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We study the holographic dual of a topological symmetry operator in the context of the AdS/CFT
correspondence. Symmetry operators arise from topological field theories localized on a subspace of the
boundary conformal field theory spacetime. We use bottom up considerations to construct the topological
sector associated with their bulk counterparts. In particular, by exploiting the structure of entanglement
wedge reconstruction we argue that the bulk counterpart has a nontopological world volume action, i.e., it
describes a dynamical object. As a consequence, we find that there are no global p-form symmetries for
p ≥ 0 in asymptotically anti–de Sitter spacetimes, which includes the case of noninvertible symmetries.
Provided one has a suitable notion of subregion-subregion duality, our argument for the absence of bulk
global symmetries applies to more general spacetimes. These considerations also motivate us to consider
for general QFTs (holographic or not) the notion of lower-form symmetries, namely, (−m)-form
symmetries for m ≥ 2.
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I. INTRODUCTION

Symmetries provide important constraints on observ-
ables in physical systems. An important recent lesson is that
global symmetries also encode a rich topological structure
in a quantum field theory (QFT) [1]. In a D-dimensional
QFT a topological symmetry operator supported on a
closed manifold Y of dimension ðD − p − 1Þ (codimension
pþ 1) implements a p-form symmetry action on objects of
dimension at least p.1 A priori, the theory on Y could
support a nontrivial topological field theory (TFT). In this
broader context, a nongroup-like fusion rule reflects the
appearance of a noninvertible symmetry.2

Now, in the context of theAdS/CFT correspondence [8–10]
relating a gravitational theory on (Dþ 1)-dimensional anti–
de Sitter (AdS) space and a D-dimensional conformal field
theory (CFT), one expects that any operator of the boundary

CFT should have a bulk counterpart. Recent progress in
the context of stringy holographic and geometric engineer-
ing setups indicates that these topological operators “come
to life” in the bulk as the topological sector of dynamical
branes [11–19].
Our aim in this note will be to give a bottom up

explanation for some of these observations without refer-
ence to a specific top down construction.
A helpful clue for how to proceed is the associated

symmetry topological field theory (SymTFT) which gov-
erns the global symmetries of a QFT.3 For a D-dimensional
QFT with a given set of categorical symmetries, there is
a (Dþ 1)-dimensional SymTFTDþ1 which governs the
global form of the QFTD; this involves extending the
D-dimensional QFT by an interval; at one boundary we
have the (relative) QFT, and at the other end we introduce
topological/gapped boundary conditions to specify the
global form of the QFT.4 This is of course highly
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1One might prefer to restrict to ordinary linking, but it is
helpful to work more broadly. For example, in a 3D Chern-
Simons theory with charge conjugation symmetry, we have a
0-form symmetry operator of codimension 2 which acts on the
line operators.

2See, e.g., the reviews [2–7] and references therein.

3See, e.g., Refs. [20–35].
4The structure of the SymTFT is best understood in the case of

finite and discrete symmetries. In the case of continuous sym-
metries, there are some subtleties with demanding a purely gapped
bulk, and to a certain extent it is not necessary (and sometimes
undesirable) to enforce this structure since the “global form” for
continuous symmetries is less ambiguous; we simply need to
enforce suitable boundary conditions for continuous gauge fields
near a boundary. For a recent discussion on SymTFTs for
continuous symmetries see Ref. [35]. Let us also comment that
in all of these circumstanceswe can still consider a bulkTFTwhich
detects the anomalies of a boundary theorywhich by (amild) abuse
of terminology we shall refer to as the SymTFT.
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reminiscent of the AdS/CFT correspondence, although in
the latter, we really only have the single conformal
boundary of AdS; to some extent the physical boundary
conditions of the SymTFT have instead been “smeared”
over the entire bulk (as it must, since the gravitational
theory “knows” about all the local interactions of the CFT).
See Fig. 1 for a depiction of the two bulk/boundary
correspondences.
Another clue is the recent argument presented in [36,37]

that certain global symmetries cannot be present in asymp-
totically AdS spacetimes.5 The argument follows via “proof
by contradiction,” showing that any topological operator of
the boundary theory cannot reach “far enough” into the
bulk to influence quasilocalized bulk operators.6 Indeed,
the essential point in this line of reasoning is that entan-
glement wedges have only finite extent in the bulk (see,
e.g., [43–45]). A final complication is that the arguments
presented in [36,37] appear to require D ≥ pþ 2.
While intuitively appealing, this line of reasoning also

raises some questions. For one, the topological nature of the
symmetry operators suggests that they can be deformed
arbitrarily, provided linking between operators is main-
tained. From this perspective, one reaches a puzzle: how
could the gravity dual of a topological operator “know”

about the location of something as metric dependent as an
entanglement wedge in the first place?
Here we address some of these issues, showing that

bottom up considerations concerning bulk reconstruction/
holographic renormalization group (RG) flows are enough
to argue that bulk symmetry operators are never purely
topological, and so there are no global symmetries. Our line
of reasoning shares some similarities with that presented
in [36,37] but is also complementary in many aspects.
With this aim in mind, we consider for D ≥ 2, a CFTD

with a semiclassical gravity dual, but we do not assume that
global symmetries of the boundary theory are gauged in the
bulk.7 Rather, we argue that bulk reconstruction means that
symmetry operators must have a bulk dual which sources
stress energy in the sense that these operators are now
sensitive to small fluctuations in the metric. As such, they
cannot be purely topological. While detailed properties of
the resulting object in gravity are model dependent, we can
also extract some qualitative properties of the resulting
brane action world volume theory. Summarizing, the
existence of a symmetry operator in the boundary CFTD
allows us to predict the existence of a brane in the
gravitational bulk.
For completeness, we also revisit the no global

symmetries proof given in [36,37], showing how to also
cover the case of noninvertible symmetries which fuse to

FIG. 1. Left: we depict the standard SymTFT sandwich. The SymTFTDþ1 is supported on a slab of dimensionDþ 1 with boundaries
of dimension D at which physical and topological boundary conditions are imposed as indicated by the shaded regions. Right: in
holographic setups the full bulk is dual to the physical theory and therefore sets the physical boundary conditions, topological boundary
conditions are imposed asymptotically at the conformal boundary. The SymTFTDþ1 can be thought of as supported between these on a
slab / sliver of width ϵ → 0. The physical boundary is now determined by a gravitational system in dimension Dþ 1.

5The general expectation is that in a theory of quantum gravity
there are no global symmetries. See, e.g., Refs. [38–42].

6It is important to note that this proof does not directly
construct a candidate dual for a topological symmetry operator
of the boundary theory. Additionally, there are some technical
complications in extending this discussion to the case of non-
invertible symmetries, where the fusion rules for symmetry
operators fail to obey a grouplike product rule.

7We expect our considerations to also apply for D ¼ 1, but in
this case there is not much to discuss other than (−1)-form
symmetries, which involve parameters of the theory. In known
AdS2=CFT1 pairs one often has to entertain an ensemble average
over parameters right from the start (see, e.g., [46]) so the analysis
will be somewhat different. We defer this case to future work.
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condensation defects. We also comment on the construction
of (−m)-form symmetries of a general QFT for m ≥ 2, as
well as their holographic dual description in the context of
the AdS/CFT correspondence. We conclude by briefly
discussing some potential extensions to more general
spacetimes.

II. BULK DUAL OF A SYMMETRY OPERATOR

To begin, we consider a CFT on a D-dimensional
spacetime and assume that it admits a topological sym-
metry operatorN supported on a closed q-manifold Y. This
is a codimensionD − q symmetry operator and so specifies
a p-form symmetry with pþ q ¼ D − 1. For N to be a
symmetry operator, we require that it commute with the
stress tensor Tμν of the CFT. In general,N is specified by a
nontrivial topological field theory (TFT) supported on Y so
we schematically write this as8

N ∼
Z

½da� exp
�
2πi

Z
Y
LTFT

�
; ð2:1Þ

in the obvious notation. It is topological because local
variations in the shape of Y do not alter the action of the
topological defect on operators of the QFT. One can view
this as being enforced by the requirement that the TFTon Y
is independent of the spacetime metric for the CFT.
As is the case for any defect, the bulk fields of the CFT

specify background fields/sources for the TFT action.
We say that an operator O supported on a subspace of
dimension k ≥ p of the CFT is charged under this sym-
metry operator when it can nontrivially intersect/link with
the symmetry operator.9 The action of the symmetry
operator on O will be denoted as O ↦ OðN Þ. We first
consider p ≥ 0, returning to p ¼ −1 later. Recall that a
global (−1)-form symmetry is associated with picking
parameters of the CFT.
We now make the further assumption that our CFT has a

semiclassical gravity dual.10 In what follows we shall not
assume that the global symmetry of the boundary theory is
gauged. Rather, we shall ask whether having a global
symmetry in the bulk is compatible with bulk
reconstruction, reaching a contradiction.
We would like to characterize the bulk object corre-

sponding to N , as well as its possible linking with O. Our
general expectation is that to characterize the bulk dual, we
ought to convolve a boundary CFT operator with a suitable
smearing kernel and its improvement/reinterpretation in

terms of a quantum error correcting code [47,48] (see,
e.g., [49] for a review); objects close to the conformal
boundary will be sharply localized but as we move deeper
into the interior of AdS, these bulk dual objects will
become more spread out. For example, in the case
of O ¼ OðxÞ a local operator, we have a smearing kernel
Kðx0; x; zÞ so that the resulting bulk operator is of the form
(see, e.g., [47,50–53])

Õðx; zÞ ∼
Z

dx0Oðx0ÞKðx0; x; zÞ; ð2:2Þ

where z denotes the local radial coordinate in the Poincaré
patch, i.e., we have the empty AdS metric:

ds2 ¼ l2
AdS

ds2CFT þ dz2

z2
; ð2:3Þ

with ds2CFT the metric of the boundary CFT. Similar
considerations apply for extended operators of the CFT,
i.e., they also smear out in the bulk. We write this as a
convolution:

Õ ∼O �K: ð2:4Þ

Let us now turn to the main focus of this note: the bulk
dual of a topological symmetry operatorN of the CFTD. In
keeping with our discussion of smearing for CFToperators,
we shall refer to the putative bulk dual as Ñ . There are two
issues one can immediately raise. First of all, how do we
know that Ñ even exists, and moreover, should we expect it
to be topological in the bulk?11

First of all, there are good reasons to expect that some
object such as Ñ does exist in the bulk. For one, note that
for a general QFTD in D spacetime dimensions we can
speak of the associated SymTFTDþ1. In this picture, the
SymTFTDþ1 is defined on a slab with one boundary
carrying gapped boundary conditions and the other sup-
porting physical boundary conditions, i.e., a relative QFT.
Defects of the boundary relative theory are extended by one
dimension, and symmetry operators simply “pull off” of the
boundary, thus maintaining linking in both the boundary
and the bulk. So, at least in the SymTFT there is a natural
bulk object which we shall refer to as N stft. An additional
comment here is that N is constructed from fields of the
QFTD so smearing of these fields should in principle
produce an object in any putative bulk dual.
Consider next the issue of whether Ñ is topological. To

see why this issue is so subtle, suppose we consider
integrating a candidate smearing kernel against some N
supported on a subspace Y. Provided we remain close

8We keep implicit the specific symmetry generator, as imple-
mented by the TFT.

9Note, for example, that a line operator can thus be charged
under both a 1-form symmetry as well as a 0-form symmetry.

10A loose form of holography would assert that any QFT
should have some gravity dual. In practice this statement has little
content/practical value.

11We thank J. McNamara and H. Ooguri for helpful questions
and comments on this point.
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enough to the boundary so that any nontrivial topological
features in the bulk are avoided, the only possible dual is
some object supported on a manifold YðzÞ homotopic to Y.
On the other hand, precisely because N is topological,
convolution with a smearing kernel ought to have no effect
on Ñ at all.
With this motivation in mind, our aim will be to establish

not only that Ñ exists but also that it is not topological. There
are two conflicting intuitions which we will need to
reconcile: on the one hand “smearing” with a topological
operator would seem to produce no effect at all. On the other
hand, linking betweenN andOwill eventually get smeared
out, making it difficult to separately reconstruct N and O.
Once we establish that Ñ exists, we also know that in the

z → 0 limit it must reduce toN . SinceN is topological, we
can deduce that near the conformal boundary of AdS, the
world volume theory on a radial slice Ñ ðzÞ will have to be
of the form12

Ñ ðzÞ∼Z×
Z

½da�exp
�
2πi

Z
YðzÞ

LTFTþNontopological

�
;

ð2:5Þ

where YðzÞ is homotopic to Yð0Þ ¼ Y. This is simply
because any conventional smearing kernel cannot alter the
TFT world volume terms. On the other hand, it could
happen that once we move into the bulk there are additional
nontopological terms which depend on local fluctuations of
the bulk metric.13 We will shortly argue that the world
volume action used to specify Ñ ðzÞ is nontopological. As
such, a global symmetry in the CFT cannot remain a global
symmetry in the bulk. In addition, we have included the
possibility of a further dressing term Z as associated with a
theory supported on a chain which stretches from YðzÞ to
Yð0Þ. This only occurs in situations where the naive
SymTFT extrapolation of LTFT to the bulk is, on its
own, ill defined.
For each radial slice of the local AdS geometry, we

expect that ÕðzÞ still links with Ñ ðzÞ. From the perspective
of the dual CFT, this is expected: if we introduce a small
UV cutoff length scale, then we induce an RG flow and so
we can track, as a function of RG time, the action of
topological symmetry operators on CFT operators.14 The
RG flow as we proceed into the infrared could involve

nontrivial operator mixing/transport into the bulk, so there
is an “RG line” which extends out from ÕðzÞ back to the
boundary at z ¼ 0. Likewise, we can consider the full
evolution of Ñ ðzÞ back to the boundary at z ¼ 0. Observe
that the linking dimension for O and N in the CFT is
different from that of their smeared counterparts Õ and Ñ
in the bulk (which is higher dimensional). This does not
directly imply a contradiction since along each radial slice
we still observe a linking.
In the next two subsections we argue that Ñ ðzÞ exists,

and moreover it cannot be purely topological. To illustrate
the main idea we shall go through the argument twice, once
in Euclidean signature, where all operator linking/RG
statements are on the same footing, and again in
Lorentzian signature, where the physical interpretation of
smearing and bulk reconstruction is more apparent.
This will be enough to also establish the absence of bulk

global symmetries. Indeed, given a putative topological
symmetry operator N AdS for a global symmetry of the
bulk, pushing it to the boundary would produce a topo-
logical symmetry operator N for a global symmetry of
the boundary CFT. Pulling it back into the bulk via
bulk reconstruction would then yield a nontopological
Ñ ¼ N AdS. This is a contradiction, since on the one hand
N AdS as a global symmetry operator should not depend on
local metric fluctuations, but on the other hand its counter-
part Ñ does depend on such fluctuations. The contradiction
implies the absence of bulk global symmetries.
Finally, let us comment that while the style of our

argument is geared towards a “proof by contradiction”
namely we assume at the outset that the bulk has a global
symmetry and then derive a contradiction, the argument
carries through in the same fashion even if we assume that
symmetry in the bulk is gauged. This is because we can
compute (via the use of a connection/Wilson line) the
difference of Õ and its smeared counterpart. There is still a
contribution to the stress energy tensor in this case, and this
again establishes that Ñ is not topological.

A. Euclidean signature analysis

To begin, suppose our CFT is formulated on a Euclidean
signature manifold of dimension D. We can view this as
preparing a specific state of the Lorentzian signature theory.
In this case, the empty AdS geometry is topologically a
(Dþ 1) ball; the radial direction of the ball can be viewed
as the RG time of the Euclidean CFT (after introducing a
short distance cutoff).
We considerN a topological operator with support on Y.

Partitioning up the Euclidean spacetime into a collection of
D-dimensional “pixels” Pi, we can track the effects of RG
flow (i.e., smearing in the bulk) by increasing the size of the
Pi as we move to the infrared. Note that in the linking
between O and N , a far away observer will only see the
action of N on O, i.e., the combination OðN Þ. In other

12The TFT here is specified by the boundary theory. There can
often be difficulties in constructing this TFT purely in terms of
bulk objects; we discuss this issue when we turn to examples with
continuous non-Abelian symmetries.

13One can of course entertain topological couplings such as the
Pontryagin density, but these do not produce a source of stress
energy.

14Recall that the practical implementation of holographic RG
requires us to move the CFT a “small amount” into the interior to
initiate a flow. See, e.g., [54,55] as well as the review [56].
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words, a far away observer cannot microscopically probeO
andN separately. This crossover behavior happens at some
scale z ¼ z�.

15 Said differently, for z ≪ z�, the bulk
configuration consists of Õ, and—provided it exists—will
be accompanied by Ñ , so we denote this by Õ ⊕ Ñ . For
z ≫ z�, we can only detect ÕðN Þ due to smearing effects.
See Fig. 2 for a depiction.
Formally speaking, we can also estimate where this

crossover takes place. To see how, consider in the CFT a
spatial D-dimensional ball B which includes the O ⊕ N
configuration. We can build a minimal area “surface” in the
bulk Euclidean AdS which is homologous to B and which
has the same boundary ∂B. This region extends out a finite
amount into the bulk, and this is the demarcation region
z ¼ z�. So, there is a maximum depth z� to which it can
penetrate. This is the crossover scale from the individual
objects Õ ⊕ Ñ to ÕðN Þ. By general scaling arguments, we
also know that z� ∼ rðBÞ, the radius of B.
Consider now a field configuration with profile which

transitions from Õ to ÕðN Þ and compare this with a field
configuration which is simply Õ throughout (no N
insertion in the CFT dual):

ðÕ → ÕðN ÞÞ vs ðÕ → ÕÞ: ð2:6Þ

The two configurations have different bulk stress energy
simply because there is a nonzero jump in the z profile near
z ¼ z�; derivatives Dz along the RG line are different.16

Here, Dz refers to a formal covariant derivative with any
possible background connections switched on.

Let us elaborate on this point. Since we expect in an
actual AdS/CFT pair that the bulk symmetry will be gauged
anyway, one might ask whether in such a situation the
resultant ÕðN Þ is actually “gauge equivalent” to Õ.17 To
properly calculate differences in the values of the Õ
operator, we introduce a formal Wilson defect operator
W̃ðz0; zÞ which serves to properly compute differences
between charged operators located at different radial slices:

Õðz0ÞW̃ðz0; zÞ − ÕðzÞ: ð2:7Þ

This can be done for any candidate categorical symmetry
which has a corresponding symmetry TFT/symmetry
theory. Now, the defect W̃ has support on a subspace
which has one higher dimension than Õ.18 Returning to
line (2.6), we can now properly compare the differences:

ÕðN Þðz0ÞW̃ðN Þðz0; zÞ − ÕðzÞ vs Õðz0ÞW̃ðz0; zÞ − ÕðzÞ:
ð2:8Þ

For z0 ¼ zþ δz, these finite differences can be viewed as
approximating a covariant derivative δzDzÕðzÞ associated
with the corresponding symmetry. In particular, these
differences are what will directly enter into any stress
energy tensor.19 Our smearing argument has established
that ÕðN ÞW̃ðN Þ ≠ Õ W̃. This establishes the expected jump
in the stress energy.

FIG. 2. (i) At zero RG time z ¼ 0 the operatorsN andO are not smeared. (ii) At small RG times z ≪ z�, some smearing has occurred
but an observer can still probe the symmetry operator Ñ and the operator Õ individually. We denote this as Õ ⊕ Ñ . (iii) At large RG
times z ≫ z� an observer can no longer distinguish the individual objects, and we instead have the single merged object ÕðN Þ.

15The precise value of z� is scheme dependent. Indeed, a
change of RG scheme in the boundary CFTwill be reflected as a
choice of diffeomorphism in the bulk. Even so, there is clearly a
characteristic length scale associated with this “threshold cor-
rection” to the RG evolution.

16Note that even a jump by a phase rotation is enough to signal
a discontinuity in the z direction.

17We thank the anonymous referee for a helpful question of
clarification.

18In particular, in the symmetry TFT/symmetry theory this
defect would topologically link with Ñ .

19Consider for example the case of a complex scalar
charged under a Uð1Þ symmetry. Then, the stress energy tensor
has contributions from covariant derivatives of the form
Tij ⊃ DiϕDjϕ

†.
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Said differently, this jump in the profile of the bulk Õ
before and after z ¼ z� allows us to establish two things in
one shot. First of all, there must be something else present
besides just Õ (for z ≪ z�) and ÕðN Þ (for z ≫ z�). This
establishes the existence of Ñ ðzÞ.
Second, if Ñ contributes no stress energy, then the two

configurations ðÕ → ÕðN ÞÞ and ðÕ → ÕÞ would have had
the same stress energy, a contradiction. See Fig. 3 for a
depiction of these two situations.
The resolution of the contradiction is that the insertion of

Ñ itself contributes some stress energy to the configura-
tion. Said differently, returning to line (2.5), we conclude
that there is a nontrivial coupling of the bulk metric and its
local fluctuations to the theory specified by Ñ ðzÞ.
Summarizing, we have argued that coarse graining in

the Euclidean CFT leads to a maximal depth of penetration
in the Euclidean AdS, as captured by an associated
D-dimensional ball of the Euclidean CFT which “dips”
into the bulk AdS. One might view this as a Euclidean
signature generalization of an RT surface, but it is clear that
this differs from the standard notion which would have
made reference to a (D − 1)-dimensional ball. Here, we
simply view this as a formal device to figure out the
crossover region z ¼ z�. In any event, the existence of a
crossover scale is clear, and this also establishes that Ñ
exists and is not topological in the bulk AdS space.

B. Lorentzian signature analysis

We now repeat our coarse graining analysis but in
Lorentzian signature. Here, there is an important distinction
in the dimension of support for our p-form symmetry
operator. Working at a fixed time slice, observe that for
p ¼ 0, the corresponding symmetry operator would fill all
of space, while for p ≥ 1 we can put the topological

operator on a smaller spatial region. This is unpleasant, and
one workaround is to assume that we can decompose the
domain of the TFT into smaller regions, and analyze the
entanglement wedge of each of these objects separately.
This is the approach of Refs. [36,37], and we return to this
treatment in Sec. IV.
Here, we shall instead take a different tack: to keep our

treatment of all p-form symmetries on an equal footing, we
consider operators O supported on a spatial subspace, and
so our Ñ will necessarily have some finite extent in both
space and time. For example, in the case of a 2D Lorentzian
signature CFTwe can speak of a local operatorOðxÞ which
links withN , supported on a closed one-dimensional curve
which has both spacelike and timelike pieces. See Fig. 4 for
a depiction.
In this case, we can draw a large causal diamond R

around theO ⊕ N configuration. On short distance scales,
we can again resolve the two individual constituents, but at
long distance scales we instead only detect OðN Þ. This is
apparent in the holographic dual by constructing the
Hubeny-Rangamani-Takayanagi (HRT) surface EWðRÞ
associated to our region R. Inside EWðRÞ, we can resolve
Õ ⊕ Ñ , but outside, the two constituents have merged to
ÕðN Þ. Now everything proceeds as before; we get a
maximum depth of resolution set by a characteristic scale
z�, and again, the “jump” in comparing the stress energy of
the ðÕ → ÕÞ line and the ðÕ → ÕðN ÞÞ line tells us that Ñ
exists and cannot be purely topological in the bulk. See
Fig. 4 for a depiction of the causal diamond in the boundary
CFT, as well as the smearing in the bulk.
As a final comment, note that if we had restricted to

p ≥ 1 with a topological operator supported on a purely
spatial region then we could have run precisely the same
coarse graining argument used in our Euclidean signature
analysis, but now for just spatial subregions of the CFT.

FIG. 3. (i) Depiction of a field configuration, as specified by Ñ , in which Õ transitions to ÕðN Þ. We indicate the symmetry operatorN
and charged operator O of the CFT. When z ≪ z�, they smear to Õ ⊕ Ñ . When z ≫ z�, they smear to the symmetry transformed
operator ÕðN Þ. Near z ¼ z� we have a discontinuity in the z direction as we jump from Õ to ÕðN Þ. (ii) Depiction of the same setup as in
(i) with constant field profile.
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C. ( − 1)-form symmetries

We now return to the case of (−1)-form symmetries of
the boundary CFT. Our aim here will be to give a bottom up
proposal for how to make sense of this case in a way
compatible with holographic considerations.
Recall that (−1)-form symmetries are associated with

specifying the parameters of the CFT,whichwe label as fλg.
The associated topological operatorN fills the spacetime so
the notion of “smearing” itself would appear to be somewhat
ill defined. Nevertheless, we can construct a space Λ from
the fλg and equip it with the Zamolodchikovmetric [57] for
the continuous parameters and the discrete topology for any
discrete parameters. From this perspective, we get a family
of CFTs fibered overΛ, and so we can speak of a spacetime
filling topological operator N ðλÞ which sits at a particular
point λ∈Λ and fills the directions of the CFT. Inserting
N ðλÞ moves us from the point λ to the point λðN ðλÞÞ.
What is the holographic dual Ñ ðλ; zÞ? To begin,

recall that via the standard holographic dictionary, the
parameter λ is to be viewed as the asymptotic profile of
the non-normalizable component of a bulk field ϕ with
ϕj

∂Ads ∼ λ [9,10]. Suppose that we now pull N ðλÞ off the
boundary CFT located at z ¼ 0. We now have a bulk
insertion of a codimension one object (i.e., a “wall”).
Crossing from one side to the other modifies the value of
ϕ; i.e., it induces a jump in the bulk modulus field.
As far as establishing that Ñ ðλ1 → λ2Þ is not topological

in the bulk, the argument proceeds much as in the previous
cases; i.e., we proceed via proof by contradiction. We

observe that the bulk modulus field “charged” under
Ñ ðλ1 → λ2Þ jumps, and so the presence of a kink profile
would induce a nonzero stress energy. There is no contra-
diction provided Ñ ðλ1 → λ2Þ supports a nontopological
world volume action in the bulk.
It is also of interest to consider possible wormhole

configurations which connect different values of λ, as in
Refs. [58,59]. For two values of parameters λ1 and λ2 in the
CFT, suppose we have a (−1)-form symmetry operator
N ðλ1 → λ2Þ which connects the two. In the gravity dual,
we have an interpolating bulk geometry with a Ñ ðλ1 → λ2Þ
wall inserted. Observe that this insertion is orientable, and
so Ñ ðλ1 → λ2Þ† implements the opposite transformation.20

See Fig. 5 for a depiction of these bulk configurations
with a wall.

D. SymTFT considerations

Summarizing, we have shown that in the context of
the AdS/CFT correspondence, any putative topological
global symmetry operator of the boundary CFT becomes
nontopological in the bulk. Conversely, we have also
shown that, in the bulk, there are no candidate topologi-
cal symmetry operators for a p-form symmetry for
p ≥ 0, thus excluding possible global symmetries in
the gravity dual.
This is in accord with what we expect to happen in any

D-dimensional QFT with global categorical symmetries.
From this broader perspective, one can consider a
(Dþ 1)-dimensional topological field theory SymTFTDþ1

which captures these global symmetries. Heavy defects
of the QFTD are extended by one dimension in the
bulk, and the topological operators remain of the same
dimension so that linking is maintained. This naturally
suggests that the SymTFT is simply a topological sub-
sector of the AdS/CFT correspondence, and this is indeed
how it arises in all known stringy realizations of
SymTFTs [31,34,60,61]. This extension by one further
dimension indicates that the p-form symmetries extends
to a bulk gauge field Apþ1 which produces an extended
defect operator, with the boundary operator attached to
the end (see Fig. 6).
The SymTFTDþ1 should be viewed as the low energy

limit of a gravitational system. In terms of embedding it in
the AdS/CFT correspondence, one can view the physical
boundary condition as being smeared out over much of the
Dþ 1 dimensions, with a small purely topological sliver, as
in Fig. 6. The minimal way to incorporate gravity is to give
each of the fields of the TFT some nonzero kinetic term.
Note that this makes sense even for torsional fields since we
can instead work in terms of continuous valued forms,

FIG. 4. Depiction of smearing for the O ⊕ N configuration of
the boundary CFT. In Lorentzian signature the subspace filled by
N sweeps out both a spatial and temporal directions. Surround-
ing the configuration with a causal diamond in the CFT, we can
track the associated entanglement wedge bounded by the HRT
surface. This leads to a maximal depth for disambiguating the two
constituents; beyond this depth we instead have a single ÕðN Þ in
the bulk. This again leads to a contradiction unless the bulk Ñ is
nontopological.

20If N ðλ1 → λ2Þ is noninvertible, then this can lead to some
hysteresis.
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reaching the formulation in terms of torsional fields by
performing a suitable rescaling.21

E. Comments on topological vs nontopological

The crux of the argument presented above is that the
world volume action used to define Ñ must have nontrivial
metric dependence because otherwise we would observe a
jump in the stress energy between Õ and ÕðN Þ. On the
other hand, one might ask what role gravity played in these
considerations. Said differently, can there be such jumps
induced in a QFT decoupled from gravity and if so, is the
line of reasoning just presented truly valid?
To illustrate, consider a 0-form symmetry operator N of

a CFTD which admits nontrivial line operators which are
charged under this symmetry. This can happen, especially
in theories with a 2-group symmetry where a line can be
charged under both a 1-form and 0-form symmetry. Now,
suppose we take a line operator L which pierces through
the codimension one wall defined by the 0-form symmetry.
On one side we have L, while on the other side we have

LðN Þ. There is a jump in the operator in this case as well.
This looks similar to the case just considered, so it is natural
to ask whether we are right in arguing for the nontopo-
logical nature of Ñ .
The phenomenon of line-changing operators is rather

commonplace, and can occur in both CFTs as well as TFTs.
For some discussion of the relation between such effects
and 2-groups, see for example [62,63]. In all of these cases,
the jump in the line is encapsulated in terms of a defect
operator D localized at the transition point. The defect D is
typically also topological, and this can also be verified in
terms of the stringy “branes at infinity” picture [11–13].
The point here is that in the QFT case, we clearly see some
additional degree of freedom has been explicitly inserted
near the jumping point.22

FIG. 5. (i) Sketch of a CFT with parameter λðN ðλÞÞ as a CFT with parameter λ stacked with the spacetime filling operator N .
(ii) Deformation of N into the bulk giving Ñ . (iii) Stackings of N are interpreted as transformations in the parameter space Λ.
(iv) Wormholes between asymptotically AdS spaces with asymptotic CFTs located at different points in Λ contain a codimension one
wall set by Ñ .

21As an example, consider the 4D BF theory with topological
action k

2π

R
B ∧ F. In this formulation B and F are Uð1Þ valued.

We can rescale each field by 2π=k to instead work in terms of
torsional valued fields with action 2π

k

R
b ∧ f, in the obvious

notation.

22For example, consider a stack of D3-branes filling R3;1 and
sitting at a point of a transverse C3. We get duality defects by
wrapping constant axio-dilaton 7-branes on the boundary S5 “at
infinity,” as in [14]. We get a line defect via an F1/D1 string (the
choice depends on the polarization) which stretches from the
origin out to the boundary S5. Consider a line operator which
crosses from one side of the duality wall to the other. At the wall
crossing, there is a light degree of freedom stretching from the
string to the 7-brane, but this is localized at the boundary S5, far
from the D3-brane stack. This is the stringy implementation ofD.
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The most important difference in comparing our AdS
analysis with this QFT example is that in the latter we
clearly see an extra defect has been included at the
transition point; in the AdS case, however, there is a
transition from a specific field profile from Õ to ÕðN Þ

with seemingly no such accompanying defect. The absence
of a new degree of freedom (topological or otherwise)
produces a more dramatic discontinuity, and as we argued
previously, this can be resolved by assuming that Ñ ðzÞ for
z ≠ 0 also contributes to the bulk stress energy. Indeed,
along each z slicing we have no such collision between
symmetry defects and CFT operators in the first place; the
Ñ has simply dissolved into Õ for z > z�. This is
qualitatively different from the way line-changing operators
arise in the QFT with gravity decoupled.

F. Properties of Ñ

With these observations in place, we now argue that we
can indeed interpret the world volume action for Ñ as that
of a dynamical brane. To frame the discussion to follow, it
is helpful to note that in stringy constructions of general-
ized symmetry operators, there is a natural expectation that
many examples will result from suitably wrapped branes in
backgrounds of the form AdS × X. In this context, the
world volume theory in the AdS directions is given by a
suitable dimensional reduction of the Dirac-Born-Infeld
(DBI) and Wess–Zumino (WZ) terms supported on the D-
brane. Pushing the brane to the conformal boundary of the
AdS freezes out the metric dependent terms, resulting in a
purely topological action in the CFT [11] (see also [12,13]).
Of course, one can also contemplate more general solitonic
objects, but this provides a natural first class of examples.
In all of these examples, the brane in question will source

some amount of stress energy. For a gravitational brane
wrapped on a q-dimensional subspace Y, we can para-
metrize our ignorance of the brane dynamics by introduc-
ing an unknown world volume tensor MijðgAB;…Þ which

depends on the pullback of the bulk metric gAB, and
possibly other bulk and world volume degrees of freedom
on the brane:

Sbrane ∼ τq

Z
Y
dqξ

ffiffiffiffiffiffiffiffiffiffiffiffi
det M

p
þ topological terms; ð2:9Þ

with τq an overall dimensionful constant which we refer
to as the tension. For example, in the special case of a
D-brane, we would write Mij ¼ hij þ bij þ 2πα0Fij þ…,
with hij the pullback of the bulk metric to the brane, bij the
pullback of the NS 2-form, and Fij the field strength tensor
of a Uð1Þ gauge field. In this case, the “topological terms”
are just the WZ terms.
What can we say about the value of τq in our case?

Without providing further details on the precise AdS/CFT
pair, we should likely only expect to obtain crude estimates.
That being said, general bottom up considerations provide
some insight.
On dimensional analysis grounds, we know that τq ought

to scale as

τq ∼
1

lq
�

ð2:10Þ

for some characteristic length l�. We view this as speci-
fying the Compton wavelength for our object Ñ . Now, if Ñ
were of size the AdS radius there would be no sense in
which we could localize it in a small region near the
boundary of the CFT; it would immediately be spread over
the entirety of our spacetime. Since the coarse graining
takes some RG time to proceed, we conclude that the radius
of curvature lAdS ≫ l�. On the other hand, we also know
that this characteristic scale must be greater than the
(Dþ 1)-dimensional Planck length lpl; otherwise there
would be no regime of validity to consider this object in the
effective field theory in the first place. In principle,
however, it could be separated from the Planck scale,
and this possibility does occur in many situations.
Putting these observations together, we learn

lAdS ≫ l� ≳ lpl; ð2:11Þ
which is not altogether surprising. We comment here that
in the special case of a D-brane action we would of
course interpret l� as the minimal resolving power of a
D-brane [64].

III. EXAMPLES

In this section we briefly discuss some examples
illustrating the general structure found above.23 In most
cases, we can directly deduce the topological sector of Ñ

FIG. 6. Sketch of symmetry operators (purple) in the holo-
graphic setup linking with defect operators (brown). The topo-
logical symmetry operator N is localized at the boundary CFT.
This operator can be pushed into the bulk of the SymTFTDþ1

which is now viewed as a subsector of the bulk gravitational dual.

23We thank M. Montero and H. Ooguri for several questions in
this direction.
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by appealing to its construction in the SymTFTDþ1. Many
examples with holographic duals have also been con-
structed from a “top down” point of view, see, e.g.,
Refs. [11–19,65–68]. In most of these cases one considers
a brane wrapped “at infinity” (prior to taking the near
horizon limit) which nonetheless still links with the defect
in question. In these cases the world volume theory for the
Ñ is simply that of the corresponding brane. This provides
a systematic way to construct symmetry operators (and
their categorical generalizations) for various discrete and
continuous symmetries.
On the other hand, it is natural to ask whether we need

the full machinery of string theory to identify more detailed
properties of Ñ . Here we consider a few examples of this
sort, focusing on the symmetry operators for some con-
tinuous 0-form symmetries. We first discuss in detail the
case of a Uð1Þ symmetry and then turn to G a continuous
Lie group with a single connected component.
Consider, then, a CFTD with a Uð1Þ 0-form symmetry

which is dual to a Uð1Þ gauge symmetry in the bulk. Since
we have a conserved current in the boundary theory, there is
a current (D − 1)-form jD−1 which we can integrate over a
(D − 1)-dimensional closed subspace YD−1 to form a
symmetry operator:

N η ¼ exp

�
2πiη

Z
YD−1

jD−1

�
: ð3:1Þ

This links with local operators which are charged under the
Uð1Þ global symmetry. In the CFTD we can introduce a
background gauge field a1 associated with this global
symmetry.
Now, in the bulk AdSDþ1 we have a Uð1Þ gauge field A1

which approaches the background value a1 at the boundary.
Denote byW an electric line operator built from A1. Let us
consider the idealized situation where gravity is switched
off (as in the SymTFTDþ1). Then, we can construct a
1-form symmetry operator which links with W:

N stft
η ðzÞ ¼ exp

�
2πiη

Z
YD−1ðzÞ

Fdual

�
; ð3:2Þ

where in the above we have assumed that the operator is
close enough to the conformal boundary that we can take
YD−1ðzÞ homotopic to YD−1.
What happens as we take z → 0? Since it is topological,

we can pushN stft
η ðzÞ all the way to the boundary. Doing so,

we get

N stft
η ðz ¼ 0Þ ¼ exp

�
2πiη

Z
YD−1

Fdual

�
: ð3:3Þ

Next, introduce a D-chain CD which terminates in AdSDþ1

and has boundary ∂CD ¼ YD−1. Then, we can equivalently
write

N stft
η ðz ¼ 0Þ ¼ exp

�
2πiη

Z
CD

dFdual

�
: ð3:4Þ

On the other hand, we also know, via the equations of
motion, that

dFdual ¼ JD: ð3:5Þ

As such, we also have

N stft
η ðz ¼ 0Þ ¼ exp

�
2πiη

Z
CD

JD

�

¼ exp

�
2πiη

Z
YD−1

jD−1

�
; ð3:6Þ

where in the last equality we used the fact that the
topological linking in the CFTD can equivalently be
computed in terms of an intersection number in the bulk
AdSDþ1.

24 Summarizing, we have found that in the bulk,
the topological part of Ñ ðzÞ is obtained via line (3.2).
Once gravity is switched on there will be additional

nontopological contributions to the world volume, as
captured by Ñ rather than N stft, much as in Fig. 6.
What can we say about these nontopological terms? As
mentioned earlier, this is a model dependent issue, but we
can still deduce the general form to be a DBI-like action in
many cases of interest. Suppose, for example, that our
AdSDþ1=CFTD pair arises from a geometry of the form
AdSDþ1 × X with the Uð1Þ an isometry on X. Then, the
corresponding symmetry operator is obtained from a
solitonic configuration constructed from a diffeomorphism
of X. As a soliton, we again expect there to be a DBI-like
action. That said, the field content on the brane deserves
further study.
Consider next the case of G a non-Abelian Lie group

with a single connected component (i.e., all elements can
be continuously connected to the identity). In this case the
symmetry operators will be labeled by elements of G.
These naturally act on objects in RepðGÞ, i.e., representa-
tions of G. The only change is that now, the symmetry
current jcd will transform in a representation of the Lie
algebra g ¼ LieðGÞ, so the generator of interest will also be
labeled by a parameter tcd ∈ g:

N t ¼ exp

�
2πitcd

Z
YD−1

jcd

�
; ð3:7Þ

in the obvious notation.

24In slightly more detail, we can view the electric line operator
as an insertion in the action along the Poincaré dual (PD) of JD,
namely δPDðJDÞ. The integral over JD thus collapses to the
intersection between the supports of CD and PDðJDÞ.
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We can also attempt to mimic the steps taken in the Uð1Þ
case to construct a bulk dual object. The main difference is
that now, our equation of motion involves a covariant
derivative:

dAFdual ¼ JD; ð3:8Þ

and as such,we cannot simply useStokes’ theorem to replace
the integral over the boundary current by a D-chain which
terminates on YD−1. So, on general grounds, we expect the
“naive” N t to also be dressed by Z, as in line (2.5). Said
differently, the candidate topological operator in the bulk
does not fully detach from the boundary.
This is in accord with the fact that if we do attempt to

define an object purely in the bulk, thenwe should introduce
a codimension 2 vortex labeled by the conjugacy class
of expð2πitÞ, namely a Gukov-Witten operator [69].25One
can obtain this by averaging the “naive defect” over gauge
orbits, as in [70]. It is also worth noting (see [1]) that in pure
gauge theory, the only topological Gukov-Witten operators
are associatedwith elements in the center of the Lie groupG.
For further discussion, especially in the context of gravity,
see Ref. [71].
Of course, on top of all of these complications we also

expect there to be additional DBI-like contributions to the
world volume action of Ñ . For example, suppose that G
arises as a continuous non-Abelian isometry group of some
X in a background of the formAdSDþ1 × X. Then, the brane
world volume action will again descend from a solitonic
configuration associated with the diffeomorphisms of X.

IV. PROOFS WITH
SPLITTABILITY REVISITED

The line of argument just presented is somewhat different
from that in Refs. [36,37], which concentrate on 0-form
symmetries as well as the dimensional reduction of p-form
symmetries to 0-form symmetries. For ease of expositionwe
focus on the case of 0-form symmetries, since the other cases
follow from similar steps to those presented in [36,37].
Now, one of the central ideas there is to start with a

spatial region of the CFT R, and to consider a favorable
splitting into smaller regions R1;…; Rm such that the
entanglement wedge for any individual region Ri is
sufficiently close to the conformal boundary of AdS.
Doing so, one can then consider an operator deep in the
interior of AdS, and since no single region penetrates that
far, a symmetry operator confined to the region Ri cannot
properly act in the bulk. This provides another way to argue
for the absence of global symmetries in AdS. Of course, a
potential loophole in this argument is that one must
somehow argue that a topological operator of the boundary
theory “cares” about the metric dependent structure of an

entanglement wedge in the first place. Our argument based
on coarse graining considerations shows why the gravity
dual of operators such as N are still sensitive to the
entanglement wedge.
Another subtlety in this line of reasoning is that in the

case of a noninvertible symmetry, we cannot simply take
products of operators to get another symmetry generator.
Rather, we often get sums of symmetry operators, i.e., there
is a nontrivial fusion rule. In what follows we assume that
the fusion rule only involves condensation defects, i.e.,
objects of lower-dimensional support (see, e.g., [72]). The
main reason to make this technical assumption is that there
is still a notion of a single “big object” which is present in
the boundary theory and in the bulk.
Finally, we also face the issue of how to define theN ½Rj�

in the first place; when ∂Rj ≠ 0, we generically expect the
TFT on Rj to support edge modes. In principle these could
either be gapless or gapped degrees of freedom depending
on the choice of boundary conditions for the TFT for the
symmetry operator.
The construction just provided in the previous section

provides a resolution for these issues. First of all, given a
TFT on a region R, we can introduce a “dressed” operator
where we explicitly include the edge modes in question.
We write this as26

N̄ ½R� ¼ N ½R�E½∂R�; ð4:1Þ

where N ½R� refers to the path integral over the bulk TFT
fields on R, and E½∂R� refers to the path integral over any
edge modes.27

Suppose now that we have a region R and we partition it
up into a collection of disjoint regions fRigi which never-
theless share common boundaries. We would like to under-
stand the relation between N̄ ½R� and N̄ ½R1�…N̄ ½Rm�.
Observe that in the product over the split factors we have
a collection of edge modes. The bulk perspective indicates
that we can fuse these edge modes together, and in so doing
integrate them out. At this point it is helpful to recall the
coupled wires construction of [74,75], which shows how to
explicitly carry this out for a collection of certain 2D CFTs
where neighboring left- and right-moving degrees of free-
dom are pairwise gapped out, leaving behind a 3D bulk
Chern-Simons theory with chiral/antichiral modes on the
very left and right of the system (see Fig. 7). We expect that
something similar holds far more generally. This is indeed in
accord with holographic considerations where we view the
Ñ operators as creating a brane in the bulk; edge modes for
neighboring branes/antibranes condense, fusing the original
configuration to a single large brane.

25We thank H. Ooguri for a comment on this point.

26For another perspective on splittability versus concatenation
of such topological operators, see Ref. [73].

27As an example, consider 3D Chern-Simons coupled to a 2D
chiral CFT.
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With this, we have a deformation of the original TFT/
edge mode system to the single dressed operator:

N̄ ½R1�…N̄ ½Rm� ⇝ N̄ ½R�: ð4:2Þ

See Fig. 8 for a depiction of this merging procedure. One
can then proceed with the same style of proof as in [36,37],
now extended to the case of noninvertible symmetries.

V. FURTHER COMMENTS

In this section we provide some further, more speculative
comments which naturally extend the considerations just
presented. We begin by extending the notion of a higher-
form symmetry to the case of lower-form symmetry, i.e., a
(−m)-form global symmetry for m ≥ 2, and also discuss its
holographic interpretation. Next, we discuss how our
considerations extend to more general spacetimes with
holographic screens.

A. Lower-form symmetries

It is of course tempting to extend our discussion to cover
(−m)-form symmetries. One reason for doing so is to ask
whether the bulk AdS space can support bulk parameters,
i.e., can we have a global (−1)-form symmetry in the
bulk? Formally speaking this would be a “(−2)-form
symmetry” in the boundary CFT. This is of direct interest
in the context of a number of questions in quantum
gravity, i.e., can quantum gravity support bulk parameters
at all? See, e.g., [34,76–79] for some different perspec-
tives. The construction of such objects in the dual CFTD
sounds puzzling since it seems to require a topological
operator which fills more than the spacetime dimensions
of the system.
We now propose to give a formal definition of a (−m)-

form symmetry for any QFT, which we can of course apply
to the special case of holographic CFTs. As a general
comment, we have deferred discussion of this case because
it is necessarily somewhat more speculative.

FIG. 7. Left: system of 2D coupled wires. Arrows indicate left/right movers. Right: pairwise gapping out left and right movers results
in a 3D Chern-Simons theory confined between the remaining wires which impose chiral/antichiral boundary conditions (BC).

FIG. 8. On the left we depict in the CFTD a collection of theN ðRiÞ supported on compact subspaces Ri with boundary ∂Ri which are
dressed by nontopological edge modes Eð∂RiÞ. Whenever these constitute a tiling we can turn on deformations to gap out edge modes
pairwise, resulting in a larger symmetry operator, with possibly some edge modes remaining.
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We propose to view theD-dimensional QFTD as a defect
in a higher-dimensional QFTDþq (see Fig. 9). Setting
q≡m − 1, observe that a spacetime filling (−1)-form
symmetry operator of QFTDþq can be interpreted, in the
QFTD theory, as a (−m)-form symmetry.28 It is also natural
to consider the entwinement and nested categorical struc-
ture of these symmetries. A related comment is that this sort
of symmetry inheritance arises quite naturally in many
bulk/boundary systems, including some stringy construc-
tions (see, e.g., the recent discussion in Ref. [80]). It would
also be natural to ask whether lower-form symmetries can
be defined intrinsically or must implicitly always make
reference to a bulk QFT.
Before proceeding to the holographic interpretation, let us

mention that at least in certain circumstances onemightwish
to entertain a different notion of lower-form symmetries
based on taking a field profile which is sensitive to
topological structures in the target space, i.e., topologically
nontrivial field excursions in the QFTD.

29 At least in explicit
stringy constructions of QFTs there is certainly overlap with
our proposal since we can consider “moving the brane
around” in the ambient bulkQFTDþq, but it would clearly be
interesting to explore this generalization as well.
What then is the gravity dual of a (−m)-form symmetry

operator? The most conservative answer is to simply
consider a CFT in dimension Dþ q ¼ Dþm − 1 with
a semiclassical gravity dual on AdSDþm. Then, the

(−m)-form symmetry of the defect QFT directly lifts to
a codimension one wall of the ambient gravity theory, much
as in our treatment of (−1)-form symmetries.
On the other hand, if we start with a known

AdSDþ1=CFTD pair and ask about the fate of a bulk
(−1)-form symmetry, we seem to require that our boundary
CFT can also be viewed as a defect in a QFTDþq decoupled
from gravity. In that setting, we need not (and should not)
demand that the QFTDþq has its own semiclassical AdS
dual. Rather, we might have a spacetime of the form
AdSDþ1 × X with the QFTDþq filling the AdSDþ1 factor
and possibly some subspace of X. It is also tempting to
speculate that here, the appropriate notion of “smearing”
involves coarse graining in the directions of the X factor of
AdSDþ1 × X. We leave a full treatment of these intriguing
possibilities for future work.

B. More general spacetimes

Similar considerations hold for a general spacetime that
admits a bulk-boundary duality with a suitable notion of
entanglement wedge reconstruction and coarse-graining.
The surface-state correspondence provides this framework
for any convex region M in a static spacetime wherein
the dual boundary theory lives on ∂M [81,82], see Fig. 10
for a depiction.30 Coarse-graining is given by the bulk
flow procedure [90,91]. Note that there is also a notion
of approximate locality in this boundary theory because the
entanglement wedges become smaller closer to the boundary
theory. We can now repeat our argument establishing that a
reconstructed Ñ sources some stress energy. So, establishing
the existence of entanglement wedge reconstruction in more
general spacetimes would also exclude global symmetries.

FIG. 9. We can construct (−m)-form symmetries for a CFTD by
viewing it as a defect (red dot) inside of an ambient QFTDþq with
q ¼ m − 1. In the higher-dimensional setting, an ambient (−1)-
form symmetry associated with a parameter of QFTDþq formally
defines a (−m)-form symmetry of the defect system. If the CFTD
has a gravity dual, then this yields a bulk ð−mþ 1Þ-form symmetry.

FIG. 10. Depiction of bulk reconstruction in AdS/CFT and
more general holographic spacetimes. (i) AdS/CFT setup with
leaves of constant time t (blue). RG/bulk flow evolves cylindrical
shells radially inwards. For example, leaves shrink in size (red).
(ii) More general holographic spacetimes. In this case, the
boundary theory is supported on a holographic screen.

28Why not simply demand that we have a p-form symmetry
operator of the bulk which fills all the world volume directions of
the QFTD? If we can move the topological operator off of the
QFTD it is unclear whether the QFTD will continue to see the
symmetry operator in the first place. Indeed, otherwise this would
likely lead to contradictions with the standard treatment of (−1)-
form symmetries.

29We thank J. McNamara and M. Montero for helpful com-
ments on this point.

30See [83–85] for covariant generalizations wherein the boun-
dary theory lives on the holographic screen [86]. See also [87–89]
for other proposals for holography in general spacetimes.
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