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We explore statistical properties of Bogomol’nyi-Prasad-Sommerfield q-series for 3dN ¼ 2 strongly
coupled supersymmetric theories that correspond to a particular family of three-manifolds Y. We
discover that gaps between exponents in the q-series are statistically more significant at the beginning of
the q-series compared to gaps that appear in higher powers of q. Our observations are obtained by
calculating saliencies of q-series features used as input data for principal component analysis, which is a
standard example of an explainable machine learning technique that allows for a direct calculation and a
better analysis of feature saliencies.
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I. INTRODUCTION

The study of quantum systems and their spectra of
quantum states is not only fundamental, but also reveals the
underlying quantum structure of space-time and matter.
One of the fundamental principles in studying these
quantum systems is the relationship between the spectra
and the geometry/topology of the space-time in which these
quantum systems are defined. This relationship is particu-
larly pronounced in the study of black hole physics and
other gravitational systems, where guiding principles such
as the distance conjecture [1,2] and the works on black hole
microstate counting [3] provide profound insights into the
quantum architecture of the Universe.
The distance conjecture, a pivotal tool in understanding

the properties of the string landscape, suggests that infinite
distances in moduli spaces of effective quantum field
theories are associated to infinite towers of light states.
This property provides an argument for a spectral signature
of candidate effective field theories in the string landscape
that break down over infinite distances in the moduli space
of these theories. The idea that certain quantum states in the

spectrum of a theory become critical and cannot be
ignored is in line with the importance of counting black
hole microstates in consistent theories of quantum grav-
ity. The work by Strominger and Vafa [3], which connects
the counting of black hole microstates to degeneracies in
string theory, provides a microscopic explanation of the
Beckenstein-Hawking entropy formula. By doing so this
seminal work not only illustrates how the spectrum of
black hole microstates can be used to explain macro-
scopic phenomena like black hole entropy, but also
underlines the importance of quantum states and why
they become critical.
These ideas have their analogs in nongravitational

quantum systems, such as strongly coupled quantum field
theories (QFTs). Their spectra often can be conveniently
encoded in a q-series of the form

X
n

qEn ¼ qΔðc0 þ c1qþ c2q2 þ � � �Þ; ð1:1Þ

where En plays the role of energy andΔ is the “ground state
energy.” For example, the spectrum of a familiar harmonic
oscillator would have the q-series q1=2ð1þ qþ q2 þ � � �Þ,
whereas a free chiral boson in 1þ 1 dimensions would
correspond to 1

ηðqÞ. The latter can be also understood as the

elliptic genus of 2d supersymmetric QFTs, and higher-
dimensional analogs of the elliptic genus—supersymmetric
indices of various kinds—similarly encode useful informa-
tion about the spectra [Bogomol’nyi-Prasad-Sommerfield
(BPS) states] in supersymmetric QFTs of dimension d > 2.
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In this paper we focus on a 3d variant of the elliptic
genus, introduced in [4], which associates a q-series of
the form (1.1) to a 3d N ¼ 2 supersymmetric QFT with
2d (0, 2) boundary condition. A large class of strongly
coupled 3d N ¼ 2 supersymmetric QFTs—whose
Lagrangian description is not known at present—comes
from compactifying 6d (2, 0) theories on three-manifolds
Y. In particular, the complete description of the BPS
spectrum is not known for generic Y. Yet, for a particular
class of 2d boundary conditions labeled by Spinc structures
on Y, the 2d-3d analog of the elliptic genus can be
computed for a generic Y. The resulting q-series, some-
times called Gukov-Pei-Putrov-Vafa invariants [5,6], are
denoted by Ẑbðq;YÞ, where b labels the choice of a Spinc

structure on Y.
In this work, we study BPS state counting captured

by the q-series Ẑbðq;YÞ of a particular class of three-
manifolds Y, which can be defined in terms of a framed
graph known as the plumbing graph Γ of Y. Our aim is to
study the underlying structure of the BPS invariants and,
among other things, to understand how the BPS spectrum
depends on the structure of the framing coefficients, for a
fixed plumbing graph Γ. In our analysis we use explainable
machine learning techniques that detect the underlying
structure of the q-series invariants. By doing so, we
discover a fascinating property of the BPS q-series that
we conjecture to be valid for any collection of plumbed
three-manifolds Y: gaps between consecutive q-series
exponents at the beginning of the series are statistically
more significant than exponent gaps that follow.
This observation is somewhat surprising in view of a

recent duality, expected to hold for general Γ, which relates
BPS spectra (Q cohomology) of combined 2d-3d systems
described above and chiral logarithmic conformal field
theories (CFTs) in two dimensions [7,8]. Indeed, according
to Cardy [9], the coefficients cn in (1.1) should grow as

an ∼ exp 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
ceffn

r
ð1:2Þ

for some constant ceff , called the effective central charge.
Furthermore, since the effective central charge is the basic
characteristic of a 2d CFT, one might expect the large-n
behavior of the terms in the q-series (1.1) to play a more
dominant role in characterizing the theory. Curiously, our
finding is essentially the opposite: it is the lower-n terms in
the q-series/BPS spectrum that capture most information
about the quantum system at hand.
By representing the “gaps” between consecutive q-series

exponents as components of a finite dimensional vector,
we interpret a collection of q-series for different three-
manifolds Y as a collection of such vectors. With this data
representation, we then employ dimensional reduction on
these vectors via the principal component analysis (PCA)
and take a closer look at the resulting covariance matrix and

its eigenvalues and eigenvectors, which shed light on the
statistical significance of each gap in the q-series expo-
nents. This application of a standard explainable machine
learning technique allows us to identify statistically more
significant exponent gaps in BPS q-series associated to a
collection of three-manifolds Y. As part of the wider study
of quantum systems and their spectra of quantum states, our
work shows which exponent gaps in the BPS q-series are
statistically more significant than others in the BPS spectra
of 3d N ¼ 2 theories.
Our work also illustrates effectively how techniques

from explainable machine learning can be used in order
to uncover hidden structures in the spectra of states in
quantum systems. Their correspondence to enumerative
invariants of the geometry and topology of the spaces in
which these quantum systems are defined makes the
application of explainable machine learning techniques
extremely fruitful, as shown by our work. We emphasize
that our application of machine learning techniques
in uncovering hidden structures in the BPS spectra of
3d N ¼ 2 supersymmetric theories associated to plumbed
three-manifolds Y is one of many applications in the quest
for hidden structures in quantum systems [10–25].

II. BACKGROUND

We consider in this work plumbed three-manifolds Y
characterized by a finite decorated graph with no loops. The
vertices v of the tree are labeled by integers av, which are
the framing numbers of the graph. We call such a finite
framed graph associated to Y the plumbing graph Γ.
The three-manifold Y given by Γ is the boundary of a

four-manifold X, which is also determined by Γ. The
vertices VðΓÞ of Γ correspond to disk bundles over S2

and the edges EðΓÞ connecting the vertices indicate which
disk bundles are glued together to form the four-manifoldX.
Accordingly, the adjacency information of the plumbing
tree Γ is an essential ingredient for determining the
boundary three-manifold Y and its associated four-manifold
X. In addition to the adjacency information, the framing on
vertices determines how the common boundary on the disk
bundles, in this case ∂D2 ≃ S1, is glued together. Given that
the gluing depends on a relative rotation specified by a
winding number, we take the framings on vertices of the
plumbing graph connected by an edge as the relative
winding number of the corresponding common boundary
between two associated glued disk bundles over S2.
Following [5,6], we define the plumbing matrix Mvw

that describes the adjacency of vertices in Γ along with
framing data,

Mvw ¼

8><
>:

av if v ¼ w

1 if ðv; wÞ∈EðΓÞ
0 otherwise;

ð2:1Þ
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where EðΓÞ denotes the set of edges in Γ. We note that
plumbing graphs that are related to each other by Kirby-
Neumann moves [26,27] correspond to the same boundary
three-manifold Y. These moves are illustrated in Fig. 1.
By fixing a plumbing tree Γ with jVj vertices and an

assigned framing on the vertices given by m∈ZjVj, we
can calculate a generating function of invariants on the
three-manifold Y known as the q-series ẐbðqÞ [5,6]. These
invariants are precisely the BPS indices (or, rather, half-
indices) associated to the 3d N ¼ 2 theory obtained from
compactifying a 6d (2, 0) theory on the three-manifold Y.
The q-series is given by

ẐbðqÞ ¼ ð−1ÞπðMÞq
−3σðMÞ−TrðMÞ

4

· v:p:
I
jzvj¼1

Y
v∈VðΓÞ

dzv
2πizv

�
zv −

1

zv

�
2−degðvÞ

· Θ−M
b ðq; z⃗Þ; ð2:2Þ

where

Θ−M
b ðq; z⃗Þ ¼

X
⃗l∈ 2MZjVjþb

q−
ð⃗l;M−1 ⃗lÞ

4

Y
v∈VðΓÞ

zlvv : ð2:3Þ

Above, v.p. refers to the principal value of the integral
in (2.2), which is given by taking the average over
the contributions from the integrals over the circles
jzvj ¼ 1þ ϵ and jzvj ¼ 1 − ϵ for small ϵ > 0. We also
have the number of positive eigenvalues for plumbing
matrix M denoted by πðMÞ as well as the signature of M
given by σðMÞ.
For every plumbed three-manifold Y, a choice of a Spinc

structure can be described by a characteristic vector b,

b∈ ð2ZjVj þmÞ=2MZjVj ≃ SpincðYÞ; ð2:4Þ

whereM is the plumbing matrix andm∈Zs is the framing
vector on Γ. In the expression for the q-series in (2.2), b is
precisely the choice of a Spinc structure on Y.
In general, the q-series for a three-manifold Y charac-

terized by a framed plumbing graph Γ takes the form

ẐbðqÞ ¼ qΔb

X∞
n¼0

cnqn; ð2:5Þ

where Δb ∈Q plays the role of the “ground state energy”
or, in connection with 2d logarithmic CFTs (vertex
algebras), it can also be thought of as the conformal weight.
In this work, we focus on the q-series as an invariant

of the three-manifold Y equipped with a Spinc structure b.
For simplicity, we restrict our study to a subset of three-
manifolds which have the following additional constraints
imposed on them. (QFTs associated to more general

three-manifolds and the structure of their BPS spectra will
appear in a future work.)

A. A set of three-manifolds Y

We restrict the plumbing graph to be the graph shown in
Fig. 2 with two vertices of degree 3. The total number of
vertices is jVj ¼ 6. Given that the number Nb of distinct
choices for the Spinc structure is given by

Nb ¼ j detMj; ð2:6Þ

for simplicity we study integral homology spheres, i.e., three-
manifolds whose plumbing presentation has detM ¼ 1,
so that there is only one Spinc structure:

b ¼ ½0;…; 0�∈ZjVj: ð2:7Þ

We further restrict the set of possible three-manifolds Y and
their corresponding q-series by imposing the condition that
the eigenvalues of the plumbing matrix M are all negative.
Considering these constraints, we can compute the

possible framings m on the plumbing graph Γ in Fig. 2
such that Γ remains irreducible under Kirby-Neumann
moves. In other words, each such Γ cannot be reduced
to a simpler graph, with only one trivalent vertex. Table I
summarizes a classification of distinct framings m on Γ up
to the maximum valuemmax

v formv for any vertex v∈VðΓÞ.
Curiously, before we mod out by the symmetries—
relabeling of the vertices—the number of possibilities that
meet our constraints is huge: 7,529,536 for mmax

v ¼ 15 and

FIG. 1. Plumbing graphs related by Neumann moves. These
plumbing graphs related by these moves result in homeomorphic
three-manifolds.

FIG. 2. “H-shaped” plumbing graph with framingm ¼ ða1; a2;
a3; a4; a5; a6Þ.
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47,045,881 for mmax
v ¼ 20. However, as Table I shows,

this number is considerably reduced when one mods out by
the symmetries.

III. MACHINE LEARNING BPS q-SERIES

A. The q-series and vector spaces

The q-series in the general form shown in (2.5) can be
fully expanded to take the following form:

ẐbðqÞ ¼ h0qΔbþs0 þ h1qΔbþs1 þ h2qΔbþs2 þ � � � ; ð3:1Þ

where hi ≠ 0 are the nonzero coefficients of the expansions
and si ≥ 0 are the integer exponent shifts with s0 ¼ 0 and

si < siþ1 for all i. When we truncate the expansion up to a
maximum order qΔbþsD, the coefficients hi can be used to
define a vector of invariants of the following form:

h ¼ ½h0; h1;…; hD�∈QDþ1: ð3:2Þ

We can also define a q-exponent vector as

e ¼ ½Δb;Δb þ s1;…;Δb þ sD�∈QDþ1: ð3:3Þ

Here, we can relabel the components of the q-exponent
vector as ei ¼ Δb þ si ∈Q.
We note that the first component of the (Dþ 1)-

dimensional q-exponent vector is always the conformal
weight Δb ∈Q. Having this in mind, we introduce a
normalized q-exponent vector for a q-series expanded to
order qΔbþmD as follows:

e0 ¼ 1

Δb
e ¼

�
1; 1þ s1

Δb
;…; 1þ sD

Δb

�
: ð3:4Þ

We can also introduce a vector whose components
measure the gap between consecutive exponents of the
q-series. We measure the gap as the ratio between con-
secutive exponents of the q-series, and define the following
q-exponent gap vector,

r ¼
�
e1
e0

;
e2
e1

;…;
eD
eD−1

�

¼
�
1þ s1

Δb
;
Δb þ s2
Δb þ s1

;…;
Δb þ sD
Δb þ sD−1

�
∈QD; ð3:5Þ

where each component is given by ri ¼ ei
ei−1

. This data
representation is designed to capture the rate of change
of the q-series exponents (hence the name “ri”). We note
here that there are other ways to represent the gaps in the
q-series, which we plan to explore in future work. We can
normalize the q-exponent gap vector by dividing every
vector component by the first component e1e0 ¼ 1þ s1

Δb
. This

ensures that all normalized q-exponent gap vectors have 1
as their first component,

r0 ¼ e0
e1

r ¼
�
1;
e0e2
e21

;
e0e3
e1e2

;…;
e0eD
e1eD−1

�
ð3:6Þ

and allows us to compare sparse spectra with dense spectra.
Put differently, the normalization indicated with a prime
normalized all BPS spectra to the same “scale” allowing us
to compare many different QFTs focusing on the relative
features of BPS spectra. This will be useful in what follows,
allowing us to explore which data representation shows a
stronger PCA signal.
In this work, we propose the use of principal component

analysis (PCA) to explore whether these vector

TABLE I. Framings m ¼ ½a1; a2; a3; a4; a5; a6� for the “H-
shaped” plumbing graph with a unique Spinc structure
b ¼ ½0; 0; 0; 0; 0; 0�. The table lists only framings that lead to
irreducible framed plumbing graphs Γ and a plumbing matrix M
with only negative eigenvalues. In the classification, the framing
mv on a given vertex v∈VðΓÞ is limited by mv ≤ mmax

v , and the
number of framings satisfying the constraints is given by
Nmðmmax

v Þ for a bound mmax
v .

mmax
v Nmðmmax

v Þ New m ¼ ða1; a2; a3; a4; a5; a6Þ
1 0
2 0
3 0
4 1 (1, 3, 3, 4, 3, 4)
5 2 (1, 3, 3, 5, 2, 3)
6 2
7 5 (1, 2, 5, 7, 3, 7), (1, 4, 2, 5, 2, 7),

(1, 7, 2, 3, 2, 3)
8 5
9 5
10 6 (1, 2, 4, 9, 3, 10)
11 8 (1, 3, 2, 9, 3, 11), (1, 3, 3, 4, 2, 11)
12 8
13 8
14 8
15 8
16 11 (1, 2, 3, 8, 11, 16), (1, 2, 3, 11, 5, 16),

(1, 2, 5, 16, 2, 7)
17 12 (1, 2, 12, 17, 2, 3)
18 13 (1, 3, 2, 7, 7, 18)
19 15 (1, 2, 4, 17, 2, 19), (1, 3, 2, 11, 2, 19)
20 15
21 16 (1, 2, 5, 9, 2, 21)
22 16
23 17 (1, 2, 4, 23, 3, 4)
24 17
25 18 (1, 2, 4, 25, 2, 11)
26 19 (1, 2, 4, 5, 7, 26)
27 20 (1, 3, 2, 27, 2, 3)
28 20
29 20
30 20
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representations of the q-series ẐbðqÞ capture any hidden
structure of the BPS invariants. In particular, we want to
answer the following questions with the proposed use
of PCA:

(i) Which vector representation encapsulates the most
information about the q-series ẐbðqÞ?

(ii) Which components of the vector representation
statistically contribute most to the principal com-
ponents?

(iii) What do the principal components tell us about
relationships between different q-series ẐbðqÞ and
the corresponding three-manifolds Y?

In order to answer these questions, let us first quickly
review principal component analysis (PCA) in the context
of vector representations for the q-series ẐbðqÞ.

B. Principal component analysis (PCA)

The aim of this work is to study the underlying structure
of invariants encapsulated in the q-series of plumbed three-
manifolds. As discussed above, each q-series ẐbðqÞ can be
associated with a vector representation xðΓ;m; bÞ∈Rd.
For the framings identified in Table I, we have in total
N ¼ 20 such q-series vectors xðΓ;m; bÞ living in a
d-dimensional vector space. In order to study the hidden
topological and geometric structures encapsulated by these
vectors xðΓ;m; bÞ, we make use of an unsupervised
machine learning technique known as the principal com-
ponent analysis (PCA) [28,29]. Let us give here a brief
overview of our proposed use of PCA for xðΓ;m; bÞ∈Rd.
Given the set of N q-series vectors fx1;…;xNg, we

can project the space Rd to a lower dimensional space
U ¼ Rk ⊂ Rd with k < d. The projected vectors are then of
the form

za ¼ Pπxa ¼ ðza1;…zakÞ∈U; ð3:7Þ

where a ¼ 1;…; N. The projection matrix from Rd to U
takes the form Pπ ¼ BB⊤, where B ¼ ðb1;…;bkÞ∈Rd×k

is the matrix of orthonormal basis vectors bi for U with
i ¼ 1;…; k.
Under PCA, we want to find not just any subspace U but

an optimal subspace Û ⊂ Rd where statistically the maxi-
mum variance is achieved for the projected vectors za. In
other words, this means that we need to find the optimal
subspace Û with basis vectors b1;…;bk such that when the
original q-series vectors xa ∈Rd are projected to Û, they
have a maximized variance along b1;…;bk. Here we note
that the variance is a measure of the amount of vector
component information that is preserved under the projec-
tion from Rd to U.
Let us assume that the q-series vector xa ∈Rd has

already been optimally projected along the first r−1<k
basis vectors b1;…;br−1 of Û. Given that the basis of Û is

orthonormal, the rth coordinate zar along br can be
expressed as

zar ¼ b⊤
r xa: ð3:8Þ

We can calculate the variance of zar along br over all a as
follows:

VðzrÞ ¼
1

N

XN
a¼1

z2ar ¼
1

N

XN
a¼1

ðb⊤
r xaÞ2 ¼ b⊤

r Sbr; ð3:9Þ

where S is the q-series covariance matrix over the original
set of q-series vectors fx1;…;xNg in Rd. Here, we assume
that the mean of zar is removed during the standardization
process of the input data. The q-series covariance matrix in
d dimensions is defined as

S ¼ 1

N

XN
a¼1

xax⊤
a ¼ 1

N
XX⊤; ð3:10Þ

where X ¼ ðx1;…;xNÞ is a d × N matrix and S is a d × d
matrix.
Using the q-series covariance matrix, the optimization

problem of finding Û along br can be summarized by the
Lagrangian function,

Lðbr; λÞ ¼ b⊤
r Sbr þ λrð1 − b⊤

r brÞ; ð3:11Þ

where λ is the Lagrange multiplier for the constraint that the
basis vectors of Û are orthonormal, b⊤

r br ¼ 1. Solving this
constrained optimization problem leads to the following
eigenvalue equation:

Sbr ¼ λrbr; ð3:12Þ

where λr is now the eigenvalue of the q-series covariance
matrix S with the corresponding eigenvector br. The
variance VðzrÞ of vector components along br in Û is
then given by the eigenvalue λr.
Overall, this implies that in order to obtain the optimal

k-dimensional feature subspace Û from the collection of N
q-series vectors fx1;…;xNg in Rd, we have to calculate
the k largest eigenvalues λi and the corresponding eigen-
vectors bi of the q-series covariance matrix S in order to
obtain Û. We note here that if N < d, meaning the number
of q-series vectors is smaller than the vector dimension
itself, then the q-series covariance matrix S will not be full
rank. This means the number of nonzero eigenvalues λi is at
most N − 1.
In [19], the two-dimensional subspace Û obtained from

coamoeba vectors xa associated to choices of complex
structure moduli in the Calabi-Yau mirror description of the
cone over the zeroth Hirzebruch surface F0 was interpreted
as a phase space of the corresponding four-dimensional
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supersymmetric gauge theories related by Seiberg dual-
ity. In our study here, we interpret Û obtained by PCA as
a latent space of the set of all possible q-series and the
associated three-manifolds constructed from a specific
plumbing graph Γ with a collection of associated framing
numbers. We argue in this work that this latent space
exhibits interesting features of the three-manifolds cor-
responding to the H-shaped plumbing graph in Fig. 2 and
Spinc structure b ¼ ð0; 0; 0; 0; 0; 0Þ, reminiscent of a QFT
phase diagram. In particular, we argue that certain
exponent gaps of the BPS q-series are statistically more
significant than other throughout the three-manifolds
studied in this work.
Beyond the latent space itself, we make observations

regarding the eigenvectors bi corresponding to the largest
eigenvalues λi in the q-series covariance matrix S and the
q-series ZbðqÞ of the three-manifold itself. Let us summa-
rize the role played by the eigenvectors bi in relation to the
input vectors fx1;…;xNg in the PCA.

C. Meaning of the eigenvectors and eigenvalues
of the q-series covariance matrix

The eigenvectors bi of the q-series covariance matrix
S have d components of the form bil, where i ¼ 1;…; r
labels the principal components and l ¼ 1;…; d labels the
eigenvector components. Since we assume that the eigen-
vectors bi are orthonormal, the components have to satisfy

Xd
l¼1

ðbilÞ2 ¼ 1: ð3:13Þ

Given that the squares of the components sum up to 1, we
can interpret them as relative percentage measures,

pðbilÞ ¼ ðbilÞ2 × 100%: ð3:14Þ

This measures the proportional component contribution
of the lth component bil of the q-series vector towards the
ith principal component bi. The higher the value for pðbilÞ,
the more relevant becomes the corresponding component
in the q-series vector for the principal component analysis,
storing more information relative to other components of
the q-series vector about the q-series under dimensional
reduction.
In addition to the percentage component contribution

in (3.14), we can also define the proportional variance
related to the ith principal component as follows:

pðλiÞ ¼
λiP
d
j¼1 λj

× 100%: ð3:15Þ

Here, the proportional variance pðλiÞ measures the propor-
tional importance of the corresponding principal compo-
nent and the amount of information captured by the

principal component from the set of q-series vectors
x1;…;xN .
In the following section, we make use of principal

component analysis in order to measure the significance
of certain terms in the q-series expansion, when they
are represented as vectors. By obtaining the proportional
variance pðλiÞ, we can accurately measure whether the
q-series for the same plumbing graph but different framings
exhibit any similarities. These similarities are parametrized
by principal components bi, where the proportional com-
ponent contribution pðbilÞ tells us how much each expo-
nent in the q-series contributes to a certain principal
component bi.

IV. RESULTS

For the H-shaped plumbing graph in Fig. 2, we make use
of the classification of inequivalent framing numbers in
Table I in order to calculate the corresponding q-series
ẐbðqÞ with Spinc structure b ¼ ½0; 0; 0; 0; 0; 0�. We note
here that the same H-shaped plumbing graph was studied
extensively in [30]. Tables II and III show the q-series
expansions with their corresponding framing numbers m.
Up to a very large permutation symmetry of graph labels,
we have N ¼ 20 distinct q-series. We expand the q-series
such that in total the corresponding q-exponent vectors e
from (3.3) are all (Dþ 1)-dimensional, with D ¼ 28. As a
result, the corresponding q-exponent gap vectors r defined
in (3.5) are all 28-dimensional.
Given the vector representations of the q-series in

terms of the q-exponent vectors e, normalized q-exponent
vectors e0, the q-exponent gap vector r, and the normalized
q-exponent gap vector r0, the resulting principal component
analysis of these four vector spaces gives several interesting
results.
First of all, for any vector representation, the first principal

component covers the vast majority of the variance of the
datasets. For the four vector spaces, we obtain

pðλ1; eÞ ¼ 97.111%; pðλ1; e0Þ ¼ 99.815%;

pðλ1; rÞ ¼ 71.426%; pðλ1; r0Þ ¼ 92.584%; ð4:1Þ

as illustrated in Figs. 3(a), 3(d), 3(g), and 3(j), respectively.
This shows that the vector spaces formed by the vector
representations of the q-series are effectively all one-
dimensional. Only for the q-exponent gap vectors r, we
see that more principal components cover the variance of the
dataset,

pðλ2; rÞ ¼ 10.385%; pðλ3; rÞ ¼ 7.132%; ð4:2Þ

as illustrated in Fig. 3(g). In total, we have N − 1 ¼ 19
nontrivial principal components bi with nonzero eigenvalues
λi since N < Dþ 1 for the exponent vectors and N < D for
the rate of exponent change vectors.
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TABLE II. Part 1: the list of the BPS q-series for H-shaped plumbing graphs with a unique Spinc structure b ¼ ½0; 0; 0; 0; 0; 0�, and
with framing coefficients m up to amax

v ¼ 29. (For part 2 see Table III).

m ẐbðqÞ
(1, 3, 3, 4, 3, 4) q1=2ð1þ q − q2 − q4 − 2q5 þ q6 − q7 − q8 þ q10 þ q11 − q12 þ q13 þ 2q15 þ q16 − q19 þ 2q20 þ q21 − q23 −

q25 − q27 þ q28 þ q29 − 2q30 − q32 − q33 − q34 þ q35 − q39 − 2q40 þ q42 þ q44 þ � � �Þ
(1, 3, 3, 5, 2, 3) 1=2q1=2ð3þ 3q − q2 þ 2q3 þ q4 − 2q6 − 4q7 þ 2q8 − 2q9 − 2q10 − 3q11 þ 2q12 þ 2q13 − 6q14 − q15 −

2q17 − q18 þ 4q21 − 2q22 − q23 − 2q25 þ 2q26 þ 4q28 − 2q29 − 2q31 þ 2q32 þ 4q33 þ 2q34 þ � � �Þ
(1, 2, 5, 7, 3, 7) 1=2q5=2ð1þ q2 þ q3 þ 2q4 þ 2q5 − q6 − q7 þ 2q9 þ q13 þ q15 − q16 þ q17 þ q18 − q19 þ q20 − q21 −

2q22 þ q24 − q25 − q26 − 2q27 − q29 − q30 − q31 þ q32 − q35 þ q36 − q38 − 2q39 − q40 þ � � �Þ
(1, 4, 2, 5, 2, 7) 1=2q3=2ð1þ 2q − 2q2 þ q3 − 3q4 þ 2q5 þ q6 − 3q7 − q9 þ q10 − 2q11 þ q13 þ q14 þ q15 þ q18 þ q19 −

q20 − q22 þ q25 þ q28 − q30 − q31 þ q32 − q37 þ q41 þ q42 þ q44 − 2q45 − q47 − q56 þ � � �Þ
(1, 7, 2, 3, 2, 3) q1=2ð1 − 2qþ 2q3 þ q4 þ q5 − 2q6 − q7 − 2q8 − 2q9 þ q10 þ q12 þ 2q13 þ 3q14 − q15 þ 2q16 − 2q19 −

2q20 − q22 − 2q23 − q24 þ q26 þ 2q27 − 2q28 þ 2q29 þ q30 þ 2q31 þ 2q33 − 2q34 − q35 þ � � �Þ
(1, 2, 4, 9, 3, 10) 1=2q9=2ð1 − qþ 2q3 − q6 þ q7 þ q8 − q12 þ q13 − q15 − q16 þ q23 − 2q31 − 2q32 þ q45 þ 2q49 − q51 þ

q56 − q57 þ q69 þ q71 þ q73 − q83 − q85 − q86 − q90 − q99 − q100 þ q104 þ q105 − q122 þ � � �Þ
(1, 3, 2, 9, 3, 11) 1=2q9=2ð1þ qþ 2q2 − q3 þ q4 − q5 − 2q6 þ 2q7 − q8 − 2q9 − q12 − q13 − q19 − q20 þ 2q23 þ q24 þ q25 −

q26 þ q27 þ q28 − 3q30 þ q31 − q34 þ q35 − q36 − 2q37 − q38 − q39 − q40 þ 2q42 þ � � �Þ
(1, 3, 3, 4, 2, 11) −1=2q5=2ð1 − 2qþ q2 − q6 − 2q7 þ q8 þ 4q9 − q10 þ q12 þ q13 − 2q14 − q15 − q16 þ q17 þ 2q19 − q20 þ

q23 − 2q24 − q25 − q27 − 2q29 þ q31 − q33 þ 3q34 þ 2q35 − q36 þ q40 − q41 − q42 þ � � �Þ
(1, 2, 3, 8, 11, 16) 1=2q13=2ð2þ q3 þ q10 − q12 − 2q13 − q14 − q16 − q19 − q22 − q29 þ q37 − 2q39 þ q45 þ q47 þ 2q52 þ q54 þ

q57 − q60 þ q64 þ q65 þ q67 − q68 þ q69 þ q71 − q72 þ q75 þ q79 þ q81 − q83 þ � � �Þ
(1, 2, 3, 11, 5, 16) 1=2q13=2ð1þ q3 − q4 þ 2q6 − 2q11 þ q20 − q21 þ q23 − 2q25 − q26 − q27 − q28 þ 2q31 − q32 − q34 − q40 þ

q42 þ q45 þ q50 − q52 þ q53 þ q55 þ q57 þ q59 − q61 þ q62 − q74 − q77 − 2q78 þ � � �Þ

TABLE III. Part 2: the list of the BPS q-series for H-shaped plumbing graphs with a unique Spinc structure b ¼ ½0; 0; 0; 0; 0; 0�, and
with framing coefficients m up to amax

v ¼ 29. (For part 1 see Table II).

m ẐbðqÞ
(1, 2, 5, 16, 2, 7) −1=2q11=2ð1 − qþ q2 þ q3 − q4 þ 2q6 þ 2q7 − q12 − q13 þ q15 − 2q16 − 2q18 − q24 − 2q25 − 2q27 þ 2q33 þ

q36 þ q37 − q38 þ 2q40 − q43 − q45 þ q46 − q48 − q49 − q55 þ 2q56 þ q61 − 2q63 − q64 þ � � �Þ
(1, 2, 12, 17, 2, 3) −1=2q11=2ð2 − 5q7 − q9 þ q10 þ q15 þ q20 þ 2q21 þ q24 þ q26 − q27 þ q29 − 2q32 þ q34 þ 2q35 þ q36 −

2q37 − 3q42 − q44 − q46 − q47 þ 3q49 − q54 − 3q56 þ q59 þ q61 − q65 þ q66 − 2q67 þ q68 þ � � �Þ
(1, 3, 2, 7, 7, 18) 1=2q13=2ð2 − 2q5 − q7 − q9 þ q10 þ q13 − 2q15 þ q16 þ q18 − q19 − q22 þ 2q25 þ q36 þ q38 þ q40 − q41 þ

q43 − q44 − q45 − q46 − q52 − q54 þ q55 þ q56 − q59 þ q60 þ 2q63 þ q65 − q67 − q69 þ � � �Þ
(1, 2, 4, 17, 2, 19) −1=2q25=2ð1 − q5 þ q6 − q8 − q11 þ q12 − 2q14 þ q18 þ q21 − q22 − q26 − q27 þ 3q29 − q36 þ 2q39 − q40 þ

q44 þ q47 þ q49 þ q50 − q51 þ q53 þ q54 þ q56 − 2q57 − q60 − q62 − q63 − 2q69 þ q74 þ � � �Þ
(1, 3, 2, 11, 2, 19) −1=2q11=2ð1 − q2 − q5 þ 2q11 − q12 þ q13 − q16 − q18 þ q21 − q23 þ 3q26 − q27 þ q28 − q29 þ q30 − q35 −

q39 − q41 − q43 þ q44 − q46 þ q51 − q53 − q56 þ q57 − q60 þ 2q62 þ q63 − q66 þ q67 þ q68 þ � � �Þ
(1, 2, 5, 9, 2, 21) 1=2q13=2ð1þ q3 − q4 − 2q5 − q10 þ q16 þ q17 − q18 þ q19 þ q20 − q24 þ q25 þ q26 − q27 þ q28 þ q29 þ

q32 − q35 − q36 þ q37 − q39 − 2q41 − q43 − q44 − q46 − q48 − q58 þ q63 þ q65 þ 3q66 þ � � �Þ
(1, 2, 4, 23, 3, 4) −1=2q11=2ð1 − 2q − q3 − q6 þ q8 þ 2q11 þ q12 þ q14 þ q15 − 2q16 þ q17 − q18 þ q19 − q20 þ 2q25 − q29 þ

q31 − q34 − q38 − q41 − 2q42 − q44 − q48 þ q49 þ q61 þ 2q66 þ q67 þ q69 þ q71 − q74 þ � � �Þ
(1, 2, 4, 25, 2, 11) 1=2q23=2ð1þ 2q4 þ q6 − q7 þ 2q12 − 2q13 − q16 − q18 − 2q19 − q21 − q22 − 2q30 þ q39 − q40 þ q43 þ q48 −

q54 þ 2q55 − q57 þ 3q61 þ 2q63 þ q64 þ q67 þ q72 − q79 − q82 þ q84 þ q85 þ q88 þ � � �Þ
(1, 2, 4, 5, 7, 26) 1=2q25=2ð2þ q6 − q9 − 4q11 − q12 − q14 þ q15 þ q17 − q20 þ 2q22 þ q29 þ q31 − q32 þ q33 − q35 þ q38 −

q45 − q47 þ q48 − q50 − q54 þ q57 − q58 þ q65 − q66 þ q69 þ q72 þ q76 þ q83 þ � � �Þ
(1, 3, 2, 27, 2, 3) −1=2q11=2ð1 − q − q2 þ q5 þ q7 − q11 þ q13 − q15 − 2q16 þ q17 − q21 þ q22 þ 2q26 þ q28 þ q31 − q33 −

q35 − q37 − q38 − q40 − q42 þ q46 þ q49 − q50 þ q54 þ 2q56 þ q57 þ q59 − q60 − 2q61 − q62 þ � � �Þ
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Without loss of generality, let us focus on the first
principal component b1 for all four sets of vector
representations. By looking at the components bil of
the principal components, we can calculate the propor-
tional component contribution of the lth component of
the vector for the ith principal component bi, as sum-
marized in (3.14).
We note that for q-exponent vectors e and e0, the

components of the vectors contribute more with
higher component index l. This is because for both the
original and normalized q-exponent vectors, the compo-
nents exhibit larger variance for increasing values of
the q-series exponents. As a result, larger component
values in e and e0 lead to increased contribution towards
the dominating first principal component as shown in
Figs. 3(b) and 3(e).
In comparison, when we consider the q-exponent gap

vector r, we make an interesting observation that the first
couple of components contribute significantly more
towards b1, than all the other remaining components.

The first four components have the following proportional
component contributions:

pðb11; rÞ ¼ 85.153%; pðb12; rÞ ¼ 12.747%;

pðb13; rÞ ¼ 1.125%; pðb14; rÞ ¼ 0.181%; ð4:3Þ

which shows that over 97% of the contribution towards the
first principal component b1 comes from the first two
components of r given by

r1 ¼
e1
e0

¼ Δb þ s1
Δb

; r2 ¼
e2
e1

¼ Δb þ s2
Δb þ s1

: ð4:4Þ

This is illustrated in Fig. 3(h). We note here that this is a
result expected for close to evenly distributed ordered
sequences, which appears to be the case for the exponents
of the collection of q-series studied in our work. A
characteristic feature here for the q-series investigated in
our work is the observation that the first two gaps measured
by ratios r1 and r2 are significantly more relevant than any

FIG. 3. Summary of the exponent relevance analysis using PCA.We note that the first principal component b1 covers the vast majority
of the proportional variance of the q-series vectors as shown in (a), (d), (g), and (j). This implies that for all vector representations, the
vector spaces dimensionally reduce effectively to a one-dimensional subspace. A closer look reveals that the components of q-exponent
vector e and the corresponding normalized vector e0 do contribute to the first principal component when the exponent values becomes
larger, as expected and shown in (b) and (e). For the q-exponent gap vector r, we see however that only the first two components
significantly contribute to the first principal exponent as shown in (h). When normalized, this contribution is evenly distributed to all the
components of the normalized q-exponent gap vector r0 as shown in (k). Similar observations can be made in (c), (f), (i), and (l) for the
second principal components, whose contribution is significantly less.
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other ratios that follow. We hope to investigate these
properties further with a larger collection of q-series in
future work.
When we consider the normalized q-exponent gap vector

r0, every component in r is divided by its first component.
Given that the first component r1 in r is also the most
significantly contributing component with pðb11; rÞ ¼
85.153%, dividing every component by it evenly distributes
the contribution on every component of the normalized
vector r0. As a result, the components r0 have all proportional
component contributions in the range

2% < pðb1j; r0Þ < 6%; ð4:5Þ

as illustrated in Fig. 3(k).

We can measure how the proportional component con-
tributions of r1 and r2 towards the first principal component
b1 change when one varies the overall number of compo-
nents of r. When one varies the overall number of
components of r, we effectively vary the number of terms
in the q-series expansion that contribute towards the
principal component analysis. From the results in
Figs. 4(b) and 4(c), we see that pðb11; rÞ and pðb12; rÞ
converge towards a lower bound when one increases the
dimensionality of the vectors r. This implies that including
more terms in the q-series expansion does not change
our observation that the first two components in (4.4) of the
q-exponent gap vector r contribute vastly more than any
other components of r, even if more terms in the q-series
expansion are included in the analysis.
We can also track how the proportional variance pðλ1Þ of

the first principal component b1 varies when one includes
more components to the vector r. As shown in Fig. 4(a),
we see that the proportional variance pðλ1Þ reaches
asymptotically a lower bound above 70%, implying that the
space of q-series vector representations is effectively one-
dimensional independent on how many terms in the
q-series expansion are included in the principal component
analysis.

V. DISCUSSIONS

In this work, we have studied the q-series Ẑbðq;YÞ
for a family of three-manifolds Y associated to the same
H-shaped plumbing graph in Fig. 2 with different framings
m as summarized in Table I. By identifying the gap
between q-series exponents as the ratio between two
consecutive exponents in the q-series, we have represented
the q-series for particular three-manifolds Y as finite-
dimensional vectors whose components are made of the
first few gaps of the corresponding q-series. By employing
machine learning methods for dimensional reduction of the
input data—specifically, the principal component analysis
(PCA)—we are able to compute the statistical significance
of each gap in the spectrum of BPS states captured by the
q-series. The statistical significance is given by the saliency
measure of the features of the input data, which is
computable for any explainable machine learning model.
In our case, these measures are given by the components of
the eigenvectors of the covariance matrix obtained from
PCA which correspond to gaps in the collection of input
q-series vectors.
Our work shows that for the family of q-series Ẑbðq;YÞ

corresponding to three-manifolds Y associated to the same
H-shaped plumbing graph with framing numbers given in
Table I, the first two gaps in the q-series are statistically
more significant than all other gaps that follow them in
the q-series. This indicates that certain BPS states of the
corresponding 3d N ¼ 2 supersymmetric theories are
associated to statistically more significant exponent gaps
in the corresponding q-series than others. We expect this

FIG. 4. The change in proportional variance pðλiÞ for the first
two principal components b1 and b2 when one takes only the first
D components r1;…; rD of the q-exponent gap vectors r is
shown in (a). Focusing on the first principal component b1, the
relative contributions to b1 of the vector components r1 and r2
under changing the number of components of r are shown in (b)
and (c), respectively.
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somewhat surprising result to be more general and hold true
for other families of q-series associated with plumbing
graphs of other shapes. Our work here sets the stage for
further more comprehensive studies in the near future with
the aim of confirming our observations in this work.
Our work also illustrates the potential of explainable

machine learning techniques that enable the measure of
saliency scores for features in input datasets. These
measures in turn allow us, as illustrated in this work, to
discover new structures in the spectra of states in quantum
systems and in the counting of enumerative invariants
characterizing geometries and topologies associated with
these quantum systems. As part of the wider study of
quantum systems and their spectra of quantum states, our
work illustrates that for BPS spectra of 3d N ¼ 2 super-
symmetric theories, BPS states counted by the first few
terms of the q-series are statistically more significant
compared to the later terms in the q-series. We expect to
report more findings in this direction in the near future.
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