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In this paper we consider the Penrose limit in the case of two gravity duals. One of them, consists of
compactified I-branes [intersecting sets of D5-branes over (1þ 1) dimensions]. The second consists of
D5-branes compactified on a circle. Both compactifications preserve supersymmetry. We find a match of the
oscillators and masses of string modes on the resulting pp wave against a spin chain in a (2þ 1)-dimensional
field theory in the first case, and a spin chain in a (1þ 1)-dimensional field theory in the second.
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I. INTRODUCTION

In the AdS/CFT correspondence [1], and even more so
in the gauge/gravity duality generalizations, often times
the holographic dictionary and/or the exact matching of the
two sides is not very clear. In order to gain additional
information, through specializing to a useful subset, one
tool at our disposal is the Penrose limit. The Penrose
limit leads, on the gravity side, to a plane-parallel wave
(pp wave), and on the field theory side, to a spin chain, as
first seen in [2]. The Penrose limit has been used to make
progress in less understood cases, for instance in [3–7].
A particular case of interest is that of confining field

theories. In a confining field theory, like the (3þ 1)-
dimensional case of [8] or the (2þ 1)-dimensional case
of MNa [9], the Penrose limit leads to a theory of long
cyclic hadronlike objects, dubbed “annulons” in [10]. But
the resulting “spin chain” is not well-understood either,
though in the MNa case progress was made in [5].
It would then be useful to study confining theories in

different dimensions, like the (fibered) I-brane case, whose
(singular) holographic dual was written in [11], and whose
nonsingular supergravity background was found and
studied in [12]. Also, in the related case of S1 twisted-
compactified D5-branes whose nonsingular background
was found and studied in [13]. This is the subject of this

paper. The I-brane theory is localized at the (1þ 1)-
dimensional intersection of two sets of D5-branes, but it
was found in [11] that one dimension appears dynamically,
so the theory should be understood in (2þ 1) dimensions.
On the other hand, the theory of D5’s compactified on S1 is
dual to a confining (4þ 1)-dimensional quantum field
theory (QFT) with eight supercharges.
The paper is organized as follows. In Sec. II we discuss

in detail the Penrose limit along two possible geodesics in
the nonsingular geometry of I-branes [12]. The two geo-
desics lead to the same pp wave and, after some choice is
made, we write it in the form of a parallelizable plane
wave [14]. We then discuss the spectrum of the string and
the associated spin chain, matching oscillations in QFTand
in string theory.
Analogously, in Sec. III we discuss the Penrose limit in

the background of S1-twisted compactified D5 branes
preserving eight supersymmetries (SUSYs) [13]. The pp
wave is also parallelizable and preserves 24 SUSYs. A
proposal for the associated spin chain is given. Section IV
presents a summary and closing remarks, together with the
proposal for further study in different backgrounds.

II. PENROSE LIMIT OF FIBERED I-BRANES
AND DUAL SPIN CHAIN

The ð1þ 1Þ−dimensional theory obtained when two
stacks of D5-branes intersect along two space-time direc-
tions, is called I-brane theory [11]. As explained there, an
extra world volume coordinate appears, leading to a
(2þ 1)-dimensional theory. After a twisted compactifica-
tion on a shrinking circle, the dual background was found
to be nonsingular in [12]. This provided an “IR comple-
tion” to an otherwise singular gravity dual.1
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The supergravity background dual to the fibered I-branes, in the D5-brane string frame is relevant to the dual field theory.
For simplicity, we write the S-dual NS5-brane theory, keeping in mind that for the field theory analysis we should work with
D5-branes. The NS5 solution reads

ds2st ¼ −dt2 þ dx2 þ 4Q2fðρÞdφ2 þ dρ2

fðρÞ þ
NB

4

�
ω̂2
1 þ ω̂2

2 þ ðω̂3 − eAAÞ2
�

þ NA

4

�
ω̃2
1 þ ω̃2

2 þ ðω̃2
3 − eBBÞ2

�

H3 ¼
2

eA
dðω̂3 ∧ AÞ þ 2

eB
dðω̃3 ∧ BÞ þ 2NBVolðS3AÞ þ 2NAVolðS3BÞ:

Φ ¼ −Qρ; ð2:1Þ

where e2A;B ¼ 8=NB;A, NA, NB are integers, ω̂i and ω̃i are the Maurer-Cartan forms for suð2Þ, given by

ω̂1 ¼ cosψAdθA þ sinψA sin θAdϕA; ω̃1 ¼ cosψBdθB þ sinψB sin θBdϕB;

ω̂2 ¼ − sinψAdθA þ cosψA sin θAdϕA; ω̃2 ¼ − sinψBdθB þ cosψB sin θBdϕB;

ω̂3 ¼ dψA þ cos θAdϕA; ω̃3 ¼ dψB þ cos θBdϕB:

The 1-forms are

A ¼ QAζðρÞdφ; B ¼ QBζðρÞdφ; ð2:2Þ

where we have defined the functions

fðρÞ ¼ 1 − m̃e−2Qρ −
ðQ2

A þQ2
BÞ

2Q2
e−4Qρ;

ζðρÞ ¼ e−2Qρ − e−2Qρþ ; ð2:3Þ

with Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NA

þ 1
NB

q
is a background charge in the string

world sheet theory, and ρþ is the larger of the two solutions
of fðρÞ ¼ 0, ρ�. We also defined m̃ ¼ m

4Q2, with m the

standard mass parameter.
We note that ρ ¼ ρþ is the end of the space, correspond-

ing to the IR of the field theory.

A. Penrose limit

Below we study the Penrose limit for the geometry in
Eqs. (2.1)–(2.3). We find two possible geodesics about
which to expand and write the associated pp wave. We then
show the equivalence of the two plane waves obtained.
After that we comment on the amount of SUSY preserved
and quantize the string on this background.

1. First limit: Geodesic on ψA, ψB

We consider a geodesic moving (besides the time t) in
the directions ψA and ψB, and fixed at x ¼ ϕA ¼ ϕB ¼ 0,
(we could have replaced x ¼ 0 with some arbitrary x ¼ x0
as well), θA ¼ θB ¼ π=2 and ρ ¼ ρþ.

Note that ϕA ¼ ϕB ¼ 0 and θA ¼ θB ¼ π=2 are neces-
sary in order to have a solution of the geodesic equation
dxμ
dλ þ Γμ

νρ
dxν
dλ

dxρ
dλ ¼ 0. Moreover, as we are interested in

understanding the IR of the theory, we must focus on
the geodesics that sit at ρ ¼ ρþ.
The geodesics we are interested in, are further defined by

a rotation of an angle α between the two spatial directions
ψA and ψB. This means that we make the change of
variables,

ψA →
2ffiffiffiffiffiffiffi
NB

p ðcosðαÞψA þ sinðαÞψBÞ≡ ψ̃A;

ψB →
2ffiffiffiffiffiffiffi
NA

p ð− sinðαÞψA þ cosðαÞψBÞ≡ ψ̃B; ð2:4Þ

and take the geodesic to be on ψ̃B. One defines light cone
coordinates as usual,

t ¼ 1ffiffiffi
2

p ðu − vÞ;

ψ̃A ¼ 1ffiffiffi
2

p ðuþ vÞ: ð2:5Þ

The coordinate ρ is kept always slightly off the special
point ρ ¼ ρþ, where fðρþÞ ¼ 0, by the rescaling with L
written below. The Penrose rescaling is

v→
v
L2

; θA;B →
π

2
þ 2θA;B
L

ffiffiffiffiffiffiffiffiffiffi
NB;A

p ; ϕA;B →
2ϕA;B

L
ffiffiffiffiffiffiffiffiffiffi
NB;A

p ;

x→
x
L
; ρ→ ρþ þ ρ

L2
; ψB →

ψB

L
;

u→ u; φ→ φ: ð2:6Þ
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Note that the φ was not rescaled, since it will become an
angular variable in the pp wave (so it is not a length
variable, as to be rescaled by 1=L), in the same way that it
was done, for instance, in [5,7]. We also need to change
coordinates according to2

ρ→
sinhðQðρþ− ρ−ÞÞ

eQðρþ−ρ−Þ ρ2; φ→
eQðρþ−ρ−Þ

4Q2 sinhðQðρþ − ρ−ÞÞ
φ:

ð2:7Þ

Then in the L → ∞ limit, after rescaling the metric by
L2, we obtain the pp wave

L2ds2 ¼ 2duðdvþ Aφdφ − AdϕA − BdϕBÞ þ dx2 þ dρ2

þ ρ2dφ2 þ dθ2A þ dϕ2
A þ dθ2B þ dϕ2

B þ dψ2
B;

L2H3 ¼ dA ∧ dϕA ∧ duþ dB ∧ dϕB ∧ duþ dAφ

∧ dφ ∧ du;

Φ ¼ 0: ð2:8Þ

We have defined

Aφ ¼ 1

2
e−2Qρþρ2ðQA cosðαÞ −QB sinðαÞÞ;

A ¼
ffiffiffiffiffiffiffi
2

NB

s
cosðαÞθA; B ¼

ffiffiffiffiffiffiffi
2

NA

s
sinðαÞθB: ð2:9Þ

We can write the B-field corresponding to the above field
strength H3,

L2B2 ¼ AdϕA ∧ duþ BdϕB ∧ duþ Aφdφ ∧ du: ð2:10Þ

Finally, we go to Cartesian coordinates, from the ðρ;φÞ
space to ðx1; x2Þ, and define the corresponding rotated Aφ

into ðA1; A2Þ,

A1 ¼ −
1

2
x2e−2QρþðQA cosðαÞ −QB sinðαÞÞ;

A2 ¼
1

2
x1e−2QρþðQA cosðαÞ −QB sinðαÞÞ: ð2:11Þ

Relabeling ðθA;ϕA;θB;ϕB;x;ψBÞ→ ðx3;x4;x5;x6;x7;x8Þ,
the pp wave solution becomes

L2ds2 ¼ 2duðdvþ A1dx1 þ A2dx2 − Adx4 − Bdx6Þ
þ δijdxidxj;

L2B2 ¼ −A1du ∧ dx1 − A2du ∧ dx2 − Adu ∧ dx4

− Bdu ∧ dx6;

Φ ¼ 0; i; j ¼ 1;…; 8: ð2:12Þ

Let us now study a different geodesic and Penrose limit.

2. Second limit: Geodesic on ψA;ψB;ϕA;ϕB

Another possible Penrose limit, still describing excita-
tions in the IR of the dual field theory, is for a null geodesic
that moves on a combination of ψA;ψB;ϕA;ϕB, still at
x ¼ 0 (or x ¼ x0, in general), as well as ρ ¼ ρþ, but now at
θA ¼ θB ¼ 0 (instead of π=2), and the three remaining
coordinates (from which the combination of the null
motion is taken) are also still fixed at 0.
We first do the coordinate change (replacement),

ψA;B → ψ̂A;B − ϕ̂A;B; θA;B → 2θ̂A;B;

ϕA;B → ϕ̂A;B þ ψ̂A;B: ð2:13Þ

Then, we consider the same rotation as in Eq. (2.4), but
now for ψ̂A and ψ̂B (instead of ψA and ψB),

ψ̂A →
1ffiffiffiffiffiffiffi
NB

p ðcosðαÞψ̂A þ sinðαÞψ̂BÞ;

ψ̂B →
1ffiffiffiffiffiffiffi
NA

p ð− sinðαÞψ̂A þ cosðαÞψ̂BÞ; ð2:14Þ

such that the geodesic motion is on the redefined ψ̂A. We
use the same redefinition of light cone coordinates u, v in
Eq. (2.5), for ðt; ψ̂AÞ.
We perform the coordinate change indicated in Eq. (2.7),

together with the Penrose rescaling,

v→
v
L2

; θ̂A;B→
θ̂A;B

L
ffiffiffiffiffiffiffiffiffiffi
NB;A

p ; x→
x
L
; ρ→ρþþ

ρ

L2
;

ψ̂B→
ψ̂B

L
u→u; ϕ̂A→ ϕ̂A; ϕ̂B→ ϕ̂B: ð2:15Þ

Multiplying the metric by L2 and taking the L → ∞
limit gives

2Note that it is only the redefined ρ that rescales by 1=L in the
Penrose limit, as required by the Penrose theorem, since only this
variable becomes the radial coordinate on the plane.
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L2ds2 ¼ −
1

2

�
θ̂2A
NB

cos2ðαÞ þ θ̂2B
NA

sin2ðαÞ
�
du2 þ 2duðdvþ AφdφÞ

þ dx2 þ dρ2 þ ρ2dφ2 þ dθ̂2A þ θ̂2Adϕ̂
2
A þ dθ̂2B þ θ̂2Bdϕ̂

2
B þ dψ̂2

B;

L2H3 ¼ cosðαÞ
ffiffiffiffiffiffiffi
2

NB

s
θ̂Adu ∧ dθ̂A ∧ dϕ̂A − sinðαÞ

ffiffiffiffiffiffiffi
2

NA

s
θ̂Bdu ∧ dθ̂B ∧ dϕ̂B þ dAφ ∧ dφ ∧ du

Φ ¼ 0; ð2:16Þ

where Aφ is the same as in the geodesic in the previous case, Eq. (2.9). We can also find the 2-form potential that leads to
H3 ¼ dB2,

L2B2 ¼
1ffiffiffiffiffiffiffiffiffi
2NB

p cosðαÞθ̂2Adu ∧ dϕ̂A −
1ffiffiffiffiffiffiffiffiffi
2NA

p sinðαÞθ̂2Bdu ∧ dϕ̂B − Aφdu ∧ dφ: ð2:17Þ

In the above pp wave solution, we have three two-dimensional subspaces written in polar coordinates: ðρ;φÞ and
ðθ̂A;B; ϕ̂A;BÞ. We switch to Cartesian coordinates ðx1; x2Þ, ðx3; x4Þ, and ðx5; x6Þ, respectively. Relabeling ðx; ψ̂BÞ → ðx7; x8Þ
we find

L2ds2 ¼ −
1

2

�
1

NB
ðx23 þ x24Þ cos2ðαÞ þ

1

NA
ðx25 þ x26Þ sin2ðαÞ

�
du2 þ 2duðdvþ A1dx1 þ A2dx2Þ þ δijdxidxj;

L2B2 ¼ −A1du ∧ dx1 − A2du ∧ dx2 þ B3du ∧ dx3 þ B4du ∧ dx4 þ B5du ∧ dx5 þ B6du ∧ dx6;

Φ ¼ 0; ð2:18Þ

where A1, A2 are written in Eq. (2.11) and

B3 ¼
1ffiffiffiffiffiffiffiffiffi
2NB

p cosðαÞx4; B4 ¼ −
1ffiffiffiffiffiffiffiffiffi
2NB

p cosðαÞx3;

B5 ¼ −
1ffiffiffiffiffiffiffiffiffi
2NA

p sinðαÞx6; B6 ¼
1ffiffiffiffiffiffiffiffiffi
2NA

p sinðαÞx5: ð2:19Þ

This pp wave solution is called a “gyratonic” pp
wave [16,17], being created by spinning objects moving
at the speed of light. Let us discuss the equivalence of the
plane waves obtained above and the preserved SUSY.

3. Equivalence of pp waves and supersymmetry

We now show that both pp waves in Eqs. (2.12) and
(2.18) are the same, and moreover are of a general type
called parallelizable in [14].
We start by denoting, in (2.12),

2A1 ¼−ax2; 2A2 ¼þax1; 2A¼ bx3; 2B¼ cx5;

ð2:20Þ

where a, b, c are given by

a ¼ e−2QρþðQA cosðαÞ −QB sinðαÞÞ;

b ¼ 2

ffiffiffiffiffiffiffiffiffi
1

2NB

s
cosðαÞ; c ¼ 2

ffiffiffiffiffiffiffiffiffi
1

2NA

s
sinðαÞ: ð2:21Þ

The pp wave solution in Eq. (2.12) becomes then

ds2 ¼ 2dudvþ du½−ax2dx1 þ ax1dx2

− 2bx3dx4 − 2cx5dx6� þ
X8
i¼1

dxidxi;

B2 ¼
a
2
du ∧ ðx2dx1 − x1dx2Þ − bx3du ∧ dx4

− cx5du ∧ dx6;

Φ ¼ 0: ð2:22Þ

We can do a similar coordinate transformation as was done,
for instance, in [3], and first define

z1 ≡ x1 þ ix2; ð2:23Þ

such that

x1dx2 − x2dx1 ¼ −
i
2
ðz̄dz− zdz̄Þ; dx21 þ dx22 ¼ dzdz̄;

ð2:24Þ
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and then, redefining

z1 ¼ e−iau=2w1; z̄1 ¼ eþiau=2w̄1; ð2:25Þ

we find

dz1dz̄1 −
i
2
aduðz̄1dz1 − z1dz̄1Þ ¼ dw1dw̄1 −

a2

4
du2jw1j2;

ð2:26Þ

so the metric becomes

ds2 ¼ 2dudvþ du

�
−
a2

4
jw1j2 − 2bx3dx4 − 2cx5dx6

�

þ dw1dw̄1 þ
X8
i¼3

dxidxi: ð2:27Þ

Then, the shift

v → vþ b
2
x3x4 þ

c
2
x5x6 ð2:28Þ

takes the metric to

ds2 ¼ 2dudvþ du

�
−
a2

4
jw1j2du − bðx3dx4 − x4dx3Þ

− cðx5dx6 − x6dx5Þ
�
þ dw1dw̄1 þ

X8
i¼3

dxidxi:

ð2:29Þ

Finally, we repeat for the pairs ðx3; x4Þ and ðx5; x6Þ the
same steps as for ðx1; x2Þ, and get

ds2 ¼ 2dudv − du2
�
a2

4
jw1j2 þ

b2

4
jw2j2 þ

c2

4
jw3j2

�

þ
X3
a¼1

dwadw̄a þ dx27 þ dx28: ð2:30Þ

We go back to real coordinates by w ¼ x01 þ ix02 and drop
the primes, to find the metric

ds2 ¼ 2dudv −
du2

4
½a2ðx21 þ x22Þ þ b2ðx23 þ x24Þ

þ c2ðx25 þ x26Þ� þ
X8
i¼1

dx2i : ð2:31Þ

The field strength of the B field is, originally,

H3 ¼ dB2 ¼ du ∧ ½adx1 ∧ dx2 þ bdx3

∧ dx4 þ cdx5 ∧ dx6�; ð2:32Þ

but then neither the transformation (2.25), nor the shift
(2.28) changes it, so it has the same form in the final
variables. We can, moreover, choose a gauge in which

B2 ¼
1

2
du ∧ ½aðx2dx1 − x1dx2Þ þ bðx4dx3 − x3dx4Þ

þ cðx6dx5 − x5dx6Þ�: ð2:33Þ

As before, Φ ¼ 0. For the pp wave on the second
geodesic, see Eq. (2.18), using the same definitions in
(2.21), we can put it in the form,

ds2 ¼ 2dudv − du½x2dx1 − x1dx2�

−
du2

4
½b2ðx23 þ x24Þ þ c2ðx25 þ x26Þ� þ

X8
i¼1

dxidxi;

B2 ¼
du
2
½aðx2dx1 − x1dx2Þ þ bðx4dx3 − x3dx4Þ

þ cðx6dx5 − x5dx6Þ�;
Φ ¼ 0: ð2:34Þ

We see that, with respect to the previous case, we have an
intermediate case, where the transformations were done for
the ðx3; x4Þ and ðx5; x6Þ pairs, but it remains to do for the
ðx1; x2Þ pair. Once that is done, the same solution is
obtained.
This common solution is also of the type called “paral-

lelizable” in [14], namely a solution of the type

ds2 ¼ 2dudv − ðduÞ2½a21ðx21 þ x22Þ þ a22ðx23 þ x24Þ þ a23ðx25 þ x26Þ þ a24ðx27 þ x28Þ� þ
X8
i¼1

dx2i

H ¼ du ∧ ð2a1dx1 ∧ dx2 þ 2a2dx3 ∧ dx4 þ 2a3dx5 ∧ dx6 þ 2a4dx7 ∧ dx8Þ ⇒
B ¼ du ∧ ½a1ðx1dx2 − x2dx1Þ þ a2ðx3dx4 − x4dx3Þ þ a3ðx5dx6 − x6dx5Þ þ a4ðx7dx8 − x8dx7Þ�: ð2:35Þ
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From the table on page 16 in the paper [14], we see that the
solution (since it is of the generic type) has only 16
supercharges (a generic pp wave has 16 supercharges or
1=2 SUSY, but depending on the solution, it can have
perhaps more).
On the other hand, we remember the definitions (2.21),

as well as the fact, shown in [12], that the background is
supersymmetric if

eAQB ¼ �eBQA ⇒ QB

ffiffiffiffiffiffiffi
NA

p
¼ �QA

ffiffiffiffiffiffiffi
NB

p
: ð2:36Þ

Then, we choose the rotation parameter α (which was
free until now) such that

cosα ∝
ffiffiffiffiffiffiffi
NA

p
; sinα ∝

ffiffiffiffiffiffiffi
NB

p
⇒ tanα¼

ffiffiffiffiffiffiffi
NB

NA

s
: ð2:37Þ

Then we obtain b ¼ c, and moreover a ¼ 0, for the
supersymmetric background. This makes sense, since from
Table 2 on page 16 of [14], we see that in this case we
have 24 supercharges; the 16 generic ones, plus 8 addi-
tional ones. In this case we have Uð2Þ ×Oð4Þ symmetry
(R-symmetry in the field theory).
We summarize (up to this point). We study the non-

singular background corresponding to I-branes compacti-
fied on a circle and preserving SUSY in Eq. (2.1) in the
NS-frame. We consider its Penrose limit along two possible
geodesics, showing that the result for both geodesics is the
same. A parallelizable background in Eq. (2.35) for a1 ¼
a4 ¼ a ¼ 0 and a2 ¼ a3 ¼ b ¼ c, preserving twenty-four
SUSYs. Let us now study the quantization of a string on
this plane wave background.

4. Quantization of string modes

We start by writing the equations of motion for a string in
generic parallelizable plane wave in Eq. (2.35). For con-
stant values of ai with i ¼ 1, 2, 3, 4, and choosing the light
cone gauge u ¼ α0pþτ we find for the first pair of
coordinates ðX1; X2Þ,

□X1 − ða1α0pþÞ2X1 þ 2ða1α0pþÞ∂σX2 ¼ 0;

□X2 − ða1α0pþÞ2X2 − 2ða1α0pþÞ∂σX1 ¼ 0: ð2:38Þ

There are analog equations for the pairs ðX3; X4Þ with the
constant a2. For ðX5; X6Þ with constant a3 and for ðX7; X8Þ
with constant a4. The equation for the u-coordinate is
implied by the Virasoro constraint and the equation for the
v-coordinate is automatically satisfied.
In the case of our plane wave with 24 SUSYs (a ¼ 0,

b ¼ c), the string spectrum on the pp wave is easily
obtained. In the light cone gauge ∂τu ¼ α0pþ, and with
the usual ansatz,

X1 ¼ X1
0e

−iωtþinσ; X2 ¼ X2
0e

−iωtþinσ; ð2:39Þ

the equations of motion for the (decoupled from the rest)
ðx1; x2Þ system become

ðω2 − n2 − ðaα0pþÞ2ÞX1
0 þ 2inðaα0pþÞX2

0 ¼ 0;

ðω2 − n2 − ðaα0pþÞ2ÞX2
0 − 2inðaα0pþÞX1

0 ¼ 0; ð2:40Þ

so that

X2
0

X1
0

¼ þ2inðaα0pþÞ
ω2 − n2 − ðaα0pþÞ2 ¼

ω2 − n2 − ðaα0pþÞ2
−inðaα0pþÞ ⇒

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ ðaα0pþÞ2 � 2nðaα0pþÞ

q
¼ jn� aα0pþj;

ð2:41Þ

but, with the usual rescaling of σ, this gives

ω ¼
����a� n

α0pþ

����: ð2:42Þ

The same for the coordinates ðx3; x4Þ and ðx5; x6Þ and
constants b, c. In the SUSY case (a ¼ 0, b ¼ c), we have

ω� ¼
����b� n

α0pþ

����; i ¼ 3; 4; 5; 6;

ω ¼ n
α0pþ ; i ¼ 1; 2; 7; 8; ð2:43Þ

so two complex modes of the same mass b, and two
complex massless modes since, coming from the ðx1; x2Þ
and ðx7; x8Þ pairs.

B. Dual spin chain

Now we would like to try to reproduce the string
spectrum on the pp wave derived above from the dual
quantum field theory, originally defined in 1þ 1 dimen-
sions. Here, we only concentrate on the n ¼ 0 modes,
corresponding to the Bogomoln'yi-Prasad-Sommerfeld
operators in the supersymmetric field theory case. The
n=ðα0pþÞ ∝ 1=J terms are left for future work.

1. Field theory

As explained in [11,12], the (1þ 1)-dimensional theory,
with coordinates x0 and x1, comes from the intersection of
two sets of D5-branes in type-IIB string theory. The
corresponding low-energy field theory is the theory with
gauge groups SUðNAÞNB

× SUðNBÞNA
, with both Yang-

Mills (YM) and Chern-Simons (CS) terms in (2þ 1)
dimensions, and with fermion bifundamentals under the
gauge groups, reduced to (1þ 1) dimensions. The theory
also has an SOð4Þ × SOð4Þ R-symmetry, corresponding to
the two three-spheres S3’s in the gravity dual, see Eq. (2.1).
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This is manifest in field theory as the rotation of the two
sets of four coordinates parallel to each D5-brane, but
transverse to the (1þ 1)-dimensional intersection.
The (2þ 1)-dimensional theory (before the reduction) has

some similarity with the theory for the (2þ 1)-
dimensional Guarino-Jafferis-Varela (GJV) model [18]
(which is also of YMþ CS type, though only for one gauge
group), whose spin chain coming from a Penrose limit was
described in [3]. It is therefore conceivable that one could
write the action, in a similar way with the GJV case, then
reduce on the S1. Parts of the theory were written down in
[11]. The authors of that paper considered only the gauge
fields Að1Þ and Að2Þ, coming from the two sets of D5-branes,
and their interaction with the bifundamental fermions. One
should have the scalars of the D5-branes, ϕI

ð1Þ, with I ¼ 2, 3,

4, 5 (transverse to the first set of D5-branes) and ϕJ
ð2Þ

(transverse to the second set of D5-branes), with J ¼ 6, 7, 8,
9, on which the SOð4Þ × SOð4Þ R-symmetry should act.
In the Penrose limit, the eight scalars will pair up into

four complex ones, Z; Z̄ (corresponding to the u and v
directions in the gravity dual), and W1 ¼ X1 þ iX2,
W2 ¼ X3 þ iX4, W3 ¼ X5 þ iX6 (we renamed the scalars,
without explaining the notation, since we do not yet know
how they generically pair up into these). Then the spin
chain will be, as usual, with insertions of Wi; W̄i (six
oscillators) and Di (two oscillators) inside the trace of the
operator corresponding to the vacuum, Tr½ZJ�.
It is not clear how to get the case of frequencies of string

oscillators with arbitrary a, b, c’s from field theory, though
perhaps that is because of having less supersymmetries,
and so there will be more arbitrary renormalizations
when going from weak coupling (SYM) to strong coupling
(AdS).
However, the supersymmetric case is easier to under-

stand. In this case, we construct the complex scalars,

Z ¼ ϕ2
ð1Þ þ iϕ6

ð2Þ; W1 ¼ ϕ3
ð1Þ þ iϕ7

ð2Þ;

W2 ¼ ϕ4
ð1Þ þ iϕ5

ð1Þ; W3 ¼ ϕ8
ð2Þ þ iϕ9

ð2Þ: ð2:44Þ

Then, from the Uð2Þ ×Oð4Þ R-symmetry derived from
the supersymmetric pp wave previously found, the SOð4Þ
acts on W2, W3 (that have the same value for Δ − J,
corresponding to the same mass, b, in the supersymmetric
pp wave), and the Uð2Þ acts on ðZ;W1Þ (both correspond-
ing to massless fields in the supersymmetric pp wave).
There are also the modes corresponding to insertions ofDi,
i ¼ 0, 1, but those correspond to the directions parallel to
the field theory, so they are special.

2. Matching of oscillator modes and masses: Naive try

The correspondence between the pp wave (and gravity
dual) coordinates and scalar fields in field theory is then as
follows:

ðx1; x2Þ ¼ ðρ;φÞ→Di; ðx7; x8Þ ¼ ðx;ψBÞ→W1;

ðx3; x4Þ ¼ ðθA;ϕAÞ→W2; ðx5; x6Þ ¼ ðθB;ϕBÞ→W3:

ð2:45Þ

The first, naive, try for the oscillator spectrum is as
follows (we are in 1þ 1 dimensions, so a scalar has mass
dimension 0).

Field Z W1 Z̄ W̄1 W2; W̄2 W3; W̄3 Dxi

Δ 0 0 0 0 0 0 1
J −1 −1 1 1 0 0 0
Δ − J 1 1 −1 −1 0 0 1
H=μ ¼ Δ − J − E0 0 0 −2 −2 −1 −1 0
Oscillator � � � x8 � � � � � � x3, x4 x5, x6 x1, x2

Then the Hamiltonian has the correct value, if one
multiplies it by μ ¼ −1. Z̄ and W̄1 would get infinite
masses by renormalization, and thus do not correspond to
oscillators, as usual. Note that W1 is massless, because of
having the same J as Z, since ψA (for Z) and ψB (for W1)
are rotated into each other.
We see that we are missing x7 (one massless oscillator),

and the problem is traced to the fact that W̄1 is not an
oscillator, just like Z̄, so it does not enter the counting. How
to fix this?

3. Matching of oscillators modes and masses:
Correct version

The problem is resolved if we think better of the
construction in [11]. The field theory is actually (2þ 1)-
dimensional, where the extra spatial coordinate for the field
theory was obtained by joining at ū ¼ v̄ ¼ 0 the radial

coordinates ū≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ϕ
i
ð1Þϕ

i
ð1Þ

q
and v̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j ϕ

j
ð2Þϕ

j
ð2Þ

q
(the

radial coordinates transverse to each D5-brane). Let us call
this direction w. Then we must add x7 (corresponding to x)
as the Dw oscillator in the (2þ 1)-dimensional field theory.
Then the correct table is [note that in (2þ 1) dimensions,

a scalar has dimension 1=2, so we must redefine the unit of
J to be 1=2 as well].

Field Z W1 Z̄ W̄1 W2; W̄2 W3; W̄3 Dxi Dw

Δ 1=2 1=2 1=2 1=2 1=2 1=2 1 1
J −1=2 −1=2 1=2 1=2 0 0 0 0
Δ − J 1 1 0 0 1=2 1=2 1 1
H=μ ¼ Δ − J − E0 0 0 −1 −1 −1=2 −1=2 0 0
Oscillator � � � x8 � � � � � � x3, x4 x5, x6 x1, x2 x7

Now the Hamiltonian is the correct one if we multiply by
μ ¼ −2. Of course, there seems to be a sort of overcounting
the dimensions (which now sum up to 11, instead of the 10
of type IIB), but that is due to the fact that the dimension w
is half of one dimension, and half of another, so does not
truly exist independently: any point with ðū ≠ 0; v̄ ≠ 0Þ,
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does not belong to the world volume of the QFT, and the
fibered I-brane gravity dual we consider only deals with
these points.
In any case, as usual, the vacuum is given by

j0;pþi ¼ 1ffiffiffi
J

p
NJ=2

Tr½ZJ�; ð2:46Þ

and we insert the oscillators from the table above inside the
trace, in order to obtain the oscillator states.
Now, we perform a similar study for the background dual

to a (4þ 1)-dimensional confining QFT [13].

III. PENROSE LIMIT OF TWISTED D5-BRANES
AND DUAL SPIN CHAIN

In [13], a gravity dual was considered for a single set of
twisted compactified D5-branes on S1φ, with a world
volume of ðt; x⃗4Þ, plus a fibration over the coordinate φ;
the S3 transverse to the single set of D5-branes is fibered
over φ, obtaining a cigarlike geometry. One has a Wilson
line holonomy inserted, and the theory preserves eight
supercharges (1=4 SUSY).
The gravity dual background, in the NS5-brane frame, is

given by

ds2st ¼ dx21;4 þ fsðρÞdφ2 þ dρ2

fsðρÞ

þ N
4

�
ω2
1 þ ω2

2 þ
�
ω3 −

ffiffiffiffi
8

N

r
QζðρÞdφ

�2�
;

H3 ¼ 2NVolðS3Þ þ 2

ffiffiffiffi
N
8

r
QdðζðρÞω3 ∧ dφÞ;

Φ ¼ −
ρffiffiffiffi
N

p ; ð3:1Þ

where3

fsðρÞ ¼ 1−me−2ρ=
ffiffiffi
N

p
− 2Q2e−4ρ=

ffiffiffi
N

p

¼ e−4ρ=
ffiffiffi
N

p �
e2ρ=

ffiffiffi
N

p
− e2ρþ=

ffiffiffi
N

p 	�
e2ρ=

ffiffiffi
N

p
− e2ρ−=

ffiffiffi
N

p 	
;

ζðρÞ ¼ e−2ρ=
ffiffiffi
N

p
− e−2ρþ=

ffiffiffi
N

p
; ð3:2Þ

and, as in the I-brane case, the metric on the transverse S3 is
written in terms of the Maurer-Cartan forms of suð2Þ,

ω1 ¼ cosðψÞdθ þ sinðψÞ sinðθÞdϕ;
ω2 ¼ − sinðψÞdθÞ þ cosðψÞ sinðθÞdϕ;
ω3 ¼ dψ þ cosðθAÞdϕ: ð3:3Þ

The ρ� are the two solutions of fsðρÞ ¼ 0; namely,

e2
ρ�ffiffi
N

p ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 8Q2

p
2

: ð3:4Þ

The supersymmetric case corresponds to

e
2ρþffiffi
N

p ¼
ffiffiffi
2

p
Q; m ¼ 0: ð3:5Þ

As in the I-brane case, the end of the cigar, ρ ¼ ρþ,
corresponds to the IR of the field theory.

A. Penrose limit

In order to explore the IR of the field theory, we consider
a geodesic at ρ ¼ ρþ, like in the I-brane case of Sec. II.
Moreover, we now consider a geodesic moving in t and ψ
(the coordinate on an equator of S3) and at θ ¼ π=2;ϕ ¼ 0,
as well as xi ¼ 0, i ¼ 1;…; 4 (or any constant xi0), and φ
arbitrary.
We define the usual lightcone coordinates, now for

ðt;ψÞ,

t ¼ 1ffiffiffi
2

p ðu − vÞ;

ψ ¼ 1ffiffiffi
2

p ðuþ vÞ; ð3:6Þ

and then the standard rescalings in the Penrose theorem,

v→
v
L2

; θ →
π

2
þ 2θ

L
ffiffiffiffi
N

p ; ϕ→
2ϕA;B

L
ffiffiffiffi
N

p ;

xi →
xi

L
; ρ→ ρþ þ ρ

L2
; u→ u; φ→ φ; ð3:7Þ

where the only nontrivial case is that of φ, which does not
rescale, since it is an angular coordinate (and stays so).
Then we take the Penrose limit, by multiplying the

metric with L2 and taking the limit L → ∞, while also
using the redefinition

ρ →
1ffiffiffiffi
N

p
sinh

�
1ffiffiffi
N

p ðρþ − ρ−Þ
	

e
1ffiffi
N

p ðρþ−ρ−Þ
ρ2;

φ →

ffiffiffiffi
N

p

2

e
1ffiffi
N

p ðρþ−ρ−Þ

4 sinh
�

1ffiffiffi
N

p ðρþ − ρ−Þ
	φ; ð3:8Þ

to obtain the pp wave solution

3Note that here e2ρ−=
ffiffiffi
N

p
< 0, due to the fact that Q2 has the

opposite sign to the one in a black solution. That is so, since the
solution is related to the black membrane through a double Wick
rotation, that requires alsoQ → −iQ in order to keep the solution
real. But the negative sign is no problem—the double Wick
rotation means that ρ� are not interpreted as horizons—only ρþ is
physical, and it is just the tip of a cigar geometry, locally the
origin of a tangent plane. ρ− on the other hand is just a
mathematical construct.
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L2ds2 ¼ 2du

�
dv −

ffiffiffiffi
2

N

r
θdϕþ Qffiffiffiffi

N
p e−2ρþ=

ffiffiffi
N

p
ρ2dφ

�
2

þ dρ2 þ ρ2dφ2 þ dθ2 þ dϕ2 þ dx⃗2;

L2H3 ¼
ffiffiffiffi
2

N

r
du ∧ dθ ∧ dϕþ 2Qffiffiffiffi

N
p e−2ρþ=

ffiffiffi
N

p
ρdu ∧ dρ ∧ dϕ;

Φ ¼ 0: ð3:9Þ

We now move to Cartesian coordinates for ðρ;φÞ, namely ðx5; x6Þ, and relabel the rescaled ðθ;ϕÞ as ðx7; x8Þ, to obtain

ds2PL ¼ 2du

�
dv −

ffiffiffiffi
2

N

r
x7dx8 þ

Qffiffiffiffi
N

p e−2ρþ=
ffiffiffi
N

p
ð−x6dx5 þ x5dx6Þ

�
2

þ dx⃗2;

H3 ¼
ffiffiffiffi
2

N

r
du ∧ dx7 ∧ dx8 þ

2Qffiffiffiffi
N

p e−2ρþ=
ffiffiffi
N

p
du ∧ dx5 ∧ dx6;

Φ ¼ 0: ð3:10Þ

Defining

a ¼ Qffiffiffiffi
N

p e−2ρþ=
ffiffiffi
N

p
; b ¼ 1

2

ffiffiffiffi
2

N

r
; ð3:11Þ

we obtain the solution in the form

ds2PL ¼ 2du½dvþ að−x6dx5 þ x5dx6Þ − 2bx7dx8� þ dx⃗2;

H3 ¼ 2adu ∧ dx5 ∧ dx6 þ 2bdu ∧ dx7 ∧ dx8;

Φ ¼ 0: ð3:12Þ

1. Coordinate change to parallelizable pp wave,
and supersymmetry

We make a coordinate change to a parallelizable pp
wave. Indeed, defining the complex coordinate,

z ¼ x5 þ ix6; ð3:13Þ

we get

−x6dx5 þ x6dx5 ¼ −
i
2
ðz̄dz − zdz̄Þ: ð3:14Þ

Then, the coordinate change

z ¼ e−iau=2w; z̄ ¼ eiau=2w̄ ð3:15Þ

means that

dzdz̄þ 2du

�
−
ia
2
ðz̄dz − zdz̄Þ

�
¼ dwdw̄ − a2ww̄du2:

ð3:16Þ

Going back to Cartesian coordinates, we get the pp wave
solution in the form,

ds2 ¼ −a2ðx25 þ x26Þdu2 þ 2duðdv − 2bx7dx8Þ þ dx⃗2;

H3 ¼ 2adu ∧ dx5 ∧ dx6 þ 2bdu ∧ dx7 ∧ dx8;

Φ ¼ 0: ð3:17Þ

Under these coordinate changes,H3 did not change, as in
the I-brane case. Finally, we shift v as

v→ vþ bx7x8; dv→ dvþ bx8dx7 þ bx7dx8; ð3:18Þ

which means that we put the term proportional to b in the
same form as the term proportional to a was, so we can
follow the previous steps again for this term.
Finally, the result is that the pp wave is put in the

parallelizable form,

ds2 ¼ 2dudv − ½a2ðx25 þ x26Þ þ b2ðx27 þ x28Þ�du2 þ dx⃗2;

H3 ¼ 2adu ∧ dx5 ∧ dx6 þ 2bdu ∧ dx7 ∧ dx8;

Φ ¼ 0; ð3:19Þ

with a, b defined in Eq. (3.11). We also observe that the
supersymmetric case, which is now also the extremal case,
with a ¼ b,

e
2ρþffiffi
N

p ¼
ffiffiffi
2

p
Q; m ¼ 0; ð3:20Þ

has the same form as the supersymmetric pp wave
obtained from the fibered I-branes, which in the classi-
fication in [14], has 24 supercharges; the 16 generic ones,
plus additional eight ones. The R-symmetry is also the
same as before, Uð2Þ ×Oð4Þ.
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B. Dual spin chain

The natural field theory dual would be the theory on the
world volume of the D5-branes, with ðt; x⃗4Þ and the
compact φ, on which we can compactify. As we said,
the theory has implicitly a Wilson-loop holonomy, breaking
a quarter of the SUSY, preserving eight supercharges.
As in the I-brane case, we will only be able to describe

the supersymmetric case, corresponding in the gravity dual
to a ¼ b. The generic case is unclear, but we expect that
quantum corrections would spoil that analysis in any case.
We will see that, in fact, it is better to consider the same

(1þ 1)-dimensional field theory as for the I-brane case
(also since the supersymmetric pp wave is the same), but
now understood as coming from the compactification of the
(4þ 1)-dimensional theory in ðt; x⃗4Þ on the missing S3

(which was transverse in the I-brane case, but is now
parallel in this fibered D5-brane case).
Then the field theory scalars are 4X’s transverse to the

D5-branes, let us call them X6, X7, X8, X9, plus 4 for the
compactification on S3 × S1, let’s call them A2, A3, A4, A5,
as they arise from gauge fields in compact directions that
become scalars after compactification.
Then, if ψ rotates X6, X7, we take the complex scalar

field Z ¼ X6 þ iX7 to be charged under J. As in the I-brane
case, this has Δ ¼ 0; J ¼ −1, so gives Δ − J ¼ 1, just
like Di, i ¼ 0, 1, which now has Δ ¼ 1; J ¼ 0, and after
subtracting the ground state energy E0 ¼ 1, gives two of
the massless oscillators. Then X8, X9 have Δ ¼ 0; J ¼ 0;
Δ − J ¼ 0, so after subtracting E0 ¼ 1 gives −1, so we
obtain two of the massive oscillators; ðx7; x8Þ ¼ ðθ;ϕÞ in
the gravity dual.
However, in order to obtain the correct number of

massless and massive oscillators, we now need to split
Aa, where a ¼ 2, 3, 4, 5 (for the four coordinates on
S3 × S1) into two massless oscillators and two massive
oscillators [for ðx5; x6Þ ¼ ðρ;φÞ in the gravity dual].
To do so, we can write A5 → Xφ, so the field in the φ

direction is thought of as a scalar; by multiplication with
1=g2YM, it has dimension 0 instead of dimension 1.
Moreover, we can do the same for the overall field on
the S3,

1

g2YM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
a¼2

AaAa

vuut → Xρ; ð3:21Þ

with dimension 0, like a scalar. Then Xφ; Xρ have
Δ − J ¼ 1, and also correspond to massless excitations,
specifically x5, x6 (for φ; ρ). This leaves A2, A3 as
dimension 1 fields, giving the remaining two mass-
less modes.
This procedure is consistent, but somewhat puzzling, yet

is the only one possible that gives the same result as in the

I-brane case, which was necessary, since the supersym-
metric pp wave was the same.
As for the other fields, we shift the mass by the ground-

state energy E0 ¼ 1, and multiply it by μ ¼ −1.
Thus, the final table is.

Field Z Z̄ X3, X4 Xφ Xρ Aa0 ;a0¼2, 3 Dxi ;i¼0, 1

Δ 0 0 0 0 0 1 1
J −1 1 0 0 0 0 0
Δ − J 1 −1 0 0 0 1 1
H=μ¼Δ−J−E0 0 −2 −1 −1 −1 0 0
Oscillator � � � � � � x7, x8 x6 x5 x3, x4 x1, x2

The R-symmetry of Uð2Þ ×Oð4Þ ≃Uð1Þ × SOð3Þ ×
SOð4Þ (modulo some discrete symmetries) in the super-
symmetric case is understood in the field theory as the
symmetry of S1φ, S2 ⊂ S3 (since S3 was understood as an S2

fibration, allowing for the split of A2, A3, A4 into two
massive and one massless excitation), and of X6;…; X9,
respectively.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have studied the Penrose limits of the
gravity duals of fibered I-branes and D5-branes [12,13], in
order to understand better the duality.
The I-branes gave a (1þ 1)-dimensional theory, dynami-

cally extended to (2þ 1) dimensions. We have found that
in order to match the pp wave analysis obtained in the
Penrose limit against a field theory, we must consider the
theory in (2þ 1) dimensions, in which case we can match
the oscillators and their masses.
Perhaps more surprisingly, we have found that, in order

to match the oscillators and masses for the case of the
Penrose limit of the twisted S1-compactified D5-branes
against field theory, we need to consider the same (1þ 1)-
dimensional theory of the original I-brane world volume,
now obtained by reduction on the S1 fibration circle, as well
as the world volume S3. Moreover, in the S3, one of the
directions becomes special also, although our analysis still
is made from the (1þ 1)-dimensional point of view, and
not a (2þ 1)-dimensional one.
In both fibered I-branes and D5-branes cases, we find

that the supersymmetric pp wave, the only case for which
we can find matching, is the same one, the generic
parallelizable case with 24 supercharges (the standard 16
SUSYs, plus 8 more) from the classification in [14]. The
nonsupersymmetric pp waves are different in the two cases,
but it is not clear if or how to match, as in that case, there
will presumably be uncontrollable corrections to the mass.
We also found that, before a coordinate transformation, one
of the generic Penrose limits on the I-brane case (with
parameters a ≠ b ≠ c) gave us a so-called gyratonic pp
wave [16,17].
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There are many issues left for further work, among them
notably the match in the generic, nonsupersymmetric case,
as well as the match of the terms with n=ðα0pþÞ in the
string oscillator frequencies, which correspond to ∝ 1=J
terms, coming from gauge interactions, in the field theory
side. Apart from this, backgrounds similar to the ones
studied here, see for example [19,20,21,22,23] could be
analyzed following our formalism. We expect results with
similar qualitative features.
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