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We develop a covariant formalism to investigate the mixed state entanglement between time-dependent
boosted subsystems in TT̄-deformed CFT2s through the reflected entropy. To this end we utilize a
conformal perturbation theory to obtain the Rényi reflected entropy through the partition function on the
replica manifold. The correction to the reflected entropy to the first order in the deformation parameter μ is
then obtained in the replica limit for finite temperature and finite-sized systems. We further perform an
analytic continuation of our results to obtain the reflected entropy for timelike subsystems in such
TT̄-deformed CFT2s. We verify our field theoretic computations for both spacelike and timelike
subsystems by obtaining the dual EWCS in the corresponding bulk cutoff AdS3 geometries and find
perfect agreement between the two.
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I. INTRODUCTION

The AdS/CFT correspondence [1,2] provides a non-
perturbative framework for gravitational physics in asymp-
totically anti–de Sitter (AdS) spacetime in terms of
conformal field theories (CFT) at the asymptotic boundary
of the spacetime. Recent advancements have revealed that
quantum entanglement plays a central role in the precise
mechanism for the emergence of bulk spacetime [3,4]. The
inception of this concept traces back to the holographic
characterization of entanglement entropy using the Ryu-
Takayanagi (RT) prescription [5,6], which subsequently
paved the way for significant progress in this field [7–10].
However, it is well known in quantum information

theory that for bipartite mixed states, entanglement entropy
receives contributions from irrelevant classical and quan-
tum correlations, and thus fails to be viable measure of
quantum entanglement. To address the characterization of
mixed state entanglement, several computable entangle-
ment and correlation measures have been introduced in the
literature, including entanglement negativity [11], entan-
glement of purification [12], reflected entropy [13,14],
balanced partial entanglement [15], and odd entanglement
entropy [16], to name a few. In this work, we focus on
the reflected entropy, a bipartite mixed state correlation
measure associated with the canonical purification of a

given mixed state in a doubled Hilbert space [13,17,18].
Interestingly, the reflected entropy was posited as the
holographic dual to the minimal cross section of the
entanglement wedge, the bulk codimension-one region
bounded by a subsystem and its RT surface [19–21].
Recently, the authors in [22–24] introduced timelike

entanglement entropy (TEE) which is a complex-valued
measure for information, obtained through the analytic
continuation of the standard entanglement entropy to cases
involving timelike subsystems. It was shown in [22] to be
related to the pseudo entropy in AdS/CFT and to the
holographic entanglement entropy in dS/CFT which also
involve complex-valued contribution arising from certain
timelike geodesics. The authors interpreted the imaginary
contribution to the TEE to be describing the emergence of
time in the theory which generalized the emergence of
space through quantum entanglement [3]. Holographically,
the extremal surface corresponding to the TEE is composed
of spacelike and timelike segmentswhich give rise to the real
and imaginary contribution respectively. See Refs. [25–34]
for further developments related to the timelike entangle-
ment entropy.
In a separate context, introducing deformations in the

asymptotic region of the spacetime corresponds to the
inclusion of irrelevant deformations in the dual CFT.
However, managing such deformations poses considerable
challenges, with only limited exceptions where they can be
effectively addressed. In this connection, a class of CFT2s
where the conformal symmetry is disturbed through an
irrelevant deformation introduced through the determinant
of the stress tensor, has been a topic of interest in recent
past. This class of CFTs have generally been termed as TT̄-
deformed CFTs forming a one-parameter generalization of
the original (undeformed) CFT2. It has been shown that
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these theories retain their integrability and are solvable as
the energy spectrum, partition function and S-matrix are
exactly determinable [35–37]. Furthermore, a holographic
dual of these TT̄-deformed CFTs was forwarded in [38] in
terms of AdS geometries with the asymptotic boundary
situated at finite radial distance. More precisely, the AdS
geometry is identical to the one that is dual to the
undeformed CFT, except that the cut-off surface is now
pushed further into the bulk. The authors in [38] also
demonstrated the matching of the two-point function, the
energy spectrum and the partition function of the deformed
CFT with the holographic computations, providing sub-
stantiation for their proposal.1 The entanglement structure
of pure and mixed states have further been investigated
through conformal perturbation theory in these field
theories [34,49–64].
In this article, we address the issue of mixed state

entanglement in TT̄-deformed CFT2s through the reflected
entropy.2 Studies of such TT̄-deformed theories are impor-
tant because of the preservation of integrability which may
allow us to utilize the tools developed for integrable
theories. Additionally, these being irrelevant deformation
ensures that the spectrum of the deformed theory has a one-
to-one map with that of the undeformed theory which
suggests a CFT-like organization for the family of states.
This makes the entanglement structure of states in such TT̄-
deformed CFTs an interesting problem to investigate. Here,
we construct a covariant formalism for the reflected entropy
corresponding to mixed states comprised of boosted
subsystems in such theories. To this end, we perform a
conformal perturbative analysis by requiring that the
deformation parameter μ ≪ 1. In this limit, we obtain
the Rényi reflected entropy through the partition function
on the nm-sheeted replica manifold which admits a
perturbative expansion in μ, with the leading order con-
tribution arising from the original (unperturbed) CFT2. The
correction to the reflected entropy is then obtained to the
first order in μ for such time-dependent boosted subsystems
in finite temperature and finite-sized systems. Furthermore,
by utilizing the relation between the deformation parameter
μ with the location of this new cutoff surface rc of the dual
AdS3 geometry, we obtain the bulk EWCS in the dual
cutoff geometries described by Bañados-Teitelboim-
Zanelli (BTZ) black holes and global AdS3 spacetimes.
We further investigate the nature of timelike entanglement
for mixed states in such CFT2s with TT̄ deformation. In

particular, we obtain the leading order corrections to the
reflected entropy between timelike subsystems in a TT̄-
deformed CFT2 via analytic continuation of our results for
boosted spacelike subsystems. Although a suitable geo-
metric construction for the bulk entanglement wedge for
multiple subregions remains elusive, a direct analytic
continuation of the spacelike EWCS matches identically
with our field theoretic computations.
The rest of the article is organized as follows. In Sec. II, we

review the salient features of the TT̄-deformed CFT2s and
the dual cutoff AdS3 geometries. We also briefly review the
salient features of the reflected entropy and its holographic
dual, the entanglement wedge cross section. In Sec. III, we
compute the reflected entropy for disjoint, adjacent and
single boosted subsystems in finite temperature and finite-
sized TT̄-deformed CFT2s. We also perform an analytic
continuation of these results to timelike subsystems. In
Sec. IV, we perform the corresponding holographic com-
putation for the bulk EWCS in cutoff AdS3 geometries for
spacelike and timelike subsystems. Finally in Sec. V, we
summarize our work and draw conclusions.

II. REVIEW OF EARLIER LITERATURE

A. TT̄-deformed CFTs

We begin by briefly reviewing the class of theories
deformed by the double-trace composite operator [35],

ðTT̄Þ≡ 1

8

�
TabTab − ðTa

aÞ2
�
; ð2:1Þ

which are termed as TT̄-deformed theories in the literature.
These theories form a one-parameter generalization of
CFT2s characterized by the deformation parameter μ.

The action of the TT̄-deformed theories SðμÞQFT may be
characterized by the following flow equation:

dSðμÞQFT

dμ
¼
Z

d2wðTT̄Þμ; SðμÞQFTjμ¼0¼ SCFT; ð2:2Þ

where TT̄ is constructed out of the stress tensor of the
deformed theory, SCFT is the action of the undeformed CFT,
and μ ≥ 0 is considered to be non-negative. If the defor-
mation parameter is considered to be small μ ≪ 1, the

action SðμÞQFT may be expanded perturbatively to the first
order as follows:

SðμÞQFT ¼ SCFT þ μ

Z
M

d2wTT̄; ð2:3Þ

where T ≡ Tww, T̄ ≡ T̄w̄ w̄ are the components of the stress
tensor of the undeformed theory in the complex ðw; w̄Þ
plane. Note that, Ta

a has been omitted in the above
expression, as on a flat manifold, any correlation function

1See Refs. [39–48] for further developments in this direction.
2Note that, in [59], the authors have also computed the

reflected entropy in theories with TT̄ and JT̄ deformations for
time-independent setups featuring symmetrically placed subsys-
tems. However, they observed a mismatch between the correction
to the reflected entropy and the dual EWCS for disjoint
subsystems in TT̄-deformed CFT2s at finite temperatures. In
this article, we resolve this issue and discuss about the proper
matching in Sec. V.
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involving an insertion of Ta
a always results in a vanishing

contribution. All our computations in this article will be
performed on a cylindrical manifold, justifying the above
omission. Additionally, we will be working within the
perturbative regime of the deformation parameter through-
out this article.

B. Cutoff AdS geometries

For these deformed CFT2s with μ > 0, the holographic
dual has been proposed to be described by asymptotically
AdS3 geometries with asymptotic boundary pushed deeper
into the bulk [38]. In particular, the holographic dual to
TT̄-deformed CFT2s are characterized by the AdS geom-
etry identical to the one that is dual to the undeformed CFT,
except for the cutoff surface, which satisfies Dirichlet
boundary conditions at a finite radial distance,

ds2¼R2

�
dr2

r2
þ r2gabdxadxb

�
; r< rc ¼

ffiffiffiffiffiffiffiffi
6R4

πcμ

s
¼R2

ϵc
;

ð2:4Þ

where R is the AdS3 radius, c is the central charge of the
deformed CFT2 and the subscript c on the UV cutoff ϵc
signifies that the CFT2 defined on the cutoff surface is
pushed inside the bulk. An example of this proposal for
TT̄-deformed CFT2 at a finite temperature dual to cutoff
BTZ black hole, is depicted in Fig. 1. The above holo-
graphic proposal has passed several tests including the
explanation of the light cone deformations, reproducing the
energy spectrum, a geometric description of the exact
RG flow [38] as well as holographic characterizations of
entanglement and correlation [49,59–61,65].

C. Reflected entropy

In this subsection, we briefly review the mixed state
correlation measure introduced in [13] and termed as the
reflected entropy. To this end, we begin with the bipartite
mixed state A ∪ B described by the density matrix ρAB. The
canonical purification of ρAB is given by the state j ffiffiffiffiffiffiffiρAB

p i
defined on the doubled Hilbert space HA ⊗ HB ⊗ HA⋆ ⊗
HB⋆ where A⋆ and B⋆ are the CPT conjugate copies of the
subsystems A and B respectively. The reflected entropy SR
between the subsystems A and B is then defined as the von
Neumann entropy of the reduced density matrix ρAA⋆ ¼
TrBB⋆ j ffiffiffiffiffiffiffiρAB

p ih ffiffiffiffiffiffiffi
ρAB

p j as follows:

SRðA∶BÞ ¼ SvNðρAA⋆Þ ffiffiffiffiffiffiρAB
p : ð2:5Þ

A replica technique to obtain the reflected entropy for
bipartite mixed states in CFT2s was also developed in [13].
This involved the construction of the state jψmi≡ jρm=2

AB i on
an m-sheeted replica manifold with m∈ 2Zþ. This state
jψmi may be understood as the purification of ρmAB. Rényi
reflected entropy SnðAA⋆Þψm

may then be defined as the

Rényi (entanglement) entropy corresponding to the reduced

density matrix ρðmÞ
AA⋆ ¼ TrBB⋆ jψmihψmj. Note here that,

unlike the Rényi entropy, the Rényi reflected entropy is
a two-parameter generalization of the reflected entropy
where the parameter m is required to construct the pure
state jψmi and n is the usual Rényi index. The reflected
entropy is obtained through the analytic continuation of
both these parameters to unity as3

SRðA∶BÞ ¼ lim
n;m→1

SnðAA⋆Þψm
: ð2:6Þ

For any generic configuration, the Rényi reflected entropy
may be obtained through the partition functions�Zn;m on the
nm-replicated and �Z1;m on the m-replicated manifold as
follows:

SnðAA⋆Þψm
¼ 1

1 − n
log

�Zn;m

�Zn
1;m

: ð2:7Þ

FIG. 1. Schematics of the cut-off BTZ geometry dual of TT̄-
deformed CFT2 at a finite temperature. The new cutoff surface is
placed at rc. The coordinates of a subsystem A≡ ½x01; x02� in CFT
are scaled to ½x̃1; x̃2� while pushing the cutoff surface inside the
bulk. Figure modified from [59].

3The two replica limits n → 1 and m → 1 do not always
commute [66–68], as the dominant channel could change if the
order is reversed. The appropriate order of limits (n → 1 followed
by m → 1) becomes crucial for the cases where the problem is
defined close to the transition point and the dominant channel
may change. However, for the works in this article, we always fix
the dominant channel to be described by the connected entan-
glement wedge for the subsystem in question and, thus, the two
limits may be implemented interchangeably without any differ-
ence in the results.
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The authors in [13] also established a holographic
duality for the reflected entropy in terms of the bulk
entanglement wedge cross section. In particular they
showed that the reflected entropy is described holograph-
ically by twice the bulk entanglement wedge cross section
(EWCS). In the next subsection, we provide a brief review
of this bulk EWCS.

D. Entanglement wedge cross section

The entanglement wedge is a codimension-one bulk
region dual to a density matrix. For a bipartite mixed state
ρAB, the entanglement wedge χAB is defined as the bulk
region bounded by the subsystem A ∪ B and the extremal
(minimal) surface ΓAB homologous to the subsystem
computing the entanglement entropy. The minimal cross
section of the entanglement wedge (EWCS) serves as a
natural candidate to quantify mixed state entanglement and
correlations corresponding to a reduced density matrix.4

In the AdS3=CFT2 setup the extremal curves are always
given by geodesic segments and the EWCS may be
computed comprehensively in the embedding coordinate
formalism where one embeds the AdS3 geometry in R2;2 as
follows:

ds2¼ ημνdXμdXν; XμXμ ¼−R2: ð2:8Þ

Then, the EWCS between two disjoint subsystems A ¼
½X1; X2� and B ¼ ½X3; X4� may be computed through [68]

EWðA∶BÞ ¼
1

4GN
cosh−1

�
1þ ffiffiffi

u
pffiffiffi
v

p
�
; ð2:9Þ

where u and v are defined, with ζij ¼ −Xi:Xj, as follows:

u ¼ ζ12ζ34
ζ13ζ24

; v ¼ ζ14ζ23
ζ13ζ24

: ð2:10Þ

In a similar manner, for two adjacent subsystems A ¼
½X1; X2� and B ¼ ½X2; X3� the EWCS is given by [69]

EWðA∶BÞ ¼
1

4GN
cosh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζ12ζ23
ζ13

s !
: ð2:11Þ

III. REFLECTED ENTROPY
IN TT̄-DEFORMED CFTs

In this section,we construct a suitable replica technique to
obtain the reflected entropy in CFT2s perturbed with a TT̄
operator. To this end, we begin by considering any generic
bipartite mixed state in such a TT̄-deformed CFT2 defined
on a manifold M. As discussed in Sec. II C, to obtain the
reflected entropy in a CFT2 it is required to consider an nm-
sheeted Riemannian manifold Mnm, constructed through
the replication of the original manifold M. The partition
function on such a replicated manifold may be written as

�Zn;m ¼
Z
Mnm

DΦe−S
ðμÞ
QFT½Φ�; ð3:1Þ

where SðμÞQFT is the action for the TT̄-deformed CFT2 on the
replicated manifoldMnm. Considering the TT̄ deformation
to be perturbative by taking μ ≪ 1 in Eq. (2.3), we may
obtain the following ratio of the partition functions on the
nm-sheeted replica manifold and the m-sheeted replica
manifold:

�Zn;m

�Zn
1;m

¼
R
Mnm

e−SCFThR
Mm

e−SCFT
i
n

�
1 − μ

Z
Mnm

hTT̄iMnm

þ nμ
Z
Mm

hTT̄iMm
þOðμ2Þ

�
; ð3:2Þ

where the first term gives the leading order result arising
from the original (unperturbed) field theory. Here the
expectation value of the TT̄ operator on Mnm may be
determined by employing the twist operators for any general
bipartite configuration as follows:

Z
Mnm

hTT̄iMnm
¼
Xnm
k¼1

Z
M

hTkðwÞT̄kðw̄ÞΠiσiðwi;w̄iÞiM
hΠiσiðwi;w̄iÞiM

¼
Z
M

1

nm
hTðnmÞðwÞT̄ðnmÞðw̄ÞΠiσiðwi;w̄iÞiM

hΠiσiðwi;w̄iÞiM
;

ð3:3Þ

where Tk are defined on the k-th replica sheet and TðnmÞ
correspond to the total energy momentum tensor on the
nm-replicated manifold. The expectation value of the TT̄
operator on the replicated manifold Mm may also be
determined in a similar fashion.
The correction to the Rényi reflected entropy may then

be identified by utilizing Eq. (3.2) in Eq. (2.7) to be

δSn;mðAA�Þ¼ μ

n−1

�Z
Mnm

hTT̄iMnm
−n
Z
Mm

hTT̄iMm

�
;

ð3:4Þ

4Note that, several other entanglement and correlation mea-
sures such as the entanglement negativity, entanglement of
purification, odd entanglement entropy and the balanced partial
entanglement have been proposed as putative duals of the
entanglement wedge cross section (EWCS). However, the most
promising of these dualities stand out to be of that with the
reflected entropy established in [13] through a gravitational path
integral formalism utilizing the explicit holographic construction
discussed in [17].
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which in replica limit n;m → 1, will lead to the correction in
the reflected entropy due to such TT̄ deformation in CFT2s.

A. Thermal CFT2s with TT̄ deformation

In this subsection, we consider the TT̄ deformation of a
CFT2 at a finite temperature. Thus the manifold M in this
case is described by a thermal cylinder with a circum-
ference given by the inverse temperature β. We may
transform this cylinder M described by coordinates
ðw; w̄Þ to a complex plane C with coordinates ðz; z̄Þ by
utilizing the following exponential map:

z ¼ e
2πw
β ; z̄ ¼ e

2πw̄
β : ð3:5Þ

It is now possible to compute the expectation value in
Eq. (3.3) by transforming the correlation functions to the

complex plane and by utilizing the conformal Ward
identities in the numerator [59–61,65].
In the following, we consider various bipartite mixed

states in such finite temperature CFT2s and obtain the
correction to the reflected entropy. Subsequently we con-
sider an analytic continuation of our results to obtain the
correction for purely timelike subsystems.

1. Two disjoint subsystems

We begin by considering two disjoint subsystems
described by A≡ ½ðw1; w̄1Þ; ðw2; w̄2Þ� and B≡ ½ðw3; w̄3Þ;
ðw4; w̄4Þ� with wk ¼ xk þ iτk in a thermal CFT2 with a TT̄
deformation. Computing the expectation value in Eq. (3.3)
via the map Eq. (3.5) and substituting it in Eq. (3.4) lead to
the following correction in the Rényi reflected entropy for
this configuration:

δSnðAA⋆Þψm
¼ μ

n − 1

Z
M

�
−
2π4c
3β4

�
z2
X4
i¼1

�
hgi − nhgm
ðz − ziÞ2

þ ∂ziðloghσi − n loghσmiÞ
z − zi

�

þ z̄2
X4
i¼1

�
h̄gi − nh̄gm
ðz̄ − z̄iÞ2

þ ∂z̄iðloghσi − n loghσmiÞ
z̄ − z̄i

��

þ 16π2

β2m

�
z2z̄2

n

X4
i;j¼1

�
hgi

ðz − ziÞ2
þ ∂zi loghσi

z − zi

��
h̄gj

ðz̄ − z̄jÞ2
þ ∂z̄j loghσi

z̄ − z̄j

�

− nz2z̄2
X4
i;j¼1

�
hgm

ðz − ziÞ2
þ ∂zi loghσmi

z − zi

��
h̄gm

ðz̄ − z̄jÞ2
þ ∂z̄j loghσmi

z̄ − z̄j

���
: ð3:6Þ

In the above, we have defined

loghσi≡ loghσgAðz1; z̄1Þσg−1A ðz2; z̄2ÞσgBðz3; z̄3Þσg−1B ðz4; z̄4Þi

≈ hg−1A gB log
1þ ffiffiffi

η
p

1 − ffiffiffi
η

p þ h̄g−1A gB log
1þ ffiffiffī

η
p

1 −
ffiffiffī
η

p ; ð3:7Þ

loghσmi≡ loghσgmðz1; z̄1Þσg−1m ðz2; z̄2Þσgmðz3; z̄3Þσg−1m ðz4; z̄4Þi
¼ lim

n→1
loghσi; ð3:8Þ

where the cross-ratio η ¼ z12z34
z13z24

with zij ¼ zi − zj. Also

hgi ¼ h̄gi , hgm ¼ h̄gm and hg−1A gB ¼ h̄g−1A gB , respectively re-
present the conformal dimensions of the twist operators in
Eq. (3.7) at position zi, of σgm in Eq. (3.8) and of the
composite twist operator σg−1A gB, and have the following form:

hgi ¼ nhgm ¼
nc
24

�
m−

1

m

�
; hg−1A gB ¼

c
12

�
n−

1

n

�
: ð3:9Þ

Note that the conformal dimension of σg−1A gB appear in
Eq. (3.7) as this operator provides the dominant contribution

in the conformal block expansion of the corresponding four-
point twist correlator [13].
On simplifying Eq. (3.6), we may obtain the following

integral:

δSnðAA⋆Þψm
¼ −

Z
M

d2w
π4c2μ
9β4

×

�
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz1 − z2Þðz1 − z3Þðz2 − z4Þðz3 − z4Þ
p
ðz− z1Þðz− z2Þðz− z3Þðz− z4Þ

þ c:c:

�
; ð3:10Þ

where z ¼ e
2πðxþiτÞ

β and c.c. represent the complex conjugate
of the first term. This integral may easily be solved
following the techniques described in [65] where similar
integrals appear in the computation of correction to the
entanglement entropy. Finally, in the replica limit
n;m → 1, the correction to the reflected entropy for the
given configuration of two disjoint subsystems may be
obtained as follows:
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δSR ¼ π4c2μ
18β3

ffiffiffi
η

p
�
Pβ

134 − Pβ
234 þ Pβ

312 − Pβ
412

�

−
π4c2μ
18β3

ffiffiffī
η

p
�
P̄β

134 − P̄β
234 þ P̄β

312 − P̄β
412

�
; ð3:11Þ

where we have defined

Pβ
ijk ¼

xi sinh
�
πðtjkþxjkÞ

β

�
sinh

�
πðtijþxijÞ

β

�
sinh

�
πðtikþxikÞ

β

� ;

P̄β
ijk ¼

xi sinh
�
πðtjk−xjkÞ

β

�
sinh

�
πðtij−xijÞ

β

�
sinh

�
πðtik−xikÞ

β

� : ð3:12Þ

We have also analytically continued to the real time t to
explicitly observe the time dependence of our result, and
the finite temperature cross-ratios η and η̄ are given by

η ¼
sinh

�
πðt12þx12Þ

β

�
sinh

�
πðt34þx34Þ

β

�
sinh

�
πðt13þx13Þ

β

�
sinh

�
πðt24þx24Þ

β

� ;

η̄ ¼
sinh

�
πðt12−x12Þ

β

�
sinh

�
πðt34−x34Þ

β

�
sinh

�
πðt13−x13Þ

β

�
sinh

�
πðt24−x24Þ

β

� : ð3:13Þ

It may be checked here that the correction to the leading
order in Eq. (3.11) is negative for spacelike subsystems,
indicative of a reduction in the entanglement between the
two parties forming the bipartite mixed state.
Timelike entanglement. We now investigate the timelike

entanglement structure of the bipartite mixed state of two
disjoint subsystems through an analytic continuation of the
above correction to the reflected entropy. We consider

purely timelike subsystems A≡ ½ðx; t1Þ; ðx; t2Þ� and B≡
½ðx; t3Þ; ðx; t4Þ� on a thermal cylinder describing the CFT2

with a TT̄ deformation and substitute these in Eq. (3.11) to
obtaining a vanishing correction. Thus the timelike

reflected entropy SðTÞR for this configuration is same as
the one with no TT̄ deformation and may be obtained
through the analytic continuation of the result obtained
in [70] as follows:

SðTÞR ¼ c
3
log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπt12β Þ sinhðπt34β Þ
sinhðπt13β Þ sinhðπt24β Þ

r

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπt12β Þ sinhðπt34β Þ
sinhðπt13β Þ sinhðπt24β Þ

r : ð3:14Þ

Notice that, unlike the timelike EE, the timelike reflected
entropy for this configuration does not have any imagi-
nary part.
The above vanishing result is similar to the findings

of [25,60] where the authors observed no correction to the
entanglement entropy and the odd entanglement entropy
for a timelike subsystem in the TT̄-deformed thermal CFT2.
This was explained, holographically, owing to the orienta-
tion of the subsystems with respect to the cylinder.

2. Two adjacent subsystems

We now proceed to case of two adjacent subsystems
described by A≡ ½ðw1; w̄1Þ; ðw2; w̄2Þ� and B≡ ½ðw2; w̄2Þ;
ðw3; w̄3Þ� in a thermal CFT2 with TT̄ deformation. The
correction to the Rényi entropy (3.4) for this case may be
obtained by computing the expectation value in Eq. (3.3),
as follows:

δSnðAA⋆Þψm
¼ μ

n − 1

Z
M

�
−
2π4c
3β4

�X3
i¼1

�
z2
�

hgi
ðz − ziÞ2

þ ∂zi loghσi
z − zi

�
þ z̄2

�
h̄gi

ðz̄ − z̄iÞ2
þ ∂z̄i loghσi

z̄ − z̄i

��

−
X
i¼1;3

�
nz2
�

hgm
ðz − ziÞ2

þ ∂zi loghσmi
z − zi

�
− nz̄2

�
h̄gm

ðz̄ − z̄iÞ2
þ ∂z̄i loghσmi

z̄ − z̄i

���

þ 16π2

β2m

�
z2z̄2

n

X3
i;j¼1

�
hgi

ðz − ziÞ2
þ ∂zi loghσi

z − zi

��
h̄gj

ðz̄ − z̄jÞ2
þ ∂z̄j loghσi

z̄ − z̄j

�

− nz2z̄2
X

i; j¼1;3

�
hgm

ðz − ziÞ2
þ ∂zi loghσmi

z − zi

��
h̄gm

ðz̄ − z̄jÞ2
þ ∂z̄j loghσmi

z̄ − z̄j

���
; ð3:15Þ

where

loghσi≡ loghσgAðz1; z̄1Þσg−1A gBðz2; z̄2Þσg−1B ðz3; z̄3Þi; ð3:16Þ

loghσmi≡ loghσgmðz1; z̄1Þσg−1m ðz3; z̄3Þi; ð3:17Þ
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with conformal dimensions of the twist operators given in
Eq. (3.9). Simplifying Eq. (3.15), we may arrive at the
following integral on the thermal cylinder M:

δSnðAA⋆Þψm
¼−

Z
M
d2w

π4c2μ
9β4

×

�
z2ðz2− z1Þðz2− z3Þ

ðz− z1Þðz− z2Þ2ðz− z3Þ
þ c:c:

�
: ð3:18Þ

This integral may again be computed following the tech-
niques described in [65], which in replica limit n;m → 1
provide the following correction to the reflected entropy:

δSR ¼ −
π4c2μ
9β3

 
x12 sinhð2πx12β Þ

coshð2πt12β Þ − coshð2πx12β Þ

þ
x23 sinhð2πx23β Þ

coshð2πt23β Þ − coshð2πx23β Þ

−
x13 sinhð2πx13β Þ

coshð2πt13β Þ − coshð2πx13β Þ

!
; ð3:19Þ

where we have analytically continued to the real time t.
Again, the above correction is always negative for boosted
spacelike subsystems hinting towards a reduction in the
entangled degrees of freedom shared between the two
adjacent subsystems due to the TT̄ deformation.
Timelike entanglement.We now consider the mixed state

of two adjacent (purely) timelike subsystems A≡ ½ðx; t1Þ;
ðx; t2Þ� and B≡ ½ðx; t2Þ; ðx; t3Þ� on the thermal cylinder M
describing the CFT2 with a TT̄ deformation. Considering
the analytic continuation of Eq. (3.19), we again observe a
vanishing correction to the reflected entropy in the leading
order for the given timelike subsystems. Thus the reflected

entropy for this case is simply obtained by analytically
continuing the corresponding result of [70] as follows:

SðTÞR ¼ c
3
log

"�
4β

πϵ

� sinhðπt12β Þ sinhðπt23β Þ
sinhðπt13β Þ

#
þ i

πc
6
: ð3:20Þ

Similar imaginary part has been observed to appear in the
entanglement entropy for timelike intervals in CFT2s with
and without [22,24,25] TT̄ deformations as well. In the
holographic description they correspond to some timelike
geodesics constituting the RT surface for the timelike
subsystem [22,24].

3. A single subsystem

In this subsection we consider a single spacelike sub-
system described by A≡ ½ð0; 0Þ; ðl; tÞ� in a CFT2 at a finite
temperature deformed by the TT̄ operator. Similar to the case
for the reflected entropy in undeforrmed CFT2s [70,71], the
appropriate replica technique prescription for this configu-
ration involves the consideration of two auxiliary subsystems
B1≡ ½ð−L;−TÞ;ð0;0Þ� and B2 ≡ ½ðl; tÞ; ðL; TÞ� adjacent to
the given single subsystem on either sides.5 This is required
due to the presence of infinite branch cuts along the cylinder
which involve nontrivial gluing among the replica sheets for
theRényi reflected entropy. The reflected entropy is obtained
with these subsystems in place, and finally the bipartite limit
B1 ∪ B2 ≡ B → Ac (L → ∞) is considered to obtain the
original configuration of the single subsystem.
For this configuration of the single subsystem sand-

wiched by the auxiliary subsystems, the correction to the
Rényi reflected entropy in Eq. (3.4) is explicitly given in
terms of the twist operators, upon utilizing the conformal
map in Eq. (3.5) as follows:

δSnðAA⋆Þψm
¼ μ

n − 1

Z
M

�
−
2π4c
3β4

�
z2
X4
i¼1

�
hgi

ðz − ziÞ2
þ ∂zi loghσi

z − zi

�
þ z̄2

X4
i¼1

�
h̄gi

ðz̄ − z̄iÞ2
þ ∂z̄i loghσi

z̄ − z̄i

�

− nz2
X
i¼1;4

�
hgm

ðz − ziÞ2
þ ∂zi loghσmi

z − zi

�
− nz̄2

X
i¼1;4

�
h̄gm

ðz̄ − z̄iÞ2
þ ∂z̄i loghσmi

z̄ − z̄i

��

þ 16π2

β2m

�
z2z̄2

n

X4
i;j¼1

�
hgi

ðz − ziÞ2
þ ∂zi loghσi

z − zi

��
h̄gj

ðz̄ − z̄jÞ2
þ ∂z̄j loghσi

z̄ − z̄j

�

− nz2z̄2
X

i; j¼1;4

�
hgm

ðz − ziÞ2
þ ∂zi loghσmi

z − zi

��
h̄gm

ðz̄ − z̄jÞ2
þ ∂z̄j loghσmi

z̄ − z̄j

���
; ð3:21Þ

5Similar construction has also been utilized in nonrelativistic scenarios for the reflected entropy of a single subsystem at a finite
temperature in GCFT2s [72].
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where

loghσi≡ loghσgBðz1; z̄1Þσg−1B gAðz2; z̄2Þσg−1A gB

× ðz3; z̄3Þσg−1B ðz4; z̄4Þi ð3:22Þ

loghσmi≡ loghσgmðz1; z̄1Þσg−1m ðz4; z̄4Þi
¼ −hgm logðz4 − z1Þ − h̄gm logðz̄4 − z̄1Þ: ð3:23Þ

The four-point twist correlator in Eq. (3.22) is given
by [70,71]

hσgBðz1; z̄1Þσg−1B gAðz2; z̄2Þσg−1A gBðz3; z̄3Þσg−1B ðz4; z̄4Þi

¼ kmn

0
@ 1

z
2hgB
14 z

2hg−1
A

gB

23

FmnðηÞ
η
hg−1

A
gB

1
A
0
@ 1

z̄
2h̄gB
14 z̄

2h̄g−1
A

gB

23

F̄mnðη̄Þ
η̄
h̄g−1

A
gB

1
A;

ð3:24Þ

where η and η̄ are the cross ratios as defined earlier in z and
z̄ coordinates. The nonuniversal function FmnðηÞ and
F̄mnðη̄Þ depend on the full operator content of the theory
and in the limit η; η̄ → 1 and η; η̄ → 0may be approximated
as [71]

Fmnð1Þ ¼ F̄mnð1Þ ¼ 1; Fmnð0Þ ¼ F̄mnð0Þ ¼ Cmn;

ð3:25Þ

where Cmn is a nonuniversal constant. Using the above, the
correction to the reflected entropy may be obtained in the
replica limit n;m → 1 of the Rényi reflected entropy as

δSR¼−
π4c2lμ
9β3

�
coth

�
πðl− tÞ

β

�
þ coth

�
πðlþ tÞ

β

�
−2

�

−e
2πðl−tÞ

β

f0
�
e
2πðl−tÞ

β

�
f
�
e
2πðl−tÞ

β

� −e
2πðlþtÞ

β

f̄0
�
e
2πðlþtÞ

β

�
f̄
�
e
2πðlþtÞ

β

� ; ð3:26Þ

where the bipartite limit L → ∞ has been implemented. We
have also defined the nonuniversal functions,

fðηÞ≡ lim
m;n→1

log½FmnðηÞ�; f̄ðη̄Þ≡ lim
m;n→1

log½F̄mnðη̄Þ�:

ð3:27Þ

Similar to previous cases, the correction to the reflected
entropy for this configuration is always negative for
spacelike subsystems hinting towards the reduction in
the entangled degrees of freedom between the subsystem
A and its compliment.
Timelike entanglement.We now consider the case where

the subsystem A is purely timelike. It is important to note
here that the above construction for a spacelike subsystem
involving the auxiliary subsystems should not be extended

naively to timelike situations as the apparent problem due
to infinite branch cuts is absent in such cases. This is due to
the fact that the subsystem is now aligned in the compac-
tified direction of the thermal cylinder making the branch
cuts along Ac finite. Thus the reflected entropy is obtained
through a two-point twist correlator in this case for which
the correction in the reflected entropy given by Eq. (3.4)
vanishes.

B. Finite-sized CFT2s with TT̄ deformation

In this subsection, we now proceed to the case of TT̄
deformation of finite-sized CFT2s leading to a cylindrical
manifold M with a compactified spatial direction
x ∼ xþ L. This spatial cylinder may be mapped to the
complex plane C through the following:

z ¼ e−
2πiw
L ; z̄ ¼ e

2πiw̄
L : ð3:28Þ

Similar to the finite temperature case, we may now compute
the correction to the Rényi reflected entropy by obtaining
the expectation value of the TT̄ operator in Eq. (3.3).

1. Two disjoint subsystems

Consider the bipartite state of two disjoint subsystems
described by A≡ ½ðw1; w̄1Þ; ðw2; w̄2Þ� and B≡ ½ðw3; w̄3Þ;
ðw4; w̄4Þ� in a finite-sized CFT2 with a TT̄ deformation.
Here wk ¼ xk þ iτk with xk ∼ xk þ L and τk as the
Euclidean time. The correction to the Rényi reflected
entropy for this case is given by the same integral as in
Eq. (3.10) with β → iL. However the planar coordinates
ðz; z̄Þ are now related to the coordinates ðw; w̄Þ on the
spatial cylinder through Eq. (3.28). Solving the integral and
subsequently taking the replica limit n;m → 1 leads to the
following correction for the reflected entropy:

δSR ¼ π4c2μ
18L3

ffiffiffi
ξ

p
�
PL

134 − PL
234 þ PL

312 − PL
412

�

−
π4c2μ

18L3
ffiffiffī
ξ

p �
P̄L

134 − P̄L
234 þ P̄L

312 − P̄L
412

�
; ð3:29Þ

where we have again defined the following functions:

PL
ijk ¼

ti sin
�
πðtjkþxjkÞ

L

�
sin
�
πðtijþxijÞ

L

�
sin
�
πðtikþxikÞ

L

� ;

P̄L
ijk ¼

ti sin
�
πðtjk−xjkÞ

L

�
sin
�
πðtij−xijÞ

L

�
sin
�
πðtik−xikÞ

L

� : ð3:30Þ

The analytic continuation to the real time t has also been
considered, and the finite-sized cross-ratios ξ and ξ̄ are as
follows:
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ξ ¼
sin
�
πðt12þx12Þ

L

�
sin
�
πðt34þx34Þ

L

�
sin
�
πðt13þx13Þ

L

�
sin
�
πðt24þx24Þ

L

� ;

ξ̄ ¼
sin
�
πðt12−x12Þ

L

�
sin
�
πðt34−x34Þ

L

�
sin
�
πðt13−x13Þ

L

�
sin
�
πðt24−x24Þ

L

� : ð3:31Þ

It is worth noting here that the correction for this case in
Eq. (3.29) is always negative for spacelike subsystems
which indicate that the entangled degrees of freedom
between the such subsystems in finite-sized systems also
decreases upon the introduction of the TT̄ operator.
Timelike entanglement. We now consider the configu-

ration of two disjoint (purely) timelike subsystems
described by A≡ ½ðx; t1Þ; ðx; t2Þ� and B≡ ½ðx; t3Þ; ðx; t4Þ�
in a finite-sized CFT2 deformed by a TT̄ operator. Unlike
the finite temperature case, we observe that the analytic
continuation of Eq. (3.29) to timelike subsystems lead to
nonvanishing correction given by

δSðTÞR ¼ −
π4c2μ
9L3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðπt13L Þ sinðπt24L Þ
sinðπt12L Þ sinðπt34L Þ

s �
t1 sinðπt34L Þ

sinðπt13L Þ sinðπt14L Þ

−
t2 sinðπt34L Þ

sinðπt23L Þ sinðπt24L Þ þ
t3 sinðπt12L Þ

sinðπt13L Þ sinðπt23L Þ

−
t4 sinðπt12L Þ

sinðπt14L Þ sinðπt24L Þ
�
: ð3:32Þ

2. Two adjacent subsystems

In this subsection, we now consider two adjacent boosted
subsystems A≡ ½ðw1; w̄1Þ; ðw2; w̄2Þ� and B≡ ½ðw2; w̄2Þ;
ðw3; w̄3Þ� in a finite-sized CFT2 with a TT̄ deformation.
The correction to the Rényi entropy may be obtained
through Eq. (3.15) where, now, the complex plane coor-
dinates ðz; z̄Þ is mapped to the spatial cylinder ðw; w̄Þ
through Eq. (3.28). Solving the integral in Eq. (3.18) and
subsequently taking the replica limit n;m → 1, we may
obtain the correction to the reflected entropy in the leading
order as follows:

δSR ¼ −
π4c2μ
9L3

�
t12 sinð2πt12L Þ

cosð2πt12L Þ − cosð2πx12L Þ

þ t23 sinð2πt23L Þ
cosð2πt23L Þ − cosð2πx23L Þ −

t13 sinð2πt13L Þ
cosð2πt13L Þ − cosð2πx13L Þ

�
;

ð3:33Þ

where we have analytically continued to the real time t.
Again, the above correction is always negative for space-
like subsystems, indicative of the reduction in entangled
degrees of freedom due to the TT̄ operator insertion.

Timelike entanglement. We now consider the analytic
continuation of the above result to the case for (purely)
timelike subsystems described by A≡ ½ðx; t1Þ; ðx; t2Þ� and
B≡ ½ðx; t2Þ; ðx; t3Þ� in a CFT2 deformed by a TT̄ operator
defined on a spatial cylinder. The correction to the reflected
entropy for such case is nonvanishing and is given by

δSðTÞR ¼ −
π4c2μ
9L3

�
t12 cot

�
πt12
L

�
þ t23 cot

�
πt23
L

�

− t13 cot

�
πt13
L

��
: ð3:34Þ

3. A single subsystem

For the case of a single subsystem in a finite-sized
CFT2 perturbed by a TT̄ operator, we consider the sub-
system to be described by a boosted spacelike interval
A≡ ½ðw1; w̄1Þ; ðw2; w̄2Þ�. Note that unlike the case for the
CFT at a finite temperature, it is not required to introduce
the auxiliary intervals in this case, as the branch cuts are
finite along the spatial circle. The correction to the Rényi
reflected entropy is obtained by solving Eq. (3.4) with
appropriate two-point twist correlator. Subsequently the
correction to the reflected entropy for this configuration is
then obtained in the replica limit n;m → 1 to be

δSR ¼ −
π4c2μ
9L3

t12 sinð2πt12L Þ
cosð2πt12L Þ − cosð2πx12L Þ ; ð3:35Þ

where analytic continuation to real time t has been
implemented. Note that, similar to earlier cases, the above
correction to the reflected entropy due to the introduction of
the TT̄ operator is always negative for spacelike subsys-
tem A.
Timelike entanglement. We now proceed to the case of a

single timelike subsystem A≡ ½ð0; 0Þ; ð0; tÞ� in a finite-
sized CFT2 deformed by a TT̄ operator. Note that the
timelike subsystem is aligned parallel to the axis of the
spatial cylinder. Consequently, as earlier, we encounter
infinite branch cuts for this configuration, requiring the
introduction of two auxiliary subsystems B1 ≡ ½ð−X;−TÞ;
ð0; 0Þ� and B2 ≡ ½ð0; tÞ; ðX; TÞ�. Unlike the finite temper-
ature case, the bipartite limit B1 ∪ B2 ≡ B → Ac for the
spatial cylinder is implemented by stretching the auxiliary
intervals to timelike infinity T → ∞.
The correction to the Rényi reflected entropy for this

single subsystem sandwiched between two auxiliary sub-
systems can be obtained throughEq. (3.21). The correspond-
ing four-point twist correlator have the same form as in
Eq. (3.24), except that the complex plane coordinates ðz; z̄Þ
are nowobtained through themap (3.28) and η; η̄ are replaced
with the finite-size cross-ratios ξ; ξ̄ given in Eq. (3.31).
Following arguments similar to [71,73], it may be checked
that the nonuniversal functions Fmn; F̄mn follow similar
behavior as in Eq. (3.25) in the limits ξ; ξ̄ → 0 and ξ; ξ̄ → 1.
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This ultimately leads to the following correction to the
reflected entropy in the replica limit n;m → 1:

δSR ¼ −
2π4c2μt
9L3

�
i − cot

�
πt
L

��

− e
2πt
L
f0ðe2πt

L Þ
fðe2πt

L Þ − e−
2πt
L
f̄0ðe−2πt

L Þ
f̄ðe−2πt

L Þ ; ð3:36Þ

where the bipartite limit T → ∞ has been implemented and
the nonuniversal functions f; f̄ given in Eq. (3.27) have been
introduced. Note that, unlike previous cases, here we also
observe correction to the imaginary part of the reflected
entropy.

IV. ENTANGLEMENT WEDGE CROSS SECTION
IN CUTOFF ADS GEOMETRIES

In this section, we compute the EWCS for various
bipartite states in the cutoff AdS geometries dual to TT̄-
deformed CFT2s and find agreement with the reflected
entropy computed from conformal perturbation theory in
the limit of a small deformation parameter.

A. Cutoff BTZ black holes

According to the prescription in [38], a thermal CFT2

with TT̄ deformation is dual to the BTZ black hole with the
line element,

ds2 ¼ −
r2 − r2h
R2

dt2 þ R2

r2 − r2h
dr2 þ r2

R2
dx̃2; ð4:1Þ

with the finite radial cut-off rc ¼
ffiffiffiffiffiffi
6R4

πcμ

q
. In the above line

element, the black hole horizon is located at r ¼ rh and the
time direction is compactified as t ∼ tþ iβ. It is well
known that the black hole has the same temperature as
the dual field theory,

β ¼ 2πR2

rh
: ð4:2Þ

In the holographic correspondence described in [38], the
dual thermal field theory is located at the asymptotic
boundary of the spacetime at r ¼ rc and the metric on
this conformal boundary reads

ds2 ¼ −dt2 þ r2c
r2c − r2h

dx̃2 ≡ −dt2 þ dx2; ð4:3Þ

where we have defined the conformal coordinate,

x ¼ x̃

�
1 −

r2h
r2c

�−1=2
; ð4:4Þ

hence the CFT2 lives on a temporally compactified cylinder
described by the coordinates ðt; xÞ.
In the following, we will compute the minimal cross

section of the entanglement wedge for various bipartite
states involving two disjoint, two adjacent and a single
subsystem in the TT̄-deformed thermal CFT2, utilizing the
embedding coordinate techniques described in Sec. II D. To
simplify latter calculations, we set R ¼ 1 and introduce a
new holographic coordinate u ¼ 1

r, with uc ¼ 1
rc

and

uh ¼ 1
rh
. The embedding coordinate transformations which

map the BTZ metric to that of R2;2 are given by

X0ðu; t; x̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2h
u2

− 1

s
sinh

�
t
uh

�
;

X1ðu; t; x̃Þ ¼
uh
u
cosh

�
x̃
uh

�
;

X2ðu; t; x̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2h
u2

− 1

s
cosh

�
t
uh

�
;

X3ðu; t; x̃Þ ¼
uh
u
sinh

�
x̃
uh

�
: ð4:5Þ

1. Two disjoint subsystems

We begin with two generic boosted disjoint subsystems
A ¼ ½ðx1; t1Þ; ðx2; t2Þ� and B ¼ ½ðx3; t3Þ; ðx4; t4Þ� as depic-
ted in Fig. 2. Utilizing Eqs. (4.5) and (2.9), the EWCS
corresponding to the reduced density matrix ρAB is then
given by Eq. (2.9), with

ζij ¼
�
u2h
u2c

− 1

�
cosh

�
tij
uh

�
−
u2h
u2c

cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2h − u2c

p
u2h

jxijj
�
:

ð4:6Þ

To compare with the field theoretic result, we consider the
limit of small deformation parameter μ which corresponds

FIG. 2. Schematics of twoLorentz boosted disjoint subsystemsA
andB in the cutoff BTZgeometry. The two shaded planes represent
the original and the shifted asymptotic boundary, and the corre-
sponding scaling of the subsystems. Green curve is the EWCS.
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to a large cutoff radius rc (or, small uc). Furthermore, as the bulk BTZ black hole is dual to the finite temperature deformed
CFT2 in the limit of high temperatures, we further consider the limit β ≪ jxijj; tij. Expanding the expression of the EWCS
for small uc and uh ≪ jxijj; tij, we may obtain

EWðA∶BÞ ¼
1

4GN
cosh−1

�
1þ ffiffiffiffiffi

ηη̄
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞð1 − η̄Þp �

−
u2c

ffiffiffiffiffi
ηη̄

p
16GNu3hð

ffiffiffi
η

p þ ffiffiffī
η

p Þ
� x12 sinhðx12uh Þ
coshðt12uhÞ − coshðx12uh Þ

þ
x34 sinhðx34uh Þ

coshðt34uhÞ − coshðx34uh Þ
−

x23 sinhðx23uh Þ
coshðt23uhÞ − coshðx23uh Þ

−
x14 sinhðx14uh Þ

coshðt14uhÞ − coshðx14uh Þ
�

−
u2c

16GNu3hð
ffiffiffi
η

p þ ffiffiffī
η

p Þ
� x13 sinhðx13uh Þ
coshðt13uhÞ − coshðx13uh Þ

þ
x24 sinhðx24uh Þ

coshðt24uhÞ − coshðx24uh Þ

−
x23 sinhðx23uh Þ

coshðt23uhÞ − coshðx23uh Þ
−

x14 sinhðx14uh Þ
coshðt14uhÞ − coshðx14uh Þ

�
; ð4:7Þ

where η and η̄ are the finite temperature cross-ratios given
in Eq. (3.13). The first term in the above expression is
nothing but the EWCS corresponding to the two disjoint
subsystems in the undeformed CFT2 located at the asymp-
totic boundary r → ∞ of the bulk BTZ black hole
geometry [13]. Utilizing the holographic dictionary in
Eqs. (2.4) and (4.2) along with the usual Brown-
Henneaux relation is AdS3=CFT2 [74], the rest of the
terms is easily seen to match with the corresponding field
theoretic computations for the corrections to the reflected
entropy given in Eq. (3.11).
Timelike entanglement. We now consider the correlation

between two purely timelike subsystems A ¼ ½ðx; t1Þ;
ðx; t2Þ� and B ¼ ½ðx; t3Þ; ðx; t4Þ�, in the spirit of the time-
like entanglement introduced in [22,24]. While an explicit
geometric construction of a timelike entanglement wedge
remains absent, we adopt a straightforward approach by
accepting its inherent properties and proceed with a
rudimentary analytic continuation of our result for the
EWCS in Eq. (4.7). It is easy to verify that the correction
to the EWCS due to the deformation vanishes identically,

EWðA∶BÞ ¼
1

4GN
cosh−1

"
1þ 2

sinhð t12
2uh

Þ sinhð t34
2uh

Þ
sinhð t23

2uh
Þ sinhð t14

2uh
Þ

#
: ð4:8Þ

Upon utilizing the Brown-Henneaux formula [74]
and the holographic dictionary in Eq. (4.2), the above
expression for the EWCS matches identically with the
field theoretic result for the reflected entropy in
Eq. (3.14). Interestingly the corrections due to TT̄
deformation is absent in the above expression as the
angular separations of the timelike intervals are unaf-
fected while pushing the holographic screen inwards
[25,60]. Furthermore, we notice a vanishing imaginary
contribution to the EWCS indicating no timelike curve
segment in the bulk construction. This ought to shed
some light into the geometry of the corresponding
entanglement wedge.

2. Two adjacent subsystems

Next, we consider the case of two adjacent boosted
subsystems A ¼ ½ðx1; t1Þ; ðx2; t2Þ� and B ¼ ½ðx2; t2Þ;
ðx3; t3Þ� in the dual thermal CFT2 with TT̄ deformation
as depicted in Fig. 3. Utilizing Eq. (2.11) and the
embedding coordinates given in Eq. (4.5), the EWCS
between the two adjacent subsystems may be obtained
as follows:

EWðA∶BÞ ¼
1

4GN
cosh−1

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½α2 coshðt12uhÞ −

u2h
u2c
coshðαjx12juh

Þ�½α2 coshðt23uhÞ −
u2h
u2c
coshðαjx23juh

Þ�
½α2 coshðt13uhÞ −

u2h
u2c
coshðαjx13juh

Þ�

vuuut
1
CCA; ð4:9Þ
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where we have defined α2 ¼ u2h
u2c
− 1. Once again, we consider the limit of small deformation parameter (small uc) at a large

temperature and expand the above expression to obtain

EWðA∶BÞ ¼
1

8GN
log

�
8u2h½coshðt12uhÞ − coshðx12uh Þ�½coshð

t23
uh
Þ − coshðx23uh Þ�

u2c½coshðt13uhÞ − coshðx13uh Þ�
�

−
u2c

16GNu3h

� x12 sinhðx12uh Þ
coshðt12uhÞ − sinhðx12uh Þ

þ
x23 sinhðx23uh Þ

coshðt23uhÞ − sinhðx23uh Þ
−

x13 sinhðx13uh Þ
coshðt13uhÞ − sinhðx13uh Þ

�
: ð4:10Þ

Utilizing the holographic dictionary in Eq. (2.4) and the
expression for the temperature of the black hole in
Eq. (4.2), the first term in the above expression may be
identified as the EWCS between two adjacent subsystems
in the original undeformed CFT2 with UV cutoff ϵc. On the
other hand, the subleading terms proportional to u2c match
identically with the leading order corrections to the
corresponding reflected entropy obtained from conformal
perturbation theory in Eq. (3.19), upon utilizing the Brown-
Henneaux relation in AdS3=CFT2.
Timelike entanglement. We consider the case of two

purely timelike adjacent subsystems A ¼ ½ðx; t1Þ; ðx; t2Þ�
and B ¼ ½ðx; t2Þ; ðx; t3Þ� in the thermal CFT2 with TT̄
deformation. Once again, despite the absence of an explicit
geometric construction of the corresponding entanglement
wedge, we accept its existence prima facie and adopt an
analytic continuation of the result Eq. (4.10) for two
boosted adjacent intervals, to obtain

EWðA∶BÞ ¼
1

4GN

�
log

�
2uc
uh

sinhð t12
2uh

Þ sinhð t23
2uh

Þ
sinhð t13

2uh
Þ

�
þ iπ

�
:

ð4:11Þ

As in the case of two disjoint subsystems, we observe
that the corrections due to the TT̄ deformation vanishes
identically owing to the geometric orientation of the
subsystems along the thermal cylinder [25,60]. Utilizing

the holographic dictionary in Eqs. (2.4) and (4.2) and the
Brown-Henneaux relation [74], the above expression is
easily seen to conform to the result in Eq. (3.20).

3. A single subsystem

In this subsection, we consider a boosted spacelike
subsystem A ¼ ½ð0; 0Þ; ðl; tÞ� in the TT̄-deformed thermal
CFT2. As described earlier, this requires the introduction
of two large auxiliary subsystems B1 ¼ ½ð−L;−TÞ; ð0; 0Þ�
and B2 ¼ ½ðl; tÞ; ðL; TÞ� sandwiching the single subsystem
in question which is depicted in Fig. 4. Subsequently,
we construct the bulk codimension one entanglement
wedge dual to the bipartite density matrix ρA∪B with
B≡ B1 ∪ B2. We may compute the upper bound to
the EWCS between A and B utilizing the following
expression [71,75]:

ẼWðA∶BÞ ¼ EWðA∶B1Þ þ EWðA∶B2Þ: ð4:12Þ

The upper bound to the EWCS corresponding to the single
subsystem in question may then be obtained by taking the
bipartite limit B → Ac (L → ∞). Noting the fact that A;Bi
are adjacent to each other, we may utilize the result
Eq. (4.10) to compute the individual EWCS EWðA∶BiÞ
and obtain

FIG. 3. Schematics of two Lorentz boosted adjacent subsys-
tems A and B in the cutoff BTZ geometry.

FIG. 4. Schematics of a Lorentz boosted subsystem A in the
cutoff BTZ geometry. B1 and B2 are auxiliary intervals. Union of
the green curves gives the upper bound to the EWCS for this
configuration.
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ẼWðA∶BÞ ¼
1

4GN
log

0
B@8u2h

u2c

�
cosh

�
l
uh

�

− cosh

�
t
uh

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðl−Luh

Þ − coshðt−Tuh Þ
coshðlþL

uh
Þ − coshðtþT

uh
Þ

vuut
1
CA

−
u2c

16GNu3h

"
2l sinhð luhÞ

coshð t
uh
Þ − coshð luhÞ

þ
ðlþ LÞ sinhðlþL

uh
Þ

coshðtþT
uh
Þ − coshðlþL

uh
Þ

−
ðl − LÞ sinhðl−Luh

Þ
coshðt−Tuh Þ − coshðl−Luh

Þ

#
: ð4:13Þ

The upper bound to the EWCS corresponding to the single
boosted subsystem in question may now be obtained by
taking the bipartite limit L → ∞ as follows:

ẼWðA∶AcÞ ¼ 1

4GN

�
log

�
2u2h
u2c

�
cosh

�
l
uh

�

− cosh

�
t
uh

���
−

l
uh

�
þ 1

2GN
log 2

−
u2cl

8GNu3h

�
1þ

sinhð luhÞ
coshð t

uh
Þ − coshð luhÞ

�
: ð4:14Þ

As earlier, the first term in the above expression is just the
EWCS corresponding to the single subsystem in the unde-
formed CFT2, whereas the term proportional to u2c is the
leading order correction due to the TT̄ deformation. The
constant term may be attributed to the Markov gap [76]
owing to its geometrical interpretation in terms of the number
of nontrivial boundaries of the EWCS. Utilizing the holo-
graphic dictionary in Eqs. (2.4) and (4.2) and the Brown-
Henneaux relation in AdS3=CFT2, the subleading term may
be seen to match exactly6 with the corresponding leading
order correction to the reflected entropy obtained from
conformal perturbation theory in Eq. (3.26). Interestingly,
the above expression for the EWCS in the dual cutoff
geometry maybe recast into the following instructive form:

ẼWðA∶AcÞ ¼ SA − SThA þ 1

2GN
log 2; ð4:15Þ

whereSA is the entanglement entropyof the single subsystem
under consideration and SThA is the corresponding thermal
entropy,

SThA ¼ l
4GNuh

�
1 −

u2c
2u2h

�
¼ πcl

3β

�
1 − μ

π3c
3β2

�
: ð4:16Þ

Hence, we see that the thermal entropy gets nontrivial
corrections due to the TT̄ deformation. This may be under-
stood from the re-scaling of the spatial coordinate given in
Eq. (4.4) in the limit of small deformation parameter μ. It is
well known that the thermal contribution to the entanglement
entropy for a single subsystem arises as the corresponding
HRT surface wraps the black hole horizon [77]. The
correction to the thermal entropy due to the TT̄ deformation
may then be interpreted from the fact that as the holographic
screen is pushed inside the bulk, thewrapping of the extremal
surface around the black hole horizon decreases.
Timelike entanglement. Finally, we consider a purely

timelike subsystem A ¼ ½ðx0; 0Þ; ðx0; tÞ� in the thermal TT̄-
deformed CFT2. In contrast to the spacelike subsystem
considered earlier, in this case, we do not require any
auxiliary subsystems to remove the pathology of tracing out
an infinite branch cut. Hence, the EWCS corresponding to
the single subsystem in question reduces to the minimal
surface homologous to the subsystem. The length of such
minimal surface has already been computed in [22,24]. The
EWCS in this case is therefore given by

EWðA∶AcÞ ¼ 1

2GN

�
log

�
2uh
uc

sinh

�
t
uh

��
þ iπ

2

�
; ð4:17Þ

which matches identically with half of the reflected entropy
for the present configuration [70]. Interestingly, the above
result may be obtained from an analytic continuation of the
first term in Eq. (4.14) which serves as a strong consistency
check of our holographic construction.

B. Cutoff global AdS

In this section, we consider the finite cutoff global AdS
geometry dual to a TT̄-deformed CFT2 with a finite size.
The line element for the global AdS3 geometry reads

ds2 ¼ R2ð− cosh2 ρdτ2 þ dρ2 þ sinh2 ρdϕ2Þ; ð4:18Þ

where the spatial directionϕ is compactified with period 2π,
ϕ ∼ ϕþ 2π. According to the prescription in [38], the dual
finite-sized CFT2 is located at the radial cutoff ρc where

ρc ¼ cosh−1

0
@

ffiffiffiffiffiffiffiffiffiffiffiffi
3L2

2μπ3c

s 1
A; ð4:19Þ

whereL is the circumference of the boundary circle. TheUV
cutoff of the CFT2 may then be related to the bulk radial

6The nonuniversal functions f and f̄ are expected to be
subleading in the large central charge limit and hence are
undetected in the holographic computations. Furthermore, the
constantmismatch of log 2=ð2GNÞmaybe attributed to theMarkov
gap [76] pertaining to our holographic construction for the upper
bound in terms of the EWCS between two adjacent intervals.
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cutoff utilizing the relation in Eq. (2.4) as follows;

cosh ρc ¼
L

2πϵc
: ð4:20Þ

Therefore, the line element at the cutoff boundary is given by

ds2 ¼ − coth2 ρcdτ2 þ dϕ2 ≡ −dθ2 þ dϕ2; ð4:21Þ

where we have defined the conformal time coordinate,

θ ¼ τ

tanh ρc
; ð4:22Þ

such that the CFT2 is defined on a cylinder compactified
along the spatial direction with circumference L. The CFT2

may be described by the coordinates ðt; xÞ, which are related
to the bulk coordinates as follows: θ ¼ 2πt

L ;ϕ ¼ 2πx
L .

We may embed the geometry described by the metric
Eq. (4.18) in R2;2 by utilizing the following coordinate
transformations:

X0ðθ;ϕ;ρÞ¼Rcoshρsinθ; X1ðθ;ϕ;ρÞ¼Rcoshρcosθ;

X2ðθ;ϕ;ρÞ¼Rsinhρcosϕ; X3ðθ;ϕ;ρÞ¼Rsinhρsinϕ:

ð4:23Þ

In these embedding coordinates, the distance between two
arbitrary points Xi∶ ðθi;ϕi; ρcÞ and Xj∶ ðθj;ϕj; ρcÞ on the

cutoff boundary may be computed straightforwardly as
follows:

ζij ¼−Xi ·Xj ¼R2½sinh2ρc cosτ12− cosh2ρc cosϕ12�

¼R2

�
sinh2ρc cos

�
2πx12
L

�

−cosh2ρc cos

�
2πt12
L

tanhρc

��
: ð4:24Þ

In the following, we will compute the minimal cross section
of the entanglement wedge for various bipartite states
involving two disjoint, two adjacent and a single subsystem
in the TT̄-deformed finite-sized CFT2, utilizing the embed-
ding coordinates in Eq. (4.23) and the distance formula
Eq. (4.24). For brevity of notations, in the following, we
will set the AdS radius to unity, R ¼ 1.

1. Two disjoint subsystems

We begin with the case of two disjoint subsystems A ¼
½ðx1; t1Þ; ðx2; t2Þ� and B ¼ ½ðx3; t3Þ; ðx4; t4Þ� in a TT̄-
deformed finite-sized CFT2. Utilizing the embedding
coordinates in Eq. (4.23), we may compute the EWCS
corresponding to the mixed state under consideration from
Eq. (2.9) as follows:

EWðA∶BÞ ¼
1

4GN
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtanh2ρc cos τ31 − cosϕ31Þðtanh2ρc cos τ42 − cosϕ42Þ
ðtanh2ρc cos τ32 − cosϕ32Þðtanh2ρc cos τ41 − cosϕ41Þ

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtanh2ρc cos τ21 − cosϕ21Þðtanh2ρc cos τ43 − cosϕ43Þ
ðtanh2ρc cos τ32 − cosϕ32Þðtanh2ρc cos τ41 − cosϕ41Þ

s �
: ð4:25Þ

In order to compare with field theoretic results for the reflected entropy, we consider the limit of a small deformation
parameter μ, or large cut-off radius ρc. Expanding Eq. (4.25) for large ρc, namely for L ≫ jXijj; tij [cf. Eq. (4.19)], we
obtain to leading order in the cutoff scale χc ¼ 1

cosh ρc
,

EWðA∶BÞ ¼
1

4GN
cosh−1

�
1þ

ffiffiffiffiffi
ξξ̄

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξÞð1 − ξ̄Þ

p �
−

πχ2c
ffiffiffiffiffi
ξξ̄

p
8GNLð

ffiffiffi
ξ

p þ
ffiffiffī
ξ

p
Þ

�
t12 sinð2πt12L Þ

cosð2πt12L Þ − cosð2πx12L Þ

þ t34 sinð2πt34L Þ
cosð2πt34L Þ − cosð2πx34L Þ −

t23 sinð2πt23L Þ
cosð2πt23L Þ − cosð2πx23L Þ −

t14 sinð2πt14L Þ
cosð2πt14L Þ − cosð2πx14L Þ

�

−
πχ2c

8GNLð
ffiffiffi
ξ

p þ
ffiffiffī
ξ

p
Þ

�
t13 sinð2πt13L Þ

cosð2πt13L Þ − cosð2πx13L Þ þ
t24 sinð2πt24L Þ

cosð2πt24L Þ − cosð2πx24L Þ

−
t23 sinð2πt23L Þ

cosð2πt23L Þ − cosð2πx23L Þ −
t14 sinð2πt14L Þ

cosð2πt14L Þ − cosð2πx14L Þ

�
þOðχ3cÞ; ð4:26Þ
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where ξ and ξ̄ are the cross-ratios corresponding to the two
disjoint subsystems in the finite-sized CFT2 given in
Eq. (4.27),

ξ ¼
sin
�
πðt12þx12Þ

L

�
sin
�
πðt34þx34Þ

L

�
sin
�
πðt13þx13Þ

L

�
sin
�
πðt24þx24Þ

L

� ;

ξ̄ ¼
sin
�
πðt12−x12Þ

L

�
sin
�
πðt34−x34Þ

L

�
sin
�
πðt13−x13Þ

L

�
sin
�
πðt24−x24Þ

L

� : ð4:27Þ

As in the finite temperature case, the first term in the above
expression may be identified with the EWCS between the
two disjoint subsystems in the absence of the TT̄ defor-
mation. The rest of the terms proportional to χ2c denote the
leading order corrections to the EWCS due to the defor-
mation. Utilizing the holographic dictionary in Eq. (4.19)
and the Brown-Henneaux formula, the leading order
corrections may be seen to match exactly with the corre-
sponding field theoretic computations for the corrections to
the reflected entropy given in Eq. (3.29).
Timelike entanglement. For two purely timelike disjoint

intervals A ¼ ½ðx; t1Þ; ðx; t2Þ� and B ¼ ½ðx; t3Þ; ðx; t4Þ�, once
again, we forego the pursuit of an explicit geometric
delineation of the entanglement wedge and instead under-
take a naive approach to the bulk dual for the reflected
entropy. We proceed by analytically continuing our result
for the EWCS for two boosted spacelike intervals given in
Eq. (4.26), to obtain the following leading order expression
for a small deformation parameter:

EWðA∶BÞ ¼
1

4GN
cosh−1

�
1þ 2

sinðπt12L Þ sinðπt34L Þ
sinðπt23L Þ sinðπt14L Þ

�

−
πχ2c

8GNL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðπt12L Þ sinðπt34L Þ
sinðπt13L Þ sinðπt24L Þ

s �
t12 cot

�
πt12
L

�

þ t34 cot

�
πt34
L

�
− t23 cot

�
πt23
L

�

− t14 cot

�
πt14
L

��
: ð4:28Þ

In the above expression, the first term concerns the EWCS
for two timelike disjoint intervals for a undeformed CFT2

defined on a spatially compactified cylinder, while the rest
of the expression corresponds to the contributions due to
the TT̄ deformation owing to an inward displacement of the
holographic screen. Utilizing the holographic dictionary in
Eq. (4.19) and the usual Brown-Henneaux formula in the
context of AdS3=CFT2, it is straightforward to verify that
the above expression is tantamount to half the reflected
entropy computed in Eq. (3.32). Note that, similar to the
case of the BTZ black hole geometry [cf. Eq. (4.8)], there is
no imaginary contribution to the reflected entropy for two
disjoint timelike intervals indicating the absence of a
timelike curve segment in the corresponding geometric
construction.

2. Two adjacent subsystems

Next, we consider two adjacent subsystems A ¼
½ðx1; t1Þ; ðx2; t2Þ� and B ¼ ½ðx2; t2Þ; ðx3; t3Þ� in the finite-
sized CFT2 with a TT̄ deformation. Utilizing Eq. (2.11)
and the coordinate transformations in Eq. (4.23), we may
obtain the following expression for the EWCS corres-
ponding to the mixed state under consideration:

EWðA∶BÞ ¼
1

4GN
cosh−1

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ2cðtanh2ρc cos τ21 − cosϕ21Þðtanh2ρc cos τ32 − cosϕ32Þ

ðtanh2ρc cos τ31 − cosϕ31Þ

s 3
5; ð4:29Þ

where the boundary coordinates ðxi; tiÞ are related to the ðτi;ϕiÞ coordinates as follows:

τi¼
2πti
L

tanhρc; ϕi¼
2πxi
L

: ð4:30Þ

We may expand Eq. (4.29) for large cutoff radius ρc (corresponding to the small deformation parameter μ) to obtain

EWðA∶BÞ ¼
1

8GN
log

��
2L
πϵc

�
2 ½cosð2πx21L Þ − cosð2πt21L Þ�½cosð2πx32L Þ − cosð2πt32L Þ�

2½cosð2πx31L Þ − cosð2πt31L Þ�

�

−
πχ2c

8GNL

�
t21 sinð2πt21L Þ

cosð2πt21L Þ − cosð2πx21L Þ þ
t32 sinð2πt32L Þ

cosð2πt32L Þ − cosð2πx32L Þ −
t31 sinð2πt31L Þ

cosð2πt31L Þ − cosð2πx31L Þ

�
þOðχ3cÞ; ð4:31Þ
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where in the first term we have utilized the relation
Eq. (4.20) to convert the bulk cutoff scale χc to the UV
cutoff ϵc in the dual field theory. As earlier, we may identify
the first term on the right hand side of the above expression
as the EWCS between the two adjacent subsystems in an
undeformed CFT2. Furthermore, utilizing Eq. (4.19) and
the usual Brown-Henneaux relation in AdS3=CFT2, the rest
of the terms proportional to χ−2c match identically to the
leading order corrections to the reflected entropy due to the
TT̄ deformation, given in Eq. (3.33).
Timelike entanglement. For two purely timelike adjacent

subsystems A ¼ ½ðx; t1Þ; ðx; t2Þ� and B ¼ ½ðx; t2Þ; ðx; t3Þ�
in the finite-sized TT̄-deformed CFT2, we may analytically
continue our result for boosted spacelike intervals in
Eq. (4.31). Consequently the leading order expression
for the bulk dual to the reflected entropy is given as
follows:

EWðA∶BÞ ¼
1

4GN

 
log

"
2L
πϵc

sin
	πt12

L



sinh

	πt23
L



sinh

	πt13
L



#
þ iπ

!

−
πχ2c

8GNL

�
t12 cot

�
πt12
L

�
þ t23 cot

�
πt23
L

�

− t13 cot

�
πt13
L

��
; ð4:32Þ

where the first term signifies the contribution due to
the undeformed CFT2 and the rest of the terms propor-
tional to χ2c denote the leading order corrections due to
the TT̄ with a small deformation parameter. Note that,
above expression features a constant imaginary part
reminiscent of a timelike curve in the corresponding
bulk geometry. As earlier, upon utilizing Eq. (4.19)
and the Brown-Henneaux formula, the above expres-
sion matches identically with half of the reflected
entropy computed through conformal perturbation theory
in Eq. (3.34).

3. A single subsystem

In this subsection, we consider a boosted spacelike
subsystem A ¼ ½ðx1; t1Þ; ðx2; t2Þ� in the finite-sized
CFT2 with TT̄ deformation. Since the spacelike direction
ϕ is compactified, we do not encounter any pathology
associated with an infinite branch cut. Hence the
EWCS corresponding to the single subsystem under
consideration reduces to the minimal surface homolo-
gous to the subsystem A. The length of the subsystem
may then be obtain using standard AdS3=CFT2 tech-
niques as follows [25]:

EWðA∶AcÞ ¼ 1

2GN
log

2
4 L
2πϵc

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos

�
2πt12
L

�
− 2 cos

�
2πx12
L

�s 3
5

þ πχ2c
4GNL

t12 sinð2πt12L Þ
cosð2πt12L Þ − cosð2πx12L Þ : ð4:33Þ

Once again, the first term indicates the EWCS corre-
sponding to the spacelike subsystem in the undeformed
CFT2 whereas the second term signifies the leading order
correction due to the TT̄ deformation which, upon
utilizing the holographic dictionary in Eq. (4.19) and
the Brown-Henneaux relation, may be seen to match with
half of the corresponding reflected entropy obtained
using conformal perturbation theory in Eq. (3.35).
Timelike entanglement. Finally, we consider a timelike

single subsystem A ¼ ½ð0; 0Þ; ðx; tÞ� in the finite-sized TT̄-
deformed CFT2. Since the subsystem is placed along the
noncompact direction, in the reflected entropy computa-
tions in the dual field theory, we encounter an infinite
branch cut. As earlier, we may circumvent this pathology
by introducing two large auxiliary subsystems B1 ¼
½ð−X;−TÞ; ð0; 0Þ� and B2 ¼ ½ðx; tÞ; ðX; TÞ� sandwiching
the single subsystem A. Considering the bulk entanglement
wedge dual to the density matrix ρAB, we may obtain the
upper bound of the EWCS between A and B utilizing
Eq. (4.12). In the following, we find it easier to employ
Euclidean signature of the metric Eq. (4.18), namely we
make the Wick rotation to the Euclidean time:

t → −itE; T → −iTE:

Now utilizing Eqs. (4.12) and (4.31) we obtain the upper
bound as follows:

ẼWðA∶BÞ¼
1

4GN
log

2
642� L

πϵc

�
2
�
cos

�
2πx
L

�
−cosh

�
2πtE
L

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2πðx−XÞL Þ−coshð2πðtE−TEÞ

L Þ
cosð2πðxþXÞ

L Þ−coshð2πðtEþTEÞ
L Þ

vuut
3
75

−
πχ2c

8GNL

"
2tE sinhð2πtEL Þ

cosð2πxL Þ−coshð2πtEL Þ

þ ðtEþTEÞsinhð2πðtEþTEÞ
L Þ

cosð2πðxþXÞ
L Þ−coshð2πðtEþTEÞ

L Þ

−
ðtE−TEÞsinhð2πðtE−TEÞ

L Þ
cosð2πðx−XÞL Þ−coshð2πðtE−TEÞ

L Þ

#
: ð4:34Þ
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The upper bound to the EWCS for the single subsystem
under consideration may now be obtained by taking the
bipartite limit B → Ac which may be achieved by stretching
the auxiliary subsystems to (timelike) infinity, namely
TE → ∞. Taking the appropriate limit of Eq. (4.34) and
analytically continuing to Lorentzian signature, we obtain

ẼWðA∶AcÞ¼ 1

2GN

�
log

�
L

2πϵc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cos

�
2πx
L

�
−2cos

�
2πt
L

�s �

þ log2þ i
πt
L

�

þ πχ2c
4GNL

t

�
2iþ sinð2πtL Þ

cosð2πtL Þ−cosð2πxL Þ
�
: ð4:35Þ

The imaginary part of the (upper bound) to the EWCS may
be rewritten in the following instructive form:

πt
2GNL

�
1þ χ2c

2

�
: ð4:36Þ

We notice the striking resemblance of the above expression
to the TT̄ corrected thermal entropy in Eq. (4.16). However,
the usual understanding in terms of wrapping around a
horizon is missing. At this point, we boldly hypothesize
that the presence of light cones may give rise to some kind
of cosmological horizons impenetrable by the timelike
segments of the corresponding HRT surfaces. For com-
parison with the field theoretic computations for the leading
order corrections to the reflected entropy in Eq. (3.36), we
reproduce the upper bound to the EWCS for a purely
timelike subsystem A ¼ ½ð0; 0Þ; ð0; tÞ�,

ẼWðA∶AcÞ¼ 1

2GN

�
log

�
L
πϵc

sin

�
πt
L

��
þ log2

�

−
πχ2c

4GNL
t

tanðπtLÞ
þ i

πt
2GNL

�
1þχ2c

2

�
: ð4:37Þ

Utilizing Eq. (4.19) and the Brown-Henneaux formula, the
above expression conforms to the result obtained in
Eq. (3.36) through conformal perturbation theory till
leading order (cf. footnote 6).

V. SUMMARY

In this article, we have obtained the reflected entropy for
boosted spacelike and timelike subsystems in CFT2s with
TT̄ deformations which extends the recently developed
concept of timelike entanglement entropy to bipartite
mixed states through the reflected entropy. To this end,
we have performed a perturbative analysis in such TT̄-
deformed CFT2s in the regime of small deformation
parameter μ ≪ 1. In this regime, the partition function
on the nm-sheeted replica manifoldMnm corresponding to

the reflected entropy admits an expansion in μ with the
leading term arising from the original (unperturbed) field
theory. OðμÞ correction to the Rényi reflected entropy is
then obtained by computing the expectation value of the TT̄
operator in this manifold through conformal Ward iden-
tities. In the replica limit, we finally obtain the correction to
the reflected entropy for disjoint, adjacent and a single
boosted subsystem in thermal and finite-sized CFT2s with
TT̄ deformation. Furthermore, through an analytic con-
tinuation, we extend these results to timelike situations.
Through this we investigate the nature of timelike entan-
glement for bipartite mixed states.
Note that, for the case of a single spacelike subsystem at

a finite temperature and a single timelike subsystem in a
finite-sized CFT, the replica structure is nontrivial and
involves introduction of two auxiliary subsystems sand-
wiching the single subsystem in question. This is due to the
presence of infinite branch cuts along the axis of the
cylinder. Similar pathology has also been encountered for
the reflected entropy in unperturbed CFT2s earlier in the
literature. Finally the reflected entropy is obtained for this
configuration by implementing the bipartite limit where the
auxiliary subsystems are pushed to the spatial and temporal
infinity respectively. This pathology however does not arise
for any other configuration as the subsystems are either
finite or are aligned along the compactified direction of the
cylinder.
We have also computed the bulk EWCS in dual AdS3

geometries where the cutoff surface is pushed inside the
bulk. The perturbative analysis is performed in terms of
the location of this new cutoff surface. In this regard, we
resolved the issue of mismatch of the constant multipli-
cative factor between the correction to the reflected
entropy and the dual EWCS observed earlier in [59]
for disjoint subsystems in TT̄-deformed CFT2s at finite
temperatures. The matching between the two is observed
at high temperature (expansion in β → 0 limit) and not in
zero temperature limit as was investigated in [59]. This
may be understood by recalling that for low temperatures,
CFT2s are dual to thermal AdS3 geometries, and the
duality with BTZ black holes only holds true above a
critical temperature [78].
Specifically, we obtain the EWCS in cutoff BTZ black

holes and cutoff global AdS3 for disjoint, adjacent and a
single boosted subsystem in the dual field theory. For the
case of the cutoff BTZ black hole, rescaling of the spatial
coordinate is required to appropriately map the location of
the subsystems in the dual field theory as the coordinates
are scaled along the holographic direction. However, for the
cutoff global AdS3 geometries, the temporal coordinate is
scaled to match the CFT2 defined on the new cutoff surface.
With these, we observe perfect agreement of the bulk
EWCS with the corresponding reflected entropy for all
configurations considered. Furthermore, we also obtain
the EWCS for timelike subsystems and observe proper
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matching with the corresponding field theory results. These
serve as consistency checks for our computations.
For the case of a single spacelike subsystem in a thermal

CFT2 deformed with the TT̄ operator, we observe that the
subtracted thermal contribution to the EWCS also receives
OðμÞ correction which may be attributed to the decrease in
the wrapping of the extremal curve around the black hole
horizon as the holographic screen is pushed inside the bulk.
A similar behavior is also observed for a timelike sub-
system in a finite-sized CFT2 where a term, which looks
suspiciously similar to the thermal entropy in finite temper-
ature case, is subtracted from in the EWCS although no
horizon is present in the dual bulk. An interpretation for this
term is still unavailable to us but we suspect that the light
cones may induce certain cosmological horizons which
have this effect on the EWCS. We leave a concrete
investigation of the origin of this behavior for the future.
There are several open problems worth exploring in

this direction. It will be interesting to study other mixed
state entanglement and correlation measures such as the

entanglement of purification, balance partial entanglement
in these deformed theories. It would also be interesting to
explore such irrelevant deformation in CFTs with unequal
left-moving and right-moving central charges. One may
also generalize our study to other excited states in CFT2s
such as through the addition of a Uð1Þ charge. Based on a
recent article where the authors in [79] have analyzed the
TT̄ deformation of a boundary conformal field theory, it
would be interesting to perform a similar analysis for
reflected entropy and investigate the island formalism for
these settings. We leave these interesting open issue
for future consideration.
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