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In this study, we investigate the behavior of entanglement properties in the QCD phase diagram using
holographic Einstein-Maxwell-dilaton models. We consider two representative holographic QCD models
and examine various entanglement measures, including entanglement entropy, conditional mutual
information, and the entanglement of purification. We find that the entanglement entropy obtained using
the direct UV-cutoff renormalization method shows significant dependence on the specific model being
used. However, the outcomes of other nondivergent entanglement measures, such as cutoff-independent
entanglement entropy, conditional mutual information, and the entanglement of purification, exhibit
congruence in our calculations. When we focus specifically on the temperature range below 300 MeV, we
observe a similar behavior among the three entanglement measures. This may suggest that within this
temperature range, the entanglement of QCD matter decreases with increasing temperature. Additionally,
we observe distinct phase transition behaviors of entanglement properties at the critical end point and first-
order phase transitions. This observation highlights the potential of entanglement properties as effective
order parameters for QCD matter phase transitions.
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I. INTRODUCTION

The phase structure of quark-gluon matter is a primary
focus in heavy-ion collision experiments conducted at the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC). Numerous efforts have been
dedicated to investigating this problem over the past few
decades. Lattice QCD calculations suggest that the chiral
and confinement/deconfinement phase transitions occur as
smooth crossovers at small values of μB, with the tran-
sitions mixing together [1–3]. Conversely, several effective
theories, including the Dyson-Schwinger equation (DSE)
[4–9], the Nambu–Jona-Lasinio (NJL) model [10–13], and
the functional renormalization group (FRG) [14–16], pro-
pose the existence of a first-order phase transition at large
values of μB. This phase transition would terminate at the
QCD critical end point (CEP), a critical point that is still
subject to debate with no conclusive constraints from
model calculations thus far. However, lattice QCD results
rule out the presence of the CEP for μB=T ≤ 3 and μB <
300 MeV [17–22].

In studies investigating the phase transition of strongly
coupled quark-gluon matter, thermodynamic quantities and
transport properties are commonly employed as order
parameters. On the other hand, the study of entanglement
properties between different subsystems within QCD mat-
ter may offer valuable insights into its strong coupling
nature. In quantum information theory, entanglement
entropy (SEE) is commonly employed to quantify the quan-
tum entanglement between subsystem A and its comple-
ment within a pure state. It measures the degree of
correlation and information shared between the subsystems
due to their entangled state. When dealing with mixed
states, the entanglement entropy may not be the most
appropriate measure of correlation [23–26]. Instead,
researchers often explore alternatives such as mutual
information (MI), conditional mutual information (CMI),
and entanglement of purification (EoP). These entangle-
ment properties capture the total correlation between two
subsystems and provide finite and scheme-independent
results that are always non-negative, a property stemming
from the subadditivity and strong subadditivity of SEE.
The calculation of entanglement entropy in quantum

field theory is complicated because of scheme-dependent
behavior at the UV limit. Fortunately, holographic duality
provides a clear interpretation of SEE: it corresponds to the
area of the minimal surface extended in the bulk, with its
boundary coinciding with that of subregion A [27–31].
Holographic QCD [32–38] and holographic condensed
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matter theory [39,40] research has found that, as nonlocal
observables, entanglement properties can also serve as
effective order parameters for various phase transitions.
These include transitions such as metal-insulator phase
transitions [40–42], superconducting phase transi-
tions [43–46], deconfinement phase transitions [47–54],
and phase transitions related to quark-gluon matter [32,36].
Mutual information [55–57] and the entanglement of
purification [36,37] have also been utilized as order para-
meters in several studies characterizing phase transitions.
Over the past few decades, various efforts have been

made to apply the gauge/gravity duality to describe the
properties of QCD matter—e.g., the properties of mesons
[58,59], baryons [60,61], and glueballs [62,63]. Especially
in the soft-wall model, researchers have successfully
described the properties of QCD matter at both zero and
finite temperatures by utilizing a quadratic dilaton field,
such as the properties of chiral and deconfinement phase
transitions [64–67], glueballs and baryons [68–70], trans-
port properties [71], and form factors of hadrons [72,73],
etc. On the other hand, the Einstein-Maxwell-dilaton
(EMD) system, which incorporates a bulk nonconformal
dilatonic scalar and a Uð1Þ gauge field, has also been
extensively utilized in holographic QCD studies—e.g.,
Refs. [74–90]. In related studies, it has been observed that
the behavior of entanglement properties near phase boun-
daries can exhibit distinctive characteristics, making it
a potentially effective order parameter for phase transi-
tions [32–37]. However, the behavior of entanglement
entropy, even for the same physical process, can vary
significantly when different models are utilized. In addi-
tion, the dependence of entanglement entropy behavior on
the choice of renormalization scheme is another crucial
research topic in holographic entanglement entropy.
Different renormalization schemes yield distinct behaviors
of the entanglement entropy. It has been found that when
the entanglement entropy is renormalized in a cutoff-
independent manner, it is able to reproduce the location
of the critical point where a line of first-order phase
transitions ends [91].
In this study, we aim to investigate the behavior of

entanglement properties in holographic QCD by adopting
two EMD models [80,92]. These models have been shown
to accurately capture the essential characteristics of lattice
QCD data with 2þ 1 flavors [2,3,93,94]. Both models
exhibit similar phase structures and possess a critical end
point (CEP) that aligns with expectations from lattice
QCD and heavy ion collision experiments [80,87,95,96].
In this work, we will examine the behavior of holographic
entanglement properties, including the entanglement
entropy, conditional mutual information, and entanglement
of purification, in the phase diagram. By comparing the
behavior of different entanglement properties in different
EMDmodels, we aim to analyze the potential entanglement
characteristics near the phase boundary.

The rest of this paper is organized as follows: In Sec. II, we
briefly review the two holographic EMDmodels. Section III
shows the calculation of holographic entanglement entropy
and the entanglement of purification in standard coordinates.
The numerical results for the two holographic QCD models
are compared in Sec. IV. Finally, we conclude with a
discussion of the findings in Sec. V. In the Appendix, we
provide the calculation and related results of entanglement
properties in numerical coordinates.

II. REVIEW OF HOLOGRAPHIC QCD MODELS

In order to compare and identify common entanglement
behaviors among different holographic QCD models within
the phase diagram, we consider two distinct models [80,92]
that have been shown to be quantitatively consistent with the
equation of state derived from 2þ 1-flavor lattice QCD
results [2,3,93,94]. Moreover, these models exhibit signifi-
cant differences in their metric and field configurations,
enabling us to analyze the behavior of entanglement proper-
ties by examining the results obtained from thesemodels. The
gravitational actions of the two models take the same form as

SM ¼ 1

2κ2N

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂

μϕ

−
ZðϕÞ
4

FμνFμν − VðϕÞ
�
: ð2:1Þ

Here, κ2N is the bulk gravitational constant, R is the Ricci
scalar, and gμν is the metric of the bulk spacetime. The scalar
field ϕ is the dilaton, responsible for breaking the conformal
symmetry of the corresponding boundary quantum field
theory. Additionally, Fμν denotes the field strength tensor
of the vector field Aμ, which incorporates the finite baryon
chemical potential and baryon density. Here, VðϕÞ and ZðϕÞ
are the dilaton potentials. The bulk fields ϕ and Aμ read

ϕ ¼ ϕðrÞ; Aμdxμ ¼ AtðrÞdt: ð2:2Þ

A. Holographic QCD model I

The metric of the bulk spacetime reads [92]

ds̃2 ¼ −e−η̃ðr̃Þf̃ðr̃Þdt̃2 þ dr̃2

f̃ðr̃Þ þ r̃2
�
dx̃21 þ dx̃22 þ dx̃23

�
;

ð2:3Þ

where r̃ is the holographic radial coordinate, and r̃ → ∞
corresponds to the AdS boundary. Note that here we use the
tilde ∼ to denote this coordinate system as the standard
coordinate system, distinguishing it from the numerical
coordinate system used for solving the equations of motion.
Coordinate transformations between the numerical coor-
dinates and the standard coordinates will be discussed in
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Sec. III A. Here, e−η̃ðr̃Þ is the wrap factor. We denote the
location of the event horizon as r̃ ¼ r̃h with f̃ðr̃hÞ ¼ 0. The
Hawking temperature and the entropy density are given by

T ¼ 1

4π
f̃0ðr̃hÞe−η̃ðr̃hÞ=2; s ¼ 2π

κ2N
r̃3h: ð2:4Þ

Then, by numerically solving the equations of motion,
other related thermodynamic quantities, including the
energy density E, the pressure P, and the trace anomaly I,
can be obtained using holographic renormalization [92].
In this work, we utilize the same couplings configuration

of VðϕÞ and ZðϕÞ presented in [92]:

VðϕÞ ¼ −12 cosh ðc1ϕÞ þ
�
6c21 −

3

2

�
ϕ2 þ c2ϕ6;

ZðϕÞ ¼ 1

1þ c3
sechðc4ϕ3Þ þ c3

1þ c3
e−c5ϕ; ð2:5Þ

which is considered to quantitatively match lattice QCD
equation-of-state data. In VðϕÞ and ZðϕÞ, the parameters c1
to c5 are needed for the fitting of lattice data. Two addi-
tional parameters in the model are the effective Newton
constant κ2N and a characteristic energy scale linked to the
source of ϕ. The latter factor breaks the scale invariance of
the boundary system, enabling the effective representation
of QCD dynamics, since real QCD lacks conformal
symmetry. These parameters are determined by fitting
the lattice QCD data at zero net baryon density
[3,93,94], and their specific values can be found in Table I.

The parameter b is related to holographic renormaliza-
tion and is crucial for matching the lattice QCD simulations
at μB ¼ 0. In Fig. 1, we present a comparison of different
thermodynamic quantities obtained from the holographic
setup with lattice simulations. One case demonstrates that
the temperature dependence of these quantities exhibits
good agreement with lattice QCD results involving 2þ 1
flavors [3,93,94].

B. Holographic QCD model II

The metric of the bulk spacetime in [80] takes the
following form:

ds̃2 ¼ e2Ãðr̃Þ
	
−h̃ðr̃Þdt̃2 þ ðdx̃21 þ dx̃22 þ dx̃23Þ


þ dr̃2

h̃ðr̃Þ ;

ð2:6Þ

where r̃ is the holographic radial coordinate, for which
r̃ → ∞ corresponds to the AdS boundary. Similarly to
Sec. II A, here we still use the tilde ∼ to denote the metric
and coordinates in the standard coordinate system. The
location of the event horizon is fixed as r̃ ¼ r̃h, where
f̃ðr̃hÞ ¼ 0, and the Hawking temperature and the entropy
density are given by

T ¼ eÃðr̃hÞ

4π
jh̃0ðr̃hÞjΛ; s ¼ 2π

κ2N
e3Ãðr̃hÞΛ3; ð2:7Þ

with Λ being the characteristic energy scale. The related
thermodynamic quantities, including the energy density E,

TABLE I. Parameters for model I [92] found by matching the lattice simulation [3,93,94].

Model I c1 c2 c3 c4 c5 κ2N ϕ̃s [MeV] b

2þ 1 flavor 0.710 0.0037 1.935 0.091 30 2πð1.68Þ 1085 −0.27341

HQCD
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FIG. 1. Thermodynamics at μB ¼ 0 from holographic QCD model I (red solid curves) compared to HotQCD lattice QCD
results [3,93,94]. Left panel: the entropy density s, the pressure P, and the trace anomaly I ¼ E − 3P. Right panel: the specific heat CV ,
the squared speed of sound c2s , and the baryon susceptibility χ2B.
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the pressure P, and the trace anomaly I, can be obtained
using thermodynamic relations (see [80] for more technical
details).
The two couplings in (2.1) are parametrized as [80]

VðϕÞ ¼ −12 cosh ðd1ϕÞ þ d2ϕ2 þ d3ϕ4 þ d4ϕ6;

ZðϕÞ ¼ 1

1þ d5
sechðd6ϕþ d7ϕ2Þ þ d5

1þ d5
sechðd8ϕÞ;

ð2:8Þ

where d1 to d8 are free parameters that should be fixed
by fitting the equation of state of lattice QCD. The other

free parameters are the effective Newton constant κ2N and
the energy scale Λ. All the above parameters are fixed
completely by fitting the lattice QCD data at zero net
baryon density [2], and their values are summarized in
Table II.
Figure 2 presents a comparison between the equation

of state of lattice QCD [2] and the holographic QCD
model II [80]. The behavior of various thermodynamic
quantities with temperature is quantitatively matched with
the results from lattice QCD. In Fig. 3, a direct comparison
of the VðϕÞ and ZðϕÞ functions is shown between models I
and II. Notably, both functions, obtained by fitting
distinct lattice QCD data, manifest significant universal

TABLE II. Parameters of model II [80] found by matching the lattice data [2].

Model II d1 d2 d3 d4 d5 d6 d7 d8 κ2N Λ [MeV]

2þ 1 flavor 0.63 0.65 −0.05 0.003 1.7 −0.27 0.4 100 8πð0.46Þ 1058.83

I / T4

s / 4T3

P / T4

200 300 400 500
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4

5

T [MeV]

Cs
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2
B
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FIG. 2. Thermodynamics at μB ¼ 0 from holographic QCD model II (Green solid curves) [80] compared to lattice QCD results [2].
Left panel: the entropy density s, the pressure P, and the trace anomaly I ¼ E − 3P. Right panel: the squared speed of sound c2s , and the
baryon susceptibility χ2B.
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FIG. 3. Comparison between the dilaton potential VðϕÞ and gauge coupling ZðϕÞ used in holographic QCD models I [92] and II [80].
Both functions are obtained by fitting HotQCD, and W-B lattice QCD data exhibit certain universal features. Furthermore, the CEP
locations differ among different models, with the values of ðTCEP; μCEPB Þ ¼ ð105; 555Þ MeV [92] and (89, 724) MeV [80], respectively.
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characteristics. A recent review [97] also emphasizes a
similar comparison and identifies robust features of VðϕÞ
and ZðϕÞ in the EMD description of lattice QCD results
with 2þ 1 flavors and physical quark masses. Addi-
tionally, the location of the CEP (critical end point) shows
variations among these holographic EMD models, with
ðTCEP; μCEPB Þ ¼ ð105; 555Þ MeV [92] and (89, 724) MeV
[80], respectively. In Fig. 4, we observe the relationship
between the radius of the black hole horizon r̃ and the
temperature T. To better illustrate the behavior near the
phase boundary, we have chosen 1=ðr̃þ 0.5Þ and 1=ðr̃þ 4Þ
as the coordinate axes for models I and II, respectively. It
can be seen that the relationship between temperature T and
horizon radius r̃ in the two models is quite similar. In the
crossover region (μB < μCEPB ), temperature increases mono-
tonically and smoothly as the radius increases. At the CEP
(μB ¼ 555 and 724 MeV for models I and II, respectively),
temperature increases with increasing radius, but there is a
plateau where the temperature remains nearly constant
while the radius increases. In the case of a first-order phase
transition (μB > μCEPB ), there will be multiple radii corre-
sponding to a certain range of temperatures.

III. HOLOGRAPHIC ENTANGLEMENT
PROPERTIES

Entanglement entropy is a measure of the entanglement
or quantum correlations between different parts of a
quantum system. In field theory, it quantifies the amount
of entanglement between different regions of spacetime.
The entanglement entropy is defined for a subsystem, e.g.,
B within a larger system. It is obtained by tracing out the
degrees of freedom in B̄, which is the complement of B, and
then calculating the von Neumann entropy of the reduced
density matrix of B as

SEEðBÞ ¼ −TrðρB ln ρBÞ: ð3:1Þ

Here, ρB ¼ TrB̄ρ is the reduced density matrix of sub-
system B with ρ being the density matrix of the whole

system. Computing the entanglement entropy in field
theory can be challenging due to the infinite number of
degrees of freedom. Following the Ryu-Takayanagi (R-T)
formula [27,28], the entanglement entropy is proportional
to the area of the R-T surface in the bulk

SEEðBÞ ¼
2πAreaðΓÞ

κ2N
; ð3:2Þ

with Γ being the minimal surface in the bulk that is homo-
logous to region B, as shown in Fig. 5. The red surface in
the bulk with the same boundary as B on the boundary
represents the R-T surface of B. However, as pointed out
in [23–26], entanglement entropy is not an appropriate
measure of entanglement between different subsystems for
mixed state. Additionally, other entanglement properties,
such as the mutual information MI and conditional mutual
information CMI, are also useful concepts in quantum field
theory to quantify the information flow and correlations
in quantum field theories. MIðA; BÞ measures the total
correlation between regions A and B, and CMIðA;CjBÞ
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T
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( )( )

FIG. 4. The relationship between black hole horizon r̃ and temperature T from model I (left panel) and model II (right panel).

FIG. 5. Settings of intervals and their R-T surfaces in this work.
We calculate the SEE of one interval with width el. The conditional
mutual information CMIðA;CjBÞ, as shown in Eq. (3.3), can be
computed as 2πðAreagreen − ArearedÞ=κ2N . Here, the green lines
correspond to the R-T surfaces of the subsystems A ∪ B and
B ∪ C, respectively; and the red lines represent the R-T surfaces
of B and A ∪ B ∪ C, respectively. Moreover, the minimal surface
Σ that corresponds to the entanglement of purification of A and C
is represented by a blue dashed line.
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measures the amount of correlation between the different
subregions A and C conditioned on the measurements in
region B; these can be calculated as

MIðA;BÞ ¼ SEEðAÞ þ SEEðBÞ − SEEðABÞ;
CMIðA;CjBÞ ¼ SEEðABÞ þ SEEðBCÞ

− SEEðABCÞ − SEEðBÞ: ð3:3Þ

Note that CMIðA;CjBÞ quantifies the remaining correlation
between A and C after accounting for the correlation with
region B, and CMIðA;CjBÞ ¼ MIðA;BCÞ −MIðA;BÞ ¼
MIðAB;CÞ −MIðB;CÞ.
Another entanglement property which measures the total

correlation between two subsystems A and C in a mixed
state is the entanglement of purification EoPðA;CjBÞ. The
density matrix of a mixed state on A ∪ C can be obtained
by taking the trace over certain degrees of freedom of the
pure-state density matrix as ρAC ¼ TrA�C�ρAA�CC� , where
ρAA�CC� is a purification of ρAC. Then, the entanglement of
purification can be defined as

EoPðA;CjBÞ ¼ min
ρAC¼TrA�C� ðρAA�CC� Þ

− TrðρAA� ln ρAA� Þ; ð3:4Þ

with the reduced density matrix ρAA� ¼ TrCC� ðρAA�CC� Þ.
The minimum in the formula indicates the need to select the
purification scheme among various options that minimizes
the quantity on the right-hand side of the equation. The
holographic correspondence of the entanglement of puri-
fication is the minimum of entanglement wedge cross
section (EWCS)

EoPðA;CjBÞ ¼ 2πAreaðΣÞ
κ2N

; ð3:5Þ

where Σ represents the minimal surface with boundaries on
the R-T surfaces of B and ABC. In the symmetric case,

where the widths of A and C are equal, the minimal surface
Σ takes the form shown as the blue dashed line in Fig. 5.
It is important to note that the metrics presented in Sec. II

are given in standard coordinates, which are used for
reading thermodynamic quantities. However, in order to
numerically solve the equations of motion, one also needs
to introduce the numerical coordinates that are denoted
without a tilde. Additionally, we use the notation γ̃ to
represent the determinant of the induced metric of the R-T
surface, which is a continuous surface in the bulk space
with boundaries on the boundary of the bulk space [27,28].
Similarly, we denote the determinant of the induced metric
of a continuous surface with boundaries on the R-T
surfaces as σ̃ [31]. Furthermore, to simplify the calcula-
tions, we consider only the symmetric case when evaluating
the entanglement of purification. For the calculation of the
entanglement entropy, we consider an infinitely long strip
region with a fixed width.

A. Holographic entanglement entropy in model I

The numerical coordinates in model I satisfy the follow-
ing conditions:

rh ¼ 1; ηðrhÞ ¼ 0; ð3:6Þ

while the standard coordinates satisfy different conditions:

ϕ̃s ¼ 1085 MeV; η̃ðr̃ → ∞Þ ¼ 0: ð3:7Þ

By setting

ds̃2 ¼ ds2 ¼ −e−ηðrÞfðrÞdt2 þ dr2

fðrÞ
þ r2

�
dx21 þ dx22 þ dx23

�
; ð3:8Þ

the relation between the standard coordinates and the
numerical coordinates can be expressed as follows:

t̃ ¼ λtλ
−1
r t; r̃ ¼ λrr; η̃ðr̃Þ ¼ ηðrÞ þ 2 ln λt; f̃ðr̃Þ ¼ λ2rfðrÞ;

and x̃i ¼ λ−1r xi for i ¼ 1; 2; 3; ð3:9Þ

with λt ¼ e−ηð∞Þ=2 and λr ¼ 1085=ϕs. In model I, the horizon is fixed to rh ¼ 1, which corresponds to r̃h ¼ λr. The
holographic entanglement entropy of model I in standard coordinates can be calculated as

SEE ¼ 2π

κ2N

Z
dx̃1dx̃2dx̃3

ffiffiffĩ
γ

p
¼ 2πṼ2

κ2N

Z el=2
−el=2 dx̃1r̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2 þ r̃0ðx̃1Þ2

f̃ðr̃Þ

s

¼ 2πṼ2λ
2
r

κ2N

Z
l=2

−l=2
dx1r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r0ðx1Þ2

fðrÞ

s
ð3:10Þ

with l ¼ λrel. The conserved quantity of the integral in Eq. (3.10) shows as
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r4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r0ðx1Þ2

fðrÞ
q ¼ r3� ⇒ r0ðx1Þ ¼

r
r3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr6 − r6�Þ

q
;

ð3:11Þ
with r� being the minimum value of r on the R-T surface.
The length of the interval shows as

el ¼ l=λr ¼
2

λr

Z
∞

r�
r0ðx1Þ−1dr

¼ 2

λr

Z
∞

r�

r3�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr6 − r6�Þ

p dr: ð3:12Þ

Then, the expressions for the holographic entanglement
entropy and the entanglement of purification are given as

SEE ¼ 4πṼ2λ
2
r

κ2N

Z
∞

r�

r5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr6 − r6�Þ

p dr; ð3:13Þ

and

EoP ¼ 2π

κ2N

Z
dr̃dx̃2dx̃3

ffiffiffĩ
σ

p ¼ 2πṼ2λ
2
r

κ2N

Z
r2�

r1�

r2ffiffiffiffiffiffiffiffiffi
fðrÞp dr:

ð3:14Þ

B. Holographic entanglement entropy in model II

The numerical coordinates in model II satisfy the
following conditions:

rh ¼ 0; h0ðrhÞ ¼ 1: ð3:15Þ

On the other hand, the standard coordinates fulfill the
following conditions:

ϕ̃ðr̃ → ∞Þ ¼ 0; h̃ðr̃ → ∞Þ ¼ 1: ð3:16Þ

By setting

ds̃2 ¼ ds2 ¼ e2AðrÞ
	
−hðrÞdt2þðdx21þdx22þdx23Þ


þ dr2

hðrÞ ;

ð3:17Þ

the relation between the standard coordinates and the
numerical coordinates in model II can be illustrated as

r̃ ¼ rffiffiffiffiffiffiffi
hfar0

q þ Afar
0 − lnϕ1=ν

A ; Ãðr̃Þ ¼ AðrÞ − lnϕ1=ν
A ; h̃ðr̃Þ ¼ hðrÞ

hfar0

;

t̃ ¼ ϕ1=ν
A

ffiffiffiffiffiffiffi
hfar0

q
t and x̃i ¼ ϕ1=ν

A xi for i ¼ 1; 2; 3; ð3:18Þ
with ϕA, Afar

0 , and hfar0 being the UV expansion coefficients of the fields ϕðrÞ, AðrÞ, and hðrÞ (see [80] for more technical

details). Model II fixes the horizon to rh ¼ 0, which means that r̃h ¼ Afar
0 − lnϕ1=ν

A , with the UV boundary at r ¼ ∞. The
holographic entanglement entropy for model II in standard coordinates can be calculated using the following formula:

SEE ¼ 2πṼ2

κ2N

Z el=2
−el=2 dx̃1e2Ãðr̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Ãðr̃Þ þ r̃0ðx̃1Þ2

h̃ðr̃Þ

s
¼ 4πṼ2ϕ

−2=ν
A

κ2N

Z
l=2

−l=2
dx1e2AðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2AðrÞ þ r0ðx1Þ2

hðrÞ

s
; ð3:19Þ

with l ¼ ϕ−1=ν
A

el and the conserved quantity

e4AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2AðrÞ þ r0ðx1Þ2

hðrÞ
q ¼ e3Aðr�Þ ⇒ r0ðx1Þ ¼ eAðrÞ−3Aðr�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe6AðrÞ − e6Aðr�ÞÞhðrÞ

q
: ð3:20Þ

Then, the length of the interval is

el ¼ ϕ1=ν
A l ¼ 2ϕ1=ν

A

Z
∞

r�
r0ðx1Þ−1dr ¼ 2ϕ1=ν

A

Z
∞

r�

e3Aðr�Þ−AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe6AðrÞ − e6Aðr�ÞÞhðrÞ

q dr; ð3:21Þ

and the holographic entanglement entropy and the entanglement of purification in model II are given as

SEE ¼ 4πṼ2ϕ
−2=ν
A

κ2N

Z
∞

r�

e5AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe6AðrÞ − e6Aðr�ÞÞhðrÞ

q dr ð3:22Þ
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and

EoP ¼ 2π

κ2N

Z
dr̃dx̃2dx̃3

ffiffiffĩ
σ

p ¼ 2πṼ2ϕ
−2=ν
A

κ2N

Z
r2�

r1�

e2AðrÞffiffiffiffiffiffiffiffiffi
hðrÞp dr:

ð3:23Þ

In the above formulas (3.10) and (3.19) for entanglement
entropy, it is clear that when r̃0ðx̃1Þ ¼ 0 and el → ∞, we
arrive at the formula for black hole entropy. This implies
that in certain scenarios, black hole entropy can be inter-
preted as a manifestation of entanglement entropy. In fact, it
is believed that black hole entropy can be interpreted as a
form of entanglement entropy, characterizing the entangle-
ment between the degrees of freedom of field theories on
the two boundaries of five-dimensional bulk spacetime in
the Kruskal-Szekeres coordinates [27,29,98,99].

IV. NUMERICAL RESULTS

In order to handle the divergence in the integral of SEE,
two different renormalization schemes were chosen in this
work. The renormalized results were denoted as SregEE and
SrenEE. For S

reg
EE, a direct fix of the UV cutoff was applied.

In model I, the UV-cutoff value was set to r̃ ¼ 200. In
model II, the UV-cutoff values were set to r̃ ¼ 4. In general,
directly applying UV-cutoff renormalization to entangle-
ment entropy does not yield precise information about
the entanglement properties. However, in theoretical
studies—particularly when both the field theory and dual
gravity theory are well defined, and the calculation of
entanglement entropy is feasible in both theories—such
calculations can offer a more direct test of the gauge/gravity
duality [27,29,100,101]. In this study, we first provide
the results of entanglement entropy obtained using direct
UV-cutoff renormalization. We also define the cutoff-
independent entanglement entropy SrenEE as

SrenEE ¼ SconEE − SdisEE ¼ 2πAreaðAconÞ
κ2N

−
2πAreaðAdisÞ

κ2N
; ð4:1Þ

with Acon and Adis being the areas of the connected R-T
surfaces (the green surface) and the disconnected surfaces
(the red surfaces) as shown in Fig. 6. We should also fix the
two-dimensional volume term Ṽ ¼ R

∞
−∞ dx̃1

R
∞
−∞ dx̃2. To

ensure consistency and without sacrificing generality, it is
often convenient to fix the volume term as a constant. In

this work, we fix the volume as Ṽ ¼ κ2N
2π in both models.

The divergence of the entanglement entropy arises from
the divergence of the integration at the UV boundary. By
employing the R-T formula, it can be demonstrated that the
conditional mutual information CMIðA;CjBÞ is always
finite, since the divergent part of the entanglement entropy
SEE gets completely canceled out. And the value of
CMIðA;CjBÞ is the same, regardless of the specific cutoff

and renormalization schemes used for SEE. On the other
hand, MIðA;BÞ is only finite in certain special cases—e.g.,
when A and B are not joined. Therefore, we calculate the
CMI in this work, which provides a more robust measure of
information flow and correlations in quantum field theory,
as its finiteness is not affected by the details of regulari-
zation and renormalization. It is clear that when the width
of subregion B is not zero, the entanglement of purification
will always be finite, as its integration will not approach the
UV boundary.
Figure 7 illustrates the behavior of the entanglement

entropy lnðSregEEÞ at μB ¼ 0; μCEPB , and 1000 MeV for both
model I and model II in standard coordinates. The top-left
and top-right panels showcase the variation of entangle-
ment entropy with temperature in a wide temperature range
for models I and II, respectively. The bottom two panels
focus on the behavior of entanglement entropy near the
phase boundary for both models. It can be observed that
over a large temperature range, the behavior of entangle-
ment entropy in both models exhibits a similar trend, with a
monotonically increasing pattern in the high-temperature
region. However, in the low-temperature region, the entan-
glement entropy of model I remains nearly constant,
while the entanglement entropy of model II decreases with
increasing temperature, particularly evident in the sub-
sequent two panels. Furthermore, although the entangle-
ment entropy shows smooth, nonsmooth monotonic, and
multivalued behavior in the crossover, the CEP, and the
first-order phase transition regions, respectively, there are
differences in the behavior of entanglement entropy at the
phase boundary between the two models. In particular,
the entanglement entropy of model I exhibits a gradual
increase near the phase boundary, while the entanglement
entropy of model II forms a minimum point at the phase
boundary. This observation suggests that in standard
coordinates, the entanglement entropies SregEE of the two
models exhibit distinct characteristics, with significant
qualitative differences in their behavior.
Figure 8 presents a comparison of the cutoff-independent

entanglement entropy SrenEE, conditional mutual information
CMI, and entanglement of purification EoP in both model I
and model II. The top, middle, and bottom figures

FIG. 6. The renormalization of cutoff-independent entangle-
ment entropy SrenEE.
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FIG. 7. The behaviors of entanglement entropy lnðSregEEÞ at μB ¼ 0, μCEPB , and 1000 MeV from model I (left panel) and model II (right
panel) in standard coordinates.
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correspond to different interval configurations: C-I, C-II,
and C-III, as illustrated in Table III. We compare the
behavior of different entanglement properties at μB ¼
300 MeV for different interval configurations. The width
of the interval for SrenEE is provided, and for CMI, the widths
of the three intervals corresponding to A, B, and C in
Fig. 5 are specified. Similarly, the widths of the two
intervals corresponding to B and ABC in Fig. 5 are given
for the entanglement of purification. Interestingly, despite
the contrasting behavior of SregEE in models I and II,
as depicted in Fig. 7, the nondivergent entanglements
exhibit striking similarities, with negligible quantitative
differences. Furthermore, the qualitative behavior of these
entanglement quantities remains relatively unchanged
across different interval settings, with only quantitative
variations. In the high-temperature regime, both SrenEE and
EoP display nonmonotonic behavior, characterized by a
decrease with increasing temperature at lower temperatures
and an increase with increasing temperature at higher

temperatures, resulting in the existence of a minimum
value. On the other hand, the conditional mutual informa-
tion exhibits a monotonic decrease across a wide temper-
ature range.
To gain insights into how different entanglement proper-

ties characterize phase transition behavior, we analyze
the behavior of the entanglement properties in the cross-
over region (μB ¼ 0), the critical end point (CEP)
(μB ¼ μCEPB ), and the first-order phase transition region
(μB ¼ 1000 MeV) in Fig. 9. We present the behavior of
SrenEE, CMI, and EoP at fixed chemical potentials μB ¼ 0,
μCEPB , and 1000 MeV, respectively. We observe different
characteristics for different chemical potential: smooth
behavior, continuous but nonsmooth behavior, and multi-
valued behavior, respectively. This indicates that these
entanglement properties have the ability to characterize
phase transitions in the standard coordinates. Additionally,
we notice that insignificant changes occur in these entan-
glement properties in the low-temperature phase. However,
as the temperature approaches the phase boundary, these
properties undergo significant decreases. This difference
lies in the fact that the conditional mutual information
(CMI) exhibits a monotonic decrease in the high-
temperature region, while both SrenEE and EoP change from
decreasing to increasing with rising temperature, leading to
the presence of a minimum value in the high-temperature
region. Furthermore, these entanglement quantities exhibit
consistent behavior across the two EMD models.

TABLE III. The three different configurations of intervals in
standard coordinates for Fig. 8.

C-I C-II C-III

SrenEE el ¼ 0.5 el ¼ 0.6 el ¼ 0.7
CMI el ¼ 0.1, 0.5, 0.1 el ¼ 0.1, 0.5, 0.2 el ¼ 0.1, 0.5, 0.3
EoP el ¼ 0.5, 0.6 el ¼ 0.6, 0.7 el ¼ 0.7, 0.8
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FIG. 9. The universal behaviors of entanglement properties SrenEE, CMI, and EoP at different chemical potential μB. The top, middle, and
bottom three figures are at μB ¼ 0, μCEPB , and 1000 MeV, respectively.
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In fact, it has been found that QCD matter is strongly
coupled at temperatures below 300 MeV [102], while
when temperatures surpass 300 MeV, the results from hard
thermal loop perturbation theory in QCD and lattice QCD
simulations align [103]. This suggests that above 300 MeV,
QCD matter may transition to a weakly coupled state,
making it unsuitable for studying the properties of its dual
QCD matter using weakly coupled gravity. This poses a
challenge in applying the gauge/gravity duality, known for
its strong-weak coupling correspondence, to explore the
properties of QCD matter at high temperature. Given that
the purpose of this work is to investigate the behavior of
entanglement on QCD phase diagrams, if one only focuses
on the behavior of entanglement near the phase boundary
(T < 200 MeV), it is clear that in standard coordinates, the
entanglement entropy, conditional mutual information, and
entanglement of purification exhibit consistent patterns.
This observation indicates that these three types of cutoff-
independent entanglement measures offer a robust descrip-
tion of the entanglement between different subregions in
boundary field theory: entanglement properties decrease as
the temperature increases. Specifically, entanglement prop-
erties remain relatively constant in the low-temperature
phase, start to diminish near the phase boundary, and
further decrease in the high-temperature phase until the
temperature approaches 300 MeV.

V. CONCLUSION

The objective of this study is to identify potential
signatures of entanglement properties near phase bounda-
ries in holographic QCD models. Two holographic EMD
models were considered, and various entanglement mea-
sures, such as entanglement entropy, conditional mutual
information, and the entanglement of purification, were
investigated. The behaviors of these entanglement proper-
ties were analyzed and compared between the two models.
We observed that the entanglement entropy SregEE, obtained
through the direct UV-cutoff renormalization method,
showed significant dependence on the specific model
employed. Other nondivergent entanglement measures,
such as cutoff-independent entanglement entropy SrenEE,
conditional mutual information CMI, and entanglement
of purification EoP, exhibited similar behaviors in different
models.
Furthermore, we examined the behavior of SrenEE, CMI,

and EoP in standard coordinates. We found that the
behavior of different entanglement properties varies in
the high-temperature region (300 MeV ≤ T). The cutoff-
independent entanglement entropy and the entanglement of
purification display nonmonotonic behavior at high tem-
peratures. However, the conditional mutual information
consistently exhibits a monotonically decreasing trend.
It is important to note that due to the possibility of a weak
coupling state of QCD matter at high temperature, the
applicability of holographic methods for describing the

properties of high-temperature QCDmatter may be limited.
When we focus specifically on the temperature range below
300 MeV, however, we observe a similar behavior among
the three entanglement measures. This suggests that within
this temperature range, the entanglement of QCD matter
decreases with increasing temperature. We also found that
entanglement properties exhibited distinct phase transition
behavior at the critical end point (CEP) and first-order
phase transitions.
Note that while entanglement properties can effectively

serve as a phase transition order parameter and exhibit
distinguishable signals at the critical end point and first-
order phase transitions, it may not exhibit clear phase
transition signals in the crossover region. Analyzing the
characteristic signals of crossover phase transitions based
on the behavior of entanglement properties is an area of
focus for our future research.
Another noteworthy concern is that the EMD model

yields that the cutoff-independent entanglement properties
exhibit trivial behavior at low temperatures, with their
values remaining nearly constant. This could be attributed
to the EMD model’s inability to capture the physics of the
low-temperature phase dominated by hadronic matter.
Furthermore, the soft-wall model typically necessitates a
quadratic dilaton field to align with the characteristics of
hadronic and gluonic matter, a criterion that the dilaton
field derived from the EMD model often fails to satisfy.
This discrepancy implies that while the EMD model
provides a plausible depiction of the QCD equation of state
near phase boundaries ð100 MeV < T < 300 MeVÞ, its
applicability at lower (or higher) temperatures is question-
able. In the forthcoming model development, it is imperative
to leverage the distinctive features of both models to achieve
an accurate holographic depiction of QCD matter over a
wider range of temperatures and densities.
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APPENDIX: ENTANGLEMENT PROPERTIES
IN NUMERICAL COORDINATES

In principle, all physical quantities, including entangle-
ment properties, should be computed in standard co-
ordinates. Nevertheless, the behavior of entanglement
properties in numerical coordinates has also received
attention [34]. Exploring the similarities and differences
in the behavior of entanglement properties between numeri-
cal coordinates and standard coordinates holds theoretical
significance. Therefore, in this section, we demonstrate the
behavior of entanglement properties between infinitely
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long strip regions on the boundary of a spacetime back-
ground using the metric of numerical coordinates.
The holographic entanglement entropy of model I in

numerical coordinates can be calculated as

SEE ¼ 2π

κ2N

Z
dx1dx2dx3

ffiffiffi
γ

p

¼ 2πV2

κ2N

Z
l=2

−l=2
dx1r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r0ðx1Þ2

fðrÞ

s
; ðA1Þ

and the conserved quantity

r4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r0ðx1Þ2

fðrÞ
q ¼ r3� ⇒ r0ðx1Þ ¼

r
r3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr6 − r6�Þ

q
;

ðA2Þ

with r� being the minimum value of r on the R-T surface.
The length of the interval shows

l ¼ 2

Z
∞

r�
r0ðx1Þ−1dr ¼ 2

Z
∞

r�

r3�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr6 − r6�Þ

p dr: ðA3Þ

Then, the expressions for the holographic entanglement
entropy and the entanglement of purification are given as
follows:

SEE ¼ 4πV2

κ2N

Z
∞

r�

r5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr6 − r6�Þ

p dr ðA4Þ

and

EoP ¼ 2π

κ2N

Z
drdx2dx3

ffiffiffi
σ

p ¼ 2πV2

κ2N

Z
r2�

r1�
r2

1ffiffiffiffiffiffiffiffiffi
fðrÞp dr:

ðA5Þ
Here, r1� and r2� refer to the r� values associated with the
R-T surfaces of B and ABC, respectively.
The holographic entanglement entropy for model II in

numerical coordinates can be calculated using the follow-
ing formula:

SEE ¼ 4πV2

κ2N

Z
l=2

−l=2
dx1e2AðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2AðrÞ þ r0ðx1Þ2

hðrÞ

s
; ðA6Þ

and the conserved quantity

e4AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2AðrÞ þ r0ðx1Þ2

hðrÞ

q ¼ e3Aðr�Þ ⇒ r0ðx1Þ ¼ eAðrÞ−3Aðr�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe6AðrÞ − e6Aðr�ÞÞhðrÞ

q
: ðA7Þ

Then, the length of the interval is

l ¼ 2

Z
∞

r�
r0ðx1Þ−1dr ¼ 2

Z
∞

r�

e3Aðr�Þ−AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe6AðrÞ − e6Aðr�ÞÞhðrÞ

q dr;

ðA8Þ

and the holographic entanglement entropy and the entan-
glement of purification in model II are as

SEE ¼ 4πV2

κ2N

Z
∞

r�

e5AðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe6AðrÞ − e6Aðr�ÞÞhðrÞ

q dr ðA9Þ

and

EoP¼ 2π

κ2N

Z
drdx2dx3

ffiffiffi
σ

p ¼ 2πV2

κ2N

Z
r2�

r1�

e2AðrÞffiffiffiffiffiffiffiffiffi
hðrÞp dr: ðA10Þ

The renormalized entanglement entropies are denoted
as SregEE and SrenEE, respectively, and they employ the same
renormalization scheme as in standard coordinates. In
model I, we set the UV-cutoff value to r ¼ r̃ ¼ 200. In
model II, we use UV-cutoff values of r ¼ 2 in numerical
coordinates. Similarly to calculations in standard

coordinates, we fix the two-dimensional volume term as

V ¼ κ2N
2π in numerical coordinates.

Figure 10 plots the behaviors of the entanglement
entropy lnðSregEEÞ in numerical coordinates for models I
and II at μB ¼ 0, μCEPB , and 1000 MeV. In model I, at
μB ¼ 0, the entanglement entropy lnðSregEEÞ shows a mono-
tonically increasing trend with increasing temperature. At
μB ¼ μCEPB , as the temperature rises, lnðSregEEÞ exhibits a
steady increase, but there is a sharp rise at the phase
transition temperature. For μB > μCEPB , the entanglement
entropy displays a multivalued behavior near the phase
transition temperature. Similar monotonic, rapidly increas-
ing, and multivalued behaviors are also observed in model
II, as shown in the right panel of Fig. 10. Furthermore, in
the low-temperature phase, the change in lnðSregEEÞ is more
pronounced, while at high temperatures, the lnðSregEEÞ values
for different chemical potentials tend to converge. How-
ever, it is crucial to note that the increase and decrease
patterns of lnðSregEEÞ exhibit significant dependence on the
specific metric used. In particular, lnðSregEEÞ displays a
decreasing trend with increasing temperature in model II,
highlighting the influence of the metric’s specific form on
the behavior of the entanglement entropy. It is worth
mentioning that the behavior of SregEE from model II is
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consistent with that in [34], which used a similar model,
and both are in numerical coordinates.
To explore the model dependence of nondivergent

entanglement properties, we examine the behavior of
SrenEE, CMI, and EoP with temperature at μB ¼ 300 MeV
using various interval configurations (as depicted in
Table IV), as shown in Fig. 11.
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FIG. 10. The behaviors of entanglement entropy lnðSregEEÞ at μB ¼ 0, μCEPB , and 1000 MeV from model I (left panel) and model II (right
panel) in numerical coordinates. Note that the behavior of SregEE from model II is consistent with that in [34], which used a similar model,
and both are in numerical coordinates.

TABLE IV. The three different configurations of intervals in
numerical coordinates for Fig. 11.

C-I C-II C-III

SrenEE l ¼ 0.1 l ¼ 0.2 l ¼ 0.3
CMI l ¼ 0.1, 0.1, 0.1 l ¼ 0.1, 0.1, 0.2 l ¼ 0.1, 0.1, 0.3
EoP l ¼ 0.1, 0.2 l ¼ 0.2, 0.3 l ¼ 0.3, 0.4

HOLOGRAPHIC ENTANGLEMENT PROPERTIES IN THE QCD … PHYS. REV. D 110, 046012 (2024)

046012-13



Figure 11 compares the entanglement entropy SrenEE, condi-
tional mutual information CMI, and entanglement of purifi-
cation EoP at μB ¼ 300 MeV for different interval
configurations. The behavior of these entanglement properties
remains largely consistent betweenmodels I and II, withminor
numerical discrepancies. Furthermore, the qualitative behavior
of these entanglement quantities remains relatively unchanged
across different interval settings, with only quantitative varia-
tions. Moreover, Fig. 11 demonstrates that the entanglement
properties show a monotonic behavior with temperature for
μB ¼ 300 MeV.Comparingdifferent rows,weobserve that the
entanglement properties display similar patterns for different
interval configurations, differing primarily in numerical values.
Figure 12 shows the behavior of different entanglement

properties in the crossover region (μB ¼ 0), the critical end

point (CEP) (μB ¼ μCEPB ), and the first-order phase tran-
sition region (μB ¼ 1000 MeV). The figure reveals three
noteworthy features: (i) In the low-temperature phase, these
entanglement properties approach zero, while in the high
temperature phase, they tend to converge to a fixed value.
(ii) There are distinct characteristic behaviors at the
phase boundaries. In the crossover region, these entangle-
ment properties exhibit single-valued and smooth behavior,
with a significant increase near the phase boundary. At the
CEP, these properties are also monotonic but not smooth at
the phase boundary. In the first-order phase transition
region, the entanglements display multivalued behavior.
(iii) The results obtained from both models exhibit
nearly identical behavior, with only minor quantitative
differences.
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