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Applying the holographic method, we investigate correlation functions of boundary and defect
conformal field theories. To describe boundary conformal field theory, we consider an end of the world
brane in an asymptotic AdS space, which behaves as a boundary in the dual conformal field theory. In this
holographic setup, we calculate correlation functions involving the reflection effect at the boundary. We
show that, when the end of the world brane has no degrees of freedom, the holographic calculation
reproduces the correlation functions known in the boundary conformal field theory. When the boundary has
nontrivial boundary entropy, we calculate one- and two-point functions nontrivially relying on the
boundary entropy. We further study correlation functions of defect conformal field theory after introducing
a p brane. We directly derive a bulk-to-defect two-point function without introducing an image operator
and determine the coefficient of the two-point function exactly in the holographic setup.
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I. INTRODUCTION

After the AdS/CFT correspondence or holography pro-
posal [1–4], there were many attempts to figure out non-
perturbative features of strongly interacting systems. The
AdS/CFT correspondence claimed that a nonperturbative
d-dimensional conformal field theory (CFT) has a one-to-
one map to a classical gravity theory in a (dþ 1)-
dimensional AdS space. Based on the holography, various
quantum properties of strongly interacting quantum field
theory (QFT) have been studied on the dual gravity side. In
the present work, we apply the holographic method to
boundary conformal field theory (BCFT) [5–10] and defect
conformal field theory (DCFT) [11–23] and then investigate
their correlation functions in the holographic dual gravity.
For the AdS/CFT correspondence, one of the important

features is that some physical quantities of QFT can be
understood by geometrical objects in the dual gravity. In the
holographic setup, for example, a qq̄ potential and entan-
glement entropy of strongly interacting systems have been
investigated by minimal surfaces anchored at the boundary
of the dual geometry [1,24–35]. Similarly, it was also
proposed that correlation functions of QFT are able to be
described by a geodesic length connecting local operators
at the boundary. Following this proposal, it was shown that

geodesic lengths in the AdS space reproduce two- and
three-point functions known in CFT [36]. Moreover, it
was also found that a geodesic length in the Banados-
Teitelboim-Zanelli (BTZ) black hole leads to the thermal
correlation functions of two-dimensional thermal CFT.
For QFT and CFT, a one-point function of a local

operator usually vanishes. However, this is not the case
for BCFT and DCFT. The reflection caused by a boundary
and defect gives rise to a nontrivial contribution to
correlation functions and leads to a nonvanishing one-point
function. One- and two-point functions of BCFT were
evaluated by applying the image charge method. It was
shown that the BCFT’s two-point function has two con-
tributions [6,37]. One is a direct two-point function, which
is the same as that of CFT without a boundary. The direct
two-point function provides a dominant contribution to
BCFT’s and DCFT’s ones. The other is a reflected two-
point function involving a subdominant reflection effect. In
this case, the reflected two-point function is proportional to
the square of the one-point function. In the present work,
we first show that the known BCFT’s correlators can be
reproduced by applying the holographic method when the
boundary has no degrees of freedom. Then, we study more
general BCFT’s correlators when the boundary has non-
trivial degrees of freedom or boundary entropy.
In the holographic setup, BCFTwas realized by an AdS

space with an end of the world (ETW) brane, which
anchors to the AdS boundary [8,9,38–42]. Intersection
between an ETW brane and the AdS boundary provides a
boundary to a dual CFT. In this case, the configuration of an
ETW brane in the bulk crucially relies on the ETW brane’s
tension, which is reinterpreted as the boundary entropy on
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the dual BCFT point of view [8,43]. We show that the
correlation functions known in BCFT [6] correspond to the
correlators without the boundary entropy. When the boun-
dary has a nontrivial boundary entropy, the image charge
method is not applicable anymore. In the holographic
setup, however, it is still possible to calculate correlators
with a nonvanishing boundary entropy. In this work, after
determining the ETW brane’s configuration by solving the
junction equation [44–51], we investigate the one- and two-
point functions of the BCFT including the boundary
entropy. We show that, when the boundary has a nontrivial
boundary entropy, the reflected two-point function relies on
the boundary entropy nontrivially. We also show that the
reflected two-point function is related to the square of the
one-point function with a multiplication factor depending
on the boundary entropy. We also investigate thermal
correlators of two-dimensional BCFT by considering an
ETW brane in a three-dimensional BTZ black hole
geometry.
We also investigate correlators of DCFT by applying the

same holographic technique. To describe DCFT in the
holographic setup,we introduce ap brane in ad-dimensional
AdS space with p < d − 1. For p ¼ d − 1, a p brane can be
regarded as anETWbrane.At the boundary of anAdS space,
ap brane plays the role of a defect.Assuming that there exists
an operator living in the defect, we can take into account a
bulk-to-defect two-point function. In the holographic setup,
it can be described by a geodesic curve connecting two
operators with passing through a junction point on the p
brane. After evaluating the length of this geodesic curve, we
calculate a bulk-to-defect two-point function in the holo-
graphic setup. We show that the holographic result without
using an image charge reproduces the exactly same form of
the bulk-to-defect two-point function expected by the image
charge method [23]. Moreover, we determine the coefficient
of bulk-to-defect two-point function exactly.
The rest of this paper is organized as follows. In Sec. II,

we discuss the holographic dual of a BCFT by introducing
a ETW brane. On this geometric background, we holo-
graphically evaluate one- and two-point functions of BCFT
when the boundary has no degrees of freedom. In Sec. III,
we also study the correlation functions of thermal BCFTs.
In Sec. IV, we investigate BCFT’s one- and two-point
functions when the boundary has nontrivial boundary
entropy. In Sec. V, we further study the bulk-to-defect
two-point function of DCFT. Finally, we close this work
with concluding remarks in Sec. VI.

II. CORRELATION FUNCTIONS OF BCFT

We investigate correlation functions of BCFT in the
holographic setup. Before doing this, we first briefly
summarize the known correlators of CFT and BCFTs.
For CFTs without a boundary, a two-point function of a
renormalized local operator Oðt; w⃗; xÞ has the following
form due to the conformal symmetry:

hOðt1; w⃗1; x1ÞOðt2; w⃗2; x2ÞiCFT
¼ 1

ð−jt1 − t2j2 þ jw⃗1 − w⃗2j2 þ jx1 − x2j2ÞΔ
; ð2:1Þ

whereΔmeans a conformal dimension of an operator. In this
case, a one-point function generally vanishes. For BCFTs,
however, reflection at the boundary allows a nontrivial one-
point function. Assuming that a boundary is located at
x ¼ xb, where x denotes a direction perpendicular to the
boundary, the one-point function of a renormalized operator
located at ft; w⃗; xg is given by [6,7]

hOðt; w⃗; xÞiBCFT ≡ hOðt; w⃗; xÞjBi ¼ 1

ð2jx − xbjÞΔ
; ð2:2Þ

where jBi indicates boundary states, and w⃗ are parallel
directions to the boundary. It is worth noting that the
coefficient of a one-point function can have a nontrivial
value for more general cases depending on the boundary
state, as will be shown later. When two operators are
located at ft; w⃗1; x1g and ft; w⃗2; x2g, a BCFT’s two-point
function was derived by applying the image charge
method [5–7,23,52]

hOðt; w⃗1; x1ÞOðt; w⃗2; x2ÞiBCFT
¼ 1

ðjw⃗1 − w⃗2j2 þ jx1 − x2j2ÞΔ

−
1

ðjw⃗1 − w⃗2j2 þ jx1 þ x2 − 2xbj2ÞΔ
; ð2:3Þ

where the minus sign is introduced because an image
charge has a negative charge [6]. Here, the first term
represents a direct two-point function, which is equiv-
alent to a two-point function of CFT, whereas the second
term appears due to reflection at the boundary.
Applying the AdS/CFT correspondence, from now on,

we look into the correlation functions in the holographic
setup. If we consider two local operators, Oðt; w⃗1; x1Þ and
Oðt; w⃗2; x2Þ, at the d-dimensional boundary of a (dþ 1)-
dimenisonal AdS space

ds2 ¼ R2

z2
ð−dt2 þ dw⃗2 þ dx2 þ dz2Þ; ð2:4Þ

their correlation function is associated with a geodesic
length connecting them. Denoting a geodesic length as
Lðt; w⃗1; x1; t; w⃗2; x2Þ, a two-point function is holographi-
cally determined by [53–57]

hOðt; w⃗1; x1ÞOðt; w⃗2; x2Þi ¼ e−ΔLðt;w⃗1;x1;t;w⃗2;x2Þ=R: ð2:5Þ
In the AdS space in (2.4), a geodesic length is governed by

Lðt; w⃗1;x1; t; w⃗2;x2Þ¼R
Z

x2

x1

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw02þ z02

p

z
; ð2:6Þ

CHANYONG PARK PHYS. REV. D 110, 046010 (2024)

046010-2



where w2 ¼ w⃗ · w⃗, and the prime means a derivative with
respect to x. The minimal geodesic length satisfying the
equation of motion results in the following two-point
function [36]:

hOðt; w⃗1;x1ÞOðt; w⃗2;x2ÞiCFT¼
ϵ2Δ

ðjw⃗1− w⃗2j2þjx1−x2j2ÞΔ
:

ð2:7Þ

Introducing a renormalized operator defined as

O ¼ O
ϵΔ

; ð2:8Þ

the two-point function of a renormalized operator gives
rise to

hOðt; w⃗1;x1ÞOðt; w⃗2;x2ÞiCFT¼
1

ðjw⃗1− w⃗2j2þjx1−x2j2ÞΔ
;

ð2:9Þ

which is equivalent to the previous CFT’s result in (2.1)
at t1 ¼ t2.
Now, let us study correlation functions of an renormal-

ized operator for BCFT. To apply the holographic pre-
scription, we need to know the holographic dual of
BCFTs. A d-dimensional BCFT can be realized by an
ETW brane anchored at the boundary of a (dþ 1)-
dimensional AdS space. To see more details, let us
consider an ETW brane having a nontrivial tension. In
this case, the energy-momentum tensor of the ETW brane
is represented as

Tμν ¼ −
σ

2κ2
γμν; ð2:10Þ

where σ and γμν indicate a brane’s tension and induced
metric on the ETW brane. Then, the configuration of the
ETW brane is determined by a junction equation [49–51]

πðþÞ
μν − πð−Þμν ¼ Tμν; ð2:11Þ

where πð�Þ
μν indicate a canonical momenta of γμν on the

both sides of the ETW brane. In the present setup, πðþÞ
μν ¼

0 because the outside of the ETW brane is empty. In the
AdS space, the canonical momentum of γμν reads

πð−Þμν ¼ −
1

2κ2
ðKμν − γμνKÞ ¼ −

Rx0

2κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p
z2
; ð2:12Þ

where the prime means a derivative with respect to z, and
an extrinsic curvature is defined as Kμν ¼ ∇μnν with a unit
normal vector nν.

When the ETW brane is static and we take x as a function
of z, the junction equation in the spatial sections is reduced to

x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p ¼ Rσ: ð2:13Þ

If the BCFT defined at z ¼ 0 has a boundary at x ¼ xb, the
solution of the above junction equation results in

x ¼ xb −
Rσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − R2σ2
p z: ð2:14Þ

This solution determines the ETWbrane’s configuration as a
function of z. Using this solution, an induced metric on the
ETW brane is reduced to

ds2ETW ¼ R2

z2

�
−dt2 þ dw⃗2 þ dz2

1 − R2σ2

�

¼ R̄2

y2
ð−dt2 þ dw⃗2 þ dy2Þ; ð2:15Þ

where

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2σ2

p
y and R̄ ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − R2σ2
p : ð2:16Þ

This induced metric is equivalent to a d-dimensional AdS
space.According to theAdS/CFT correspondence, a (dþ 1)-
dimensional AdS space is the dual of a d-dimensional
CFT, and the ETW brane plays the role of a boundary of
the CFT. Therefore, a (dþ 1)-dimensional AdS space with a
d-dimensional ETW brane maps to a d-dimensional BCFT.
We first take into account the case of σ ¼ 0 for which the

ETW brane extends to t, z, and w⃗ at a fixed x ¼ xb in (2.14)
and leads to a trivial boundary state, for example, a vacuum
without matter. In this holographic setup, the one-point
function of a renormalized operator is described by a
geodesic curve connecting a local operator to a reflection
point ft; w⃗r; xr; zrg on the ETW brane

hOðt; w⃗1; x1ÞiBCFT ¼ 1

ϵΔ
e−ΔLðt;w⃗1;x1;t;w⃗r;xrÞ=R: ð2:17Þ

Since a reflection point has to be located on the ETW brane,
it appears at xr ¼ xb for σ ¼ 0. At this stage, w⃗r and zr are
not fixed yet. The geodesic curve connecting an operator at
fw⃗1; x1; 0g to the reflection point at fw⃗r; xb; zrg is asso-
ciated with a bulk-to-boundary Green function in the bulk.
Due to the rotational symmetry in the w⃗ space, the geodesic
curve does not depend on the angular coordinate of the w⃗
space. Representing the radial position of w⃗ as w, the
geodesic length is expressed as

Lðt; w⃗1;x1; t; w⃗r;xbÞ¼R
Z

x1

xr

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw02þ z02

p

z
; ð2:18Þ
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where w⃗ and z are functions of x satisfying w⃗1 ¼ w⃗ðx1Þ,
w⃗r ¼ w⃗ðxrÞ, and zr ¼ zðxrÞ with xr ¼ xb for σ ¼ 0.
Since the geodesic length depends on w⃗ and x implicitly,

there are two conserved charges

P⃗¼ Rw⃗0

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw02þ z02

p and H¼−
R

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw02þ z02

p : ð2:19Þ

Introducing a turning point zt where z0 ¼ 0 and denoting
the value of w⃗0 at the turning point as v⃗, the conserved
charges at the turning point are reduced to

P⃗ ¼ Rv⃗

zt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p and H ¼ −
R

zt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p : ð2:20Þ

Comparing these conserved charges, we find that w⃗0 is
given by a constant, w⃗0 ¼ v⃗. Since the geodesic curve has to
pass through ðx1; w⃗1; 0g and fxb; w⃗r:zrg, v⃗ is given by

v⃗ ¼ w⃗1 − w⃗r

x1 − xb
: ð2:21Þ

Imposing the boundary condition, w⃗1 ¼ w⃗ðx1Þ, w⃗ðxÞ is
determined as a function of x

w⃗ðxÞ ¼ w⃗1 − v⃗ðx1 − xÞ: ð2:22Þ

Moreover, z0 from the conserved quantities results in

dz
dx

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p
z

: ð2:23Þ

Solving this equation, we can determine z as a function of x

zðxÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
x1−x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þv2

p
zt− ð1þv2Þðx1−xÞ

q
: ð2:24Þ

Imposing zr ¼ zðxbÞ, the turning point zt is determined as

zt ¼
jx1 − xbj2 þ jw⃗1 − w⃗rj2 þ z2r
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx1 − xbj2 þ jw1 − wrj2

p : ð2:25Þ

Using the above solutions, we can rewrite the geodesic
length as the integral over z

Lðt; w⃗1; x1; t; w⃗r; xbÞ ¼
����
Z

zt

ϵ
dz

Rzt
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p
þ
Z

zt

zr

dz
Rzt

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p ����; ð2:26Þ

where ϵ is introduced as a UV cutoff. After performing this
integral, we finally obtain a geodesic length connecting the
boundary operator to a bulk reflection point

Lðt; w⃗1;x1; t; w⃗r;xbÞ¼R log

�jx1−xbj2þjw⃗1− w⃗rj2þ z2r
zrϵ

�
:

ð2:27Þ

Now, we require δL ¼ 0 to obtain a minimal geodesic
length. This fixes w⃗r and zr to be

w⃗r ¼ w⃗1 and zr ¼ x1 − xb: ð2:28Þ

Using these results, the minimal geodesic length becomes

Lðt; w⃗1; x1; t; w⃗1; xbÞ ¼ R log

�
2jx1 − xbj

ϵ

�
: ð2:29Þ

As a consequence, the one-point function of an renormal-
ized operator results in

hOðt; w⃗1; x1ÞiBCFT ¼ 1

ð2jx1 − xbjÞΔ
: ð2:30Þ

From the holographic point of view, this result represents a
bulk-to-boundary Green function and is equivalent to the
BCFT’s one-point function in (2.2).
Now, let us discuss two-point functions of the BCFT.

The BCFT’s two-point function usually has two different
contributions. The one is a direct correlation between two
operators. Assuming that two operators are located at
ft1; w⃗1; x1g and ft2; w⃗2; x2g, the direct two-point function
is given by [36]

hOðt1; w⃗1; x1ÞOðt2; w⃗2; x2ÞiCFT
¼ 1

ð−jt1 − t2j2 þ jw⃗1 − w⃗2j2 þ jx1 − x2j2ÞΔ
: ð2:31Þ

This gives rise to the dominant contribution to the BCFT’s
two-point function. The other is the correlation caused by
the reflection at the boundary, which is subdominant. From
now on, we concentrate on the reflected two-point function.
The reflected two-point function is described by a minimal
geodesic curve connecting two operators passing through a
reflection point on an ETW brane. Using the previous bulk-
to boundary Green function, the geodesic length connect-
ing a reflection point to two operators is given by

Lðt; w⃗1; x1; t; w⃗2; x2Þ

¼ R

�
log

�jw⃗1 − w⃗rj2 þ jx1 − xrj2 þ z2r
zrϵ

�

þ log

�jw⃗2 − w⃗rj2 þ jx2 − xrj2 þ z2r
zrϵ

��
; ð2:32Þ

where xr ¼ xb for σ ¼ 0. The other reflection positions
fw⃗r; zrg can be determined by requiring δL ¼ 0.
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Varying the geodesic length in (2.32), the minimal
geodesic length appears when w⃗r and zr satisfy the
following equations:

0¼−
�ðw1−wrÞ2þðx1−xrÞ2

	�ðw2−wrÞ2þðx2−xrÞ2
	þz4r ;

0¼2w⃗rw2
r−3ðw⃗1þ w⃗2Þw2

rþ w⃗r

�
2x2b−2ðx1þx2Þxbþ2z2r

þw2
1þ4w⃗1 · w⃗2þw2

2þx21þx22
	

− w⃗2ðx1−xbÞ2− w⃗1ðx2−xbÞ2−ðw⃗1þ w⃗2Þz2r
−ðw⃗1þ w⃗2Þw⃗1 · w⃗2: ð2:33Þ

Solving these equations, we find the reflection position at

w⃗r¼
w⃗2x1þ w⃗1x2− ðw⃗1þ w⃗2Þxb

x1þx2−2xb
;

zr¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−xb

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−xb

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw1−w2Þ2þðx1þx2−2xbÞ2

p
x1þx2−2xb

:

ð2:34Þ

Plugging these results into the geodesic length (2.32), we
finally obtain the minimal geodesic length

Lðt;w⃗1;x1;t;w⃗2;x2Þ¼R log

�jw⃗1− w⃗2j2þjx1þx2−2xbj2
ϵ2

�
:

ð2:35Þ

Therefore, the resulting reflected two-point function is
given by

hOðt; w⃗1; x1ÞOðt; w⃗2; x2Þireflect
¼ 1

ðjw⃗1 − w⃗2j2 þ jx1 þ x2 − 2xbj2ÞΔ
: ð2:36Þ

Combining the direct and reflected two-point functions, the
BCFT’s two-point function in the holographic setup reads
for σ ¼ 0

hOðt; w⃗1; x1ÞOðt; w⃗2; x2ÞiBCFT
¼ hOðw⃗1; x1ÞOðw⃗2; x2ÞiCFT − hOðw⃗1; x1ÞOðw⃗2; x2Þireflect
¼ 1

ðjw⃗1 − w⃗2j2 þ jx1 − x2j2ÞΔ

−
1

ðjw⃗1 − w⃗2j2 þ jx1 þ x2 − 2xbj2ÞΔ
: ð2:37Þ

This is perfectly matched to the known BCFT’s two-point
function in (2.3).
Before closing this section, it is worth noting that there is

another way to rederive the reflected two-point function. In
the holographic setup, we also think of an image charge.
The holographic image charge method, as will be seen, is
applicable only for σ ¼ 0. Due to the existence of the

boundary at x ¼ xb, the second operator at fw⃗2; x2g can
have an image charge at fw⃗2; 2xb − x2g. Then, the two-
point function between the first operator and the image of
the second operator becomes for CFT

hOðt; w⃗1; x1ÞOðt; w⃗2; 2xb − x2ÞiCFT
¼ 1

ðjw⃗1 − w⃗2j2 þ jx1 þ x2 − 2xbj2ÞΔ
; ð2:38Þ

which is equivalent to the previous reflected two-point
function

hOðt; w⃗1; x1ÞOðt; w⃗2; 2xb − x2ÞiCFT
¼ hOðt; w⃗1; x1ÞOðt; w⃗2; x2Þireflect: ð2:39Þ

For σ ¼ 0, x1 ¼ x2 and w⃗1 ¼ w⃗2, the reflected two-point
function is the same as the square of the one-point function

hOðt; w⃗1;x1ÞOðt; w⃗1;x1Þireflect ¼ jhOðt; w⃗1;x1ÞiBCFTj2:
ð2:40Þ

III. CORRELATION FUNCTIONS OF
TWO-DIMENSIONAL THERMAL BCFT

We take into account thermal BCFT. In the holographic
setup, a two-dimensional thermal BCFT can be described
by a three-dimensional BTZ black hole with an ETW brane.
A Euclidean BTZ black hole’s metric is given by

ds2 ¼ R2

z2

�
−fðzÞdt2 þ dx2 þ 1

fðzÞ dz
2

�
; ð3:1Þ

where a blackening factor is given by fðzÞ ¼ 1 − z2=z2h. In
this black hole geometry, the junction equation determining
the ETW brane’s configuration is reduced to

Rσ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02 þ fðzÞ

p : ð3:2Þ

When the boundary is located at x ¼ xb at z ¼ 0, solving
the junction equation determines the ETW brane’s con-
figuration as

x¼ xb− zh log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−R2σ2Þz2hþR2σ2z2
p

−Rσz

zh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−R2σ2

p
�
: ð3:3Þ

For σ ¼ 0, the ETW brane is located at x ¼ xb. Using the
obtained solution, the induced metric on the ETW brane
becomes
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ds2ETW¼R2

z2

�
−
�
1−

z2

z2h

�
dt2

þ z2h
ð1−z2=z2hÞfð1−R2σ2Þz2hþR2σ2z2gdz

2

�
; ð3:4Þ

which is again given by a two-dimensional black hole
geometry.
When the ETW brane is absent, the dual QFTof the BTZ

black hole is a two-dimensional thermal CFT. For two-
dimensional thermal CFT, the two-point function of a
renormalized operator is given by [36]

hOðt;x1ÞOðt;x2ÞitCFT ¼
�
2zh sinh

�jx1−x2j
2zh

��
−2Δ

: ð3:5Þ

In the UV limit with jx1 − x2j ≪ zh, the thermal two-point
function is reduced to the CFT’s one in (2.9). This is
because finite mass and thermal effect are negligible in the
UV limit. In the IR limit with jx1 − x2j ≫ zh, however, the
thermal two-point function becomes

hOðt; x1ÞOðt; x2ÞitCFT ¼ e−Δjx1−x2j=zh

z2Δh
þ � � � ; ð3:6Þ

where the ellipsis means higher-order small corrections.
This shows that the thermal correlation exponentially
suppresses in the IR region. This is because the local
operator in the IR region has an effective mass meff ¼
Δ=zh ¼ 2πΔTH with Hawking temperature TH, due to the
interaction with thermal fluctuations.
Now, we discuss one-point function of BCFT at finite

temperature for σ ¼ 0. We assume that an operator with a
conformal dimension Δ is located at x ¼ x1. Then, its one-
point function is governed by

Lðt; x1; t; xbÞ ¼ R
Z

xb

x1

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ z02

p
z
ffiffiffi
f

p ; ð3:7Þ

where xr ¼ xb for σ ¼ 0. Since the geodesic length is
invariant under the translation in the x direction, we shift x
to x̄ ¼ x − xb without loss of generality. Then, the geodesic
length is rewritten in terms of x̄ as

Lðt; x1; t; xbÞ ¼ R
Z

0

x1−xb
dx̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ z02

p
z
ffiffiffi
f

p : ð3:8Þ

Using the conserved charge, the geodesic curve is deter-
mined by

dz
dx̄

¼ �
ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p
z

; ð3:9Þ

where we have to choose a positive sign for x̄ ≥ 0 and a
minus sign for x̄ ≤ 0. For z1 > zb, where z0 < 0, the

geodesic length can be represented as the integral over z

Lðt; x1; t; xbÞ ¼ R
Z

0

zr

dz
zhzt

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2h − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p : ð3:10Þ

After applying x̄ → −x̄, we rewrite the geodesic length as

Lðt; x1; t; xbÞ ¼ R
Z

−ðx1−xbÞ

0

dx̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ z02

p
z
ffiffiffi
f

p

¼ R
Z

0

zr

dz
zhzt

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2h − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p ; ð3:11Þ

where we use z0 > 0 in order to obtain the last result. This
shows that the geodesic length is invariant under the parity
transformation, x̄ → −x̄. This implies that x̄ ¼ 0 or x ¼ xb
corresponds to the turning point. As a result, the reflection
point coincides with the turning point, zr ¼ zt, for σ ¼ 0.
Solving (3.9), the configuration of the geodesic curve is

determined as

xðzÞ ¼ cþ zhtanh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2t − z2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2h − z2

p
!
; ð3:12Þ

where c is an integral constant. Requiring that the reflection
point is equivalent to the turning point, the integral constant
becomes c ¼ xb. Moreover, imposing an additional boun-
dary condition, x1 ¼ xð0Þ, zt in terms of xb and x1 is
determined as

zt ¼ zh tanh

�
x1 − xb

zh

�
: ð3:13Þ

Plugging the obtained results into the geodesic formula, we
finally obtain the minimal geodesic length

Lðt; x1; t; xrÞ ¼ R log

�
2zh sinh ðjx1 − xbj=zhÞ

ϵ

�
; ð3:14Þ

which leads to an renormalized one-point function of
thermal BCFT

hOðt; xÞitBCFT ¼ 1

ð2zhÞΔ
1

sinhΔðjx1 − xbj=zhÞ
; ð3:15Þ

where zh can be reinterpreted as the Hawking temper-
ature, TH ¼ 1=2πzh.
Now, we consider a two-point function of the thermal

BCFT. Assuming that two operators are located at fτ1; x1g
and fτ2; x2g, their thermal CFT’s correlation function
without a boundary is given by [36]
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hOðt1;x1ÞOðt2;x2ÞitCFT
¼ 1

ð2zhÞ2Δ
1

j−sinhðjt1− t2j=2zhÞ2þsinhðjx1−x2j=2zhÞ2jΔ
;

ð3:16Þ

which corresponds the direct two-point function for thermal
BCFT. For BCFT, there exists another subdominant cor-
rection caused by the reflection. For σ ¼ 0, as mentioned
before, one can apply to the image charge method to
evaluate a reflected two-point function. When a boundary is
located at x ¼ xb, the image charge of the second operator

at ft2; x2g appears at ft2; 2xb − x2g. Therefore, the
reflected two-point function of BCFT is equivalent to a
two-point function between the first operator and the image
charge of the second operator without a boundary

hOðt1; x1ÞOðt2; x2Þireflect ¼ hOðt1; xÞOðt2; 2xb − x2ÞitCFT:
ð3:17Þ

Using the CFT’s two-point function in (3.16), we find the
following reflected two-point function for thermal BCFT
with σ ¼ 0

hOðt1;x1ÞOðt2;x2Þireflect ¼
1

ð2zhÞ2Δ
1

j− sinh2ðjt1− t2j=2zhÞþ sinh2ðjx1þx2−2xbj=2zhÞjΔ
: ð3:18Þ

As a result, the two-point function for thermal BCFT
results in

hOðt1;x1ÞOðt2;x2ÞitBCFT
¼hOðt1;x1ÞOðt2;x2ÞitCFT−hOðt1;x1ÞOðt2;x2Þireflect
¼ 1

ð2zhÞ2Δ
�

1

j−sinh2ðjt1− t2j=2zhÞþsinh2ðjx1−x2j=2zhÞjΔ

−
1

j−sinh2ðjt1− t2j=2zhÞþsinh2ðjx1þx2−2xbj=2zhÞjΔ
�
:

ð3:19Þ

For t1 ¼ t2 and x1 ¼ x2, the reflected correlator of the
thermal BCFT is related to the one-point function

hOðt; xÞOðt; xÞireflect ¼ jhOðt; xÞitBCFTj2: ð3:20Þ

For σ ¼ 0, consequently, the reflected two-point function is
given by the square of the one-point function both at zero
temperature in (2.40) and finite temperature in (3.20).

IV. BCFT’S CORRELATORS
WITH BOUNDARY ENTROPY

Now, we take into account BCFT with a boundary
having nontrivial degrees of freedom, σ ≠ 0. In this case,
the boundary can have nontrivial entanglement entropy,
which was known as the boundary entropy. For σ ≠ 0, a
reflection point is not the same as a turning point. From the
ETW brane’s configuration in (2.14), the reflection point xr
in the x direction is given by a function of zr

xr ¼ xb −
Rσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − R2σ2
p zr: ð4:1Þ

In addition, the bulk-to-boundary geodesic length in (2.27)
is generalized into

Lðt; w⃗1;x1; t; w⃗r;xrÞ¼R log

�jx1−xrj2þjw⃗1− w⃗rj2þ z2r
zrϵ

�
:

ð4:2Þ

After substituting (4.1) into (4.2), variation of the geodesic
length with respect to w⃗r and zr determines the reflection
point as

w⃗r ¼ w⃗1 and zr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2σ2

p
ðx1 − xbÞ: ð4:3Þ

As a result, the BCFT’s one-point function for σ ≠ 0 results
in

hOðt; w⃗; x1ÞiBCFT ¼ AΔ

ð2jx1 − xbjÞΔ
; ð4:4Þ

where a coefficient A is given by

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Rσ
1þ Rσ

r
: ð4:5Þ

In Ref. [17], it was shown that AΔ plays a role in the bulk
conformal block decomposition of the two-point function.
Another implication comes from the entanglement entropy
of BCFT. For a two-dimensional BCFT, the entanglement
entropy is given by [9,43,58,59]

SE ¼ c
6
log

l
ϵ
þ 2g; ð4:6Þ

where l and g correspond to a subsystem size and boundary
entropy, respectively. When we take into account a sub-
system in the region xb ≤ x ≤ x1 at z ¼ 0, the entanglement
entropy in the present holographic setup is given by
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SE¼
Lðt;x1; t;xrÞ

4G
¼ c
6
log

�
x1−xb

ϵ

�
þc
6
log

�
2

A

�
; ð4:7Þ

where a central charge is given by c ¼ 3R=2G. In this case,
the boundary entropy g is connected to the ETW brane’s
tension σ

g ¼ c
12

log 2þ cΔ
24

log

�
1þ Rσ
1 − Rσ

�
: ð4:8Þ

As a result, the brane’s tension σ can be associated with the
entropy of the boundary states.
We further take into account a two-point function of

BCFT. For simple calculation, we assume that two operators
are located at the same x position, x1 ¼ x2, with w⃗1 ≠ w⃗2.
After plugging (4.1) into the geodesic length (2.32) con-
necting the reflection point to two local operators, and
varying it with respect to zr and w⃗r, we find that the geodesic
length has a minimum at

w⃗r¼
w⃗1þ w⃗2

2
and zr¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−R2σ2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jw⃗1− w⃗2j2þ4jx1−xbj2

q
:

ð4:9Þ

Utilizing these results, the reflected two-point function for
σ ≠ 0 is reduced to

hOðt; w⃗1; x1ÞOðt; w⃗2; x1Þireflect
¼ ð1 − R2σ2ÞΔ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jw⃗1 − w⃗2j2 þ 4jx1 − xbj2
p

þ 2Rσjx1 − xbj
�
2Δ :

ð4:10Þ

As a consequence, the BCFT’s two-point function with the
nontrivial boundary entropy becomes

hOðt;w⃗1;x1ÞOðt;w⃗2;x1ÞiBCFT
¼ 1

jw⃗1− w⃗2j2Δ

−
ð1−R2σ2ÞΔ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jw⃗1− w⃗2j2þ4jx1−xbj2
p

þ2Rσjx1−xbj
�
2Δ : ð4:11Þ

This result shows that, when the boundary has a
nontrivial boundary entropy, the BCFT’s two-point
function (2.3) for x1 ¼ x2 is generalized into (4.11). In
this case, the holographic result for the reflected two-
point function cannot be explained by the naive image
charge method. When w⃗1 ¼ w⃗2, the reflected two-point
function for σ ≠ 0 is again given by the square of the

one-point function

hOðt; w⃗; x1ÞOðt; w⃗; x1Þireflect ¼ jhOðt; w⃗; x1ÞiBCFTj2:
ð4:12Þ

V. CORRELATION FUNCTIONS OF DCFT

For DCFT, one- and two-point functions have been
studied [11,12,15–17,23]. Assuming that the defect is
located at x⃗ ¼ 0 and denoting perpendicular directions to
the defect as w⃗, a one-point function and bulk-to-defect
two-point function are given by

hOΔðx⃗; w⃗ÞitDCFT ¼ aΔ
jx⃗jΔ ; ð5:1Þ

hOΔðx⃗; w⃗ÞŌΔdð0; w⃗dÞitDCFT ¼
bΔ;Δd

jx⃗jΔ−Δdðjw⃗− w⃗dj2þjx⃗j2ÞΔd
;

ð5:2Þ

where OΔðx⃗; w⃗Þ is an bulk operator with a conformal
dimension Δ, and ŌΔdð0; w⃗dÞ implies an operator living
in the defect with a conformal dimension Δd. The bulk-to-
defect two-point function was obtained by calculating a
bulk-bulk-defect three-point function [23]. If one splits a
bulk operator OΔðx⃗; w⃗Þ into OΔ=2ðx⃗; w⃗Þ and OΔ=2ð−x⃗; w⃗Þ,
whereOΔ=2ð−x⃗; w⃗Þ corresponds to the image ofOΔ=2ðx⃗; w⃗Þ,
a bulk-bulk-defect three-point function is reduced to

hOΔ=2ðx⃗; w⃗ÞOΔ=2ð−x⃗; w⃗ÞOΔd
d ð0; w⃗dÞiCFT

¼ cΔ=2;Δ=2;Δd

2Δ−Δd jx⃗jΔ−Δdðjw⃗ − w⃗dj2 þ jx⃗j2ÞΔd
: ð5:3Þ

This three-point function is the same as the bulk-to-defect
two-point function up to overall multiplication factor. In this
section, we rederive the bulk-to-defect two-point function
using the holographic method without introducing an image
operator.
To describe DCFT in the holographic setup, we take into

account a p brane with p < d − 1 to describe a (p − 1)-
dimensional defect at the d-dimensional boundary space.
Assuming that a p brane extends t, z, and (p − 1) w⃗-
directions, x⃗ and w⃗ indicate perpendicular and parallel
directions to the p brane. When a p brane is located at
x⃗ ¼ 0, the dual theory becomes CFTwith a defect at x⃗ ¼ 0.
In this holographic setup, a one-point function of DCFT
can be easily evaluated by calculating a geodesic length
between the bulk operator and a reflection point living in
the p brane. Assuming that an operatorOðt; x⃗; w⃗Þ is located
at fx⃗; w⃗; zg ¼ fx⃗; w⃗; 0g, we can expect that a reflection
point is located at f0⃗; w⃗; zrg to have a shortest geodesic
length. This is because a reflection point freely moves on
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the p brane. As a result, a one-point function of DCFT is
described by a geodesic curve connecting an operator at
fx⃗; w⃗; 0g to a reflection point at f0⃗; w⃗; zrg, where zr is not
fixed yet. This is the same as the previous one-point
function of a boundary CFT in (2.30). Setting xb ¼ 0
in (2.30), the DCFT’s one-point function results in

hOðt; x⃗; w⃗ÞitDCFT ¼ aΔ
jx⃗jΔ ; ð5:4Þ

with the following coefficient:

aΔ ¼ 1

2Δ
; ð5:5Þ

where Δ is a conformal dimension of the operator.
In the holographic setup, a bulk-to-defect two-point

function is determined by a minimal geodesic passing
through a junction point. Denoting the position of a
junction point as fx⃗ ¼ 0⃗; w⃗r; zrg, a bulk-to-defect two-
point function is determined by the sum of two geodesics

Lðx⃗; w⃗; 0; w⃗dÞ ¼ R

�
Δ log

�jx⃗j2 þ jw⃗ − w⃗rj2 þ z2r j
zrϵ

�

þ Δd log

�jw⃗d − w⃗rj2 þ z2r j
zrϵ

��
; ð5:6Þ

where a geodesic length is determined by (2.27). In
this case, the first term describes a geodesic from the
bulk operator to a junction point, while the other indicates
the geodesic from a defect operator to a junction point. At
this stage, the position of a junction point is not fixed yet.
To determine a junction point, we vary L and find a
junction point satisfying δL ¼ 0. After some calculation,
we find

w⃗r ¼
ðΔ − ΔdÞðjw⃗ − w⃗dj2 þ jx⃗j2Þw⃗þ 2Δdjx⃗j2w⃗d

ðΔ − ΔdÞjw⃗ − w⃗dj2 þ ðΔd þ ΔÞjx⃗j2 ; ð5:7Þ

zr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − Δ2

d

q
ðjw⃗ − w⃗dj2 þ jx⃗j2Þjx⃗j

ðΔ − ΔdÞjw⃗ − w⃗dj2 þ ðΔd þ ΔÞjx⃗j2 : ð5:8Þ

Substituting these values into (5.6), we finally obtain a
renormalized bulk-to-defect two-point function

hOΔðx⃗; w⃗ÞŌΔdð0; w⃗dÞitDCFT ¼ e−Lðx⃗;w⃗;0;w⃗dÞ=R

¼ bΔ;Δd

jx⃗jΔ−Δdðjw⃗− w⃗dj2þjx⃗j2ÞΔd
;

ð5:9Þ

with the following coefficient:

bΔ;Δd
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ2 − Δ2

dÞΔ
q

2ΔΔΔ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δþ Δd

Δ − Δd

�
Δd

s
: ð5:10Þ

This holographic result for the bulk-to-defect two-point
function is perfectly matched to that in Ref. [23].
Moreover, the holographic calculation exactly determines
the coefficient of the two-point function in (5.10).

VI. DISCUSSION

For CFTwithout a boundary, the one-point function of a
local operator generally vanishes. For BCFT and DCFT,
however, the reflection caused by the boundary or defect
gives rise to nontrivial contribution to the correlation
functions. For BCFT and DCFT, therefore, the reflection
provides nontrivial contribution to one- and two-point
functions. In this work, we have investigated various
correlation functions of the BCFT and DCFT by applying
the holographic method.
To describe d-dimensional BCFT in the holographic

setup, we considered a (dþ 1)-dimensional AdS space
with a d-dimensional ETW brane, which plays a role of the
boundary of dual CFT. In this case, the configuration of an
ETW brane was determined by solving the junction
equation, which crucially depends on the tension of the
ETW brane. In this holographic setup, the BCFT’s one-
point function is represented as a minimal geodesic curve
reflected by the ETW brane. We showed that, when the
ETW brane has a zero tension, the holographic method
reproduces the exactly same one-point function known in
the BCFT [6]. We further investigated the BCFT’s corre-
lation functions when the boundary has a nontrivial tension.
After showing that the nonvanishing ETW brane’s tension
is associated with the boundary entropy, we calculated the
one-point function of BCFT with a nontrivial boundary
entropy. We show that the boundary entropy modifies the
coefficient of the BCFT’s one-point function.
We also studied the BCFT’s two-point functions. For

BCFT, the two-point function has two contributions. The
leading contribution comes from the CFT’s two-point
function without the boundary. The other is the reflected
two-point function caused by the reflection and then
provides the subdominant correction. When the boundary
has no degrees of freedom, we showed that we can apply
the image charge method to the holographic setup, similar
to that of BCFT. As a result, the reflected two-point
function is equivalent to the two-point function between
one operator and the image of the other operator. In this
case, we showed that the reflected two-point function is
equivalent to the square of the one-point function. We also
studied the thermal BCFT’s one- and two-point functions at
finite temperature.
We further investigated the BCFT’s correlation functions

when the boundary has nontrivial boundary entropy. In this
case, we showed that the image charge method does not
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work anymore. Nevertheless, we calculated the BCFT’s
one- and two-point functions by finding a reflection point
in the holographic setup. We showed that, when the
boundary has nontrivial boundary entropy, the reflected
two-point function is significantly modified. When two
operators are overlapped, we also showed that the reflected
two-point function is given by the square of the one-point
function with a nontrivial multiplication factor crucially
depending on the boundary entropy.
By applying the same holographic method to DCFT,

lastly, we further investigated the bulk-to-defect two-point
function for DCFT. To describe DCFT in the dual gravity,
we introduced a p brane, which plays a defect on the dual
QFT side. Assuming a defect operator living in the defect,
we can take into account a bulk-to-defect two-point

function. In the holographic setup, it can be described
by a geodesic curve connecting two operators with passing
through a junction point on the p brane. We found a bulk-
to-defect two-point function by evaluating the geodesic
length directly without introducing an image charge. We
showed that the holographic result reproduces the exactly
same form as that derived by the image charge method [23].
We further determined the coefficient of two-point function
exactly.
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