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Area metrics and area metric backgrounds provide a unified framework for quantum gravity. They
encode physical degrees of freedom beyond those of a metric. These nonmetric degrees of freedom must be
suppressed by a potential at sufficiently high energy scales to ensure that in the infrared regime classical
gravity is recovered. On this basis, we first study necessary and sufficient algebraic conditions for an area
metric to be induced by a metric. Second, we consider candidate potentials for the area metric and point out
a possible connection between the reduction of area metric geometry to metric geometry on the one hand,
and the smallness of the cosmological constant on the other. Finally, we consider modifications of the
Nambu-Goto action for a string from a metric background to an area metric background. We demonstrate
that area metric perturbations introduce an interaction corresponding to a singular vertex operator in the
classically equivalent Polyakov action. The implications of these types of vertex operators for the quantum
theory remain to be understood.
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I. INTRODUCTION

Area metric geometry [1–6] is a generalized approach to
spacetime geometry traditionally described in terms of a
length metric. Whereas a length metric is represented by a
rank-two tensor, which measures the norms of vectors and
angles between two vectors, an area metric is represented
by a rank-four tensor, which measures the norms of
bivectors and dihedral angles between two bivectors. A
given length metric always gives rise to an induced area
metric. However, in dimensions d > 3, a generic area
metric exhibits more degrees of freedom than an ordinary
metric and thereby defines a much richer structure to
describe background spacetime than a metric.
The relevance of area metrics extends across various

areas of physics and, in particular, approaches to quantum
gravity. The Nambu-Goto action for a free string, as well as

the action for the electromagnetic field and the Yang-Mills
action, are naturally described by an antisymmetric product
of metrics that defines an induced area metric. Taking this
area metric to be generic and not induced by a metric
defines these actions on an area metric background, on
which area connections and curvature tensors can be
introduced [1,2,5]. In particular, in string theory, at least
from the viewpoint of the Nambu-Goto action or the Schild
action, only the notion of area, not the notion of length, is
needed for the worldsheet theory [5]. The area metric is a
more natural geometric notion for strings, while the metric
is for particles. Moreover, area metrics also appear in
holography and the reconstruction of geometry from
entanglement [7,8].
Notably, area variables provide the fundamental variables

in loop quantum gravity [9] and spin-foam path integrals for
quantum geometry [10]. Therein, four-dimensional area
metrics appear at the microscopic level in the twisted
geometry of a coherent four-simplex [11], as well as
macroscopically in the continuum limit of the area-Regge
action [12,13] which describes the semiclassical regime of
effective spin foams [14], see Refs. [15,16]. In the latter
context, the additional degrees of freedom of the area metric,
beyond those of an ordinary metric, can be understood as
arising due to a second-class quantum algebra of constraints
[17–19]. The presence of second-class constraints requires
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these to be imposed only weakly and thereby leads to an
enlarged configuration space over which the gravitational
spin foam path integral is defined. In [20] it has been shown
that modified nonchiral Plebanski theories [21–23], in which
a subset of the simplicity constraints is replaced by a
potential, can be understood as a classical analog of the
mechanism ofweak imposition of constraints at the quantum
level. In particular, modified nonchiral Plebanski theories
were seen to reproduce the results found in the continuum
limit of the area-Regge action [15,16] and to provide a natural
nonperturbative framework for area metrics and area metric
actions, see Ref. [20].
In a perturbative analysis, area metric actions to second

order in fluctuations and derivatives have been studied in
[6]. The effective actions for the subset of area metric
degrees of freedom associated with length metric fluctua-
tions generically exhibit nonlocal corrections quadratic in
the Weyl curvature beyond the Einstein-Hilbert term. For a
two-parameter subclass of area metric Lagrangians, the
effective graviton propagator remains free from additional
poles, besides the one corresponding to the massless
graviton [6]. Moreover, in contrast to classical gravity,
the parity-breaking Barbero-Immirzi (BI) parameter
[24,25] enters the classical dynamics of area metrics as a
constant which parametrizes a mixing of polarizations for
the massless spin-two mode [6]. Thereby area metric
phenomenology and experimental measurements of the
BI parameter may be within reach in the future.
Given that area metrics appear at various instances in

quantum gravity and from a physical point of view encode
additional degrees of freedom, present above a certain
energy scale and turned off in the deep infrared (IR), or
low-energy limit, it is essential to understand mathemati-
cally under which conditions a generic area metric reduces
to an area metric induced by a length metric. The algebraic
symmetries of the area metric imply that the area metric
field can be decomposed further into irreducible compo-
nents. These should, however, not be regarded as indepen-
dent component fields. Rather, in fundamental theories
where the area metric defines the spacetime geometry, the
area metric field should be massless as an extension of the
metric which is massless in Einstein’s theory of general
relativity. As Einstein’s theory of gravity provides a good
approximation to the gravitational dynamics in the low-
energy limit, we actually observe the metric field as the
only surviving massless component of the area metric.
There should, therefore, be an intermediate energy scale at
which it is reasonable to discuss conditions for the area
metric to reduce to a metric. In the effective theory at this
intermediate energy scale, we expect that a potential for the
area metric exists which gives mass to the nonmetric
degrees of freedom of the area metric. In the second part
of this work, we find a robust connection between such a
potential and the cosmological constant.
The effective action for the area metric field can be

understood as arising from a fundamental theory of

quantum gravity. On this basis, in the third part of this
work, we investigate the origin of area metrics and area
metric actions in the context of string theory. To that end,
starting from the Nambu-Goto action defined as the area of
the worldsheet of a string, we consider perturbations of the
background from a metric background to an area metric
background. We will demonstrate that such area metric
perturbations introduce a singular interaction in the clas-
sically equivalent Polyakov action, whose relevance in the
quantum theory remains to be understood.
Our paper is structured as follows. In Sec. II we first

introduce the notion of a cyclic area metric and discuss
some of its key properties. In Sec. III we study necessary
and sufficient algebraic conditions for an area metric to be
induced by a metric. In Sec. IV we introduce a potential
energy term for the effective area metric action and point
out possible connections to low-energy physics and the
cosmological constant. In Sec. V we consider area metric
perturbations in the context of string theory and derive the
resulting modifications to the worldsheet action. We finish
with a discussion in Sec. VI.

II. CYCLIC AREA METRICS

An area metric [1] at a point p on a smooth d-dimen-
sional manifold M is a nondegenerate rank-four tensor G
with the symmetries

Gμνρσ ¼ −Gνμρσ ¼ Gρσμν: ð1Þ

Nondegeneracy of the area metric is encoded in a nonzero
determinant of the area metric matrix GAB, where A;B ¼
1;…; dðd − 1Þ=2 label antisymmetric index pairs. This
allows us to view G as a metric on the space Λ2TpM of
bivectors and raise bivector indices via the area metric
inverse G−1, which we denote by Gμνρσ with upper indices.
The area metric inverse is defined by

GμνρσGρσαβ ≡ δμν
αβ ≡ δαμδ

β
ν − δβμδαν : ð2Þ

Here, the generalized delta with four indices defines the
identity on the space of area metrics.
In what follows we will impose that the area metric

tensor G satisfies, in addition to the index exchange
symmetries (1), the algebraic Bianchi identity

Gμ½νρσ� ¼ 0: ð3Þ

In this case, G is called a cyclic area metric. Let us for
completeness point out that, in d ¼ 4 spacetime dimensions,
the symmetries (1) imply that the cyclicity condition (3)
imposed on an area metric is equivalent to the requirement
Gμνρσϵ̃

μνρσ ¼ 0, where ϵ̃μνρσ is the totally antisymmetric
Levi-Civita symbol with density weight þ1. In particular,
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a cyclic area metricG in d ¼ 4 has no totally antisymmetric
component.
In this paper we will deal with cyclic area metrics

throughout. The consideration of cyclic area metrics can
be motivated from a mathematical and physical perspective.
Mathematically, imposing cyclicity of the area metric
allows its components to be unambiguously reconstructed
from the norms of bivectors in tangent space without
assuming knowledge about dihedral angles between the
planes spanned by these bivectors [20]. Such a property of
the area metric is analogous to the property of a length
metric being fully determined by the lengths of vectors in
tangent space without any knowledge required about angles
between these vectors.
Physically, cyclic area metrics arise in loop quantum

gravity and spin foams, as well as in string theory. The
semiclassical limit of effective spin foams [14] is described
by the area-Regge action [12,13]. The latter in a lattice
continuum limit can be understood as a discretization of an
action for a cyclic area metric [15,16]. The same type of
actions arises from modified nonchiral Plebanski theories
[21–23] if a only a subset of the simplicity constraints is
imposed on the B field and the other subset is replaced by a
potential [20]. Thereby the remaining components of the B
field can be identified with the degrees of freedom of a
cyclic area metric [20]. Moreover, the twisted geometry of a
coherent simplex has been shown to give rise to a micro-
scopic cyclic area metric associated with such a simplex
[11]. In the context of string theory, the infinitesimal area
element on the worldsheet can be defined directly through
an area metric, and the cyclicity condition arises automati-
cally to remove redundant degrees of freedom in the area
metric [5].
The algebraic symmetries (1) and algebraic Bianchi

identity (3) turnG into what is called an algebraic curvature
tensor. In general spacetime dimension d, such a tensor has

1

12
d2ðd − 1Þðdþ 1Þ ð4Þ

independent components. For example, in d ¼ 2 dimen-
sions, a cyclic area metric has only one independent
componentG0101, whereas in d ¼ 3 dimensions the number
6 of independent components equals the number of inde-
pendent components of a lengthmetric. Ind > 3 dimensions,
the tensorG encodes more degrees of freedom than a length
metric and thus area metric geometry in spacetime dimen-
sions d ¼ 4 and above can be viewed as a generalization of
spacetime geometry based on length metrics.
As an algebraic curvature map, a cyclic area metric

admits a Gilkey decomposition [1,26],

G ¼
XN
I¼1

σIGgI ; σI ¼ �1; ð5Þ

into a sum of area metricsGgI induced by length metrics gI ,
i.e.,

ðGgIÞμνρσ ≡ gIμρgIσν − gIμσgIρν: ð6Þ

Such a decomposition is not unique and the number N of
metrics gI required to decompose a given cyclic area metric
is not known. N has been shown to be bounded from above
by [1,27]

Nmax ¼
dðdþ 1Þ

2
: ð7Þ

III. CONDITIONS FOR INDUCED AREA METRICS

In this section, we will investigate necessary and
sufficient conditions for a cyclic area metric Gμνρσ to be
induced by a single length metric gμν, as in Eq. (5) with
N ¼ 1. From now on we will drop the adjective “cyclic”
when referring to the area metric G.
In odd spacetime dimensions d ¼ 2nþ 1 with n∈N,

one can construct rank-two tensors from the area metric
given by [5]

Hμν ≡� 1

2nð2nÞ! jdetðGÞj
− 1
2nϵ̃μμ1μ2���μ2n ϵ̃νν1ν2���ν2nGμ1μ2ν1ν2 � � �Gμ2n−1μ2nν2n−1ν2n ; ð8Þ

H0
μν ≡� 1

2nð2nÞ! jdetðGÞj
1
2nϵ̃μμ1μ2���μ2n ϵ̃νν1ν2���ν2nG

μ1μ2ν1ν2 � � �Gμ2n−1μ2nν2n−1ν2n ; ð9Þ

where theGswith upper indices denote the inverse areametric defined inEq. (2).Here the “�” sign is determined by the sign of
detðGÞ and ϵ̃ with upper or lower indices denotes, respectively, the totally antisymmetric Levi-Civita symbol with density
weight �1 in d ¼ 2nþ 1 dimensions.
With the above definitions, the necessary and sufficient condition for an area metricG to be induced by a metric g, i.e., that

G ¼ Gg, is

Gμνρσ ¼ H0
μρH0

νσ −H0
μσH0

νρ; or equivalently Gμνρσ ¼ HμρHνσ −HμσHνρ: ð10Þ
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It is easy to show that the above conditions are necessary by
verifying that both equations in (10) are satisfied when
G ¼ Gg. In this case,

H0
μν ¼ gμν and Hμν ¼ gμν: ð11Þ

The sufficiency of (10) is manifest, as we can simply define
H0

μν to be themetric gμν, or equivalently,Hμν to be the inverse
metric gμν.
Rank-two tensors, such as Hμν in Eq. (8) and H0

μν in
Eq. (9), do not exist in even spacetime dimensions.
However, if the area metric is induced by a metric, i.e.,
G ¼ Gg, the dimensionally reduced area metric would also
be given by the dimensionally reduced metric. For instance,
in d ¼ 4 dimensions, choosing a direction aμ for dimen-
sional reduction, the three-dimensional Levi-Civita symbol
can be realized as aμϵ̃μνρσ. Equation (8) for d ¼ 3 dimen-
sions implies that, with aμ projected out,

Hμν ∝
1

4
aρϵ̃ρμαβaσϵ̃σνγδGαβγδ ð12Þ

is expected to be identified with gμν whenG ¼ Gg. We have

omitted the overall factor detðGÞ−1
2, which we expect to

correspond to the determinant of the area metric in d ¼ 3

dimensions. Instead of a direct evaluation, it is easier to
retrieve this overall factor by dimensional analysis later.
On the other hand, the dimensional reduction of the area

metric G leads to

Gμρνσaρaσ ¼
1

4
gμν: ð13Þ

According to Eqs. (12) and (13), if Hμν ¼ gμν holds for an
arbitrary direction aμ of dimensional reduction, we need

Gμρνσ ∝
1

42
ϵ̃μραβϵ̃νσγδGαβγδ: ð14Þ

The overall factor can be determined by dimensional
analysis. Herewith it follows that [5]

Gμρνσ ¼ � 1

42
jdetðGÞj−1

3ϵ̃μραβϵ̃νσγδGαβγδ: ð15Þ

One can check that Eq. (15) holds whenever the area metric
is induced by a metric. Therefore it represents a necessary
condition for G ¼ Gg.
In general, for even spacetime dimensions d ¼ 2nþ 2

with n∈N ∪ f0g, the analogous condition to Eq. (15) is [5]

Gμνρσ ¼ � 1

2nþ2ð2nÞ! jdetðGÞj
− 1
2nþ1ϵ̃μνμ1μ2���μ2n ϵ̃ρσν1ν2���ν2nGμ1μ2ν1ν2 � � �Gμ2n−1μ2nν2n−1ν2n ; ð16Þ

where the sign “�” is again given by the sign of detðGÞ. Similarly, repeating the argument above withH replaced byH0, we
find

Gμνρσ ¼ � 1

2nþ2ð2nÞ! jdetðGÞj
1

2nþ1ϵ̃μνμ1μ2���μ2n ϵ̃ρσν1ν2���ν2nG
μ1μ2ν1ν2 � � �Gμ2n−1μ2nν2n−1ν2n : ð17Þ

Both Eqs. (16) and (17) are necessary conditions for
G ¼ Gg. In the following, we shall see how close they
are to also being a sufficient condition.
Considering d ¼ 4 and multiplying Eq. (15) by the area

metric G on both sides, we find its equivalent expression as

1

42
Gμναβϵ̃

αβγδGγδλτϵ̃
λτρσ ¼ � 1

2
jdetðGÞj13δμνρσ: ð18Þ

In the context of premetric electrodynamics in four-
dimensional spacetime, a condition of the form (18) with-
out the area metric determinant factor on the right hand
side, when imposed on the nonaxion part of the constitutive
tensor of spacetime (which has the same algebraic sym-
metries as the area metricG), is known as “closure relation”
or “electric and magnetic reciprocity” [28–32]. In particu-
lar, in analogy to premetric electrodynamics, in both
Euclidean and Lorentzian signatures as indicated by the

capital letters E and L, respectively, one can introduce a
duality operator from the area metric which acts on 2-forms
Bμν as

#EBμν ≡ 1

4
jdetðGÞj16ϵ̃μνρσGρσαβBαβ; ð19Þ

#LBμν ≡ {
4
jdetðGÞj16ϵ̃μνρσGρσαβBαβ: ð20Þ

Herewith the condition (18) can be stated as the require-
ment that the duality operator applied twice should up to a
sign be equivalent to the identity,

ð #E;LÞ2 ¼ �I; ð21Þ

where the “þ” sign holds in Euclidean signature and the “−”
sign holds in Lorentzian signature. In turn, if the condition
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(18) is taken into account without the determinant factor, a
closure relation imposed on the nonaxion part of the
constitutive tensor of electrodynamics in four spacetime
dimensions, reduces its number of independent components
from 20 down to 9, see, e.g., [28–32] and references therein
for details of how such a condition is related to the condition
for the nonexistence of birefrigence in vacuum. More
concretely, solutions to Eq. (21) in Lorentzian signature
and without the determinant factor, have been found by
decomposing the matrix G̃ into 3 × 3 block matrices and
investigating the resulting conditions on these blockmatrices
for different cases depending on the regularity of the block
matrices along the diagonal [28–32]. Subsequently, the
spacetime metric in the context of electrodynamics can,
up to a conformal factor, be extracted by an analysis of the
propagation of electromagnetic waves [28–32], see also [2].
Such an approach is complementary to theUrbantke formula,
which allows us to define a unique effective metric from an
suð2Þ-valued 2-form [33].
Let us note that in the literature on premetric electro-

dynamics [28–32], a condition of the form (18) or (21) has
been studied as a possible condition, which is both
necessary and sufficient for a tensor with the same
symmetries as the area metric, to be induced from an
ordinary metric g. This holds, however, only if we allow the
metric g to be complex. Notice that the condition (18) is
invariant under the transformation

G → −G: ð22Þ

Under this transformation, the area metric determinant
transforms by multiplication with a factor ð−1Þdðd−1Þ=2
where d ¼ 4. Thus, the “�” sign appearing in Eq. (18)
and defined as the sign of detðGÞ, is not affected by the
above transformation. Now, if an area metric G is induced
by a metric g, then after this transformation, the area metric
−G is defined through the two possible metrics �ig. This
holds because the formula for an induced area metric,
cf. Eq. (5) with N ¼ 1, is a quadratic expression in g. It is
thus clear that the condition (18) alone is not sufficient to
guarantee that the area metric is given by a real metric g, as
already anticipated in [5].
Let us for completeness demonstrate perturbatively and

in Euclidean signature for simplicity, that the condition (18)
imposed on the area metric, including the determinant
factor, indeed reduces the number 20 of independent
components of a cyclic area metric in d ¼ 4 dimensions
down to 10, as required for a length metric.
To that end, let us assume an area metric Gμνρσ which is

induced by a metric gμν. Since Eq. (18) is invariant under
general coordinate transformations, we can choose gμν to be
a diagonal matrix at any given point in spacetime. In
Euclidean signature, we can choose gμν to be given locally
by the flat Euclidean metric δμν without loss of generality.
In this perturbative framework, we can raise and lower

indices by means of the background metric δμν. With area
metric perturbations denoted by aμνρσ, we write

Gμνρσ ¼ δμρδσν − δμσδρν þ aμνρσ: ð23Þ

The tensor of area metric perturbations aμνρσ satisfies the
same algebraic symmetries as the cyclic area metric. In
particular, it can be decomposed into irreducible represen-
tations of the group SOð4Þ according to

aμνρσ ≡ 1

2
hδμνρσ þ 2ðh̃μ½ρδσ�ν − h̃ν½ρδσ�μÞ þ ωþ

μνρσ

þ ω−
μνρσ ∈ ð0; 0Þ ⊕ ð1; 1Þ ⊕ ð2; 0Þ ⊕ ð0; 2Þ; ð24Þ

see, e.g., [6]. The tensor δμνρσ here is defined as the tensor
δμν

αβ introduced (2) and indices lowered with respect to the
background metric δρα and δσβ. The decomposition (24) is
analogous to the Ricci-Weyl decomposition of the Riemann
tensor. The tensor aμνρσ, and similarly ω�

μνρσ, can be treated
as matrices by viewing the first two (antisymmetrized)
indices as a single index A ¼ ½μν� and the latter two as
another one B ¼ ½ρσ�, so that we can define the trace of a
and ω�. In Eq. (24), h is proportional to the trace of a, h̃ is
symmetric and traceless, i.e., h̃μνδμν ¼ 0, whereas the
“Weyl” components ω� are fully traceless (i.e., δμρω�

μνρσ ¼
0 and similarly for other pairs of contracted indices), and
satisfy the self- and anti-self-duality equations with respect
to the background δμν,

1

2
ϵμν

αβω�
αβρσ ¼ �ω�

μνρσ: ð25Þ

Inserting the expansion (23) together with the parametri-
zation (24) into the left-hand side of Eq. (18), to first order
in the perturbations ðh; h̃;ωþ;ω−Þ leads to

1

42
Gμναβϵ̃

αβγδGγδλτϵ̃
λτρσ

¼ 1

2
δμν

ρσ þ 1

2
δμν

ρσhþ ωþ
μν

ρσ þ ω−
μν

ρσ

þOðaðh; h̃;ωþ;ω−Þ2Þ: ð26Þ
On the other hand, regarding the right-hand side of
Eq. (18), to the first order, the area metric determinant is
given by1

detðGÞ ¼ 1þ 3hþOðaðh; h̃;ωþ;ω−Þ2Þ: ð27Þ

Thus, on the right-hand side of the condition (18), to first
order in ðh; h̃;ωþ;ω−Þ, we obtain a contribution of h

1This result can be verified using, e.g., the relation
δ detðGÞ ¼ detðGÞTrðG−1δGÞ, which can be easily derived from
the identity logðdetðGÞÞ ¼ TrðlogGÞ by taking the variation δG
on both sides.
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multiplied by a factor of 1. Herewith the terms proportional
to the trace h cancel on both sides of Eq. (18). As a
consequence, the condition (18) imposed to first order in
area metric perturbations around a flat Euclidean back-
ground, sets the Weyl components of the area metric to
zero, ωþ

μνρσ ¼ ω−
μνρσ ≡ 0, whereas the 10 degrees of free-

dom encoded in the trace mode h and symmetric traceless
tensor h̃μν are left free. The latter can be associated with
symmetric length metric fluctuations hμν defined by [6]

hμν ¼ h̃μν þ
1

4
hδμν: ð28Þ

The above statements can be generalized to higher even
spacetime dimensions. In the Appendix we show that
Eq. (16) is a sufficient condition for area metrics that
are small deformations of an area metric induced by a
metric, to reduce to the induced area metric.

IV. POTENTIAL ENERGY OF THE AREA METRIC

Our Universe is observed to be well described by an
ordinary metric rather than an area metric. In this section,
we will consider a possible potential energy term contained
in the low-energy effective gravitational action for the area
metric and its relation to the gravitational action for the
length metric. We remind the reader that here by “low-
energy” we have in mind an intermediate energy scale at
which a potential for the area metric is expected to give rise
to masses for the nonmetric degrees of freedom.
First, let us note that a volume element with scalar

density þ1 for a generally covariant area metric action can
defined by the area metric determinant as

jdetðGÞj16d4x: ð29Þ

Different from the volume element built from the deter-
minant of a length metric, the volume element built from
the area metric determinant is not the unique scalar
invariant with density weight þ1 available to define the
constant part of a generally covariant area metric
Lagrangian [5]. For an area metric, there exist many
possible invariants with density weight þ1 which can
enter the constant part of a generally covariant action
and contribute to a notion of the potential energy of the area
metric. Our ansatz below is general, as we do not specify
the potential function VG. This function can, for instance,
contain a linear combination of other densityþ1 invariants,
each in turn multiplied by a factor of jdetðGÞj−1

6 with
possibly independent coupling constants.
Thus, we consider the potential energy term in the area

metric action of the general form

Z
d4xjdetðGÞj16VGðGÞ: ð30Þ

As part of the action, the potential density VG must behave
as a scalar. In particular, it needs to be invariant under a
rescaling of the coordinates,

xμ → λxμ; ð31Þ

Gμνρσ → λ−4Gμνρσ: ð32Þ

Since the measure
R
d4xjdetðGÞj16 is invariant under this

scaling transformation, the invariance of the action (30)
requires that VG be invariant. Under an infinitesimal scaling
transformation λ ¼ 1þ ϵ, the variation of G is

δGμνρσ ¼ −4ϵGμνρσ; ð33Þ

and therefore the corresponding generator on the space of
functions of G is given by2

δG ≡ δGμνρσ
∂

∂Gμνρσ
¼ −4Gμνρσ

∂

∂Gμνρσ
: ð34Þ

Therefore, assuming general covariance (so that VG
depends on x only through G), the invariance of VG states
that

δGVGðGÞ≡ −4Gμνρσ
∂VGðGÞ
∂Gμνρσ

¼ 0: ð35Þ

For a low-energy configuration, one may ignore the
kinetic term when applying the least action principle.
Varying the potential term (30) leads to the condition

∂VGðGÞ
∂Gμνρσ

þ 1

6
VGðGÞGμνρσ ¼ 0: ð36Þ

Contracting the indices in this equation with Gμνρσ and
using Eq. (35), we find

VGðGÞ ¼ 0 ð37Þ

as a result of the least action principle for low-energy
configurations. In other words, the potential energy of the
area metric defined in Eq. (30) is always zero on shell of the
potential action.
As a simple example for the potential VGðGÞ, the result

of the previous section suggests to consider

VGðGÞ ¼
γ

2
GμναβGρσγδEμν

ρσEαβ
γδ; ð38Þ

where

2Here the derivatives of G by definition treat all components of
G as independent variables.

JOHANNA BORISSOVA and PEI-MING HO PHYS. REV. D 110, 046017 (2024)

046017-6



Eμν
ρσ ≡ 1

42
jdetðGÞj−1

3Gμναβϵ̃
αβγδGγδλτϵ̃

λτρσ ∓ 1

2
δμν

ρσ: ð39Þ

The above potential evaluates to zero when the area metric
is induced by a metric and thus E ¼ 0 holds. Moreover,
generically, at second order in the perturbations around an
induced area metric, such a potential would lead to mass
terms for the (nonmetric) Weyl components ωþ and ω− of
the area metric (24), and in this case their masses would be
determined by the coupling constant γ.
Note that the argument above, for the value of VG at its

minimum to be zero, is rather general. One can straightfor-
wardly extend this argument to area metrics in higher
dimensions and to higher-volume metrics.3 One may also
wonder what happens if we repeat the same argument for a
length metric g, starting from a Lagrangian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetðgÞjp
VgðgÞ.

It appears that wewould similarly conclude thatVgðgÞ ¼ 0 is
on shell of the nonderivative action. However, general
covariance forbids Vg to be minimized at any particular
metric, so Vg can only be the cosmological constant.4

Observationally, we know that Vg ¼ Λ is nonzero but
extremely small. From a quantum-field theoretic perspec-
tive on metric gravity, we do not have a good explanation
for the value of the cosmological constant. However, from
the point of view of classical area metric gravity, we note
that the potential term (30) for the area metric in the
extreme low-energy IR limit, when the area metric G
reduces to a metric g, must reduce to the cosmological
constant term in the generally covariant Lagrangian for the
metric, i.e.,

Z
d4xjdetðGÞj16VGðGÞ ⟶IR

G¼Gg

Λ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
: ð40Þ

In this sense, the fact that VG ¼ 0 is the minimum of VG on
shell of the potential action for the area metric and the
observation that the Universe is well approximated by a
metric instead of a general area metric are correlated with
the smallness of the cosmological constant.
We emphasize that we are not trying to solve the

cosmological constant problem, but we are simply pointing
out the connection between the smallness of the cosmo-
logical constant and the phenomenological fact that the
Universe is well approximated by a metric, assuming a
fundamental theory for the area metric. That is, the force
that drives the area metric towards one induced by a metric
is simultaneously also driving the cosmological constant
towards zero.

It should be noted how minimalistic are the arguments
that lead to the above conclusions. More generally, all that
is needed is the following:

(i) A more general geometric background structure,
such as the area metric.

(ii) The expectation that this general geometric structure
reduces to the metric at low energies.

(iii) The assumption that this reduction is realized by
extremizing the potential energy of the generalized
background, rather than dynamically.

We have so far ignored the kinetic terms of the area
metric and possible couplings to matter fields. In a
dynamical process, the potential energy does not stay at
its minimum. It will be interesting to take into account the
dynamics of the area metric, for example in a perturbative
framework [6], and to extract predictions from area metric
gravity on cosmology and black hole physics.

V. AREA METRIC PERTURBATIONS AND THE
WORLDSHEET ACTION

In the previous section, we investigated the effective
action for the area metric at the intermediate scale, at which
the constraint (18) for reduction of the area metric to an
ordinary metric is not yet imposed. In what follows, we will
provide an explanation for the possible origin of the
effective area metric action in string theory, viewed as a
fundamental theory of spacetime geometry.
Let us consider a two-dimensional surface Σ as the string

worldsheet embedded in a d-dimensional spacetime with
embedding coordinates XμðξÞ, where the μ ¼ 0;…; d − 1

denote spacetime indices and ξi ¼ ðξ0; ξ1Þ are the world-
sheet coordinates. If the spacetime is equipped with a
metric gμν, then the induced metric hij on Σ is defined as

hijðξÞ≡ gμνðXÞ∂iXμðξÞ∂jXνðξÞ: ð41Þ

The area of Σ defines the Nambu-Goto action,

SNG ≡ AreaðΣÞ ¼
Z
Σ
da ¼

Z
Σ
d2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðhÞj

p
: ð42Þ

Here da denotes the infinitesimal area element on Σ. The
Nambu-Goto action can be obtained from the Polyakov
action

SP ≡ 1

2

Z
Σ
d2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðγÞj

p
γijhij; ð43Þ

where γij, with i, j ¼ 0; 1, is the metric on the worldsheet.
To that end, the solution to the equation of motion for γij,

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðγÞj

p
γijhij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðhÞj

p
; ð44Þ

has to be inserted back into the Polyakov action (43).

3Note that, in d ¼ 4 dimensions, a three-volume metric and
higher-volume metrics define a coarser geometry than area metric
geometry [34].

4Thus any generalized background structure from which we
can derive the conclusions below must necessarily break an
analog of general covariance.
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Using Eq. (41), the determinant of the two-dimensional
induced metric hij can be written as

detðhÞ¼ 1

2!
ϵ̃ijϵ̃klhikhjl¼

1

2
ϵ̃ijϵ̃kl∂iXμ

∂jXν
∂kXρ

∂lXσðGgÞμνρσ;
ð45Þ

where Gg is the d-dimensional area metric defined by the
spacetime metric g. Replacing Gg by a generic area metric
G gives a generalized Nambu-Goto action defined on an
area metric background. From such a perspective, it is
natural to consider area metric geometry in string theory,
with the cyclicity condition (3) imposed to remove redun-
dant degrees of freedom in the area metric [5].
Let us now consider the result of perturbing the space-

time geometry from a length metric geometry to an area
metric geometry. We will denote fluctuations of the area
metric away from a background configuration induced by a
length metric g, by a. Consequently, we replace Gg in
Eq. (45) by

G≡ Gg þ a: ð46Þ
As a result of the replacement Gg ↦ G, the determinant of
the induced metric is changed by

detðhÞ ↦ detðhÞ þ ΔA; ð47Þ
where

ΔA≡ 1

2
ϵ̃ijϵ̃kl∂iXμ

∂jXν
∂kXρ

∂lXσaμνρσ: ð48Þ

Herewith the action in Eq. (42) becomes

SNG ¼
Z
Σ
d2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðhÞ þ ΔAj

p
: ð49Þ

In general, an action of the form

SNG ¼
Z
Σ
d2ξF ðdetðhÞÞ ð50Þ

for an arbitrary function F , is equivalent to the action5

SP ¼
Z
Σ
d2ξF

�
jdetðγÞj

�
1

2
γklhkl

�
2
�
: ð51Þ

To show the equivalence, note that the equation of motion
for γij derived from (51) is

hij ¼
ðγklhklÞ

2
γij: ð52Þ

Plugging this result back into the action (51) reproduces the
generalized Nambu-Goto action (50). For the action (49) of
interest, the function F is defined by F ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ ΔA
p

. It
is equivalent to the generalized Polyakov action

SP ¼
Z
Σ
d2ξ

�
jdetðγÞj

�
1

2
γklhkl

�
2

þ ΔA
�
1=2

: ð53Þ

In the conformal gauge, γij ¼ eϕðξÞηij, the Polyakov action
(53) becomes

SP ¼
Z
Σ
d2ξ

��
1

2
ηklhkl

�
2

þ ΔA
�
1=2

; ð54Þ

¼ 1

2

Z
Σ
d2ξ

�
gμν∂iXμ

∂iXν

þ ϵ̃ijϵ̃kl∂iXμ
∂jXν

∂kXρ
∂lXσaμνρσ

gαβ∂iXα
∂iXβ þ � � �

�
: ð55Þ

We see that the area metric deformation corresponds to a
singular vertex operator

aμνρσ
∂Xμ

∂Xν
∂Xρ

∂Xσ

∂Xα
∂Xα

eikβX
β þ � � � ð56Þ

with momentum k in the string worldsheet theory for the
flat spacetime background. This vertex operator transforms
properly in the classical theory, but it is not a primary
operator in the quantum theory, so we need to add
correction terms to make it primary. Starting with a
sequence of vertex operators

aμνρσ∂Xμ
∂Xν

∂Xρ
∂Xσð∂Xα

∂XαÞneikβXβ þ � � � ð57Þ

with the on shell condition k2 ¼ 2ðnþ 1Þ=α0 for n > 0, the
vertex operator (56) is an analytic continuation of the
number n to n ¼ −1. Since k2 ¼ 0 for n ¼ −1, the area
metric is a massless field. It will be interesting to see if such
a primary operator can be consistently defined in string
theory. We leave this problem for future study.

VI. DISCUSSION

Area metrics play a key role in main candidate
approaches to quantum gravity, such as in string theory
and loop quantum gravity. Thereby they provide a unified
framework for quantum gravity and may provide a ground
for establishing connections between these seemingly
distinct theories. At instances where area metrics appear
in quantum gravity, they encode physical degrees of free-
dom beyond those of an ordinary metric. These degrees of
freedom must be suppressed by a potential at sufficiently
high energy scales to ensure a consistent limit in which
our semiclassical picture of standard-model matter in a

5Note that the 2Dmetric γij hasmore degrees of freedom than the
2D area metric, as we mentioned previously, so it is not a
“generalization” to replace theworldsheetmetric by an areametric.
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background described by Einstein’s general relativity is
recovered.
On this basis, in this work, we first studied algebraic

conditions for a general area metric to reduce to an area
metric induced by a metric. Physically, we understand these
conditions as realizing the low-energy limit in which the
nonmetric degrees of freedom originating from an intrinsi-
cally quantum theory of gravity are switched off. In loop
quantum gravity and spin foams, such a limit can be
associated with the partially second-class quantum algebra
of constraints reducing to its classical first-class analog by
taking the BI constant, which parametrizes the quantum
anomaly, to zero [14,17–19]. It will be interesting to study
the condition provided here for an area metric to reduce to a
length metric in the continuum, in the context of area
metrics appearing in discrete settings [11,15,16,35], and to
establish a relation to area-length or shape-matching con-
straints for twisted geometries [17–19,35,36].
In the second part of this work, motivated by the fact that

our classical Universe is well approximated by Einstein
gravity for a length metric, we considered the potential
energy term in the action for an area metric, which must
lead to the frozen dynamics of the nonmetric degrees of
freedom at low energies. This term is expected to appear in
the low-energy effective theory of a fundamental theory,
such as string theory in generic area-metric backgrounds or
loop quantum gravity and spin foams in the semiclassical
regime. At a much lower energy scale, where the descrip-
tion of the spacetime is well approximated by the metric,
we assumed this effective potential term to be approxi-
mately minimized. Thus, the intermediate energy scale, at
which the nonmetric degrees of freedom of the area metric
are massive propagating fields, must lie between the string
scale 1=ls and the energy scale of the Einstein gravity.
From the point of view of loop quantum gravity and spin
foams, this energy scale is expected to be determined by the
value of the BI parameter and the Planck mass [6,20].
In the third part of this work, we considered the possible

origin of the effective area metric action in the context of
string theory. In terms of the Nambu-Goto action and the
Schild action, only the area metric is needed, and it is very
natural to replace the metric with the area metric, at least at
the classical level. As a result of replacing the metric with
an area metric in a perturbative framework around a
background induced by a metric, the woldsheet action
for a string acquires a correction term which is charac-
terized by a singular vertex operator built from the area
metric perturbation. The singular factor 1=ð∂Xμ

∂XμÞ in the
obtained vertex operator suggests a large effect in the IR
limit. At the quantum level, it is not yet clear whether the
area metric deformation of the Polyakov action in the
conformal gauge is well defined. If it is, this would suggest
the existence of a new class of (seemingly singular) vertex
operators and corresponding backgrounds that can be
introduced in string theory, and would significantly modify

our understanding of the moduli space, the “landscape” of
string theory. On the other hand, the insistence on for-
mulating string worldsheet theory in the background of
Minkowski space is a technical convenience rather than a
necessity, and one may try to formulate string theory
directly in a constant area metric background that is not
the deformation of a metric background.
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APPENDIX

In this appendix, we prove that when the area metric is a
small deformation of an induced area metric, Eq. (16) is
sufficient to imply that the area metric reduces to the one
induced by a certain length metric.
Similar to the proof for the d ¼ 4 case in Sec. III, we

consider the Euclidean case for simplicity and the areametric
expanded in the form (23) after choosing a suitable coor-
dinate system. It is straightforward to check that Eq. (16) is, at
the leading order in the area metric deformations aμνρσ,
equivalent to

aμνρσ ¼
1

2n

�
aνλσλδμρ − aνλρλδμσ − aμλσλδνρ þ aμλρλδνσ

�

−
1

2nð2nþ 1Þ ðδμρδνσ − δμσδνρÞaαβαβ; ðA1Þ

where d ¼ 2nþ 2 for n∈N. This allows us to define

hμν ¼
1

2n
aμλνλ −

1

4nð2nþ 1Þ aαβ
αβδμν: ðA2Þ

As a result, to the first order of the perturbative expansion in
aμνρσ, it holds that

G ¼ Gg; ðA3Þ

where

gμν ¼ δμν þ hμν: ðA4Þ

This completes the proof.
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