ¼ π where pr denotes the projection
Vα × Cr → Vα;

(ii) for each pair ðα; βÞ∈A × A, there is a C∞ map

gαβ∶ Vα ∩ Vβ → GLðr;CÞ

with

ψα ∘ψ−1
β ðp; ζÞ ¼ ðp; gαβðpÞζÞ for

ðp; ζÞ∈Vα ∩ Vβ × Cr:

We call ψα a trivialization of E on Vα. We also call gαβ the
transition matrix of E on Vα ∩ Vβ and the collection
fgαβgðα;βÞ∈A×A the system of transition matrices of E.
For each point p in Vα ∩ Vβ ∩ Vγ we have the identity

gαβðpÞgβγðpÞ ¼ gαγðpÞ ðcocycle conditionÞ: ðA1Þ

Thus, in particular, gααðpÞ ¼ 1 (the identity matrix) and
gβαðpÞ ¼ ðgαβðpÞÞ−1. We may think of the system
fðVα;ψα; gαβÞgðα;βÞ∈A×A as defining a vector bundle
structure on E.

Conversely, if we are given an open covering V ¼
fVαgα∈A ofM and a collection fgαβgðα;βÞ∈A×A of C

∞ maps,

gαβ∶ Vα ∩ Vβ → GLðr;CÞ;
satisfying the cocycle condition (A1) for p∈Vα ∩
Vβ ∩ Vγ , we may construct a vector bundle as follows:
For ðpα; ζαÞ∈Vα × Cr and ðpβ; ζβÞ∈Vβ × Cr, we define
ðpα; ζαÞ ∼ ðpβ; ζβÞ if and only if

pα ¼ pβð¼ pÞ
ζα ¼ gαβðpÞζβ:

Then, it is easy to see that this is an equivalence relation in
the disjoint union⨆α ðVα × CrÞ. Now, let E be the quotient
space ð⨆α ðVα × CrÞÞ=∼. Then, since

ðVα × CrÞ=∼ ¼ Vα × Cr;

E has a vector bundle structure with fgαβgðα;βÞ∈A×A as a
system of transition matrices.
A complex vector bundle over a complex manifold M is

said to be holomorphic if E admits a system of transition
matrices fgαβgðα;βÞ∈A×A such that each gαβ is holomorphic.
Note that in this case, E has the structure of a complex
manifold so that the projection π∶ E → M is a holomor-
phic submersion. We will come back to this point later
when we study holomorphic vector bundles on complex
analytic spaces.
Let π∶ E → M be a complex vector bundle of rank r and

V an open set inM. A smooth complex section of E on V is
a C∞-map s∶ V → EjV ≔ π−1ðVÞ such that π ∘ s ¼ idV , the
identity map of V. A vector bundle, E, always admits the
zero section—i.e., the map M → E which assigns to each
point p∈M the zero of the vector space Ep. The set of C
complex sections of E on V is denoted by C∞ðV; EÞ. This
has a natural structure of vector space by the operations
defined by ðs1 þ s2ÞðpÞ ¼ s1ðpÞ þ s2ðpÞ and ðcsÞðpÞ ¼
csðpÞ for s1, s2, and s in C∞ðV; EÞ, c∈C, and p∈V. More
precisely, a section s on V can be described as follows: We
fix a system of transition matrices fgαβgðα;βÞ∈A×A of E on
an open covering V ¼ fVαgα∈A. Using the C∞ diffeo-
morphism ψα∶ EjV α⃗

∼ Vα × Cr, we may write

ψαðsðpÞÞ ¼ ðp; sαðpÞÞ for p∈V ∩ Vα;

where sα is a C∞-map from V ∩ Vα into Cr. For each point
p∈V ∩ Vα ∩ Vβ, we have

sαðpÞ ¼ gαβðpÞsβðpÞ: ðA2Þ

Conversely, suppose we have a system fsαgα∈A of C∞

maps satisfying (A2). Then, by setting sðpÞ¼
ψ−1
α ðp;sαðpÞÞ for p in V ∩ Vα, we have a section s over V.
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For k ¼ 1;…; r, a k frame of E on an open set V ⊂ M is
a collection s ¼ ðs1;…; skÞ of k sections si of E on V
linearly independent at each point in V. An r frame is
simply called a frame. Note that a frame of E on V
determines a trivialization of E over V.
Let us denote by EM the sheaf of germs of C∞ complex

functions on M. If π∶ E → M is a C∞ complex vector
bundle of rank r over M, we denote by E ðEÞ the sheaf of
germs of C∞ sections of E—i.e., the sheaf whose space of
sections on an open subset V ⊂ M is E ðEÞjV ¼ C∞ðV; EÞ.
It is clear that E ðEÞ is a EM module. Furthermore, the sheaf
E ðEÞ is a locally free EM module of rank r: There exists a
covering V ¼ fVαgα∈A of M and a sheaf isomorphism

ψ�
α∶ E ðEÞjVα

→ E r
Vα

E r
Vα

≔ E Vα
⊕ � � � ⊕ E Vα|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

r

:

Then, we have transition isomorphisms ψ�
α ∘ ðψ�

βÞ−1∶
E r

M → E r
M defined on Vα ∩ Vβ, and such isomorphism

is the multiplication by an invertible matrix with C∞

coefficients on Vα ∩ Vβ. The concepts of complex vector
bundles and locally free EM modules are thus completely
equivalent.
If we are given some vector bundles, we may construct

new ones by algebraic operations. Thus, we let E1 and E2

be complex vector bundles of rank r1 and r2 onM. We may
construct the direct sum E1 ⊕ E2, the tensor product
E1 ⊗ E2, and the homomorphism HomðE1; E2Þ. Note that
there is a natural isomorphism HomðE1; E2Þ ¼ E�

1 ⊗ E2.
We may also construct the complex conjugate Ē1 and the
kth exterior power ⋀kE1. The bundles E1 and E2 can be
trivialized over the same covering V ¼ fVαgα∈A of M
(otherwise take a common refinement). If fgαβ1 gα;β∈A and

fgαβ2 gα;β∈A are the corresponding transition matrices of E1

and E2, then for example E1 ⊗ E2, ⋀kE1, E�
1 are the

bundles defined by the transition matrices gαβ1 ⊗ gαβ2 ,
⋀kgαβ1 , ððgαβ1 ÞTÞ−1 where “·T” denotes transposition.
Connections and curvature. Now, for a C∞ complex

vector bundle E of rank r on M, we let AkðV; EÞ be the
vector space of C∞ sections of ð⋀kT�MÞ ⊗ E on V ⊂ M,
which are called differential forms on V with values in E.
Thus,A0ðV; EÞ ≔ C∞ðV;EÞ is theA0ðVÞ ≔ EMjV module
of C∞ sections of E.
Definition A.7 (Connection). A connection for E is a

C-linear map

∇∶A0ðM;EÞ → A1ðM;EÞ

satisfying

∇ðfsÞ ¼ df ⊗ sþ f∇ðsÞ
for f∈A0ðMÞ and s∈A0ðM;EÞ:

A connection ∇ is a local operator—i.e., if a section s is
identically 0 on an open set V ⊂ M, so is ∇ðsÞ. Thus, the
restriction of ∇ to an open set V makes sense, and it is a
connection for EjV. In addition, from the above definition,
we conclude that if ∇1;…;∇k are connections for E and
f1;…; fk are C∞ functions on M with

P
k
i¼1 fi ¼ 1, thenP

k
i¼1 fi∇i will also be a connection on E.
If ∇ is a connection for E, it induces a C-linear map

∇∶A1ðM;EÞ → A2ðM;EÞ

and satisfying

∇ðω ⊗ sÞ ¼ dω ⊗ s − ω ∧ ∇ðsÞ
for ω∈A1ðMÞ and s∈A0ðM;EÞ:

The composition

Θ ¼ ∇∘∇∶A0ðM;EÞ → A2ðM;EÞ

is called the curvature of ∇. It is not difficult to see that

ΘðfsÞ ¼ fΘðsÞ for f∈A0ðMÞ and s∈A0ðM;EÞ:

The fact that a connection is a local operator allows us to
get local representations of it and its curvature by matrices
whose entries are differential forms. Thus, suppose that ∇
is a connection for a complex vector bundle E of rank r and
that E is trivial on V—i.e., EjV ≅ V × Cr. If s ¼ ðs1;…; srÞ
is a frame of E on V, then we may write

∇ðsiÞ ¼
Xr
j¼1

Aij ⊗ sj with

Aij ∈A1ðVÞ and for i ¼ 1;…; r:

We call A ¼ ðAijÞ the connection matrix with respect to s.
For an arbitrary section s on V, we may write s ¼P

r
i¼1 fisi with fi being C

∞ functions on V and we compute

∇ðsÞ ¼
Xr
i¼1

�
dfi þ

Xr
j¼1

fjAji

�
⊗ si:

The connection ∇ is trivial with respect to s, if and only if
A ¼ 0. Thus, in this case we have ∇ðsÞ ¼Pr

i¼1 dfi ⊗ si.
Also, from the definition, we compute to get

ΘðsiÞ ¼
Xr
j¼1

θij ⊗ sj with θij ¼ dAij −
Xr
k¼1

Aik ∧ Akj:

We call θ ¼ ðθijÞ the curvature matrix with respect to s.
If s0 ¼ ðs01;…; s0rÞ is another frame of E on V 0, we have
s0i ¼

P
r
j¼1 gijsj for some C∞ functions gij on V ∩ V 0.

The matrix g ¼ ðgijÞ is nonsingular at each point of
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V ∩ V 0. If we denote by A0 and θ0 the connection and
curvature matrices of ∇ with respect to s0, we obtain the
gauge transformation law

A0 ¼gAg−1þg−1dg and θ0 ¼gθg−1 onV ∩V 0: ðA3Þ

Now, suppose that ðM;J Þ98 is a complex manifold, and
E is a complex vector bundle on M. We can consider the

tensor product bundle ⋀k;lT�M ⊗ E, and we let E ðk;lÞ
M ðEÞ

denote the sheaf of germs of smooth sections of
⋀k;lT�M ⊗ E. Smooth sections of this sheaf are ðk; lÞ
forms with values in E, the set of which we denote
by Aðk;lÞðEÞ. The connection ∇ in E induces a connection,
also written as ∇, in Aðk;lÞðEÞ. This connection arrays as
∇ ¼ ∇ð1;0Þ ⊕ ∇ð0;1Þ giving maps

∇ð1;0Þ∶ Aðk;lÞðEÞ → Aðkþ1;lÞðEÞ and

∇ð0;1Þ∶ Aðk;lÞðEÞ → Aðk;lþ1ÞðEÞ:

Theorem A.1. A smooth, complex vector bundle E over a
complex manifoldM admits a holomorphic structure if and
only if there exists a connection ∇ in E such that ∇0;1 ¼ ∂.
The holomorphic structure in E is uniquely determined

by the condition ∇0;1 ¼ ∂, and this condition says that
the (0, 2) component ∇0;1 ∘∇0;1 of the curvature of ∇
vanishes.
Using partitions of unity, one easily sees that Hermitian

metrics exist on every complex vector bundle.
Definition A.8 (Hermitian metric). A Hermitian metric h

on a complex vector bundle E is an assignment of a
Hermitian inner product to each fiber Ep of E that varies
smoothly with p. A connection∇ in E is called a Hermitian
connection if ∇h ¼ 0 for some Hermitian metric h. A
vector bundle equipped with a Hermitian metric is often
called a Hermitian vector bundle.
We then have the following.
Proposition A.1. Let E be a holomorphic vector bundle

with a Hermitian metric h. Then there exists a unique
Hermitian connection ∇ such that ∇0;1 ¼ ∂. This unique
connection is called the “Hermitian connection.”
Chern forms. Consider the space Mr×rðCÞ of complex

r × r matrices. For any M∈Mr×rðCÞ, we define

detðMþ λ1Þ ¼ σrðMÞ þ λσr−1ðMÞ þ � � � þ λr−1σ1ðMÞ þ λr:

Clearly, for any i ¼ 1;…; r the function σi∶ Mr×rðCÞ → C
is a GLðr;CÞ-invariant, complex homogeneous polynomial
of degðσiÞ ¼ i. Note that σi is the ith elementary symmetric
function of the eigenvalues of M. In particular, σrðMÞ ¼
detðMÞ and σ1ðMÞ ¼ trðMÞ. Since differential forms of even
degrees commute with one another with respect to the

exterior product, we may treat the curvature two-form θ as
an ordinary matrix whose entries are numbers. Thus, we
define the following.
Definition A.9 (Chern form). Let E → M be a rank r

complex vector bundle over M, and let ∇ be a complex
connection on E with curvature two-form θ. For each
i ¼ 1;…; r we define the 2i-form

ciðE;∇Þ ≔ σi

� ffiffiffiffiffiffi
−1

p

2π
θ

�
and call it the ith Chern form of E.
Additionally, we have the following definition.
Definition A.10 (Chern classes). Given ðE;∇Þ and

any 1 ≤ i ≤ r, the ith Chern form ciðE;∇Þ is closed.
Furthermore, if ∇0 is another complex connection on E
the difference ciðE;∇Þ − ciðE;∇0Þ is exact—i.e., the
cohomology class ½ciðE;∇Þ�∈H2i

dRðMÞ ≃H2iðM;CÞ is
independent of ∇. The resulting cohomology class is called
the ith Chern class of E and is denoted by ciðEÞ.
Remark A.3. It is known that ciðEÞ is in the image of the

canonical homomorphism

H2iðM;ZÞ → H2iðM;CÞ:

In fact, it is possible to define ciðEÞ in H2iðM;ZÞ using
the obstruction theory; it is the primary obstruction to
constructing r − iþ 1 sections linearly independent every-
where (Sec. I of [173]).
Complex line bundles. Assume now that L → M is a line

bundle (r ¼ 1). Then, every collection of transition func-
tions fgαβgðα;βÞ∈A×A defines a Cech one-cocycle with
values in the multiplicative sheaf E �

M of invertible C∞

complex functions onM. In fact, the definition of the Cech
differential (see, e.g., Sec. 1.3 of [174]) gives ðδgÞαβγ ¼
gβγðgαγÞ−1gαβ, and we have δg ¼ 1 in view of (A1). Let ψ 0

α

be another family of trivializations and fg0αβgðα;βÞ∈A×A the
associated cocycle (it is no loss of generality to assume that
both are defined on the same covering since we may
otherwise take a refinement). Then we have

ψ 0
α ∘ψ−1

α ∶ Vα × C → Vα × C;

ðp; ζÞ ↦ ðp; uαðpÞζÞ; uα ∈E �
MðVαÞ:

It follows that gαβ¼g0αβu−1α uβ—i.e., the Cech one-cocycles
gαβ and g0αβ differ only by the Cech one-coboundary δu.
Therefore, there exists a well-defined map which associates
to every complex line bundle L over M the Cech coho-
mology class fgαβgðα;βÞ∈A×A ∈H1ðM;E �

MÞ of its cocycle of
transition functions. It is easy to verify that the cohomology
classes associated to two complex line bundles L and L0 are
equal if and only if these bundles are isomorphic. It is also
clear that the multiplicative group structure on H1ðM;E �

MÞ
corresponds to the tensor product of line bundles (the98Here J denotes an (integrable) almost complex structure.
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inverse of a line bundle being its dual). We may summarize
this discussion by the following.
Proposition A.2. The group of isomorphism classes of

complex C∞ line bundles is in one-to-one correspondence
with the Cech cohomology group Ȟ1ðM;E �

MÞ.
Now, let ∇ be a connection on L with curvature two-

form θ. The de Rham class ½θ�∈H2
dRðM;CÞ does not

depend on the particular choice of ∇. If ∇ is chosen to be
Hermitian with respect to a given Hermitian metric on L
(such a connection can always be constructed by means
of a partition of unity) then

ffiffiffiffiffiffi
−1

p
θ is a real two-form,

thus ½ ffiffiffiffiffiffi−1
p

θ�∈H2
dRðM;RÞ.

Consider now the one-to-one correspondence given by
Proposition A.2 and the exponential short exact sequence
of sheaves on M,

0 → Z→
{
EM!expE �

M → 0;

where the map { is {ðkÞ ¼ 2π
ffiffiffiffiffiffi
−1

p
k and the exponential

map sends the germ f of any complex C∞ function to
expðfÞ. Since EM is a fine sheaf,99 we haveHqðM;EMÞ¼0

for all q > 0; in particular H1ðM;EMÞ ¼ H2ðM;EMÞ ¼ 0.
So, the induced long exact cohomology sequence

� � � → H1ðM;EMÞ → H1ðM;E �
MÞ

→ H2ðM;ZÞ → H2ðM;EMÞ → � � �

gives an isomorphism H1ðM;E �
MÞ ≃H2ðM;ZÞ which says

that the topological invariant H2ðM;ZÞ can be thought of
as the group of complex line bundles on M. This isomor-
phism is realized by associating to a complex line bundle L
its first Chern class c1ðLÞ.
The natural morphism

H2ðM;ZÞ → H2ðM;RÞ ≃H2
dRðM;RÞ

results in the following theorem.
Theorem A.2. The image of c1ðLÞ in H2

dRðM;RÞ
coincides with the de Rham cohomology class ½ ffiffiffiffiffiffi−1

p
θ�

associated to any (Hermitian) connection ∇ on L.
Holomorphic vector bundles on analytic spaces. Let us

now generalize our discussion of holomorphic vector
bundles to those defined over complex analytic spaces.
We have the following.
Definition A.11 (Holomorphic vector bundle). Let

π∶ E → X be an analytic map between reduced analytic
spaces such that every fiber Ex ≔ π−1ðxÞ over a point x∈X

is equipped with the structure of an r-dimensional complex
vector space. Then, π∶ E → X will be called a holomorphic
vector bundle of rank r on X if every point x∈X has an
open neighborhood V in X such that the restricted map
πjEjV≔π−1ðVÞ∶ EjV → V is (analytically) trivial—i.e., there

exists a biholomorphic map EjV→
≅
V × Cr, called the

holomorphic trivialization of E over V, which maps every
fiber Ex for x∈V onto x × Cr as an isomorphism of
complex vector spaces. A holomorphic vector bundle of
rank r ¼ 1 on X is called a holomorphic line bundle on X.
An analytic map E → E0 between holomorphic vector

bundles is called a bundle map if it is fiber preserving and if
all induced maps Ex → E0

x are linear; clearly, the holo-
morphic vector bundles with bundle maps as morphisms
form a category.
Assume now that E is a holomorphic vector bundle on X

of rank r. A holomorphic section of E over V ⊂ X is a
holomorphic map s∶ V → π−1ðVÞ ⊂ E such that π ∘ s ¼
idV . If π−1ðVÞ ≅ V × Cr then s is simply given by an
r-tuple of holomorphic functions on V. Hence, local
holomorphic sections in E determine, in a natural way, a
canonical presheaf on X which gives rise to the analytic
sheaf OXðEÞ on X of germs of holomorphic sections in E.
Such a sheaf is always locally free of the same rank as the
rank of the vector bundle: If EjV is trivial, we have an
isomorphism OðEÞjV ¼ Or

V . It follows that if E is the
trivial line bundle X × C, the sheaf OðE ¼ X × CÞ coin-
cides with the structure sheaf OX of the complex analytic
space X. Moreover, the cohomology of a holomorphic
vector bundle E over X is defined to be the sheaf
cohomology of OðEÞ. In particular, we have

H0ðX;OðEÞÞ ¼ ΓðX;EÞ

the space of global holomorphic sections of E.
To study the holomorphic line bundles on the analytic

space X, we consider the exact sequence

0 → Z→
{
OX !expO�

X → 0;

where the maps { and exp are defined as before and O�
X

denotes the sheaf of invertible elements in OX—in
other words, the sheaf of nowhere-vanishing holomorphic
function on X. This induces a long exact sequence in
cohomology,

� � � → H1ðX;OXÞ → H1ðX;O�
XÞ

→
δ
H2ðX;ZÞ → H2ðX;OXÞ → � � � :

The group H1ðX;O�
XÞ represents the group of holomorphic

line bundles on the analytic space X with group multipli-
cation being the tensor product, and the inverse bundle
being the dual bundle. This group is called the Picard
group of X and often denoted by PicðXÞ. As seen above, the

99A fine sheaf over a paracompact Hausdorff space M is one
with “partitions of unity.” More precisely, for any open cover of
the space M, we can find a family of homomorphisms from the
sheaf to itself with sum 1 such that each homomorphism is 0
outside some element of the open cover (see, e.g., Def. 4.35
of [175] for more details).
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connecting homomorphism δ takes a holomorphic line
bundle L to its first Chern class c1ðL Þ, and the group
H2ðX;ZÞ is isomorphic to the group of topological com-
plex line bundles on X. So if H2ðX;OXÞ ≠ 0, we see that
not every complex line bundle gives rise to a holomorphic
line bundle. Similarly, if H1ðX;OXÞ ≠ 0, there can be
inequivalent holomorphic bundles associated to the same
complex line bundle. The kernel of the map δ is denoted by
Pic0ðXÞ and represents the subgroup of holomorphic line
bundles that are trivial topologically.
There is a holomorphic line bundle canonically asso-

ciated with every analytic space.
Definition A.12 (Canonical line bundle). Let X be a

reduced analytic space of dimension n. The nth exterior
power ⋀nT�

ð1;0ÞX is a holomorphic line bundle, called the

canonical line bundle and denoted by KX. The dual or
inverse line bundle K−1

X is called the anticanonical line
bundle.
When the underlying analytic space X is understood we

often write just K for KX. It is easy to see that.
Proposition A.3. The first Chern class of KX satisfies

c1ðKXÞ ¼ −c1ðXÞ.
Meromorphic functions and divisors. There are two

equivalent ways to describe divisors on smooth complex
manifolds. However, they are not equivalent for singular
analytic spaces. We discuss both of these notions here.
Definition A.13 (Weil divisor). A Weil divisor D on an

analytic space X is a locally finite formal linear combina-
tion of irreducible analytic hypersurfaces Hi

D ¼
X
i

aiHi with ai ∈Z;

where locally finite means that every point x∈X has a
neighborhood intersecting only finitely many of the His. D
is said to be effective if ai ≥ 0 for all i (not all ais equal to
zero). For a Weil divisor D ¼Pi aiHi, we set SuppðDÞ ≔
∪i Hi and call it the support of D. Additionally, the
coefficient ai is called the multiplicity of D along Hi
and will be denoted by multHi

ðDÞ; we set multHðDÞ ¼ 0

for every other irreducible divisorH ≠ Hi ∀ i. Finally, the
degree ofD is denoted by degðDÞ and is defined as the sum
of coefficients ai—i.e., degðDÞ ≔PimultHi

ðDÞ ¼Pi ai.
Under the formal sum operation, Weil divisors form a

group called the divisor group and are denoted by DivðXÞ.
It then follows, from Definition A.1 of hypersurfaces, that
a Weil divisor is described locally by the zero set of
holomorphic functions.
Now, let us recall that a meromorphic function on an

open set V ⊂ X is a ratio f=g of relatively prime holo-
morphic functions f and g on V. We will denote byMX the
sheaf of meromorphic functions on X and by M �

X the
subsheaf of not-identically-zero meromorphic functions.
We also denoted by O�

X the subsheaf of invertible elements

in OX and called it the sheaf of nowhere-vanishing
holomorphic functions. We have the following short,
exact sequence

0 → O�
X → M �

X → M �
X=O

�
X → 0: ðA4Þ

Then, we can define:
Definition A.14 (Cartier divisor). A Cartier divisor on X

is a global section of the sheaf M �
X=O

�
X—i.e., an element

of the group H0ðX;M �
X=O

�
XÞ. Any Cartier divisor can be

represented by giving an open covering V ≔ fVαgα∈A of X
and, for all α∈A, an element ϕα ≔ fα=gα ∈M �

XðVαÞ such
that ϕα ¼ uαβϕβ on any intersection Vα ∩ Vβ with
uαβ ∈O�

XðVα ∩ VβÞ. A Cartier divisor D on X is called
effective if it can be represented by the system
fðVα; fαÞgα∈A with all local equations fα ∈ΓðVα;OXÞ.
Additionally, two systems fðVα;ϕαÞgα∈A and
fðV 0

β;ϕ
0βÞgβ∈B represent the same Cartier divisor if and

only if on Vα ∩ V 0
β, ϕ

α and ϕ0β differ by a multiplicative
factor in O�

XðVα ∩ V 0
βÞ. The Abelian group of Cartier

divisors on X will denoted by H0ðX;M �
X=O

�
XÞ. If D1 ≔

fðV1
α;ϕα

1Þgα∈A and D2 ≔ fðV2
β;ϕ

β
2Þgβ∈B then D1 þD2 ¼

fðV1
α ∩ V2

β;ϕ
α
1ϕ

β
2Þgα∈A;β∈B.

Since on a smooth analytic space X (i.e., a complex
manifold) the local rings OX;x are unique factorization
domains, Weil divisors and Cartier divisors coincide: If we
cover X by open sets fVαgα∈A so that Hi is defined by fαi
on Vα, we have the meromorphic function ϕα ¼Qiðfαi Þai
which is determined by the expression of the Weil divisor
D ¼Pi aiHi. The systems fðVα;ϕαÞgα∈A would then
correspond to a Cartier divisor.
Theorem A.3. Let M be a smooth complex manifold.

Then there is an isomorphism

DivðMÞ ≃H0ðM;M �
M=O

�
MÞ:

On smooth complex manifolds M, such as the regular
locus of an analytic space, we shall often identify Weil
divisors and Cartier divisors by just referring to a divisor,
DivðMÞ. This isomorphism does not hold on singular
analytic spaces: Let X be a normal analytic space and
let Dreg ¼Pi aiH

reg
i be a Weil divisor defined on the

regular locus RegðXÞ. Since the singular set of X has
codimension at least 2, the Remmert-Stein extension
theorem (see, e.g., page 181 of [168]) ensures that Dreg

admits a unique extension to a Weil divisor D on X.
However, not every Cartier divisor on RegðXÞ extends to a
Cartier divisor on X. Thus, the group of Cartier divisors
H0ðX;M �

X=O
�
XÞ on a singular analytic space X is identified

with a subgroup of DivðXÞ.
Any global section ϕ∈ΓðX;M �

XÞ determines a princi-
pal Cartier divisor ðϕÞ ≔ fðX;ϕÞg by taking all local

CLASSICAL LIOUVILLE ACTION AND UNIFORMIZATION OF … PHYS. REV. D 110, 046018 (2024)

046018-75



equations equal to ϕ. Equivalently, if ϕ is a global
meromorphic function on X which can be written locally
as ϕ ¼ f=g, we may consider a Weil divisor ðϕÞ ¼
ordðfÞZf − ordðgÞZg, where Zf denotes the zero set of
the holomorphic function f and ordðfÞ denotes its order of
vanishing. Then, two divisors D and D0 on X are said to be
linearly equivalent, written D ∼D0, if D0 ¼ Dþ ðϕÞ,
where ðϕÞ denotes the principal divisor defined by the
global meromorphic function ϕ. We denote by ½D� the set of
all divisors on X that are linearly equivalent toD. It is called
the linear system of divisors defined by D. The common
intersection ∩D0 ∈ ½D� D0 is called the base locus of linear
system ½D�. We will also denote by ClðXÞ the divisor class
group of Weil divisors modulo linear equivalence, and by
CaClðXÞ the group of Cartier divisor classes (Cartier
divisors modulo principal divisors). On a singular analytic
space, the group CaClðXÞ is generally a subgroup of the
divisor class group ClðXÞ.
We now describe the relationship between line bundles

and divisors: From the short exact sequence (A4) one has

0 → H0ðM;M �
X=O

�
XÞ=H0ðM;MXÞ

→ H1ðM;O�
XÞ → H1ðM;M �

XÞ:
This says that every divisor D on M determines a
holomorphic line bundle L ðDÞ, and the line bundle
L ðDÞ is holomorphically trivial if and only if D is a
principal divisor—i.e., the divisor ðϕÞ of a global mero-
morphic function. The holomorphic line bundle L ðDÞ has
as the system of transition functions, the collection fuαβg of
nowhere vanishing holomorphic functions uαβ ∈O�

XðVα ∩
VβÞ defined uniquely in terms of Cartier divisors in A.14. IfP

i aiHi is the Weil divisor corresponding to the Cartier
divisors D, we may write L ðDÞ ¼ ⊗

i
L ai

i where L i ≔

L ðHiÞ and L ai
i denotes the tensor product of ai copies of

L i, for ai > 0, and the tensor product of −ai copies ofL �
i ,

for ai < 0. The quotient H0ðM;M �
X=O

�
XÞ=H0ðM;MXÞ is

precisely the Cartier divisor class group CaClðMÞ defined
before. Furthermore, H1ðM;M �

XÞ ¼ 0 if and only if every
holomorphic line bundle on M has a global meromorphic
section. In this case, we get an isomorphism between the
Cartier divisor class group and the Picard group. This
happens, for example, for smooth projective algebraic
varieties (such as Riemann surfaces).
Proposition A.4. Let X be a smooth projective algebraic

variety. Then, we have ClðXÞ ≃ CaClðXÞ ≃ PicðXÞ.
Finally, let us finish this subsection by pointing out that if

each prime divisor (i.e., irreducible hypersurface) Hi in a
Weil divisor D ¼Pi aiHi is compact, up to linear equiv-
alence, D defines a homology class ½D� ¼Pi ai½Hi� in
H2n−2ðM;ZÞ. Furthermore, it is known that if M is
compact, the homology class ½D�∈H2n−2ðM;ZÞ is the
Poincaré dual of the cohomology class c1ðL ðDÞÞ∈
H2ðM;ZÞ.

c. Finite group actions, quotient singularities,
and Galois coverings

Let Y ¼ ðjYj;OYÞ be a reduced normal100 complex
analytic space and let Γ be a finite subgroup of the group
AutðYÞ of analytic automorphisms of Y. Our main goal in
this subsection is to study the analytic quotient of Y by the
group Γ. More concretely, we want to construct a reduced
normal complex analytic space X ¼ ðjXj;OXÞ together
with a surjective analytic map ϖ∶ Y → X which is invari-
ant under Γ—i.e., ϖ ∘ γ ¼ ϖ for all γ ∈Γ.
Finite group actions and analytic quotients. Since any

analytic space Y has an underlying (Hausdorff) topological
space jYj, we start our study of analytic quotients with a
few definitions regarding the action of a topological group
on a topological space.
Definition A.15 (Group action). A topological group Γ

induces a (left) group action on a topological space jYj if
there is a map Γ × jYj → jYj such that
(1) For any y∈ jYj, ð1; yÞ ↦ y where 1∈Γ is the

identity element.
(2) For any y∈ jYj and any two group elements

γ1; γ2 ∈Γ, ðγ1γ2; yÞ ¼ ðγ1; ðγ2; yÞÞ.
We will usually write γ · y or even γðyÞ instead of ðγ; yÞ.
There is also a notion of right group action, which we will
avoid introducing.
Remark A.4. Throughout this paper, all groups are

assumed to act effectively, which means for every two
distinct elements in the group, there is some point in the
space at which they differ.
Given a group action Γ × jYj → jYj, we can associate to

every element γ ∈Γ a homeomorphism {γ∶ jYj → jYj
which is defined as {γðyÞ ¼ γ · y for all y∈ jYj. The map
γ ↦ {γ induces a group homomorphism {∶Γ → AutðjYjÞ
where AutðjYjÞ is the group of automorphisms of topo-
logical space jYj. Conversely, it is easy to see that any
group homomorphism {∶Γ → AutðjYjÞ yields a group
action Γ × jYj → jYj, by setting γ · y ¼ {γðyÞ. Observe that
a group action is effective if and only if {∶Γ → AutðjYjÞ is a
monomorphism.
Let us now run through some terms that are associated

with this group action: The isotropy subgroup, also called
the stabilizer subgroup, of any point y∈ jYj is defined as
the set Γy ≔ fγ ∈Γjγ · y ¼ yg and is a closed subgroup of
Γ. The action of Γ on jYj is said to be free if Γy ¼ f1g, for
all y∈ jYj. The set ΓðyÞ ≔ fγ · y∈ jYjjγ ∈Γg denotes the
orbit of point y. The action of Γ on jYj is called transitive if
ΓðyÞ ¼ jYj for any point y∈ jYj—i.e., if for any two points
y1; y2 ∈ jYj there is an element γ ∈Γ such that γ · y1 ¼ y2.
Moreover, we call an action regular if it is both transitive
and free. We always denote by jYj=Γ the set of all Γ orbits

100Let us remind that an analytic space is normal if every stalk
of the structure sheaf is a normal ring (meaning an integrally
closed integral domain). In a normal analytic space, the singular
locus has codimension of at least 2.
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in jYj.101 The orbit space jYj=Γ will be called the topo-
logical quotient of jYj by (the left action of) Γ and the
natural map jϖj∶jYj → jYj=Γ, sending y to its left orbit
ΓðyÞ, is called the corresponding quotient map. To make
the quotient map jϖj∶jYj → jYj=Γ ≔ jXj continuous for an
arbitrary topological Γ action on jYj, we have to endow jXj
with the quotient topology: W ⊂ jXj is open, if and only if
jϖj−1ðWÞ is open in jYj.
Remark A.5. For an open set V ⊂ jYj, the image γðVÞ is

also open for all γ ∈Γ. Hence,

jϖj−1ðjϖjðVÞÞ ¼ ∪
γ ∈Γ

γðVÞ

is an open set—i.e., jϖjðVÞ is open in jXj. In other words,
the quotient map jϖj∶jYj → jXj is an open map. In
particular, if jϖj is (locally) a bijective, it is (locally) a
homeomorphism.
Since analytic subvarieties (representing an analytic

variety) inherit a locally compact Hausdorff structure with
a countable basis from their ambient complex number
spaces, we shall assume that all topological spaces in the
present text have these properties, at least locally. However,
while patching local models together, we also want to avoid
the creation of new pathologies. Therefore, we always
assume jYj to be globally Hausdorff and to have a
countable basis; in particular, all topological spaces in this
paper are paracompact. Then, we have to put strong
conditions on the action of group Γ in order to make sure
that the topological quotient jYj=Γ preserves these proper-
ties (e.g., being Hausdorff). For this reason, we will always
assume that Γ acts properly discontinuously on jYj by
which we mean that for all compact sets V ⊂ jYj, the set�

γ ∈ΓjγðVÞ ∩ V ≠ ∅
�

is finite; this ensures that the topological quotient jYj=Γ is
indeed a Hausdorff space. Note that finite groups always
have this property for trivial reasons.
Remark A.6. Since the finite group Γ acts properly

discontinuously on jYj, there exist for all y∈ jYj (arbitrarily
small) neighborhoods Vy of y such that

γðVyÞ ¼ Vy for all γ ∈Γy;

γðVyÞ ∩ Vy ¼ ∅ for all γ ∈ΓnΓy:

It is then sufficient to construct the analytic quotient
of ðVy;OY jVy

Þ by Γy for all y∈Y (which is

obviously identical with the quotient of ∪γ ∈Γ γðVyÞ
by Γ).102

When Y carries more structure, we are often compelled
to equip the quotient Y=Γ with a comparable structure: Let
Y ¼ ðjYj;OYÞ be a reduced complex analytic space and let
Γ be a finite subgroup of AutðYÞ, the group of complex
analytic automorphisms of Y.103 The orbit space X ≔ Y=Γ
is then called the analytic quotient of Y by Γ and is
constructed as follows: Define topologically jXj ≔ jYj=Γ
and denote by jϖj∶jYj → jXj the corresponding (topologi-
cal) quotient map; according to Remark A.6, it is sufficient
to consider the case in which jYj is small with respect to
y∈ jYj and that Γ ¼ Γy is finite. Then, for W open in jXj,
the set jϖj−1ðWÞ is open and Γ invariant in jYj such that we
can form the invariant algebra

OXðWÞ ≔ ðOYðjϖj−1ðWÞÞÞΓ; ðA5Þ

where Γ acts in the obvious manner on the algebra
OYðjϖj−1ðjUjÞÞ of holomorphic functions. Hence, we have
furnished the topological space jXj with a ringed structure
ðjXj;OXÞ. In order to see that ðjXj;OXÞ is indeed a
(reduced) complex analytic space, we need the following
local identity:

OX;jϖjðyÞ ¼ OΓ
Y;y: ðA6Þ

In fact, since jϖj is finite and jϖj−1ðjϖjðyÞÞ ¼ fyg,
we have

OX;jϖjðyÞ ¼ lim
→
W∋jϖjðyÞ

H0ðW;OYÞ ¼ lim
→
W∋jϖjðyÞ

H0ðjϖj−1ðWÞ;OXÞΓ

¼ ½ lim
→
W∋jϖjðyÞ

H0ðjϖj−1ðWÞ;OXÞ�Γ ¼ OΓ
Y;y: ðA7Þ

More concretely, we have the following theorem
(Theorem 8.1 of [169]).
Theorem A.4 (Analytic quotient). If Γ acts properly

discontinuously on the reduced complex analytic space
Y, then there exists the analytic quotient X ¼ Y=Γ. The
analytic quotient map ϖ∶ Y → X is locally finite and
surjective and (near any point y) isomorphic to the quotient
map Y → Y=Γy, where Γy denotes the finite stabilizer
subgroup of Γ at y. In particular, the analytic algebra

OX;x can be identified with the invariant algebraO
Γy

Y;y for an
arbitrary point y∈ jϖj−1ðxÞ, and ϖ�

y∶ OX;x → OY;y is just

the finite inclusion O
Γy

Y;y ↪ OY;y.

101More concretely, we should denote the set of all left Γ orbits
in jYj by “ΓnjYj” instead of “jYj=Γ” (the later should be reserved
for set of all right Γ orbits). However, we will continue to use the
notation jYj=Γ with the understanding that it represents the
quotient of jYj by the left action of Γ.

102In fact, these spaces may be glued together (in a uniquely
determined manner) to a space which possesses the desired
property, if and only if the underlying topological space is
Hausdorff.

103As a general rule, AutðYÞ refers to the automorphisms of an
object Y in a category which will sometimes not be mentioned
explicitly, if in the given context there is no ambiguity.
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Remark A.7. If OY;y is reduced or an integral domain,

O
Γy

Y;y is obviously reduced or an integral domain for
arbitrary automorphism groups Γy. Since the inclusion of

C algebras O
Γy

Y;y ↪ OY;y is a finite homomorphism for
finite groups Γy, both algebras have the same dimension.
Hence, under our standard assumptions, the analytic
quotient X ¼ Y=Γ has in x ¼ ϖðyÞ the same dimension
as Y in y. We finally note that also normality will be
inherited from Y.
Quotient singularities. Anticipating the introduction of

complex orbifolds as objects which locally look like the
quotient of a complex manifold with a finite group action,
we turn to studying the singularities of an analytic quotient
of a complex manifold by a finite subgroup of its
holomorphic automorphisms. Such singularities are called
quotient singularities.
Definition A.16 (Quotient singularity). By a quotient

singularity, we understand a singular point x of an
analytic quotient X ¼ Y=Γ, where Y is a smooth analytic
space and Γ is a finite group action on Y by analytic
automorphisms.
Since a smooth analytic space is, in fact, a complex

analytic manifold, we will use M (instead of Y) to denote
such spaces. Following Cartan, one can then show that
quotient singularities are locally analytically isomorphic to
quotients of affine spaces by linear actions.104

Theorem A.5 (Cartan). Each quotient singularity is
isomorphic to a quotientCn=Γ, where Γ is a finite subgroup
of GLðn;CÞ.
Let M be a complex analytic manifold and let Γ be a

finite subgroup of its holomorphic automorphisms AutðMÞ.
We will denote the quotient singularity M=Γ by X and the
corresponding analytic quotient map by ϖ∶ M → X. Since
M is a complex manifold, it can be embedded in an ambient
complex number space Cn and the structure sheaf OM is
given by the restriction OCn jM; in particular, the stalks
OM;p for all points p∈M are isomorphic with the C
algebra OCn;p ¼ Cfz1;…; zng of convergent power series
at that point. Then, it follows from Theorem A.4 and the
above Definition A.16 that quotient singularities are com-
pletely determined by the normal invariant algebra

OX;x ¼ O
Γp

Cn;p

for any point p∈ jϖj−1ðxÞ. As the ring OX;x depends only
on the conjugacy class of Γp, the quotients for conjugate
groups are isomorphic. Hence, we consider only a repre-
sentative for each conjugacy class.
Definition A.17 (Reflection groups and small groups).

An element γ ∈AutðMÞ,M a connected complex manifold,
is called a reflection (or, perhaps more precisely, a

pseudoreflection) if it is of finite order and if the (analytic)
fixpoint set,

FixðγÞ ≔ fp∈Mjγ · p ¼ pg;

is of pure codimension-1 inM. A finite group Γ ⊂ AutðMÞ
is called a reflection group if it is generated by pseudore-
flections in AutðMÞ. Of course, an element γ of finite order
in GLðn;CÞ is a reflection if and only if it leaves a
hyperplane in Cn pointwise fixed; this is equivalent to γ
having the eigenvalues 1 (of multiplicity n − 1) and

e
2π
ffiffiffi
−1

p
m —an mth root of unity with m ≥ 2. On the other

hand, a finite subgroup Γ ⊂ GLðn;CÞ will be called small
if it contains no pseudoreflections.
Then, we have the following well-known result due to

Prill [176].
Theorem A.6 (Classification of quotients of complex

manifolds). Let Γ ⊂ GLðn;CÞ be a finite subgroup. The
following two statements are true:

(i) The analytic quotient Cn=Γ is smooth if and only if
Γ is a reflection group.

(ii) There exists a small group F such that Cn=Γ and
Cn=F are analytically isomorphic.

This, of course, is equivalent to the claim that the

invariant algebra O
Γp

Cn;p is isomorphic to the convergent
power series ring Cfz1;…; zng if and only if Γ ⊂ GLðn;CÞ
is a finite reflection group (see, e.g., Sec. 8.8 of [169] for
more details).
Proposition A.5 (Analytic spaces with at most quotient

singularities). An analytic space X ¼ ðjXj;OXÞ admitting
only quotient singularities has the following properties:

(i) X ¼ ðjXj;OXÞ is always a reduced normal ana-
lytic space.

(ii) The singular locus SingðXÞ is a closed reduced
analytic subspace of X and has complex codimen-
sion at least two in X.

(iii) The smooth locus RegðXÞ is a complex manifold
and a dense open subset of X.

Finally, since all finite subgroups of GLð1;CÞ ≅ C� are
reflection groups, we have the following important corol-
lary to the above theorem.
Corollary A.1. If M is a one-dimensional complex

analytic manifold (i.e., a Riemann surface) and Γ ⊂
AutðMÞ is a finite subgroup of its holomorphic auto-
morphisms, the analytic quotient M=Γ will always be a
smooth, complex analytic space—i.e., another Riemann
surface.
Ramified analytic coverings. As we saw in Theorem A.4,

an analytic quotient map ϖ∶ Y → X ≔ Y=Γ between two
complex analytic spaces Y and X is locally finite and
surjective. This motivates us to study such analytic map-
pings in more detail (see, e.g., Sec. 7.2 of [168]).
Definition A.18 (Analytic covering map). A finite sur-

jective analytic map ϖ∶ Y → X between irreducible ana-
lytic spaces is called an analytic covering. This means that

104This result can be applied to show that quotient singularities
are in fact algebraic in all dimensions.
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there exists a thin subset105 T ⊂ X, called the critical locus
of the covering, such that

(i) ϖ−1ðTÞ is thin in Y, and
(ii) the restriction ϖjYnϖ−1ðTÞ∶ Ynϖ−1ðTÞ → XnT is lo-

cally an analytic isomorphism.
The second condition means that for a sufficiently small
open neighborhood Wx ⊂ XnT of any point x∈XnT, the
inverse image ϖ−1ðWxÞ consists of a finite number of
components, called sheets of ϖ, such that the restriction of
ϖ to each component is a complex analytic isomorphism
between that component and Wx.
Remark A.8. We will always assume that our analytic

spaces are irreducible so that “analytic covering” and
“finite analytic surjection” can be regarded as synonyms.
Ifϖ∶ Y → X is an analytic covering, the restriction ofϖ

to the complement of critical locus is necessarily a finite-
sheeted covering map; the number of sheets of this
covering map will be called the (total) degree of the
analytic covering ϖ and will be denoted by degðϖÞ.
Additionally, for any point y∈Y, there are arbitrarily small
open neighborhoods Vy ⊂ Y of y such that the restriction
ϖjVy

is also an analytic covering (see, e.g., Sec. 5 of [167]).
Since the degrees of these local analytic coverings can only
decrease as the neighborhoods Vy shrink to the point y, it is
evident that the degree is the same for all sufficiently small
such neighborhoods; this common degree will be called the
ramification index (or the local degree or multiplicity)
of the mapping ϖ at the point y, and will be denoted
by degϖðyÞ.
Remark A.9. Note that if ϖ∶ Y!d∶1X is an analytic

covering of total degree d, then selecting any point
x∈X and letting fyigi∈ I ≔ ϖ−1ðxÞ ⊂ Y be the collection
of distinct points in the preimage of x, it follows
that

P
i∈ I degϖðyiÞ ¼ d.

For any point y ∉ ϖ−1ðTÞ, it is clear that degϖðyÞ ¼ 1.
However, in general, there may very well be points
y0 ∈ϖ−1ðTÞ for which degϖðy0Þ ¼ 1. This is because not
all of the points of ϖ−1ðϖðy0ÞÞ need necessarily have the
same ramification index, even when the critical locus is
chosen to be as small as possible. Hence, one usually
introduces the subset

Rϖ ≔
�
y∈YjdegϖðyÞ > 1

�
of ϖ−1ðTÞ which will be called the ramification locus of
the analytic covering ϖ∶ Y → X and is a closed analytic
subspace of Y. The set Bϖ ≔ ϖðRϖÞ is called the branch-
ing locus of ϖ and is a closed analytic subspace of X; note
that Bϖ is clearly a subset of the critical locus T. An

analytic coveringϖ∶ Y → X is said to branched at most at
T if the branch locus Bϖ is contained in T. In addition, the
analytic covering ϖ will be called unbranched, if Bϖ is
empty. Observe that when X is singular, Rϖ and Bϖ can be
of codimension > 1, even when ϖ is a nontrivial branched
covering. However, when X is a smooth, complex analytic
space, Rϖ will be a hypersurface in Y, and Bϖ will be a
hypersurface in X.
Now, let ϖ∶ Y → X be an analytic covering of normal

complex spaces. We define an automorphism of this
analytic covering as a complex analytic automorphism
f∶ Y → Y with the property that the diagram

ðA8Þ

commutes—i.e., ϖ ∘ f ¼ ϖ. The group

AutðϖÞ ≔ �f∈AutðYÞ��ϖ ∘ f ¼ ϖ
� ðA9Þ

of all such automorphisms of ϖ∶ Y → X is called the
group of covering transformations or deck transforma-
tions. An analytic covering ϖ∶ Y → X will be called a
Galois covering (or, in topologists language, regular
covering) if AutðϖÞ acts transitively on every fiber of
ϖ; the group AutðϖÞ itself will be called the Galois group
of ϖ and will be denoted by GalðY=XÞ or GalðϖÞ. In this
case, the analytic quotient Y=GalðϖÞ is complex analyti-
cally equivalent to X and we get the following corollary of
Theorem A.4.
Corollary A.2. Every analytic quotient map ϖ∶ Y →

X ≔ Y=Γ is locally a Galois covering map.
When the branched analytic covering ϖ∶ Y → X is

Galois, the total degree of ϖ is given by the order of its
Galois group—i.e., degðϖÞ ¼ #GalðϖÞ. Consequently,
using the fact that the restriction of ϖ to any (sufficiently
small) neighborhood Vy of a point y is again a branched
Galois covering, the ramification index of each point y∈Y
will be equal to the order of its stabilizer subgroup
GalðϖÞy ≔ fγ ∈GalðϖÞjγ · y ¼ yg. Additionally, since
for any point y∈Y the stabilizer subgroup of different
points in its GalðϖÞ orbit ϖ−1ðϖðyÞÞ vary only up to the
conjugation by elements of GalðϖÞ, one can always choose
the critical locus T such that

Rϖ ≔
�
y∈Y

��#GalðϖÞy > 1
� ¼ ϖ−1ðTÞ and

Bϖ ≔ ϖðRϖÞ ¼ T

for any branched Galois covering ϖ∶ Y → X. In this case,
we say that Galois covering ϖ∶ Y → X is branched along
Bϖ . Moreover, since for an arbitrary lift y of any point
x∈X the ramification index degϖðyÞ ¼ #GalðϖÞy is

105A subset T ⊂ X is called thin if it has the property that each
point has a neighborhood on which some nonzero holomorphic
function vanishes. Since the set on which a holomorphic function
vanishes is closed and has an empty interior, a thin set is nowhere
dense, and the closure of a thin set is also thin.
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independent of our choice of y∈ϖ−1ðxÞ, we can define the
branching index ofϖ at any point x∈X to be given by this
common value. More generally, one defines a branching
function for ϖ∶ Y → X on X as

νϖ∶ X ∋ x → #GalðϖÞy ∈N;

where y is any lift of x—i.e., y∈ϖ−1ðxÞ.
We are finally ready to introduce notions of ramification

divisor and branch divisor for a ramified Galois covering
ϖ∶ Y → X between connected normal analytic spaces: Let
us start by defining

X0≔
�
x∈RegðXÞ��ϖ−1ðxÞ⊂RegðYÞ� and Y 0≔ϖ−1ðX0Þ

such that Y 0 and X0 are open analytic subsets of Y and X,
respectively, and their complements have codimension at
least 2. Then, the restriction ϖjY 0∶ Y 0 → X0 is a Galois
covering map between complex analytic manifolds. Next,
let us pick local coordinates z1;…; zn on a neighborhood
Vy of a point y∈Y 0 and let w1;…; wn be the coordinates
around its image ϖðyÞ∈X0. Then, wi ¼ ϖiðz1;…; znÞ
gives the local expression of ϖ near the point y and the set

R0 ≔


y∈Y 0

���� det�∂ϖi

∂zj
ðyÞ
�

¼ 0

�
can be viewed as the ramification locus of the restriction
ϖjY 0—i.e., set of all points y∈Y 0 around whichϖjVy

is not
a biholomorphism. Notice that since both Y 0 and X0 are by
definition smooth, R0 is necessarily a hypersurface in Y 0.
Since the complement of Y 0 has codimension at least 2, the
Remmert-Stein extension theorem (see, e.g., page 181 of
[168]) ensures that the topological closure of this set will be
a hypersurface Rϖ in Y. Additionally, since the Galois
covering ϖ is finite, the set Bϖ ≔ ϖðRϖÞ will be a
hypersurface in X. We will denote the irreducible compo-
nents of the hypersurface Rϖ ⊂ Y by Ri; for each
irreducible hypersurface Ri ⊂ Y, the image Bi ≔ ϖðRiÞ
is also an irreducible hypersurface in X such that B¼⋃iBi.
Remark A.10. Observe that if Galois covering ϖ∶Y→X

is ramified only along a singular part of Y, the sets Rϖ

and Bϖ as defined above will be empty. Since we are
assuming that analytic spaces Y and X are normal (i.e., their
singular locus has codimension ≥ 2), one concludes that
Rϖ;Bϖ ≠ ∅ if and only if GalðϖÞ contains at least one
pseudoreflection.
Now, let us consider the sets

Y 00≔Y 0n�SingðRÞ∪ϖ−1ðSingðBÞÞ� and X00≔ϖðY 00Þ:

Both subsets are open and have complements of codimen-
sion at least 2 in Y and X, respectively. Note that if y∈Y 00
either y ∉ R or y belongs to one and only one irreducible
componentRi. In the first case, we say thatϖ is unramified

at y; thenϖ is a local biholomorphism at y. In the latter case
(i.e., when y has ramification index > 1), let Ri be the
unique irreducible component of R passing through y.
Then, there are local coordinates z1;…; zn on V ⊂ Y 00 and
w1;…; wn on W ⊂ X00 centered at y and x ¼ ϖðyÞ respec-
tively, such that locally Ri ∩ V ¼ fz1 ¼ 0g, Bi ∩ W ¼
fw1 ¼ 0g and

ϖjV∶ ðz1;…; znÞ ↦ ðw1 ¼ zm1 ; w2 ¼ z2;…; wn ¼ znÞ;
ðA10Þ

where m∈N>1 ≔ Nnf1g denotes the ramification index
of ϖ at point y—i.e., m ¼ degϖðyÞ. For any irreducible
component Ri, the ramification index degϖðyÞ ¼
#GalðϖÞy will be the same for all points y∈Ri ∩ Y 00; this
common value is denoted by degϖðRiÞ and will be called
the ramification index of ϖ along Ri. This enables us to
define the ramification divisor of a branched Galois
covering ϖ as the formal linear combination

Rϖ ≔
X
i

ðmi − 1ÞRi; ðA11Þ

where mi ¼ degϖðRiÞ are the ramification indices (or
multiplicities) of ϖ along irreducible hypersurfaces (or
prime divisors) Ri.
Remark A.11. The ramification divisor R defined in this

way is an effective Weil divisor on Y. As we discussed
earlier, the notions of Weil and Cartier divisors coincide
only on smooth analytic spaces (e.g., on Y 0). However,
when Y only contains quotient singularities, every Weil
divisor is Q Cartier by which we mean some multiple of it
is a Cartier divisor; such normal reduced analytic spaces are
said to be Q factorial (see [177] for more details).
When the ramified analytic covering ϖ∶ Y → X is

Galois, it is possible to define the branch divisor on X
as follows: As mentioned before, for each prime divisorRi
on Y, the image Bi ¼ ϖðRiÞ will be a prime divisor
on X. If νϖ∶ X → N denotes the branching function
associated to the Galois covering ϖ, the restriction
νϖjBi∩X00∶ Bi ∩ X00 → N will be a constant function for
each prime divisor Bi; this constant value will be denoted
by νϖðBiÞ and is called the branching index ofϖ along Bi.
Then, we can define the branch divisor of Galois covering
ϖ as the effective Q divisor

Bϖ ≔
X
i

�
1 −

1

νϖðBiÞ
�
Bi:

Here, by aQ divisor, we simply mean a formal finite sum of
irreducible hypersurfaces with coefficients inQ (i.e., a Weil
divisor with rational coefficients). Note that with this
convention, Rϖ ¼ ϖ�ðBϖÞ, that is, the ramification divi-
sor is the pullback of the branch divisor.
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Let us finish our discussion of analytic coverings by
focusing on the very important example of branched Galois
coveringsϖ∶ Y → X of one-dimensional complex analytic
spaces—i.e., when both analytic spaces X and Y are
Riemann surfaces. In that case, any nonconstant map
between compact Riemann surfaces is a finite branched
covering. Let f∶ Y → X be such a nonconstant, holomor-
phic map between compact Riemann surfaces Y and X. For
every y∈Y there exist charts for fðyÞ such that the local
expression of the branched covering f is of the form
z ↦ zm, where m ¼ degfðyÞ is the ramification index of f
at point y, z is the local coordinate on the covering Riemann
surface Y, and w ¼ zm is the local coordinate on the base
Riemann surface X (see Fig. 2).

d. Complex analytic orbifolds

Let XO be an analytic space of dimension n admitting
only quotient singularities. An orbifold chart or local
uniformizing system on an open subset U ⊂ XO is a tuple
ðU; Ũ;Γ; fÞ where connected and open set Ũ ⊂ Cn is
biholomorphic to the open unit ball Bn, Γ ⊂ GLðn;CÞ is
a finite group acting effectively106 on Ũ as holomorphic
automorphisms, and the ramified covering f∶ Ũ → U,
called a folding map, is a Γ-invariant map which induces

a biholomorphism Ũ=Γ→
≅
U. The pair ðŨ;ΓÞ is called a

local model for U.
Definition A.19 (Analytic orbifold atlas). An analytic

orbifold atlas U on an analytic space X (admitting only

quotient singularities) is a collection fðUa; Ũa;Γa; faÞga∈A
charts on this analytic space such that the following
conditions are satisfied:

(i) fUaga∈A is an open cover of the underlying com-
plex space XO.

(ii) If ðUa; Ũa;Γa; faÞ and ðUb; Ũb;Γb; fbÞ for a; b∈A
are two orbifold charts with Ua ∩ Ub ≠ ∅, then
for each x∈Ua ∩ Ub there exists an orbifold
chart ðUc; Ũc;Γc; fcÞ∈U that contains x—i.e.,
x∈Uc ⊆ Ua ∩ Ub.

(iii) If ðUa; Ũa;Γa; faÞ and ðUb; Ũb;Γb; fbÞ for a; b∈A
are two orbifold charts with Ua ⊂ Ub, then there
exists a holomorphic embedding,

ηab∶ Ũa ↪ Ũb

called the change of charts (or embedding or
gluing map), such that the folding maps satisfy
fa ¼ fb ∘ ηab. Moreover, for any three orbifold charts
labeled by a; b; c∈A and having the property
Ua ⊂ Ub ⊂ Uc, the corresponding embeddings
should satisfy ηac ¼ ηab ∘ ηbc.

Remark A.12. The choice of embedding ηab∶ Ũa ↪ Ũb

is unique only up to the action of Γb: Let ðUa; Ũa;Γa; faÞ
and ðUb; Ũb;Γb; fbÞ be two orbifold charts on X with
Ua ⊂ Ub. If ηab; η0ab∶ Ũa ↪ Ũb are two embeddings, then
there exists a unique γ ∈Γb such that η0ab ¼ γ ∘ ηab. As a
result, an embedding ηab∶ Ũa ↪ Ũb induces a monomor-
phism107 ϒab∶ Γa → Γb which is given by

ηab ∘ γ ¼ ϒabðγÞ ∘ ηab; ðA12Þ

that is ηabðγx̃Þ ¼ ϒabðγÞηabðx̃Þ for all γ ∈Γa and x̃∈ Ũa.
An analytic orbifold atlas U is said to be a refinement of

another analytic orbifold atlas V if there exists an embed-
ding of every chart in U into some chart of V. This enables
us to define an equivalence relation between orbifold
atlases where two orbifold atlases are said to be equivalent
if they have a common refinement. Then,
Definition A.20 (Complex analytic orbifolds). A complex

analytic orbifold O of dimension n is a pair ðXO; ½U�Þ
where XO is the underlying (complex) analytic space with
at most finite quotient singularities and ½U� is an equiv-
alence class of analytic orbifold atlases on XO. A one-
dimensional complex analytic orbifold will be called an
orbifold Riemann surface or a Riemann orbisurface.
Remark A.13. As in the manifold case, an orbifold atlas is

always contained in a unique maximal one and two orbifold
atlases are equivalent if, and only if, they are contained in
the same maximal atlas. Therefore, we can equivalently
define an analytic orbifold structure on a complex analytic

FIG. 2. A model branched covering.

106The condition that local uniformizing groups act effectively
is not always imposed in the literature, and there are occasions
when this requirement is too restrictive. However, since we are
exclusively concerned with effective orbifolds or reduced orbi-
folds in this paper, it is convenient to incorporate this condition
as part of our definition.

107We use the term “monomorphism” to mean an injective
group homomorphism.
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space XO (with at most finite quotient singularities) as the
datum of a maximal (analytic) orbifold atlas on this space.
Remark A.14. Let O ¼ ðXO; ½U�Þ be a complex analytic

orbifold where XO is the underlying complex analytic
space. Remember that XO can be characterized as a
C-ringed space ðjXOj;OXÞ where jXOj is a Hausdorff
paracompact topological space; we will denote the topo-
logical space jXOj simply by jOj. Then, one can define O
alternatively as a pair ðjOj; ½U �Þ where the charts of U are
now given by a quadruple ðjUj; Ũ;Γ; jfjÞ. Here, jUj ⊂ jOj
denotes the underlying topological space of each open
analytic subset U ⊂ XO and jfj denotes the continuous map
associated with the Γ-invariant analytic map f ¼ ðjfj; f�Þ
that induces a homeomorphism between jUj and Ũ=Γ as
topological spaces; as evident from our notation, the local
models ðŨ;ΓÞ are defined as before. This alternative
definition of complex orbifolds is more common among
topologists and closely resembles the definition of a smooth
orbifold (where the only differences are in local models and
embeddings).
Local groups and canonical stratification. Consider a

point x∈XO and a local chart ðUa; Ũa;Γa; faÞ∈U con-
taining x. In addition, let us choose x̃∈ Ũa to be a particular
preimage of x and denote by Γx̃ the subgroup of Γa that
fixes x̃. As our choice of x̃∈ f−1a ðxÞ varies, the stabilizer
subgroup of x̃ varies only up to conjugation by the elements
of Γa. Similarly, as our choice ofUi containing x varies, the
stabilizer varies only up to conjugation by a transition map.
Therefore, we can define the isotropy group or the local
group Γx to be the conjugacy class of the stabilizer
subgroup Γx̃ ⊂ Γa for some x̃∈ f−1a ðxÞ. It is then clear that
local group Γx for a point x∈XO is independent of both the
chart, Ua, and the lift x̃∈ Ũa.
Remark A.15. The main observation we would like to

make about this definition is that an orbifold chart
ðU; Ũ;Γ; fÞ contains more data than simply the analytic
quotient Ũ=Γ. In particular, an orbifold chart “remembers”
the pseudoreflections contained in a local uniformizing
group Γi and their corresponding fixed-point sets.
This allows us to define the singular points of O as

points whose local isotropy group Γx ≠ f1g; those points
with Γx ¼ f1g are called regular points of O. The set
fx∈XOjΓx ≠ f1gg of singular points of O is called
the singular locus or the singular set of O and will be
denoted by SingðOÞ. It follows from Theorem A.6 (or
Remark A.15) that if any local uniformizing group contains
a pseudoreflection, the orbifold singular set SingðOÞ will
be bigger than the singular set of the underlying analytic
space SingðXOÞ and that SingðOÞ ¼ SingðXOÞ if and only
if none of the local uniformizing groups contain a pseu-
doreflection. The subset of all orbifold regular points,
denoted by Xreg

O , is an open dense subset of XO; in
particular, since SingðXOÞ ⊆ SingðOÞ, the orbifold regular
locus Xreg

O ≔ XOnSingðOÞ will always be a complex

submanifold of RegðXOÞ ¼ XOnSingðXOÞ. The local isot-
ropy groups give a canonical stratification of XO by stating
that two points lie in the same stratum SingjðOÞ if their
local groups are conjugate. Thus, we get a decomposition
of XO as

XO¼Xreg
O ⨆j SingjðOÞ; SingðOÞ¼⨆j SingjðOÞ; ðA13Þ

where the union is taken over all conjugacy classes. The
dense open subset of regular points, Xreg

O , is sometimes
called the principal stratum and corresponds to the trivial
conjugacy class.
Analytic orbifold maps and orbifold covering. The

standard notion of structure preserving maps between
complex analytic orbifolds can be given in an analogous
manner to complex manifolds (see [146,147]). However,
it was not realized until recently (see, e.g., [178,179])
that certain problems arise with the usual definition of an
orbifold map; namely, as we will see later, this definition
does not, in general, induce morphisms of sheaves or
V-bundles. This led to the introduction of the notion of
“good maps” in [178].
Definition A.21 (Analytic orbifold maps). Let O ¼

ðXO;UÞ and O0 ¼ ðX0
O;U

0Þ be two complex analytic
orbifolds (not necessarily of the same dimension). A
map f∶ O → O0 is said to be an analytic orbifold map
(or a holomorphic orbifold map) if f gives an analytic
mapping between the underlying complex analytic
spaces, denoted by ðjfj; f�Þ∶ðjXOj;OXÞ → ðjX0

Oj;OX0 Þ,
which admits a local lift at each point x∈XO: For
every pair of orbifold charts ðUa; Ũa;Γa; faÞ∈U and
ðU0

a; Ũ0
a;Γ0

a; f 0aÞ∈U 0 containing an arbitrary point x∈X
and its image fðxÞ∈X0, respectively, with fðUaÞ ⊂ U0

a, the
orbifold map f induces a group homomorphism between
local isotropy groups fx∶ Γx → Γ0

fðxÞ and a holomorphic

f̄x-equivariant map f̃x∶ Ũa → Ũ0
a such that the diagram

ðA14Þ

commutes (see Fig. 3). Moreover, a holomorphic orbifold
map forb is said to be good if it is compatible with the
embeddings: If ηab∶ Ũa ↪ Ũb is an embedding on O, then
there is an embedding f̂ðηabÞ∶Ũ0

a ↪ Ũ0
b on O0, such that

(i) f̃Ũb
∘ ηab ¼ f̂ðηabÞ ∘ f̃Ũa

, and
(ii) f̂ðηbc ∘ ηabÞ ¼ f̂ðηbcÞ ∘ f̂ðηabÞ.

Note that conditions (i) and (ii) imply that the composition
of good orbifold maps is again a good orbifold map.
Finally, a holomorphic orbifold map forb∶ O → O0 is
called an analytic orbifold automorphism (or an orbifold
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biholomorphism) if it admits an analytic inverse. In this
case, we clearly have Γx ≅ Γ0

fðxÞ for all x∈X ≅ X0—i.e.,

biholomorphisms must preserve the orbifold stratification.
Remark A.16. Considering C or Ĉ as orbifolds with

an empty singular set, one can define holomorphic/
meromorphic orbifold functions on a complex orbifold O
as holomorphic orbifold maps forb∶ O → C or Ĉ (see
Remark A.24).
Now, we can easily define an orbifold Galois covering

using the above definitions.
Definition A.22 (Orbifold Galois covering). An orbifold

Galois covering ϖorb∶ Õ ¼ ðX̃;VÞ → O ¼ ðX;UÞ is an
analytic orbifold map such that ϖ∶ X̃ → X is a Galois
analytic covering and GalðϖÞ ⊂ AutðOÞ.108
In other words, the holomorphic orbifold map

ϖorb∶ Õ → O is a projection map such that each point
x∈XO has a neighborhood U ≅ Ũ=Γ for which connected
components Vi of ϖ−1ðUÞ are analytically isomorphic to
Ũ=Γi where Γi ⊂ Γ. Therefore, the restriction of projection
mapϖ to each sheet Vi, i.e.,ϖjVi

∶ Vi → U, corresponds to
the natural projection Ũ=Γi → Ũ=Γ (see Fig. 4). By the
Galois group and degree of an orbifold Galois covering, we
mean its Galois group and degree as an analytic cover.
Finally, in cases that we need to keep track of base points
on covering and base spaces, we will use the notation

ðÕ; x̃0Þ!ϖorbðO; x0Þ to refer to an orbifold covering for
which ϖðx̃0Þ ¼ x0.

Global quotient orbifolds. As pointed out in
Remark A.12, the choice of embedding ηab∶ Ũa ↪ Ũb
is in general not unique; so, the charts do not have to satisfy
a cocycle condition upstairs, though of course they do
downstairs where the open sets Ua glue to give the analytic
space XO (see the discussion around Lemma A.1). That is,
the orbifold charts need not glue since an orbifold need not
be a global quotient by a finite group.
However, the most natural examples of complex orbi-

folds appear precisely when we take the quotient space
M=Γ of a complex manifold M by a finite subgroup
Γ ⊂ AutðMÞ of its analytic automorphisms.
Proposition A.6. If M is a complex manifold and Γ is a

group acting holomorphically, effectively, and properly
discontinuously on M, the quotient M=Γ has the structure
of a complex orbifold. Such orbifolds are called “(effective)
global quotient orbifolds” and we will denote them by
½M=Γ� in order to emphasize their orbifold structure.109

Proof. For any x∈M=Γ, choose a point x̃∈M that
projects onto x and let Γx̃ ≔ fγ ∈Γjγx̃ ¼ x̃g denote the
stabilizer subgroup (or isotropy subgroup) of x̃. Since the
action of Γ on M is properly discontinuous, according to
Remark A.6, there exists a (small enough) neighborhood
Ũx̃ ⊂ M containing x̃ such that γðŨx̃Þ ¼ Ũx̃ for all γ ∈Γx̃

and Ũx̃ ∩ γðŨx̃Þ ¼ ∅ for all elements of Γ not in Γx̃. Then,
the analytic quotient map ϖ∶ M → M=Γ will be a
(branched) Galois covering which induces a biholomor-
phism between an open analytic subset U ⊂ M=Γ contain-
ing x and Ũx̃=Γx̃. Then, the quadruple ðUx; Ũx̃;Γx̃;ϖjŨx̃

Þ
will be an orbifold chart onM=Γ containing the point x. By
augmenting some cover fUxg of M=Γ via adjoining finite
intersections,110 one obtains a natural orbifold structure on
M=Γ induced by the atlas U ¼ fðUa; Ũa;Γa;ϖjŨa

Þga∈A.
The corresponding embeddings ηab∶ Ũa ↪ Ũb are induced
by transition functions on the complex manifoldM and are
thus guaranteed to be holomorphic; this ensures that the
quotient orbifold ½M=Γ� ¼ ðM=Γ;UÞ inherits a complex
structure that is uniquely determined by the complex
structure of M and the group Γ. ▪
Since any complex manifold can also be regarded as a

complex orbifold for which all of the local uniformizing
groups Γi are given by the trivial group f1g, the analytic
Galois covering map ϖ∶ M → XO ≔ M=Γ is naturally
promoted to an orbifold Galois covering map ϖorb∶ M →
O ≔ ½M=Γ� for which Γ is the group of covering

FIG. 3. A local lift corresponding to an orbifold map. Every
holomorphic orbifold map between two complex orbifolds
forb∶ O → O0 consists of an analytic map f ¼ ðjfj; f�Þ between
the underlying analytic spaces together with a holomorphic
local lift which is given by a group homomorphism f̄x∶ Γx →
ΓfðxÞ between local isotropy groups at each point x∈O and its
corresponding image fðxÞ∈O0 and a holomorphic f̄x-equivariant
map f̃Ũ∶ Ũ → Ũ0 between local uniformizing neighborhoods.

108Remember that for any orbifold O ¼ ðXO;UÞ, we have
AutðOÞ ⊂ AutðXOÞ.

109More concretely, one must use the stack quotient to define
the global quotient orbifolds. This is due to the fact that, as we
have already seen, the analytic quotient defined in Theorem A.4
is unable to produce the codimension-1 orbifold singularities
created by the action of pseudoreflections contained in Γ.
Therefore, with this notation, the analytic quotient M=Γ plays
the role of the underlying analytic space of the complex orbifold
½M=Γ�.

110See Chap. 14 of [148] for more details.
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transformations—i.e., GalðϖorbÞ ≅ Γ. More generally, if Γ
is a discrete subgroup of holomorphic automorphisms of a
complex manifold M that acts effectively and properly
discontinuously on it and if Γ0 is a subgroup of Γ, i.e.,
Γ0⊂Γ⊂AutðMÞ, the holomorphic orbifold map ½M=Γ0� →
½M=Γ� will be an orbifold Galois covering.
Remark A.17. When the manifold M in the above

construction of ½M=Γ� is simply connected, M plays the
role of universal covering space and Γ plays the role of
orbifold fundamental group.
Because of many nice features that global quotient

orbifolds share with ordinary manifolds, they were given
the name “good orbifolds” by Thurston (Chapter 14
of [148]).
Definition A.23 (Good orbifolds). A complex orbifold O

is called good or developable if it is analytically isomorphic
to a global quotient orbifold ½M=Γ� in an orbifold sense
(Γ is discrete but not necessarily finite). When the group Γ
is also finite, the orbifold O ≅ ½M=Γ� will be called very
good. In other words, a (complex) orbifold O is good
(respectively, very good) if and only if O has a covering
(respectively, finite covering) that is a (complex) manifold.
Otherwise, we have a bad orbifold.
Complex analytic orbifolds as log pairs. When local

isotropy groups contain pseudoreflections, each reflection
fixes a hyperplane in Ũi, and the folding map fi∶ Ũi → Ui

will have a ramification divisor Ri on Ũi and a branch
divisor Bi on Ui. Let Bij denote the irreducible compo-
nents of the branch divisorBi and let mij be the branching
index (or the multiplicity) of fi along each prime divisor Bij

such that Bi ¼
P

jð1 − 1
mij
ÞBij. Then, the compatibility

condition between orbifold charts means that there are
global prime divisors Bj ⊂ XO and ramification indicesmj

such that Bij ¼ Ui ∩ Bj and mij ¼ mj (after suitable
reindexing). Therefore, it will be convenient to codify
the above data by a single effective Q divisor,

D ≔
X

Bj⊂SingðOÞ

�
1 −

1

mj

�
Bj; ðA15Þ

called the branch divisor of O. It turns out that a complex
orbifold O ¼ ðXO;UÞ can be uniquely determined by the
pair ðXO;DÞ, called a log pair: An orbifold atlas U ¼
fðUa; Ũa;Γa; faÞga∈A on a normal analytic space XO is
said to be compatible with D if every branch divisor Bi
associated with the Galois coverings fi coincides with
D ∩ Ui. Therefore, we can alternatively characterize
(although slightly inaccurately) a complex orbifold O as
being defined by the pair ðXO;DÞ. This point of view was
taken in [163].111

As in Definition A.13, let us define the multiplicity
multDðHÞ of D along any irreducible divisor H ⊂ XO as
the rational number 1 − 1

mj
, if H ¼ Bj for any j, and as 0 if

H ≠ Bj for all j. Then, we put

degDðHÞ ≔ 1

1 −multDðHÞ ; ðA16Þ

and call it the branching index of D along H. Observe that

degD∩Ui
ðBijÞ ¼ degfiðBijÞ ¼ mij;

and the branching index of D along any H ≠ Bj ∀ j is
equal to 1. Then, Definition A.21 of analytic orbifold maps
is equivalent to the following one.
Definition A.24 (Analytic orbifold maps between log

pairs). Let ðY;DYÞ and ðX;DXÞ be two complex orbifolds.
A finite analytic map f∶ Y → X between the underlying
analytic spaces is called an orbifold analytic map
forb∶ ðY;DYÞ → ðX;DXÞ if

degDX
ðfðHÞÞ��degDY

ðHÞ · degfðHÞ;

for every irreducible hypersurface H ⊂ Y.
The notions of orbifold biholomorphism and orbifold

Galois covering can similarly be defined in this language.

FIG. 4. Orbifold covering. The part on the left compares the covering maps for manifolds and orbifolds. The part on the right shows
how the local groups of an orbifold and its covering orbifold are related.

111Traditional approaches studied either the singularities of a
normal analytic space X, or the singularities of a divisor D on a
smooth analytic space, but did not concentrate on problems that
occur when both X and D are singular.
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In particular, a branched Galois covering ϖ∶ Y → X will
be called an orbifold Galois covering ϖorb∶ ðY;DYÞ →
ðX;DXÞ if

degDX
ðϖðHÞÞ ¼ degDY

ðHÞ · degϖðHÞ;

for every irreducible hypersurface H ⊂ Y.

2. Orbifold Riemann surfaces

Now that we have seen the basic definitions for the case
of an n-dimensional complex orbifold let us specialize to
the case of n ¼ 1 where everything greatly simplifies (see,
e.g., Appendix E of [164,180] for more details). The most
significant simplification comes from the fact that, by
Corollary A.1, every one-dimensional complex analytic
space is smooth. In other words, the underlying analytic
space of an orbifold Riemann surface is an ordinary (i.e.,
smooth) Riemann surface. Moreover, the orbifold charts on
a Riemann surface can always be chosen to have the form
ðD;D;Zmi

; fiÞ, where D ⊂ C is the unit disk, Zmi
denotes

the cyclic group of order mi ≥ 2 which acts on D in the
standard way as themith roots of unity, and the folding map
fi∶ D → D=Zmi

≅ D is a branched Galois covering of the
form z ↦ zmi (see Fig. 2).
Additionally, observe that (Q) divisors on Riemann

surfaces are nothing but a formal linear combination of
points with coefficients in Q or Z.112 Therefore, we have
the following.
Definition A.25 (Orbifold Riemann surface). A closed

orbifold Riemann surface O is a pair ðXO;DÞ consisting
of a closed Riemann surface XO, called the underlying
Riemann surface structure of O, together with a branch
divisor D ¼Pxi ∈SingðOÞ ð1 − 1

mi
Þxi, where xi ∈SingðOÞ

are pairwise distinct marked points on XO, called the
conical points, and each integer mi ≥ 2 is the correspond-
ing branching index (or the order of isotropy) of the conical
point xi.
Remark A.18. The above definition of a closed

Riemann orbisurface can be generalized to include
punctured orbifold Riemann surfaces as well. Formally,
cusps can be viewed as a limit m → ∞ (or equivalently
cone angle 2π=m → 0) of a conical singularity on a
Riemann orbisurface (see Fig. 5). However, this limit
is singular and cannot be blindly taken from the formulas
for conical singularities.
The above definition makes it clear that the whole theory

of orbifold Riemann surfaces can be phrased in terms of
Riemann surfaces with signature, where the signature is the
map XO → N ∪ f∞g taking a point to its order.
Definition A.26 (Riemann surfaces with signature). By a

Riemann surface with signature we mean a Riemann

surface X of finite type113 ðg; nÞ together with an assign-
ment of a branching index mi to each marked point;
these branching indices mi are either integers ≥ 2 or the
symbol ∞. The signature of O is the tuple ðg;m1;…; mnÞ,
where g is the genus of XO and branching indices mi are
ordered such that 2 ≤ m1 ≤ m2 ≤ � � � ≤ mn.
Remark A.19. More precisely, by assigning the branch-

ing index 1 to every other point (except the marked
points), we can define a Riemann surface with signature
as a pair ðX; νÞ where ν∶X → N ∪ f∞g is a branching
function. Note that if U ¼ fðUi;D;Zmi

; fiÞgi∈ I is an
orbifold atlas on X which is compatible with ν, the
restriction νjUi

is precisely the same as the branching
function associated to the branched Galois covering fi—
i.e., νjUi

≡ νfi .
Let ðX̃; ν̃Þ and ðX; νÞ be two orbifold Riemann surfaces.

A Galois branched covering map ϖ∶ X̃ → X is said to
yield an orbifold Galois covering ϖorb∶ ðX̃; ν̃Þ → ðX; νÞ if

νðϖðx̃ÞÞ ¼ ν̃ðx̃Þ degϖðx̃Þ for all x̃∈ X̃: ðA17Þ

Note that a conical point xj ∈SingðX; νÞ may be obtained
in two different ways:
(1) If x̃ ∉ SingðX̃; ν̃Þ but it is a ramification point of ϖ

with ramification index degϖðx̃Þ > 1, thenϖðx̃Þ is a
conical point of order degϖðx̃Þ.

(2) If x̃∈SingðX̃; ν̃Þ and the local degree of ϖ at x̃i is
given by degϖðx̃iÞ ≥ 1, then ϖðx̃iÞ is also a conical
point of order ν̃ðx̃iÞ degϖðx̃iÞ. As a result, we will
always have jSingðX̃; ν̃Þj ≤ jSingðX; νÞj.

When the branching function ν̃ðxÞ is the trivial branching
function ν̃≡ 1, we conclude.
Proposition A.7. Let ϖ∶ X̃ → X be a branched Galois

covering between two Riemann surfaces. The base
Riemann surface X can be naturally given the structure
of a (developable) Riemann orbisurface O ¼ ðX; νϖÞ,
where νϖ∶ X → N is the branching function associated
to the branched Galois covering ϖ. Note that
O ≅ ½X̃=GalðϖÞ�.

FIG. 5. Cusps as limits of cone points. Formally, cusps can be
viewed as a limit m → ∞ (or cone angle θm ¼ 2π=m → 0) of a
conical singularity on a Riemann orbisurface.

112Since Riemann surfaces are smooth, we do not have to
differentiate between Weil and Cartier divisors.

113A Riemann surface X is said to be of finite type if X is a
(stable) Riemann surface (with or without nodes) such that either
n ¼ 0 and X is compact, or n > 1 and X is compact except for n
punctures.
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3. Universal orbifold covering and orbifold
fundamental group

In Remark A.17, we have briefly mentioned universal
covers of good orbifolds. However, even when an orbifold
O is not necessarily assumed to be developable, it is rather
easy to define a universal covering orbifold of O in much
the same way as one defines the universal covering of
manifolds and the same uniqueness property holds in the
orbifold case as well.
Definition A.27 (Universal covering orbifold). An orbi-

fold Galois covering

ϖorb∶Õ → O ðA18Þ

is called a universal orbifold covering of O if for any other
orbifold covering

ϖ0
orb∶Ŏ → O ðA19Þ

there exists a lifting of ϖorb to an orbifold covering map
ϖ00

orb∶ Õ → Ŏ such that the diagram

ðA20Þ

commutes.
In the case of developable orbifolds O ≅ ½M=Γ�,

any (unramified) manifold covering M̃ → M gives an
orbifold covering by composition with the quotient map
M → ½M=Γ�. In particular, the universal covering of M
gives rise to a universal orbifold covering of O, and the
orbifold fundamental group is given by the short exact
sequence

1 → π1ðMÞ → π1ðOÞ → Γ → 1: ðA21Þ

Once again, the situation is particularly nice for the case
of orbifold Riemann surfaces.
Theorem A.7 (Theorem E.1 of [164]). With the following

two exceptions, every orbifold Riemann surface of finite
type O ¼ ðXO;DÞ admits as the universal cover either the
Riemann sphere Ĉ, the complex plane C, or the hyperbolic
plane H which is necessarily a finite Galois branched
covering and is unique up to conformal isomorphism over
XO; this is a consequence of the classical uniformization
theorem. The only exceptions, called “bad” orbisurfaces in
Thurston’s terminology, are given by

(i) Teardrop orbisurface: Riemann sphere Ĉ with just
one ramified point (see Fig. 6), or

(ii) Spindle orbisurface: Riemann sphere Ĉ with two
ramified points for which the ramification indices
are different (see Fig. 6).

Remark A.20. The statement that every developable
Riemann orbisurface of finite type is finitely covered by
Ĉ, C, or H is equivalent to asserting that any finitely
generated, discrete subgroup Γ of (orientation-preserving)
isometries IsomþðĈÞ ≅ PSLð2;CÞ, IsomþðCÞ, or
IsomþðHÞ ≅ PSLð2;RÞ with quotient space of finite type
has a torsion-free subgroup of finite index. The conjugacy
classes of torsion in Γ correspond to the conical points of
½X=Γ�, for X∈ fĈ;C;Hg, and one obtains a torsion-free
subgroup of finite index of Γ by avoiding these (finite
number of) conjugacy classes. The resulting torsion-free
subgroup is precisely the fundamental group of the under-
lying Riemann surface, π1ðXOÞ.
More generally, Thurston proved that every orbifold O

has a universal cover regardless of being developable or not
(see Prop. 13.2.4 of [148]) and also defined the orbifold
fundamental group π1ðOÞ as the group of covering trans-
formations of its universal covering.
Definition A.28 (Orbifold fundamental group). The

orbifold fundamental group π1ðOÞ of an orbifold O is
the Galois group of its universal covering.

FIG. 6. Bad orbisurfaces. The top part shows the (3)-teardrop
orbisurface, which consists of the tuple ðĈ;D ¼ 3NÞ where the
Riemann sphere Ĉ is the underlying Riemann surface and the north
pole N is the only marked point with multiplicity 3. The bottom
part shows the (3,4)-spindle orbisurface that is given by the tuple
ðĈ;D ¼ 3N þ 4SÞwhere now both the north poleN and the south
pole S are marked points with inequivalent cone orders. Note that
the ðmNÞ teardrop can be viewed as the ðmN; 1Þ spindle. Both of
these orbisurfaces are bad orbisurfaces in the sense that they admit
no Riemann surface as their universal covering.
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We need an interpretation of π1ðOÞ in terms of homotopy
classes of loops in O. However, defining the correct notion
of homotopy would be an issue: For instance, a disk Dm ≅
½D=Zm� with one cone point of order m has as its universal
covering a nonsingular disk, with covering transformation
group Zm acting by rotations. Thus, intuitively, a loop in
Dm winding m times around the cone point should be null
homotopic (see Fig. 7).
In order to introduce the correct notion of orbifold

homotopy, it is more convenient to view the complex
n-dimensional orbifold O as a smooth (oriented) real
orbifold of dimension 2n and work with the topologist
definition of an orbifold (see Remark A.14): Let O ¼
ðjOj;U Þ be a smooth orbifold and let ðjUj; Ũ ⊂ R2n;Γ ⊂
SOð2nÞ; jfjÞ∈U be an orbifold chart on the underlying
topological space jOj. Then, ð½0; 1� × jUj; ½0; 1� × Ũ;Γ;
id × jfjÞ, where γ ∈Γ acts on ½0; 1� × Ũ via γðt; xÞ ¼
ðt; γxÞ is an orbifold chart on ½0; 1� ×O. The collection
of all such orbifold charts forms an orbifold atlas, giving
½0; 1� ×O the structure of a smooth orbifold. It thus makes
sense to say that two orbifold maps

forb; f0orb∶ O → O0

are homotopic in the category of orbifolds if there is an
orbifold map

F∶½0; 1� ×O → O0; Fðt; xÞ ¼ FtðxÞ

with F0 ¼ forb and F1 ¼ f0orb.
Armed with the notion of homotopy of orbifold maps,

one can define the orbifold fundamental group π1ðOÞ
exactly as one does for the usual fundamental group, just
replacing homotopies by orbifold homotopies. One should
note that any two orbifold maps which are homotopic as
orbifold maps are also homotopic as maps between
topological spaces, but that the converse does not need
to be true. In fact, there are plenty of orbifolds which are
simply connected as topological spaces but whose orbifold
fundamental group is nontrivial—i.e., there are orbifold
maps l∶ S1 → O which, as orbifold maps, are not homo-
topic to the constant map. See, e.g., Sec. 2.3 of [181] and
Sec. 2.2 of [182] for more details.
At this stage, the reader might wonder how one can

compute fundamental groups of orbifolds. This can be
done by studying the fundamental group of the regular
locus OnSingðOÞ. Indeed, if singular locus SingðOÞ
has real codimension at least two (which is always the
case if O is complex), then OnSingðOÞ is connected, and
we have a surjective homomorphism π1ðOnSingðOÞÞ →
π1ðOÞ induced by inclusion OnSingðOÞ ↪ O. The surjec-
tivity of this homomorphism comes from the fact that
any loop onO can be perturbed to avoid the singular locus.
To compute π1ðOÞ, we only need to find the kernel of
π1ðOnSingðOÞÞ → π1ðOÞ—i.e., which elements of
π1ðOnSingðOÞÞ get killed. For the special case of orbifold
Riemann surfaces, we can use the orbifold Seifert–van
Kampen theorem to arrive at the following proposition (see,
e.g., [148,156] for more details).114

Proposition A.8. The group π1ðOÞ is the quotient of
π1ðOnSingðOÞÞ by the group normally generated by the
elements μmx

x , for all x∈SingðOÞ, where mx ≔ #Γx is the
order of the local isotropy group of x and μx is a meridian
around x.
Thus, if O is an orbifold Riemann surface with

signature ðg;m1;…; mne ; npÞ, π1ðOÞ can be presented as
(see Figs. 1 and 8)

π1ðO; x�Þ ¼
D
A1;B1;…;Ag;Bg;C1;…;Cne ;P1;…;Pnp

���Cm1

1 ¼ � � � ¼ C
mne
ne ¼

Yg
i¼1

½Ai;Bi�
Yne
j¼1

Cj

Ynp
k¼1

Pk ¼ id
E
; ðA22Þ

where Ais and Bis are homotopy classes of loops (based at
x�) that spanH1ðXO;ZÞ, Cjs and Pks are meridians around
conical points and cusps, respectively, the commutator
½Ai; ;Bi� is defined as AiBiA−1

i B−1
i , and the relationQg

i¼1½Ai;Bi�
Qne

j¼1 Cj
Qnp

k¼1 Pk ¼ id comes from cutting
open O along the chosen basis for π1ðO; x�Þ.

FIG. 7. Orbifold covering and homotopy classes of loops. This
figure compares the loops around a ramified point of index 3 on
an orbifold Riemann surface with those around the preimage of
this cone point on the covering space. We can see that circling
once around the preimage of the ramification point on the
covering (orbi)surface is equivalent to circling 3 times around
the ramified point on the base orbisurface.

114While the proof of the following proposition requires more
complicated machinery for orbifolds of general dimension, the
conclusion of Proposition A.8 is valid in all dimensions.
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4. Orbifold Euler characteristic
and Riemann-Hurwitz formula

The orbifold Euler characteristic is a generalization of
the notion of Euler characteristic for manifolds that
includes contributions coming from nontrivial automor-
phisms. In particular, while every manifold has an integer
Euler characteristic, the orbifold Euler characteristic is, in
general a rational number. In this subsection, we will only
focus on studying the orbifold Euler characteristic for the
case of developable Riemann orbisurfaces.115 As we will
see, the Euler characteristic has an important connection to
branched Galois coverings, and this allows us to calculate
the orbifold Euler characteristic for developable orbifold
Riemann surfaces using the so-called Riemann-Hurwitz
formula.
For simplicity, let us start by only considering closed

Riemann surfaces. We remember from elementary top-
ology that a closed Riemann surface Y has only one
topological invariant, which we may take to be its genus
g. In this case, the Euler characteristic of Y, denoted by
χðYÞ, is found by triangulating Y and using the formula
χðYÞ ¼ Faces − Edges þ Vertices. As expected, the result only
depends on the genus g and is given by χðYÞ ¼ 2 − 2g.
Now, let ϖ∶ Y → X be a Galois covering map between
closed Riemann surfaces. There is a formula relating the
various invariants involved: the genus of Y, the genus of X,
the degree of ϖ, and the amount of ramification.
Theorem A.8 (Riemann-Hurwitz relation). Letϖ∶ Y!d∶1X

be a branched Galois covering map of degree d—i.e.,
degðϖÞ ¼ #GalðY=XÞ ¼ d. We have the relation

χðYÞ ¼ d½χðXÞ − degðBϖÞ�;

where Bϖ ¼Pxj ∈Bϖ
ð1 − 1

νϖðxjÞÞxj is the branch divisor

associated to the branched Galois covering ϖ
and degðBϖÞ ¼

P
xj ∈Bϖ

ð1 − 1
νϖðxjÞÞ.

Proof. Here, we will provide a simple topological proof
of the Riemann-Hurwitz (RH) formula116: Choose a suffi-
ciently small triangulation of X so that each triangle is
contained in an evenly covered neighborhood and such that
every branch point of ϖ is a vertex in this triangulation.
Then, as mentioned above, χðXÞ ¼ F − Eþ V, where F,
E, and V are the number of faces, edges, and vertices
(respectively) of the chosen triangulation. Sinceϖ∶ Y → X
is surjective, the pullback of this triangulation is clearly a
triangulation of Y. Thus, we just need to count the number
of faces, edges, and vertices of this pulled-back triangu-
lation to calculate the Euler characteristic of Y. We denote
these numbers by F̃, Ẽ, and Ṽ, respectively.
The pullback of each evenly covered neighborhood will

contain d copies of the triangle contained within it. Thus,
we have d faces and d edges—i.e., F̃ ¼ dF and Ẽ ¼ dE.
Naively, one would expect there to be d vertices as well;
however, since a branch point xj ∈Bϖ has

jϖ−1ðxjÞj ¼ d −
X

yi ∈ϖ−1ðxjÞ
ðdegϖðyiÞ − 1Þ ¼ d=νϖðxjÞ

ðA23Þ

distinct preimages, we have117

Ṽ ¼ dV −
X

yi ∈Rϖ

ðdegϖðyiÞ − 1Þ

¼ dV −
X

xj ∈Bϖ

d
νϖðxjÞ

ðνϖðxjÞ − 1Þ: ðA24Þ

FIG. 8. Orbifold fundamental group. A choice of generators for the homotopy group of a surface with marked points.

115The interested reader can consult Ref. [183] for more
general cases.

116One can also prove the RH relation by using a mixture of the
Gauss-Bonnet formula and topological considerations (Sec. 2.1
of [184]) or by using the relationKY ¼ ϖ�KX þRϖ between the
corresponding canonical divisors. Wewill come back to this point
later in this Appendix.

117Note that
P

yi ∈Rϖ
¼Pxj ∈Bϖ

P
yi ∈ϖ−1ðxjÞ.
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Therefore,

χðYÞ ¼ F̃ − Ẽþ Ṽ

¼ d

�
ðF − Eþ VÞ −

X
xj ∈Bϖ

�
1 −

1

νϖðxjÞ
��

¼ d½χðXÞ − degðBϖÞ�: ðA25Þ

▪

Remark A.21. The RH relation proved above assumes
that the branched covering ϖ is Galois. However, it is
possible to write the RH relation in a way which is true for
all branched coverings regardless of whether they are
Galois or not. We have to pay attention to two main
differences in this case: (i) For a general branched covering
the degree d of the covering is not necessarily equivalent to
the order of the covering transformation group; in general,
d ≤ #AutðϖÞ with equality happening only when ϖ is
Galois. (ii) When ϖ is not required to be Galois, the
ramification indices of ramified points y1; y2 ∈ϖ−1ðxÞ
need not be the same. Therefore, the last equalities in
both (A23) and (A24) are not true in this general setting; in
fact, when ϖ is not necessarily Galois, we cannot even
define branching indices and branch divisors. However,
we can still write Ṽ ¼ dV −

P
yi ∈Rϖ

ðdegϖðyiÞ − 1Þ which
results in the following form for RH relation:

χðYÞ ¼ dχðXÞ − degðRϖÞ:

This form of the Riemann-Hurwitz formula holds true for a
general branched covering and is obviously equivalent to
the previous form when ϖ is Galois.
Now, let the orbifold Riemann surface O ¼ ðXO;DÞ

be a developable Riemann orbisurface with signature
ðg;m1;…; mne ; npÞ. Any such orbifold Riemann surface
is finitely covered by a Riemann surface Y such that D is
the branch divisor of the branched Galois covering
ϖ∶ Y → XO. Then, it immediately follows from
Proposition A.7 that there exists a corresponding orbifold

Galois covering ϖorb∶ Y!d∶1O ¼ ðXO;DÞ and it is natural
to define the orbifold Euler characteristic of O by using the
equation χðYÞ ¼ dχðOÞ. Hence, we get

χðOÞ ¼ 1

d
χðYÞ ¼ χðXOÞ − degðDÞ

¼ 2 − 2g − np −
Xne
i¼1

�
1 −

1

mi

�
: ðA26Þ

In the following subsection, we will derive this relation in
an equivalent way using the notion of orbifold canonical
divisor.
Let us end this subsection by making Theorem A.7

a little sharper. It immediately follows from equation

χðYÞ ¼ dχðOÞ that the Euler characteristic of a developable
Riemann orbisurface O should have the same sign as the
Euler characteristic of its universal covering. Hence, we
have the following corollary.
Corollary A.3. Let O be a closed (or possibly punctured)

orbifold Riemann surface, which is not a teardrop or a
spindle. Then,O admitsH, C, or Ĉ as its universal covering
if and only if χðOÞ < 0, χðOÞ ¼ 0, or χðOÞ > 0,
respectively.
The orbifold Riemann surfaces with χðOÞ < 0 are called

hyperbolic and are the main focus of our study in the main
body of this paper. Notice that all hyperbolic Riemann
surfaces are, by definition, developable.

5. Orbisheaves, orbibundles, and orbidivisors

The notions of bundle theory, and more generally, sheaf
theory, are fundamental to doing geometry on any object.
Fortunately, these notions and many other usual differential
geometric concepts can be generalized to the orbifold case
with the help of orbifold maps (see, e.g., Sec. 4.2 of [161]).
V-bundles. In this section, we define holomorphic vector

V-bundles (or orbibundles) as a reasonable generalization
of holomorphic vector bundles over complex manifolds.
Remember that we defined a rank r holomorphic vector
bundle E over an analytic space X as an analytic map
π∶ E → X such that π is locally a projection V × Cr → V.
Similarly, a holomorphic vector V-bundle of rank r over
an orbifold O ¼ ðX;UÞ should be thought of as a pair
ðE ¼ ðE;VÞ; πorb∶E → OÞ where E is a complex orbifold
and πorb is an analytic orbifold map. Thus, starting from an
analytic map π∶ E → X between the underlying analytic
spaces, our task reduces to the construction of the appro-
priate local lifts of π (as in Definition A.21).
Definition A.29 (Holomorphic vector V-bundle). Let

O ¼ ðX;UÞ be a complex orbifold. A holomorphic vector
V-bundle (or a holomorphic vector orbibundle) of rank r
over O is a collection of holomorphic vector bundles
π̃a∶ Ẽa → Ũa with fiber Cr for each orbifold chart
ðUa; Ũa;Γa; faÞ of O, together with a collection of group
homomorphisms π̄a∶ Γa → π̄aðΓaÞ defining an action of
Γa on Ẽa by (ordinary) holomorphic bundle maps,
such that:

(i) Each π̃a is Γa equivariant, so that the following
diagram is commutative for any γ ∈Γa:

(ii) For any holomorphic embedding ηab∶ Ũa ↪ Ũb of
charts on O, there exists a holomorphic bundle
isomorphism
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η̂ab∶ Ẽa → ẼbjηabðŨaÞ ≔ π̃−1a ðηabðŨaÞÞ, such that η̂ab
is π̄a equivariant.

(iii) For two embeddings ηab∶ Ũa ↪ Ũb and
ηbc∶ Ũb ↪ Ũc, we have dηab ∘ ηbc ¼ η̂ab ∘ η̂bc.

Remark A.22. The total (underlying) analytic space E of
an orbibundle is obtained from the local bundles Ẽa in the
following way: Choosing small enough orbifold charts on
O, there always exists a local trivialization Ẽa ≅ Ũa × Cr

such that π̃a∶ Ũa × Cr → Ũa is a holomorphic projection
on the first factor and the action of πaðΓaÞ on Ũa × Cr is
diagonalized—i.e., for any pair ðx̃; vÞ∈ Ũa × Cr and any
γ ∈Γi, we have π̄aðγÞ · ðx̃; vÞ ≔ ðγ · x̃; ϒ̂aðγÞ · vÞ, where
ϒ̂a∶ Γa → GLðr;CÞ is a monomorphism. Then, we have a
branched Galois covering fba∶ Ẽa → Ea ≔ Ẽa=π̄aðΓaÞ. As
a result, since π̃a is Γa equivariant, we get a unique analytic
projection map πa∶ Ea → Ua such that the following
diagram commutes:

Now, we can glue the analytic varieties Ea in the following
way, stemming from the gluing condition on X: Let
ðUa; Ũa;Γa; faÞ and ðUb; Ũb;Γb; fbÞ be any two orbifold
charts in U with Ua ∩ Ub ≠ ∅ and let x∈Ua ∩ Ub
be a point. Then, according to Definition A.19, there
always exists another orbifold chart ðUc ⊂ Ua ∩
Ub; Ũc;Γc; fcÞ∈U containing x such that embeddings
ηca∶ Ũc ↪ Ũa and ηcb∶ Ũc ↪ Ũb induce bundle biholo-
morphisms η̂ca∶ Ẽc → ẼajηcaðŨcÞ and η̂cb∶ Ẽc → ẼbjηcbðŨbÞ.
Gluing Ea and Eb according to this data results in a
complex orbifold E with an underlying analytic space E
and an analytic orbifold map πorb∶ E → O, which is
determined by the analytic map π∶ E → X (obtained by
gluing analytic projection maps πa ¼ πjEa

) and local
lifts π̃a∶ Ẽa → Ũa.
The next concept needed to define is holomorphic

sections of holomorphic vector V-bundles. Defining this
is easy globally: A section of E in orbibudle πorb∶ E → O
is a holomorphic orbifold map s∶ O → E satisfying
πorb ∘ s ¼ idO. Locally, this concept can be defined as
follows.
Definition A.30 (Sections of V-bundles). If we consider

the holomorphic vector V-bundle πorb∶ E → O, a holo-
morphic section of E can be defined in either of the
following two equivalent ways:
(1) s∶ O → E is a holomorphic orbifold map satisfy-

ing πorb ∘ s ¼ idO.

(2) A collection of Γa-equivariant holomorphic sections
sa∶ Ũa → Ẽa such that for any embedding
ηab∶ Ũa ↪ Ũb the following diagram commutes:

To glue the local sections si to the global section
s∶ O → E one should demand the equivariance of the
local sections. We will call a local holomorphic section
sa∶ Ũa → Ẽa Γa invariant (as opposed to Γa equivariant)
if γ ∘ sa ¼ sa. Given the local holomorphic sections
sa∶ Ũa → Ẽa of a holomorphic vector V-bundle E, we
can always construct Γa-invariant local sections sΓa

a by
“averaging over the group”—i.e., we define an invariant
local section by

sΓa
a ¼ 1

#Γa

X
γ ∈Γa

sa ∘ γ: ðA27Þ

Notice that this determines a well-defined map from the
underlying analytic space XO, namely sUa

≔ ðfaÞ�ðsΓa
a Þ∶

Ua → Ẽa. Gluing these invariant local sections over each
orbifold chart, we obtain global invariant sections and view
them interchangeably as invariant objects on Ũas or as
objects on Us. However, note that smoothness in the
orbifold sense is somewhat different from ordinary smooth-
ness, and holomorphic invariant sections can have singular
behavior (although usually in a controlled way) when
viewed as objects on the open analytic subsets Ua.
Remark A.23. Consider the easiest (but still important)

example of a trivial holomorphic line V-bundle: This line
V-bundle is given by trivial holomorphic line bundles
Ẽa ≅ Ũa × C on each local uniformizing neighborhood
Ũa together with a trivial action of Γa on the second
factor—i.e., ϒ̂aðΓaÞ ¼ 1∈GLð1;CÞ. Then, clearly Ea ≅
Ua × C and the total space E is just O × C. Holomorphic
sections of this bundle clearly are in a one-to-one corre-
spondence with analytic orbifold maps from O to C
endowed with the trivial orbifold structure. So, according
to Remark A.16, they seem to be a good candidate for a
structure orbisheaf on O; however, in order to get coherent
sheaves on the underlying space XO, nonetheless, we have
to deal with invariant sections of the trivial holomorphic
line bundles Ũa × C → Ũa or sheaves F̃ a on the local
uniformizing neighborhoods Ũa.
All of the standard notions of the tangent bundle,

cotangent bundle, and the different associated tensor
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bundles have V-bundle analogs: On every local uniformiz-
ing neighborhood Ũa, take the holomorphic tangent
bundle T1;0Ũ ≅ Ũ × Cn and for any change of charts
ηab∶ Ũa ↪ Ũb on O, construct the corresponding bundle
biholomorphism η̂ab∶ T1;0Ũa → T1;0ŨbjηabðŨaÞ by defining
it to be given by ηab on the first factor and the Jacobian

Jac½ηab� on the second one. If we denote by ð∂ðaÞ1 ;…; ∂ðaÞn Þ
the local coordinate basis on each T1;0Ũa, the Jacobian
matrix Jac½ηab�∈GLðn;CÞ is defined as

ðJac½ηab�Þk;l ¼
∂
ðbÞ
k ∘ ηab
∂
ðaÞ
l

:

Remark A.24. Locally, around any point x∈XO, the fiber
ðπ1;0orbÞ−1ðxÞ ⊂ T1;0O is not biholomorphic to Cn, but is
biholomorphic to a small neighborhood of x∈XO—i.e., in
general ðπ1;0orbÞ−1ðxÞ ≅ Cn=Γx. This is because, in a local
chart, the actions of γ ∈Γa on Ũa and of JacðγÞ on T1;0

f−1a ðxÞŨa

are essentially the same. On the other hand, the underlying
analytic space of T1;0O is not necessarily the ordinary
tangent space T1;0XO.
The above construction obviously generalizes to the

antiholomorphic tangent V-bundle T0;1O, holomorphic and
antiholomorphic cotangent V-bundles, symmetric and anti-
symmetric tensor V-bundles of type ðk; lÞ, etc. Particularly,
ifO has dimension n, we denote the highest exterior power
of the holomorphic cotangent V-bundle, ⋀nT�

1;0O, by KO

and call it the orbifold canonical bundle. Additionally, one
can easily generalize notions such as Riemannian and
Hermitian metrics, orbifold ðp; qÞ-differential forms,
Hermitian and Chern connections, Chern forms, etc., to
the orbifold setting. We will come back to these notions in
the next subsections.
Remark A.25. Notice that all of the above definitions

simplify for the case of developable orbifolds O ≅ ½M=Γ�.
In this case, we can always view objects defined on O—
such as tensors, differential forms, connections, etc.—as
globally defined ordinary objects defined on M that are
invariant under the action of Γ. We will come back to this
point in the later subsections when we study differential
forms and metrics on hyperbolic Riemann orbisurfaces in
greater detail.
Now, consider a Weil divisor D on the underlying

analytic space XO. We can lift its restriction D ∩ Ua to
a divisor D̃Ũa

on the local uniformizing neighborhood Ũa

by D̃Ũa
≔ f−1a ðD ∩ UaÞ. The collection of all such divisors

D̃Ũa
on each Ũa defines an orbidivisor (or a Baily divisor)

on the orbifold O (see, e.g., Def. 4.4.11 [161]) for more
details). In fact, we have the following proposition.
Proposition A.9. The branch divisorD or more generally

any Q divisor on XO of the form
P

i
bi
mi
Di, where mi is a

ramification index and bi ∈Z, lifts to an orbidivisor
on O ¼ ðXO;UÞ.
A divisor obtained as the lift of a branch divisor is called

a ramification divisor. The following is straightforward.
Proposition A.10. To each Baily divisor D on

the orbifold O, there corresponds a complex line V-bundle
L ðDÞ.
The most important Baily divisor on a complex orbifold

O is the orbifold canonical divisor KO which is any Baily
divisor associated to the canonical orbibundle KO. In the
presence of a branch divisor D, an orbifold canonical
divisor KO is not the same (meaning not linearly equiv-
alent) as the canonical divisorKX of the underlying analytic
space XO. In fact we have (for proof see Prop. 4.4.15
of [161]).
Proposition A.11. The orbifold canonical divisorKO and

canonical divisor KX of its underlying analytic space are
related by

KO ∩ Ui ≡ f�i ðKX ∩ UiÞ þ
X
j

�
1 −

1

mj

�
f�i ðDj ∩ UiÞ:

In terms of the orbifold rational Chern class, the above
equation implies

c1ðOÞ¼−c1ðKOÞ

¼−c1ðKXÞ|fflfflfflfflffl{zfflfflfflfflffl}
c1ðXÞ

−
X
j

�
1−

1

mj

�
c1ðL ðDjÞÞ∈H2ðX;QÞ:

Let O ¼ ðX;DÞ be a good orbifold Riemann surface.
An orbifold canonical divisor is given by

KO ¼ f�KX þD; ðA28Þ

where KX is an ordinary canonical divisor on the under-
lying Riemann surface X. Thus, if g denotes the genus of X,
the orbifold Chern number (obtained by integrating the first
Chern character over X) is

c1ðOÞ ¼ − degðKOÞ ¼ − degðKXÞ − degðDÞ

¼ 2 − 2g − np −
Xne
i¼1

�
1 −

1

mi

�
; ðA29Þ

which equals the orbifold Euler characteristic χðOÞ defined
before (this follows from the equivalence of the top Chern
class with the Euler class).
Orbisheaves. We first introduce the notion of an

orbisheaf following Definition 4.2.1 of [161]. Similar
to V-bundles, Orbifold sheaves or orbisheaves consist of
a sequence of sheaves defined on the disjoint union⨆a Ũa
of the local uniformizing neighborhoods that satisfy certain
compatibility conditions with respect to the local unifor-
mizing groups and embeddings.
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Definition A.31 (Orbisheaf). Let O ¼ ðXO;UÞ be a
complex orbifold. An orbisheaf FO on O consists of a
collection of sheaves fF̃ aga∈A defined over each local
uniformizing neighborhood Ũa of O, such that for each
embedding ηab∶ Ũa ↪ Ũb there exists an isomorphism of
sheaves η�ab∶ F̃ a → ðηabÞ�ðF̃ bÞ, which is functorial.
Let FO be an orbisheaf on O, and ðUa; Ũa;Γa; faÞ an

orbifold chart. Then, one can define an action of Γa on
the sheaf F̃ a, which says that F̃ a is a Γa-equivariant
sheaf on Ũa. So, every orbisheaf FO is equivariant
under the local uniformizing groups Γa. We now have
the following.
Definition A.32 (Structure orbisheaf). The structure

orbisheaf OO of an orbifold O is the orbisheaf defined
by the collection of structure sheaves OŨa

defined on
each local uniformizing neighborhood Ũa. The structure
orbisheaf OO is well defined since each embedding
ηab∶Ũa↪Ũb induces an isomorphism OŨa

≈ðηabÞ�ðOŨb
Þ

by sending f∈OŨa;x̃ to f ∘ η−1ab ∈ ðηabÞ�ðOŨb
Þ.

This definition evidently does not align with the
holomorphic sections of the trivial line V-bundle nor
does it yield a sheaf on the underlying space XO.
Therefore, we need to utilize local Γa-invariant sections
(in contrast to Γa equivariant) of such sheaves and then
assemble them across XO (Lemma 4.2.4 of [161]).
Accordingly, FX are defined as sheaves on XO which
are invariant local sections of orbisheaves FO. In this
regard, H0ðŨa;OOÞΓa ≃H0ðUa;OXÞ holds for the struc-
ture sheaves. For a coherent orbisheaf FO of OO
modules, the Γa-invariant sections are coherent sheafs
of OX modules. Interestingly, this helps one to construct
the orbisheaf cohomology. But one should note that this
cohomology only probes the topology of the underlying
analytic space XO. Hence, a more complicated notion of
cohomology, the so-called Chen-Ruan cohomology, of an
orbifold is needed to probe the full topological features of
an orbifold. See e.g., [166,178] for more details.
There are several important orbisheaves on complex

orbifolds that we shall work with: First, there is the
structure orbisheaf OO defined in A.32, where each OŨa

is the sheaf of holomorphic functions on Ũa. Similarly,
there is the meromorphic orbisheaf MO consisting of
meromorphic functions on each local uniformizing neigh-
borhood Ũa. Finally, there is the canonical orbisheaf of a
complex orbifold: On a complex orbifold O of complex
dimension n, we denote by Ωk

O the orbisheaf of holomor-
phic differential k forms on O. This is the orbisheaf
constructed from the collection of ordinary canonical
sheaves Ωk

Ũa
on each orbifold uniformizing neighborhood

Ũa. Ωk
O is a locally free orbisheaf of rank ðnkÞ.

Definition A.33 (Canonical orbisheaf). The canonical
orbisheaf of a complex orbifoldO of complex dimension n
is the orbisheaf Ωn

O.

6. Orbifold metrics

In this section, we delve into the examination of metrics
on orbifolds. It is clear that, for each Ũi on ðXO;UÞ, this
metric should be defined as a Γi-invariant metric.
Definition A.34 (Hermitian orbifold metrics). A

Hermitian metric, h, on a complex orbifold O ¼ ðXO;UÞ
can be characterized as a family of Γa-invariant (local)
Hermitian metrics h̃Γa

a defined on each neighborhood Ũa
such that the change of charts are Hermitian isometries.
A complex orbifold with a Hermitian metric is called a
Hermitian orbifold.
Remark A.26. A slight modification of the usual partition

of unity arguments assures us that every complex orbifold
admits a Hermitian metric (see [185] for more details).
Remark A.27. There is a beautiful connection between

the preceding discussion and the geometry of the situation
which is provided by the Gauss-Bonnet theorem: Consider
a good compact orbifold Riemann surface O which is
expressed as ½X̃=Γ� where X̃∈ fĈ;C;Hg and Γ <
IsomþðX̃Þ is discrete group. There exists a canonical
constant curvature Hermitian metric on X̃ which induces
a Hermitian metric of constant curvature on O. O has a
well-defined area AðOÞ which has the same naturality
property under finite coverings as the Euler number, i.e.,
if Õ is an orbifold covering of O of degree d, then
AðÕÞ ¼ d · AðOÞ. Hence, we can the use the fact that O
is finitely covered by some Riemann surface and apply the
usual Gauss-Bonnet theorem to this Riemann surface. In
particular, if O is ½Ĉ=Γ�, we deduce that AðOÞ ¼ 2πχðOÞ
and if O is ½H=Γ�, we deduce that AðOÞ ¼ −2πχðOÞ.
More generally, one can define Hermitian metric on

every holomorphic V-bundle.
Definition A.35 (Hermitian metrics on holomorphic

V-bundles). Let O ¼ ðXO;UÞ be a complex orbifold and
πorb∶ E → O a holomorphic vector V-bundle. A Hermitian
orbifold metric h on E is a collection of local Γa-invariant
Hermitian metrics h̃Γa

a on each local holomorphic vector
bundle Ẽa → Ũa, such that all embeddings are Hermitian
isometries.
Finally, let E → O be a holomorphic vector V-bundle

endowed with a Hermitian metric h. A Hermitian con-
nection ∇ on E is defined to be a collection f∇ag of
Γa-equivariant Hermitian connections supported on each
local uniformizing neighborhood Ũa such that ∇as are
compatible with changes of charts. Then, the first Chern
class or degree of a V-bundle can be defined using Chern-
Weil theory; notice that the degree of a V-bundle is a
rational number. Sobolev spaces and Hodge theory for
V-bundles follow in the same way.
Let O ¼ ðXO;DÞ be an orbifold Riemann surface. We

say that a Hermitian metric of class ∞ on the underlying
Riemann surface XO is compatible with the branch divisor
D ¼Pð1 − 1=miÞxi if in a holomorphic local coordinate
system centered at xi the metric is of the form
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ðρðuÞ=juj2−2=miÞjduj2 for mi ≠ ∞, whereas it is of the form
ρðuÞ=juj2 log2ðjuj−2ÞÞjduj2 if mi ¼ ∞. Here, ρ is continu-
ous at the marked points and positive. The cone angle is
2π=mi, including the complete case with angle zero. LetKX
be the canonical divisor of XO; the orbifold Riemann
surface is called stable, if the degree of the divisor KX þD
is positive. In this case, by a result of McOwen [76]
and Troyanov [102,186], there exists a unique conical
metric ds2hypðDÞ on XO in the given conformal class, which
has constant curvature −1 and prescribed cone angles.
Moreover, VolðXO; ds2hypðDÞÞ=π ¼ degðKX þDÞ ¼
−χðOÞ, where by definition χðOÞ ¼ χðXOÞ − degðDÞ is
the Euler characteristic of the Riemann orbisurface
O ¼ ðXO;DÞ.

a. Hyperbolic metric on Riemann orbisurfaces

The Poincaré metric on H,

ds2hyp ¼
jdzj2
ðIm zÞ2 ; ðA30Þ

is the unique (up to multiplicative constant) Riemannian
metric that is invariant under PSLð2;RÞ, and descends to a
Riemannian metric on O ¼ ½H=Γ�. As a metric on O, it has
singularities at the elliptic and parabolic fixed points. One
can describe the local geometry of a hyperbolic cusp and a
hyperbolic cone using a distinguished holomorphic coor-
dinate w [called rotationally symmetric (rs) by Wolpert
[13,187]] that is unique up to a constant of modulus 1:

(i) The model cusp: Let C∞ denote an infinite (non-
compact) cusp.118 A fundamental domain for C∞ in
the H is given by the set fz∈Hj0 ≤ Rez ≤ 1g and
by identifying the boundary points Rez ¼ 0 with
Rez ¼ 1—i.e., C∞ ≅ S1 × Rþ. The isotropy group
that corresponds to the above fundamental domain
consists of Z acting by addition. Let C∞;ϵ, the
hyperbolic cusp with apex at infinity and horocycle
at height ϵ, denote the submanifold of C∞ obtained

by restricting the previous fundamental domain to
Im z > ϵ—i.e., C∞;ϵ ≅ S1 × ½ϵ;∞Þ. This fundamen-
tal domain can be endowed with the Poincaré metric,

ds2cusp ¼
jdzj2
ðIm zÞ2 : ðA31Þ

Observe that this is a complete metric of Gaussian
curvature −1 and finite volume, VolðC∞;ϵÞ ¼ ϵ.

The hyperbolic cusp C∞;ϵ can equivalently be
presented as a Riemann surface with boundary,
parametrized by the complex coordinate w≡ ei2πz,
valued in the punctured disk D�ð0; e−2πϵÞ. The
hyperbolic metric can then be written as

ds2cusp ¼
jdwj2

ðjwj log jwjÞ2 : ðA32Þ

The coordinate w is uniquely determined by this
condition, up to a factor of modulus 1. Following
[13,187], we will call w an rs coordinate in a
neighborhood of a parabolic fixed point (see Fig. 9).

(ii) The model cone: For a given positive integer m, let
Cm denote the infinite hyperbolic cone of angle
2π=m.119 One can realize Cm as a half-infinite
cylinder S1 ×Rþ, equipped with the constant cur-
vature −1 metric,

ds2cone ¼
�
2π

m

�
2 jdzj2
sinh½2�ð2πm Im zÞ : ðA33Þ

In contrast to the cusp case, this metric is not
complete. A suitable change of variables provides
a parametrization of the hyperbolic cone by Cm ≅
ð0;∞Þ × ð0; 2π� with coordinates ðρ; θÞ. The metric
in this coordinate becomes

ds2cone ¼ dρ2 þm−2 sinh½2�ðρÞdθ2; ðA34Þ

FIG. 9. Rotation symmetric coordinates. Model cusp, C∞;ϵ, and model cone, Cm;ϵ, are shown in ϵ neighborhoods of the parabolic and
elliptic fixed points (i.e., at height ϵ in rs coordinates w; w̃). The hyperbolic metrics, ds2cusp and ds2cone, in rotation symmetric coordinates,
w and w̃, are also shown in neighborhoods of cusps and cones, respectively.

118See Lemma 2.1.1 of [188]. 119See Sec. 2 of [189].
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having volume form120

⋆1 ¼ m−1 sinhðρÞdρ ∧ dθ: ðA35Þ

A fundamental domain for Cm in the hyperbolic
unit disk D is provided by a sector with a vertex
at the origin and with angle 2π=m—i.e.,
fuD ∈Dj0 ≤ argðuDÞ < 2π

mg. The hyperbolic metric
on Cm is the metric induced onto the fundamental
domain (viewed as a subset of the D endowed
with its complete hyperbolic metric). The isotropy
group which corresponds to this fundamental do-
main is the group Zm consisting of the numbers
expð ffiffiffiffiffiffi

−1
p

2πj=mÞ for j ¼ 1; 2;…; m acting by
multiplication. As before, let the hyperbolic cone
of angle 2π=m and a boundary at height ϵ, Cm;ϵ ≅
S1 × ½ϵ;∞Þ be the submanifold of Cm obtained
by restricting the ðρ; θÞ coordinate to 0 ≤ ρ <
cosh½−1�ð1þ ϵm=2πÞ. A fundamental domain for
Cm;ϵ in the unit disk model is obtained by adding the
restriction that juj < ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵm=ð4π þ ϵmÞp
. An elemen-

tary calculation shows that the volume of this
manifold is finite and is given by volðCm;ϵÞ ¼ ϵ.
Finally, the hyperbolic cone can also be seen as a

Riemann surface with boundary, parametrized by the
complex coordinate w̃∈D�ð0; RÞ, such that

ds2cone ¼
4jdw̃j2

m2jw̃j2−2=mð1 − jw̃j2=mÞ2 : ðA36Þ

As for the case of the cusp, a coordinate w̃ with this
property is unique up to a factor of modulus 1
and was also called [64] an rs coordinate after
Wolpert [13,187] (see Fig. 9). The parameter R can
be easily obtained by computing and comparing
volumes in different coordinates. In particular, as
ϵm → 0, we have R ∼ ðϵm=4πÞm=2.

7. Orbifold differential forms and automorphic forms

In this section, we will study differential forms on
hyperbolic Riemann orbisurfaces in more detail (see,
e.g., [16,93,190] for more details). We start by defining
orbifold differential forms on a general complex orbifold as
a collection of invariant differential forms on each local
uniformizing neighborhood.
Definition A.36 (Orbifold differential forms). If O ¼

ðXO;UÞ is a complex orbifold with an atlas of analytic
orbifold charts U ¼ fðUa; Ũa;Γa; faÞga∈A, we can define
a complex orbifold k-form ϕ on O as a collection of local

Γa-invariant complex k forms fϕ̃Γa
a ga∈A defined on each

local uniformizing neighborhood Ũi such that every ϕ̃Γi
i is

preserved by all the change of charts. We say that the
complex orbifold k form ϕ is bigraded of type ðp; qÞ, with
k ¼ pþ q, if ϕ is an invariant section of the V-bundle
⋀p;qT�O ≔ ð⋀pT�

1;0OÞ ∧ ð⋀qT�
0;1OÞ. We will denote

the vector space of all such orbifold ðp; qÞ forms on O
by Ep;qðOÞ.
Remark A.28. Integration theory also goes through: Let

ðUa; Ũa;Γa; faÞ∈U be an orbifold chart and let ϕ be an
orbifold differential from compactly supported on V ⊂ XO.
The characterization of ϕ as a collection of local
Γa-invariant differential forms fϕ̃Γa

a g that are supported
on each Ũa, enables us to define the integration of ϕ
over V as Z

V
ϕ ¼

X
a∈A

1

#Γa

Z
f−1a ðUa∩VÞ

ϕ̃Γa
a ; ðA37Þ

where we have used partitions of unity to write the integral
over V as a sum of integrals over V ∩ Ua. So, all of the
standard integration techniques, such as Stokes’ theorem,
are equally valid on orbifolds.
Now, consider a hyperbolic orbifold Riemann surface O

and let KO (≠ KX) denote its holomorphic cotangent
V-bundle (or its orbifold canonical bundle). For any
k; l∈Z, an orbifold ðk; lÞ differential on O is defined as
an element of Ak;lðOÞ ≔ ΓðO;Kk

O ⊗ Kl
OÞ—the vector

space of smooth global sections of line V-bundle
Kk

O ⊗ K̄l
O.

121 For any pair of non-negative integers p
and q, there exists an isomorphism between the space
Ep;qðO;Kk

O ⊗ K̄l
OÞ of orbifold differential forms of type

ðp; qÞ with coefficients in the line V-bundle Kk
O ⊗ K̄l

O and
the complex vector space A0;0ðO;Kkþp

O ⊗ K̄lþq
O Þ.

Every hyperbolic Riemann orbisurfaceO can be realized
as an orbifold quotient of the upper half-plane H ¼
fz∈CjIm z > 0g by a finite discrete subgroup group Γ
of its (orientation preserving) isometries IsomþðHÞ ≅
PSLð2;RÞ, called a Fuchsian group. Then, using the
realization of O as ½H=Γ�, one can identify every orbifold
ðk; lÞ differential with a Γ-automorphic form of weight
ð2k; 2lÞ on H: An automorphic form of weight ð2k; 2lÞ for
Γ is a Γ-invariant global section of the line bundle
Kk

H ⊗ KH
l. We will denote the space of Γ-automorphic

forms of weight ð2k; 2lÞ byAk;lðH;ΓÞ; an arbitrary element
ϕ of Ak;lðH;ΓÞ has the form ϕ ¼ ϕðzÞdzkdz̄l, where ϕðzÞ
transforms according to the rule ϕðγzÞγ0ðzÞkγ0ðzÞl ¼ ϕðzÞ
for all γ ∈Γ and z∈H.

120The ⋆ in Eq. (A35) is the Hodge star, and the notation ⋆1
emphasizes that the volume form is the Hodge dual of the
constant map on the manifold.

121Whenever k or l are negative, we understand Kk
O ≔ ðTOÞ−k

and K̄l
O ≔ ðT̄OÞ−l.
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APPENDIX B: GEOMETRIC STRUCTURES
ON ORBIFOLDS

1. Basic definitions and some theorems

In [191] Ehresmann studied what he called locally
homogeneous spaces. More precisely, a locally homo-
geneous geometry on a manifoldM gives a ðG;XÞ structure
on M in the following sense described by Ehresmann. Let
X be a (homogeneous) complex manifold—called the
model space—and let G be a group acting effectively,
transitively, and holomorphically on X. A holomorphic
ðG;XÞ structure on a complex manifold M is given
by an open cover fUaga∈A of M with holomorphic
charts fa∶ Ua → X such that the transition maps
fa ∘ f−1b ∶ fbðUa ∩ UbÞ → faðUa ∩ UbÞ are given (on each
connected component) by the restriction of an element
ga;b ∈G (see Fig. 10). Note that any geometric feature of X
which is invariant by the symmetry groupG has an intrinsic
meaning on the manifold M equipped with a ðG;XÞ
structure.
There exists a useful globalization of the coordinate

charts of a geometric structure in terms of the universal
covering space and the fundamental group. The ðG;XÞ-
coordinate atlas fðUa; faÞga∈A is replaced by a universal
covering space M̃ with its group of deck transformations
π1ðMÞ: The coordinate charts fa∶ Ua → X are replaced by
a globally defined map dev∶ M̃ → X called a developing
map (see Fig. 11). In addition, the developing map is
equivariant with respect to the actions of π1ðMÞ:

dev ∘ γ ¼ holðγÞ ∘ dev; ðB1Þ

where γ ∈ π1ðMÞ is a deck transformation and hol∶
π1ðMÞ → G is called a holonomy representation—i.e.,
the coordinate changes are replaced by the holonomy
homomorphism. The resulting developing pair ðdev; holÞ
is unique up to composition/conjugation by elements in G,
i.e., up to ðdev; holð·ÞÞ → ðg ∘ dev; gholð·Þg−1Þ transforma-
tions. This determines the structure. In this section, we will
introduce ðG;XÞ structures on orbifolds. Simply put, a
ðG;XÞ orbifold is locally modeled on X modulo finite

subgroups of G. We will start by giving a definition of
geometric structures on orbifolds based on atlases of charts,
as well as using developing maps from the universal
orbifold covering. Then, we will introduce and study the
deformation spaces of these orbifold ðG;XÞ structures in
analogy with Goldman’s work [192–194] for the manifold
case. Some of the most important examples of these
geometric structures on orbifolds are provided by projec-
tive structures as well as hyperbolic, Euclidean, or spherical
structures; we will end this section by studying these
specific examples and the relation between them. See
[195,196] for more on orbifold geometric structures.
In order to give a precise definition of an orbifold

geometric structure modeled by the pair ðG;XÞ, we need
to introduce the notion of (holomorphic) orbifold ðG;XÞ
charts: Let O ¼ ðXO;UÞ be a complex orbifold and let
U ⊂ XO be an open subset of XO with a local model ðŨ;ΓÞ.
Then, a holomorphic ðG;XÞ chart on U is defined to be
given by a pair ðf̃;CÞ, where f̃∶ Ũ ↪ X gives a holomor-
phic embedding of local uniformizing neighborhood Ũ into
the model space X (equivalently, f̃∶ Ũ → Ṽ ⊂ X is a
holomorphic isomorphism onto an open subset of X)
and is considered as a local X coordinate on Ṽ while
C∶ Γ ↪ G is an injective group homomorphism (equiv-
alently, a group isomorphism between the local uniformiz-
ing group Γ and a finite subgroup of G).
Definition B.1 [Orbifold ðG;XÞ structures]. Let U ≔

fðUa; Ũa;Γa; faÞga∈A denote an orbifold atlas that induces
an orbifold structure on XO. A holomorphic orbifold
ðG;XÞ atlas on XO that is compatible with orbifold atlas
U is given by a collection of holomorphic ðG;XÞ charts
fðf̃a∶ Ũa ↪ X;Ca∶ Γa ↪ GÞga∈A such that holomorphic
embeddings ηab∶ Ũa → Ũb are realized as elements
ga;b ∈G and monomorphisms ϒab∶ Γa ↪ Γb are given
by conjugations γ ↦ gab ∘ γ ∘ g−1ab for all γ ∈Γa. The
datum of a holomorphic orbifold ðG;XÞ atlas compatible
with the maximal complex orbifold atlas, Umax, defines a
holomorphic ðG;XÞ structure on complex orbifold
O ¼ ðXO;UmaxÞ. If a complex orbifold O admits a

FIG. 10. Geometric structure on manifolds. A geometric ðG;XÞ
structure on a complex manifold M is given by an atlas of
holomorphic charts such that open neighborhoods are biholo-
morphic to open subsets of X and transition maps are given by
restrictions of elements of G.

FIG. 11. Development pair.
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holomorphic ðG;XÞ structure, one can always choose a
local model ðŨa;ΓaÞ for each open set Ua ⊂ XO, where
Ũa ⊂ X and Γa < G; notice that if we require the collection
fðŨa ⊂ X;Γa < GÞg to be a set of local models for a
complex orbifold, the space X should itself admit a
complex structure and the action of group G on X should
be given by holomorphic automorphisms. When there is no
risk of confusion, we will say that a maximal orbifold atlas
Umax ≔ fðUa; Ũa ⊂ X;Γa < G; faÞga∈A induces a com-
plex orbifold ðG;XÞ structure on XO.
Once again, the definition of complex orbifold ðG;XÞ

structures simplifies considerably for the case of Riemann
orbisurfaces (orbifold Riemann surfaces) due to the
restricted nature of singular points in one complex
dimension.
Definition B.2 [Complex ðG;XÞ structures on Riemann

orbisurfaces]. LetO ¼ ðXO;DÞ be a Riemann orbisurface.
A complex ðG;XÞ structure on the Riemann orbisurface O
is given by a ðG;XÞ structure on its underlying Riemann
surface XO such that the complex structure that is induced
on XO by the ðG;XÞ structure coincides with the already
existent complex structure on XO.
A holomorphic orbifold ðG;XÞ map f∶ O → O0 is a

holomorphic orbifold mapO→
f
O0 such that its holomorphic

local lift at each point x∈XO is given by a pair of maps

between local models ðŨa;ΓxÞ →
ðf̃x;fxÞðŨ0

a;Γ0
fOðxÞÞ, where the

group homomorphism f̄x∶ Γx → Γ0
fOðxÞ is induced by

conjugation γa ↦ gab ∘ γa ∘ g−1ab for all γa ∈Γx and holo-
morphic f̃x-equivariant map f̃x∶ Ũa → Ũ0

a is given by a
restriction of g∈G. Note that if O is a complex orbifold
and f∶ O → O0 is a holomorphic orbifold map to another
complex orbifoldO0 equipped with a (holomorphic) ðG;XÞ
structureG0, we can pull back the ðG;XÞ structureG0 onO0
to another ðG;XÞ structure f�ðG0Þ on O such that f
becomes a ðG;XÞ map. In particular, a complex ðG;XÞ
structure on an orbifold O induces a complex ðG;XÞ
structure on its covering orbifolds through a pullback by
the covering map.
Theorem B.1 (Thurston). When G is a group of biholo-

morphisms of a complex manifold X, then every complex
ðG;XÞ orbifold is good.
Remark B.1. If G is a subgroup of a linear group, then O

is very good by Selberg’s lemma provided that O has a
finitely generated fundamental group. In particular, all
geometric orbifold Riemann surfaces are very good—
i.e., finitely covered by a manifold.
Next, we note that the idea of developing map extends to

orbifolds with complex geometric structures.
Theorem B.2. Let O be a ðG;XÞ orbifold, where ðG;XÞ

is a complex analytic geometry. Then, there exists a
developing map

dev∶ Õ → X

defined on the universal covering Õ and a holonomy
representation hol∶ π1ðOÞ → G such that

dev ∘ γ ¼ holðγÞ ∘ dev
for any deck transformation γ ∈ π1ðOÞ.

2. Hierarchy of geometric structures

Often one geometric structure contains or refines another
geometry as follows. Suppose that G and G0 act transitively
on X and X0, respectively, and X⃗f X0 is a local biholo-
morphism which is equivariant with respect to a homomor-
phism G⃗F G0—i.e., for each g∈G, the following diagram

ðB2Þ

commutes. Then (by composition with f and F) every
ðG;XÞ structure determines a ðG0;X0Þ structure. There are
many important examples of this correspondence, most of
which occur when f is an embedding. For example, when f
is the identity map and G ⊂ G0 is a subgroup preserving
some extra structure onX ¼ X0, then every ðG;XÞ structure
is a fortiori an ðG0;X0Þ structure. A more important example
for us is the relation between projective and hyperbolic
structures: In this case the map f∶ H ↪ CP1 will be an
embedding and PSLð2;RÞ can be viewed as the subgroup of
PSLð2;CÞ which leaves the subspace H ⊂ CP1 invariant.
Therefore, every hyperbolic structure determines a projective
structure.

3. Orbifold CP1 structure and projective connections

Let O ¼ ðXO;DÞ be a hyperbolic orbifold Riemann
surface with signature ðg;m1;…; mne ; npÞ. A CP1 struc-
ture or complex projective structure on the Riemann
orbisurface O is an orbifold ðG;XÞ structure on its under-
lying Riemann surface XO with X ¼ CP1 and G ¼
PSLð2;CÞ such that the complex structure on XO induced
by the CP1 structure coincides with the given complex
structure on this Riemann surface (see Appendix B 1 for
more details). Similar to other orbifold ðG;XÞ structures, a
CP1 structure on O can be equivalently described as a
developing pair ðdev; holÞ where dev∶ Õ → CP1 is the
developing map defined on the universal cover Õ ≅ H
and hol∶π1ðOÞ → PSLð2;CÞ is the holonomy or mono-
dromy representation such that developing map is a hol-
equivariant immersion.
Since any hyperbolic Riemann orbisurface is develop-

able, there exists a finite Galois covering

ϖ∶ Y → Xpunc
O ðB3Þ
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such thatϖ is unramified over Xreg
O ¼ Xpunc

O nSing⋏ðOÞ, and
for each xi ∈Sing⋏ðOÞ, the order of ramification at every
point of ϖ−1ðxiÞ is νðxiÞ ¼ mi—i.e., ϖ induces a hol-
omorphic orbifold covering map Y → O. Let us, for the
sake of simplicity, take O to be a compact Riemann
orbisurface so that Y is a closed Riemann surface of genus
g̃; the case with punctures follows from the formal limit
m → ∞. Let H be the group of deck transformations or the
Galois group for ϖ such that O ≅ ½Y=H�; we have
H ⊆ AutðYÞ, where AutðYÞ denotes the group of holomor-
phic automorphisms of Y. Now, let us fix a projective
structure P on the closed Riemann surface Y and consider
the convex combination

PH ≔
1

#H

X
h∈H

h�P; ðB4Þ

where h�P denotes the pullback of CP1 structure P by
holomorphic automorphism h, #H is the order ofH, and the
average is defined using the convex structure of the space
PðYÞ of all projective structures on Y compatible with its
complex structure. Note that this projective structure PH on
Y is clearly left invariant by the action of H on Y.
We will now construct an orbifold projective structure on

XO using PH (see [84,197]): Let fðŨa; f̃aÞga∈A be a
maximal CP1 atlas on Y, where open subsets Ũa of Y
left invariant by the action of H on Y and CP1-coordinate
functions f̃a∶ Ũa → Ṽa ⊂ CP1 are holomorphic isomor-
phisms compatible with the projective structure PH.
Consider the ramified coverings

ϖ ∘ f̃−1a ∶ fVa → Ua ≅ Ũa=Ha ⊂ XO; ðB5Þ

where Ha ⊂ H is the Galois group of the restriction ϖjŨa
.

Then, the collection of ramified coverings fϖ ∘ f̃−1a ga∈A
combines together to define an orbifold projective structure
on XO. Indeed, that they define a CP1 structure on O is an
immediate consequence of the facts that PH is left invariant
by the action on Y of the Galois group H andϖ is ramified
exactly over SingðOÞ with mi ¼ νðxiÞ as the order of
ramification over each xi ∈SingðOÞ. Note that one conse-
quence of this construction is that the space of all CP1

structures on O compatible with its complex structure,
PðOÞ, is the fixed point locus for the action of H on
PðYÞ—i.e., PðOÞ ¼ PHðYÞ ⊂ PðYÞ.
It is well known that if fðŨ0

b;
ef0bÞgb∈B is a CP

1 atlas on a
compact Riemann surface Y that defines a complex
projective structure P∈PðYÞ and fðŨa;ũa∶ Ũa→CÞga∈A
is any atlas of holomorphic charts on this Riemann surface,

the collection of holomorphic functions fSchðef0b; ũaÞg,
defined on overlaps Ũ0

b ∩ Ũa, give what is known as a
“(holomorphic) projective connection” on Y. Let
fðŨa; ũaÞga∈A be any complex-analytic atlas on Y with

local coordinates ũa∶ Ũa → C and transition functions
ũa ¼ g̃ab ∘ ũb on Ũa ∩ Ũb. A holomorphic projective
connection R̃ on Y is in general defined as a collection
fr̃aga∈A of holomorphic functions r̃a supported on Ũa that
satisfy

r̃b ¼ r̃a ∘ g̃abðg̃0abÞ2 þ Schðg̃ab; ũbÞ; ðB6Þ

on every intersection Ũa ∩ Ũb. One can conversely show
that any projective connection R̃ on Y defines a CP1

structure P∈PðYÞ as follows (see, e.g., Proposition 3.3
of [198]): Let R̃ ¼ fr̃aga∈A be a holomorphic projective
connection with respect to complex-analytic atlas
fðŨa; ũaÞga∈A. On each open subset Ũa, let ζa be any
solution of the equation

Schðζa; ũaÞ ¼ −r̃a: ðB7Þ

The holomorphic functions ζa have nowhere vanishing
derivatives, so that we can assume they are injective up to
shrinking Ũas. Then, the new coordinates fζa ∘ ũaga∈A
define the same complex structure on Y. In addition,
the Schwarzian derivatives Schðζa ∘ ũa; ζb ∘ ũbÞ can easily
be shown to vanish by using Schðf ∘ g; zÞ ¼
Schðf; gðzÞÞðg0Þ2 þ Schðg; zÞ. This implies that
fðŨa; ζa ∘ ũaÞga∈A is an atlas of complex projective
structure. A different choice of atlas or a different collection
of solutions ζa would define the same complex projective
structure. Therefore, one concludes that the set of holo-
morphic projective connections R̃ on a Riemann surface Y
is in bijection with the set of CP1 structures on Y.
Similar to the way that we have constructed orbifoldCP1

structures on XO usingH-invariant projective structures PH

on the covering Riemann surface Y, we can try to construct
projective connections on XO by starting from H-invariant
projective connections on Y. More concretely, let
fðŨa; ũaÞga∈A be a complex-analytic atlas on Y and let
R̃H be a holomorphic projective connection corresponding
to the H-invariant CP1 structure PH ∈PHðYÞ. The pro-
jective connection R̃H is given by a collection fr̃Ha ga∈A of
holomorphic functions r̃Ha supported on each open subset
Ũa that are invariant under the action of Galois groups
Ha ⊂ H of restrictions ϖjŨa

∶ Ũa → Ua ≅ Ũa=Ha ⊂ XO

and satisfy (B6) on every overlap Ũa ∩ Ũb. Let Ũa be an
open subset containing only one ramification point of the
covering ϖ∶ Y → XO with multiplicity ma such that
Ha ≔ GalðϖjŨa

Þ ≅ Zma
. If r̃Ha is one of the holomorphic

functions defining R̃H that is supported on Ũa and is left
invariant by the Galois group Zma

for ϖjŨa
∶ Ũa → Ua ≅

Ũa=Zma
⊂ XO, then r̃Ha descends, by the map ϖjŨa

, to a
meromorphic function with at most a pole of order 2 at
singular point xa ∈Ua. In other words, r̃Ha ¼ ðϖjŨa

Þ�ra,
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where ra is a meromorphic function onUa with pole only at
xa of order at most 2. In fact, if xa ∈Ua is a singular point
of order ma and uaðxaÞ ¼ 0, the behavior of ra near this
singularity is given by

raðuaÞ ¼
1 − 1=m2

a

u2a
þ ðjuaj−1Þ as ua → 0: ðB8Þ

If ma ≠ ∞, the monodromy in PSLð2;CÞ around this
regular singularity will be given by multiplication with

e
2πi
ma while if ma ¼ ∞, the monodromy around this singu-
larity will be given by a nontrivial parabolic element. The
collection fraga∈A of such meromorphic functions will
define a quasibounded projective connection R on the
underlying Riemann surface XO which is in bijection with
orbifold CP1 structure on this surface (see e.g. [199–201]
for more details). A quasibounded projective connection R
naturally determines a second-order linear differential
equation on the Riemann surface XO, the Fuchsian differ-
ential equation

d2ya
du2a

þ 1

2
raya ¼ 0; ðB9Þ

where fyaga∈A is understood and as a multivalued mero-
morphic differential of order −1=2 on XO.
Last but not least, the difference between two projective

connections is a meromorphic quadratic differential with
only simple poles—i.e., a collection fqaga∈A of mero-
morphic functions on each open subset Ua ∈XO with the
transformation law

qb ¼ qa ∘ gabðg0abÞ2; ðB10Þ

and the additional condition that qaðuaÞ ¼ ðjuaj−1Þ as
ua → 0, if xa ∈Ua is a singular point and uaðxaÞ ¼ 0.
Conversely, we can add a meromorphic quadratic differ-
ential to a given quasibounded projective connection R to
obtain a new quasibounded projective connection. Since we
know that each Riemann orbisurface has at least one CP1

structure, the one given by Poincaré-Koebe uniformization,
we will have Proposition 2.1 (see [84]).

APPENDIX C: ASYMPTOTICS NEAR ELLIPTIC
AND PARABOLIC FIXED POINTS

In this Appendix, we will sketch the derivation of the
asymptotics of the Liouville field φ in a neighborhood of
each of the parabolic and elliptic points (see Sec. 2 of [64]
as well as the proof of lemma 2 in [5] and lemma 4 in [53]).
One of the remarkable corollaries of the uniformization
theorem is that the orbifold Riemann surface Oreg has a
unique metric of constant curvature −1 compatible with
the complex structure. It is the projection on O of the
Poincaré metric ðIm zÞ−2jdzj2 on H and has the form
ds2 ¼ eφðwÞjdwj2. The condition that the curvature is
constant and equal to −1means that the function φ satisfies
the Liouville’s equation on Oreg,

∂w∂wφ ¼ 1

2
eφ: ðC1Þ

The two asymptotic forms of metric (A32) and (A36) in an
ϵ neighborhood of cusps and cones enable us to find the
asymptotic form of the Liouville field φ near these para-
bolic and elliptic fixed points:

(i) Asymptotic form of φðwÞ near cusps:

φðwÞ ¼

−2 log jw − wij − 2 log j log jw − wijj þOð1Þðwi ≠ ∞Þ; w → wi;

−2 log jwj − 2 log log jwj þOð1Þ; w → ∞;
ðC2Þ

(ii) Asymptotic form of φðwÞ near cones:

φðwÞ ¼
n
−2
�
1 − 1

mi



log jw − wij þOð1Þ ðwi ≠ ∞Þ; w → wi: ðC3Þ

One can also derive these asymptotics by studying the
mapping J, called Klein’s Hauptmodule, as a meromorphic
function on H which is automorphic with respect to the
Fuchsian group Γ—i.e.,

JðγzÞ ¼ JðzÞ for z∈H and ∀ γ ∈Γ: ðC4Þ

For the sake of simplicity, let us assume that the Fuchsian
group Γ has genus 0; we can choose a standard system of ne

elliptic generators τ1;…; τne of orders m1;…; mne and np
parabolic generators κ1;…; κnp (ne þ np ¼ n) satisfying

the single relation τ1 � � �τneκ1 � � �κnp ¼1. Let z1;…; zne ∈ Ĉ
and zneþ1;…; zn ∈R ∪ f∞g be the fixed points of elliptic
and parabolic generators, respectively, which project into
w1;…; wne ; wneþ1;…; wn ∈ Ĉ. We will assume that
zn−2 ¼ 0; zn−1 ¼ 1, and zn ¼ ∞, which can always be
achieved by conjugation with PSLð2;RÞ. The elements
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τ1;…; τne and κ1;…; κnp are then represented in their
matrix form as

τi ¼
�
zi − λiz̄i ðλi − 1Þziz̄i
1 − λi λizi − z̄i

�
;

κj ¼
�
1þ δneþjzneþj −δneþjz2neþj

δneþj 1 − δneþjzneþj

�
;

κnp ¼
�
1 δn

0 1

�
; ðC5Þ

with i ¼ 1;…; ne and j ¼ 1;…; np − 1. In the above

equation, λ1;…; λne ¼ e
2πi
m1 ;…; e

2πi
mne are called the multi-

pliers of τ1;…; τne and δneþ1;…; δn ∈R are called trans-
lation lengths of κ1;…; κnp . Therefore, according to the
Eq. (C4) and using (C5), it is easy to see that in a
neighborhood of each elliptic point zi, i ¼ 1;…; ne
with ramification index mi, the Hauptmodule can be
expanded as

JðzÞ ¼ wi þ
X∞
k¼1

JðiÞk

�
z − zi
z − z̄i

�
kmi

; ðC6Þ

and in a neighborhood of each of the parabolic points zi,
i ¼ ne þ 1;…; n − 1:

JðzÞ ¼ wi þ
X∞
k¼1

JðiÞk exp

�
−

2π
ffiffiffiffiffiffi
−1

p
k

jδijðz − ziÞ
�
: ðC7Þ

Similarly, in a neighborhood of the parabolic point zn ¼ ∞,
the function JðzÞ can be expanded as

JðzÞ ¼
X∞
k¼−1

JðnÞk exp

�
2π

ffiffiffiffiffiffi
−1

p
kz

jδnj
�
: ðC8Þ

In Eqs. (C6), (C7), and (C8), the coefficients JðiÞ1 ; JðnÞ−1 ≠ 0

because the mapping J is univalent in any fundamental
domain for Γ. If we choose elements ςneþj;…; ςn ∈
PSLð2;RÞ such that ςneþjð∞Þ ¼ zneþj and

ς−1neþjκjςneþj ¼
�
1 �1

0 1

�
;

for j ¼ 1;…; np, we can also rewrite (C7) and (C8) in the
form

JðςizÞ ¼
8<:wi þ

P∞
k¼1 J

ðiÞ
k expð2π ffiffiffiffiffiffi

−1
p

kzÞ; i ¼ ne þ 1…n − 1;P∞
k¼−1 J

ðiÞ
k expð2π ffiffiffiffiffiffi

−1
p

kzÞ; i ¼ n:
ðC9Þ

The hyperbolic metric eφðwÞjdwj2 on O is given by

eφðwÞ ¼ jJ−1ðwÞ0j2
ðIm J−1ðwÞÞ2 ; ðC10Þ

and satisfies the Liouville’s equation (78). In order to find
the asymptotic behavior of the Liouville field φðwÞ near
branch points and cusps, we need to study the multivalued
analytic function J−1∶ O → H which is a locally univalent
linearly polymorphic function122 onO. Let us first calculate

the expansion of J−1ðwÞ near elliptic fixed points. To do so,
we will rewrite the expansion (C6) as

J ¼ wi þ
X∞
k¼1

JðiÞk ðumi
D Þk; ðC11Þ

where i ¼ 1;…; ne and uD ≡ ðz − ziÞ=ðz − z̄iÞ is the coor-
dinate on D instead of H. Formally, by inverting the above
power series, we get

uD¼ J̃−1ðwÞ¼
�

1

JðiÞ1

� 1
miðw−wiÞ

1
mi −

JðiÞ2
miðJðiÞ1 Þ2þ 1

mi

ðw−wiÞ1þ
1
mi þ−2miJ

ðiÞ
1 JðiÞ3 þðJðiÞ2 Þ2ð1þ3miÞ
2m2

i ðJðiÞ1 Þ4þ 1
mi

ðw−wiÞ2þ
1
mi þ���: ðC12Þ

Then, by using the definitions uD, we have

J−1ðwÞ ¼ zi þ 2
ffiffiffiffiffiffi
−1

p
Im zi

�
w − wi

JðiÞ1

� 1
mi

�
1þ JðiÞ2

miðJðiÞ1 Þ2
ðw − wiÞ þ � � �

�
: ðC13Þ

122Linearly polymorphic means that the branches of this function are connected by linear fractional transformations in Γ.
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We can use the same method to find the expansion of J−1

near cusps as well. Near parabolic points by rewriting the

equations (C7) and (C8) as a power series in ιj≠n ≡
expð− 2π

ffiffiffiffi
−1

p
jδjjðz−zjÞÞ and ιn ≡ expð2π

ffiffiffiffi
−1

p
z

jδnj Þ, we get

JðzÞ ¼
(
wj þ

P∞
k¼1 J

ðjÞ
k ιkj ; j ¼ ne þ 1;…; n − 1;P∞

k¼−1 J
ðjÞ
k ιkj ; j ¼ n:

As before, we can formally invert the above power series
(j ¼ ne þ 1;…; n − 1)

ιj¼
1

JðjÞ1

ðw−wjÞ−
JðjÞ2

ðJðjÞ1 Þ3
ðw−wjÞ2

þ2ðJðjÞ2 Þ2−JðjÞ1 JðjÞ3

ðJðjÞ1 Þ5
ðw−wjÞ3þ��� ; w→wj;

ιn¼
JðnÞ−1
w

þJðnÞ−1J
ðnÞ
0

w2
þJðnÞ−1 ððJðnÞ0 Þ2−JðnÞ−1J

ðnÞ
1 Þ

w3
þ��� ; w→∞

and again using the definitions ιj≠n and ιn, to see
(j ¼ ne þ 1;…; n − 1)

J−1ðwÞ ¼

8>>>>>>>><>>>>>>>>:

zj − 2π
ffiffiffiffi
−1

p
jδjj

�
log
�
w−wj

JðjÞ
1



− JðjÞ

2

ðJðjÞ
1
Þ2 ðw − wjÞþ

þ 3
2
ðJðjÞ

2
Þ2−JðjÞ

1
JðjÞ
3

ðJðjÞ
1
Þ4 ðw − wjÞ2 þ � � �

�
−1
; w → wj;

jδnj
2π
ffiffiffiffi
−1

p
�
log

�
JðnÞ−1
w

�
þ JðnÞ

0

w þ 1
2
ðJðnÞ

0
Þ2−JðnÞ−1 J

ðnÞ
1

w2 þ � � �
�
; w → ∞:

Let us identify the accessory parameters as (see Lemma 1 of [5] and Lemma 3 of [53])

ci ≡ −
hiJ

ðiÞ
2�

JðiÞ1


2
; i ¼ 1;…; ne;

ci ≡ −
JðiÞ2�
JðiÞ1


2
; i ¼ ne þ 1;…; n − 1;

cn ≡ JðiÞ0 ; i ¼ n;

where hi=2≡ ð1 − 1=m2
i Þ=2 is the conformal weight of the twist operators corresponding to branch points [85].

Accordingly, we can summarize the asymptotic behavior of the J−1ðwÞ near conical singularities and cusps (i ¼ 1;…; ne,
j ¼ ne þ 1;…; n − 1)

J−1ðwÞ ¼

8>>>>>><>>>>>>:

zi þ 2
ffiffiffiffiffiffi
−1

p
Im zi

�
w−wi

JðiÞ
1


 1
mi

�
1 − ci

mihi
ðw − wiÞ þ � � �



; w → wi;

zj − 2π
ffiffiffiffi
−1

p
jδjj

�
log
�
w−wj

JðjÞ
1



− cjðw − wjÞ þ � � �



−1
; w → wj;

jδnj
2π
ffiffiffiffi
−1

p
�
log
�
JðnÞ−1
w



þ cn

w þ � � �


; w → ∞:

ðC14Þ

Finally, we are ready to derive the asymptotic behavior of the Liouville filed φðwÞ and its derivatives using Eq. (C10) and
the above expansion near the cones and cusps.
Lemma C.1. The function φðwÞ has the following properties:
(1) ∂

2
wφ − 1

2
ð∂wφÞ2 ¼ SchðJ−1;wÞ.
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(2) For i ¼ 1;…; ne and j ¼ ne þ 1;…; n − 1,

φðwÞ ¼

8>>>>><>>>>>:
−2
�
1 − 1

mi



log jw − wij þ log 4jJðiÞ

1
j− 2

mi

m2
i

þ O ð1Þ w → wi

−2 log jw − wjj − 2 log
��� log��� w−wj

JðjÞ
1

������þ O ð1Þ w → wj;

−2 log jwj − 2 log log
��� w
JðnÞ−1

���þOðjwj−1Þ; w → ∞:

(3) For i ¼ 1;…; ne and j ¼ ne þ 1;…; n − 1,

4jJðiÞ1 j− 2
mi

m2
i

¼ lim
w→wi

eφðwÞjw − wij2−
2
mi ;

jJðjÞ1 j2 ¼ lim
w→wj

exp

�
log jw − wjj2 −

2e−
φðwÞ
2

jw − wjj
�
;

jJðnÞ−1 j2 ¼ lim
w→∞

exp

�
log jwj2 − 2e−

φðwÞ
2

jwj
�
:

(4) For i ¼ 1;…; ne and j ¼ ne þ 1;…; n − 1,

∂wφðwÞ ¼

8>>>>>>>><>>>>>>>>:

−
1− 1

mi
w−wi

þ ci
1− 1

mi

þ O ð1Þ w → wi;

− 1
w−wj

�
1þ

�
log
��� w−wj

JðjÞ
1

���
−1�þ cj þ O ð1Þ w → wj;

− 1
w

�
1þ

�
log
��� w
JðnÞ−1

���
−1� − cn
w2 þO

�
1

jwj2


; w → ∞:

(5) For i ¼ 1;…; ne and j ¼ ne þ 1;…; n − 1,

∂
2
wφðwÞ ¼

8>>>>><>>>>>:

1− 1
mi

ðw−wiÞ2 þ � � � w → wi;

1
ðw−wjÞ2 þ

1

ðw−wjÞ2 log j
w−wj

J
ðjÞ
1

j þ
1

ðw−wjÞ2log2j
w−wj

J
ðjÞ
1

j þ � � � w → wj;

2cn
w3 þ 1

w2 þ 1
w2 log j w

J
ðnÞ
−1

j þ 1
w2log2j w

J
ðnÞ
−1

j þ � � � ; w → ∞:

Proof. Parts 2–5 follow from (C10) and (C14). Also,
the part 1 follows from parts 2–5 and the definition of
Schwarzian derivative in (16). ▪
Remark C.1. In this paper, we sometimes need to study

the behavior of objects in the case when the point at the
infinity is a conical point. So it is good to clear things out in
that case as well. In this remark, we assume that the point
wn is a conical point at infinity. Instead of (C6) we have

JðzÞ ¼
X∞
k¼−1

JðnÞk ðumn
D Þk:

By inverting this expansion, we arrive at

uD ¼
�
JðnÞ−1


 1
mn

�
1

w

� 1
mn þ

�
JðnÞ−1


 1
mnJðnÞ0

mn

�
1

w

�
1þ 1

mn þ � � � ;

which, according to the Lemma 3 of [53], it implies that in
the case of the conical point at the infinity, the accessory
parameter becomes

cn ≡ hnJ
ðnÞ
0 ; ðC15Þ

with hn ≡ 1 − 1=m2
n. The next point of interest is part 3 of

Lemma C.1 which implies that for conical points wi that are
not at infinity, we have

CLASSICAL LIOUVILLE ACTION AND UNIFORMIZATION OF … PHYS. REV. D 110, 046018 (2024)

046018-101



hi ¼ jJðiÞ1 j 2
mi ¼ 4

m2
i
lim
w→wi

e−φðwÞjw − wij−2þ
2
mi :

This expression is also subject to a slight change for hi
when wi → ∞. Considering uD ¼ ðz − ziÞ=ðz − z̄iÞ and
J−1ðwÞ ¼ z to write uD ¼ ðJ−1ðwÞ − ziÞ=ðz − z̄iÞ implies
that

J−1ðwÞ ¼ zi þ 2
ffiffiffiffiffiffi
−1

p
Im zi

 �
JðnÞ−1

� 1
mn

�
1

w

� 1
mn

þ
�
JðnÞ−1


 1
mnJðnÞ0

mn

�
1

w

�
1þ 1

mn þ � � �
!
:

Now from (C10) and the equation above we have

eφðwÞ ¼ 4

m2
n
ðJðnÞ−1 Þ

2
mn

�
1

w

�
2ð1þ 1

mn
Þ
þ � � � :

Accordingly,

hn ¼ jJðnÞ−1 j
2
mn ¼ m2

n

4
lim
w→∞

eφðwÞjwj2ð1þ 1
mn

Þ: ðC16Þ

1. Quadratic and Beltrami differentials

In this Appendix, we will study the behavior of quadratic
differentials, i.e., cusp forms of weight 4, and harmonic
Beltrami differentials, automorphic forms of weight
(−2, 2), near elliptic and parabolic fixed points and connect
them with functions on the Riemann orbisurface O (see
[101,202] for more details). Let us begin by studying the
behavior of quadratic differential qðzÞ∈H2;0ðH;ΓÞ as
z → ∞: Parabolic generator κnp ∈Γ with the fixed point
zn ¼ ∞ has the following normal form [see (C5)]:

κnpðzÞ ¼ zþ δn;

i.e., it is a translation by δn. Therefore, the equation
qðκnpzÞκ0npðzÞ2 ¼ qðzÞ satisfied by the quadratic differ-
ential qðzÞ can be translated as

qðzþ δnÞ ¼ qðzÞ: ðC17Þ

It is then easy to verify that the following Fourier series
expansion,

qðzÞ ¼
X∞
k¼1

qðnÞk exp

�
2π

ffiffiffiffiffiffi
−1

p
kz

jδnj
�
; ðC18Þ

satisfies Eq. (C17) and therefore represents the behavior of
qðzÞ near zn ¼ ∞. In order to study the behavior of qðzÞ

near the fixed points of other parabolic generators
κ1;…; κnp−1, we note that the Möbius transformation

PSLð2;RÞ ∋ ςneþjðzÞ ¼
1

z − zneþj
; j ¼ 1;…; np − 1;

sends that fixed point to ∞ and we have
ς−1neþjκjςneþjðzÞ ¼ zþ δneþj. As a result, the normal form
of the parabolic generators κj for j ¼ 1;…; np − 1 is
given by

1

κjðzÞ − zneþj
¼ 1

z − zneþj
þ δneþj;

and we have that qðzÞ satisfies

q

�
zneþj þ

ðz − zneþjÞ
1þ δneþjðz − zneþjÞ

�
1

ð1þ δneþjðz − zneþjÞÞ4
¼ qðzÞ;

near parabolic points zneþ1;…; zn−1. Therefore, as z → zi
the quadratic differential has the following Fourier series
expansion:

qðzÞ ¼ 1

ðz − ziÞ4
X∞
k¼1

qðiÞk exp

�
−

2π
ffiffiffiffiffiffi
−1

p
k

jδijðz − ziÞ
�
;

i ¼ ne þ 1;…; n − 1: ðC19Þ

To study the behavior of differentials near the elliptic fixed
points z1;…; zne , it is easier to first use the unit disk model
of the hyperbolic plane. Let τi ∈Γ be an elliptic generator
of order mi with fixed points zi ∈H and z̄i ∈ H̄. Then, the
Möbius transformation,

PSLð2;RÞ ∋ ςiðzÞ ¼
z − zi
z − z̄i

; i ¼ 1;…; ne; ðC20Þ

sends the points ðzi; z̄iÞ to ð0;∞Þ and therefore ς−1i τiςiðzÞ
fixes both 0 and∞ and should be given by ς−1i τiςiðzÞ ¼ λiz.
For elliptic generators, the multiplier λi can be determined
to be the mith primitive root of unity, i.e.,
λi ¼ expð2π ffiffiffiffiffiffi

−1
p

=miÞ, via the use of condition τmi
i ¼ 1.

Therefore, the normal form of the elliptic generators τi of
order mi is given by

τiðzÞ − zi
τiðzÞ − z̄i

¼ e
2π
ffiffiffi
−1

p
mi

z − zi
z − z̄i

; i ¼ 1;…; ne:

The Möbius transformations (C20) give the standard
isomorphism ςi∶ H → D; let us denote the coordinate
on D by uD ¼ ςiðzÞ and the push forward of the
density of Poincaré metric, ρðzÞ¼ðImzÞ−2, by
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ρðuDÞ ¼ 4ð1 − juDj2Þ−2. Similarly, if we denote the push forward of qðzÞ∈H2;0ðH;ΓÞ with qðuDÞ∈H2;0ðD;ΓÞ,
it satisfies

qðλiuDÞλ2i ¼ qðuDÞ:
It is easy to see that the solution to the above equation has the following power series form in uD:

qðuDÞ ¼
X∞
k¼1

qðiÞk ukmi−2
D as uD → 0; ðC21Þ

since λmi
i ¼ 1. We can also find the pullback of qðuDÞ∈H2;0ðD;ΓÞ to H2;0ðH;ΓÞ by using qðuDÞduD2 ¼ qðzÞdz2—i.e.,

qðzÞ ¼ qðuDÞðduDdz Þ2,

qðzÞ ¼ −
4ðIm ziÞ2
ðz − z̄iÞ4

X∞
k¼1

qðnþjÞ
k

�
z − zi
z − z̄i

�
kmi−2

i ¼ 1;…; ne; ðC22Þ

which satisfies the equation

q

�
−zzi þ z̄iðλizþ zi þ λiziÞ

zðλi − 1Þ − λizi þ z̄i

�
λ2i

�
−zziþz̄iðλizþziþλiziÞ

zðλi−1Þ−λiziþz̄i
− z̄i



4

ðz − z̄iÞ4
¼ qðzÞ:

We can summarize the behavior of qðzÞ∈H2;0ðH;ΓÞ near branch points and cusps as

qðzÞ ¼

8>>>>><>>>>>:
− 4ðIm ziÞ2

ðz−z̄iÞ4
P∞

k¼1 q
ðiÞ
k

�
z−zi
z−z̄i



kmi−2 ði ¼ 1;…; neÞ; z → zi;

1
ðz−ziÞ4

P∞
k¼1 q

ðiÞ
k exp

�
− 2π

ffiffiffiffi
−1

p
k

jδijðz−ziÞ



ði ¼ ne þ 1;…; n − 1Þ; z → zi;P∞
k¼1 q

ðnÞ
k exp

�
2π
ffiffiffiffi
−1

p
kz

jδnj


; z → ∞:

ðC23Þ

Using the complex antilinear isomorphism H2;0ðH;ΓÞ ≅ H−1;1ðH;ΓÞ given by qðzÞ ↦ μðzÞ ¼ ρðzÞ−1qðzÞ,123 we have

μðzÞ ¼

8>>>>><>>>>>:
− 4ðIm zÞ2ðIm ziÞ2

ðz̄−ziÞ4
P∞

k¼1 q̄
ðiÞ
k

�
z̄−z̄i
z̄−zi



kmi−2ði ¼ 1;…; neÞ; z → zi;

ðIm zÞ2
ðz̄−ziÞ4

P∞
k¼1 q̄

ðiÞ
k exp

�
2π
ffiffiffiffi
−1

p
k

jδijðz̄−ziÞ



ði ¼ ne þ 1;…; n − 1Þ; z → zi;

ðIm zÞ2P∞
k¼1 q̄

ðnÞ
k exp

�
− 2π

ffiffiffiffi
−1

p
kz̄

jδnj


; z → ∞;

ðC24Þ

where we have used the fact that z̄neþj ¼ zneþj ∈R for j ¼ 1;…; np − 1. The mapping,

qðzÞ ↦ QðwÞ ¼ ðq ∘ J−1ÞðwÞðJ−1ðwÞ0Þ2; ðC25Þ

determines a linear isomorphism of spaces H2;0ðH;ΓÞ and H2;0ðOÞ and the inverse mapping is given by

QðwÞ ↦ qðzÞ ¼ ðQ ∘ JÞðzÞJ0ðzÞ2: ðC26Þ

The Petersson inner product inH2;0ðH;ΓÞ can be carried over toH2;0ðOÞ by setting hQ1; Q2i≡defhQ1 ∘ JJ02; Q2 ∘ JJ02i for all
Q1; Q2 ∈H2;0ðOÞ, so that

hQ1; Q2i ¼
ZZ

C
e−φðwÞQ1ðwÞQ2ðwÞd2w: ðC27Þ

123Equivalently, qðuDÞ ↦ μðuDÞ ¼ ρðuDÞ−1qðuDÞ induces the isomorphism H2;0ðD;ΓÞ ≅ H−1;1ðD;ΓÞ.
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It follows from Eq. (C23) and (C14) that

QðwÞ ¼
X∞
k¼1

qðnÞk exp

�
2π

ffiffiffiffiffiffi
−1

p
k

jδnj
×

jδnj
2π

ffiffiffiffiffiffi
−1

p
�
log

�
JðnÞ−1
w

�
þ cn

w
þ � � �

��� jδnj
2π

ffiffiffiffiffiffi
−1

p
�
−
1

w
−
cn
w2

þ � � �
��

2

≃
�
−
jδnj2
4π2

�
1

w2
þ 2cn

w3
þ c2n
w4

þ � � �
��X∞

k¼1

qðnÞk

�
JðnÞ−1
w

�k

¼ −
jδnj2qðnÞ1 JðnÞ−1

4π2
·
1

w3
−
jδnj2JðnÞ−1 ð2cnqðnÞ1 þ qðnÞ2 JðnÞ−1 Þ

4π2
·
1

w4
þOðjwj−5Þ as w → ∞;

and

QðwÞ ¼
 
−
2π

ffiffiffiffiffiffi
−1

p

jδij
1

log
�
w−wi

JðiÞ
1



− ciðw − wiÞ þ � � �

!−4

×
X∞
k¼1

qðiÞk exp

�
−
2π

ffiffiffiffiffiffi
−1

p
k

jδij
× −

jδij
2π

ffiffiffiffiffiffi
−1

p
�
log

�
w − wi

JðiÞ1

�
− ciðw − wiÞ þ � � �

��

×

�
−
2π

ffiffiffiffiffiffi
−1

p

jδij
−1

ðw − wiÞlog2ðw−wi

JðiÞ
1

Þ þ � � �
�2

¼ −
jδij2qðiÞ1
4π2JðiÞ1

·
1

w − wi
þOðjw − wij−2Þ; ði ¼ ne þ 1;…; n − 1Þ as w → wi:

Similarly, near branch points w1;…; wne we have

QðwÞ ¼ ðq ∘ J̃−1ÞðwÞðJ̃−1ðwÞ0Þ2; ðC28Þ

where J̃−1∶ O → D is the inverse of Klien’s Hauptmodule in the unit disk model of the hyperbolic plane. Using
equations (C12) and (C21), we get

QðwÞ ¼
X∞
k¼1

qðiÞk

0B@� 1

JðiÞ1

� 1
miðw − wiÞ

1
mi −

JðiÞ2

mi

�
JðiÞ1


2þ 1

mi

ðw − wiÞ1þ
1
mi þ � � �

1CA
kmi−2

×

0B@m−1
i

�
1

JðiÞ1

� 1
miðw − wiÞ−1þ

1
mi −

�
1þ 1

mi

�
JðiÞ2

mi

�
JðiÞ1


2þ 1

mi

ðw − wiÞ
1
mi þ � � �

1CA
2

¼ qðiÞ1
m2

i J
ðiÞ
1

·
1

w − wi
þOð1Þ ði ¼ 1;…; neÞ; as w → wnþj:

We can summarize the behavior of QðwÞ∈H2;0ðOÞ near conical singularities and punctures as follows:

QðwÞ ¼

8>>>>><>>>>>:

qðiÞ
1

m2
i J

ðiÞ
1

· 1
w−wi

þOð1Þ ði ¼ 1;…; neÞ; w → wi;

− jδij2qðiÞ1
4π2JðiÞ

1

· 1
w−wi

þOðjw − wij−2Þ; ði ¼ ne þ 1;…; n − 1Þ; w → wi;

− jδnj2qðnÞ1
JðnÞ−1

4π2
· 1
w3 þOðjwj−4Þ w → ∞:

ðC29Þ
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Finally, using the complex antilinear isomorphism H2;0ðOÞ ≅ H−1;1ðOÞ given by QðwÞ ↦ MðwÞ ¼ e−φðwÞQðwÞ, we have

MðwÞ ¼

8>>>>>>>><>>>>>>>>:

qðiÞ
1

4J̄ðiÞ
1

· jw − wij1−
2
mi þOðjw − wijÞ ði ¼ 1;…; neÞ; w → wi;

− jδij2q̄ðiÞ1
4π2J̄ðiÞ

1

· jw − wijlog2jw − wij þOðlog2jw − wijÞ
ði ¼ ne þ 1;…; n − 1Þ; w → wi;

− jδnj2q̄ðnÞ1
J̄ðnÞ−1

4π2
· log

2jwj
jwj þOðjwj−2log2jwjÞ w → ∞:

ðC30Þ

Using the definition (86) as well as Eqs. (C14) and (C24), one can independently check the above asymptotic behaviors
for MðwÞ.

APPENDIX D: LIST OF SYMBOLS IN THE MAIN TEXT

g Genus of a corresponding surface, or rank of a Schottky group
ne Number of elliptic fixed points or branch points
np Number of parabolic fixed points or punctures
n Number of all marked points, namely ne þ np
mi Orders of the marked points
m n-tuple of all branching indices for an orbifold, i.e. ðm1;…; mnÞ
hi=2 Conformal weights corresponding to the marked points, i.e., 1 − 1

m2
i

N̂>1 Natural numbers with the inclusion of ∞ and omission of 1
D Unit disk in C
X Riemann surface without singularities
O Orbifold Riemann surface
Oμ Orbifold Riemann surface deformed by μ
XO Underlying Riemann surface of O
Xreg
O Regular locus of O

X̂O Compactified underlying Riemann surface
K Kleinian group
Γ Fuchsian group
Γμ Fuchsian group deformed by μ
Σ Schottky group
N Smallest normal subgroup of Γ containing fα1;…; αg; τ1;…; τne ; κ1;…; κnpg
π1ðO; x�Þ Fundamental group of an orbifold based at x�
Zm Cyclic group of order m
Aut�ðΓÞ Group of proper automorphisms of Γ
InnðΓÞ Group of inner automorphisms
MCGðOÞ Mapping class group, namely HomeoþðOÞ=HomeoþidðOÞ
ModðΓÞ Teichmüller modular group of Γ, i.e., Aut�ðΓÞ=InnðΓÞ ¼ OutþðΓÞ
HomeoþðOÞ Group of orientation preserving homeomorphisms of O in the category of orbifolds, which has HomeoþidðOÞ as its

identity component
OutþðΓÞ Group of outer automorphisms of Γ ≃ π1ðOÞ
MCG0ðOÞ Group of pure mapping classes of O
Mod0ðΓÞ Group of pure mapping classes of Γ
SymmðsiÞ Symmetric group associated with the stratum of order mi
SymmðsÞ Product symmetric group Symmðs2Þ × Symmðs3Þ × � � � × Symmðs∞Þ
deck Group of covering or deck transformations
H1 First homology group
Ω Region of discontinuity of Schottky group Σ
Ω0 Region of discontinuity with pre-images of cusps subtracted

Ω
⋏ ðΩ0; D̃Þ
Ωreg Ω0nSuppðD̃Þ
Λ Limit set of a Kleinian group, i.e. ĈnΩ
F Fundamental domain of a Fuchsian group

(Appendix D continued)
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Appendix D (Continued)

D Fundamental domain of a Schottky group
D0 D ∩ Ω0

D
⋏ ðD0; D̃ jDÞ

D
⋏
ϵ

Regularized singular fundamental domain of a Schottky group defined by D
⋏
n ∪n

i¼1 D
ϵ
i

γ An element of a Fuchsian group
σ An element of a Schottky group
η An element of a symmetric group
Ai Homotopy class of loops around a handle
Bi Homotopy class of loops around a hole
Ci Homotopy class of loops around a branch point
Pi Homotopy class of loops around a puncture
αi, βi Hyperbolic generators of a Fuchsian group
τi Elliptic generator of a Fuchsian group
κi Parabolic generator of a Fuchsian group
Li Generator of a Schottky group
ãi; b̃i Attracting and repelling fixed points of the loxodromic element Li

λi Multiplier of the loxodromic element Li
ai A retrosection of a Riemann surface
fη One-cocycle associated with an element η∈SymmðsÞ
SingðOÞ Set of all singular points for an orbifold O
SingmðOÞ Set of singular points of order m for an orbifold O, i.e., ν−1ðmÞ
Sing⋏ðOÞ Set of singular points of finite order for an orbifold O, i.e., ⨆m≠∞ SingmðOÞ
sm Cardinality of the stratum of singular points of order m∈ N̂>1

s Signature type of an orbifold O, which is the unordered set of cardinalities of all strata, i.e., fsmgm∈ N̂>1

ν Branching function which assigns to each singular point its corresponding branching order
xi Marked points on the Riemannian orbifold
zei ; z

p
i Elliptic and parabolic fixed points of a Fuchsian group, respectively

xci ; z
p
i Images of the elliptic and parabolic fixed points of a Fuchsian group, under the projection H → O ¼ ½H=Γ�, respectively

z Coordinates on the upper half-plane
w Global coordinates on Ω
wi Singular points on an orbifold, namely branch points for i ¼ 1;…; ne, and cusps for i ¼ ne þ 1;…; n
t Bers coordinates
ε Small complex parameter for variation
ϵ Small real parameter for regularization
CM αðXÞ Space of all smooth conformal metrics eψðu;ūÞjduj2 on Xnfx1;…; xng which have conical singularities of angles

2πð1 − αiÞ at the insertion points
CM ðOÞ Space of singular conformal metrics on XO representing D
D Branch divisor
D̃ Branch divisor corresponding to the lift of the original D under the Schottky group
Ua Open subset in XO
ua Coordinate function on an orbifold chart
uD Coordinate on unit disk
gab Transition function between two orbifold coordinate charts, Ua and Ub
C∞ Smooth functions
φ;ψ (Classical) Liouville field
Sm Liouville action functional for nonzero genus
Sm Liouville action functional for zero genus
FO Free energy defined through the action functional on an orbifold
Δ0 Laplace operator
πΓ Orbifold covering map between H and an orbifold O that provides it with the Fuchsian global coordinates

πΣ Orbifold covering map between Ω or Ω
⋏
and an orbifold O which restricted to Ωreg gives the Schottky global coordinates

J Depending on the context, the orbifold covering map between H and Ω or Ω
⋏
, namely Klein’s Hauptmodul, or orbifold

covering map between H and O
j The epimorphism Γ → Σ which maps βis to Lis and all αis, κjs, and τks to 1
Jμ Orbifold covering map between H and an underlying Riemann surface Oμ

(Appendix D continued)
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Appendix D (Continued)

JðiÞk The kth order coefficient of J’s expansion around the ith marked point

hi Smooth functions on M0;n defined by jJðiÞ1 j 2
mi for i ¼ 1;…; ne, jJðiÞ1 j2 for i ¼ ne þ 1;…; n − 1, and jJðnÞ−1 j2 for i ¼ n

Λ Complex antilinear mapping between A−1;1ðH;ΓÞ and H2;0ðH;ΓÞ defined through the Bergman integral
Sg Schottky space of genus g, i.e., the set of equivalence classes of representations ½ϱμ�∶Σ → PSLð2;CÞ, μ∈DðΣÞ.
Sg;nðmÞ Generalized Schottky space of genus g and n marked points, corresponding to m ¼ ðm1;…; mnÞ
T g;nðmÞ Teichmüller space of marked Riemann orbisurfaces of genus g > 1, corresponding to m ¼ ðm1;…; mnÞ
T ðΓÞ Teichmüller space defined as the set of equivalence classes of representations ½ϱμ�∶Γ → PSLð2;RÞ, μ∈DðΓÞ
Pg;nðmÞ Affine bundlePg;nðmÞ → T g;nðmÞ, that the Fuchsian projective connection Schðπ−1Γ Þ gives a canonical section for it or

Pg;nðmÞ → Sg;nðmÞ which has the Schottky projective connection Schðπ−1Σ Þ as a canonical section
Mg;nðmÞ Moduli space of Riemannian orbifold with signature ðg;m1;…; mne ; npÞ that is isomorphic to T ðΓÞ=ModðΓÞ
Mg;n Moduli space of smooth complex algebraic curves of genus g with n labeled points, i.e. T ðΓÞ=Mod0ðΓÞ
R Projective connection
ra Elements of a projective connection
Schðf; zÞ Schwartzian derivative of f with respect to z
Lμ;Lμ̄ Lie derivative in holomorphic and antiholomorphic tangential directions, μ and μ̄
Q Quadratic differential
qa Holomorphic functions constructing a quadratic differential
μ; μ0 Beltrami differentials for a Fuchsian group

M Functions defined by ðμ ∘ J−1Þ ðJ−1Þ0ðJ−1Þ0, which construct the analog of the Beltrami equation for Fμ

μi Basis element for harmonic differentials in H−1;1ðH;ΓÞ
Mi Basis element for harmonic differentials in H−1;1ðOÞ
qi Basis element for quadratic differentials in H2;0ðH;ΓÞ
Ri Linearly independent elements that generate the space H2;0ðOÞ
Qi Basis element for quadratic differentials in H2;0ðOÞ biorthogonal to Ri

Pi Basis element for quadratic differentials in H2;0ðΩ
⋏
;ΣÞ

Ei Terms multiplying to conformal weights in the energy-momentum tensor expansion for zero genus
E i Terms multiplying to conformal weights in the energy-momentum tensor expansion for nonzero genus
vi Normalized basis of the space of holomorphic one-forms–Abelian differentials of the first kind
ϕ An element of Ak;lðH;ΓÞ
RðwÞ Projection of the automorphic form SchðJ−1;wÞ of weight 4 for the Schottky group to the subspace H2;0ðΩ

⋏
;ΣÞ ≅

T�
π ∘Φð0ÞSg;nðmÞ

bi Coefficients of the projection RðwÞ
ProjHk;l Projection operator onto Hk;lðH;ΓÞ
A−1;1ðH;ΓÞ Complex Banach space of the Beltrami differentials for Γ
A−1;1ðΩ;ΣÞ Complex Banach space of the Beltrami differentials for Σ
DðΓÞ Open ball of radius 1 in A−1;1ðH;ΓÞ
DðΣÞ Open ball of radius 1 in A−1;1ðΩ;ΣÞ
H2;0ðH;ΓÞ Space of cusp forms of weight 4 for the group Γ—equivalently, meromorphic (2, 0)-tensors/quadratic differentials on the

Riemann orbisurface O

H2;0ðΩ
⋏
;ΣÞ Meromorphic quadratic differential for Schottky group Σ

Hk;0ðH;ΓÞ Cusp forms of weight 2k for Γ
H−1;1ðH;ΓÞ Harmonic Beltrami differentials, that are a subspace Λ�ðH2;0ðH;ΓÞÞ of A−1;1ðH;ΓÞ
H−1;1ðΩ

⋏
;ΣÞ Space of harmonic Beltrami differentials with respect to the hyperbolic metric on Ω

⋏

H2;0ðOÞ Space of quadratic differentials on an orbifold
H−1;1ðOÞ Space of harmonic differentials on an orbifold
Ak;lðH;ΓÞ Smooth family of automorphic forms of weight ð2k; 2lÞ, or ðk; lÞ tensors on an orbifold O
Φ Mapping from DðΓÞ to T g;nðmÞ
Ψ Mapping from T 0;nðmÞ to Cn−3, defined by ðΨ ∘ΦÞðμÞ ¼ ðwμ

1;…; wμ
n−3Þ∈Cn−3

π Mapping from T g;nðmÞ to Sg;nðmÞ
N ðH;ΓÞ Kernel of the differential dΦ at the point 0∈DðΓÞ
PðOÞ Space of all CP1 structures on a complex orbifold O
Tφ; T̄φ (2, 0) and (0, 2) components of the classical energy-momentum tensor on an orbifold O
Ta; T̄a Components of the classical energy-momentum tensor on each chart Ua
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Appendix D (Continued)

Q Difference between the Fuchsian and Schottky projective connections, i.e., Schðπ−1Γ Þ − Schðπ−1Σ Þ
ωWP Symplectic form of the Weil-Petersson metric
ωcusp
TZ;i Symplectic form of ith-cuspidal Takhtajan-Zograf metric

ωell
TZ;i Symplectic form of ith-elliptic Takhtajan-Zograf metric

h·; ·iWP Petersson inner product on T ½μ�T g;nðmÞ ≅ H−1;1ðH;ΓμÞ
h·; ·icuspi ith-cuspidal Takhtajan-Zograf (TZ) inner product
h·; ·icusp The invariant inner product under ModðΓÞ, i.e. h·; ·icusp ¼ h·; ·icusp1 þ � � � þ h·; ·icuspnp
h·; ·ielli ith-elliptic Takhtajan-Zograf (TZ) inner product

ðjj · jjQuill1 Þ2 Quillen metric on λ1

jj · jjQuillk
Quillen norm on λk

h·; ·iSch Hermitian metric on λSch
λH Hodge line bundle over Mg;n
λ0;nðsÞ Holomorphic line bundle over M0;n

λSch Holomorphic Q-line bundle over Mg;n
λ1 Hodge line bundle, i.e., the determinant line bundle associated with the Cauchy-Riemann operator ∂1
λk Determinant line bundle associated with the Cauchy-Riemann operator ∂k
λHod Hodge line bundle ðλHod; h·; ·iQuilÞ
fμ Solution of Beltrami equation corresponding to a Beltrami differential μ
Fμ Quasiconformal mapping that satisfies Fμ ∘ J ¼ Jμ ∘ fμ
ḟμþ; ḟμ− The derivatives ð ∂

∂ε f
εμÞjε¼0

, ð ∂
∂ε̄ f

εμÞjε¼0
, respectively

hol Holonomy representation
ϱμi Representations of Fuchsian or Schottky group corresponding to a Beltrami differential μi
ρðzÞ Density of a hyperbolic metric on H
Eiðz; sÞ Eisenstein-Mass series associated with the cusp zneþi
H Hermitian metric defined on the holomorphic line bundle λ0;nðsÞ defined by hm1h1

1 � � � hmne hne
ne hneþl � � � hn−1h−1n for zero

genus and, hm1h1
1 � � � hmne hne

ne hneþ1 � � � hn for nonzero genus
ci Accessory parameters
Cϵ
i Regularization circles around branch points and punctures

Ci; C0
i Jordan curves constructing the boundary of the Schottky fundamental domain

Dϵ
i Disks of radius ϵ around branch points and punctures

Oϵ The region outside the regularizing disks, i.e., Cn⋃n−1
i¼1fwjjw − wij < ϵg ∪ fwjjwj > ϵ−1g

| Holomorphic fibration between Sg;nðmÞ and Sg whose fibers are configuration spaces of n labeled points
FnðĈÞ Configuration space of complex n-tuples in Ĉ
L i ith relative dualizing sheaf on Sg;nðmÞ or the ith tautological line bundle
L Q-line bundle defined by ⊗n

i¼1 L
hi
i

c1 First Chern class
c1ðE;∇Þ First Chern form of a vector bundle E
θL−1

k
Boundary one-form of Takhtajan-Zograf action

lk Left-hand lower element in the matrix representation of the generator Lk ∈PSLð2;CÞ for k ¼ 2;…; g
degðDÞ Degree of a divisor
½·=·� Quotient as an analytic orbifold/stack
τ Period matrix
det0 Δ0 Zeta function regularized determinant of the Laplace operator in the hyperbolic metric expðφÞjdwj2 acting on functions
Fg The function from Sg to C given by Fg ¼

Q
fγg
Q∞

k¼0 ð1 − q1þk
γ Þ

qγ Multiplier of γ ∈Γ
Fg;nðmÞ Generalization of Fg to Sg;nðmÞ
B2ðxÞ Second Bernoulli polynomial
ZSzðs;Γ;UÞ Selberg zeta function
Z1−loop
gravity

One-loop partition function of three-dimensional gravity

Vαi ; Vmi
Liouville vertex operators with charges αi

TðwÞ Conformal energy momentum tensor
hmi

Conformal dimensions of vertex operators Vmi

hclðmiÞ Classical limit of hmi
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APPENDIX E: LIST OF SYMBOLS IN THE APPENDIXES

n Dimension or rank of different objects
g Genus of an orbifold Riemann surface
ne Number of elliptic fixed points or branch points
np Number of parabolic fixed points or punctures
n Number of all marked points, namely, ne þ np
mi Orders of the marked points
½·=·� Quotient as an analytic orbifold/stack
X Analytic subvariety
ðjXj;OXÞ Ringed space or complex analytic space
jXj Underlying topological space of an analytic space X
Xred Reduction of an analytic space
E Vector bundles of different kind
Ē1 Complex conjugate of a vector bundle
Mr×rðCÞ Space of complex r × r matrices
L Complex line bundle
L Holomorphic line bundle
KX Canonical line bundle, i.e., nth exterior power ⋀nT�

ð1;0ÞX
KO Canonical orbidivisor
K−1

X Anticanonical line bundle, i.e., the dual or inverse line bundle of KX

L ðDÞ Holomorphic line bundle corresponding to a divisor
O Complex analytic orbifold
XO Underlying complex analytic space for an orbifold
Xreg
O Orbifold regular locus or the principal stratum

X A complex model space
f1;…; fk A system of local defining functions for an analytic subvariety
RegðXÞ Set of all regular point of a subvariety X
SingðXÞ Singular locus or the set of singular points of of a subvariety X, i.e., XnRegðXÞ
ΔðϵÞ A small polydisc
OΔðϵÞ Ring of all holomorphic functions on ΔðϵÞ
OX Ring of holomorphic functions on a subvariety X, i.e., OΔðϵÞ=IðXÞ
OU Ring of holomorphic functions in some open subset U ⊂ Cn containing the origin
OU;0 Ring of germs of holomorphic functions at the origin
OX;0 Ring of germs of holomorphic functions on the subvariety X defined by OCn;0=Ið½X�0Þ
IðXÞ Ideal of the subvariety X, i.e., ideal of all vanishing functions in X in the ring OΔðϵÞ
I Defining ideal of a subvariety X, i.e., ideal formed by the set of defining functions of Xffiffiffiffi
I

p
Radical ideal of a subvariety X, i.e., ff∈OΔðϵÞjfk0 ∈I for some positive integer k0g

Ið½X�0Þ Ideal canonically associated to a germ ½X�0 of an analytic subvariety at the origin defined as the ideal of germs of
all analytic functions vanishing on the subvariety X representing the germ ½X�0

mX;x Maximal ideal of a ringed space X
J Coherent ideal used in the definition of the closed complex analytic subspace
½X�0 Germ of analytic subvariety X at 0 in Cn

½f�0 Germ of holomorphic function f at the origin
½XðIÞ�0 Locus of the ideal I, i.e., a germ of an analytic subvariety at the origin in Cn canonically associated to an ideal

I ⊆ OCn;0

OCn ;OU Sheaf of germs of holomorphic functions of n complex variables and its restriction to U ⊂ Cn, respectively
I ðXÞ Sheaf of ideals of the analytic subvariety X
OX Sheaf of germs of holomorphic functions on the subvariety X, i.e., OU=I ðXÞ
I Coherent sheaf of OU ideals
EM Sheaf of germs of C∞ complex functions on a complex manifold M
E r

M Direct sum sheaf defined by EM ⊕ � � � ⊕ EM|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
r

E ðEÞ Sheaf of germs of C∞ sections of a vector bundle E

E
ðk;lÞ
M ðEÞ Sheaf of germs of smooth sections of ⋀k;lT�M ⊗ E

E �
M Multiplicative sheaf of invertible C∞ complex functions on a complex manifold M

OXðEÞ Analytic sheaf on X of germs of holomorphic sections in E
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Appendix E (Continued)

O�
X Sheaf of nowhere-vanishing holomorphic functions, i.e., sheaf of invertible elements in OX

MX Sheaf of meromorphic functions on X
M �

X Subsheaf of not identically zero meromorphic functions on X
FO Orbisheaf
F̃ a Sheaves that construct an orbisheaf FO

OO Structure orbisheaf of an orbifold O
FX Sheaves on XO coming from invariant local sections of orbisheaves FO
Ωn

O Canonical orbisheaf of a complex orbifold O of complex dimension n
ðjfj; f�Þ Morphism of C-ringed spaces
g�ab Gluing isomorphisms in a analytic atlas
gαβ Transition matrix of a vector bundle E
ψα Trivialization of a vector bundle E on an open set Vα

π The projection from E to the base space in the definition of a vector bundle
pr The projection Vα × Cr → Vα in the definition of a vector bundle
δ Connecting homomorphism for a holomorphic line bundle L
fuαβg System of transition functions for the holomorphic line bundle L ðDÞ
ϖ Surjective analytic map invariant under Γ
jϖj Quotient map sending y to its left orbit ΓðyÞ
ηab Change of charts for an orbifold
ϒab Monomorphism between Γa and Γb in orbifolds
forb Analytic orbifold automorphism
ϖorb Orbifold Galois covering
πorb Orbifold projection map in the definition of orbibundles
η̂ab Holomorphic bundle isomorphism in the definition of orbibundles
ϒ̂a Monomorphism in the definition of orbibundles
fa Transition maps for a ðG;XÞ structure
dev Developing map
hol Holonomy representation
C Injective group homomorphism between Γ and G in a ðG;XÞ structure
J Klein’s Hauptmodule, i.e., a meromorphic function on H which is automorphic with respect to the Fuchsian

group Γ
s Smooth complex section of vector bundle E or holomorphic section of a holomorphic vector bundle E
s k frame of vector bundle E, i.e., a collection ðs1;…; skÞ of k sections si of vector bundle E on V linearly

independent at each point in V
HomðE1; E2Þ Homomorphism of vector bundles E1 and E2

⋀kE kth exterior power of a vector bundle
AkðV;EÞ Vector space of C∞ sections of ð⋀kT�MÞ ⊗ E on V ⊂ M, which are called differential forms on V with values in

the vector bundle E
Aðk;lÞðEÞ Vector space of smooth sections of this sheaf are ðk; lÞ-forms with values in E
∇ Connection of a vector bundle E or Aðk;lÞðEÞ
f∇ag Γa-equivariant Hermitian connections supported on each local uniformizing neighborhood Ũa such that ∇as are

compatible with changes of charts
Θ Curvature of a connection ∇, i.e., ∇∘∇
A ¼ ðAijÞ Connection matrix with respect to a frame
θ ¼ ðθijÞ Curvature matrix with respect to a frame
g ¼ ðgijÞ Gauge transformation matrix
h Hermitian metric on a complex vector bundle E
h Hermitian metric on a complex orbifold
h̃Γa
a Γa-invariant (local) Hermitian metrics used in the definition of h

ciðE;∇Þ ith Chern form of a vector bundle E
ciðEÞ ith Chern class of a vector bundle E
PicðXÞ Picard group of X, i.e., the groupH1ðX;O�

XÞwhich is the group of holomorphic line bundles on the analytic space
X with group multiplication being the tensor product, and the inverse bundle being the dual bundle

Pic0ðXÞ Kernel of the connecting homomorphism δ for a holomorphic line bundle L
DivðXÞ Divisor group, i.e., the group constructed via the formal sum of Weil divisors
H0ðX;M �

X=O
�
XÞ Abelian group of Cartier divisors on X
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ClðXÞ Divisor class group of Weil divisors modulo linear equivalence
CaClðXÞ Group of Cartier divisor classes, i.e., Cartier divisors modulo principal divisors
Γ A finite subgroup of the group AutðXÞ of analytic automorphisms of X
Γy Isotropy subgroup or stabilizer subgroup of y
ΓðyÞ Orbit of a point y
FixðγÞ Fixpoint set
T Thin subset
Rϖ Ramification locus of an analytic covering
Bϖ Branching locus of an analytic covering, i.e., ϖðRϖÞ
AutðϖÞ Group of covering transformations or deck transformations, i.e., group of all automorphisms of an analytic

covering
GalðY=XÞ;GalðϖÞ Galois group of an analytic covering, i.e., AutðϖÞ
π1 Fundamental group
Isomþ Group of orientation preserving isometries
D Divisor
DivðMÞ Weil or Cartier divisors on a smooth complex manifold M
Dreg Weil divisor defined on RegðXÞ
ϕ Principal Cartier divisor or orbifold k-form
Ri Prime divisors or irreducible hypersurfaces
Rϖ Ramification divisor of an analytic covering
Bϖ Branching divisor of an analytic covering
D Branch divisor of an orbifold
Hi Irreducible analytic hypersurface
SuppðDÞ Support of a Weil divisor, i.e., ∪i Hi
multHi

ðDÞ Multiplicity of a Weil divisor D, i.e., the coefficient ai in its definition
degðDÞ Degree of a Weil divisor, i.e.,

P
i multHi

ðDÞ ¼Pi ai
Zf Zero set of a holomorphic function f
ordðfÞ Order of vanishing of a holomorphic function f
½D� Linear system of divisors defined by D, i.e., the set of all divisors on X that are linearly equivalent to D
degðϖÞ Degree of an analytic covering
# Order of a group
νϖ Branching function of a covering
mi Ramification indices of a covering ϖ along irreducible hypersurfaces Ri
ðXO;DÞ Log pair
ðD;D;Zmi

; fiÞ Charts on an orbifold Riemann surface
mi Branching index of an orbifold Riemann surface
Ua Open subset in XO in the definition of orbifold
Ũa Open subset in Cn in the definition of orbifold
Γa Subgroup of GLðn;CÞ in the definition of orbifold
fa Folding map in the definition of orbifold
U Orbifold atlas
Umax Maximal orbifold atlas
½U� Equivalence class of analytic orbifold atlases on XO
Γx Isotropy group or the local group
mx Order of the local isotropy group
Ai Homotopy class of loops around a handle
Bi Homotopy class of loops around a hole
Ci Homotopy class of loops around a branch point
Pi Homotopy class of loops around a puncture
F Number of faces
E Number of edges
V Number of vertices
ϕ̃Γa
a Γa-invariant complex k-forms used in the definition of the orbifold k-form

Ep;qðOÞ Vector space of all orbifold ðp; qÞ-forms on an orbifold O
Ap;qðO;Kk

O ⊗ K̄l
OÞ Vector space of smooth differential forms of type ðp; qÞ on O with values in Kk

O ⊗ K̄l
O

Ek;lðH;ΓÞ Hilbert space of automorphic forms of weight ð2k; 2lÞ with the natural scalar product hϕ1;ϕ2i ¼
R
X ϕ1ϕ2ρ

−k−lþ1
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Hk;lðXÞ Space of harmonic ðk; lÞ differentials that are square integrable with respect to the hyperbolic metric on X ¼ H=Γ
P Complex structure
P Projective structure
PH Projective structure fixed by the convex combination 1

#H

P
h∈H h�P

Sch Schwarzian derivative
qa Elements of a quadratic differential
ϕ Liouville field
αi, βi Hyperbolic generators of a Fuchsian group
τi Elliptic generator of a Fuchsian group
κi Parabolic generator of a Fuchsian group
λi Multipliers of elliptic generators of a Fuchsian group
δi Translation length of parabolic generators of a Fuchsian group

JðiÞk The kth order coefficient of J’s expansion around the ith marked point

ci Accessory parameters
hi Conformal weight corresponding to the order of a marked point mi

H2;0ðH;ΓÞ Space of cusp forms of weight 4 for the group Γ—equivalently, meromorphic (2, 0)-tensors/quadratic
differentials on the Riemann orbisurface O

H−1;1ðH;ΓÞ Harmonic Beltrami differentials, that are a subspace Λ�ðH2;0ðH;ΓÞÞ of A−1;1ðH;ΓÞ
H2;0ðOÞ Space of quadratic differentials on an orbifold
H−1;1ðOÞ Space of harmonic differentials on an orbifold
qðzÞ An element of H2;0ðH;ΓÞ
μðzÞ An element of H−1;1ðH;ΓÞ
QðwÞ An element of H2;0ðOÞ
MðwÞ An element of H−1;1ðOÞ
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Mathématique de France Paris, Paris, 2003), Vol. 15.

[183] F. Hirzebruch and T. Höfer, On the Euler number of an
orbifold, Math. Ann. 286, 255 (1990).

[184] P. Griffiths and J. Harris, Principles of Algebraic Geometry
(John Wiley & Sons, New York, 2014).

[185] I. Moerdijk and J. Mrcun, Introduction to Foliations
and Lie Groupoids, Cambridge Studies in Advanced
Mathematics (Cambridge University Press, Cambridge,
England, 2003).

[186] M. Troyanov, Les surfaces euclidiennes à singularités con-
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