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The dimension of the Hilbert space of a quantum gravitational system can be written formally as a path
integral partition function over Lorentzian metrics. We implement this in a (2þ 1)-dimensional
simplicial minisuperspace model in which the system is a spatial topological disc, and recover by
contour deformation through a Euclidean saddle the entropy of the de Sitter static patch, up to
discretization artifacts. The model illustrates the importance of integration over both positive and
negative lapse to enforce the gravitational constraints, and of restriction to complex metrics for which
the fluctuation integrals would converge. Although a strictly Lorentzian path integral is oscillatory,
an exponentially large partition function results from unavoidable imaginary contributions to the action.
These arise from analytic continuation of the simplicial (Regge) action for configurations with
codimension-2 simplices where the metric fails to be Lorentzian. In particular, the dominant contribution
comes from configurations with contractible closed timelike curves that encircle the boundary of the
disc, in close correspondence with recent continuum results.
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I. INTRODUCTION

Although nearly 50 years have passed since it was first
introduced by Gibbons and Hawking, the path integral
representation of the quantum gravitational partition func-
tion remains puzzling. The general consensus is that its
saddle point approximation captures real physics of the
quantum theory such as the Bekenstein-Hawking entropy
of black hole and de Sitter horizons, but the reasons for that
success, and even the very definition of the path integral,
have not been fully understood. Of course this path
integral is at best an effective description of some under-
lying UV complete theory and it is probably fair to say
that a good portion of the obscurity is due to this fact.
However, the effective description is presumably
embedded in the more complete one in a rich and
complicated way, and remains approximately valid in
suitable regimes. Lacking the more complete theory, the
effective theory is thus one of our best guides.
The most pressing question is why the path integral

apparently captures the correct horizon entropy A=4ℏG
without putting its finger on the states the entropy is
counting. Part of the answer is that G in that formula is

a phenomenological constant, which depends on the under-
lying UV complete theory. The path integral provides a link
between the macroscopic gravitational dynamics and the
statistics of the underlying unknown microstates, in the
semiclassical approximation, where the geometrical con-
tribution to the partition function is dominant.
However, the phenomenological nature of G is not the

whole story. The Gibbons-Hawking calculation relies also
on the assumption that it is correct to approximate the
partition function Z by a Euclidean (signature) saddle point,
despite the fact that the paths in the path integral are not
Euclidean geometries. The Euclidean action is unbounded
below, due to the conformal mode, so the path integral
would not converge were it to be taken over Euclidean
geometries. In fact, since the partition function is a trace in
the physical Hilbert space, its path integral representation
should involve only paths satisfying the initial value
constraints, i.e., after gauge fixing, paths in the reduced
phase space. The constraints eliminate the conformal mode,
so evidently the Euclidean path integral is not equivalent to
the reduced phase space one [1–4].
A justification of the saddle point calculation must

therefore begin with a real-time path integral representation
that indeed imposes the constraints, and it must then be
shown from that starting point that the contour of integra-
tion may be deformed so as to pass through a Euclidean
saddle that dominates the integral. This appears at first
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impossible, because real-time path integrals have oscillat-
ing integrands and so cannot produce the expðA=4ℏGÞ
behavior required to recover the expected entropy. Indeed,
Picard-Lefschetz theory establishes that a saddle point can
contribute to the path integral only if the saddle point can be
approached from the original contour along a steepest
descent contour of the real part of the integrand’s exponent.
If the exponent is pure imaginary on the original contour,
this implies that its real part at the contributing saddle must
be negative.
However, the partition function being a trace, its path

integral representation is a sum over path geometries with
closed timelike curves (CTC’s). As we argue in Sec. II, if
the gravitational system is bounded by a horizon, the time
slices should share a common boundary at the horizon, in
which case the path geometries have closed timelike curves
that are contractible to points on the horizon. At such a
point no Lorentz signature metric exists. We shall call this a
“CTC singularity.” It is similar to a conical singularity, in
that it can be formed by gluing two edges of an otherwise
flat portion of Minkowski spacetime, and for this reason
Marolf called it a “Lorentzian conical singularity” [5].
However, unlike a Euclidean conical singularity, there is no
way to smooth it with a high curvature tip, so it is more
radically singular. In fact, it is so radically singular that the
gravitational action associated with such a geometry
acquires an imaginary part. Precisely because of this
imaginary part, the integrand expð{S=ℏÞ can develop an
exponentially enhanced real part, which can produce the
expected entropy after all.
To verify this route to the horizon entropy, one needs to

justify the assignment of the imaginary part of the action
and the contour of integration, and to show that the contour
can be deformed to a dominating Euclidean saddle. In this
paper we shall study this in the context of de Sitter horizon
entropy or, what is the same, the calculation of the trace of
the identity operator on the Hilbert space of a ball of space
in general relativity with a positive cosmological constant.
We implement the analysis in the extremely simplified,
yet still quite instructive, setting of simplicial (2þ 1)-
dimensional spacetimes constructed from four tetrahedra
with just two independent variable edge lengths. The
advantage is that we deal only with ordinary integrals,
with no room for uncertainty about infinite dimensional
path integrals and ultraviolet divergences, and yet this
simplicial minisuperspace system seems able to capture the
key physics. Although of course this discrete minisuper-
space does not contain the microscopic degrees of freedom
responsible for the horizon entropy, nor even their effective
field theory descendants, it does contain the CTC singu-
larity which is the topological feature responsible for the
“imprint” of the entropy on the saddle action. Since, as
already alluded to above, the measured value of the
gravitational constant reflects the underlying degrees of
freedom responsible for the entropy [6,7], a simple

calculation of this nature can evidently reflect the value
of the entropy.
Despite its discreteness, our approach to the problem was

motivated by, and is technically quite related to, the recent
work of Marolf [5], who approached it in the continuum
setting, examining the contribution of black hole entropy
to the thermal partition function at a given temperature. In
particular, Marolf’s analysis uses real-time contours, the
imaginary contribution to the action coming from the CTC
singularity, and the organization of the path integral into
first an integral at fixed horizon area, followed by an
integral over the area, all of which are key elements in our
approach as well.

II. COMPUTATIONAL FRAMEWORK
AND KEY RESULTS

The dimension of a Hilbert space H is equal to
Z ≔ TrIH, where IH is the identity operator on that space.
For a quantum system arising from a classical phase space
with canonical coordinates ðq; pÞ, one can express this
trace as a path integral, by inserting alternating complete
sets of q and p eigenstates in the usual way, passing to a
limit of continuous paths ðqðtÞ; pðtÞÞ, and identifying the
initial and final states, resulting in1

Z ¼
Z

DpDq exp
�
{
I

pq̇dt
�
: ð1Þ

The time period here is irrelevant, since
H
pq̇dt ¼ H pdq

does not depend on it.2 When applied to a theory with
gauge symmetry this construction must employ the reduced
phase space, for which the constraints and gauge fixing
conditions have been imposed. The constraints Ci can be
imposed with delta functions, which can be expressed as
Fourier integrals over Lagrange multipliers λi, such that the
path integral integrand becomes exp½{ H ðpq̇ −

P
i λiCiÞ�

times a gauge-fixing determinant that we shall regard as
having been absorbed into the measure. When this is done
for general relativity [8], the momenta appear quadratically,
so one can integrate them out and, up to possible boundary
terms, the integrand then becomes expð{SLÞ, where SL is
the Lorentzian action. Thus now, because of the Lagrange
multiplier integrals, one is necessarily integrating over
all proper time periods. Moreover, since each multiplier
integral is over the whole real line, one must include both
positive and negative periods. It might therefore appear
that one is actually computing twice the real part of the
path integral over only positive time periods; however,
as discussed in Sec. IV C, there is a branch point with an

1From here on we choose units with ℏ ¼ 1.
2When one computes not the trace of the identity but rather the

evolution operator, what appears in the exponent is { times the
action.
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essential singularity at vanishing lapse, around which the
lapse integration contour must navigate.
This construction was reviewed recently in [9], where it

was pointed out that when computing not TrI but rather the
thermal partition function Tr expð−βHÞ, there is a mis-
match between the real exponent involving the Arnowitt-
Deser-Misner or Brown-York Hamiltonian at the outer
boundary of the system, and the imaginary exponent
indicated above. However, for a system like the de Sitter
static patch, with no outer boundary, no such mismatch
exists, andH ¼ 0 so the thermal partition function becomes
TrI, the dimension of the Hilbert space.3 The role of the
“horizon,” however, requires more discussion.
We focus here on the case of a horizon like that of a static

patch of de Sitter space. We presume that, despite the fact
that due to the diffeomorphism constraints the full quantum
gravity Hilbert space is not spatially factorizable, it is
meaningful to consider the Hilbert space of degrees of
freedom of a gravitational system in a region of space
bounded by what will wind up being a slice of a horizon
in a saddle point approximation. It is arguable (but not
uncontroversial) that this is the sort of system to which
Gibbons and Hawking’s seminal black hole thermal par-
tition function refers. Indeed the saddle there is foliated by
hypersurfaces whose geometry coincides with the spatial
hypersurfaces of the Lorentzian black hole outside of and
terminating on the bifurcation surface of the horizon. If the
path integral is to access a saddle of this topology, the time
foliation must consist of spatial slices that all coincide at a
codimension-2 boundary of the system, which in the saddle
configuration becomes identified with the horizon of the
Lorentzian black hole.
For the case of a region with no outer boundary, in D

dimensional spacetime, each spatial slice is a (D − 1)-
ball, so another way to describe what is being counted is
the dimension of the Hilbert space of states of such a ball
of space [11]. In this paper we concentrate on the case
D ¼ 3, so for concreteness let us consider that case here.
Each spatial slice is then a 2-ball, i.e., a disc. If all of
the discs in the foliation share the same boundary circle
(1-sphere), and in the periodic time dimension they wrap
around that circle, then the boundary circle is encircled by
contractible closed timelike curves. The Lorentzian met-
ric is therefore not well defined at the boundary circle,
which is thus a sort of singularity. As mentioned above
we term this a CTC singularity.
While the existence of a saddle with the Gibbons-

Hawking topology certainly motivates the restriction to
path geometries containing a CTC singularity, that restric-
tion should be justified from first principles. Although we
are currently unable to provide a complete justification,

we can offer three further supporting arguments; all are
concerned with the nature of the boundary of the system
whose states our partition function is counting.
No boundary conditions are imposed at the boundary of

our system (on one time slice); rather, that boundary is
supposed to correspond to the corner of the causal horizon
of the purview of some observer. If, in the path integral,
each time slice were to have a distinct boundary, the
boundary of a path geometry would have codimension-
one, and the dynamical system would be ill-defined without
the imposition of boundary conditions and addition of
appropriate boundary terms to the action. To avoid these
unwanted ingredients we can require that all the time slices
share the same codimension-two boundary. This also neatly
coincides, in a spacetime picture, with the time slices being
Cauchy surfaces of the causal domain of the observer, all of
which meet at the corner. Moreover, because the gauge
constraints at the boundary involve the degrees of freedom
on both sides of the boundary, they are not a property of our
subsystem by itself. In order to not impose them in the path
integral, we should not integrate over the lapse and shift—
i.e., the Lagrange multipliers involved in imposing the
constraints—at the location of the codimension-two boun-
dary, and this can be achieved in a diffeomorphism-
invariant manner by setting the lapse and shift to zero at
the boundary. The resulting geometries then have no time
flow at the boundary, which implies that the periodic time
flow of each path geometry leaves the boundary fixed,
hence the boundary lies at a CTC singularity.
Topologically, the manifold foliated by a cycle of discs

all sharing the same boundary is a 3-sphere. To visualize
this it is helpful to begin with the lower-dimensional case
D ¼ 2, so the spatial slices are 1-balls, i.e., line intervals,
whose boundary consists of a 0-sphere, i.e., a pair of points.
A cycle of such intervals, encircling the boundary points,
forms a 2-sphere, as depicted in Fig. 1(a). One can visualize
the D ¼ 3 case by “decompactification;” replace the 2-disc
slices by half-planes, which become 2-discs when a point at
infinity is added. The boundary circle of the 2-discs then
becomes the rectilinear infinite edge of the half-plane, say
the z axis in R3 [see Fig. 2(a)]. The half-planes all coincide
on the z-axis, and they wrap around it, filling all of R3,
which together with a point at infinity forms the 3-sphere.
Thus, to compute Z for states of a 2-disc, we should carry

out the path integral with integrand expð{SLÞ over metrics
on S3 that have a CTC singularity on a spacelike circle,
including both signs of the time flow direction.
Of course this does not quite make sense, however,

because the Lorentzian action is ill-defined on a spacetime
with a CTC singularity. In the continuum case, Marolf [5]
used the Lorentzian Gauss-Bonnet theorem to motivate a
definition of this action. In our simplicial setting, a
definition is provided by analytic continuation of the
Regge action. In either case, it is at this point only a
somewhat well motivated definition. If this approach to

3Another setting in which no mismatch exists is when
computing the density of states, rather than the thermal partition
function [10].
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evaluating horizon entropy is to be physically meaningful,
however, it should ultimately find a better justification.
Simplicial minisuperspace constructions of the Euclidean

path integral have been considered by Hartle in [12–14].
Here we are interested in a simplicial Lorentzian minis-
uperspace path integral [15]. The simplicial spacetimes
we integrate over are constructed with four tetrahedra and
two independent edge lengths, so there are just two
variables of integration, which can be thought of as the
perimeter of the spatial disc (an equilateral triangle
for us), and the time period in the center of the disc.
The action is the analytically continued Regge action [16]
(see Sec. IVA), including a positive cosmological constant

term. This allows us to construct a simplicial version of the
partition function described above, through a (mostly)
Lorentzian path integral.
As discussed above, the time period can be interpreted as

Lagrange multiplier. As in the continuum we integrate this
time period over all real values. Curiously, in the simplicial
setting, only a small range of the integration domain
for the time period describes configurations with CTC

FIG. 2. Discrete and continuum 3-sphere spacetimes with
chronotopology of configurations in the gravitational partition
function that computes the dimension of the Hilbert space of a
2-ball of space.

FIG. 1. Discrete and continuum 2-sphere spacetimes with
chronotopology analogous to that of D-dimensional configura-
tions in the gravitational partition function that computes the
dimension of the Hilbert space of a (D − 1)-ball of space.
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singularities. Another small range describes configurations
with a different kind of light cone irregularities along the
edges, which are initial or final singularities, that is, end
points for future or past directed trajectories. In addition,
we have an unbounded range describing big bang to big
crunch cosmologies, which are light cone irregular only at
the big bang and the big crunch points. It is thus impossible,
with the simplicial complex we have adopted, to emulate the
continuum calculation with respect to both the range
of the time period and the chronotopology. We choose to
integrate over the full time period, because we consider the
imposition of the constraints to be the more fundamental
ingredient, while the inclusion of the other chronotopolog-
ical configurations may be viewed as a discretization artifact.
The would-be purely oscillatory Lorentzian path integral
receives exponentially enhanced contributions, thanks to an
imaginary part of the action in the presence of edges where
there is no regular Lorentzian light cone structure. This
includes the configurations with CTC singularities, but also
the initial and final edge singularities mentioned above.
For the configurations with CTC singularities the

enhancing exponent is proportional to the bounding cir-
cumference of the disc, which can be arbitrarily large.
This raises the question how can the path integral possibly
converge when it apparently receives arbitrarily large
exponential contributions. The answer is that signs matter.
Oscillations and overall minus signs arising from the time
period integral can cancel contributions, and in fact that is
what happens. It turns out that above a critical disc
perimeter, set by the length scale of the cosmological
constant, the integral over the time period vanishes exactly.
Something similar occurs in the continuum case (in any

spacetime dimension) studied by Marolf [5], in a different
physical context. He computes the thermal partition
function allowing for states containing a black hole. In
addition to a path integral over geometries that computes
the real-time evolution operator, there is an integral like a
Laplace transform that yields the canonical partition
function. The Boltzmann suppression that occurs for
large energy contributions suppresses the exponential
enhancement from large horizon areas. In our case, by
contrast, it is the cosmological constant together with the
closed spatial topology, that is responsible for cutting off
the large disc contributions.
We find that the (mostly) real-time contour does indeed

receive an exponentially enhanced contribution as expected
from the Bekenstein-Hawking entropy and the original
Gibbons-Hawking result, which can be seen by an explic-
itly justified contour deformation that passes through a
dominating Euclidean saddle, thus supporting the conjec-
ture in [9,11]. This result depends crucially on how the
contour navigates the branch cut that arises in the Regge
action evaluated on light cone irregular configurations
(which include the CTC singularities). We make this choice
based on a convergence criterion that was first enunciated by

Halliwell and Hartle [17], and has since been discussed and
generalized by others. Namely, the integrals over quantum
field fluctuations (which are not explicitly included in the
minisuperspace treatment, but which behind the scenes are
responsible for renormalization of the parameters in the
effective minisuperspace action) should converge mode by
mode, as they do for the vacuum fluctuations in a regular
state in flat spacetime. In the literature this criterion has
mostly been imposed to select viable semiclassical saddles,
but here we apply it everywhere along the contour of
integration, since it appears to be required if the minisuper-
space path integral is to have any chance of providing a
decent approximation to the full theory.
Finally, we should address a point of principle concern-

ing the UV completion of the theory. We integrate over all
disc sizes, including arbitrarily small ones and, because the
integration runs over all values of the lapse, the original
integration contour—even after deviation around the
branch point at zero—comes arbitrarily close to vanishing
lapse. The integral thus includes regimes where the
spacetime volume is arbitrarily small in Planck units.
Since we are using the simplical form of Einstein gravity,
which is presumably only a low-energy effective theory,
this raises the question whether our model is physically
consistent with its UV completion. In the three-dimensional
spacetime setting studied in this paper the question is moot,
since there are no local degrees of freedom. In higher
dimensions, however, the question must be faced. A key
fact is that in the model the dominant contribution to the
integral can, after deformation of the contour, be attributed
to a semiclassical saddle that is far from the Planckian
regime. To justify the computation we must therefore
assume that, whatever the UV completion yields for the
small disc and small lapse part of the integrand, the
semiclassical saddle dominates over whatever contribution
arises in the UV. This assumption is plausible, because
there is no reason to expect a huge exponential from the
UV, both since the action there is Oð1Þ in Planck units, and
because whatever is the correct UV theory it must produce
semiclassical dominance, since that yields the observed
low-energy gravitational phenomonology.

III. THE DISCRETIZATION
AND LIGHT CONE STRUCTURES

Our first step in computing a simplicial partition function
for the states of a topological disc of space is kinematic; we
construct a simple discretization of the three-dimensional
universe with topology S3, which incorporates configura-
tions with a CTC singularity on the boundary of a triangle.
In the saddle point approximation this corresponds to the
cosmological horizon of an “observer.”
While our restriction to three spacetime dimensions is

done for simplicity of computation and visualization, we do
not expect the four-dimensional case to be either signifi-
cantly more involved or qualitatively different. Indeed the
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key features of the path integral relevant here show up in
the same form for similar four-dimensional cosmological
scenarios considered in [15,18,19]. These works employed
the Lorentzian simplicial path integral in order to construct
a no-boundary wave function for de Sitter space. For a
much earlier work using an Euclidean simplicial path
integral towards the same end (see Ref. [14]).
Before taking up the three-dimensional case, let us

consider the two-dimensional one as a warmup. A simple
discretization of the two-dimensional continuum manifold
with topology S2 in Fig. 1(a) is shown in Fig. 1(b). It consists
of four Lorentzian triangles, all of which have the same
geometry determined by their three edge lengths squared4

ðsa; sb; sbÞ, and which are glued at their boundaries. Note
that equating their geometry and imposing that they are
isosceles constitutes a further reduction in the number of
degrees of freedom, in addition to the one imposed by
approximating spacetime with our triangulation. We will do
the same in the three-dimensional triangulation.5

The lengths squared sa and sb must satisfy the
Lorentzian triangle inequalities. Let us illustrate their
derivation in the case in which the a-edge is spacelike,
so that sa > 0. Any triangle with at least one spacelike edge
in two-dimensional Minkowski space can be described in a
suitably aligned Minkowski coordinate system by vertices
fð0; 0Þ; ð0; x2 > 0Þ; ðt3 > 0; x3 > 0Þg. Therefore the tri-
angle inequalities are satisfied if and only if one can find
positive real numbers x2, t3, and x3 such that this triangle
has edge lengths squared equal to our given sa > 0 and sb.
Equating sa and sb with the corresponding norms squared
of the edge vectors one sees that

x2¼
ffiffiffiffiffi
sa

p
; x3¼

ffiffiffiffiffi
sa

p
2

; and t3¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa−4sb

p
: ð2Þ

Hence the reality requirement along with the non-
degeneracy requirement t3 > 0 is equivalent to demanding
sa > 4sb. This inequality can be interpreted in a different
way that will be useful later; we can think of t3 as the height

of the triangle, and correspondingly of the norm squared of
ðt3; 0Þ as a height squared, sh ¼ −t23. The triangle inequal-
ity therefore states that the height squared must be negative.
Note that this is trivially satisfied when the b-edge is
timelike, because then sb < 0 and we have that sa > 0
a priori.
With the triangles being timelike we have two light cones

at each inner point of the triangles and also at each inner
point of the identified edges. However, a fully regular
Lorentzian metric on S2 does not exist. Indeed, in our
triangulation some vertices must be (light cone) irregular, in
the sense that these vertices carry a number of light cones
that differs from two. There are two types of vertices: the
vertices of type A have adjacent edges of type ða; b; a; bÞ
and vertices of type B have adjacent edges of type ðb; bÞ.
With the a edges fixed as spacelike, the spacetime

geometries of our S2 complex are classified by the nature
of the b edges, which can be either spacelike, timelike, or
null. Leaving aside the null case, which as discussed below
does not contribute to the path integral, there are two cases
to consider. If b is spacelike, the two vertices of type B are
light cone regular, while those of type A do not have a light
cone attached to them: all directions emanating from the A
vertices are spacelike and there are contractible CTC’s
encircling those vertices. We can therefore identify the type
A vertices with a horizon.
If instead b is timelike, the vertices A are regular and

vertices B are irregular: all directions emanating from the B
vertices are timelike. In this regime we do not have CTC’s
around the A vertices anymore; the curves that in the regime
sb > 0 are CTC’s consist now of two parts with opposite
time orientation.
Both of the above cases place a Lorentzian metric on the

2-sphere, and both are time orientable, but they have
topologically different time flows and different sorts of
singularities. That is, they have different chronotopologies.
These can be visualized using the singular foliations of S2

as ½0; 1� × S1, with all points of the S1 identified at the two
endpoints of the [0, 1] interval.
For spacelike b, if the time flow is “up” for the two

triangles on the left in Fig. 1(b), it is “down” for the two
triangles on the right. The [0, 1] factor is spacelike, two of
these spacelike slices being the two a edges. The S1 in this
case is timelike, and the time period shrinks to zero at the
two ends of the interval. This resembles the foliation for the
smooth 2D sphere with two horizon points, shown in
Fig. 1(a).
For timelike b, the time flow is “up” for all four

triangles in Fig. 1(b). Now it is the [0, 1] factor that is
timelike, stretching from one B vertex to the other,
while the S1 factor is spacelike. One of the S1 slices is
composed of the two a edges, joined at their endpoints.
The length of the spatial circles decreases when moving
towards either of the B vertices and reaches zero at these
vertices. This triangulation is thus a 2D universe with

4Here and below, when we refer to geometric quantities such
as length, norm, etc. squared we mean it in the same sense in
which ds2 ¼ gμνdxμdxν is a line element “squared,” not in the
sense of them being the square of a real number. Importantly,
these are negative if the geometric object in question is timelike.
For instance, the “length squared” of a timelike edge is negative.

5An even more minimal triangulation of S2 would consist of
only the two isosceles triangles on the left in Fig. 1(b), glued at
their corresponding edges. However, in that case all vertices
would have an irregular causal structure in the sb < 0 regime
(there would be zero light cones at each B vertex and one at each
A vertex), while the sb > 0 regime would stay qualitatively the
same as in the four triangle simplex. An analogous situation holds
for S3, which can be triangulated with just two tetrahedra glued at
their corresponding faces, but the triangulation we employ
introduces fewer irregularities. It is also the case that it gives a
better approximation to the continuum, although that is not
essential for our present purposes.
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spatial topology S1 and with big bang and big crunch
singularities at the B vertices.
Due to the (Lorentz signature) Gauss-Bonnet theorem

[20,21] one can expect the Einstein-Hilbert actions of the
spacetimes shown in Figs. 1(a) and 1(b) to be the same, as
they have the same topology. So in any of the causal
configurations above one should obtain the same action,
namely,�{4π, with the sign a choice that we will discuss in
Sec. IVA. Although the discretized spacetime is non-
smooth one can still define its action via a discretized
version of the Einstein-Hilbert action. The Regge action
(cf. Sec. IVA) is one such candidate and is consistent with
the Gauss-Bonnet theorem, so the claims above can follow.
To construct a three-dimensional triangulation similar to

the two-dimensional one we use four Lorentzian tetrahedra,
see Fig. 2(b). All tetrahedra have the same geometry
determined by their six edge lengths squared,

ðs12; s13; s14; s23; s24; s34Þ ¼ ðsa; sa; sb; sa; sb; sbÞ: ð3Þ

The edges of type a are spacelike. They bound two
equilateral6 triangles, each of which represents “space at
one time” in the partition function, and form the potential
horizon. The Lorentzian generalized triangle inequalities
[22,23] furthermore demand that 3sb < sa. (Here we
exclude degenerate tetrahedra with vanishing volume.)
Taking the triangle ða; a; aÞ as base, we can introduce
the height for the tetrahedra,

sh ¼ sb −
1

3
sa: ð4Þ

The Lorentzian generalized triangle inequalities can then be
expressed as sa > 0 and sh < 0.
Let us discuss the light cone structure for this three-

dimensional triangulation. We first note that a pair of
(Minkowski-flat) d-dimensional simplices that are glued
along a shared (d − 1)-simplex can always be isometrically
embedded into Minkowski space. In particular, for our
triangulation all points in the interior of the tetrahedra and
in the interior of the triangles are light cone regular. Light
cone irregularities can only appear at edges. To discuss
these one considers the orthogonal projection of the
piecewise flat geometry around the edge onto the two-
dimensional piecewise flat geometry orthogonal to the
edge. This two-dimensional geometry will be Lorentzian
if the edge is spacelike and Euclidean if the edge is
timelike. Light cone irregularities at inner points of the
edge can thus appear only at a spacelike edge. Restricting to
this case, note that the edge itself is projected to a vertex in
this two-dimensional Lorentzian piecewise flat geometry.
We can therefore consider whether the vertex resulting
from the projection is light cone regular with respect to this

two-dimensional geometry. If this is not the case, points in
the interior of the (spacelike) edge are not light cone regular
with respect to the three-dimensional geometry and we will
refer to such an edge as a light cone irregular edge.
As we will discuss in more detail in Sec. IVA, these

types of light cone irregularities will lead to imaginary
contribution to the (Regge) action as well as branch
cuts. Further types of light cone irregularities might
appear at the vertices of the three-dimensional triangu-
lation [15,24], but will not contribute imaginary terms to
the Regge action.
For our three-dimensional triangulation we distinguish

between three regimes. Namely, (i) the ðabbÞ triangles
(and therefore the b edges) are spacelike, (ii) the ðabbÞ
triangles are timelike, but the b edges are spacelike, and
(iii) the b edges [and therefore the ðabbÞ triangles] are
timelike. [The cases that either the b edges or the ðabbÞ
triangles are null do not contribute to the path integral.
The case (i) appears for the range 0 > sh > −sa=12 and
(ii) for the range −sa=12 > sh > −sa=3 whereas we have
case (iii) if sh < −sa=3.
Let us start with the case (i) where the absolute value

of the height sh is small enough so that the triangles
ða; b; bÞ are spacelike. The dihedral angle between the
triangle ða; b; bÞ and the triangle ða; a; aÞ corresponds to
a “thin” Lorentzian angle between two spacelike planes,
i.e., an angle that does not include a light cone. We are
gluing four such thin angles around the edge a, none of
which contains a light cone. Thus, the edges of type a
are light cone irregular. In fact, these edges are CTC
singularities.
On the other hand, the b edges are light cone regular; the

dihedral angle at the b edges is between two spacelike
triangles and is “thick,” that is, it includes a light cone. (If
the height is very small as compared to sa, we have an
almost degenerate tetrahedron and the angle is almost half a
full plane angle.) We glue two tetrahedra around the b
edges, and have thus two light cones at each inner point of
these edges.
Increasing the absolute value of the height we hit the

point where the triangles ða; b; bÞ are null and then move
into the regime (ii) where these triangles are timelike. The
dihedral angle between the two triangles ða; b; bÞ and
ða; a; aÞ changes from a thin Lorentzian angle between
two spacelike planes to a Lorentzian angle between a
spacelike plane and a timelike plane. Thus it contains half a
light cone. We glue four such angles around the edges of
type a; these a edges are therefore light cone regular. In
contrast to that, the dihedral angle at the spacelike b edge in
regime (ii) corresponds to a thin Lorentzian angle between
two timelike planes, which contains only timelike direc-
tions. We glue two such angles together, and have thus only
timelike directions in the plane orthogonal to the b edge.
These b edges represent final or initial singularities, where
timelike trajectories cannot be further extended.6Note that equilateral triangles are necessarily spacelike.
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Increasing the absolute value of the height even further
we reach the regime (iii) where the b edges become
timelike. The a edges are light cone regular, with the
same reasoning as for case (ii). The b edges are now
timelike and are therefore light cone regular. The initial or
final singularities, which in the case (ii) were located
along the b edges, are now reduced to the two vertices
where the b edges meet. We thus have a big bang to big
crunch spacetime.

IV. THE GRAVITATIONAL (REGGE)
PATH INTEGRAL

A. Introduction to (quantum) Regge calculus

With our triangulation defined, we proceed to study the
gravitational path integral based on this triangulation. We
need to start by adapting the Einstein-Hilbert action to it,
which we do by means of the Regge action. We begin with
a short review of the Euclidean and then Lorentzian Regge
action that will help us understand the calculation in
Sec. IV B. A much more detailed discussion of the complex
Regge action, which unifies the Euclidean and Lorentzian
versions, can be found in [15].
The Regge action [16,25] provides a discretization of the

Einstein-Hilbert action based on triangulations,7 usually
considered to be made of piecewise flat simplices8 whose
geometry is uniquely fixed by the lengths of the edges. The
variables discretizing the metric are therefore given by all
of these lengths.9 Thus, the gravitational path integral is
replaced by an integral over length assignments of the
exponentiated “action” eW . That is,10

ZEH ¼
Z

DgeW ⟶

Z Y
e

dleμðflegÞeW: ð5Þ

Here μ is a choice of measure that we will discuss below.
For Euclidean quantum gravity one choosesW ¼ −SE, and
for Lorentzian quantum gravity W ¼ {SL, with S□ the
Regge action(s) in the corresponding signature.
There are several senses in which the Regge action

is considered to discretize the Einstein-Hilbert action.

For example, in Euclidean signature, the solutions to
the linearized discrete equations of motion set by the
Regge action have been seen to converge in the continuum
limit to the smooth Einstein linearized solutions when
dealing with triangulations embeddable in a hypercubical
lattice [30–33]. Likewise, on the nonperturbative side, it
has been shown that Regge’s curvature converges to
Riemannian curvature [34,35]. These results are comple-
mented by others in Lorentzian signature; for example,
in [25] it is shown that the Regge action is reproduced from
the Einstein-Hilbert action when the manifold in question is
taken to be an actual piecewise flat triangulation. (For a
Euclidean version of this result see Ref. [36].) It is also the
case that several real-time solutions to Regge’s equations
have been shown to approximate continuum solutions to
Einstein’s equations (e.g., [37–39]). Concerns that this
behavior might actually not be generic [40,41] have been
addressed in [39]. (See also [42,43] and references therein
for a survey of Regge calculus.)
The key feature behind the Regge action is that one can

define a notion of curvature localized on codimension-2
simplices (also known as bones); the deficit angle ε. This
deficit angle11 measures the failure for the part of the
triangulation around its associated bone to be embedded
into flat spacetime. This notion is most easily understood
in Euclidean signature, so let us introduce it for this
case first.
To have an example in mind, suppose we consider

three-dimensional space, as is done in Sec. IV B (albeit in
Lorentzian signature). Bones are then edges and attached
to any of them there can be an arbitrary number of
3-simplices, that is, tetrahedra. Any edge in the bulk of
the triangulation has a closed chain of tetrahedra τ glued
around it and in each of them there is a dihedral angle
located at the edge, which can be computed by projecting
out the edge dimension so that each tetrahedron is
mapped onto a triangle. Then the dihedral angle is the
angle at the corresponding vertex in the resulting triangle
(see Fig. 3). If this chain of tetrahedra can be embedded
into Euclidean space then the sum of these dihedral
angles must give 2π, otherwise there is a conical deficit
angle ε ¼ 2π −

P
τ θe;τ.

This picture can be generalized to any dimension, as
bones are codimension-2 by definition, so the projection
always results in a two-dimensional subspace. The two-
dimensional case is particularly illustrative for understand-
ing how the deficit angle encodes curvature, see for
example Fig. 4.
The Regge action hinges on this notion of curvature

located at bones to capture the “curvature weighed by

7In principle one can loosen this restriction and work with
more general polytope cellular decompositions.

8One can also work with homogeneously curved simplices,
whose geometry is also fixed by the edge lengths [26]. This
reduces discretization artifacts if one does have a nonvanishing
cosmological constant [27]. In three dimensions one even obtains
triangulation invariant and discretization artifact free results. But
it has the disadvantage of leading to very involved expressions for
the volume of the homogeneously curved simplices, and therefore
the action.

9This is the case in length Regge calculus; other versions work
with areas [28] or with areas and angles [29].

10This expression is only pictorial. Note, for example, that in it
we have not so far instructed how the sum over lapse signs would
be implemented.

11Although this is the standard name given to ε, in some
situations (ε < 0) it may not actually correspond to a deficit, but
to an excess.
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volume” essence of the Einstein-Hilbert action by discretiz-
ing the latter as follows12,13:

SEEH¼−
1

2

Z
dDx

ffiffiffi
g

p ðR−2ΛÞ ⟶

SER¼−
X

β∈fBonesg
VolD−2ðβÞεðβÞþΛ

X
σ∈fD-Simplicesg

VolDðσÞ:

ð6Þ

For a space of dimension D ¼ 2, if volumes of points are
taken to be one, the Regge curvature term in the action

gives the same result as the curvature term in the con-
tinuum, which according to the Gauss-Bonnet theorem
depends only on the topology of the manifold. While the
definition (6) is here motivated only heuristically, it in fact
has the convergence properties mentioned above.
The Lorentzian definition of the Regge action is very

similar,

SLEH ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ ⟶

SLR ¼
X

β∈ fBonesg
VolD−2ðβÞεðβÞ − Λ

X
σ ∈ fD-Simplicesg

VolDðσÞ:

ð7Þ

(From here on we will drop the index R from the Regge
actions SE and SL.) Note that now bones may be null,
timelike, or spacelike. All of their (dimension dependent)
volumes are taken to be greater than or equal to zero.14 In
the Lorentzian case, the definition of dihedral angles
needed for the deficit angles is however more involved,
because when projecting out bone dimensions, the resulting
2-geometry may have a non-Euclidean signature. If the
bone in question is timelike, then the resulting 2-geometry
is Euclidean, hence the above definition applies; and null
bones have zero volume, so do not contribute so the
action.15 If the bone is spacelike, the 2-geometry resulting
from the projection is piecewise Minkowskian flat. Thus,
we need to understand how angles are defined in the
Minkowski plane, which we now explain. The definition
we shall give is the one adopted in the works studying the
continuum limit of the Lorentzian-Regge action cited
above. Further, it is such that angles are additive, and such
that when the spacetime is two dimensional the Lorentzian
Gauss-Bonnet theorem is satisfied, as stated in the previous
section [21].
Just as a Euclidean angle is the one needed to rotate a

unit vector into another in the plane, one can similarly
define a Lorentzian angle as a boost parameter. A Lorentz
boost (hyperbolic rotation) is implemented by the matrix,

Λη ≔ expðηKÞ ¼ cosh ηI þ sinh ηK

acting on the Minkowski components of vectors, where
K ¼ ð0

1
1
0
Þ. However, there are no proper boosts taking

spacelike vectors to timelike vectors and vice-versa,
or relating space(time)like vectors on sectors I and III

FIG. 4. The deficit angle determines whether the simplices
around a bone can be embedded in flat spacetime while remaining
connected or not. In the left panel we have a positive deficit angle
around a vertex, and therefore in order to embed the closed chain
of triangles around, it must be broken. The right panel shows a
broken chain for a three-dimensional triangulation.

FIG. 3. Three-dimensional example of the projection used to
define the dihedral angle associated with an edge in a tetrahedron.
By projecting out the dimension of the red/dashed edge, the
tetrahedron becomes a triangle (in brown) and the edge a vertex.
The (internal) 2D angle located at the vertex is the (internal)
dihedral angle at its corresponding edge in the tetrahedron.

12One can also add a Gibbons-Hawking-York-like term [44].
However, as we deal with a triangulation without boundary, we
omit its discussion.

13We work with units such that 8πG ¼ ℏ ¼ 1.

14An alternative possibility is to work with the square roots of
the (signed) volume-squares. The signed volume-squares are
negative for timelike building blocks. This alternative construc-
tion leads to the definition of a complex Regge action [15].
Adjusting for global factors of {, both definitions of Regge action
are equivalent.

15The role of configurations with null bones in the path integral
is, however, an open and interesting question.

DE SITTER HORIZON ENTROPY FROM A SIMPLICIAL … PHYS. REV. D 110, 046006 (2024)

046006-9



(II and IV) of Fig. 5. For example, the boost taking the
vector ðtxÞ ¼ ð0

1
Þ in sector I of Fig. 5 to the light ray ð1

1
Þ has

η → ∞. On the other hand, η decreases from ∞ to a finite
number in boosting from that light ray to, say, the vector
ð1
0
Þ, so the net boost angle is finite, and in fact equal to zero

in this case. For real η the boost Λη cannot map the vector
ð0
1
Þ to the vector ð1

0
Þ. However, with η ¼ �{π=2, one has

Λ�{π=2 ¼ �{K, which maps to �{ð1
0
Þ, i.e., to the complex

ray with the same direction as ð1
0
Þ. In this sense it is natural

to extend to a definition of a generally complex boost angle
between any two vectors in the Minkowski plane.
In Euclidean signature the interior angle between two

edges of a triangle is by definition positive, and to extend
this to the Minkowski case we must adopt sign conventions.
We take the real part of the angle to be the same as the sign
of the Minkowski inner product of the two vectors based at
a vertex, and the imaginary part to be �{nπ=2, where
n ¼ 0, 1, 2 is the minimal number of light rays crossed to
pivot one vector into another, and where the sign before { is
a global ambiguity discussed below [21,25]. This definition
of complex boost angle is consistent with additivity of
angles [21], and with the analytic continuation of the
Euclidean Regge action discussed below. As an example,
consider the vectors a and b shown in Fig. 5; since
a · b < 0, the real part of the angle is negative, and since
two light-rays separate a and b, the imaginary part is �{π.
The imaginary part of the angle has a sign ambiguity

because any choice would lead to the same direction, i.e.,
complex ray, of the boosted vector. This can be linked with
the ambiguity inherent in the definition { ≔

ffiffiffiffiffiffi
−1

p
which in

turn comes from the analytic structure of the square root.
This will become more apparent in the framework of
complex Regge calculus [15,45] discussed below. As we
will discuss shortly, however, when the light cone structure
is regular the ambiguity is irrelevant and the Regge action
is uniquely defined. The above cited work studying the
continuum limit for Lorentz signature considered only such
light-cone-regular simplicial geometries.
Importantly, this definition implies that the Lorentzian

angle covered by the whole Minkowski plane is �{2π.
Hence, this imaginary angle replaces the 2π in the expres-
sion for the deficit angle ε above. Therefore, if a bone’s
contribution to the Regge action is to be real, the dihedral
angles attached to the bone must have a number of light-ray
crossings N c that exactly cancel �{2π, i.e., the light cone
structure at the bone must be regular. If this is the case, the
sign ambiguity of the angles’ imaginary parts is not seen at
the level of the action, since it “cancels”. Hence, when
dealing with light cone regular configurations, the
Lorentzian action is real and uniquely defined. If, however,
N c ≠ 4, then one has real parts in the path integral
exponent of the form16

ImSL ¼ �2πVolD−2ðβÞ
�
1 −

N c

4

�
; ð8Þ

where the area VolD−2ðβÞ is that of the irregular bone β.
Thus, causally irregular histories are generically exponen-
tially suppressed or enhanced, and the choice of sign
specifies which is the case for geometries with N c < 4

and complementarily those with N c > 4.17 Due to this
ambiguity the Regge action has branch cuts along configu-
rations with light cone irregular structure [15]. This can lead
to an intricate topology of Riemann sheets, as discussed in
detail in [15]. Nevertheless, if the light cone structure is
regular, then the dihedral angles cancel the �{2π, in which
case the ambiguity associated with the Lorentzian angle
branch cut is irrelevant, and the Regge action is analytic.
Instead of defining directly the Lorentzian Regge action

as above, one can also obtain it by using a generalized
Wick rotation. This is thoroughly derived in [15] (see
also [21,45]). Here we will only sketch the procedure.
Starting from Euclidean space, one can introduce a

generalized Wick rotation for the Euclidean time,
tE → e{ϕ=2tL, and show that the angle function has a branch
cut when ϕ ¼ �π, corresponding to Lorentzian data. The
resulting angle function agrees with the purely Lorentzian
definition above up to a factor of �{. Thus, choosing

FIG. 5. Lorentzian angles provide boost parameters needed to
take a ray into another. In order to boost a vector from one quadrant
to another, one needs a complex parameter and correspondingly,
each light cone crossing contributes with �{ π

2
. In particular, the

angle between the spacelike vectors a and b, in quadrants I and II,
respectively, has an imaginary part �{π, as in order to superpose
them two light-rays need to be crossed.

16This is in agreement with the imaginary contributions
discussed in the continuum framework of [5,46–48].

17We remark that strictly speaking it is not the choice of sign
for the angle’s imaginary parts that determines which histories
will be exponentially suppressed or enhanced, but rather their
sign relative to that of the “{” appearing in front of the action in
the path integral’s exponent.
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different sides of this branch cut leads to different signs for
the light cone crossing contributions.
This observation can be used to analytically continue the

Regge action from the Euclidean regime to the Lorentzian
one. More precisely, let us assume that a global generalized
Wick rotation can be defined for the length-squared con-
figuration space such that there is a Lorentzian portion of the
complexified configuration space which is light cone regular.
This applies to our triangulation: the height squared sh
(cf. Sec. III) can serve to determine a time variable and we
have a regular regime where sb < 0 (cf. Sec. III). Then one
can analytically extend the Euclidean path integral exponent,

WE ¼ −SE; ð9Þ

with SE defined in equation (6). The action as a function of
the complexified sh is multivalued due to the appearance offfiffiffiffiffi
sh

p
(cf. Eq. (14). In order to integrate over both positive and

negative height (to include both signs of the lapse) using the
height squared sh as our variable, we need to extend the
domain of sh to a double cover of the complex plane
(Riemann “sheet”). This Riemann sheet can be parametrized
by rh > 0 and ϕ∈ ð−2π; 2π�.18 We have two copies of the
original sh plane and we recover the complex number sh via
the expression rhe{ϕ.

19 Despite appearances, in the Riemann
sheet context one is not to identify sh values at ϕ with values
at ϕþ 2π, as they correspond to heights (

ffiffiffiffiffi
sh

p
’s) of different

sign. In this domain W has the following behavior (see also
Fig. 6) [15],

WðϕÞ ⟶

8>>>>>>>>>>><
>>>>>>>>>>>:

þSE for ϕ → −2π;
−{SLþ for ϕ → −π − δ;

−{SL− for ϕ → −π þ δ;

−SE for ϕ → 0;

þ{SLþ for ϕ → þπ − δ;

þ{SL− for ϕ → þπ þ δ;

þSE for ϕ → 2π:

ð10Þ

Here the � indices for the Lorentzian actions distinguish
the sides of the branch cut in the case of light cone irregular
configurations, and δ > 0 is considered infinitesimal
and thus gives prescriptions on how the limits are to be
approached. The two Lorentzian actions are related by
complex conjugation, SL− ¼ ðSLþÞ�. If a given Lorentzian
configuration is causally regular, there is no branch cut and
the two actions SL− and SLþ agree. Notice that the path
integral exponentWðϕÞ agrees at ϕ ¼ �2π so the Riemann
sheet is glued along this line.
In the path integral below, we will navigate the branch

cut side such that histories with N c < 4 are exponentially
enhanced and therefore those with N c > 4 are correspond-
ingly suppressed. Such a choice yields an exponentially
enhanced result for our Lorentzian path integral, which is
needed to capture the expected horizon entropy. One could
also choose the opposite, suppressing, side of the branch
cut.20 In fact, this choice of the suppressing side has been
implemented in [15] in order to compute a no-boundary
wave function for a de Sitter cosmology from a Lorentzian
simplicial path integral. In that case the results were very
close21 to the Lorentzian continuum minisuperspace
path integral computations by Feldbrugge et al. [51],
which found an exponentially suppressed result for the
wave function. Note that the opposite—that is, an expo-
nentially enhanced result—was found by Diaz Dorronsoro
et al. [52], also from the Lorentzian continuum minisuper-
space path integral. This hints towards the fact that also
in the continuum there exists a (hidden) choice for the
Lorentzian path integral. We will comment more on this
point further below.
Modulo the topological case whenD ¼ 2 and Λ ¼ 0, the

works studying the continuum limit of the real-time Regge
action have not discussed the case N c ≠ 4 and thus cannot
be used to fix this ambiguity based on a classical criterion.22

However, a compelling criterion appears at the quantum
level, for the integral over quantum field fluctuations
to converge. As spelled out long ago by Halliwell and

18If there are causally irregular configurations along the
Lorentzian lines at ϕ ¼ �π, then the extension above captures
only a portion of the full Riemann surface. This is the reason why
we refer to this partially extended domain as a “sheet.”

19Note that it is the domain of the height squared sh that is
extended (in fact, doubled); the domain of the height is not
extended. In the context of the present paper one could have just
worked in the height plane and avoided the Riemann surface
extension. However, the latter seems to be the proper language for
more general scenarios, because it allows one to deal more
naturally with the branch cuts introduced by light cone irregu-
larities. For example, steepest descent flows generically flow
through these branch cuts, as illustrated in Fig. 8, and therefore
numerical techniques such as the gradient flow method will
generically require one to consider several Riemann sheets. We
also point out that working with length-squared variables is akin
to working with metric [instead of vielbein] variables.

20Another possibility is to exclude light cone irregular con-
figurations from the path integral. Of course, in our context,
configurations with CTC singularities are required by the very
nature of the partition function being computed, and our choice of
triangulation has inadvertently introduced configurations with
other light cone irregularities as well. In other contexts, studying
the path integral under refinements might help to decide whether
to include light cone irregularities, or how to navigate the branch
points they give rise to. Such refinements likely lead to additional
light cone irregular configurations, and the refined path integral
would then depend on how these configurations are treated.
One would like to obtain some sort of invariance under refine-
ments, as such an invariance is related to a discrete notion of
diffeomorphism symmetry [49,50].

21We emphasize that for this to be the case one needed to
include the light cone irregular configurations in the path integral.

22Let us remark that there is however a point of contact
between our discussion and [25] with the continuum corner terms
discussed in [46], but there the same ambiguity is faced.
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Hartle [17] in the context of the wave function of the
universe, if quantum field theory of a scalar field in curved
spacetime is to be recovered by expanding around a
dominating saddle point of the path integral with complex
lapse function N in the metric, it must be that Re N > 0.
Otherwise, the fluctuation wave functional would not be
not be normalizable, and one would not recover the local
vacuum of the quantum fields on the semiclassical space-
time background.23 Moreover, even within pure general
relativity with no additional fields, the convergence of the
integral over graviton fluctuations alone imposes the same
condition on the lapse [55]. This amounts to a consistency
condition for the gravitational effective field theory to
provide a reasonable approximation to an underlying,
stable, UV complete theory.24 We shall refer to this
complex metric selection principle as the fluctuation
convergence criterion, or just convergence criterion where
no confusion should arise.
In a setting somewhat closer to ours, in the context of

topology changing spacetimes in two dimensions, Louko
and Sorkin [56] proposed the same criterion as that in [17].
The topology change necessitates the presence of points
with light cone irregularity. Deforming the metric infini-
tesimally into a smooth but complex one, they noted that
there are two options for the deformation, leading to
opposite signs for the imaginary part of the action, and
argued that if one is to consistently couple a free, massless
scalar field with these complex geometries, spacetimes with
N c > 4 must be suppressed in the sum over histories, as
happens with our convention above, otherwise the variance
of the Gaussian amplitude has a negative real part so the
integral over fluctuations diverges. Note that in this
context the convergence criterion is applied not only at
a saddle point, but at any configuration. While the
criterion has mostly been discussed in the context of
its application at a saddle configuration—where it is
clearly required if the saddle is to provide a consistent
semiclassical approximation—it appears reasonable to
apply it for all configurations. We shall do so in the
slightly weaker form of a “nondivergence criterion,” i.e.,
we allow for the marginal Lorentzian case ReN ¼ 0, since
the complex Gaussian integrals that arise in that case are
presumably tamed when computing physical observables.

B. The Regge action

Having introduced the Regge calculus basics, we can
finally move on to computing the Regge action of our
particular triangulation.
We compute the Lorentzian-Regge action of the triangu-

lation in Fig. 2(b) as described in the previous subsection,
namely: We first compute the Euclidean version and then
analytically continue using a generalized Wick rotation for
the height. We will therefore encounter branch cuts in the
Lorentzian sector at the causally irregular configurations
described in Sec. III, and for the integration contour we will
pick the side of the branch cuts on which the convergence
condition holds and the configurations with N c < 4 are
exponentially enhanced.
Due to the symmetry reduction implemented in our

triangulation we have only two types of edges, a and b,
and correspondingly only two types of dihedral angles, θa
and θb. Likewise, all of our four tetrahedra have the same
volume. Therefore, the Euclidean exponent (9) takes the
form:

WE ¼ −SE ¼ 3
ffiffiffiffiffi
sa

p ð2π − 4θaÞ þ 6
ffiffiffiffiffi
sb

p ð2π − 2θbÞ
− 4ΛVol3ðtetrahedronÞ; ð11Þ

where the factors in front of the lengths count the number
of bones of the same type and those in front of the
dihedral angles count how many tetrahedra are glued along
each type.
The volume term can be computed with elementary

geometry and the next step is to introduce the height
variable by the replacement of sb with sh þ 1

3
sa, followed

by the evaluation of the dihedral angles, which can be done
as follows. We first embed our tetrahedron in Euclidean
space, which because of the symmetry reduction can be
done at once, then we project along each of the edges in
order to compute the relevant two-dimensional angle. Now,
to compute the latter we use the following formula that
simplifies the analytic continuation [15]; namely,

θðA⃗;B⃗Þ¼ { log

0
B@A⃗ · B⃗þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA⃗ · B⃗Þ2−ðA⃗ · A⃗ÞðB⃗ · B⃗Þ

q
ffiffiffiffiffiffiffiffiffi
A⃗ · A⃗

p ffiffiffiffiffiffiffiffiffi
B⃗ · B⃗

p
1
CA; ð12Þ

where□ ·□ denotes the Euclidean product (not necessarily
two-dimensional) and we take principal branches for the
logarithm and square roots, and complete their domains
to the whole complex plane through setting

ffiffiffiffiffiffi
−1

p ¼ {
and logð−1Þ ¼ {π. This formula follows from the
identity arccos z ¼ −{ logðzþ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
Þ, as well as A⃗ · B⃗ ¼ffiffiffiffiffiffiffiffiffiffi

A⃗ · A⃗
p ffiffiffiffiffiffiffiffiffiffi

B⃗ · B⃗
p

cos θðA⃗; B⃗Þ. (For a more thorough discus-
sion, see Refs. [15,21,45].)
What remains now is to extend to the Lorentzian regime,

which is done by identifying the height squared sh with a

23In [17] this criterion was stated as Re
ffiffiffi
g

p
> 0, which is the

same as ReN > 0 for a metric that is real except for the lapse, but
is otherwise weaker than the general condition required for a
massless scalar field. Generalizing this criterion beyond
scalar fields to p-form fields, Witten [53] explored a selection
criterion for complex metrics, following previous work in flat
complex spacetimes [54], and tested whether it rules out
pathological examples and admits putative saddles that appear
well motivated on physical grounds.

24We note, however, that this criterion is perturbative in nature,
and we cannot rule out the possibility that the full, nonperturba-
tive theory does not require this criterion.
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time variable (or rather its square) that will be subject to the
generalized Wick rotation,

sh → rhe{ϕ: ð13Þ

By doing so we are effectively complexifying the height
squared and can perform analytic continuation over it.
Note that we can understand the height (square) as a

lapse (square) parameter in the following sense. In a
homogeneous isotropic continuum spacetime one may
gauge fix the lapse function to be a constant, global
parameter measuring the proper time normal to the spatial
slices. Similarly, we can understand sh to parametrize the
extent of our simplicial universe in the timelike direction.
The Wick rotation in sh corresponds therefore to a Wick
rotation of a lapse square parameter. The discrete action
depends on

ffiffiffiffiffi
sh

p
, hence we will adopt a range of ð−2π; 2π�

for the Wick rotation angle ϕ in (13), so that all values offfiffiffiffiffi
sh

p
in the complex plane are included. From here on sh

should be understood as living on a Riemann surface [see
the discussion below Eq. (9)]. The sign ambiguity of

ffiffiffiffiffi
sh

p
corresponds to that of the lapse, and we identify ϕ ¼ π with
positive lapse and ϕ ¼ −π with negative lapse.
From (13) it also follows that the region satisfying the

fluctuation convergence (or rather nondivergence criterion)
is the one with ϕ∈ ½−π; π�, because there (and only there),
upon taking the square root, the corresponding arguments
are in ½− π

2
; π
2
�, so that Re

ffiffiffiffiffi
sh

p ≥ 0.
From the general discussion in Sec. III (see also [15]) we

expect that the Lorentzian action features branch points at
rh ¼ sa=12 and rh ¼ sa=3, where the ða; b; bÞ triangles
and b edges are null, respectively. Additionally we have a
branch point at rh ¼ 0 resulting from the appearance offfiffiffiffiffi
sh

p
(cf. Fig. 6.). Further, with the branches chosen for the

logarithm and square root in (12), the standard Euclidean
action corresponds to ϕ ¼ 0, and there are branch cuts at
ϕ ¼ 0 and ϕ ¼ π for rh < sa=3. We thus perform the
analytic continuation of the action from the ϕ∈ ð0; πÞ and
rh > sa=3 region. This leads to

W ¼ 6
ffiffiffiffiffi
sa

p
"
π þ 2{ log

 
e−

{ϕ
2
ffiffiffiffiffi
sa

p þ {
ffiffiffiffiffiffiffiffiffi
12rh

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−{ϕsa þ 12rh

p
!#

þ 4e
{ϕ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9rh þ 3e−{ϕsa

q "
π þ { log

 
−sa þ 6e{ϕðrh þ {

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhð3rh þ e−{ϕsaÞ

p
Þ

sa þ 12e{ϕrh

!#
− Λe

{ϕ
2 sa

ffiffiffiffiffiffiffiffiffi
rh=3

p
: ð14Þ

This function is, by construction, 4π-periodic and
analytic for ϕ∈ ½−2π; 2πÞ and rh > 0 with the exception
of branch cuts along the ϕ ¼ �π lines going from rh ¼ 0 to
rh ¼ sa=12 and from rh ¼ sa=12 to sa=3. These branch

cuts correspond to the (edge) light cone irregular regime,
the former with CTC’s around the a edges, and the latter
with closed spatial curves around the spacelike b edges. We
therefore have branch cuts covering the full interval

FIG. 6. Illustration of some features of the analytically con-
tinued Regge path integral exponentW for a fixed value of sa, as
a function of the Riemann sheet variable sh (or equivalently the
complex height

ffiffiffiffiffi
sh

p
). For specific values of the generalized Wick

rotation angle ϕ it can reproduce the Euclidean and Lorentzian
Regge exponents with either overall sign. For the triangulation
under study there are branch points (green dots) at sh ¼
0;�sa=12;�sa=3 and the Riemann sheet we analyze has branch
cuts (vertical red dashed lines) connecting them associated with
light cone irregularities, where the Lorentzian action has imagi-
nary parts. We have CTC singularities at the branch cuts from
zero to �sa=12. Depending on the side from which these are
approached, one obtains Lorentzian Regge actions that differ only
in their imaginary part by a sign. We also show the original, and
deformed contour of integration we use for our path integral for
the case sa < 8π

ffiffiffi
3

p
=Λ. The dotted portion of the deformed

contour goes through a Euclidean saddle point (cross) and is a
steepest ascent/descent flow line of Re W.
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0 < rh < sa=3, so for simplicity we may abuse language
and speak of having a single branch cut in this larger
interval for the lines ϕ ¼ �π.
Exponential enhancement of the partition function can

arise only if the real part of W is large. ReðWÞ vanishes at
ϕ ¼ �π for rh above the branch cut, and it develops a
nonzero value next to the branch cut. Crossing the branch
cut the real part ReðWÞ changes sign. For 0 < rh < sa=12
we have ReðWÞ ¼ �6π

ffiffiffiffiffi
sa

p
at ϕ ¼ −π � δ and at

ϕ ¼ þπ ∓ δ. For sa=12 < rh < sa=3 we have ReðWÞ ¼
�12π

ffiffiffiffiffi
sb

p
at ϕ ¼ −π � δ and at ϕ ¼ þπ ∓ δ. Note that

12π
ffiffiffiffiffi
sb

p ¼ 12π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e{ϕrh þ sa=3

p
as a function of rh at ϕ ¼

�π is monotonically decreasing from rh ¼ sa=12, where it
is equal to 6π

ffiffiffiffiffi
sa

p
, to rh ¼ sa=3, where it is equal to 0. The

absolute value of the real part is thus maximal for the
configurations with a CTC singularity, that is, for configu-
rations with rh < sa=12. A plot of this behavior is shown
in Fig. 7.
As mentioned above, we will restrict to the branch cut

side that agrees with the convergence criterion for the
integration contour. Importantly, this means that the par-
tition function can receive exponential enhancement from
the light cone irregular regimes, which is maximal from the
configurations with CTC singularities.
More precisely, we take the path integral in question to

be given by

Z ¼ lim
ϵ→0

Z
∞

0

dsaμaðsaÞ
Z
C
dshμhðsh; saÞeW; ð15Þ

where we have sa ∈ ð0;∞Þ due to the triangle inequalities
as discussed in Sec. III, and importantly the height-
square integration is done over the black contour shown
in Fig. 8, for which we parametrized the height-squared
as sh ¼ rhe{ϕ. Notice that the contour contains both
Lorentzian branches ϕ ¼ �π, which correspond to positive
and negative square roots of sh and, as explained above are

associated with positive and negative lapse; this is
needed in the continuum in order to impose the con-
straint and will play an important role in the next
section. In order to navigate the branch cut in a way
consistent with the convergence criterion, the contour is
slightly deformed away from the Lorentzian lines for
rh < sa=3 with the following ϵ-prescription The hori-
zontal bottom line corresponds to an arc of radius rh ¼ ϵ
going from ϕ ¼ −π þ ϵ to ϕ ¼ π − ϵ that circumvents
the rh ¼ 0 branch point. Similarly, for ϵ < rh < sa=3þ ϵ
the contour lies at ϕ ¼ �π ∓ ϵ. These branch-cut por-
tions are then joined to the Lorentzian lines ϕ ¼ �π
with arcs of radii ϵ going from ϕ ¼ �π ∓ ϵ to ϕ ¼ �π,
which we depict in Fig. 8 as the short horizontal lines.
The contour continues along the Lorentzian lines from
rh ¼ sa=3þ ϵ to infinity.
In Eq. (15) we have also split the quantum Regge

calculus measure into two portions, one for what we will
call the fixed-length path integral Zsa , i.e. that over sh
at fixed sa, and one for the remaining integral over sa.
The specific form of μa will not affect our discussion, as
long as it does not overcome the large value of eW at the
dominating semiclassical saddle. We also ask for μa to be
positive and real, for reasons we discuss below. With the
motivation explained in the following paragraph we take
the measure μh to be independent of sa and of the form

μhðshÞ ≔ −{rαhe{αϕ: ð16Þ

As shown in Appendix B the presence of the −{ factor and
the reality of μa ensures that Z is real, as it should be,
because it computes the dimension of a Hilbert space.25 As
discussed below, we also require α < − 1

2
, in order for our

integral to converge.
This form of the Regge measure can be motivated in

different ways. For example, the case α ¼ −3=4 can be
motivated as the discretization of the measure for the
global lapse variable in a continuum minisuperspace
path integral similar to ours: The fixed sa integral bears
some resemblance with minisuperspace real-time path
integral computations of the no-boundary wave function
[17,51,52,55,57–59]. In that setup one considers the lapse
and scale factor as the only metric variables and computes
the path integral corresponding to the transition ampli-
tude for going from an “initial” scale factor a0 to a “final”
one a1. The integral is over all intermediate scale factors
and lapse. A variable transformation leads to an action
quadratic in the scale factor variable, and thus a Gaussian
path integral in this variable.26 Gauge fixing the lapse

FIG. 7. The real part of W along the Lorentzian lines is
nonvanishing only along the branch cut, and is maximal and
constant for the regime with CTC singularities.

25In fact, using the saddle point approximation discussed
below, or numerical evaluations, one can show that the overall
sign on μh is such that Z is positive.

26In the Gaussian integration the references above ignore the
fact that a2 is constrained to be positive, but see Refs. [57,60] for
discussions on this point.
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variable to a constant reduces the path integral further, to
an integral over a global lapse only. Setting a0 ¼ 0 one
obtains the no-boundary wave function depending on a1.
The global lapse integral is a close continuum analogue
(albeit one spacetime dimension higher) of our fixed sa
integrals. To see this note that a discrete version of the
continuum computation would come about if one con-
siders only the bottom tetrahedra (triangles) of Fig. 2(b)
[Fig. 1(b)] and treats sa as a boundary variable analo-
gous to a1. Indeed, as mentioned before, a discrete
version of this no-boundary calculation was performed
in [15] and there the same Riemann surface topology as
that of the current paper was found. In summary, our
integral over sh can be compared with the continuum
integral over global lapse. What is important for us is
that the continuum integration of the scale factor
produces a measure for the lapse integral, which as
pointed out in [15] is discretized by a measure like (16)
accompanied by a factor for μa that is positive and
regular. Due to the fact that in order to obtain it in the

continuum calculation one integrates over a scale factor,
one could see this measure as capturing the information
of some degrees of freedom that have been integrated out
to go from an infinite dimensional minisuperspace
integral over the scale factor, to a microsuperspace
finite-dimensional integral over lapse.27

Another option for motivating this class of measures
is to refer to three-dimensional quantum Regge calculus
(without cosmological constant), for which one can
derive a measure which leads to triangulation invariance28

at one-loop order on a flat background, both for

FIG. 8. Riemann sheet of the path integral exponent W as a function of the variable sh (or equivalently the complex height
ffiffiffiffiffi
sh

p
)

represented with coordinates ðϕ; rhÞ. Note that the lines at ϕ ¼ −2π and ϕ ¼ 2π are to be identified and that the one at rh ¼ 0 must be
understood as a point (zero radius). The original (ϵ-deformed Lorentzian) integration contour is shown as the solid and connected line,
which circumvents infinitesimally the branch cuts (wavy red lines at the bottom) according to the convergence criterion. The contour
includes both signs of the lapse, i.e., both the lines ϕ ¼ π and ϕ ¼ −π, as needs to happen in the continuum to implement the
Hamiltonian constraint. Because the rh ¼ 0 line on the diagram corresponds to a branch point, the horizontal portion of the contour is
understood as an infinitesimal arc around the height-squared origin.

27The references cited above derived the measure (16) for four-
dimensional minisuperspace. A derivation for three-dimensional
minisuperspace proceeds along the same line and leads only to a
different numerical positive real factor, which we have absorbed
into μa.

28A caveat here is that triangulation invariance might not hold
anymore if one symmetry reduces the path integral, as we do in
our case.
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Euclidean and Lorentzian signature [61–63]. Apart from a
phase and numerical prefactors, the measure is given
by μ ¼Qτ V

−1=2
τ , where Vτ denotes the volume of a

tetrahedron τ. Our triangulation has four tetrahedra with
height square sh, the measure would therefore be μ ∝ s−1h ,
i.e., α ¼ −1. We note, however, that μa is not regular at
sa ¼ 0, and therefore, if used without modifications it
would overcome the large value of eW in the semiclassical
saddle when sa is small enough. In other words, this
measure does not satisfy the conditions we put on μa. This
is in contrast to the divergence of μh for small rh, which as
we will see is not problematic for the validity of the saddle
point approximation.
The way we have written μh in (16) is such that it has

been analytically continued exactly as we did with W. We
are therefore in effect introducing a Riemann surface
coordinatized by ϕ and rh > 0 for the whole integrand
in order to avoid the introduction of a possible additional
branch cut. We remark that the measure in general is not
4π-periodic. So, although W is 4π-periodic, our fixed-
length integrand may not be. The integrand will however be
periodic as long as α is rational.
Equation (15) exemplifies the virtues of Regge calculus:

namely, it possesses Einstein-like dynamics through the
Regge action and gives a tractable finite dimensional
integral, which as such can shed some light on quantum
gravitational dynamics. Likewise it can be used as a lattice
model for numerical evaluations. In particular, we can use it
to explore some of the questions raised in Sec. I and Sec. II,
as we are about to see.

C. Saddle point approximation of the path integral

One such question was whether the (continuum)
Lorentzian integration contour can be deformed in a way
such that the Euclidean-de Sitter saddle dominates. The
first thing to check is therefore whether the discrete model
has a Euclidean-dS-like saddle.
Let us begin exploring this question by analyzing fixed-

length saddle points, that is, points that for fixed sa
extremize the exponent as a function of sh. To see whether
there are saddles along the Euclidean line at ϕ ¼ 0 or at the
Lorentzian line at ϕ ¼ π we investigate the behavior of W
for rh small or large compared to sa. For small rh at ϕ ¼ 0
and small positive ðrh − sa=3Þ at ϕ ¼ π we have

Wðϕ ¼ 0Þ ∼ 6π
ffiffiffiffiffi
sa

p
− saΛ

ffiffiffiffiffiffiffiffiffi
rh=3

p
þOðr3=2h =saÞ; ð17aÞ

Wðϕ ¼ πÞ ∼ {
�
−
ffiffiffiffiffi
sa

p ðsaΛþ 18 logð3ÞÞ=3

þ 12π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh − sa=3

p �
þOððrh − sa=3Þ3=2=saÞ:

ð17bÞ

That is, (minus) the Euclidean action Wðϕ ¼ 0Þ has a
decreasing behavior for small (and growing) rh, whereas
the Lorentzian action −{Wðϕ ¼ πÞ is increasing for small
(and growing) ðrh − sa=3Þ. Importantly this behavior does
not depend on the value of sa > 0.
The asymptotic behavior for large rh is given by

W ∼
1ffiffiffi
3

p e{ϕ=2ΛðsΛa − saÞ
ffiffiffiffiffi
rh

p þOðr−1=2h saÞ; ð18Þ

and changes at the threshold value

sΛa ≔ 8
ffiffiffi
3

p
π=Λ ≈ 43.5=Λ: ð19Þ

Thus, we have for sa < sΛa , that Wðϕ ¼ 0Þ is decreasing
for small rh and increasing for large rh. The function has
therefore at least one minimum. In contrast, we have that
−{Wðϕ ¼ πÞ is increasing for both small and large
ðrh − sa=3Þ, so there might be no extrema. For sa > sΛa
the situation is opposite; there must be at least one
maximum for the Lorentzian action, while there might be
no extrema for the Euclidean action. Indeed, numerical
investigations show that there is exactly one saddle
point along the ϕ ¼ 0 line (and no Lorentzian saddles)
for sa < sΛa and exactly one saddle point along the ϕ ¼ π
line (and no Euclidean saddles) for sa > sΛa .
From Eq. (10) we see that Wðϕ ¼ 0Þ ¼ −Wðϕ ¼ 2πÞ,

and ImðWðϕ ¼ πÞÞ ¼ −ImðWðϕ ¼ −πÞÞ. The Euclidean
and Lorentzian saddles appear therefore in pairs; i.e., if
there is a saddle at ðrh;ϕÞ then there is another saddle at
ðrh;ϕþ 2π mod 4πÞ. A similar appearance of pairs is
found in the minisuperspace discussion (see e.g., [52]),
where these pairs represent positive and negative lapse
solutions. The two regimes, sa < sΛa and sa > sΛa , are
shown in Fig. 8. The critical points of the flow shown in
this figure, i.e., points where ∇ReW ¼ 0, coincide with
the saddle points of W (with sa kept fixed), thanks to the
Cauchy-Riemann equations. Note that, apart from the
saddles discussed, there are no further saddles if we stay
on the Riemann sheet shown in Fig. 8, that is, if we do not
cross any of the branch cuts.
The threshold behavior mimics the continuum29

[11,64] and is related to the fact that topological hemi-
spheres can solve the vacuum Euclidean-Einstein field
equations with cosmological constant as long as their
boundary radius is smaller than the dS radius, and that
there are complex saddles when it is larger. Thus, it could
be that the Lorentzian saddles we find are discrete avatars
of these continuum complex geometries. This also
suggests that the threshold scale sΛa acts as the de
Sitter radius squared.

29It has also appeared in other closely related discrete
analyses [15,18].
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In summary, the partition function path integral can be
split into two segments: sa ∈ ð0; sΛa Þ, for which each sa
admits Euclidean saddles for the sh integral; and
sa ∈ ðsΛa ;∞Þ, for which each sa admits Lorentzian saddles.
We are going to evaluate the integrals using deforma-

tions to different contours for the two different cases but
before discussing these contour deformations, we note
that one can establish the convergence of the integral
along the original contour in the limit of rh → ∞, as long
as the parameter α in the measure satisfies α < −1=2. To
this end one uses Dirichlet’s test for convergence of
improper integrals, the details of which can be found in
Appendix A.
We will now analyze the integral over sh, for sa < sΛa ,

where we have Euclidean saddles.
In Fig. 8(a) we show the steepest descent flow of the

exponent’s real part, ReW, for the case with sa ∈ ð0; sΛa Þ.
The figure indicates that the original contour can be
deformed to the dashed one, which passes through the
steepest descent contour of the ϕ ¼ 0 saddle point (that is,
the Lefschetz thimble) to then rejoin the original Lorentzian
contour. Along the thimble W has positive real part: ReW
vanishes at �π away from the branch cut, because there
the simplicial geometry is (edge) light cone regular
(cf. Sec. IVA), so in the thimble, ReW ascends from zero
to a positive maximum and then descends back to zero. In
the rest of the deformed contour, ReW is zero, because the
contour goes along the Lorentzian lines. The thimble’s
contribution therefore dominates in a semiclassical
expansion, where it can also be approximated by a saddle
point evaluation. This conclusion is only strengthened
when taking into account the measure as it suppresses
larger heights.
In fact, by arguments similar to the ones we will give

for the case with Lorentzian saddle points, the arcs at
infinity from ϕ ¼ −2π to ϕ ¼ −π and from ϕ ¼ π to
ϕ ¼ 2π, have vanishing contour integrals, so one could
actually further deform the ra > sa=3 subportions of the
contour along the flow all the way to the line at ϕ ¼ −2π
and the line at ϕ ¼ 2π, which we should not identify
when taking into account the measure μh ∼ sαh for general
α. In this way, the left (right) subportion would become
the portion of the Lefschetz thimble with −2π < ϕ < −π
(π < ϕ < 2π) followed by the subportion of the
Euclidean branch at ϕ ¼ −2π (ϕ ¼ 2π) that goes from
its critical points up to infinity. Thus, the full integral is
equivalently expressed as that over the full Lefschetz
thimble—not just the portion with ϕ∈ ð−π; πÞ—and the
subleading Euclidean portions. The Euclidean subpor-
tions are also steepest descent flow lines, and therefore
their contributions are sub-leading with respect to the
full thimble associated with the ϕ ¼ 0 saddle point,
which goes from ϕ ¼ −2π to ϕ ¼ 2π. The full integral
is manifestly convergent and, importantly, saddle point
dominated.

In conclusion, for each value of sa ∈ ð0; sΛa Þ, the fixed-
length integral can be approximated, in a semiclassical
expansion, by

Zsa ∼ expðWHJðsaÞÞ; ð20Þ

with WHJ the fixed-length Hamilton-Jacobi function, i.e.,
the exponent W evaluated on the fixed-length saddle,
WðshðsaÞ; saÞ.
In Fig. 9 we show the behavior of WHJ. It vanishes at

sa ¼ 0, increases up to a maximum at sa ¼ s�a ≈ 24.3=Λ,
and returns to zero as sa approaches sΛa . In this limit, rhðsaÞ
tends to ∞. On the other hand rhðsaÞ goes to zero
as sa → 0, which can be argued by minimizing (17)
including the next-to-next-to-leading order term and
noting that the resulting saddle is consistent with the small
rh approximation. More specifically, we have saddles at
rh ≈ s2aΛ=216 for sa ≪ sΛa .
As hinted at in the previous section, one might worry

that the divergent behavior of μh as rh → 0 changes the
validity of using fixed-length saddle points of W for
semiclassical evaluations and therefore of (20), especially

because at the saddle rhð saÞ⟶
sa →0

0. This is not the case.
Although it is true that the contour integral receives
locally large contributions from the region near rh ¼ 0,
they evidently cancel each other, since the contour can be
deformed away from this region. Moreover, the small rh
divergence does not invalidate our saddle point approxi-
mation. To see that we note that when considering the
steepest descent flow of ReðW þ log μhÞ one still sees the
same qualitative behavior as in Fig. 8 in the −π < ϕ < π
region, which indicates that the saddle point approxima-
tion is valid when using the saddle points of the joint
exponent W þ log μh (properly analytically continued).
The position of these fixed-length saddles turns out to be
always finite, approaching rh ¼ ð2αℏGÞ2 as sa → 0, and
therefore produces a finite exponent. If ℏ is sufficiently
small compared to the action, the saddles of the joint

FIG. 9. Fixed-length Hamilton-Jacobi function, WHJðsaÞ with
sa < sΛa , that is for the range where only Euclidean saddle
points exist.
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exponent will still give the behavior of Fig. 9, since
the contribution of W in the joint exponent will become
dominant, as the action is divided by ℏ whereas the
measure adds a logarithmic dependence on ℏ to the joint
exponent.
Now, for sufficiently small sa, the qualitative behavior of

the flow does change in the region with jϕj > π. This only
changes our discussion regarding the further deformation
along the flow of the rh > sa=3 portions, because what
happens then is that the thimble associated to the joint
exponent saddle at ϕ ¼ 0 does not end up in a saddle at
ϕ ¼ −2π ≡ 2π, but actually asymptotes to the line
ϕ ¼ �2π. However, in this situation we again have a
further deformed contour in which the integral is “mani-
festly convergent and saddle point dominated,” because it is
still made of steepest descent flow lines.
Hitherto these are just fixed-length saddles, there is no

guarantee to have extrema with respect to sa. However,
as noted, there is actually a maximum when sa ¼ s�a
and one has WHJðs�aÞ ≈ 1.85 × SdS3 , where SdS3 ¼ 4π2ffiffiffi

Λ
p

denotes the Gibbons-Hawking entropy. In a semiclassical
expansion this maximum would dominate, and therefore
one would have

Z ∼ exp ð1.85 × SdS3Þ: ð21Þ

Due to its Euclidean nature and the fact that its action
scales with SdS3 as 1=

ffiffiffiffi
Λ

p
, this is identified as a discrete

Euclidean de Sitter saddle. The result (21) was reached
with a Lorentzian path integral and resembles that of
Gibbons and Hawking, up to the numerical factor 1.85
(which we will discuss in Sec. IV D). However, before we
can conclude that the Euclidean saddle dominates,
we must evaluate the contribution coming from the
sΛa < sa < ∞ domain.
The exponential enhancement, which resulted from

the imaginary contribution due to the chosen side of
the branch cut, appears at first to lead to trouble. The
remaining contribution to the path integral, from the
sa ∈ ðsΛa ;∞Þ regime, also contains the branch cut portions
of the contour, and the corresponding exponential
enhancement grows indefinitely with the size of the
horizon, i.e., sa itself. Note, however, that we integrate
over both positive and negative lapse. The net integral
depends on how these contributions combine. In the
Euclidean saddle regime, as explained above, the contour
can be deformed away from the branch cut to pass through
a saddle that is also exponentially enhanced and domi-
nates the integral. Thus, in the Euclidean saddle regime,
the contributions from the two portions are evidently
additive. In the Lorentzian saddle regime, on the other
hand, it turns out that they cancel.30

To show that they cancel we start by noting that Cauchy’s
theorem ensures, that the fixed-length integral equals the
integral of the arc at infinite radius going from ϕ ¼ −π to
ϕ ¼ π. More precisely for the fixed-length integral in the
regime sa > sΛa , we have

Zsa>sΛa ¼ lim
rh→∞

Z
arc

dshμheW

¼ lim
rh→∞

Z
π

−π
dϕð{rhe{ϕÞμheW: ð22Þ

We will prove that this infinite arc integral is zero provided
the measure satisfies jμhj ¼ rαh with α < −1=2. In particu-
lar, this is the case for our measure (16).
The key intuition behind this is based on the fact that the

asymptotic behavior of the exponent changes as one crosses
the threshold sΛa from below; As seen from Eq. (18) and
suggested by the gradient flow of ReW in Fig. 8, in the
region −π < ϕ < π the limit of ReW as rh → ∞ changes
from diverging to ∞ (for sa < sΛa ) to diverging to −∞ (for
sa > sΛa ). This is a manifestation of the competition between
the curvature term and the cosmological constant term in the
action. Therefore, for large rh, the integrand in (22) is
exponentially suppressed. However, ReWð�πÞ ¼ 0 for
rh > sa=3, so right at the boundary points ϕ ¼ �π of the
arc the exponential suppression disappears and the absolute
value of the integrand is of order rhμh. This could lead to a
nonzero and even divergent result if μh does not (suffi-
ciently) suppress large heights. We shall now see that with a
suitable measure the integral indeed vanishes.31

We begin by observing that for sufficiently large rh,
ReW is convex as a function of ϕ∈ ½−π; π�, as illustrated by
the solid line in Fig. 10. Therefore, its graph lies below the

30One can in fact show that they do not vanish individually.

31There is an alternative approach that would lead to the same
conclusion, while using a trivial measure μh ¼ 1. One can
regularize the purely oscillatory portions of the fixed-length
integrals (i.e., those with sa=3 < rh < ∞) in the standard way by
adding an exponential damping for large rh parametrized by an
infinitesimal parameter ϵ. This can be achieved by deforming the
contours infinitesimally away from the Lorentzian lines for large
heights. However, given how the asymptotic behavior of ReW
changes when crossing sΛa , the deformation would depend on the
regime in question. For sa > sΛa the contours would be positioned
asymptotically at ϕ ¼ �π ∓ ϵ and the integral over the asymp-
totic arc would be zero, because the arc now does not include the
boundary points at ϕ ¼ �π. For sa < sΛa one would have a
contour asymptotically at ϕ ¼ �π � ϵ and the same Euclidean
saddle point as in the main text dominates in a semiclassical
expansion. However, this asymptotic deformation for sa < sΛa
violates the off shell (strong) version of the convergence criterion.
Thus, although the main conclusions of Sec. IV C would hold
also in this approach, it comes with the cost of letting go of the
strong convergence criterion and adopting instead its weak (on
shell) version, i.e., that in which it is only required for the
dominating saddle point to be such that ReN > 0. Further work is
needed to determine whether the weak version suffices in the
context of the full multidimensional integral.

DITTRICH, JACOBSON, and PADUA-ARGÜELLES PHYS. REV. D 110, 046006 (2024)

046006-18



two secants which go from the point ð−π; 0Þ to
ð0;ReWðϕ ¼ 0ÞÞ and from the point ½0;ReWðϕ ¼ 0Þ� to
ðπ; 0Þ, respectively (cf. dashed lines in Fig. 10). In other
words, ReW is bounded from above by the function

β ≔ ReWðϕ ¼ 0Þð1 − jϕj=πÞ; ð23Þ

whose graph is illustrated by the dashed line in Fig. 10.
Thus,

0 ≤ jZsa>sΛa j ≤ lim
rh→∞

Z
arc

jdshμheW j

≤ lim
rh→∞

Z
π

−π
dϕr1þα

h eβ

¼ lim
rh→∞

−
2πr1þα

h

Wðϕ ¼ 0Þ
∝ lim

rh→∞
r
1
2
þα
h ; ð24Þ

where we have used (16). The last two relations follow
because [cf. (18)]

lim
rh→∞

Wðϕ ¼ 0Þ ∝ lim
rh→∞

ð− ffiffiffiffiffi
rh

p Þ ¼ −∞:

The upper bound thus vanishes provided α < −1=2.
In summary, above the threshold, the fixed-length integral

over the arc at infinity connecting the Lorentzian branches is
zero, as its absolute value is bounded from above by the
integral of r1þα

h jeβj, which vanishes if α < −1=2. However,
since said arc together with the original integration domain
form a closed contour, it must be that the integration over
the latter also vanishes, by virtue of Cauchy’s theorem. [Note
also that we can not conclude the same in the ð0; sΛa Þ

subdomain, since according to (18) the integrand diverges
for rh → ∞.]
As said cancellation happens for every sa with sΛa <

sa < ∞, this second regime of the partition function path
integral does not contribute, and therefore in the semi-
classical approximation we indeed recover, by deformation
of a Lorentzian contour, the Gibbons-Hawking-like result
(21) as conjectured in the continuum setting of [9,11].
We note that there is also a more heuristic reason why the

saddle points along the Lorentzian lines do not contribute;
these are only saddle points if we restrict variations to the sh
variable, but none of these partial saddle points turns out to
be a saddle with respect to variations of both sh and sa.
Thus, using our discrete formulation we have found that,

starting from a quasi-Lorentzian path integral for the
partition function under study, a) one obtains an exponen-
tially enhanced result for the entropy consistent with the
result of Gibbons and Hawking, which arises due to the
imaginary contribution to the action that comes from CTC
singularities, and b) although the exponential enhancement
of the integrand grows without bound with the size of the
system boundary, its contribution to the integral is cut off
by cancellations, via a mechanism similar to that discussed
in a related continuum context in Ref. [5].
Note, however, that the overall factor in the exponent

of (21) makes it such that our result does not exactly match
that of Gibbons and Hawking, which agrees with the
Bekenstein-Hawking entropy formula for a cosmological
horizon of circumference (area) L ¼ 2π=

ffiffiffiffi
Λ

p
, namely

SdS3 ¼ 2πL ¼ 4π2=
ffiffiffiffi
Λ

p
.32 Thus, the precise continuum

dS result is not recovered. This is likely a discretization
artifact. Indeed, the three-dimensional Regge-Hamilton-
Jacobi function is not triangulation invariant in the presence
of a nonzero cosmological constant when using flat33

tetrahedra [65], as done here; thus one would expect to
recover the continuum result only in a continuum limit.
Before commenting further on this issue of discretization

artifacts let us contemplate what would happen if we were
to choose the Lorentzian contour to go along the exponen-
tially suppressing side of the branch cut. In this case both
the contour part corresponding for positive lapse and the
contour part corresponding to negative lapse can be
deformed so as to pass through the Euclidean saddle point
at ϕ ¼ 2π, which give exponentially suppressed contribu-
tions (cf. [15]). In case one is using a measure μh ∼ s−1h ,
which does allow us to use the Riemann surface coordin-
atized by ϕ∈ ½−2π; 2π�, one can even close the contour
with an arc at infinity, whose contribution is zero. One
would thus find that the integral over sh leads to zero in the
Euclidean saddle regime. The appearance of the branch

FIG. 10. This figure shows ReW (solid) as a function of the
Wick rotation angle ϕ in the range ϕ∈ ½−π; π�, with saΛ ¼ 50

and rhΛ ¼ 103. For sufficiently large rh, ReW is nonpositive and
convex for ϕ∈ ½−π; π�. It can therefore be bounded by a piecewise
linear function (dashed) obtained by gluing secants. Here we
choose to use two secants, which cut the ReW graph at ϕ ¼ −π
and ϕ ¼ 0, and at ϕ ¼ 0 and ϕ ¼ þπ, respectively.

32Recall that in our units 8πG ¼ ℏ ¼ 1, so the Bekenstein-
Hawking entropy for a horizon is L=4ℏG ¼ 2πL.

33The situation changes when dealing with homogeneously
curved tetrahedra [27].
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cuts and the choice of branch cut side seem therefore to be
essential for the result.
Notably, our branch cuts may have a continuum analog.

As discussed above, our calculation is structurally similar
to continuum Lorentzian minisuperspace no-boundary
wave function calculations which can be reduced to an
integral over a global lapse that is comparable with our
fixed-length integrals. However, the continuum action
includes a 1=N-term (originating from proper time deriv-
atives normal to the spatial hypersurfaces), hence the
N ¼ 0 point represents an essential singularity. By contrast,
the Regge action is finite for vanishing height, but has a
branch cut for sufficiently small height values. The branch
cut in the discrete theory and the 1=N singularity in the
continuum both arise from degeneracy of the metric. When
N goes to zero, the spacelike foliation degenerates, and no
proper time flows. In our simplicial setting, this happens at
the CTC singularity even when the timelike height of the
tetrahedron is nonzero, provided it is small enough that
there is a CTC singularity where time does not flow.
Whereas in the discrete case one needs to decide how to

navigate the branch cut for small height values, one needs
to decide in the continuum how to navigate the essential
singularity at N ¼ 0. One can indeed reproduce both the
choice of the suppressing side of branch cut and the
enhancing side of branch cut in the continuum minisuper-
space discussion, as shown by the works [51,52], respec-
tively. These works indeed differ in their choice of how to
navigate the essential singularity. The different contour
choices are illustrated in Fig. 11. In fact, when choosing the
side leading to exponential enhancement one picks up a
contribution from the Hartle-Hawking saddle, so that after
setting a1 ¼ 0 (which corresponds to integrating over all
minisuperspace geometries with no-boundary at all, similar
to our calculation) one gets Z ∼ exp SdS in a semiclassical
limit, as do we.
One could thus say that by discretization we have blown

up the essential singularity into a branch cut. This has the

advantage of making the related choice of contour more
obvious and also provides an intuitive explanation of
how Lorentzian path integrals can lead to exponentially
enhanced results. Further, it could be interesting to explore
if the essential singularity and corresponding circumven-
tion in the lapse complex plane somehow capture the
geometry of CTC singularities or a remnant of it. Indeed,
we just argued that the continuum minisuperspace path
integral (with the appropriate choice of contour near
N ¼ 0) leads also to the de Sitter entropy. This happens
despite the fact that the continuum minisuperspace geom-
etries do not include CTC singularities—at least as long as
the scale factor and lapse are kept real. The match between
the discrete and continuum minisuperspace results sug-
gests, however, that the geometries resulting from making
the lapse complex might describe CTC singularities.

D. Refinement of the discretization

We noted the numerical disagreement between the
continuum result SdS3 ¼ 4π2=

ffiffiffiffi
Λ

p
and the discrete one

coming from (21). To evaluate whether it dissipates in
the continuum limit we can check if the discrepancy
reduces when refining the triangulation. Let us do so.
We will consider a minimal refinement scheme that will

indeed reduce the difference between the continuum and
discrete results. However, it will not be a continuum limit.
In particular, we will not be adding more degrees of
freedom into the system, but we will make it smoother.
Thus, the difference is not eliminated completely, but
enough to support the expectation that the discrepancy is
a discretization artifact.
So far we used as a fundamental building block an

isosceles triangular pyramid with equilateral base triangle.
This can be refined (in the sense of smoothing the horizon’s
triangulation) by an isosceles pyramid with square base,
or pentagonal base, or in general a regular n-gon as a base.
We can then glue four of these pyramids as in Fig. 2(b) to
obtain a sequence of triangulations labeled by n. In the

FIG. 11. Different global lapse contours (red/upper and blue/
lower dashed lines) used in the literature to compute the no-
boundary wave function from path integrals [51,52]. They
differ in how they circumvent an essential singularity (black
dot) at N ¼ 0. This continuum situation is analogous to ours,
where we may navigate the branch cuts, which are centered at
sh ¼ 0, in two different ways if we do not take into account the
convergence criterion. This similarity suggests that the Regge
action may in general blow up singularities of the continuum
action as branch cuts.

FIG. 12. Fitted function showing the ratio of the continuum
and discrete computations. The ratio goes closer to one with the
refinement scheme, but saturates around 1.42.
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n → ∞ limit the sequence reproduces the geometry of
four cones glued together as in the figure. The analytic
structure of any of these triangulations is qualitatively
similar to that of the original tetrahedral case, so the
arguments of Sec. IV C migrate directly and we can ask
what is the semiclassical behavior of the partition function
as n changes. This is captured in Fig. 12, which confirms
the discussion above; namely, as we refine, the continuum
result is approached, but not reached, as this is not the full
continuum limit. This suggests that, indeed, the prefactor in
the exponent of (21) is a discretization artifact.

V. DISCUSSION

The Lorentzian gravitational path integral (integrating
over both positive and negative lapse) imposes the diffeo-
morphism and Hamiltonian constraints [57] onto the initial
and final states and computes the physical inner product
between states. If the initial and final configurations are
identified, the path integral computes the dimension of the
physical Hilbert space. In this work we implemented this
in the case of simplicial minisuperspace gravity in 2þ 1
dimensions with a positive cosmological constant, for a
system whose spatial configuration is a triangle, and whose
spacetime topology is a 3-sphere. The configurations are
characterized by two squared edge lengths, and include a
class with closed timelike curves around the perimeter
of the triangle, as required if the path integral is to compute
the dimension of the Hilbert space of triangle geometries.
We expected the result to agree, at least qualitatively, with
the entropy associated with a static patch of de Sitter space,
and this expectation was confirmed. Key to the result is the
imaginary contribution to the action that arises from the
presence of the closed timelike curves, in close analogy
with what was found in a related continuum calculation of
black hole entropy [5].
The simplicial framework offers a number of advantages

and insights:
(i) It provides a regularization of the path integral,

turning it into a finite dimensional integral. This
allows a much more explicit treatment of the path
integral than in the infinite dimensional continuum
case. The two-dimensional integral naturally splits
into an integral where we keep the area (here a
length) of the support of the conical singularity
fixed, and a second integration over this volume.
The same split has been discussed for the con-
tinuum in [5];

(ii) The Lorentzian Regge action, derived via analytic
continuation from the Euclidean Regge action [15],
naturally includes imaginary terms for codimension-
2 conical singularities which support light cone
irregularities [15,21]. This is to be contrasted with
the continuum framework [5,48], where additional
input is needed in order to define the action in the
presence of such light cone irregularities;

(iii) The framework of the complex Regge action [15],
which we employ here, makes also clear that (edge)
light cone irregularities are associated with branch
cuts. The Lorentzian contour is therefore not
uniquely defined in the presence of such light cone
irregularities. One rather needs also to specify how
to navigate the branch points. In doing so the
contour cannot remain strictly Lorentzian as we
have to go into the complex domain. (There is a
second sense in which our contour is not strictly
Lorentzian, as we do allow light cone irregularities
to occur.)

The choice of contour along the branch cut
decides whether the resulting path integral picks
up exponentially enhancing or suppressing contri-
butions. These result from the imaginary terms in the
Regge action, and explain how a Lorentzian path
integral can lead to an exponentially enhanced result
and thus a large entropy.

The exponential enhancement is present already
along our quasi-Lorentzian integration contour, but
we are also able to rigorously justify deformation of
the contour so that it passes through a Euclidean
saddle that yields the leading order result and is a
discrete version of the one postulated by Gibbons
and Hawking [66] to be dominant. Earlier work [9]
argued that such a contour deformation should be
possible. Here, in the simplicial minisuperspace
setting, we have verified that indeed it is.

One might think that the ambiguities in the
Lorentzian contour are a discretization artifact,
however this does not seem to be the case. A related
choice of contour exists also in continuum calcu-
lations of the no-boundary wave function, hidden in
the choice of detour around an essential singularity
of the integrand at vanishing lapse [52,59,64].
The same kind of ambiguity appears also in the
continuum discussion of topology changing trouser
configurations [56].

(iv) Our discrete example offers sufficient control over
the integral so that we can establish explicitly its
convergence along the contour dictated by the nature
of the partition function being calculated, namely,
the quasi-Lorentzian contour described above. We
are also able to establish that a contour deformation
to certain Lefschetz thimbles is allowed.34 Unlike in
some work on the path integral for a cosmological
wave function (e.g., [67]), the thimble contour is
here justified from first principles via deformation of

34See Ref. [19] for a numerical technique (known as accel-
eration of series convergence) which allows to evaluate the
Lorentzian integral without any contour deformation. The results
coincide with a numerical integration along a deformed
(Lefschetz thimble) contour.
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the original partition function contour, rather than
being postulated.

(v) In addition to the convergence of the minisuperspace
integral taken by itself, there is the crucial issue of
convergence of the (infinitely many) “fluctuation”
integrals that are ignored in the minisuperspace
treatment. As first emphasized by Halliwell and
Hartle [17] in the context of the saddle point
approximation to the no-boundary wave function,
the recovery of quantum field theory in curved
spacetime requires that the fluctuation integrals are
convergent, which in turn requires that the real part of
the lapse function be positive (in a convention where
the Euclidean lapse is real). (See also [53,54,56] for
related discussions.)
We have adopted this fluctuation convergence

criterion (FCC) to determine how to circumnavigate
the branch points of the Lorentzian contour, and
found that the resulting contour is also the one on
which there is exponential enhancement, rather than
exponential suppression, of the integral. It makes
good sense that satisfaction of the FCC is required in
order to obtain the large Bekenstein-Hawking horizon
entropy, given that this entropy can be understood as a
form of vacuum entanglement entropy, UV regulated
somehow by quantum gravity [68]: the FCC is
essentially the condition that the fluctuations behave
locally as they do in the Minkowski vacuum.

(vi) As emphasized in [5] the mechanism allowing for a
positive entropy carries however also the danger of
giving a divergent result: we also need to integrate
over the area (here given by a length parameter sa) of
the conical singularities. With exponential enhance-
ment this integral seems bound to diverge. However,
we encounter a novel and surprising mechanism that
prevents such a divergence. The threshold value sΛa ¼
8
ffiffiffi
3

p
π=Λ distinguishes two regimes. For sa < sΛa the

integral (over the remaining parameter, which can be
identified with a lapse) has only Euclidean saddles,
whereas for sa > sΛa the system has two Lorentzian
saddles, one for positive and one for negative lapse.
Integration over both positive and negative lapse—as
required for projection onto the physical Hilbert
space—leads to cancellation of these large sa con-
tributions; in fact, a closed contour argument shows
that in this regime the integral vanishes exactly.

Also connected with these fixed sa integrals over our
lapselike variable is the observation we made in Sec. IV C
pointing out that they are structurally similar to real-time
no-boundary wave function computations in the Regge
framework [12–15]. It is therefore tempting to compare
the analytic structure with the one of the corresponding
continuum minisuperspace calculations where one sees
that at small lapse one needs to leave the strictly
Lorentzian contour in order to circumvent an essential

singularity at zero lapse. This seems to be reminiscent of
the branch cut circumvention in the discrete needed for
small lapse, so it would be interesting to study this
similarity in greater detail.
It is also interesting to compare the behavior of the fixed

sa Euclidean saddle action with that in the analogous
continuum setting. As seen in Fig. 9, the negative of the
simplicial saddle action grows with sa to a maximum at
some s�a, and then decreases to zero at sΛa . Moreover, the
lapse (

ffiffiffiffiffi
rh

p
) at the saddle diverges in the limit sa → sΛa . In

the continuum, the minimal action Euclidean saddle at
fixed spatial volume was found in [11] to behave similarly
in both of these respects. A difference, however, is that in
the simplicial case the boundary perimeter of the spatial
triangle reaches the maximum value 3

ffiffiffiffiffi
sΛa

p
> 0 when the

action vanishes, whereas in the continuum case the action is
proportional to the boundary (D − 2)-area, which goes to
zero when the spatial (D − 1)-volume covers the complete
de Sitter equatorial (D − 1)-sphere.
For the case of zero cosmological constant, sΛa goes to

infinity, so a Euclidean saddle exists for any fixed spatial
area. In the simplicial model, at the saddle in this limit
we have rh ∼ s2aΛ → 0. One can see by inspection of the
general formula for W in (14) that in this limit
W → 6π

ffiffiffiffiffi
sa

p
, which remarkably is precisely equal (in

our units with 8πGℏ ¼ 1) to the Bekenstein-Hawking
entropy associated with the triangle perimeter, L ¼ 3

ffiffiffiffiffi
sa

p
.

Another comparison between the simplicial and con-
tinuum cases worth mentioning concerns the curvature of
the fixed spatial area Euclidean saddle geometry. In the
continuum, unless the fixed spatial area corresponds
precisely to that of the de Sitter hemisphere, there is a
mild (integrable) curvature singularity at the disc boundary
(i.e., at the Euclidean horizon), which implies that higher
curvature terms that would appear in the effective field
theory action for a UV completion of the theory should be
taken into account. In the simplicial theory, on the other
hand, all curvature is focused onto bones, and the discrete
analog of curvature never diverges.
We have seen that the simplicial Regge framework can

shed light on a number of issues for the Lorentzian
gravitational path integral. Numerous generalizations are
possible, and promise to yield interesting physical insights.
A simple variation on what we have done here would be to
employ a triangulation whose configurations, for any value
of the “lapse,” are only those with CTC singularities, i.e.,
which do not include initial and final singularities. This
would be closer to the nature of the continuum partition
function. And it would be interesting to devise a continuum
minisuperspace partition function that would involve inte-
gration over such configurations, which could be compared
with the simplicial model. More generally, refining our
triangulation and relaxing symmetry assumptions the
Regge framework would allow one to add geometric
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fluctuations, such as anisotropies, in a controlled manner, in
analogy with the continuum minisuperspace work in
[55,69,70]. This would clarify the role of the fluctuation
convergence criterion, andmore generally could give usmore
confidence that the Lorentzian gravitational path integral can
be made well defined. And, finally, these methods could be
applied to investigations of black hole space times and
configurations which describe topology change.
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APPENDIX A: CONVERGENCE OF
THE sh INTEGRAL ALONG

THE LORENTZIAN CONTOUR

Here we establish the (conditional) convergence of the
fixed length path integral Zsa ¼

R
drhμðrhÞeWðrhÞ along

the Lorentzian contour when rh → ∞. To do so we apply
Dirichlet’s test for convergence of improper integrals [71].
This states that the integralZ

∞

a
fðxÞgðxÞdx ðA1Þ

of the product of two continuous complex valued functions
converges if two conditions hold: (i) the modulus ofR
x
a fðtÞdt is uniformally bounded on all intervals in
½a;∞Þ; (ii) the real and imaginary parts of g are monotonic
and limx→∞ gðxÞ ¼ 0. To apply this test we make use of the
asymptotic expansion of WðrhÞ for large rh. According to
Eq. (18) we have for ϕ ¼ �π the asymptotic behavior
WðrhÞ ∼ {c

ffiffiffi
r

p
, with c∈R. The subleading terms are of the

form {RðrhÞ ¼ {
P

k≥1 ckr
−kþ1=2
h with ck ∈R, hence R → 0

for rh → ∞. For large rh the integral thus becomesZ
∞

a
drhrαh expð{RðrhÞÞ expð{c

ffiffiffiffiffi
rh

p Þ

¼ 2

Z
∞ffiffi
a

p dxx2αþ1 expð{Rðx2ÞÞ expð{cxÞ; ðA2Þ

where x≡ ffiffiffi
r

p
. We then choose f ¼ expð{xÞ and

g ¼ x2αþ1 expð{Rðx2ÞÞ. Dirichlet’s test is passed as long
as α < −1=2 and we choose the lower boundary value a for
the integral sufficiently large, so that the imaginary and real
parts of gðxÞ are monotonic [remember that RðxÞ → 0 for
r → 0]. In the main text we show that α < −1=2 also
ensures that the integral over a certain ϕ-parametrized arc
vanishes in the limit of rh → ∞, which allows us to replace
the original contour with a deformed contour.

APPENDIX B: REALITY OF
THE PARTITION FUNCTION

Here we show that the simplicial path integral computed
in the main text, Z, is real, which is consistent with it being
a discrete version of a partition function computing the
dimension of a Hilbert space.
To do so we begin by splitting Z [cf. (15)] into its

contribution from the left and right quasi-Lorentzian
portions of the contour at ϕ ¼ ∓π, respectively,
together from the contribution of the arc around rh ¼ 0
(cf. Fig. 8),

Z ¼ lim
ϵ→0

Z
∞

0

dsaμaðsaÞZsa

¼ lim
ϵ→0

Z
∞

0

dsaμaðsaÞ
�
ZL
sa þ ZR

sa þ Zarc
sa

�
: ðB1Þ

As stated in Sec. IV B we consider a real μa, so it suffices
to show that the fixed-length path integrals Zsa with
measure (16) are real. We begin with Zarc

sa

Zarc
sa ¼

Z
arc
dshμheW

¼−{
Z

π

−π
dðϵe{ϕÞðϵαe{αϕÞeW

¼ ϵ1þα

�Z
0

−π
dϕe{ð1þαÞϕeWþ

Z
π

0

dϕe{ð1þαÞϕeW
�
; ðB2Þ

but Z
0

−π
dϕe{ð1þαÞϕeWðϕÞ ¼

Z
π

0

dϕe−{ð1þαÞϕeWð−ϕÞ; ðB3Þ

and therefore using the fact that (see Ref. [15] for a proof)

WðϕÞ ¼ Wð−ϕÞ� ðB4Þ

we have

Zarc
sa ¼ ϵ1þα

�Z
π

0

e{ð1þαÞϕeWdϕþ c:c:

�
; ðB5Þ

which is manifestly real.
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Similarly, ZL
sa þ ZR

sa is real, because these terms are
complex conjugates of each other, as the following argu-
ment shows. Let us denote CL as the left ϵ-deformed
contour and similarly for the right one, and their
parametrization as s□h ðrhÞ ¼ rhe{ϕ

□ðrhÞ. From Fig. 8 it is
clear that

ϕLðrhÞ ¼ −ϕRðrhÞ ⇒ sLhðrhÞ ¼ sRh ðrhÞ�; ðB6Þ

so using (B4) we have

ZL
sa ¼ −{

Z
CL

dshsαhe
W ¼ {

�Z
CR

dshsαhe
W

��

¼ {ð{ZR
saÞ� ¼ ðZR

saÞ�; ðB7Þ

where the sign change in the second equality is due to the
fact that CL and CR are traversed in opposite directions.
From (B7) if follows that ZL

sa þ ZR
sa is indeed real, and

because so is Zarc
sa , it follows from (B1) and the reality of μa

that Z is real.
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