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We study interacting theories of N left-moving and N̄ right-moving Floreanini-Jackiw bosons in two
dimensions. A parametrized family of such theories is shown to enjoy (nonmanifest) Lorentz invariance if
and only if its Lagrangian obeys a flow equation driven by a function of the energy-momentum tensor. We
discuss the canonical quantization of such theories along classical stress tensor flows, focusing on the case
of the root-TT̄ deformation, where we obtain perturbative results for the deformed spectrum in a certain
large-momentum limit. In the special case N ¼ N̄, we consider the quantum effective action for the root-
TT̄-deformed theory by expanding around a general classical background, and we find that the one-loop
contribution vanishes for backgrounds with constant scalar gradients. Our analysis can also be interpreted
via dualUð1Þ Chern-Simons theories in three dimensions, which might be used to describe deformations of
charged AdS3 black holes or quantum Hall systems.
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I. INTRODUCTION

In physics, we are frequently interested in parametrized
families of classical or quantum field theories (QFTs). The
tangent vectors to these families often have an interpreta-
tion as operators within a given theory. One familiar
example appears in the study of conformal field theories,
which may possess certain exactly marginal operators.
Deforming a conformal field theory (CFT) by a marginal
operator generates motion on the conformal manifold,
which is one such family of theories.
Another simple one-parameter family generated from any

quantum field theory is the well-known renormalization
group (RG) flow. We can interpret this as a curve of theories
labeled by an energy scale μ. For a CFT, this curve degenerates
to a single point, but for otherQFTs, one finds an infinite family
of theories connecting two RG fixed points at the UVand IR
ends of this flow. The operator that plays the role of the tangent
vector to this curve is the trace of the energy-momentum tensor,
which generates scale transformations.
The renormalization group example is especially useful

because it is universal: any translation-invariant field

theory admits an energy-momentum tensor Tμν, so we
may always deform by the trace Tμ

μ to flow toward the
infrared. It is natural to explore other deformations con-
structed from the stress tensor, which are also universal.
These stress tensor deformations generate a larger class of
flows, which includes the renormalization group flow as a
special case, but which also includes other famous exam-
ples such as the TT̄ deformation of two-dimensional
quantum field theories [1–3].
Even at the classical level, stress tensor flows often give

rise to interesting parametrized families of theories. For
instance, consider classical theories of a single Abelian
gauge field Aμ whose Lagrangians depend on the field
strength Fμν but not its derivatives. Construct the para-
metrized family that contains the Maxwell theory,
L ¼ − 1

4
FμνFμν, and all other theories that can be reached

from the Maxwell theory by deformations involving the
energy-momentum tensor. This family is precisely the
collection of theories of nonlinear electrodynamics that
are invariant under electric-magnetic duality rotations [4],
which is of interest in its own right.1
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1Strictly speaking, there are some isolated points in this space
such as the Bialynicki-Birula theory [5] which are not connected
to Maxwell, so to be precise we should say that the family
generated in this way gives one connected component in the
space of duality-invariant theories.
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Another example concerns theories of a two-form gauge
potential Aμν with a self-dual three-form field strength Fμνρ

in six spacetime dimensions. Any family of such theories—
e.g., the collection of interacting chiral tensor theories that
describe the worldvolume theory on an M5-brane, labeled
by a parameter T that controls the tension of the brane—
also obeys a stress tensor flow equation [6]. We say that
both 4d theories of duality-invariant electrodynamics and
6d chiral tensor theories are closed under stress tensor
flows, in the sense that deforming any member of one of
these classes of theories by a Lorentz scalar constructed
from Tμν produces another member of the same class.
In this paper, we will investigate another space of

theories, which is also closed under deformations involving
the energy-momentum tensor. The theories that we con-
sider here describe the dynamics of a collection of N chiral
and N̄ antichiral bosonic fields in two spacetime dimen-
sions. Such theories of several chiral bosons appear in
many contexts, such as in the T-duality symmetric formu-
lation of world sheet string theory [7,8]. The simplest
member of this class of theories, with N ¼ 1 and N̄ ¼ 0, is
the theory of a single chiral boson which is described by the
Floreanini-Jackiw action [9], namely

SFJ ¼
1

2

Z
d2xð∂tϕ∂θϕ − ∂θϕ∂θϕÞ: ð1:1Þ

Here we work in a 2d spacetime with coordinates ðt; θÞ. As
is well-known, it is not straightforward to write a manifestly
Lorentz-invariant Lagrangian for a field that obeys a
chirality (or self-duality) constraint. One approach, which
we will follow in this work, is to sacrifice manifest Lorentz
invariance and work with actions of the form (1.1) that
explicitly single out a preferred time coordinate t; we will
then need to impose that the theory enjoy a nonmanifest
Lorentz symmetry. Another strategy is to introduce one or
more auxiliary fields to restore manifest Lorentz invariance,
which is the tactic used to describe chiral tensor theories in
six dimensions using, e.g., the Pasti-Sorokin-Tonin (PST)
formulation [10–12] (and later extended to higher dimen-
sions [13]). A related technique was used to present a
manifestly Lorentz-invariant description of the Floreanini-
Jackiw action in [14].
For a single chiral (or antichiral) boson, it is known that

no continuous deformation of the free theory to include
Lorentz-invariant self-interactions is possible [13,15]
(although see Ref. [16] for such an interacting model
which is not continuously connected to the free theory). In
this work, we will give a new interpretation of this fact: all
Lorentz-invariant interacting chiral boson theories are
generated from stress tensor deformations, but (1.1) is a
fixed point of all such flows, and, therefore, there is no way
to deform it to include interactions. However, for a theory
with N ≥ 1 chiral and N̄ ≥ 1 antichiral bosons, such self-
interactions are possible, and it is natural to describe them

with an interaction function Vð∂θϕi; ∂θϕ̄īÞ that depends on
the spatial derivatives of the fields:

Sint ¼
1

2

Z
d2xð∂tϕi

∂θϕ
i − ∂tϕ̄

ī
∂θϕ̄

ī − Vð∂θϕi; ∂θϕ̄īÞÞ:

ð1:2Þ

In this expression, i ¼ 1;…; N runs over the chiral fields
and ī ¼ 1;…; N̄ labels the antichiral fields. We will be
primarily interested in theories that are invariant under the
OðNÞ ×OðN̄Þ symmetry rotating the chiral and antichiral
bosons among themselves, although we will give some
results that do not make this assumption; we will see that it
is also possible to promote (1.2) to include a target-space
metric Gij, Ḡī j̄ for the bosons, or couplings to an
antisymmetric tensor field Bij, B̄ī j̄ [which in general breaks
OðNÞ ×OðN̄Þ], without significantly changing our analy-
sis. Because the Lagrangian appearing in (1.2) is first-order
in time derivatives, the function V can also be interpreted as
the Hamiltonian of the model. This structure is similar to
that of the PST description of a 6d chiral tensor theory, after
gauge-fixing the auxiliary field vμ of this formalism to the
value vμ ¼ δ0μ, whose action is

SPST;gauge-fixed ¼
Z

d6x

�
1

4
Bij∂0Aij −Hðs; pÞ

�
: ð1:3Þ

Here s ¼ 1
4
BijBklδikδjl and p ¼

ffiffiffiffiffiffiffiffiffi
pipi

p
, where

pi ¼ 1
8
εijklmBjkBlm, are two SOð5Þ-invariant quantities

constructed from the “magnetic field” Bij, where Eij and
Bij are related to the fundamental field F3 ¼ dA2 as
Eij ¼ Fij0, Bij ¼ F̃ij0, and F̃ denotes the Hodge dual of
F. This gauge-fixed form of the PST action is closely
related to the Perry-Schwarz formalism [17]. In our two-
dimensional example, the role of the magnetic components
Bij of the three-form field strength is played by the spatial
derivatives ∂θϕi and ∂θϕ̄

ī of the bosons.
Although we will not consider other formulations of

chiral boson theories in this work, let us briefly mention
that several other approaches have been used to describe
such models. One presentation, due to Sen [18,19],
introduces an additional “spectator” field which decouples
from the dynamics; TT̄ flows within this formalism have
been studied in [20–22].2 Another presentation introduced
by Mkrtchyan includes an additional auxiliary scalar field
R and reduces to the PST form of the chiral boson action
after integrating out R [24]. See Ref. [25] for a comparison
of some of these formulations and the realization of chiral

2The latter analysis also illuminates a surprising connection
between the solvability of TT̄-like deformations and that of
another deformation of quantum mechanics involving a coshðpÞ
kinetic term [23].
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bosons via a 3d Chern-Simons theory. Finally, a notable
presentation by Siegel [26] expresses the chiral boson
action in terms of a symmetric and traceless auxiliary tensor
field λαβ:

SSiegel ¼ −
1

4

Z
d2x½∂αϕ∂αϕ

þ λαβð∂αϕ − ϵασ∂
σϕÞð∂βϕ − ϵβρ∂

ρϕÞ�

¼
Z

dtdθ

�
1

4
ð∂tϕ∂tϕ − ∂θϕ∂θϕÞ

þ λ01 − λ00

2
ð∂tϕ − ∂θϕÞ2

�
: ð1:4Þ

Siegel’s action (1.4) is classically equivalent to the
Floreanini-Jackiw action (1.1) assuming one can gauge
the two independent components of λαβ to ðλ00; λ01Þ ¼
ð1
4
;− 1

4
Þ [27]. For applications extending Siegel’s action to

gravity and string theory, see Refs. [28–33]. The study of
chiral bosons and other self-dual fields has a long history,
and we refer the reader to an incomplete sampling [34–40]
of earlier work, and references therein, for other results.
Our motivation for studying this class of interacting

chiral boson theories in this work is twofold. The first
reason is purely classical: we would like to characterize the
space of all such interacting theories, each of which is
determined by an interaction function V, which enjoy
nonmanifest Lorentz invariance. As we will see, this
condition will require that the function V satisfy a certain
partial differential equation which is very similar to those
that appear in the cases of 4d duality-invariant electrody-
namics [4] and 6d chiral tensor theories [6]. The space of
solutions to this partial differential equation is intimately
connected to stress tensor flows. More precisely, given any
parametrized family of Lorentz-invariant theories with
interaction functions VðλÞ labeled by a parameter λ, we
will show that ∂λVðλÞ can always be written as a function of
the stress tensor TðλÞ

μν of the theory at the same value of the
parameter λ. Conversely, any flow equation of the form

∂λVðλÞ ¼ fðTðλÞ
μν ; λÞ; lim

λ→0
VðλÞ ¼ Vð0Þ; ð1:5Þ

along with a Lorentz-invariant initial condition Vð0Þ, gives
rise to a one-parameter family of Lorentz-invariant theories.
Therefore, families of Lorentz-invariant interacting chiral
boson theories are in one-to-one correspondence with stress
tensor flows. These statements are the precise 2d analogs of
the 4d and 6d results in [4,6].
The second motivation for this study concerns quantiza-

tion. The general form (1.2) of an interacting theory is
convenient for canonical quantization, since the depend-
ence on time derivatives is fixed and thus the definition of
the conjugate momenta is unaffected by the interaction

function. One can study the quantization of theories in
this class in a uniform way, at least for cases that admit
a controlled perturbative expansion which makes calcu-
lations tractable. When we consider the quantization of a
one-parameter family of theories defined by interaction
functions VðλÞ that satisfy a differential equation of the form
(1.5), we will say that we are studying “quantization along
the classical flow.”
Wewill be especially interested in quantization along the

flow driven by the function

∂γVðγÞ ¼ R½Tμν� ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TμνTμν −

1

2
ðTμ

μÞ2
r

; ð1:6Þ

where we suppress the dependence of Tμν on the flow
parameter γ. This nonanalytic combination R is the two-
dimensional root-TT̄ operator [41], which is the unique
marginal combination of stress tensors that defines a
classical flow equation which commutes with the irrelevant
TT̄ flow in 2d. The root-TT̄ deformation shares some
of the remarkable properties of the TT̄ deformation, such as
preserving classical integrability in many examples [42,43]
and admitting a holographic interpretation in terms of
modified boundary conditions for AdS3 gravity [44,45].
It also plays a role in classical flows for 3d gauge theories
[46] and has connections to BMS3 symmetry and ultra/
nonrelativistic limits of 2d CFTs [47–49].
Another motivation for studying this operator is that

the corresponding commuting TT̄-like and root-TT̄-like
flows in four spacetime dimensions, with the initial con-
dition given by the free Maxwell Lagrangian, were shown
in [50–54] to produce an interesting family of gauge
theories referred to as ModMax-Born-Infeld, which was
first written down in [15]. This family depends on two
parameters, λ and γ. When γ is taken to zero, the theory
reduces to the 4d Born-Infeld model which gives an
effective description of the gauge dynamics on a D3-brane.
As λ → 0, one recovers the so-called modified Maxwell or
ModMax theory, which is the unique conformally invariant
and electric-magnetic duality-invariant extension of the
Maxwell theory [55]. This theory can be supersymmetrized
[56–58], or deformed to include higher derivative inter-
actions [59], it admits a family of Carrollian analogs [60],
and the entire class of ModMax-Born-Infeld theories can be
lifted to a similar family of 6d chiral tensor theories [15]
which also satisfies commuting stress tensor flow equations
[6].3 For an introduction to theories of nonlinear electro-
dynamics, see the lecture notes [62].
Although several classical aspects of the ModMax

theory (and its ModMax-Born-Infeld extension) have been
studied [63–67], the quantization of this model appears to
be more subtle because the Lagrangian is nonanalytic

3See Ref. [61] for a construction of solutions of the 6d
ModMax-like chiral tensor theory coupled to gravity.
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around Fμν ¼ 0. One strategy is to perform perturbative
quantization of this theory around a nonzero background
for the field strength [68].4 Another approach is to look
for lower-dimensional analogs of the ModMax theory,
which one might hope are simpler to quantize. The most
extreme case is to dimensionally reduce the modified
Maxwell theory all the way down to (0þ 1) spacetime
dimensions, which yields a theory of particle mechanics
known as the ModMax oscillator [70,71] that can be
quantized exactly [72]. An intermediate case is to reduce
ModMax from 4d to 2d, which was done in [53], and
this reduction yields precisely the same theory that
one obtains by deforming a collection of free scalars by
the 2d root-TT̄ flow [41,73]. This “modified scalar” theory
is the model whose quantization we consider in the
present work.
For one nonchiral boson, or one left-moving and one-

right moving chiral boson, the modified scalar theory
collapses to a free massless scalar with a rescaled kinetic
term, but for multiple scalars, the theory is nontrivial.
As we will see later, the modified scalar theory with a
general number of scalars may also be related to a free
theory by a series of more complicated, nonlocal field
redefinitions; similar field redefinitions, and related non-
local “dressed” operators, have also played a role in the
study of TT̄ flows [74–78].
One of our goals in studying the quantization of this

model is to test a flow equation for certain energies in a
root-TT̄-deformed CFT, which was obtained via a holo-
graphic analysis in [44]. Under some assumptions, this
equation predicts that the deformed energy Eγ associated
with a seed CFT state that has undeformed energy E0 and
momentum P0 is

Eγ ¼ E0 coshðγÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − P2

0

q
sinhðγÞ: ð1:7Þ

This formula was derived for states dual to Bañados-
Teitelboim-Zanelli (BTZ) black holes in AdS3 with mass
M ≥ 0 and spin jJj ≤ M, which correspond to constant
stress tensor backgrounds. We will, therefore, refer to the
flow equation (1.7) as the “zero-mode energy formula”
since it applies to states of a CFTon a cylinder whose stress
tensors are constant along the circular direction (that is, the
formula applies to the zero mode of the stress tensor). It
would be quite unusual if this energy formula held
universally, even for states whose stress tensors are
spatially varying. And indeed, we will see explicitly in this
work that the zero-mode energy formula fails for states with
such spatial gradients. One might therefore think of (1.7) as

the first term in a gradient expansion, which is corrected by
terms that depend on derivatives ∂T.5

The key ingredient in our check of the energy for-
mula (1.7), which allows us to resolve the square root
and perform a perturbative analysis, is to consider a
certain large-momentum limit and expand in powers of
1
p. Although this approach involves a specific choice of
background around which to expand, one could expand
around any field configuration for which the gradients of
the scalars are nonvanishing, since the combination of
stress tensors (1.6) which appears in the classical
Lagrangian for the modified scalar theory is only nonana-
lytic around zero-energy configurations. We will also
present a related analysis which involves expanding around
a general classical background for N ¼ N̄, in which case
the equal number of chiral and antichiral bosons can be
assembled into a manifestly Lorentz-invariant theory of N
nonchiral bosons, and compute loop corrections to the
modified scalar action. This offers further insight into the
perturbative quantization of this model.
This paper is organized as follows. In Sec. II, we

compute the stress tensor for a generic interacting chiral
boson theory and study classical properties of flows driven
by functions of Tμν, such as preservation of the Lorentz
invariance condition. We then give a complementary
perspective on such chiral boson theories in Sec. III,
interpreting them as the boundary duals to Uð1Þ Chern-
Simons gauge theories, and we show that deformations
such as root-TT̄ can be implemented using certain modified
boundary conditions for the bulk gauge fields. In Sec. IV,
we review general machinery for the canonical quantization
of first-order systems such as (1.2) along classical stress
tensor flows using a mode expansion; we then specialize to
quantization along the root-TT̄ flow and study the cases of
ðN; N̄Þ ¼ ð1; 1Þ and ðN; N̄Þ ¼ ð2; 1Þ in detail. In Sec. V, we
perform a diagrammatic analysis of quantum corrections
along the root-TT̄ flow for a deformed theory of N ¼ N̄
nonchiral bosons, using the background field method.
Finally, Sec. VI summarizes our results and outlines
some interesting future directions. An order-by-order
analysis for more general stress tensor flows is presented
in Appendix A, and the computational steps used to
evaluate certain Feynman diagrams in dimensional regu-
larization have been relegated to Appendix B.

II. CLASSICAL STRESS TENSOR FLOWS
FOR CHIRAL BOSON THEORIES

In this section, we will discuss some generalities about
classical deformations of interacting chiral boson theories
which are driven by functions of the energy-momentum4Another approach would be to use heat kernel techniques. We

are grateful to Sergei Kuzenko and Dmitri Sorokin for discus-
sions on this topic and for informing us of their unpublished
results. See also [69] for a Master’s thesis which computes the
one-loop effective action for ModMax using such techniques.

5The idea of performing such a gradient expansion is philo-
sophically similar to the strategy adopted in hydrodynamics or
the fluid-gravity correspondence [79] (see Ref. [80] for a review).
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tensor. Quite generally, we refer to any differential equation
for the Lagrangian which takes the form

∂LðλÞ

∂λ
¼ fðTðλÞ

αβ ; λÞ; ð2:1Þ

along with an initial condition Lðλ¼0Þ ¼ Lð0Þ, as a stress
tensor flow. We emphasize that the function f is a Lorentz
scalar constructed from the Hilbert stress tensor associated
with the Lagrangian LðλÞ, and not with the undeformed
theory Lð0Þ. For theories that can be coupled to gravity
using only the metric tensor gαβ, the stress tensor is
given by

Tαβ ¼ −
2ffiffiffiffiffiffi−gp δS

δgαβ
¼ −2

∂L
∂gαβ

þ gαβL: ð2:2Þ

However, for theories involving fermions or the chiral
bosons of interest in this work, the standard definition (2.2)
is not sufficient. We will instead need to work in a tetrad
formalism, introducing vielbein fields (or frame fields) Ea

α

so that

gαβ ¼ Ea
αEb

βηab: ð2:3Þ

We will use Greek symbols such as α and β to refer to
curved6 indices in the two-dimensional spacetime with
metric gαβ on which our fields are defined, in contrast with
early Latin letters such as a and b which refer to the flat
tangent-space indices that are raised and lowered with the
Minkowski metric ηab. These are not to be confused with
the lowercase middle Latin symbols such as i, j which are
used to index the chiral scalars ϕi, or their antichiral
variants ī, j̄ which are decorated with a bar and label
the antichiral scalars ϕ̄ī.
We also define E ¼ detðEa

αÞ ¼
ffiffiffiffiffijgjp

. Because this
determinant is nonvanishing, the matrix Ea

α has an inverse,
which we refer to as the inverse vielbein and write as Eα

a.
This inverse frame field obeys

Ea
αEα

b ¼ δab; Eα
aEa

β ¼ δαβ; ð2:4Þ

and similarly

Eα
aEβ

bgαβ ¼ ηab: ð2:5Þ

Within the tetrad formalism, the appropriate generalization
of the Hilbert stress tensor with one curved and one flat
index is defined by

Tβ
a ¼ −

1

E
δS
δEβ

a
: ð2:6Þ

All tangent space indices can be converted to spacetime
indices, or vice versa, by contracting with vielbeins or
inverse vielbeins as needed. For instance, the conventional
stress tensor with two curved indices is then

Tαβ ¼ Tα
aEγ

agγβ: ð2:7Þ

The tetrad formalism will allow us to compute the energy-
momentum tensor and define stress tensor flows for an
arbitrary interacting chiral boson theory of the type in
Eq. (1.2). We will perform the coupling to vielbeins in such
a way that the stress tensor is automatically symmetric,
Tαβ ¼ Tβα, but this is not sufficient to guarantee that the
theory is invariant under boosts; for a generic choice of the
interaction function V, the theory is not Lorentz invariant.
In this work, we will be primarily interested in theories
which do enjoy Lorentz invariance, although this Lorentz
symmetry will not be manifest within this formalism.
Therefore, we will now pause to discuss the nonmanifest
Lorentz invariance of these models, including the con-
ditions this imposes upon the interaction function V and the
connection between Lorentz symmetry and stress ten-
sor flows.

A. Lorentz invariance

We begin by reviewing one way to see the nonmanifest
Lorentz invariance of the simplest theory within the class of
interest, the Floreanini-Jackiw action describing a single
chiral boson. Although this is a well-known story, the
discussion will fix our notation and set the stage for the
analysis of Lorentz invariance with more general interac-
tion functions.

1. One free chiral boson

Much like the electric-magnetic duality invariance of the
4d Maxwell theory, which is a symmetry of the equations
of motion but not of the action itself, the Lorentz symmetry
of the chiral boson theories we study here will be easier to
understand at the level of the equations of motion. We
illustrate this simple principle beginning with the action
(1.1), which we rewrite for convenience:

S ¼ 1

2

Z
d2xðϕ̇ϕ0 − ϕ02Þ: ð2:8Þ

Here, we have defined

ϕ̇ ¼ ∂tϕ ¼ ∂ϕ

∂x0
; ϕ0 ¼ ∂θϕ ¼ ∂ϕ

∂x1
ð2:9Þ

to ease notation. Now consider an infinitesimal Lorentz
boost Λα

β ¼ δαβ þ ωα
β with parameter ω01 ¼ −ω10 ¼ ϵ.

6We use the term “curved” for spacetime indices, even when
we set the spacetime metric gαβ to the flat Minkowski metric ηαβ,
to distinguish them from “flat” tangent space indices such as
those on ηab.
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In this section, we work in Lorentzian signature with
spacetime metric ηαβ ¼ ½−1

0
0
1
�. The change in the compo-

nents of ∂αϕ is

δð∂αϕÞ ¼ ωα
β∂

βϕ; ð2:10Þ

and thus the components of the covector ∂αϕ ¼ ðϕ̇;ϕ0Þ
transform as

ϕ̇ → ϕ̇þ ϵϕ0; ϕ0 → ϕ0 þ ϵϕ̇: ð2:11Þ

The change in the action (2.8) is therefore

δS ¼ ϵ

2

Z
d2xðϕ̇ − ϕ0Þ2 þOðϵ2Þ: ð2:12Þ

This is not an off-shell total derivative, so it is not manifest
that this transformation is a symmetry of the theory.
However, this property is more transparent if we work
directly with the equations of motion. The Euler-Lagrange
equation associated with (2.8) is

ϕ̇0 − ϕ00 ¼ 0; ð2:13Þ

where ϕ̇0 ¼ ∂t∂θϕ. This equation of motion can be
expressed as ∂θðϕ̇ − ϕ0Þ ¼ 0, which means that the quantity
ϕ̇ − ϕ0 is independent of the spatial coordinate θ:

ϕ̇ − ϕ0 ¼ fðtÞ: ð2:14Þ

The time-dependent function fðtÞ can be thought of as a
choice of gauge, which is not physically meaningful.
Indeed, suppose that we transform the function ϕ by

δϕ ¼ hðtÞ ð2:15Þ

for a general time-dependent function h. Then, δϕ̇ ¼ ḣ and
δϕ0 ¼ 0, so the change in the Floreanini-Jackiw action is

δS ¼ 1

2

Z
d2xðḣϕ0Þ ¼ 1

2

Z
d2x∂θðḣϕÞ; ð2:16Þ

which is an integral of a total spatial derivative, and thus the
action is unchanged. Therefore, given any solution to the
equations of motion which takes the form (2.14), we are
always free to perform a gauge transformation (2.15) with

hðtÞ ¼
Z

t
fðt0Þdt0; ḣðtÞ ¼ fðtÞ; ð2:17Þ

which has the effect of eliminating the function fðtÞ on the
right side of (2.14), and thus brings the equation of motion
to the form

ϕ̇ − ϕ0 ¼ 0: ð2:18Þ

Wewill always work in the gauge (2.18) in what follows. If
we write Eq. (2.18) as

Eðϕ̇;ϕ0Þ ¼ 0; E ¼ ϕ̇ − ϕ0; ð2:19Þ

then acting with a Lorentz transformation on this quantity E
gives

δE ¼ δðϕ̇ − ϕ0Þ ¼ −ϵðϕ̇ − ϕ0Þ ¼ −ϵE: ð2:20Þ

That is, the variation of the equation of motion is propor-
tional to the equation of motion itself. This means that, on
the mass shell, the equations of motion are invariant under
Lorentz transformations, which we write as

δE ≃ 0; ð2:21Þ

where the symbol ≃ means “equal when the fields satisfy
their equations of motion.” This is sufficient for the theory
to enjoy Lorentz invariance.
From this simple exercise, we see that the Floreanini-

Jackiw theory of a single chiral boson does indeed exhibit
non-manifest Lorentz invariance. This discussion also
motivates a couple of definitions. We say that any function
O of the fields and their derivatives is a Lorentz-invariant
function if δO ≃ 0, that is, if the quantity O is invariant
under Lorentz transformations when the fields satisfy their
equations of motion. Likewise, we say that a Lagrangian L
defines a Lorentz-invariant theory if the Euler-Lagrange
equations associated with L can be written as E ¼ 0 where
E is a Lorentz-invariant function.

2. Multiple interacting bosons

We now promote the action to depend on N chiral bosons
ϕi and N̄ antichiral bosons ϕ̄ī. A general theory with inter-
actions that depend on spatial derivatives of the fields is7

S ¼
Z

d2x

�
1

2
ðϕ̇iϕ0i − ˙̄ϕīϕ̄0īÞ − Vðϕ0; ϕ̄0Þ

�
; ð2:22Þ

wherewe suppress indices on the fields in the argument of the
interaction function V. Following the notation of the N ¼ 1
analysis above, we can write the equations of motion for this
model as a collection of equations Ei ¼ 0 and Ē ī ¼ 0, where

Ei ¼ ϕ̇i −
∂V
∂ϕ0i ; Ē ī ¼ ˙̄ϕī þ ∂V

∂ϕ̄ī
: ð2:23Þ

Note that we do not distinguish between upstairs and
downstairs i, j and ī, j̄ indices on the scalars, instead
choosing index placement for typographical convenience.
In expressing the equations of motion as the vanishing of the

7In this paper, we do not consider higher-derivative
interactions.
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quantities (2.23), we have also implicitly chosen the analog
of the gauge hðtÞ ¼ 0, as in the discussion around Eq. (2.18)
for the case of one chiral boson.
Let us again consider a Lorentz boost parametrized by

ω01 ¼ −ω10 ¼ ϵ. All of the fields transform in the same
way as before:

ϕ̇i → ϕ̇i þ ϵϕ0i; ϕ0i → ϕ0i þ ϵϕ̇i;

˙̄ϕī → ˙̄ϕī þ ϵϕ̄0ī; ϕ̄0ī → ϕ̄0ī þ ϵ ˙̄ϕī: ð2:24Þ
We now ask: under what conditions on the interaction
function V will the action (2.22) define a Lorentz-invariant
theory, which means that δEi ≃ 0 and δĒ ī ≃ 0 under this
Lorentz transformation? The variation of the chiral equa-
tions of motion is

δEi ¼ δϕ̇i −
∂
2V

∂ϕ0i
∂ϕ0j δϕ

0j −
∂
2V

∂ϕ0i
∂ϕ̄0j̄ δϕ̄

0j̄

¼ ϵϕ0i − ϵVijϕ̇
j − ϵVij̄

˙̄ϕj̄

≃ ϵ½ϕ0i − VijVj þ Vij̄Vj̄�; ð2:25Þ
where in the second step we have introduced the notation

Vi ¼
∂V
∂ϕ0i ; Vij ¼

∂
2V

∂ϕ0i
∂ϕ0j ; Vij̄ ¼

∂
2V

∂ϕ0i
∂ϕ̄0j̄ ; ð2:26Þ

and so on, and in the third line, we have replaced the time

derivatives ϕ̇i, ˙̄ϕj̄ using the equations of motion and
therefore used the on-shell equality symbol ≃. An identical
calculation for the antichiral equations of motion gives

δĒ ī ≃ ϵ½ϕ̄0ī − Vī j̄Vj̄ þ VījVj�: ð2:27Þ

Therefore, for the quantities Ei and Ē ī to be Lorentz-
invariant functions, we must impose the two conditions

ϕ0i þ Vij̄Vj̄ ¼ VijVj; ϕ̄0ī þ VījVj ¼ Vī j̄Vj̄: ð2:28Þ

It is convenient to write these two equations in terms of the
derivatives of products,

ϕ0i þ 1

2
∂iðVj̄Vj̄Þ ¼

1

2
∂iðVjVjÞ;

ϕ̄0ī þ 1

2
∂īðVjVjÞ ¼

1

2
∂īðVj̄Vj̄Þ; ð2:29Þ

where the repeated j, j̄ indices are summed and where
∂i ¼ ∂

∂ϕ0i, ∂ī ¼ ∂

∂ϕ̄0ī.

We can now integrate the first of Eq. (2.29) with respect
to ϕ0i and the second with respect to ϕ̄0ī to find

ðϕ0iÞ2 þ Vj̄Vj̄ ¼ VjVj þ Ciðϕ0k≠i; ϕ̄0k̄Þ;
ðϕ̄0īÞ2 þ VjVj ¼ Vj̄Vj̄ þ C̄īðϕ0k; ϕ̄0k̄≠īÞ: ð2:30Þ

Here we have introduced two integration constants, Ci

which is independent of ϕ0i and C̄ī which is independent of
ϕ̄0ī. Also note that Eq. (2.30) holds separately for each fixed
i and ī; the quantity ðϕ0iÞ2 is the square of one such fixed ϕ0i
and is not summed on i. We can fix these integration
constants by noting that the choice of interaction function

Vðϕ; ϕ̄Þ ¼ 1

2
ðϕ0jϕ0j þ ϕ̄0j̄ϕ̄0j̄Þ; ð2:31Þ

which is just a sum of noninteracting chiral and antichiral
bosons, must necessarily satisfy the Lorentz-invariance
condition. This will be true if we choose

Ci ¼ ϕ̄0j̄ϕ̄0j̄ þ
X
k≠i

ϕ0kϕ0k; C̄ī ¼ ϕ0jϕ0j þ
X
k̄≠ī

ϕ̄0k̄ϕ̄0k̄;

ð2:32Þ

which means that the two equations in (2.30) are propor-
tional to one another, and we are left with the single
condition

ϕ0jϕ0j − ϕ̄0j̄ϕ̄0j̄ ¼ VjVj − Vj̄Vj̄ ð2:33Þ

for Lorentz invariance. Suppose that we now further
assume that the interaction function is invariant under
OðNÞ rotations of the N chiral fields and OðN̄Þ rotations
of the N̄ antichiral fields. This means that we can para-
metrize V as a function of the two invariants8

S ¼ 1

2
ðϕ0jϕ0j þ ϕ̄0j̄ϕ̄0j̄Þ; P ¼ 1

2
ðϕ0jϕ0j − ϕ̄0j̄ϕ̄0j̄Þ:

ð2:34Þ

Note that, for the theory defined by the free interaction
function (2.31), the quantities S and P represent the total
Hamiltonian density and momentum density, respectively.
In terms of these variables, the condition (2.33) can be
written as

V2
S þ

2S
P

VSVP þ V2
P ¼ 1: ð2:35Þ

Partial differential equations of the schematic form (2.35)
have appeared in many contexts. Most directly relevant for
this analysis, precisely the same differential equation
appears as the condition for Lorentz invariance of the
phase space actions for theories of self-dual electrodynam-
ics in d ¼ 4 or for chiral tensor theories in d ¼ 6; see, for
instance, Secs. 2.2 and 2.3 of [15] for these two cases,
respectively. Our condition (2.35) is merely the 2d version

8The invariant S should not be confused with the action
S ¼ R d2xL; we trust that the reader can distinguish between the
two based on context.
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of these results, in the case where one considers arbitrary
numbers of chiral and antichiral bosons. Note that, in the
case N̄ ¼ 0 which describes only chiral bosons, the two
invariants (2.34) collapse to

S ¼ P; ð2:36Þ

so that V is a function of one variable, and the constraint
(2.33) simplifies to

ϕ0jϕ0j ¼ VjVj; ð2:37Þ

or in terms of the variable S ¼ 1
2
ϕ0jϕ0j,

VS ¼ 1: ð2:38Þ

This means that the only solution is the free case,
V ¼ S ¼ 1

2
ϕ0jϕ0j, in accordance with known results. The

same conclusion holds for only antichiral bosons, N ¼ 0

but N̄ > 0.
A similar partial differential equation (PDE), which

differs only by signs, occurs as the condition for a

Lagrangian for 4d nonlinear electrodynamics to have
equations of motion that are invariant under electric-
magnetic duality rotations. In this case, the appropriate
PDE reads

L2
S −

2S
P

LSLP − L2
P ¼ 1; ð2:39Þ

where now S ¼ − 1
4
FμνFμν and P ¼ − 1

4
FμνF̃μν are the two

independent Lorentz scalars that can be constructed from
the field strength Fμν and F̃μν denotes the Hodge dual of
Fμν. This version of the differential equation, with the signs
as in (2.39), also appears as the condition for a certain class
of nonlinear sigma models in d ¼ 2 to have equations of
motion which are equivalent to the flatness of a Lax
connection which takes a prescribed form [42] [see
Eqs. (7.3)–(7.5) of [4] for the definitions of S and P in
this case].
In either presentation, with the choice of signs in (2.35)

or the one in (2.39), this differential equation has many
solutions besides the free one. For instance, Eq. (2.35)
admits the two-parameter family of solutions

VðS; P; γ; λÞ ¼ 1

λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λðcoshðγÞSþ sinhðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 − P2

p
Þ þ λ2P2

q
− 1

�
: ð2:40Þ

This family of interaction functions is the 2d chiral boson analog of the two-parameter family of 4d ModMax-Born-Infeld
gauge theories, which we mentioned in the Introduction. As in the 4d case, the function V of Eq. (2.40) satisfies two
commuting flow equations which relate ∂λV and ∂γV to an irrelevant TT̄-like and a marginal root-TT̄-like operator built
from the energy-momentum tensor of the model, respectively:

∂V
∂λ

¼ −OTT ¼ −
1

4
ðTαβTαβ − ðTα

αÞ2Þ;
∂V
∂γ

¼ −R ¼ −
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TαβTαβ −

1

2
ðTα

αÞ2
r

: ð2:41Þ

This example illustrates that, at least in this case, solutions
to the differential equation (2.35) can be obtained by
deforming the interaction function by Lorentz-invariant
quantities, such as Lorentz scalars constructed from Tμν.
This statement applies quite generally to any deformation
of V by a Lorentz-invariant function, as we describe next.

3. Lorentz-invariant functions

In the preceding discussion, we derived a condition on
the function V [Eq. (2.35)] which guarantees that this
interaction function describes a Lorentz-invariant theory.
By definition, this means that the equations of motion Ei, Ēi

are Lorentz-invariant functions. One might ask, more
generally, given an arbitrary function OðS; PÞ which
depends on the two combinations S and P defined in
(2.34), under what conditions is O a Lorentz-invariant
function? That is, for which operatorsO is δO ≃ 0, where δ
is a Lorentz transformation?

This question can be answered using a similar calcu-
lation as the one above. One has

δOðS;PÞ ¼OSδSþOPδP

¼OSðϕ0jδϕ0jþ ϕ̄0j̄δϕ̄0j̄ÞþOPðϕ0jδϕ0j − ϕ̄0j̄δϕ̄0j̄Þ;
ð2:42Þ

where subscripts represent partial derivatives with respect
to the argument. On-shell, one has the variations

δϕ0j ¼ ϵϕ̇j ≃ ϵVj; δϕ̄0j ¼ ϵ ˙̄ϕj̄ ≃ −Vj̄; ð2:43Þ
and thus one finds

δO ≃ ϵOSðϕ0jVj − ϕ̄0j̄Vj̄Þ þ ϵOPðϕ0jVj þ ϕ̄0j̄Vj̄Þ: ð2:44Þ
Expressing the derivatives of V in terms of VS and VP using

Vj ¼ ðVS þ VPÞϕ0j; Vj̄ ¼ ðVS − VPÞϕ̄0j̄; ð2:45Þ
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we conclude that δO ≃ 0 if and only if

VSOS þ
S
P
ðVSOP þ VPOSÞ þ VPOP ¼ 0: ð2:46Þ

It is easy to see that the condition (2.46) is identical to the
constraint that one finds by expanding the Lorentz-invari-
ance condition (2.35) for a perturbed interaction function

VðS; PÞ → VðS; PÞ þ λOðS; PÞ; ð2:47Þ

assuming that V itself satisfies the Lorentz-invariance
condition, and then demanding that the deformed inter-
action function preserve this condition (2.35) to leading
order in λ.
We conclude that linearized Lorentz-preserving defor-

mations of a boost-invariant theory of chiral bosons,
described by an interaction function V, are in one-to-one
correspondence with Lorentz-invariant functions O within
this same theory defined by V. Again, this result is the 2d
analog of the corresponding statements about linearized
deformations which preserve electric-magnetic duality
invariance in 4d [4] or PST gauge invariance in 6d [6].
As in those contexts, this extends to an all-orders result:
given a one-parameter family of interaction functions VðλÞ
with an initial condition V0 ¼ Vðλ ¼ 0Þ which satisfies
(2.35), the entire family of functions VðλÞ satisfies the
Lorentz invariance condition if and only if

∂VðλÞ
∂λ

¼ OðλÞ; ð2:48Þ

where at each value of λ, the function OðλÞ obeys the
constraint (2.46) with respect to the interaction function
VðλÞ at the same value of λ.
There are several ways to prove this claim, which we will

not present in detail since they are similar to the 4d and 6d
cases. One strategy is to first argue that any such family of
Lorentz-invariant functions OðλÞ can be expressed in terms

of Lorentz scalars constructed from TðλÞ
μν , as we will show

shortly, and then to show that an all-orders flow of the form
(2.48) driven by a function of the stress tensor preserves the
Lorentz-invariance condition, by following an inductive
argument such as that in Appendix A. 1 of [4].

B. Stress tensor for general interacting theory

We now turn to the computation of the energy-momen-
tum tensor for a generic member of our class of chiral
boson theories. Contractions built from this stress tensor,
such as Tμ

μ and TμνTμν, are canonical examples of the
Lorentz-invariant functions which yield Lorentz-preserving
deformations (2.48) of the interaction function—and, in
fact, any such deformation can be expressed in terms of
such stress tensor scalars, as we will see.

To calculate the stress tensor defined in (2.6), we will
couple a general theory of chiral bosons to gravity in
the vielbein formulation following the approach of [81],
which demonstrated how to perform this coupling for the
standard Floreanini-Jackiw boson with interaction function
VðS; PÞ ¼ S. In the case of a general interaction function,
the corresponding Lagrangian including the vielbein cou-
plings takes the form

L ¼ 1

2
ðGijϕ̇

iϕ0j − Ḡī j̄ ˙̄ϕīϕ̄0jÞ − ðE−
θE

þ
t þ E−

t E
þ
θ ÞP

− EVðS; PÞ þ Ltop; ð2:49Þ
where now S and P are coupled to the frame fields as

S ¼ −
1

4E−
θE

þ
θ

ðGijϕ
0iϕ0j þ Ḡī j̄ϕ̄

0īϕ̄0j̄Þ;

P ¼ −
1

4E−
θE

þ
θ

ðGijϕ
0iϕ0j − Ḡī j̄ϕ̄

0īϕ̄0j̄Þ: ð2:50Þ

A few remarks are in order. We work in light-cone
coordinates xa ¼ x� for the tangent space indices, so the
vielbeins and inverse vielbeins carry one ðþ;−Þ index and
one ðt; θÞ index. After varying with respect to the vielbeins,
we will set them to their flat-space values

Eþ
t ¼ −Eþ

θ ¼ E−
θ ¼ E−

t ¼ 1ffiffiffi
2

p ; ð2:51Þ

at the end of the calculation, which is appropriate for the
light-cone tangent space metric ηab ¼ ½ 0−1 −10 �. We have also
introduced general target-space metrics GijðϕÞ and Ḡī j̄ðϕ̄Þ
for the chiral and antichiral bosons, which does not affect
the computation of the stress tensor. In Eq. (2.49), we have
allowed for the inclusion of a general topological term Ltop,
which does not couple to the frame fields and which
therefore drops out of the computation of Tμν. An example
of such a topological term is a coupling to a target-space
antisymmetric tensor field Bij, B̄ī j̄. In manifestly Lorentz-
invariant notation, which is perhaps more familiar, such a
coupling would be expressed as Bijϵ

αβ
∂αϕ

i
∂βϕ

j and is
independent of the metric.
Note that, in the special case Gij ¼ δij, Ḡī j̄ ¼ δī j̄,

Ltop ¼ 0, and with the vielbeins equal to their flat-space
values (2.51), the Lagrangian (2.49) reduces to

L ¼ 1

2
ðϕ̇iϕ0i − ˙̄ϕīϕ̄0īÞ − VðS; PÞ; ð2:52Þ

which agrees with (2.52), and the quantities S and P
become

S ¼ 1

2
ðϕ0jϕ0j þ ϕ̄0j̄ϕ̄0j̄Þ; P ¼ 1

2
ðϕ0jϕ0j − ϕ̄0j̄ϕ̄0j̄Þ; ð2:53Þ

which agree with (2.34).
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It may come as a surprise that the kinetic terms in (2.49),

which involve ϕ̇iϕ0j and ˙̄ϕīϕ̄0j̄, are independent of the
vielbeins and do not even include a factor of E which plays
the role of

ffiffiffi
g

p
that usually accompanies any scalar within a

spacetime integral. This is a consequence of the specific
method for coupling the chiral boson to gravity developed
in [81], which first introduces an unconstrained bosonic
field and then incorporates auxiliary fields P and b which
enforce the chirality constraint. This combined system is
then coupled to gravity, and then integrating out the
auxiliary fields P and b has the effect of eliminating the
factor of E that normally multiplies the kinetic term. We
will see in Sec. III that the absence of vielbein dependence
in these terms has a natural interpretation in the dual Chern-
Simons description of chiral boson theories.
We can now explicitly perform the variation with respect

to the vielbeins to compute the stress tensor Ta
β, as defined

in Eq. (2.6), or more usefully, the version Tαβ with two
spacetime indices:

Ttt ¼ VðS; PÞ;
Ttθ ¼ −P ¼ Tθt;

Tθθ ¼ −V þ 2ðSVS þ PVPÞ: ð2:54Þ

Note that the off-diagonal terms of Tαβ are therefore
identical and both proportional to P, which has the
interpretation of the momentum along the θ circle. This
is a consequence of the way we have coupled to the
vielbeins in the second term of (2.49), which is proportional
to P but which vanishes in the flat-space limit.
In principle, one could consider more general couplings

of these chiral boson theories to vielbeins, which would
lead to stress tensors that may not be symmetric and which
are related to (2.54) by an improvement transformation.
However, we find the choice of coupling that we have made
here to be physically motivated for the problem of studying
flow equations of the form (2.48) which are connected to
the free interaction function (2.31). For instance, in the
quantum theory, the momentum along a circle of radius R is
quantized in units of 1

R, and, therefore, cannot flow with any
deformation parametrized by a continuous λ. The coupling
to frame fields which leads to (2.54) makes this manifest,
even at the level of the classical stress tensor, since for any
interaction function VðS; PÞ, the linear momentum along
the circle is fixed to its value Ttθ ¼ −P in the free theory.
The trace of the stress tensor,

TrðTÞ ¼ Tα
α ¼ −2ðV − SVS − PVPÞ; ð2:55Þ

vanishes if the interaction function V is a homogeneous
function of degree 1 in its arguments, which is equivalent to
the scale invariance of the theory as expected. The other
Lorentz invariant that one can construct from the stress
tensor is

TrðT2Þ ¼ TμνTμν ¼ V2 − 2P2 þ ðV − 2ðSVS þ PVPÞÞ2:
ð2:56Þ

One can check by explicit computation that the two
invariants (2.55) and (2.56) each satisfy the condition
(2.46), assuming that the interaction function V itself obeys
the condition (2.35). In fact, more is true: given either of
these two Lorentz-invariant functions Tμ

μ and TμνTμν,
locally and away from exceptional points, we can implicitly
express any other Lorentz-invariant function f in terms of
this stress tensor invariant. To see this, let fðS; PÞ and
gðS; PÞ be any two functions that satisfy the Lorentz-
invariance condition (2.46). Consider the Jacobian for the
change of variables from ðS; PÞ to ðf; gÞ, namely

J ¼
�
fS fP
gS gP

�
; ð2:57Þ

and, in particular, its determinant

detðJÞ ¼ fSgP − fPgS: ð2:58Þ

Since f and g each satisfy Eq. (2.46), we can solve this
equation to express one of the partial derivatives of each
function in terms of the other. For instance, we can choose

fS ¼ −
fPðPVP þ SVSÞ
SVP þ PVS

; gS ¼ −
gPðPVP þ SVSÞ
SVP þ PVS

:

ð2:59Þ
Substituting these into the determinant (2.58), we find

detðJÞ ¼ −
fPgPðPVP þ SVSÞ

SVP þ PVS
þ fPgPðPVP þ SVSÞ

SVP þ PVS
¼ 0:

ð2:60Þ
Because detðJÞ ¼ 0, this change of variables is singular,
whichmeans that there exists a functional relation of the form
Fðf; gÞ ¼ 0. By the implicit function theorem, under some
assumptions on the derivatives of F, we can locally express
fðS; PÞ as a function of gðS; PÞ, or vice versa. Thus, ignoring
exceptional points, any pair of Lorentz-invariant functions
are functionally dependent. Since the quantities TμνTμν and
Tμ

μ are examples of such invariant quantities, it follows that
any other Lorentz-invariant function—again, away from
singular points, and excluding trivial examples such as the
case where one of the functions is a constant—can be
expressed as a function of the stress tensor.
Combining this conclusion with the previous statement

around Eq. (2.48), it also follows that, given any para-
metrized family of interaction functions VðλÞ for Lorentz-
invariant theories, one can write

∂VðλÞ
∂λ

¼ OðλÞ ≡ fðTðλÞ
μν ; λÞ; ð2:61Þ
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where in the last step we have used that OðλÞ can be
implicitly expressed as a function of the stress tensor, given
that this OðλÞ satisfies the Lorentz-invariance condi-
tion (2.46).
Therefore, the stress tensor flows that we have intro-

duced in Eq. (2.1) are quite generic: any family of Lorentz-
invariant interaction functions obeys a differential equation
of this form, and conversely, any such flow equation (along
with a Lorentz-invariant initial condition) defines a family
of Lorentz-invariant interacting chiral boson theories.
Interesting examples of such flows are the ones defined

in Eq. (2.41), which are driven by the operatorsOTT̄ andR.
We can express these two operators in terms of the
interaction function V and its derivatives using the general
results (2.55) and (2.56):

OTT̄ ¼ VðSVS þ PVPÞ −
1

2
ðV2 þ P2Þ;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSVS þ PVP þ PÞðSVS þ PVP − PÞ

p
: ð2:62Þ

One can check directly that the two-parameter family of
interaction functions (2.40) solves the flow equations
driven by the two operators given in (2.62).9 The root-
TT̄ flow equation can also be solved in more generality.
Suppose we begin from the flow equation

∂VðγÞ
∂γ

¼ −R ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSVS þ PVP þ PÞðSVS þ PVP − PÞ

p
;

ð2:63Þ

and we furthermore assume that the function V satisfies the
Lorentz-invariance condition (2.35) everywhere along the
flow (which it is guaranteed to do, assuming the initial
condition is Lorentz invariant). Then, the general solution
to the differential equation (2.63) with initial condition
Vðγ ¼ 0; S; PÞ ¼ V0ðS; PÞ is

Vðγ;S;PÞ ¼ V0

�
coshðγÞSþ sinhðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2−P2

p
;P
�
: ð2:64Þ

That is, we simply replace all occurrences of the variable S
in the initial condition V0ðS; PÞ with the combination
coshðγÞSþ sinhðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 − P2

p
, while leaving all occur-

rences of P unchanged. The result is a solution to (2.63)
with the correct initial condition at γ ¼ 0.
Let us point out that the formulas (2.54) for the stress

tensor components are valid when N ≥ 1 and N̄ ≥ 1. In the
case of all chiral bosons (N̄ ¼ 0), or all antichiral bosons
(N ¼ 0), the two invariants S and P become proportional to
one another, so some of the structures in the Lagrangian

collapse. For instance, for a theory of all chiral bosons, we
have S ¼ P, and the components of the stress tensor are

Ttt ¼ VðSÞ;
Ttθ ¼ −S ¼ Tθt;

Tθθ ¼ −VðSÞ þ 2SV 0ðSÞ: ð2:65Þ

We have seen that the only solution to the Lorentz-
invariance condition (2.35) for all chiral bosons is
V ¼ S, and the stress tensor for this theory is

Tαβ ¼
1

2
ϕ0jϕ0j

�
1 −1
−1 1

�
: ð2:66Þ

Here one has Tα
α ¼ 0 and TαβTαβ ¼ 0. The same con-

clusion holds for all antichiral bosons, where we have
S ¼ −P rather than S ¼ P, but again one finds TrðTÞ ¼
0 ¼ TrðT2Þ. For either of these scenarios, since both
Lorentz scalars constructed from the stress tensor are
vanishing, the theory is a fixed point of all Lorentz-
preserving stress tensor deformations.10

This gives another way to understand the fact that there is
no way to introduce Lorentz-invariant interactions as a
continuous deformation of a free theory involving only
chiral bosons or only antichiral bosons. Indeed, if a family
of such interacting theories did exist, they would neces-
sarily satisfy a stress tensor flow equation. But no such flow
can exist that includes the free theory V ¼ S, as this theory
is left invariant by any stress tensor deformation. Since a
theory of only chiral bosons has the Hamiltonian
H ¼ S ¼ P, one can view it as a 2d version of the 4d
theory of Bialynicki-Birula electrodynamics, which is also
a fixed point of all stress tensor flows.

C. Self-duality and chirality

To conclude this section, we will point out one additional
feature of the chiral boson models considered here.
Although this property is trivially satisfied for any inter-
acting chiral boson theory, regardless of the interaction
function VðS; PÞ, the analogous property for theories in the
dual Chern-Simons description will play an important role
in the next section.
Suppose that we begin with a general action of the form

that we have been considering, which we repeat here for
convenience:

9When γ ¼ 0, one recovers the theory of TT̄-deformed
Floreanini-Jackiw bosons, which also appears in the boundary
graviton action for AdS3 gravity at a finite radial cutoff; see
Eq. (3.70) of [77].

10Another way to see this is by considering complex coor-
dinates ðw; w̄Þ, with T ¼ Tww and T̄ ¼ Tw̄ w̄. A theory of all chiral
bosons has T̄ ¼ 0 and a theory of all antichiral bosons has T ¼ 0.
In either case, the product TT̄ vanishes, and the trace vanishes by
conformal invariance, so any Lorentz-preserving stress tensor
flow is trivial. Of course, one could generate nontrivial interacting
models by breaking Lorentz invariance and studying, for exam-
ple, fðTÞ [or fðT̄Þ] flows, but we will not pursue this option here.
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S ¼
Z

d2x

�
1

2
ðϕ̇iϕ0i − ˙̄ϕīϕ̄0īÞ − VðS; PÞ

�
: ð2:67Þ

Wewould like to exchange the gradients ∂αϕi ¼ ðϕ̇i;ϕ0iÞ of
the scalar fields for a vector field Aα ¼ ðA0; A1Þ, and
likewise for the antichiral scalars. To do this, we introduce
a collection of Lagrange multiplier fields λiα and λ̄īα, and
write the equivalent action

S ¼
Z

d2x

�
1

2
ðAi

0A
i
1 − Āī

0Ā
ī
1Þ − VðSA; PAÞ

þ 1

2
λαiðAi

α − ∂αϕ
iÞ − 1

2
λ̄αīðĀī

α − ∂αϕ̄
īÞ
�
: ð2:68Þ

Here the variables SA and PA are defined by replacing
instances of ϕ0i with Ai

1 and replacing ϕ̄0ī with Āī
1:

SA ¼ 1

2
ðAi

1A
i
1 þ Āī

1Ā
ī
1Þ; PA ¼ 1

2
ðAi

1A
i
1 − Āī

1Ā
ī
1Þ:
ð2:69Þ

If one integrates out the auxiliary fields λαi and λ̄αī in the
action (2.68), these fields simply act as Lagrange multi-
pliers that set Ai

α ¼ ∂αϕ
i and Āī

α ¼ ∂αϕ̄
ī, and the action

then reduces to (2.67).
However, suppose that we wish to proceed in the

opposite direction, instead integrating out the fields Ai
α

and Āī
α. To do this, we vary the action with respect to the

fields Ai
α and Āī

α to obtain their equations of motion, whose
solutions take the form

Ai
0 ¼ −λ1i − 2ðVSA þ VPA

Þλ0i; Ai
1 ¼ −λ0i;

Āī
0 ¼ −λ̄1ī þ 2ðVSA − VPA

Þλ̄0ī; Āī
1 ¼ −λ̄0ī: ð2:70Þ

Integrating out Ai
α and Āī

α by replacing them with their on-
shell values (2.70) then gives

S ¼
Z

d2x

�
1

2
ðλ̄0īλ̄1ī − λ0iλ1iÞ − VðSλ; PλÞ

þ 1

2
ðϕi

∂αλ
αi − ϕ̄ī

∂αλ̄
αīÞ
�
; ð2:71Þ

where we have integrated by parts to move the derivatives
on the final two terms, and where now Sλ and Pλ are
defined as

Sλ ¼
1

2
ðλ0iλ0i þ λ̄0īλ̄0īÞ; Pλ ¼

1

2
ðλ0iλ0i − λ̄0īλ̄0īÞ: ð2:72Þ

Note that (2.72) involve the time components of the λ fields,
rather than the spatial components. We see that the fields ϕi

and ϕ̄ī act as Lagrange multipliers to enforce the constraints

∂αλ
αi ¼ 0 ¼ ∂αλ̄

αī; ð2:73Þ

which admit the general solutions

λαi ¼ ϵαβ∂βψ
i; λ̄αī ¼ ϵαβ∂βψ̄

ī; ð2:74Þ

for some scalar fields ψ i, ψ̄ ī. Here we use the conventions
ϵ01 ¼ 1, so

λ0i ¼ ∂xψ
i ¼ ψ 0i; λ1i ¼ −∂tψ i ¼ −ψ̇ i;

λ̄0ī ¼ ∂xψ̄
ī ¼ ψ̄ 0ī; λ̄1ī ¼ −∂tψ̄ ī ¼ − ˙̄ψ ī: ð2:75Þ

After integrating out ϕi and ϕ̄ī and replacing λαi, λ̄αī in
favor of ψ i, ψ̄ ī, we arrive at the dual form of the action

S ¼
Z

d2x

�
1

2
ðψ̇ iψ 0i − ˙̄ψ īψ̄ 0īÞ − VðSψ ; Pψ Þ

�
; ð2:76Þ

where, according to the map in Eq. (2.75), the dualization
has replaced time components with space components in
the definition of the S and P variables,

Sψ ¼ 1

2
ðψ 0iψ 0i þ ψ̄ 0īψ̄ 0īÞ; Pψ ¼ 1

2
ðψ 0iψ 0i − ψ̄ 0īψ̄ 0īÞ:

ð2:77Þ

The result (2.76) is in fact identical to our starting point
(2.67). Therefore, any interacting chiral boson theory is
“self-dual” in the sense that the theory is left invariant under
the process of introducing auxiliary fields and then inte-
grating out to express the theory in terms of the “dual” ψ
variables rather than the original ϕ variables.
Versions of this simple argument are well-known in

various contexts. The observation that the standard
Floreanini-Jackiw action with VðS; PÞ ¼ S exhibits this
self-duality appeared in [82], which we have simply
generalized to the interacting case. Similar manipulations
also appear, for instance, when discussing T-duality in
string theory from the world sheet point of view.
However, we would like to emphasize two aspects of this

observation. The first is that, unlike Lorentz invariance—
which only holds for interaction functions that satisfy the
differential equation (2.35)—this self-duality holds for any
system of interacting chiral bosons, regardless of the form
of VðS; PÞ. Wewill therefore take the view that the property
of self-duality should be part of the definition of a theory of
chiral bosons. Since we have seen that any chiral boson
theory enjoys self-duality in the sense described here when
presented in the Floreanini-Jackiw formulation, we will
demand that any other description of chiral bosons should
also have a corresponding self-duality property. That is, we
will take self-duality as a necessary condition for a theory
to describe chiral degrees of freedom.

STEPHEN EBERT et al. PHYS. REV. D 110, 046005 (2024)

046005-12



The second observation is that, if one rewrites the action
(2.68) as

S ¼
Z

d2x

�
LA þ 1

2
λαiðAi

α − ∂αϕ
iÞ − 1

2
λ̄αīðĀī

α − ∂αϕ̄
īÞ
�
;

LA ¼ 1

2
ðAi

0A
i
1 − Āī

0Ā
ī
1Þ − VðSA; PAÞ; ð2:78Þ

then the equations of motion for the fields Ai
α and Āī

α are

λαi ¼ −2
∂LA

∂Ai
α
; λ̄αī ¼ 2

∂LA

∂Āī
α

: ð2:79Þ

Therefore, in a sense, one can think of the fields λ, λ̄ as the
duals (or conjugates) of the fields A and −Ā. Since the
fields Ai

α ¼ ∂αϕ
i and Āī

α ¼ ∂αϕ̄
ī are given by derivatives of

a scalar field on-shell, one can also view the relations (2.79)
as a sort of Legendre transform. From this perspective, the
self-duality of chiral boson models is the statement that
such theories are invariant under a Legendre transform, or
that one is free to rotate the fields Aα and Āα into their duals
λα and −λ̄α. This is very similar to the structure of theories
of duality-invariant nonlinear electrodynamics in four
dimensions, which are invariant under rotations mixing
the field strength Fμν with a certain dual field strength
tensor Gμν. We will review this structure in more detail
around Eq. (3.10) in the next section.

III. DEFORMATIONS OF DUAL
CHERN-SIMONS THEORIES

The chiral boson theories that we have considered in
section II often arise as the edge modes, or boundary duals,
associated with the dynamics of Chern-Simons gauge fields
in 3d bulk theories [83–85]. For instance, physical descrip-
tions of a quantum Hall droplet often involve a gauge field
defined on a disk whose circular boundary supports edge
modes modeled by chiral bosons [86–88]. Another exam-
ple is found in AdS3 holography, where a collection of
Uð1Þ Chern-Simons gauge fields in the bulk are dual to a
corresponding collection of chiral currents in the 2d
boundary. The addition of such bulk Chern-Simons terms
to the action for AdS3 gravity allows BTZ black hole
solutions to carry Uð1Þ charges [89–91].
In this section, we will show how stress tensor defor-

mations of 2d chiral boson theories can be interpreted from
the perspective of 3d bulk Chern-Simons gauge theories.
We will begin by making some preliminary observations
about the behavior of such 3d Chern-Simons theories in the
presence of general boundary terms.

A. Uð1Þ Chern-Simons theories
with general boundary terms

Throughout this section, we will consider gauge theories
defined on a bulk spacetime manifold M3 with boundary

∂M3. We will not specify whether ∂M3 is a true physical
boundary or a conformal boundary, since our results apply
uniformly in both cases.
Let us give a concrete example for each of these two

cases to keep in mind as applications. In the former case,
with a physical boundary, an example is furnished by the
spacetime manifold M3 ¼ Hþ

2 ×Rt, where

Hþ
2 ¼ fðx; yÞjx; y∈R; y ≥ 0g ð3:1Þ

is the upper half-plane, viewed as a spatial manifold, and
the factor of Rt represents a noncompact time direction. In
this case, the boundary is ∂M3 ¼ Rx ×Rt, whereRx is the
spatial boundary ∂Hþ

2 ¼ fðx; 0Þjx∈Rg and Rt is again the
time direction.
An example of the latter case, with a conformal boun-

dary, is a three-dimensional negatively curved bulk mani-
fold M3, which asymptotically approaches an AdS3
spacetime that is characterized by a length scale lAdS3 .
The metric on M3 plays almost no role in this example,
since the bulk Chern-Simons action is topological, but it is
convenient to use the structure of the metric to characterize
the conformal boundary ∂M3. The most general asymp-
totically AdS3 metric can be written in the form of a
Fefferman-Graham expansion

ds2¼l2
AdS3

4ρ2
dρ2þ

�
gð0Þαβ ðxγÞ

ρ
þgð2Þαβ ðxγÞþρgð4Þαβ ðxγÞ

�
dxαdxβ:

ð3:2Þ

The important point about this asymptotic form is that it
determines a conformal boundary ∂M3 for our spacetime,

located near ρ ¼ 0, which has a boundary metric gð0Þαβ ðxγÞ
determined by the leading term in the expansion (3.2). Here
ρ has the interpretation of a bulk radial coordinate, whereas
xα label the two coordinates on the conformal boundary.
From now onwards, we will not distinguish between the

two qualitatively different cases above, using the notation
∂M3 for either type of boundary. We will describe the 2d
boundary in the Euclidean signature using coordinates
xα ¼ ðw; w̄Þ and the flat metric

ds2 ¼ gαβdxαdxβ ¼ dwdw̄: ð3:3Þ

Although this signature and coordinate choice differs from
the ones used in Sec. II, it allows for easier comparison with
the holographic analysis of the root-TT̄ deformation in
[44]. We will also use the convention that

ffiffiffi
g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

��
0 1

2

1
2

0

��vuut ¼ i
2
; ð3:4Þ
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which will introduce some unfamiliar factors of i in various
places.
Our primary interest is to study the dynamics of Abelian

gauge fields defined on the bulk manifold M3. Consider a
collection of Uð1Þ gauge fields Ai, i ¼ 1;…; N, and Āī,
ī ¼ 1;…; N̄. Of course, the standard kinetic term for such
gauge fields is the Maxwell term Fi

αβF
αβ
i where Fi ¼ dAi is

the field strength associated with the gauge field Fi.
However, as we are in three spacetime dimensions, it is
also possible to write down a Chern-Simons term which
takes the form Ai ∧ dAi for the gauge fields Ai. The
Maxwell term involves two derivatives and two factors
of Ai, whereas the Chern-Simons term has only a single
derivative and two factors of Ai. Therefore, by power
counting, we see that the infrared behavior of the theory
will be dominated by the Chern-Simons terms.
This motivates us to study the gauge theory with purely

Chern-Simons couplings for the gauge fields Ai and Āī,
which we parametrize as

ICS ¼
i
8π

Z
ðkijAi ∧ dAj − k̄ī j̄Āī ∧ dĀj̄Þ; ð3:5Þ

where kij and k̄ī j̄ are constant matrices which we assume
are symmetric and have positive eigenvalues.11 These
matrices will play the role of the metrics Gij and Ḡī j̄

of Sec. II.
In addition to the Chern-Simons term (3.5), one can add

a boundary term of the form

Ibdry ¼ −
1

8π

Z
∂M3

d2x
ffiffiffi
g

p
LbdryðAiα; ĀīαÞ; ð3:6Þ

where Lbdry is a Lorentz scalar constructed from the
quantities Aiα and Āīα, which are the restrictions of the
three-dimensional gauge fields to the boundary ∂M3.
The full description of the theory is then given by the
combined action

I ¼ ICS þ Ibdry: ð3:7Þ
The standard choice of boundary term is the one which
corresponds to the free interaction function Vðϕ; ϕ̄Þ given
in Eq. (2.31), and is written as

Ibdry ¼ −
1

16π

Z
∂M3

d2x
ffiffiffi
g

p
gαβðkijAiαAjβ þ k̄ī j̄ĀīαĀj̄βÞ:

ð3:8Þ
However, in this section we will be interested in studying
more general choices of the boundary term, especially
those which arise by deformations of the conventional
boundary term (3.8).

It may seem strange that one can write down a general
boundary term (3.6) which is an arbitrary function of the
variables Aiα and Āīα, or after assuming Lorentz invariance
and OðNÞ ×OðN̄Þ symmetry under rotations of the gauge
fields, an arbitrary function of the two combinations

S ¼ 1

2
ðkijAα

i A
j
α þ k̄ī j̄Āα

ī Ā
j̄
αÞ;

P ¼ 1

2
ðkijAα

i A
j
α − k̄ī j̄Āα

ī Ā
j̄
αÞ: ð3:9Þ

Any such boundary term LbdryðS; PÞ is manifestly com-
patible with boundary Lorentz invariance. This is in
contrast with the analysis of Sec. II, where only interaction
functions VðS; PÞ which obey the differential equa-
tion (2.35) yield Lorentz-invariant theories.
The resolution to this tension is that the Floreanini-

Jackiw and Chern-Simons descriptions of Lorentz-invariant
chiral boson theories make different aspects of the models
manifest. In the Floreanini-Jackiw description of Sec. II, it
is manifest that the bosons ϕi are chiral since the theory is
automatically self-dual (which we take as part of the
definition of chirality) as we saw in Sec. II C. However,
it is not manifest that the Floreanini-Jackiw equations of
motion respect Lorentz invariance, and requiring boost
symmetry imposes a condition on VðS; PÞ. Conversely, in
the Chern-Simons description, it is manifest that the boun-
dary theory enjoysLorentz invariance sinceLbdry is a Lorentz
scalar. However, it is not manifest that the theory describes
chiral edge modes, which in particular requires that the
theory be self-dual under the appropriate notion of duality
transformation. Demanding chirality, or self-duality, will
yield a constraint on Lbdry, to be given in Eq. (3.35).
An analogy with electrodynamics is apt. Suppose that

one wishes to describe a theory of an Abelian gauge field
Aμ in four spacetime dimensions, whose Lagrangian L
depends on the field strength Fμν but not its derivatives. We
assume that the equations of motion of this theory are
invariant under both Lorentz transformations and under
electric-magnetic duality rotations δθ which act as

δθFμν ¼ θGμνðFÞ; ð3:10Þ

where Gμν ¼ − 1
2
εμνρτG̃

ρτ is the Hodge dual of G̃μν, which
is itself defined as

G̃μν ¼ 2
∂L
∂Fμν : ð3:11Þ

One option for describing such a theory is by giving the
Lagrangian L itself. As the Lagrangian is a Lorentz scalar,
this description makes Lorentz invariance manifest.
However, invariance under duality rotations (3.10) is not
automatic and requires that the Lagrangian satisfy the
differential equation (2.39).

11Throughout this section we will use the symbol I rather than
S for actions to emphasize that we are in Euclidean signature.
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Another option is to describe the theory in terms of its
Hamiltonian HðD⃗; B⃗Þ, where D⃗ ¼ ∂L

∂E⃗
is the electric dis-

placement. In these variables, the duality transformation
(3.10) acts as an SOð2Þ rotation which mixes the vectors D⃗
and B⃗. The most general duality-invariant Hamiltonian can
be written as a function of the two variables

s ¼ 1

2
ðjD⃗j2 þ jB⃗j2Þ; p ¼ jD⃗ × B⃗j: ð3:12Þ

These quantities s and p are invariant under SOð3Þ rotations
of the spatial coordinates and under duality rotations, so
any Hamiltonian Hðs; pÞ is manifestly duality-invariant.
However, because the canonical formulation has singled out
a time direction as special, Lorentz invariance is no longer
manifest. Imposing boost symmetry requires that the
Hamiltonian satisfy the differential equation

H2
s þ

2s
p
HsHp þH2

p ¼ 1: ð3:13Þ

The upshot is that, in the electrodynamics example, either
Lorentz invariance or duality invariance can be made
manifest, and then imposing a partial differential equation
will ensure that the remaining nonmanifest symmetrywill be
respected.
In the chiral boson version of this story, the Floreanini-

Jackiw formulation is analogous to the Hamiltonian pre-
sentation of 4d duality-invariant electrodynamics, since any
theory of Floreanini-Jackiw bosons is automatically self-
dual although Lorentz invariance is not manifest. The
Chern-Simons presentation, on the other hand, is analogous
to the Lagrangian description, since Lorentz invariance is
manifest but self-duality is not guaranteed.
To understand the condition which must be imposed upon

the Chern-Simons boundary term to ensure self-duality,
which is the subject of Sec. III B, it will first be useful to
study the currents obtained from varying the boundary gauge
fields.

1. Boundary currents

Quite generically, we expect that gauge fields couple to
conserved currents. In the case of the 3d Chern-Simons
theory, althoughwe have not coupled the bulk gauge fields to
any sources in M3, the variation of the on-shell action
localizes to a boundary term, so we can therefore define
boundary currents that live in ∂M3. We normalize these
currents as

Jαi ¼ −
2πiffiffiffi
g

p δI
δAi

α
jon-shell; J̄αī ¼ −

2πiffiffiffi
g

p δI

δĀī
α

jon-shell: ð3:14Þ

We would like to compute these currents in a Chern-Simons
theory with a general boundary term that is an arbitrary
function of the OðNÞ ×OðN̄Þ invariant combinations S and
P. To do this, we consider a general variation of the action.

The Chern-Simons term varies as

δICS ¼
i
8π

Z
M3

ðkijðδAi ∧ dAj þ Ai ∧ dδAjÞ

− k̄ī j̄ðδĀī ∧ dĀj̄ þ Āī ∧ dδĀj̄ÞÞ

¼ i
4π

Z
M3

ðkijδAi ∧ dAj − k̄ī j̄δĀī ∧ dĀj̄Þ

−
i
8π

Z
M3

dðkijAi ∧ δAj − k̄ī j̄Āī ∧ δĀj̄Þ: ð3:15Þ

The first term vanishes after imposing the bulk equations of
motion dAj ¼ 0 ¼ dĀj̄, while the second term localizes to a
boundary contribution,

δICS
			
on-shell

¼−
i
8π

Z
∂M3

ðkijAi
αδA

j
β − k̄ī j̄Āī

αδĀ
j̄
βÞdxα ∧ dxβ:

ð3:16Þ
Since we are assuming that Lbdry takes the form

Lbdry ¼ fðS; PÞ; ð3:17Þ
the variation of the boundary term can be written as

δIbdry ¼ −
1

8π

Z
∂M3

ffiffiffi
g

p ððfS þ fPÞkijAα
i δAjα

þ ðfS − fPÞk̄ī j̄Āα
ī δĀj̄αÞ: ð3:18Þ

In coordinates ðw; w̄Þ, after raising the indices using
Aw
i ¼ 2Aw̄i and Aw̄

i ¼ 2Awi, the variation of the combined
action is then

δI
			
on-shell

¼ −
i
8π

Z
∂M3

ðkijðAi
wδA

j
w̄ − Ai

w̄δA
j
wÞ

− k̄ī j̄ðĀī
wδĀ

j̄
w̄ − Āī

w̄δĀ
j̄
wÞÞ

−
1

4π

Z
∂M3

ffiffiffi
g

p ðkijðfS þ fPÞðAi
w̄δA

j
w þ Ai

wδA
j
w̄Þ

þ k̄ī j̄ðfS − fPÞðĀī
w̄δĀ

j̄
w þ Āī

wδĀ
j̄
w̄ÞÞ: ð3:19Þ

Using
ffiffiffi
g

p ¼ i
2
, we can therefore read off the currents (3.14),

Jwi ¼ i
2
kijðfS þ fP − 1ÞAj

w̄; Jw̄i ¼ i
2
kijðfS þ fP þ 1ÞAj

w;

J̄wī ¼ i
2
k̄ī j̄ðfS − fP þ 1ÞĀj̄

w̄; J̄w̄ī ¼ i
2
k̄ī j̄ðfS − fP − 1ÞĀj̄

w:

ð3:20Þ
These can also be written more covariantly as

Jαi ¼
i
4
kij
�
gαβðfS þ fPÞ þ

1

2
ϵαβ

�
Aβ
j ;

J̄αī ¼
i
4
k̄ī j̄
�
gαβðfS − fPÞ −

1

2
ϵαβ

�
Āβ
j̄ ; ð3:21Þ
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which agrees with (3.20) for gww̄ ¼ 1
2
, ϵww̄ ¼ 1 ¼ −ϵw̄w.

We note that variation of the total on-shell action has two
qualitatively different contributions. The terms in the first
line of (3.19) are “universal” in the sense that they are
present for any Chern-Simons theory and do not depend on
the details of the boundary term fðS; PÞ. These universal
terms are also independent of the boundary metric, since
they come from the integral of a two-form. In contrast, the
terms on the second line of (3.19) are “model-dependent”
as they make explicit reference to the choice of boundary
term fðS; PÞ. Furthermore, these terms are metric-depen-
dent and include an overall factor of

ffiffiffi
g

p
.

These two types of terms are analogous to those in the
Lagrangian (2.49) which couples a generic chiral boson
theory to gravity. In that setting, the role of the “universal”
andmetric-independent contributions is played by the kinetic

terms Gijϕ̇
iϕ0j and Ḡī j̄

˙̄ϕīϕ̄0j, which, as we explained below
Eq. (2.53), do not include a factor of E. The Chern-Simons
perspective gives another way to understand the metric
independence of these terms, since they may be viewed as
the duals of contributionswhich arise from a topological bulk
term. Similarly, the remaining metric-dependent and inter-
action-function-dependent terms in (2.49) can be viewed as
the analogs of the second line of (3.19).
The expressions for the Jαi and J̄αī also determine the

boundary conditions on the gauge fields which we impose in
order to have a well-defined variational principle. In general,
the on-shell variation of the action can be written as

δI
			
on-shell

∼
Z
∂M3

ðJαi δAi
α þ J̄αī δĀ

ī
αÞ: ð3:22Þ

We must ensure that the quantity (3.22) vanishes to have a
good variational principle. To do this, we impose boundary
conditions which hold fixed some particular combination of
the boundary gauge fields Ai

α and Āī
α. Schematically, this

constraint takes the form

FðAi
αÞ ¼ 0; F̄ðĀī

αÞ ¼ 0; ð3:23Þ

where the precise form of the functions F and F̄ depend on
the case under consideration. In particular, thismeans that the
allowed variations of the gauge fields must be constrained to
satisfy the equations

∂F
∂Ai

α
δAi

α ¼ 0;
∂F̄

∂Āī
α

δĀī
α ¼ 0: ð3:24Þ

For instance, if both of the boundary variations δAi
w and δAi

w̄
are nonzero, the constraints (3.24) can in principle be inverted
to express one of these twoboundaryvariations in terms of the
other. This means that only one combination of the boundary
gauge fields is free to fluctuate, while the other is held fixed.
This is in agreement with the general expectation that

imposing Dirichlet boundary conditions on both components
of the gauge field is too strong, andonewould not find smooth
solutions to the equations of motion for generic choices of the
fixed gauge fields.
We also note that these boundary conditions will restrict

the class of bulk gauge transformations that are permissible.
A general gauge transformation Ai → Ai þ dΛi, Āī → Āī þ
dΛ̄ī in the bulk leads to a variation of the Chern-Simons
term which takes the form

δICS ¼
i
8π

Z
∂M3

ðkijdAi ∧ Λj − k̄ī j̄dĀī ∧ Λ̄j̄Þ; ð3:25Þ

which, for general choices of the gauge parameters, will not
be compatible with our choice of boundary conditions. We
must therefore allow only a subclass of bulk gauge trans-
formations which preserve the desired boundary condi-
tions. Physically, one can think of this restriction as giving
rise to physical degrees of freedom on the boundary.
To give a specific example illustrating the general

observations above, let us consider the standard boundary
term f ¼ S. In this case, evaluating the currents (3.20)
gives

Jiw̄ ¼ 0; Jiw ¼ i
2
kijAj

w; J̄īw̄ ¼ i
2
k̄ī j̄Āj̄

w̄; J̄īw ¼ 0:

ð3:26Þ

Therefore, with the conventional boundary term, the
currents Jiα are purely holomorphic and the currents J̄īα
are purely antiholomorphic. The variation of the on-shell
action is

δI
			
on-shell

∼
Z
∂M3

ðJiwδAi
w̄ þ J̄īw̄δĀ

ī
wÞ: ð3:27Þ

The variation (3.27) vanishes if we require that δAi
w̄ ¼ 0

and δĀī
w ¼ 0, which is equivalent to imposing Dirichlet

boundary conditions on the components Ai
w̄ and Āī

w at the
boundary ∂M3. For instance, one can demand that these
components are both set to zero, which corresponds to the
choice of functions F and F̄ in (3.23) given by

FðAi
αÞ ¼ Ai

w̄ ¼ 0; F̄ðĀī
αÞ ¼ Āī

w ¼ 0: ð3:28Þ

Wemust then allow only bulk gauge transformations which
do not change the values of Ai

w̄ and Āī
w on the boundary, and

this restriction gives rise to boundary degrees of freedom.
To see why these degrees of freedom are chiral, it is
convenient to think of the holomorphic currents as Jiw ¼
∂φi and the antiholomorphic currents as J̄īw̄ ¼ ∂φi, where
the φi are c ¼ 1 free bosons. Then, it is clear that the Jiw
play the role of the left-moving chiral half of a nonchiral
boson, and the J̄īw̄ act as the right-moving antichiral parts.
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B. Self-duality condition for Chern-Simons theories

Let us now consider the question of self-duality for
Chern-Simons theories. As we argued in Sec. II C, self-
duality should be viewed as a necessary condition to
impose on the theory so that it describes chiral degrees
of freedom. In the Floreanini-Jackiw description, self-
duality meant that we could express the action either in
terms of the original variables Ai

α ¼ ∂αϕ
i or in terms of the

dual variables λiα ¼ ϵαβ∂
βψ i. The relationship between Aα

and λα, as expressed around Eq. (2.79), is very similar to the
relationship between the boundary Chern-Simons gauge
field Aα and the corresponding current. Let us compare
them side-by-side. In Sec. II C, we had the relations

λαi ¼ −2
∂L
∂Ai

α
; λ̄αī ¼ 2

∂L

∂Āī
α

; ð3:29Þ

where in this formula the symbol Aα refers to the vector
field appearing in the action (2.68). In the Chern-Simons
setting, we instead have the schematic relations

Jαi ¼ −
2πiffiffiffi
g

p δI
δAi

α

				
on-shell

¼ −
2πiffiffiffi
g

p ∂Lon-shell

∂Ai
α

;

J̄αī ¼ −
2πiffiffiffi
g

p δI

δĀī
α

				
on-shell

¼ −
2πiffiffiffi
g

p ∂Lon-shell

∂Āī
α

; ð3:30Þ

where now the symbol Aα refers to the boundary Chern-
Simons gauge field.12 Insofar as the gauge field acts as a
good proxy for the gradient of the Floreanini-Jackiw
bosons, this suggests that the role of the dual variable λiα
is now played by

λiα ¼ −
1

2
Jiα; λ̄īα ¼

1

2
J̄īα; ð3:31Þ

where the sign difference is due to the relative sign in
(2.79), which itself originates from the difference in signs
between the kinetic terms for chiral and antichiral bosons.
This analogy leads us to propose a notion of self-duality

for Chern-Simons theories. We will phrase this condition
via an infinitesimal transformation, rather than a finite one.
That is, in Sec. II C, the duality transformation was a Z2

action which replaced the fields Aα with the fields λα. In the
present context, we will instead propose a continuous
transformation which infinitesimally rotates the fields Ai

α

and Āī
α into their duals Jiα and −J̄īα.

We say that a Chern-Simons theory with boundary term
fðS; PÞ is self-dual if the on-shell variation of the action
identically vanishes under the transformation

δAi
α ¼ ϵJiα; δĀī

α ¼ −ϵJ̄īα: ð3:32Þ

To see why this is the right notion of self-duality, let us find
the condition on the boundary term fðS; PÞ under which
the transformation (3.32) is a symmetry. By Eq. (3.22),
under this variation the change in the on-shell action is

δIjon-shell ∼
Z
∂M3

ðJαi δAi
α þ J̄αī δĀ

ī
αÞ

¼ ϵ

Z
∂M3

ðJαi Jiα − J̄αī J̄
ī
αÞ; ð3:33Þ

so the rotation (3.32) is a symmetry if and only if

JiwJiw̄ − J̄īwJ̄īw̄ ¼ 0: ð3:34Þ

Using the general expression (3.20) for the currents, and
expressing the condition in terms of S and P, we find that
(3.34) is equivalent to the condition

f2S þ
2S
P

fSfP þ f2P ¼ 1: ð3:35Þ

Remarkably, the Chern-Simons boundary term is self-dual
if and only if it satisfies precisely the same differential
equation (2.35) which the Floreanini-Jackiw interaction
function VðS; PÞ must satisfy in order to guarantee Lorentz
invariance. Because of the identical structure of the con-
straints on fðS; PÞ and VðS; PÞ, some of our observations
from Sec. II can be immediately translated to analogous
statements in the Chern-Simons setting.
For instance, if N̄ ¼ 0 so that the theory features only a

collection of unbarred gauge fields Ai
α but no barred fields

Āī
α, the two invariants collapse as S ¼ P and the only

solution to the constraint (3.35) is fðS; PÞ ¼ S. This is
consistent with the comments around Eq. (2.38) in the
Floreanini-Jackiw formulation, namely that no Lorentz-
invariant interactions are possible for a system of purely
chiral (or purely antichiral) bosons. Here we are seeing the
Chern-Simons counterpart of this statement: although we
can write down any boundary term fðSÞ that we like, and
still respect boundary Lorentz invariance, only the choice
fðSÞ ¼ S will respect chirality (or self-duality) of the
boundary theory.
In the remainder of this section, we will view the

differential equation (3.35) as a consistency condition
which a boundary term fðS; PÞ must satisfy to describe
chiral bosons. One can also understand this constraint as an
analog of electric-magnetic duality invariance for 3d
Chern-Simons theories. Of course, the conventional form
of electric-magnetic duality is inapplicable for 3d gauge
theories, since the Hodge dual of a two-form field strength
F2 in three spacetime dimensions is a one-form, which is
interpreted as the field strength of a dual scalar rather than a
dual one-form. However, demanding invariance under the
duality rotation (3.32) is closely related to imposing
invariance under the rotations (3.10); in both cases, the

12In Eq. (3.30), the partial derivatives of the Lagrangian
Lon-shell are understood to be defined as the integrands of
corresponding variations of the on-shell action in the middle
expression of each line.
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symmetry exchanges the field appearing in the Lagrangian
with a certain dual that is defined via the derivative of the
Lagrangian with respect to this field.

1. Linear and nonlinear self-duality constraints
for currents

One typically describes a free chiral p-form field in 2p
dimensions, where p is odd, as a form which satisfies a
linear Hodge self-duality constraint. For instance, a free
chiral 3-form field F3 in six dimensions obeys �F3 ¼ F3.
Likewise, the Floreanini-Jackiw bosons ϕi, ϕ̄ī with free
interaction function VðS; PÞ ¼ S are self-dual and anti-
self-dual, respectively. Introducing interactions for such
p-forms then modifies this constraint to a nonlinear self-
duality condition, which can be viewed as determining the
self-dual part of the p-form as a function of the anti-self-
dual part, or vice versa.
We would now like to see how these self-duality

constraints can be understood from the Chern-Simons
description of chiral bosons. Since we are working in a
two-dimensional Euclidean spacetime, the appropriate self-
duality conditions for a one-form are imaginary self-duality
or anti-self-duality, since the definition of the Hodge star,

ð�VÞβ ¼
ffiffiffi
g

p
Vαϵαβ; ð3:36Þ

includes a factor of i
2
from the measure

ffiffiffi
g

p
. With these

conventions, the dual of a general one-form Vα with
components Vw and Vw̄ is

ð�VÞα ¼ ð−iVw; iVw̄Þ: ð3:37Þ

Thus, a holomorphic one-form Vα ¼ ðVw; 0Þ obeys an
imaginary anti-self-duality condition

�V ¼ −iV; ð3:38Þ

whereas a purely antiholomorphic one-form Vα ¼ ð0; Vw̄Þ
is imaginary–self-dual,

�V ¼ iV: ð3:39Þ

We therefore see that all of the currents Ji and J̄i of
Eq. (3.26), which correspond to the standard boundary term
fðS; PÞ ¼ S, satisfy �Ji ¼ −iJi and �J̄i ¼ þiJ̄i. This
can also be expressed by defining the projectors onto
imaginary–self-dual and imaginary–anti-self-dual parts of a
one-form,

P� ¼ 1

2
ð1 ∓ i�Þ: ð3:40Þ

In terms of these projectors, the fact that the Jαi are purely
holomorphic can be expressed as P−Jαi ¼ Jαi , and the fact
that the J̄αī are purely antiholomorphic is equivalent to the

statement that PþJ̄αī ¼ J̄αī . Therefore, by adding the boun-
dary term fðS; PÞ ¼ S to the Chern-Simons action, we
obtain chiral currents which obey a linear self-duality
condition. This is the image of the usual statement that free
chiral p forms in 2p dimensions, for p odd, obey linear
self-duality constraints.
Next, we would like to understand how a more general

boundary term gives rise to a nonlinear self-duality con-
straint, which corresponds to an interacting system of
boundary chiral bosons. In this case, rather than obeying
the standard chirality constraints

P−Jαi ¼ Jαi ; PþJ̄αī ¼ J̄αī ; ð3:41Þ
which correspond to (linear) Hodge imaginary–self-duality
or imaginary–anti-self-duality,

�Ji ¼ −iJi; �J̄ī ¼ iJ̄ī; ð3:42Þ
the currents will satisfy more general, nonlinear, or twisted
self-duality conditions, each characterized by an operator
T ðiÞ or T̄ ðiÞ:

�Ji ¼ T ðiÞJi; �J̄ī ¼ T̄ ðīÞJ̄ī: ð3:43Þ

In the case where T ðiÞ ¼ −iI and T̄ ðīÞ ¼ iI are both
proportional to the identity operator I, this reduces to the
standard chirality condition (3.42). In the more general case
we allow T ðiÞ and T̄ ðiÞ to be nontrivial operators which can
depend on the fields.
Twisted self-dual boundary conditions characterized by

operators of this form have been considered in [25,92],
primarily in the setting of non-Abelian Chern-Simons
theories. In the Abelian case, which is the focus of this
work, no nontrivial operator T exists for a system obeying
(3.35) with either N ¼ 0 or N̄ ¼ 0 (i.e., a self-dual theory
which only describes fields Āα

ī but noA
α
i , or with onlyA

α
i but

none of the Āα
ī , respectively). This is again related to the

statement, which we have seen in Sec. II A, that there are no
possible Lorentz-invariant interactions for a system of purely
chiral (or purely antichiral) bosons.13 However, in a theory
which features both chiral and antichiral bosons—or bothAα

i

and Āα
ī , from the Chern-Simons perspective—such Lorentz-

invariant interactions are possible, which manifests as the
existence of allowable operators T besides the identity.
It is easy to see that, for a general boundary term

Lbdry ¼ fðS; PÞ, the currents

Jiw ¼ i
4
kijðfS þ fP þ 1ÞAj

w; Jiw̄ ¼ i
4
kijðfS þ fP − 1ÞAj

w̄

ð3:44Þ

13Alternatively, this is because there are no solutions to the
self-duality equation (3.35) besides the trivial solution fðS; PÞ ¼
S when either N ¼ 0 or N̄ ¼ 0.
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satisfy the nonlinear self-duality condition

ð�JiÞα ¼ ðT ðiÞÞαβgJiβ;

T ðiÞ ¼ −i

"
1 0

− 2kijA
j
w̄

kikAk
w

fSþfP−1
fSþfPþ1

1

#
: ð3:45Þ

This expression gives the components of the matrix T ðiÞ
with respect to its Lorentz indices α; β ¼ w; w̄, where i is a
fixed internal index. When fS ¼ 1 and fP ¼ 0, we see that
T ðiÞ reduces to −iI, which expresses the usual imaginary–
anti-self-duality constraint.
Similarly, the general currents

J̄īw ¼ i
4
k̄ī j̄ðfS − fP − 1ÞĀj̄

w; J̄īw̄ ¼ i
4
k̄ī j̄ðfS − fP þ 1ÞĀj̄

w̄

ð3:46Þ

satisfy the nonlinear self-duality condition

ð�J̄Þīα ¼ ðT̄ ðīÞÞαβJ̄īβ;

T̄ ðīÞ ¼ i

"
1 − 2k̄ī j̄Ā

j̄
wð1þfP−fSÞ

k̄ī k̄Ā
k̄
w̄ð−1þfP−fSÞ

0 1

#
: ð3:47Þ

Likewise, when fS ¼ 1 and fP ¼ 0, we see that T̄ ðīÞ ¼ iI
so this reduces to the usual imaginary–self-duality con-
dition �J̄ī ¼ iJ̄ī.
We should point out that, in other studies of twisted self-

duality in Chern-Simons theories such as [25,92], the
twisting operator T commutes with the Hodge star oper-
ation. As a result, acting with the Hodge star operator on
each side of the twisted self-duality constraint �J ¼ T J,
one has

� � J ¼ �T J ¼ T � J ¼ T 2J: ð3:48Þ

Since the Hodge star is an anti-involution, �� ¼ −I, in
two Euclidean dimensions, one therefore arrives at the
constraint

T 2 ¼ −I: ð3:49Þ

In Lorentzian signature, this would instead give the con-
straint T 2 ¼ I.
However, in our case the twisting operators T ðiÞ and T̄ ðīÞ

have nontrivial structure in their Lorentz indices and
therefore do not commute with the Hodge star. This is
why, in our case, these twisting operators do not satisfy an
anti-involutive constraint such as (3.49).
One can now proceed as in the linear case and define

projection operators

PðiÞ
þ ¼

"
0 0

− kijA
j
w̄

kikA
k
w

fSþfP−1
fSþfPþ1

1

#
; P̄ðīÞ

þ ¼
"
0

k̄ī
j̄
Āj̄
wð1þfP−fSÞ

k̄ī
k̄
Āk̄
w̄ð−1þfP−fSÞ

0 1

#
;

PðiÞ
− ¼

"
1 0

kijA
j
w̄

kikA
k
w

fSþfP−1
fSþfPþ1

0

#
; P̄ðīÞ

− ¼
"
1 −

k̄ī
j̄
Āj̄
wð1þfP−fSÞ

k̄ī
k̄
Āk̄
w̄ð−1þfP−fSÞ

0 0

#
;

ð3:50Þ

which satisfy the expected properties of orthogonal pro-
jectors,

ðPðiÞ
� Þ2 ¼PðiÞ

� ; ðP̄ðīÞ
� Þ2 ¼ P̄ðīÞ

� ; PðiÞ
� PðiÞ∓ ¼ 0¼ P̄ðīÞ

� P̄ðīÞ∓ ;

ð3:51Þ

along with the chirality conditions

PðiÞ
− Ji ¼ Ji; PðiÞ

þ Ji ¼ 0; P̄ðīÞ
þ J̄ī ¼ J̄ī; P̄ðīÞ

− J̄ī ¼ 0:

ð3:52Þ

Therefore, even in the interacting case, one can view the
currents as satisfying an appropriate nonlinear self-duality
constraint. This expresses, in Chern-Simons language, the
equations of motion (2.23) for interacting Floreanini-
Jackiw bosons.
We should point out that this construction has now

produced two separate pairs of projection operators PðiÞ
� and

P̄ðīÞ
� for each fixed choice of indices i; ī, or equivalently, two

separate twist operators T ðiÞ and T̄ ðiÞ. This is in contrast
with the linear–self-duality constraint, which is described
by only two projectors P� ¼ 1

2
ð1 ∓ i�Þ, where

Pþ ¼ P̄þ; P− ¼ P̄−: ð3:53Þ

In the linear case, there are relations that cause these four
operators to collapse to just two independent projectors,
and it is clear that these operators project onto one-
dimensional eigenspaces which represent physically oppo-
site chiralities.
In the nonlinear case, there are also relations (albeit more

complicated ones) between the two twist operators. For
instance, one can see that T ðiÞ can be obtained from T̄ ðiÞ by
simultaneously transposing the matrix in its Lorentz indices
and interchanging all barred and unbarred quantities. That
is, one exchanges

kij ↔ k̄ī j̄; Ai ↔ Āī; w ↔ w̄; ð3:54Þ

which also has the effect of sending P → −P (and thus
fP → −fP). This relation holds regardless of the choice of
boundary term. When the function fðS; PÞ satisfies the self-
duality condition (3.35) necessary to describe chiral modes,
there are further constraints between the twist operators.
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To see one such constraint, we can rewrite (3.35) as

Ji ∧ �Ji ¼ J̄ī ∧ �J̄ī: ð3:55Þ

Since �Ji ¼ T ðiÞJi and �J̄ī ¼ T̄ ðīÞJ̄ī, this relation can also
be expressed as

Ji ∧ T ðiÞJi ¼ J̄ī ∧ T̄ ðīÞJ̄ī: ð3:56Þ

Equation (3.56) is a consequence of the fact that, when the
boundary term obeys the self-duality constraint, the chiral
and antichiral twist operators are “compatible” in a sense
which generalizes the statements that T ðiÞ ¼ −T̄ ðīÞ, or that
the projection operators satisfy (3.53), in the linear case.

C. Current deformations of boundary terms

We will now consider flow equations which modify the
boundary term Lbdry of a bulk Chern-Simons theory.14 In
particular, we are interested in differential equations for
Lbdry which are driven by conserved quantities. We will
refer to any such flow equation as a “current deformation”
regardless of whether the conserved currents driving the
flow are the objects Jiα and J̄īα defined in Eq. (3.14), or the
energy-momentum tensor Tαβ, which is another type of
conserved current in the theory.
Let us first study deformations which involve the spin-

one currents Jiα and J̄īα. A general flow equation in this class
takes the form

∂Lbdry

∂λ
¼ OðJiα; J̄īα; λÞ; ð3:57Þ

where O is a Lorentz scalar and OðNÞ ×OðN̄Þ singlet
constructed from the currents. Within this class, there are
fewer interesting possibilities. The most natural deforma-
tion to consider is to begin with the conventional boundary
term Lbdry ¼ S and deform by a marginal combination of
the form

O ¼ kijJiαJαj or O ¼ k̄ī j̄J̄
ī
αJ̄αj̄: ð3:58Þ

However, by virtue of the chirality of the currents given in
Eq. (3.26), both of these operators vanish. One might
instead construct a deforming operator which mixes the
currents on the two sides, such as

O ¼ Cij̄J
i
αJ̄αj̄; ð3:59Þ

where Cij̄ is a constant tensor with mixed indices. For
instance, in the case N ¼ N̄, we do not need to distinguish

between barred and unbarred indices and can choose
Cij̄ ¼ δij̄ ≡ δij.

15 Let us consider the effect of this defor-
mation with the simplifying assumption kij ¼ k̄ij ¼ δij. In
this case, at leading order in the deformation parameter, one
finds a deformed boundary term

Lð1Þ
bdry ¼

1

2
ðAα

i A
i
α þ Āα

i Ā
i
αÞ þ λAα

i Ā
i
α; ð3:60Þ

up to the normalization of λ. That is, such an operator has
introduced an off-diagonal mixing between the barred and
unbarred gauge fields. Ignoring possible subtleties about
quantization of the Chern-Simons levels, such a quadratic
mixing can always be undone by performing a Bogoliubov-
like field redefinition. Indeed, note that beginning with the
undeformed boundary term

Lð0Þ
bdry ¼

1

2
ðAα

i A
i
α þ Āα

i Ā
i
αÞ ð3:61Þ

and then performing a change of variables to

Ai
α ¼ coshðμÞBi

α þ sinhðμÞB̄i
α;

Āi
α ¼ coshðμÞB̄i

α þ sinhðμÞBi
α; ð3:62Þ

gives the transformed boundary term

Lð0Þ
bdry ¼ coshð2μÞ

�
1

2
ðBα

i B
i
α þ B̄α

i B̄
i
αÞ þ tanhð2μÞBα

i B̄
i
α

�
:

ð3:63Þ

Up to an overall rescaling, this is equivalent to the deformed
boundary term (3.60) if we identify tanhð2μÞ ¼ λ. Therefore,
the marginal JJ̄ deformation of Eq. (3.59) can be viewed as
inducing a rotation between the fieldsAi

α and Āī
α. Wewill see

later that the root-TT̄ deformation, in the caseN ¼ N̄ ¼ 1, is
qualitatively similar to this JJ̄ deformation.
In principle, one could consider more general operators

constructed from the currents J and J̄, such as powers
of the form O ¼ ðJiαJ̄αiÞn or other structures such as
O ¼ ðJiαJiβJ̄αj̄J̄βj̄Þm, both of which preserve OðNÞ×OðN̄Þ
symmetry. These operators are irrelevant for n > 1 and
m > 1

2
, respectively. However, we will now instead turn

our attention to deformations which are constructed from the
energy-momentum tensor,

∂Lbdry

∂λ
¼ OðTðλÞ

αβ ; λÞ: ð3:64Þ

14Although we focus on Uð1Þ Chern-Simons theories in this
work, stress tensor deformations of the boundary term for
SLð2Þ × SLð2Þ Chern-Simons have been considered in [93–95].

15Of course, when N ≠ N̄, a deformation of this form does not
preserveOðNÞ ×OðN̄Þ symmetry. For instance, a deformation byP

M
i¼1 J

i
αJ̄iα, where M ¼ minðN; N̄Þ, treats the currents asym-

metrically.
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The first choice that onemust make in defining such a flow is
which stress tensor to use. There are generally many
definitions of the energy-momentum tensor which are all
conserved but which differ by improvement transformations.
One natural choice is the Hilbert stress tensor defined by
varying the metric. Of course, neither the Chern-Simons
action (3.5) nor theboundary action (3.6) depends on thebulk
metric, but the term Ibdry does depend on the boundary
metric. One can therefore define a boundary stress tensor,

Tαβ ¼ −
2ffiffiffi
g

p δI
δgαβ

¼ −
2ffiffiffi
g

p δIbdry
δgαβ

: ð3:65Þ

However, this stress tensor is qualitatively different from the
one obtained in Eq. (2.54) by coupling a chiral boson theory
to vielbeins. In that context, the coupling to vielbeins treated
chiral and antichiral modes differently, and as a result the
stress tensor component Ttθ ¼ −P is sensitive to the differ-
ence between chiral and antichiral fields. Exchanging the
fields ϕ with ϕ̄, and vice versa, reverses the sign of P and
therefore changes Ttθ.
In contrast, sinceboth thebarred gauge fields and unbarred

gauge fields couple to the boundary metric in the same way,
the Hilbert stress tensor (3.65) treats the fields Ai

α and Āα
ī on

equal footing. Unlike (2.54), the Hilbert stress tensor
associated with the standard boundary Lagrangian Lbdry ¼
S is unchanged under the process of exchanging barred and
unbarred gauge fields. Tomake this point explicit, let uswrite
this boundary term as

Lbdry ¼
1

2
Sαα; Sαβ ¼ kijAiαAjβ þ k̄ī j̄ĀīαĀj̄β: ð3:66Þ

With this definition, one has Sαα ¼ 2S. The Hilbert stress
tensor computed from (3.66), after rescaling to eliminate the
overall prefactor of − 1

16π in Ibdry, is

Tαβ ¼ −Sαβ þ gαβS: ð3:67Þ

Deforming the standard boundary term by a generic function
of the stress tensor (3.67), which necessarily involves the
single independent nonvanishing Lorentz invariant TαβTαβ,
will introduce dependence on the new variable

S2 ¼ SαβSαβ: ð3:68Þ

Note that S2 is functionally independent from the invariant

P ¼ 1
2
ðkijAα

i A
j
α − k̄ī j̄Āα

ī Ā
j̄
αÞ. Therefore, the class of boun-

dary terms that can be described by functions fðS; PÞ is not
closed under deformations by the Hilbert stress tensor.
Instead, to describe flows driven by this choice of stress
tensor, we should instead parametrize the boundary term as a
function of different invariants:

Lbdry ¼ fðS1; S2Þ; ð3:69Þ

where

S1 ¼ TrðSÞ ¼ Sαα ¼ 2S; S2 ¼ TrðS2Þ ¼ SαβSαβ: ð3:70Þ
The structure ofHilbert stress tensor deformations of the class
of functions (3.69) is identical to the structure of such flows
for a collection of nonchiral bosons. Indeed, as was worked
out in [41], a general Lagrangian for a collection of N
nonchiral bosonsφi with target-space metricGij is a function
of the matrix

Xα
β ¼ Gij∂αφ

i
∂
βφj; ð3:71Þ

which has two independent traces,

x1 ¼ TrðXÞ ¼ Xα
α; x2 ¼ TrðX2Þ ¼ Xα

βXβ
α: ð3:72Þ

All higher traces can be expressed in terms of x1 and x2 using
identities derived from the Cayley-Hamilton theorem for
2 × 2 matrices. Precisely the same results apply in the
Chern-Simons context, except replacing the matrix Xα

β with
Sαβ and thus replacing the invariants x1 and x2 withS1 andS2.
For instance, the Hilbert stress tensor associated with a
general boundary term (3.69) is

Tαβ ¼ −2
∂f
∂S1

Sαβ − 4
∂f
∂S2

SαγSγβ þ gαβf: ð3:73Þ

One can then construct deformations of the boundary term
which depend on the two independent traces of the stress
tensor, which can be written as

TαβTαβ ¼ 2

�
f þ 2S21

∂f
∂S2

��
f − 2S1

�
∂f
∂S1

þ S1
∂f
∂S2

��

þ 8S22

�
∂f
∂S2

�
2

þ 4S2

��
∂f
∂S1

�
2

þ 6S1
∂f
∂S1

∂f
∂S2

− 2
∂f
∂S2

�
f − 2S21

∂f
∂S2

��
; ð3:74Þ

Tα
α ¼ −2S1

∂f
∂S1

− 4S2
∂f
∂S2

þ 2f: ð3:75Þ

All of the results concerning stress tensor flows for nonchiral
bosons in twodimensions (see, for instance, [41] andSec. 4 of
[54]) therefore immediately apply to deformations of Chern-
Simons boundary terms which take the form (3.69).
One way to think about this class of deformations, using

the parametrization (3.69) and the Hilbert stress tensor, is
the following. In the case N ¼ N̄—when the unbarred
gauge fields Ai

α and barred gauge fields Āi
α are dual to equal

numbers of chiral bosons ϕi and antichiral bosons ϕ̄i,
respectively—one can collect these fields into a collection
of nonchiral bosons φi as

φi ¼ 1ffiffiffi
2

p ðϕi þ ϕ̄iÞ: ð3:76Þ
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Wewill revisit the quantization of the boundary theory after
performing this repackaging of the field content into
nonchiral fields in Sec. V. We claim that deformations
using the Hilbert stress tensor and the parametrization
(3.69) are appropriate for understanding flows in which the
bosons are assembled into nonchiral fields in this way. This
is why such flows are naturally studied using the invariants
ðS1; S2Þ, which have the same structure as the ones
appearing in TT̄-like deformations of nonchiral bosons,
rather than the invariants ðS; PÞ, which we have used in
Sec. II to understand stress tensor flows for chiral bosons.
One might ask whether there is a different presentation of

stress tensor deformations for the boundary term whose
structure is more similar to that of flows in the Floreanini-
Jackiw description of Sec. II. This brings us to the second
natural choice of stress tensor, besides the Hilbert definition
in Eq. (3.65). Rather than coupling the boundary theory to a
metric on ∂M3, one could instead couple to vielbeins in the
same way as we did in Eq. (2.49) for chiral boson theories.
To do this, we again introduce frame fields Ea

α, although
now the flat indices will be raised or lowered with the
Euclidean tangent-space metric ηab ¼ ½0

1
1
0
�. In this case, the

appropriate flat-space values for the vielbeins are

Eþ
w ¼ E−

w̄ ¼ 1ffiffiffi
2

p ; Eþ
w̄ ¼ E−

w ¼ 0; ð3:77Þ

whose inverses produce the desired spacetime metric
ds2 ¼ dwdw̄,

Ea
αEb

βηab ¼ gαβ ¼
�
0 1

2

1
2

0

�
: ð3:78Þ

One can then couple the Chern-Simons boundary term Ibdry
to vielbeins as

Ibdry ¼ −
i

16π

Z
∂M3

d2xð2ðEþ
wE−

w − Eþ
w̄E

−
w̄ÞPþ 2EfðS; PÞÞ;

ð3:79Þ

where we include factors of 2 since, in the conventions of
this section, E ¼ 1

2
. Likewise, the overall factor of i in

(3.79) arises because
ffiffiffi
g

p ¼ i
2
but E ¼ 1

2
. To compare with

Eq. (2.49), note that in the conventions of Sec. II, we
instead had E ¼ 1. Now S and P are coupled to vielbeins as

S ¼ 1

4ðEþ
wE−

w̄ þ E−
wE

þ
w̄ þ Eþ

wE−
w þ Eþ

w̄E
−
w̄Þ

× ðkijAiwA
j
jw̄ þ k̄ī j̄ĀīwĀ

j̄
w̄Þ;

P ¼ 1

4ðEþ
wE−

w̄ þ E−
wE

þ
w̄ þ Eþ

wE−
w þ Eþ

w̄E
−
w̄Þ

× ðkijAiwA
j
w̄ − k̄ī j̄ĀīwĀ

j̄
w̄Þ; ð3:80Þ

in such a way that they reduce to their flat-space values
when the vielbeins are given by (3.77). Because these
expressions are written with explicit ðw; w̄Þ indices, the
resulting coupling to gravity is not manifestly Lorentz
invariant. However, this is to be expected since we are
performing the equivalent of the procedure used in
Eq. (2.49) for coupling Floreanini-Jackiw bosons to grav-
ity, which is also not manifestly Lorentz invariant.
We now compute the stress tensor (2.6) using this

coupling to the frame fields. To make comparison with
the results of Sec. II easier, we will re scale the stress tensor
by an overall factor to absorb the multiplicative constant of
− i

16π in the boundary term (3.79), as well as the relative
factor of 2 due to the conventions for the vielbein in this
section. Therefore, we instead compute

Tβ
a ¼ −

8πi
E

δS
δEβ

a
ð3:81Þ

and convert to spacetime indices to find

Tww ¼ −
1

4
ð2SVS þ 2Pð1þ VPÞÞ;

Tww̄ ¼ Tw̄w ¼ 1

2
ðV − SVS − PVPÞ;

Tw̄ w̄ ¼ 1

2
ðP − PVP − SVSÞ: ð3:82Þ

The two Lorentz scalars that we use for constructing flows
are therefore

Tα
α ¼ 2ðV − SVS − PVPÞ;

TαβTαβ ¼ V2 − 2P2 þ ðV − 2ðSVS þ PVPÞÞ2; ð3:83Þ

which exactly match Eqs. (2.55) and (2.56).
It now follows that all of our comments about stress

tensor flows in Sec. II immediately apply to deformations
of Chern-Simons boundary terms which are constructed
using the stress tensor (3.81) obtained from coupling to
vielbeins, as opposed to the standard Hilbert stress tensor.
For instance, any deformation by a function of the vielbein
stress tensor (3.81) necessarily preserves the condition
(3.35). This means that, if one begins with a seed
Chern-Simons boundary term which is invariant under
the symmetry (3.32) that guarantees the chirality (or self-
duality) of the theory, and then deforms this seed by any
function of the energy-momentum tensor, the resulting
deformed boundary term will also be invariant under the
same symmetry. Furthermore, any one-parameter family of
Chern-Simons boundary terms which are all invariant
under the duality rotation (3.32) must satisfy a differential
equation driven by a function of the vielbein stress tensor.
It also follows that the closed-form solutions to

flow equations driven by functions of the stress tensor
discussed in Sec. II—such as the two-parameter family of
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solutions (2.40) to the commuting TT̄ and root-TT̄ flow
equations—also have obvious analogs for deformations of
Chern-Simons boundary terms. Besides solving these
differential equations directly, a complementary way to
analyze stress tensor deformations is by performing a
perturbative expansion which computes the deformed
action order-by-order in the flow parameter. This approach
is discussed in Appendix A for deformations by various
functions of the energy-momentum tensor, using the
version of Tαβ defined by coupling to vielbeins.
To conclude this section, let us summarize and mention

some applications. We have seen that the boundary term
of a bulk Uð1Þ Chern-Simons theory can be deformed
either by functions of the Hilbert stress tensor or by
functions of the vielbein stress tensor (3.81). The former
deformations lead to a class of modified boundary terms
LbdryðS1; S2Þ with the same properties as Lagrangians
obtained by stress tensor deformations of nonchiral boson
theories. Conversely, the latter flows generate a family of
boundary terms LbdryðS; PÞ with the same structure as
the Lagrangians in Sec. II arising from stress tensor
deformations of chiral boson theories. We have thus
described two complementary ways to view deformations
of Chern-Simons boundary terms by functions of the
energy-momentum tensor.
These results provide a general framework for studying

three-dimensional Uð1Þ Chern-Simons theories subject to
boundary deformations. Throughout our discussion, we
have been agnostic as to the specific setting in which
such Chern-Simons terms arise, but let us briefly mention
two specific applications of the formalism we have devel-
oped. One context in which these results could be useful
is when considering AdS3=CFT2 holography with Uð1Þ
gauge fields. One could use our machinery to derive flow
equations for various observables under stress tensor
deformations, just as [95] found expressions for TT̄-
deformed Wilson lines and loops, and [44] obtained
formulas for the masses of BTZ black holes under a
boundary root-TT̄ deformation. For instance, one could
use the results of this section to analyze the dependence of
the Uð1Þ charges of charged BTZ black holes as a function
of the deformation parameter for boundary TT̄ or root-TT̄
deformations. Another possible application of these results
is to study quantum Hall systems subject to boundary
deformations, which we will briefly describe in the con-
clusion of this paper.

IV. QUANTIZATION ALONG CLASSICAL FLOWS

In this section, we will consider the quantization of a
member of the general class of interacting chiral boson
models. We will work purely within the Floreanini-Jackiw
description, described by an action of the form (2.22),
rather than in the Chern-Simons formulation of Sec. III. We
will also work in Lorentzian signature with spacetime

coordinates ðt; θÞ. Although in the preceding discussion
we have been agnostic as to the spacetime topology, within
this section we will assume that θ is compact and subject to
the identification θ ∼ θ þ 2π. We focus on the case of a
compact spatial manifold because our primary observable
of interest is the finite-volume spectrum of energy levels
En, and in particular how these energies depend on a
deformation parameter along a stress tensor flow.
The most well-studied example of a stress tensor

deformation for which the deformed cylinder spectrum
can be determined is the TT̄ deformation. Under the TT̄
flow, the energy levels of the deformed theory obey the
inviscid Burgers’ equation,

∂En

∂λ
¼ En

∂En

∂R
þ P2

n

R
; ð4:1Þ

where R is the radius of the cylinder and En, Pn are the
energy and momentum of the eigenstate under consider-
ation [1–3].16
This example is remarkable because the flow equa-

tion (4.1) can be proven directly at the quantum level using
the properties of the local TT̄ operator, which is defined by

OTT̄ðxÞ ¼ lim
y→x

ðTαβðxÞTαβðyÞ − Tα
αðxÞTβ

βðyÞÞ: ð4:2Þ

It was demonstrated in [1] that the coincident point limit on
the right side of (4.2) actually gives rise to a well-defined
local operator, up to total derivative ambiguities which
can be ignored. One can therefore prove results about a
TT̄-deformed quantum field theory at the quantum level
using the properties of this operator; for instance, an
argument involving a certain factorization property of
OTT̄ and the interpretation of the components of the stress
tensor in terms of energy and momentum lead to the flow
equation (4.1).17

This is in contrast with a different method for attempting
to learn about the quantummechanical properties of a stress
tensor deformation, which we refer to as quantization along
a classical flow. In this case, one first finds the solution to a
differential equation of the form (2.1) for the Lagrangian of
a deformed theory, and then attempts to quantize this
deformed Lagrangian directly.

16One can also study various generalizations of this flow
for the spectrum, such as the energy levels of tensor product
theories where the factors are sequentially deformed by multiple
TT̄ flows [96].

17These statements are special to d ¼ 2, and it is not known
whether there exists a higher-dimensional version of the quantum
TT̄ operator with similar properties; see Ref. [97] for a discussion
of the challenges in doing so. However, in d > 2 one can define
point-split stress tensor bilinears which factorize to leading order
at large N [98,99], and a new proposal for Oð1NÞ corrections was
made in Eq. (1.58) of [100].
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Assuming that a given classical deformation can be
rigorously defined at the quantum level, we do not expect
that quantization along the classical flow will give accurate
information about all aspects of the deformed quantum field
theory. Indeed, this is already true for the TT̄ deformation.
For instance, it can be shown that the S-matrix of a TT̄-
deformedquantum field theory is equal to theS-matrix of the
undeformed theory multiplied by a certain momentum-
dependent phase known as a Castillejo-Dalitz-Dyson
(CDD) factor [101,102]. However, if one studies scattering
using quantization along the classicalTT̄ flow, one finds that
this CDD factor is not reproduced unless one adds specific
counterterms which are engineered to obtain the expected
scattering behavior [21,103,104]. Therefore, quantization
along the classical flow is not sufficient to fully characterize
the properties of the TT̄-deformed theory without additional
input from the quantum definition.18

Despite this, one may hope that quantization of a
classical deformed Lagrangian will still give some infor-
mation about the corresponding deformation at the quan-
tum level, at least in particular limiting cases. For instance,
the solution to the classical TT̄ flow equation beginning
from a seed theory of free scalars is the Nambu-Goto action
of string theory, and one generically expects that string
theories exhibit a high-energy density of states which is
Hagedorn rather than Cardy. This predicted Hagedorn
scaling agrees with an analysis of the high-energy behavior
of a TT̄-deformed CFT at the quantum level, which can be
seen either from the energies [3] or the partition function
[107,108]. Thus, certain limiting features of the quantum
theory can still be inferred from the TT̄-deformed classical
Lagrangian.
For other stress tensor deformations, such as the root-TT̄

flow, it is not yet known whether one can give a rigorous
definition of the deforming operator at the quantum level.19

Therefore, we do not yet have any exact data about the
deformed quantum theory against which to compare results
obtained by other methods. However, extrapolating from the
TT̄ case, one might perform quantization along a classical
root-TT̄ flow in the hope that this procedure will still give
useful information in certain limits. Our goal in this section is
to carry out this quantization procedure for root-TT̄-
deformed theories of chiral bosons and examine the behavior
of the deformed spectrum in such limiting cases.
One regime for which we have additional data about the

root-TT̄-deformed spectrum is the limit of a large-c holo-
graphic CFT which admits a bulk AdS3 dual. When

restricting to states for which the stress tensor is approx-
imately constant (which are dual to BTZ black holes), one
obtains the formula (1.7) for the root-TT̄- deformed
spectrum [44]. We will see that our analysis using quan-
tization along the classical flow agrees with this “zero-
mode formula” for states that correspond to constant
stress tensor backgrounds. However, we will also be able
to probe other limits of a root-TT̄-deformed theory, such as
a large-momentum limit which is not close to a constant
stress tensor configuration for which the zero-mode for-
mula is expected to apply. This result may therefore give
novel information about the behavior of a putative root-
TT̄-deformed field theory in a different regime.

A. Generalities on quantization

Let us now study the quantum mechanics of interacting
chiral boson models such as (2.22). This Floreanini-Jackiw
form of the Lagrangian, although it is not manifestly
Lorentz invariant, is nonetheless convenient for quantiza-
tion because it is first-order in time derivatives. This allows
us to perform canonical quantization in a uniform way
which does not depend on the details of the interaction
function VðS; PÞ.
We begin by reviewing some basic features of quantiza-

tion of first-order systems in the simpler setting of (0þ 1)-
dimensional theories, i.e., particle mechanics.

1. Quantization of first-order particle mechanics

Wewill first consider a collection of (0þ 1)-dimensional
fields qiðtÞ, whose time derivatives will be denoted q̇iðtÞ. A
general first-order Lagrangian for such a system takes the
form

L ¼ 1

2
Cijqiq̇j − VðqÞ; ð4:3Þ

where Cij is a nonsingular constant matrix. Without loss of
generality, we may assume that Cij is antisymmetric.
Indeed, if we instead split Cij ¼ C½ij� þ CðijÞ into symmet-
ric and antisymmetric parts, the Lagrangian would be

L ¼ 1

2
C½ij�qiq̇j þ

1

2
CðijÞ d

dt
ðqjqiÞ − VðqÞ; ð4:4Þ

where the second term is a total time derivative that can be
ignored.
The canonical momentum which is conjugate to qjðtÞ is

pj ¼ ∂L
∂q̇j

¼ 1

2
Cijqi; ð4:5Þ

and thus the Hamiltonian associated with (4.3) is

Hðq; pÞ ¼ ∂L
∂q̇i

q̇i − L ¼ VðqÞ: ð4:6Þ

18Another argument for this conclusion is that quantization of
fermionic fields along classical TT̄ flows can give different
Hilbert spaces depending on which definition of the stress tensor
one uses [105,106].

19However, see Ref. [109] for a recent proposal for the
quantum definition of the root-TT̄ deformation and a computa-
tion of deformed correlation functions.
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The Hamiltonian (4.6) appears to depend only on the
position variables but not on the momenta, but this is
misleading, since Eq. (4.5) implies that some combinations
of the qi are momenta. The Euler-Lagrange equations
arising from the Lagrangian (4.3) are

Cijq̇i ¼
∂H
∂qj

; ð4:7Þ

where we now use the symbols V and H interchangeably.
Alternatively, by defining Cij to be the inverse matrix
ðC−1Þij of Cij, the equations of motion can be written as

q̇i ¼ Cij
∂H
∂qj

: ð4:8Þ

Next, we consider the quantization of this model.
Ordinarily, for Lagrangians which are quadratic in time
derivatives, one would impose the canonical commutation
relations

½xi; pj� ¼ iδij: ð4:9Þ

However, imposing the relations (4.9) for a first-order
system such as (4.3) gives results that differ from the
correct commutation relations by a factor of 2. To arrive at
the correct relations, we follow the prescription outlined in
Appendix A of [9], and further justified in [110], which is
to define commutators so that the Heisenberg-picture time
evolution of operators in the quantum theory takes the same
form as the classical Euler-Lagrange equations.20

In general, the Heisenberg equation of motion for an
operator O reads Ȯ ¼ i½H;O�. In the case of the operator
O ¼ qi, we have

q̇i ¼ i½H; qi� ¼ i
∂H
∂qj

½qj; qi�: ð4:10Þ

Comparing (4.10) to (4.8), we find that the two take the
same form if we identify

½qi; qj� ¼ iCij: ð4:11Þ

As we mentioned, since pj ¼ 1
2
Cijqi, this differs from the

canonical prescription (4.9) which would give ½qi; qj� ¼
2iCij. The errant factor of 2 is due to the fact that, in a first-
order system, there is a constraint on the phase space.

2. Quantization of first-order field theories

Having reviewed the quantum mechanics of first-order
(0þ 1)-dimensional systems, we now turn to the quantiza-
tion of first-order (1þ 1)-dimensional field theories, and in
particular the theories of chiral bosons which are the focus
of this work.
As a simple example to set the stage, we will first

consider a single chiral boson described by the Floreanini-
Jackiw Lagrangian (1.1) which we repeat here:

L ¼ 1

2
ðϕ0ϕ̇ − ϕ0ϕ0Þ: ð4:12Þ

As usual, we write ϕ̇ for the time derivative of ϕ and ϕ0 for
the spatial derivative of ϕ. The quantization of this system
in infinite volume, i.e., with a spatial coordinate x∈R, was
first studied in [9]. In short, one can view x as a continuous
generalization of the discrete labels i, j in (4.3) and rewrite
the first term as

1

2

Z
dx∂xϕðx; tÞϕ̇ðx; tÞ

¼ 1

2

Z
dx
Z

dyδðx − yÞ∂xϕðx; tÞϕ̇ðy; tÞ

¼ −
1

2

Z
dx
Z

dy½∂xδðx − yÞ�ϕðx; tÞϕ̇ðy; tÞ: ð4:13Þ

The role of the constant antisymmetric matrix Cij in the
particle mechanics example is now played by the function

Cðx − yÞ ¼ −∂xδðx − yÞ; ð4:14Þ

and the role of the inverse matrix Cij is played by Green’s
function of Cðx − yÞ. This suggests that we impose the
commutation relations

½ϕðxÞ;ϕðyÞ� ¼ −
i
2
sgnðx − yÞ; ð4:15Þ

which is the field theory analog of (4.11) and which
matches the result in [9]. It is then straightforward to
use the above equal-time commutation relations to confirm
the Heisenberg equations of motion are indeed equivalent
to the Euler-Lagrange equations of the Lagrangian (4.12),
which describe a chiral boson:

∂O
∂t

¼ −i½O; H� ⇒ ϕ̇ ¼ ϕ0: ð4:16Þ

Next, we will study this theory in finite volume. We now
replace the spatial coordinate x∈R with an angular
coordinate θ labeling a position on S1, and subject to
the identification θ ∼ θ þ 2π. We will also assume that the
target space is compact, which means that ϕ likewise takes
values in a circle so that ϕ ∼ ϕþ 2π. As we will see, the

20In conventional quantum systems with second-order
Lagrangians, the fact that these two equations should take the
same form is the content of the Ehrenfest theorem. We demand
that the same is true here.
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structure of this theory on a cylinder is closely related to the
particle mechanics example considered above.
First, let us write the function ϕðt; θÞ using a mode

expansion:

ϕðt; θÞ ¼ 1

π
xðtÞ þ pðtÞθ þ 1ffiffiffiffiffiffi

2π
p

X∞
n¼1

1ffiffiffi
n

p

× ðanðtÞeinθ þ a†nðtÞe−inθÞ: ð4:17Þ

We have included a zero-mode term xðtÞ in addition to
a momentum contribution which is linear in θ; the latter
is permissible, despite not being periodic in θ, since both
θ ∼ θ þ 2π and ϕ ∼ ϕþ 2π, so such a term is compatible
with our identifications if p∈Z. The remaining sum is the
standard Fourier expansion of the periodic part of ϕ in the θ
direction.
It is now necessary to distinguish between the

Lagrangian density L and the Lagrangian L ¼ R dθL.
Substituting the mode expansion (4.17) into the
Lagrangian density (4.12) and performing the integral over
the θ coordinate gives

L ¼
Z

2π

0

dθL ¼ pẋ − πp2 þ i
2

�X∞
n¼1

ðȧ†nan − ȧna
†
nÞ
�

−
�
1

2

X∞
n¼1

nðana†n þ a†nanÞ
�
; ð4:18Þ

where we have dropped a term that is a total derivative in
time. Because p is integer-quantized, as we mentioned
above, the first term describes the well-known quantum
system which is a particle on a ring. The Hilbert space is
generated by states jpi labeled by integer p∈Zwith energy
Ep ¼ πp2. The remaining terms are nothing but the familiar
first-order particle mechanics system discussed previously.
To make this analogy clearer, it is convenient to define

a−n ¼ a†n; ð4:19Þ

so that the Lagrangian can be written as

L ¼ pẋ − πp2 þ i
2

�X∞
n¼1

ðȧ−nan − ȧna−nÞ
�

−
�
1

2

X∞
n¼1

nðana−n þ a−nanÞ
�
: ð4:20Þ

The an’s now play the role of qi ’s, except the modes are
labeled by n∈Z so the phase space is infinite-dimensional.
Comparing the two sums in the Lagrangian (4.20) with the
general form (4.3), we find that the two agree if we identify

Cn;m ¼ isgnðnÞδn;−m: ð4:21Þ

Therefore, when we promote the an from functions appear-
ing in the expansion of the classical field ϕ to quantum
operators, the appropriate commutation relations (4.11)
are

½an; am� ¼ sgnðnÞδn;−m: ð4:22Þ

When expressed in terms of a†m, this is the familiar commu-
tation relation of ladder operators:

½an; a†m� ¼ δn;m: ð4:23Þ

It is perhaps surprising that, if we had worked with the
Fourier modes an of the field ϕ from the beginning (rather
than with the field ϕ itself), then imposing the standard
commutation relations (4.23) gives the correct result, without
the errant factor of 2 which we mentioned around
Eq. (4.11) that occurs due to the phase space constraint
on first-order systems. The reason for this is that, after
performing the mode expansion, the positive Fourier modes
an with n > 0 act as the position variables and the negative
modesanwithn < 0 (or equivalentlya†n) act as the conjugate
momentum variables. Therefore, in Fourier space, the
separation between coordinates and momenta is automatic,
and we need not impose phase space constraints or consider
commutation relations such as (4.11)whichnaïvely appear to
involve two position variables.21

The Hamiltonian obtained from the Legendre transform
of the Lagrangian (4.20), written in terms of a†n rather than
a−n, is

H ¼ πp2 þ 1

2

X∞
n¼1

nðana†n þ a†nanÞ

¼ −
1

24
þ πp2 þ

X∞
n¼1

na†nan; ð4:24Þ

where we have used ana
†
n ¼ a†nan þ 1 and the well-known

ζ-function regularization

X∞
n¼1

n ¼ −
1

12
: ð4:25Þ

It is straightforward to generalize the above discussion
to the case of multiple chiral and antichiral bosons. We
work with a Lagrangian density for N chiral bosons ϕi,
i ¼ 1;…; n, and N̄ antichiral bosons ϕ̄ī, of the form (1.2)
which we have been considering in Sec. II. For simplicity
we take trivial target-space metrics for the bosons,

21See Sec. 6.1.3 of [111] for a pedagogical review of the
quantization of the chiral boson from this momentum-space
perspective, and later sections of this reference for applications to
quantum Hall physics.
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Gij ¼ δij and Ḡī j̄ ¼ δī j̄. The Lagrangian density for this
system is then

L ¼ 1

2
ðϕ0

iϕ̇
i − ϕ̄0̄

i
˙̄ϕ īÞ − Vðϕ0

i; ϕ̄
0̄
iÞ: ð4:26Þ

We expand both the chiral and anitchiral fields in modes as

ϕiðt; θÞ ¼
1

π
xiðtÞ þ piðtÞθ þ

1ffiffiffiffiffiffi
2π

p
X∞
n¼1

1ffiffiffi
n

p

× ðai;nðtÞeinθ þ a†i;nðtÞe−inθÞ;

ϕ̄īðt; θÞ ¼ −
1

π
x̄īðtÞ þ p̄īðtÞθ þ

1ffiffiffiffiffiffi
2π

p
X∞
n¼1

1ffiffiffi
n

p

× ðbī;nðtÞe−inθ þ b†ī;nðtÞeinθÞ: ð4:27Þ

The nonzero commutation relations between the various
expansion coefficients are

½xi; pj� ¼ iδij; ½x̄ī; p̄j̄� ¼ iδī j̄;

½ai;n; a†j;m� ¼ δijδnm; ½bī;n; b†j̄;m� ¼ δī j̄δnm; ð4:28Þ

with all other commutators vanishing.
Note that here we take all ϕi and ϕ̄ī to be compact with

radius 2π. Therefore, the eigenvalues of pj and p̄j̄ must be
integers. The Hamiltonian is given by

H ¼
Z

2π

0

dθVðϕ0
i; ϕ̄

0̄
jÞ: ð4:29Þ

The commutation relations (4.28) allow us to build the
Hilbert space of the quantum theory for any potential V. In
the next subsection, we will use this to study the spectrum
of the modified scalar theory, that is, the theory obtained by
applying a root-TT̄ deformation to a seed theory of free
chiral and antichiral bosons.

B. Root-TT̄-deformed spectrum

We will now use the formalism reviewed in Sec. IVA to
study root-TT̄-deformed free boson theories. In principle,
this can be done for any numbers ðN; N̄Þ of chiral and
antichiral bosons, respectively. However, there is a sharp
distinction between the case N ¼ N̄ ¼ 1, for which the
deformation is comparatively simple and can be interpreted
as a rescaling of the target-space radius for the boson, and
all other cases with N ≥ 1 and N̄ ≥ 1, where the deforma-
tion is more nontrivial.22 We will therefore first discuss the
simpler case N ¼ N̄ ¼ 1 in detail, and then as an illus-
trative example of the latter class, we will study the
example with N ¼ 2 and N̄ ¼ 1. We expect that the

qualitative features of the deformed ðN; N̄Þ ¼ ð2; 1Þ model
will be similar to those of theories with larger N and N̄.

1. One compact boson

Let us begin by studying the root-TT̄ deformation of a
single (nonchiral) c ¼ 1 compact boson, or equivalently, a
pair of N ¼ 1 left-moving and N̄ ¼ 1 right-moving chiral
bosons. It was already mentioned in the initial work [41]
that, in this case, the root-TT̄ flow simply rescales the
kinetic term for the boson, which corresponds to a change
in the radius if the scalar is compact. We will revisit this
claim by describing the deformed model in terms of chiral
bosons and determining the quantum spectrum exactly to
confirm that the root-TT̄ deformation of a compact boson is
just a change of radius.
This formalism also provides a way to realize a compact

boson at an arbitrary radius—even at irrational points
where the theory does not factorize into the chiral part
and antichiral part—using a Lagrangian for one chiral and
one antichiral boson with a quadratic mixing term.
Furthermore, treating this example in detail will allow us
to test the zero-mode formula given in Eq. (1.7) that is
expected, due to evidence from holography [44], to
describe the energies of states in root-TT̄-deformed
CFTs for which the energy-momentum tensor is constant
in space. We will see explicitly that this zero-mode formula
fails to give the energies of deformed states for which this
assumption is violated.
The Lagrangian for a root-TT̄-deformed seed theory of

one left-moving and one right-moving chiral boson takes
the form (1.2) with an interaction function VðS; P; γÞ given
by the λ → 0 limit of Eq. (2.40). To be pedantic, the
resulting Lagrangian is technically

LðγÞ ¼ 1

2
ðϕ0ϕ̇ − ϕ̄0 ˙̄ϕÞ − coshðγÞ

2
ðϕ02 þ ϕ̄02Þ

− sinhðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ0Þ2ðϕ̄0Þ2

q
: ð4:30Þ

That is, because ϕ0 and ϕ̇ can take both positive and
negative values, the final term is really proportional to
jϕ0j · jϕ̄0j. However, we will ignore this subtlety and simply
replace

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ0Þ2ðϕ̄0Þ2

p
with ϕ0ϕ̄0. This can be justified, for

instance, by restricting attention to small fluctuations of the
fields around a background for which the gradients are
large and positive, so that both ϕ0 and ϕ̄0 have fixed positive
signs. This corresponds to a solution with large positive
values of pi and p̄i in the expansion of Eq. (4.27). We will
take a similar large-momentum limit in the analysis with
several bosons below, again resolving the square root,
which is more nontrivial in that setting because of an
additional term under the root.
After making this simplification, the Lagrangian we wish

to study becomes

22Note that if either N ¼ 0 or N̄ ¼ 0, then the theory is a fixed
point of stress tensor flows so the root-TT̄ deformation is trivial.
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LðγÞ ¼ 1

2
ðϕ0ϕ̇ − ϕ̄0 ˙̄ϕÞ − coshðγÞ

2
ðϕ02 þ ϕ̄02Þ − sinhðγÞϕ0ϕ̄0:

ð4:31Þ
As discussed previously, the Hilbert space factorizes into
two parts: the particles on a ring and the infinite tower of
harmonic oscillators. Due to the special form of (4.31), the
Hamiltonian does not mix the two parts. Therefore, we can
study them separately.
Let us first consider the sector of the Hilbert space which

describes the particles on a ring. We write the states in this
Hilbert space as jp; p̄i, which are labeled by two quantized
momenta p; p̄∈Z. The corresponding Hamiltonian and the
momentum operator are

HðγÞ
PR ¼ πðp2 þ p̄2Þ coshðγÞ þ 2πpp̄ sinhðγÞ;

PðγÞ
PR ¼ πðp2 − p̄2Þ ¼ Pð0Þ

PR ; ð4:32Þ
where we use the subscript PR to denote particles on a ring.
Because the corresponding undeformed states at γ ¼ 0

have energies

Hð0Þ
PR ¼ πðp2 þ p̄2Þ; ð4:33Þ

we see that the prediction for the deformed energies from
the zero-mode formula (1.7) is

EðγÞ
PR ¼ Hð0Þ

PR coshðγÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHð0Þ

PRÞ2 − ðPð0Þ
PRÞ2

q
sinhðγÞ

¼ πðp2 þ p̄2Þ coshðγÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπðp2 þ p̄2ÞÞ2 − ðπðp2 − p̄2ÞÞ2

q
sinhðγÞ

¼ πðp2 þ p̄2Þ coshðγÞ þ 2πpp̄ sinhðγÞ; ð4:34Þ

which indeed agrees with the true deformed energies HðγÞ
PR

of Eq. (4.32), subject to the usual caveat that we have used
the assumption

ffiffiffiffiffiffiffiffiffiffi
p2p̄2

p
¼ pp̄.

It is not too surprising that these states have deformed
energies which agree with the zero-mode formula, since the
corresponding saddle points have constant stress-energy
tensors, and this is the assumption under which the
formula (1.7) was derived in holography.
To see this explicitly, we look for solutions to the

equations of motion associated with the deformed
Lagrangian LðγÞ in Eq. (4.31), which are

ϕ̇0 − ϕ00 coshðγÞ − ϕ̄00 sinhðγÞ ¼ 0; ˙̄ϕ0 þ ϕ̄00 coshðγÞ þ ϕ00 sinhðγÞ ¼ 0: ð4:35Þ
One can integrate these equations with respect to the spatial coordinate θ, up to an undetermined integration constant hðtÞ
which is an arbitrary function of t. As in the discussion around Eq. (2.18), one can always set hðtÞ ¼ 0 by a gauge
transformation. Specializing to this h ¼ 0 gauge, the equations of motion become

ϕ̇ − ϕ0 coshðγÞ − ϕ̄0 sinhðγÞ ¼ 0; ˙̄ϕþ ϕ̄0 coshðγÞ þ ϕ0 sinhðγÞ ¼ 0: ð4:36Þ
We wish to solve the equations of motion (4.36) subject to the boundary conditions

ϕðθ þ 2π; tÞ − ϕðθ; tÞ ¼ 2πp; ϕ̄ðθ þ 2π; tÞ − ϕ̄ðθ; tÞ ¼ 2πp̄; ð4:37Þ
where p; p̄∈Z. The desired solutions with such periodic boundary conditions are

ϕðγÞ
p ¼ pθ þ ðp coshðγÞ þ p̄ sinhðγÞÞt; ϕ̄ðγÞ

p̄ ¼ p̄θ − ðp̄ coshðγÞ þ p sinhðγÞÞt: ð4:38Þ

Since these solutions ϕðγÞ
p and ϕ̄ðγÞ

p̄ depend on t, θ linearly,
the corresponding stress-energy tensor is constant. There-
fore, it is reasonable that the energies of these states are
indeed governed by the energy formula derived via
AdS3=CFT2 holography for constant stress tensor back-
grounds, as we found around Eq. (4.34).23

We would also like to point out that the energies of these
states agree with the energies of momentum states for a

compact boson with a different radius. To see this, it is
convenient to change variables as

w ¼ ffiffiffi
π

p ðpþ p̄Þ; w̄ ¼ ffiffiffi
π

p ðp − p̄Þ; R ¼ exp

�
−
γ

2

�
;

ð4:39Þ
so that the deformed Hamiltonian (4.32) can be written as

HðγÞ
PR ¼ 1

2

�
w2

R2
þ R2w̄2

�
: ð4:40Þ

This supports the claim that the root-TT̄ deformation, in
this case, corresponds to a rescaling of the target-space

23Strictly speaking, the derivation of this zero-mode formula
also assumes that the boundary theory is a large-c holographic
CFT for which we can trust semiclassical bulk gravity. However,
this assumption does not seem strictly necessary for the zero-
mode formula to hold, since the theory we study here has c ¼ 1.
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radius for the compact boson. However, to verify this
conclusion, we should also study the effect of the defor-
mation in the other sector of the Hilbert space, which
describes an infinite tower of harmonic oscillators.
We turn to this task now. Expanding the field ϕ and ϕ̄ as

in (4.27), we find the Hamiltonian operator and the
momentum operator for this oscillator sector are given by

HðγÞ
OS ¼

X∞
n¼1

nða†nan þ b†nbnÞ coshðγÞ

þ
X∞
n¼1

nða†nb†n þ anbnÞ sinhðγÞ −
1

12
coshðγÞ;

PðγÞ
OS ¼

X∞
n¼1

nða†nan − b†nbnÞ; ð4:41Þ

where we have performed normal ordering as before and
where OS stands for oscillators. This Hamiltonian has
exactly the same spectrum as its undeformed counterpart,
which can be made manifest by the following Bogoliubov
transformation:

an ¼ ãn cosh
�
γ

2

�
− b̃†n sinh

�
γ

2

�
;

bn ¼ b̃n cosh

�
γ

2

�
− ã†n sinh

�
γ

2

�
: ð4:42Þ

We note that this has the same structure as the change of
variables which diagonalized the mixing term between the
two Chern-Simons gauge fields in Eq. (3.62). This trans-
formation preserves the commutation relation, i.e.,

½ãn; ã†n� ¼ ½b̃n; b̃†n� ¼ 1: ð4:43Þ

In terms of the new oscillators, the Hamiltonian then
reduces to the undeformed one,

HðγÞ
OS ¼ −

1

12
þ
X∞
n¼1

nðã†nãn þ b̃†nb̃nÞ; ð4:44Þ

while the momentum operator is unchanged,

PðγÞ
OS ¼

X∞
n¼1

nðã†nãn − b̃†nb̃nÞ: ð4:45Þ

Hence, we conclude that the energies in the oscillator sector
of the Hilbert space do not flow under the root-TT̄
deformation. This agrees with the effect of changing the
radius for a compact boson, which likewise does not
change the energies of oscillator excitations.

Therefore, combining this result with the flow of HðγÞ
PR,

we conclude that indeed the root-TT̄ deformation corre-
sponds to a change of radius for a single compact boson.
We have also verified that the zero-mode energy for-

mula (1.7) proposed in [44] does not apply to generic states in
a root-TT̄-deformed CFT. For instance, any state with p ¼
p̄ ¼ 0 but with oscillator excitations will have an energy that
is unchanged by the root-TT̄ flow, whereas the formula (1.7)
would predict that the energy flows with γ. This is because
such oscillator states have nonconstant stress tensors and
therefore violate the assumptions underwhich the zero-mode
formula was derived. However, we reiterate that the states
which do have constant stress tensors—namely, states with
general p and p̄ but no oscillator excitations—indeed have
energies which flow according to the zero-mode formula.

2. Multiple compact bosons

Next, we aim to study the spectrum for the theory of
root-TT̄-deformed free bosons when there are more fields,
rather than just a single left-mover and a single right-mover.
All of these cases are qualitatively similar, in the sense that
the argument of the square root appearing in the Lagrangian
is no longer a perfect square, and thus cannot be resolved to
a simple product of fields as in the N ¼ N̄ ¼ 1 case above.
For simplicity, we will therefore focus on the first nontrivial
case, which hasN ¼ 2 left-movers and N̄ ¼ 1 right-movers
(the case with N ¼ 1 and N̄ ¼ 2 is identical, after exchang-
ing chiral and antichiral fields).
The Hamiltonian for the deformed ðN; N̄Þ ¼ ð2; 1Þ

theory is

HðγÞ ¼
Z

dθ

�
1

2
ðϕ02

1 þ ϕ02
2 þ ϕ̄02

1 Þ coshðγÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ02
1 þ ϕ02

2

q
ϕ̄0
1 sinhðγÞ

�
: ð4:46Þ

To resolve the square root, our strategy will be to expand in large positive momenta and compute the energies perturbatively.
The mode expansion for the fields takes the form

ϕj ¼ pjθ þ
1ffiffiffiffiffiffi
2π

p
X∞
n¼1

1ffiffiffi
n

p ðaj;neinθ þ a†j;ne
−inθÞ; ϕ̄1 ¼ p̄1θ þ

1ffiffiffiffiffiffi
2π

p
X∞
n¼1

1ffiffiffi
n

p ðb†1;neinθ þ b1;ne−inθÞ; ð4:47Þ

where j ¼ 1, 2 and periodicity requires p̄1, p1, p2 ∈Z. Substituting the expansion (4.47) into our Hamiltonian (4.46) and
expanding in large p1 and p̄1, to leading order we find
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HðγÞ ¼
�
πðp2

1 þ p2
2 þ p̄2

1Þ −
1

8
þ
X∞
n¼1

nðN1;n þ N2;n þ N̄1;nÞ
�
coshðγÞ

þ
�
2πp1p̄1 þ

X∞
n¼1

nða1;nb1;n þ a†1;nb
†
1;nÞ
�
sinhðγÞ þ � � � ; ð4:48Þ

where Ni;n ¼ a†i;nai;n and N̄1;n ¼ b†1;nb1;n are number operators at level n for left- and right-movers, respectively.
Wewould now like to compare the spectrumof the true large-momentumHamiltonian (4.48) to the zero-mode formula (1.7)

predicted from holography for states with constant stress tensors. The undeformed Hamiltonian and momentum are

Hð0Þ ¼ πðp2
1 þ p2

2 þ p̄2
1Þ −

1

8
þ
X∞
n¼1

nðN1;n þ N2;n þ N̄1;nÞ;

Pð0Þ ¼ πðp2
1 þ p2

2 − p̄2
1Þ −

1

24
þ
X∞
n¼1

nðN1;n þ N2;n − N̄1;nÞ: ð4:49Þ

Let us restrict to an eigenstate of both the momentum operators p1, p2, p̄1 and the number operators N1;n, N2;n, N̄1;n in the
undeformed theory. The energy andmomentumof such a state are also given by the expressions (4.49), if we simply reinterpret
each symbol representing an operator as instead representing the corresponding eigenvalue.24

Substituting the energy and momentum eigenvalues for this state into the zero-mode formula (1.7) then gives a predicted
value for a deformed energy:

EðγÞ
zero mode ¼

�
πðp2

1 þ p2
2 þ p̄2

1Þ −
1

8
þ
X∞
n¼1

nðN1;n þ N2;n þ N̄1;nÞ
�
coshðγÞ þ 2πp1p̄1 sinhðγÞ þ � � � : ð4:50Þ

We should stress that Eq. (1.7) is a prediction for the
deformed spectrum and not for the deformed eigenstates.
Therefore, even if Eq. (4.50) were correct, this would
simply mean that there exists some state in the deformed
theory whose energy is EðγÞ

zero mode.
However, with this caveat aside, it is now easy to see

why the formula (4.50) is incorrect, and what effect it
fails to take into account. Were it not for the final
term in the true Hamiltonian (4.48), which involvesP∞

n¼1 nða1;nb1;n þ a†1;nb
†
1;nÞ, then any eigenstate of the

undeformed theory would remain an eigenstate of the
deformed theory at this order in the momentum expan-
sion, and its energy would indeed be given by (4.50).
This is simply because the first several terms of the true
Hamiltonian (4.48) agree with the zero-mode prediction
(4.50), after replacing operators with their eigenvalues.
However, the presence of this final term in (4.48) means
that an eigenstate of the undeformed Hamiltonian will
not remain an eigenstate in the deformed theory, since
terms such as a1;nb1;n will mix such a state into other
states with different oscillator numbers. We con-
clude that the zero-mode energy formula (4.50) is not
correct for the deformed spectrum, even in this large-
momentum limit.

3. Possible interpretation of root-TT̄ deformation
for higher N, N̄

We have seen that, in the special case N ¼ N̄ ¼ 1, the
root-TT̄ deformations of chiral bosons admits a simple
interpretation as a rescaling of the target-space radius. This
can also be understood from the observation that, for this
case, the oscillator sector of the deformed theory is equivalent
to that of the undeformed theory due to the Bogoliubov
transformation (4.42). To conclude this section, we would
like to make some speculative remarks about possible
generalizations of this interpretation to cases with higher
N and N̄, which seem considerably more complicated.
First, let us point out that, for the case ðN; N̄Þ ¼ ð1; 1Þ, the

Bogoliubov transformationwhich returns the oscillator sector
of the root-TT̄-deformed theory to its undeformed form also
has an analog at the level of the Lagrangian and Hamiltonian
densities. Indeed, for the quadratic theory (4.31), one can
write the Lagrangian and Hamiltonian densities as

L ¼ 1

2
ðΦ0Φ̇ − Φ̄0 ˙̄ΦÞ − 1

2
ðΦ02 þ Φ̄02Þ;

H ¼ 1

2
ðΦ02 þ Φ̄02Þ; ð4:51Þ

where we have made a field redefinition�Φ
Φ̄

�
¼
�
coshðγ

2
Þ sinhðγ

2
Þ

sinh γ
2

coshðγ
2
Þ
��

ϕ

ϕ̄

�
;

�
ϕ

ϕ̄

�
¼
�

coshðγ
2
Þ − sinhðγ

2
Þ

− sinhðγ
2
Þ coshðγ

2
Þ
��Φ

Φ̄

�
: ð4:52Þ

24We have chosen not to denote operators by decorating
them with hats, which would distinguish between operators
N̂1 and their corresponding eigenvalues N1, to avoid cluttering
the formulas.
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The deformed equations of motion, written in terms of the
new fields Φ and Φ̄, are

Φ00 ¼ Φ̇0; Φ̄00 ¼ − ˙̄Φ0; ð4:53Þ
which take the same form as those in the undeformed theory.
Again, this is analogous to the field redefinition (3.62) in the
Chern-Simons setting, which undoes a similar quadratic
mixing between the barred and unbarred fields induced by
a JJ̄ deformation.
Next, let us consider how this observation might extend

to multiple bosons. We focus on the case of N ¼ N̄ for
simplicity. The deformed Hamiltonian density for an equal
number of left- and right-moving chiral bosons is

HðμÞ ¼ 1

2
ðϕ0

jϕ
0
j þ ϕ̄0̄

jϕ̄
0̄
jÞ coshðγÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ0
jϕ

0
jϕ̄

0̄
jϕ̄

0̄
j

q
sinhðγÞ:

ð4:54Þ
We now ask whether some more complicated field redefi-
nition might return this Hamiltonian to a quadratic one, as
in the case of (4.51). When N ¼ N̄ ¼ 2, at least formally,
one can attempt to perform a change of variables that
resembles a transformation to polar coordinates in a 2d
target space:�

ϕ0
1ðθ; tÞ

ϕ0
2ðθ; tÞ

�
¼
�
r0ðθ; tÞ cos ðΘ0ðθ; tÞÞ
r0ðθ; tÞ sin ðΘ0ðθ; tÞÞ

�
;

�
ϕ̄0
1ðθ; tÞ

ϕ̄0
2ðθ; tÞ

�
¼
�
r̄0ðθ; tÞ cos ðΘ̄0ðθ; tÞÞ
r̄0ðθ; tÞ sin ðΘ̄0ðθ; tÞÞ

�
: ð4:55Þ

Here we interpret Θ0ðθ; tÞ and r0ðθ; tÞ as spatial derivatives
of new fields which depend on the derivatives ϕ0ðθ; tÞ in a
nonlinear way. In terms of these quantities, the Hamiltonian
density (4.54) with N ¼ N̄ ¼ 2 takes the form

HðμÞ ¼ 1

2
ðϕ02

1 þ ϕ02
2 þ ϕ̄02

1 þ ϕ̄02
2 Þ coshðγÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ02

1 þ ϕ02
2 Þðϕ̄02

1 þ ϕ̄02
2 Þ

q
sinhðγÞ

¼ 1

2
ðr02 þ r̄02Þ coshðγÞ þ r0r̄0 sinhðγÞ; ð4:56Þ

where we assumed r0r̄0 > 0 in order to simplify the square
root. Now we perform a second field redefinition, just as in
(4.52), to a new field ρ:�
rðθ; tÞ
r̄ðθ; tÞ

�
¼
�

coshðγ
2
Þ − sinhðγ

2
Þ

− sinhðγ
2
Þ coshðγ

2
Þ
��

ρðθ; tÞ
ρ̄ðθ; tÞ

�
: ð4:57Þ

Expressing the Hamiltonian density (4.56) in terms of the ρ
variables rather than the r variables, we conclude

HðμÞ ¼ 1

2
ðρ02 þ ρ̄02Þ: ð4:58Þ

Therefore, again at a formal classical level, it appears
that this series of field redefinitions has returned the
Hamiltonian density to that of the free theory.
Furthermore, the latter change of variables (4.57) can be
interpreted as rescaling the overall target-space radius r,
much as in the ðN; N̄Þ ¼ ð1; 1Þ case. For a larger number
of bosons N ¼ N̄ > 2, one can perform a similar series
of manipulations using higher-dimensional spherical
coordinates.
Several technical issues preclude us from taking this

series of field redefinitions seriously, at least without
further investigation. First, the change of variables (4.55)
was at the level of derivatives of the fields, and it is not clear
that this corresponds to a sensible change of variables for
the fields themselves. Second, all of these manipulations
have been purely classical, and it is not guaranteed that one
could make sense of these field redefinitions within a path
integral (which would produce Jacobian factors from each
change of variables). And third, we have not been careful
about the identifications that each field is subject to. For
instance, if indeed the field Θ can be interpreted as a target-
space angle in polar coordinates, then it should be subject to
the identification Θ ∼ Θþ 2π.
Nonetheless, it would be very interesting if an argument

of this form could be used to endow the root-TT̄ deforma-
tion of N chiral and antichiral bosons with a geometrical
target-space interpretation.

V. PERTURBATIVE QUANTIZATION USING
THE BACKGROUND FIELD METHOD

In the preceding sections, we have considered interacting
theories with arbitrary numbers N; N̄ of chiral and anti-
chiral bosons, respectively, and sacrificed manifest Lorentz
invariance in order to use a first-order formulation which is
convenient for canonical quantization. In the special case
N ¼ N̄, however, we also have the option of assembling the
field content of our theory into N nonchiral bosons by
summing the left-movers and right-movers:

φi ¼ 1ffiffiffi
2

p ðϕi þ ϕ̄iÞ: ð5:1Þ

Here we now use the same index i ¼ 1;…; N for both the
chiral and antichiral fields, rather than distinct indices i and
ī. As this change of variables is merely a field redefinition,
stress tensor deformations of such a theory of N bosons
must be equivalent, regardless of whether the theory is
presented in terms of left-movers and right-movers ϕi, ϕ̄i,
or in terms of their nonchiral counterparts φi. Indeed, for
the case of the TT̄ deformation of a free seed theory, this
equivalence was checked explicitly in [94].
In this section, we will provide a complementary analysis

of the perturbative quantization of the modified scalar
theory using this presentation in terms of nonchiral fields
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φi. For concreteness, we will focus on the case where both
the fields φi and the Lorentzian spacetime coordinates ðt; xÞ
are noncompact, and we will use middle Greek letters like
μ, ν (rather than early Greek letters like α, β, which were
used in Secs. II and III) for spacetime indices in this section.
We will write gμν for the (Minkowski) spacetime metric.
In terms of the nonchiral fields φi, the Lagrangian for the

modified scalar theory can be written in the manifestly
Lorentz-invariant form

L ¼ 1

2
ðcoshðγÞ∂μφi

∂
μφi

þ sinhðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð∂μφi

∂
νφiÞð∂νφj

∂
μφjÞ − ð∂μφi

∂
μφiÞ2

q
Þ:
ð5:2Þ

The advantage of this representation is that one can more
easily apply standard diagrammatic techniques to compute
loop corrections in the quantum theory. Of course, the
second term in the Lagrangian (5.2) is still nonanalytic
around the vacuum of the theory, or around any field
configuration for which

∂μφ
i ¼ 0: ð5:3Þ

We will circumvent this issue by working in a background
field expansion around a field configuration φi for the
scalars which we assume has nonzero gradients and which
satisfies the classical equations of motion for the theory, but
which is otherwise arbitrary.

A. Background field expansion and Feynman rules

Throughout this section, we will use the notation

φi ¼ Ci þQi; ð5:4Þ
where Ci is a classical (background) field configuration
around which we perform our expansion and Qi is a
quantum field which is allowed to fluctuate within the path
integral. This classical background Ci is the analog of the
large-momentum configuration around which we per-
formed our expansion in Sec. IV B. Our goal will be to
investigate the terms which contribute to the quantum
effective action, as a function of the background Ci.
To avoid cluttering the formulas, it will also be conven-

ient to adopt the following shorthand for spacetime
derivatives of the various fields:

φμ
i ¼ ∂μφ

i; Cμ
i ¼ ∂μCi; Qμ

i ¼ ∂μQi: ð5:5Þ
In our analysis of chiral boson theories, we introduced two
useful quantities S and P in Eq. (2.34) which were
independent combinations of derivatives of the scalar
fields. In the present nonchiral analysis, let us similarly
introduce the quantities

S ¼ φμ
iφμi; P2 ¼ φμ

iφνiφν
jφμj: ð5:6Þ

We note that these are not the precise analogs of S and P in
the chiral setting; for instance, the role of the combination
S2 − P2 in Sec. II is now played by 2P2 − S2. Therefore, in
terms of these quantities (5.6), the modified scalar
Lagrangian (5.2) can be written as

L ¼ 1

2
ðcoshðγÞSþ sinhðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2 − S2

p
Þ: ð5:7Þ

We decompose S into a classical piece SC and a quantum
piece SQ, along with a cross term:

S ¼ ðCμ
i þQμ

iÞðCμi þQμiÞ
¼ Cμ

iCμi|fflfflffl{zfflfflffl}
SC

þ 2Cμ
iQμi þQμ

iQμi|fflfflffl{zfflfflffl}
SQ

: ð5:8Þ

Next, we will consider the splitting of S2 and P2 into
classical and quantum pieces. Because we assume that the
field configuration Ci is a solution to the classical equations
of motion, by definition the action is stationary to linear
order when expanding around such a solution. This means
that the effective action cannot contain any terms which are
linear in the fluctuation field Qi, because the sum of all
such contributions must conspire to form an on-shell total
derivative. We will therefore label all terms linear in Qμi as
“on-shell deriv” and ignore them in what follows, although
with the caveat that individual terms of this form need not
separately drop out; we are only guaranteed that the
combined effect of all such terms is to form an on-shell
total derivative.
With this in mind, the quantity S2 can be expanded as

S2 ¼ S2C þ 4SCCμ
iQμi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

on-shell deriv

þ 2SCSQ þ 4Cμ
iQμiCν

jQνj

þ 4SQCμ
iQμi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

OðQ3Þ

þ S2Q|{z}
OðQ4Þ

≃ S2C þ 2SCSQ þ 4Cμ
iQμiCν

jQνj; ð5:9Þ
where the symbol ≃ means equal modulo all terms that are
either linear in Qi (which will form on-shell total deriv-
atives) or that are of cubic order or higher in Qi (which do
not contribute to the one-loop effective action). A similar
computation for P2 gives

P2 ¼ Cμ
iCμjCν

iCνj þ 4Cμ
iCμjCνiQν

j|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
on-shell deriv

þ 2Cμ
iCνiQν

jQμj

þ 2Qμ
iCνiQν

jCμj þ 2Qμ
iCνiCν

jQμj þOðQ3Þ
≃ Cμ

iCμjCν
iCνj þ 2Cμ

iCνiQν
jQμj þ 2Qμ

iCνiQν
jCμj

þ 2Qμ
iCνiCν

jQμj: ð5:10Þ

Therefore, the combination 2P2 − S2 under the square root
in (5.7) has an expansion
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2P2 − S2 ≃ 2P2
C − S2C − 2SCSQ − 4Cμ

iQμiCν
jQνj

þ 4Cμ
iCνiQν

jQμj þ 4Qμ
iCνiQν

jCμj

þ 4Qμ
iCνiCν

jQμj

≡ 2P2
C − S2C þ 2Q1: ð5:11Þ

Here we introduce the shorthand Q1 which is proportional
to the correction to the classical part of (5.11) up to
quadratic order in fluctuations,

Q1 ¼ −SCSQ − 2Cμ
iQμiCν

jQνj þ 2Cμ
iCνiQν

jQμj

þ 2Qμ
iCνiQν

jCμj þ 2Qμ
iCνiCν

jQμj; ð5:12Þ

which is not to be confused with Qi or Qμ
i ¼ ∂μQi. Let us

also define Q2 ≃Q2
1 to be the square of this quantity,

retaining terms only up to second order in Qi, so that

Q2 ¼ 4S2CCμ
iQμiCν

jQνj − 8SCCμ
iQμiCν

jCνkCρjQρ
k

þ 16ðCν
jCνkCρjQρ

kÞ2: ð5:13Þ

In terms of these combinations, we can expand the square
root appearing in (5.7) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2 − S2

p
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2

C − S2C

q
þ Q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P2
C − S2C

p
−

Q2

2ð2P2
C − S2CÞ3=2

: ð5:14Þ

Finally, we can express the modified scalar Lagrangian
expanded to quadratic order in fluctuations around a given
classical solution as

L≃LCþ
1

2

�
coshðγÞSQ

þ sinhðγÞ
�

Q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2

C −S2C
p −

Q2

2ð2P2
C −S2CÞ3=2

��
; ð5:15Þ

where LC represents the Lagrangian evaluated on the
background solution Ci, i.e.,

LC ≡ coshðγÞ
2

SC þ sinhðγÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2

C − S2C

q
: ð5:16Þ

It is also convenient to write the Lagrangian for the quantum
field Qi in terms of a bilinear form. Defining the tensor

Pμν
ij ¼ −

�
−SCgμνδij − 2Cμ

iCν
j þ 2Cμ

kCν
kδij þ 2Cμ

jCν
i þ 2Cρ

iCρjgμν
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2

C − S2C
p

−
4S2CCμ

iCν
j − 8SCCμ

iCρ
kCρjCν

k þ 16Cρ
kCρiCμ

kCτ
mCτjCν

m

4ð2P2
C − S2CÞ

3
2

�
; ð5:17Þ

we can write the Lagrangian LQ for the fluctuating field as

LQ ¼ Qμi

�
coshðγÞ

2
gμνδij þ sinhðγÞPμν

ij

�
Qνj; ð5:18Þ

or after integrating by parts to move the derivative acting on Qμi ¼ ∂
μQi, as

LQ ¼ −Qi

�
coshðγÞ

2
δij∂2 þ sinhðγÞð∂μPμν

ijÞ∂ν þ sinhðγÞPμν
ij
∂
μ
∂
ν

�
Qj: ð5:19Þ

The first term in (5.19) is proportional to a conventional
free kinetic term for the fields Qi. The second and third
terms, involving Pμν

ij and its derivative, encode the
interactions which are induced by expanding around the
classical field configuration Ci.

1. Feynman rules

Now that we have obtained the Lagrangian (5.19), we
may read off the Feynman rules which we will need
for computing diagrams. The propagator for the quantum
field is

Dij ¼ −
i

coshðγÞ
δij

k2
: ð5:20Þ

Next, we must work out the vertex associated with the
interaction between Qi and the classical field via the
combination Pμν

mn. We will draw quantum fields as solid
lines and the cumulative effect of the background fields as a
single coiled line. Consider the trivalent interaction
between a field Qi with momentum p, a field Qj with
momentum q, and an insertion of the background Pμν

mn

with momentum r. This vertex can be visualized as
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ð5:21Þ

Let the vertex factor for this interaction be gij.
25 There are

four ways that we can get a contribution to this factor from

the Lagrangian (5.19). First, there is a piece arising from the
term sinhðγÞð∂μPμν

mnÞ∂ν when m ¼ j and n ¼ i, which
gives a term proportional to rμqν because of the first
derivative ∂μ acting on Pμν

mn and the second derivative ∂ν

acting on Qj. There is another term which arises from m ¼
i and n ¼ j, where the derivative acts on Qi to produce a
factor of pν. Then, there are two more contributions from
the term sinhðγÞPμν

mn
∂
μ
∂
ν, when either m ¼ j and n ¼ i,

or whenm ¼ i and n ¼ j, which come with factors of qμqν

or pμpν from the two derivatives acting on Qj or Qi,
respectively. Altogether, the value of this vertex is

gij ¼ i sinhðγÞðδmjδniPmn
μν rμqν þ δmiδnjPmn

μν rμpν þ δmjδniPmn
μν qμqν þ δmiδnjPmn

μν pμpνÞ
¼ i sinhðγÞPmn

μν ð−δmjδniðqμ þ pμÞqν − δmiδnjðqμ þ pμÞpν þ δmjδniqμqν þ δmiδnjpμpνÞ
¼ −2i sinhðγÞPmn

μν ðδmjδnipμqν þ δmiδnjqμpνÞ
¼ −2i sinhðγÞPij

μνpμqν; ð5:22Þ

where in the second step we have used rμ ¼ −qμ − pμ and
in the last step we have used Pij

μν ¼ Pji
νμ. This gives the

desired value of the trivalent vertex gij betweenQi,Qj, and
the classical background. However, in the calculations that
follow, it will be convenient to factor out the dependence on
Pmn
μν and use an “uncontracted” vertex factor g̃ defined by

gij ¼ Pmn
μν ðg̃mn

ij Þμν;
ðg̃mn

ij Þμν ¼ −2i sinhðγÞδmiδ
n
jpμqν: ð5:23Þ

Let us emphasize that ðg̃mn
ij Þμν is not the full value of the

interaction vertex, but rather a useful intermediate quantity
which has removed all factors of Pmn

μν . After computing
Feynman diagrams using “uncontracted” vertices g̃, we
must contract the final result with one factor of Pmn

μν for each
vertex in order to recover the true value of the diagram.

B. Quantum effective action

We are now ready to compute the leading quantum
corrections to the modified scalar Lagrangian. Most of our
discussion will focus on the one-loop effective action,
defined by the first term beyond the classical contribution
in the expansion

Γ½Ci� ¼ S½Ci� þ i
2
Tr

�
log

�
δ2S

δφiδφj

�				
φk¼Ck

�
þ � � � : ð5:24Þ

Although we are primarily interested in the one-loop
contribution to Γ, we will also present some partial results
concerning corrections at higher-loop order.
There are several techniques for computing the one-loop

effective action Γ. One way is to use heat kernel methods;
we will not pursue this strategy here, but we refer the reader
to the thesis [69] for a discussion of this approach in the
related context of the 4d ModMax theory. Rather, we will
compute contributions to the effective action perturbatively,
using the Feynman rules derived in the preceding sub-
section. This amounts to a diagrammatic evaluation of the
one-loop determinant of the operator δ2S

δφiδφj, which is the

operator appearing in LQ that we have computed
in Eq. (5.19).
In particular, our goal is to evaluate divergent Feynman

diagrams in the modified scalar theory using dimensional
regularization, as a function of the background configura-
tion Ci. Each such divergent contribution necessitates the
addition of an appropriate counterterm to cancel the
divergence. The collection of all such counterterms which
must be added to the classical Lagrangian therefore
reproduces the additional terms that appear in the quantum
effective action, giving a characterization of the corrections
in the expansion (5.24).

1. Constant background, one-loop diagrams

Let us begin by considering the simpler case in which the
background field configuration Ci is linear in the spacetime
coordinates, which means that the classical field has
constant gradients. That is, we assume that Cμ

i ¼ ∂μCi

is constant for such backgrounds, so that ∂μCν
i ¼ 0 for all

μ, ν, i. In this case, no momentum can flow through the

25The vertex factor gij should not be confused with the target-
space metric GijðϕÞ for the bosons which appears in Eq. (2.49).
We also note that the value r of the classical field momentum
must be integrated over in this trivalent interaction, but we do not
include this integral in the expression (5.22) for gij.
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classical fields in the interaction vertex (5.21), which
implies that r ¼ 0 and thus p ¼ −q.
To obtain the one-loop effective action Γ, we must

evaluate all Feynman diagrams built from the quantum

field propagator and interaction vertex (5.21) which contain
at most one loop. This corresponds to an infinite series of
diagrams given by

ð5:25Þ

Let Dn represent the value of the diagram in the series
(5.25) which has n insertions of the classical background.
The first diagram in this infinite series is

ð5:26Þ

Following the comments around Eq. (5.23), we will
evaluate this diagram—and the others in this section—
by using the Feynman rule associated with the uncontracted
vertex factor g̃, and then contracting with Pmn

μν . Doing this
and simplifying the resulting sum of Kronecker delta
functions using symmetry, one finds

D1 ¼ Pmn
μν sinhðγÞδimδjn

Z
ddl
ð2πÞd ð2il

μlνÞDij: ð5:27Þ

A term in the integrand which is proportional to lμlν will
produce a result which scales like l2 and which is a
symmetric tensor in μ and ν. The only constant symmetric
two-tensor in the problem is the spacetime metric gμν, so
the integral of such a term must be proportional to l2gμν.
By taking the trace, one can fix the dimensionless constant
to be 1

d. Thus, within the integral, we can make the
replacement

lμlν →
1

d
l2gμν: ð5:28Þ

Using this replacement and the propagator (5.20), we find

D1 ¼ −
2 tanhðγÞ

d
Pmn
μν δ

mn

Z
ddl
ð2πÞd g

μν: ð5:29Þ

The integrand is now independent of l. Although this
integral diverges as Λd with a naïve cutoff at momentum Λ,
within dimensional regularization it is exactly zero [112].
This result relies only on the momentum dependence of

the integral. However, note that the insertions of additional
vertices appearing in the higher one-loop diagrams Dn will
not change the momentum dependence of the integral. In
general, we will have n propagators Dij of the form (5.20),
each of which is proportional to 1

l2, and n copies of the vertex
factor (5.23). Because the vertex factor contains products of
momenta such as lμlν, the integrand of Dn will involve a
product of 2nmomenta. We can replace such factors using a
generalization of the argument which led to the replacement
rule (5.28). That is, any integral involving a totally symmetric
product of 2n momenta must yield a result which is propor-
tional tol2n multiplied by a totally symmetrized combination
of n metric tensors, since the metric is the only symmetric
tensor in the problem. This leads to the replacement

Yn
i¼1

lμ2i−1lμ2i →
l2nðd − 2Þ!!ð2n − 1Þ!!

ðd − 2þ 2nÞ!! gðμ1μ2 � � � gμ2n−1μ2nÞ;

ð5:30Þ
where we have used the double factorial n!! ¼ n ·
ðn − 2Þ � � � 4 · 2. We thus find an overall factor of l2n from
the vertex factors, in addition to a compensating factor of 1

l2n

from the n copies of the propagator, each of which scales like
1
l2. Note that all of thesemomenta are equal due tomomentum
conservation around the loop, as we assumed that no
momentum can be carried by the classical fields, so the
powers of loopmomentumprecisely cancel. Therefore, every
diagram Dn involves an integrand which is independent of
momentum, and thus vanishes in dimensional regularization
just as D1 does.
We conclude that the perturbative one-loop effective

action Γ½Ci�, with constant background field strength Cμ
i,
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vanishes in dimensional regularization. This implies that
under these assumptions, there are no one-loop corrections
to the classical theory.

2. Constant background, multiloop diagrams

Proceeding to higher loops, more vertices in the pertur-
bative expansion become accessible, beginning at two
loops with a vertex cubic in the quantum field. The first
of such diagrams that is not a tadpole, shown in Eq. (5.31),
emerges at order Oðγ2Þ, and one can show that it non-
trivially vanishes within dimensional regularization,

ð5:31Þ

The introduction of multiple loop momenta prevents the
simple argument in the one-loop case from generalizing
immediately. However, since with constant backgrounds
there cannot be any external momenta and there is no
characteristic scale present in these integrals, it will always
be possible to iteratively symmetrize using (5.30) and
integrate over each loop momentum, leaving a symmetriz-
able integral that will vanish in dimensional regularization.
Therefore, we expect that the argument presented above
generalizes to all loops, implying that the full effective action
Γ½Ci� admits no corrections for constant background field
strengths Cμ

i.

3. Background-varying, one-loop diagrams

We now study the more general case in which we do not
assume that ∂μCν

i ¼ 0, instead allowing the background
field to vary. Besides requiring that the field configuration
Ci is a solution to the classical equations of motion, we
make no further assumptions.
For this general background analysis, let us use the same

notation Dn for the diagrams appearing in the infinite sum
(5.25). The first diagram in this series, D1, is unchanged
from the constant background case, and thus it identically
vanishes in dimensional regularization.
The first nontrivial diagram is

ð5:32Þ

As usual, it will be convenient to strip off factors of Pμν
ij

when computing the value of this diagram. This corre-
sponds to evaluating the diagram using the “uncontracted”
vertex g̃ of (5.23) and contracting the result with factors of
Pμν

ij. To this end, let us write the value of the diagram as

D2 ¼
tanh2ðγÞ

2

Z
ddq
ð2πÞd Pμν

ijð−qÞ
�Z

ddl
ð2πÞd

1

l2ðlþ qÞ2
× ðδikδjllμðlþ qÞν þ δilδjkðlþ qÞμlνÞ

· ðδkmδlnlρðlþ qÞτ þ δknδlmðlþ qÞρlτÞ
�
Pρτ

mnðqÞ:

ð5:33Þ

Using the symmetry property Pμν
ij ¼ Pνμ

ji, this can also be
expressed as

D2 ¼ 2 tanh2ðγÞ
Z

ddq
ð2πÞd Pμν

ijð−qÞIμνρτ
2 Pρτ

ijðqÞ; ð5:34Þ

where we have defined the simpler integral

Iμνρτ
2 ¼

Z
ddl
ð2πÞd

ðlþ qÞνlμðlþ qÞτlρ

l2ðlþ qÞ2 ; ð5:35Þ

and where our conventions for symmetrization are
TðμνÞ ¼ 1

2
ðTμν þ TνμÞ.

To study the divergence structure of the diagram D2, it
suffices to evaluate the quantity Iμνρτ

2 in dimensional
regularization, which is performed in Appendix B 1. The
resulting divergent contribution is

Iμνρτ
2 ¼

�
1

ϵ

�
−i

24ð4πÞ ½q
2ðgμνgρτ þ gμρgντ þ gμτgνρÞ

þ 2ðqνqμgτρ þ gμτqνqρ þ gνμqτqρ þ gνρqμqτÞ
þ 4ðgμρqνqτ þ gντqμqρÞ�: ð5:36Þ

To cancel this 1
ϵ divergence, one would introduce a counter-

term which involves two factors of Pμν
ij in the Lagrangian.

Therefore, in the background-varying case, there is a
nontrivial contribution to the quantum effective action at
one loop. Because the higher diagrams Dn will involve
higher powers of γ, the result (5.36) represents the complete
one-loop effective action at Oðγ2Þ.
With the two-vertex diagram evaluated, to complete the

computation of the one-loop effective action, we seek to
evaluate all remaining diagrams containing one loop.
Fortunately, there is only one diagram Dn for each number
of vertices n. The details of the evaluation of this diagram
are presented in Appendix B 2. Here we merely summarize
the results. The value of In can be written as
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ðInÞμ1���μ2n ¼ ðn − 1Þ!
Z

1

0

�Yn−1
i¼0

dxi

�
δ

�Xn−1
i¼0

xi − 1

�
× ðCμ1���μ2n

2n þ Dμ1���μ2n
2n Þ; ð5:37Þ

where we have defined

Cμ1���μ2n
2n ¼ iðd − 2Þ!!ð2n − 1Þ!!

ðd − 2þ 2nÞ!! gμ1���μ2n
Γðnþ d

2
Þ

ð4πÞd2ΓðnÞΓðd
2
Þ

× Γ
�
−
d
2

�
Δd

Dμ1���μ2n
2n ¼ iðd − 2Þ!!ð2n − 3Þ!!

ðd − 4þ 2nÞ!!

×
X2n
a¼1

X2n
b>a

gfμ≠μa;μbgfμaðx; q; aÞfμbðx; q; bÞ

·
Γðn − 1þ d

2
Þ

ð4πÞd2ΓðnÞΓðd
2
ÞΓ
�
1 −

d
2

�
Δd−2: ð5:38Þ

The notation gμ1���μ2n refers to a symmetrized product
of metric tensor factors, which is defined in Eq. (B33).
Similarly, gfμ≠μa;μbg is shorthand for such a symmetrized
product of metrics which omits the two indices μa and μb,
which is explained in more detail around Eq. (B35).
Finally, the function fμðx; q; aÞ is defined in Eq. (B32).
In dimensional regularization, with d ¼ 2ð1þ ϵÞ and as

ϵ → 0, the overall momentum dependence and divergence
structure of these terms is

Cμ1���μ2n
2n ∼

1

ϵ
q2gμ1���μ2n ;

Dμ1���μ2n
2n ∼

1

ϵ

X2n
a¼1

X2n
b>a

qμaqμbgfμ≠μa;μbg; ð5:39Þ

which is of the same qualitative form as the one-loop, two-
vertex contribution (5.36).
Therefore, the full one-loop effective action for the

modified scalar theory is obtained by introducing counter-
terms that cancel the divergent contributions which we have
described in Eqs. (5.36) and (5.39). Because, after Fourier
transforms, only two derivatives arise acting on the external
background vertices, and the counterterms are invariant
under classical conformal transformations.

4. Background varying, two vertex, m-loop diagrams

One could imagine computing the quantum effective
action (5.24) using a double expansion in both the number
n of vertices and the number m of loops. The preceding
subsections have discussed the contributions at one loop
but for any number of vertices. We have also argued that
higher-loop corrections vanish when expanding around
constant backgrounds.

It is then natural to ask what one can say about the
higher-loop contributions in the general case of varying
backgrounds. Although the structure of the problem
quickly becomes quite complicated, we can make some
general remarks by restricting to two vertices but any
number of loops. For instance, we can consider a diagram
withmþ 1 internal quantum field lines, each of which runs
between two interaction vertices with a classical back-
ground field, thus forming m loops:

ð5:40Þ

We use the notation Dm;n for a diagram which has m loops
and n vertices. In this notation, the one-loop diagrams
which we called Dn in the preceding subsections would be
denoted D1;n. For example, the diagram D2 of Eq. (5.32)
would be written asD1;2, since it is of the form in Eq. (5.40)
withm ¼ 1 because it has 2 ¼ 1þ 1 internal lines between
two vertices and thus one loop. Similarly, a diagram with
four internal lines between two vertices would have three
loops and be denoted D3;2.
To study the diagramsDm;2, we will need to derive a new

Feynman rule for the (mþ 2)-valent vertex involving
(mþ 1) quantum fields lines and one insertion of the
classical background. These higher vertex factors will come
from further terms in the expansion of the square root in
Eq. (5.14),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2 − S2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2

C − S2C

q
þ
X∞
N¼1

� 1
2

N

�
2NQN

ð2P2
C − S2CÞN−1

2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P2

C − S2C

q
þ
X∞
M¼2

Pi1���iM
μ1���μM

YM
k¼1

∂
μkQik :

ð5:41Þ

In the first line, the factor of 2N is a choice of normalization
which is needed to match our conventions for Q1 and Q2

above. We will not compute the higher termsQN explicitly,
but we instead schematically denote the collection of all
contributions from these terms which involve a product of
M derivatives of the quantum fields by writing the tensor
Pi1���iM

μ1���μM . WhenM ¼ 2, this is precisely the tensor Pμν
ij

of Eq. (5.17). We have changed the summation variable to
M in the second line to emphasize that one must collect
contributions from several QN at each fixed order in M.
There are no linear vertices in Qi, so the M ¼ 1 term is
absent, but both the N ¼ 1 termQ1 and the N ¼ 2 termQ2

of the first sum contribute to the quadratic M ¼ 2 inter-
action of the second sum, and so on.
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In terms of the tensors Pi1���iM
μ1���μM which are defined implicitly through the expansion in Eq. (5.41), the Feynman rule for

an (M þ 1)-valent interaction with one classical field insertion is

ð5:42Þ

Using this Feynman rule, we can compute the value of the
diagram Dm;2 in Eq. (5.40). Such a diagram has two
vertices of the form (5.42), each with M ¼ mþ 1, along
with m loop momenta li. The contribution from this
diagram is given by the integral

Dm;2 ¼
sinh2ðγÞ

coshmþ1ðγÞ
Z

ddq
ð2πÞd

�Z Ym
i¼1

ddli

ð2πÞd
�

×

�
1Qmþ1

j¼1 pμ
jpμj

�
· Pi1���imþ1

ν1���νmþ1
ðqÞ

×

�Ymþ1

k¼1

pνk
ik
pμk
jk

�
Pj1���jmþ1

μ1���μmþ1
ð−qÞ: ð5:43Þ

Here the momenta of the internal lines are chosen to
be p1 ¼ q − l1, pi ¼ li−1 − li for 1 < i < mþ 1, and
pmþ1 ¼ −lm, so that the total momentum satisfies

Xmþ1

i¼1

pi ¼ q: ð5:44Þ

Besides the diagrams Dm;2 drawn in Eq. (5.40), one might
ask whether we should account for additional diagrams
where a loop begins and ends on the same vertex. However,
diagrams of this form do not contribute, as they vanish in
dimensional regularization. We can see this by noting that
the momentum l running in such a loop will appear in the
vertex factor only in the combination lμlν, and in the
propagator in the form 1

l2. Therefore, the value of any
diagram will be proportional to

Z
ddl
ð2πÞd

lμlν

l2
¼ gμν

d

Z
ddl
ð2πÞd 1; ð5:45Þ

which we have seen vanishes in dimensional regularization
in the limit d → 2, as desired.

Next, let us consider the divergence structure of the
diagram Dm;2. It is convenient to isolate the part of the
integrand which depends on the loop momenta and evaluate
it separately. To do this, let us define

ðLm;2Þfμνgfijg ¼
Z �Ym

i¼1

ddli

ð2πÞd
��

1Qmþ1
j¼1 pμ

jpμj

��Ymþ1

k¼1

pνk
ik
pμk
jk

�
:

ð5:46Þ

Here we use fijg as a shorthand for the multi-index
fi1 � � � imþ1j1 � � � jmþ1g and fμνg for fμ1 � � � μmþ1ν1 � � �
νmþ1g. We will sometimes suppress these multi-indices
in writing Lm;2 for convenience. The quantity Lm;2 deter-
mines the value of the diagram Dm;2 as

Dm;2 ¼
sinh2ðγÞ

coshmþ1ðγÞ
Z

ddq
ð2πÞd P

i1���imþ1
ν1���νmþ1

ðqÞ

× ðLm;2Þfμνgfijg P
j1���jmþ1

μ1���μmþ1
ð−qÞ; ð5:47Þ

so to understand the divergences in Dm;2, it suffices to
understand those in Lm;2.
One can evaluate Lm;2 by performing the integral over

each loop momentum in succession. The details of one such
integration, namely the integral over the final variable lm,
are presented in Appendix B 3. After evaluating this
single integral over lm, one obtains a result proportional
to Γð− d

2
Þld

m−1. One can then apply the same argument
recursively to conclude that performing all m of the
integrals generates m factors of this form. After evaluating
all m integrals, the final dependence on the momentum q
takes the form

ðLm;2Þfμνgfijg ∼ Γ
�
−
d
2

�
m
qdm; ð5:48Þ
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where we show only the dependence on q and d but
suppress the tensor structure in the i, j, μ, ν indices.26

It is also useful to translate the divergence structure of
Eq. (5.48) in dimensional regularization to an equivalent
dependence on a momentum cutoffΛ. For d ¼ 2ð1þ ϵÞwe
have the limiting behavior Γð− d

2
Þ ∼ 1

ϵ, and a divergence
proportional to 1

ϵ in dimensional regularization corresponds
to a logarithmic divergence of the form logðΛÞ. Therefore,
the m-loop, 2-vertex contributions from (5.48) yield diver-
gences of the form

ðLm;2Þfμνgfijg ∼
�
1

ϵ

�
m
q2m ∼ ðlogΛÞm: ð5:49Þ

This is a different divergence structure than the one
which we have seen in our study of the one-loop effective
action, which would necessitate the addition of different
counterterms. It is interesting to note that each of these
counterterms is classically conformal and has a different
higher derivative dependence on the external classical field
momenta.
We conclude this section with some further comments.

Even though our analysis for nonconstant backgrounds is
very preliminary, no clear organizational principle seems to
emerge in this hierarchy of divergences and necessary
counterterms. Though this might be a feature of our
perturbative approach, it begins to suggest that this non-
analytic model is nonrenormalizable, which might also
spoil the quantum conformal invariance of the model.
Ultimately, the theory might retain a sensible interpretation
only as an effective field theory. Yet, it remains a very
interesting fact that there are no quantum corrections for
constant background fields Cμ

i. We leave other open
questions for further future investigations.

VI. CONCLUSION

In this work, we have explored the space of interacting
chiral boson theories from several perspectives. We showed
that, when written in a Floreanini-Jackiw representation,
the property of nonmanifest Lorentz invariance is closely
related to stress tensor deformations: indeed, every para-
metrized family of Lorentz-invariant chiral boson theories
can be interpreted as a deformation by some function of the
energy-momentum tensor. In the dual description using
Uð1Þ gauge fields with a Chern-Simons action, Lorentz
invariance is manifest but chirality (or self-duality) is not,
and in this setting we find that every family of self-dual
Chern-Simons boundary terms likewise obeys a flow
equation driven by a function of the stress tensor. We have

also explained how a general boundary term for such a bulk
Uð1Þ Chern-Simons theory imposes modified boundary
conditions on the gauge fields which lead to a nonlinear
self-duality condition for the currents; this mirrors the
analogous nonlinear self-duality constraints obeyed by
interacting Floreanini-Jackiw bosons.
We then studied the quantization of interacting chiral

boson models, focusing on a root-TT̄-deformed system of
free bosons. We characterized the finite-volume spectrum
for both one left-moving and one right-moving boson,
where the root-TT̄ deformation acts as a rescaling of the
target-space radius, and also for two left-moving bosons
and one right-moving boson, where the deformation is
more complicated but can be analyzed perturbatively in a
large-momentum expansion. In doing so, we confirmed
that the zero-mode formula (1.7) derived via holography
does not apply to generic states, but does apply in certain
states with constant stress tensors. We also gave a classical/
heuristic argument on how a set of field redefinitions might
turn all these models into free ones. Finally, we have
studied the quantum effective action for the theory of root-
TT̄-deformed bosons with equal numbers of left- and right-
movers. Intriguingly, we find that the one-loop effective
action vanishes around classical backgrounds which are
linear in the spacetime coordinates.
There are several interesting directions for future

research, some of which we summarize in what follows.
Understanding more about these issues, and in particular
developing a clearer picture of field theories with nonana-
lytic interaction terms such as the modified scalar theory,
may teach us new lessons about previously unexplored
models within the space of quantum field theories.

A. Supersymmetry

There has been a great deal of work on supersymmetric
extensions of deformations constructed from the energy-
momentum tensor [113–121] and other conserved currents
[122], including analogous deformations of 1d theories by
conserved charges [71,95,123–125].
A natural direction for further investigation is to seek

such a supersymmetric generalization of the results in this
work. This would involve coupling a supersymmetric
theory of interacting chiral bosons and their fermionic
superpartners to supergravity, which would give expres-
sions for the fields in the stress tensor supermultiplet.
In the case of a single free chiral boson and its fermionic

partner, the procedure for performing this coupling to
supergravity was explained in [81], building on earlier
results for the supergravity couplings of nonchiral fields
[126]. The bosonic truncation of this supergravity coupling
reproduces the coupling to vielbeins which we have used in
this work. It would be interesting to generalize this
technique and couple an arbitrary number of chiral and
antichiral bosons, and their fermionic counterparts, to
supergravity, and then consider flows in the space of such

26Each integral yields six different symmetrizations of the
external indices. Thus, the exact form of an m-loop diagram
contains many different index structures and is challenging to
write explicitly in general.
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supersymmetric interacting theories, much as we have done
here. In principle, one could perform this analysis either
using component fields—which was the strategy adopted in
[81]—or using a superspace formulation, such as the one
employed in [28,127]. One might also hope to interpret
these theories using a bulk description involving a super-
symmetric Chern-Simons theory, which would give a
supersymmetric generalization of the results in Sec. III.

B. Quantum Hall physics

A famous application of Uð1Þ Chern-Simons theories,
and the chiral bosons which describe their edge modes,
occurs in the study of the quantum Hall effect. The essential
reason for this, as we mentioned in Sec. III, is that the
Chern-Simons term is more relevant at low energies than
the Maxwell term. Therefore, in an effectively (2þ 1)-
dimensional system—such as a flat slab of material subject
to a background magnetic field—one expects that the low-
energy effective action Seff ½A� will be controlled by the
Chern-Simons term SCS½A�. Computing the associated
current which we defined in Eq. (3.14),

Ji ∼
δSCS
δAi

; ð6:1Þ

therefore gives predictions for the behavior of the system.
For instance, in the integer quantum Hall effect, this current
Ji agrees with the Hall conductivity of an integer number of
filled Landau levels, if this integer ν∈Z is related to the
Chern-Simons level appropriately.
We have seen that a Chern-Simons theory on a manifold

with boundary supports chiral bosons on the edge. In the
quantum Hall setting, these chiral edge modes describe
propagating fluctuations in the charge density at the edge of
the physical sample. Remarkably, the quantum mechanics
of this chiral boson theory contains a great deal of
information about the interior of the sample. For instance,
by carrying out the quantization of a single Floreanini-
Jackiw boson as we described in Sec. IVA, one finds a
Hamiltonian which correctly predicts the spectrum (includ-
ing degeneracies) of excited modes for the Laughlin wave
function which describes the fractional quantum Hall
effect.27

One might ask whether the modified Chern-Simons
boundary terms which we have considered in this work
could be used to model some variant of a conventional
quantum Hall system. For instance, it would be very
interesting if an experimentally realizable modification
of a quantum Hall droplet would subject the system to a
boundary term such as the one which is generated by the
root-TT̄ deformation. If so, this could offer a way to study

the effective dynamics of the modified scalar theory—and
other theories obtained via stress tensor deformations—in
the laboratory.

C. Nonperturbative analysis

All of the results concerning the quantum theory of root-
TT̄-deformed bosons presented in this work have been
obtained in perturbation theory, by expanding around a
classical background. For instance, we have attempted a
perturbative analysis of the effective action and noticed that
a hierarchy of counterterms emerged in the modified scalar
theory. However, it seems likely that the most interesting
features of root-TT̄-deformed theories at the quantum
level—assuming that they exist—will only be visible
nonperturbatively. It is therefore important to find a way
to study the quantization of such root-TT̄-deformed the-
ories beyond perturbation theory, which will likely require
a new perspective.
One way to reframe these deformed theories, which may

be useful for a nonperturbative analysis, is via geometry. In
the case of the related TT̄ deformation, many insights have
resulted from presentations of the flow in terms of coupling
to gravity [132,133] or random geometry [107], or by
realizing the deformation via a field-dependent change of
variables [53,134–136]. The root-TT̄ deformation appears
to admit a similar geometrical interpretation [137,138].
Perhaps relatedly, the modified scalar Lagrangian (5.2) can
be rewritten as

L ¼ 1

2
gμν∂μφi

∂νφ
i;

gμν ¼ coshðγÞημν

þ sinhðγÞ
�

2∂μφj
∂
νφj − ημν∂ρφ

j
∂
ρφjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2∂σφ
i
∂
τφi

∂τφ
k
∂
σφk − ð∂σφi

∂
σφiÞ2

p �
;

ð6:2Þ

which is equivalent to a theory of free scalar fields coupled
to a field-dependent metric. Even at the perturbative level,
such a rewriting of the deformation may be useful—for
instance, it may be possible to adapt existing heat kernel
techniques28 which compute the quantum effective
actions for theories on background metrics to handle field-
dependent metrics such as (6.2), which could reproduce
results like those in Sec. V from a different point of view.
However, it would be even more useful if such a geomet-
rical presentation of the root-TT̄ flow could furnish us with
a nonperturbative definition of the quantum theory.
Another potential way to approach the study of renorm-

alization of the modified scalar theory, and analyze its
quantum conformal symmetry, is by using nonperturbative
functional renormalization group approaches. An attempt27See the reviews [111,128], or the incomplete sampling of

some of the original works [129–131], for further discussion on
this subject. 28See Ref. [139] and references therein for a review.
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to use such techniques for TT̄ deformed scalar theories has
been made in [140]. It would be intriguing to reattempt this
analysis for nonanalytic models and generic TT̄-like
deformations, including root-TT̄.
A third strategy is to bypass the classical Lagrangian (5.2)

and attempt to define the quantum modified scalar theory
directly by characterizing the set of local operators in the
theory along with their correlation functions. For instance,
one could proceed under the assumption that the theory in
question is a CFT, and see whether this leads to a contra-
diction.29 Here there appears to be an interesting tension.
Standard lore suggests that, in any CFT2 with a conserved
vector current J, its Hodge dual �J must also be conserved.
For a putative theory of root-TT̄-deformed φi, it appears that
the operators Jiμ ¼ ∂μφ

i should not be conserved at finite γ
due to the source terms in the equations of motion, although
their duals J̃iμ ¼ ϵμν∂

νφi are conserved (at least for non-
compact scalars).30 If the quantum modified scalar theory
does exist, it would bevery interesting to see how this tension
is resolved. Perhaps the quantum theory is not a CFT, or
perhaps it is not even a local quantum field theory, much as a
TT̄-deformed CFT is believed to become nonlocal due to its
Hagedorn density of states at high energies.

ACKNOWLEDGMENTS

We thank Peter Bouwknegt, Per Kraus, Sergei Kuzenko,
Savdeep Sethi, Alessandro Sfondrini, Dmitri Sorokin, and
Roberto Tateo for useful discussions and collaboration on
related projects, and we are especially grateful to Zhengdi
Sun for collaboration in the early stages of this project.
C. F., C. L. M., and G. T.-M. acknowledge kind hospitality
and financial support at the MATRIX Program “New
Deformations of Quantum Field and Gravity Theories,”
where part of this work was performed, and thank the
participants of this meeting for productive conversations
on related topics. This research was supported in part by
Grant No. NSF PHY-2309135 to the Kavli Institute for
Theoretical Physics (KITP). S. E. is supported by the
Bhaumik Institute and by the Dissertation Year
Fellowship from the UCLA Graduate Division. C. F. is
supported by U.S. Department of Energy Grant No. DE-
SC0009999 and by funds from the University of California.
C. L. M. is supported by a postgraduate scholarship at the

University of Queensland. G. T.-M. has been supported by
the Australian Research Council (ARC) Future Fellowship
FT180100353, ARC Discovery Project No. DP240101409,
and the Capacity Building Package of the University of
Queensland.

APPENDIX A: PERTURBATIVE f ðTα
α;TαβTαβÞ-

DEFORMED ACTIONS

Throughout this paper, we have considered various
deformations which are constructed from the energy-
momentum tensor. Although the most important examples
within this class are the TT̄ and root-TT̄ flows, it appears that
general stress tensor deformations nonetheless have inter-
esting properties—for instance, we have shown that every
parametrized family of interacting 2d chiral boson theories
which enjoys nonmanifest Lorentz invariance admits an
interpretation as a stress tensor deformation. This is a 2d
analog of similar theorems about 4d theories of duality-
invariant electrodynamics [4] or 6d chiral tensor theories [6].
Motivated by these observations, one may wish to study

2d deformations by other functions of the energy-momen-
tum tensor, besides the ones considered in the body of this
manuscript. One way to do this is to solve the resulting flow
equations perturbatively, i.e., order-by-order in the defor-
mation parameter. In this appendix wewill use the symbol g
for the parameter of a general stress tensor flow, which is
not to be confused with the metric gαβ or its determinant.
Let us therefore consider the following general class of

operators in 2d which can be expressed in terms of the two
independent Lorentz scalars that can be built from the stress
tensor, namely TrðTÞ ¼ Tα

α and TrðT2Þ ¼ TαβTαβ:

fðTα
α; TαβTαβÞ: ðA1Þ

We note that all higher traces of the stress tensor, TrðTnÞ for
n > 2, can be expressed in terms of these two lower traces.
Given such an operator, wewish to study the flow equation31

∂SðgÞ

∂g
¼
Z

d2xEfðTα
α; TαβTαβÞ: ðA2Þ

The solution to (A2) can be written as a series expansion,

SðgÞ ¼ Sð0Þ þ
X∞
m¼1

gm

m

Z
d2xEfðTα

α; TαβTαβÞm−1; ðA3Þ

where we write fðTα
α; TαβTαβÞm for the term of order gm in

the expression for the fðTα
α; TαβTαβÞ operator computed

from the action at order gm−1. Because each term in this

29An example of such a contradiction would be finding an
operator which can be neither a primary nor a descendant, which
is used to demonstrate that the Maxwell theory is not conformal
except in four dimensions [141]. Alternatively, one could use the
more formal machinery of algebraic/axiomatic QFT.

30The analogous tension for the ModMax theory can be
phrased in terms of generalized global symmetries: if a 4d
CFT has a Uð1Þ1 magnetic one-form global symmetry, then it
must also have the corresponding Uð1Þ1 electric one-form global
symmetry, and vice versa [142]. A 4d ModMax CFT would
appear to have the magnetic one-form symmetry of the Maxwell
theory but not the electric one, since ∂μF̃μν ¼ 0 but ∂μFμν ≠ 0.

31One can also consider flows driven by a function f which has
explicit dependence on the deformation parameter g. For instance,
the so-called TT̄ þ Λ2 deformation is defined by performing a
TT̄ deformation and then activating a cosmological constant
proportional to 1

λ. See Refs. [143–148] for further details.
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expansion only depends on the data of lower-order terms, one
can build up the solution iteratively in powers of g.
As in Sec. II of the main text, we will work in the tetrad

formalism with a Lorentzian tangent-space metric and with
spacetime coordinates xα ¼ ðt; θÞ. A general spacetime
metric can therefore be expanded in terms of vielbeins as

gαβ ¼Ea
αEb

βηab

¼−
�

2Eþ
tE−

t Eþ
tE−

θ þE−
tEþ

θ

Eþ
tE−

θ þE−
tEþ

θ 2Eþ
θE−

θ

�
: ðA4Þ

The stress tensor associated with a general action S, which
has been coupled to gravity using the vielbeins Ea

α, can be
written as

Tα
β ¼ −

1

E
∂S
∂Ea

α
Ea

β

¼ −
1

E

 
∂S

∂Eþ
t
Eþ

t þ ∂S
∂E−

t
E−

t
∂S

∂Eþ
θ
Eþ

t þ ∂S
∂E−

θ
E−

t

∂S
∂Eþ

t
Eþ

θ þ ∂S
∂E−

t
E−

θ
∂S

∂Eþ
θ
Eþ

θ þ ∂S
∂E−

θ
E−

θ

!
:

ðA5Þ

We will use the general expression (A5) for the stress
tensor, along with the expansion (A3), to perturbatively
solve the flow equation (A2) for various choices of the
fðTα

α; TαβTαβÞ operator.
We begin by finding perturbative solutions for some of

the flow equations considered in the main text, before
generalizing to other deformations which were not con-
sidered in the body. In our examples, we compute the stress
tensor (A5) using the vielbein formalism due to computa-
tional speed in Mathematica, but we note that the metric
formalism gives identical results.

1. Root-TT̄ perturbative flow for multiple bosons

For our first example, we will consider the perturbative
solution to the root-TT̄ flow equation for an arbitrary
number of nonchiral bosons φi, i ¼ 1;…; N. This flow
equation was first solved in closed-form in [41].
We take a seed action which describes N free massless

bosons in Lorentzian signature

Sð0Þ ¼ 1

2

Z
d2x

ffiffiffiffiffiffi
−g

p
gαβ∂αφi

∂βφ
i

¼
Z

d2x
E−

θEþ
θφ̇

iφ̇i þ E−
tEþ

tφ
0iφ0i − ðE−

θEþ
t þ E−

tEþ
θÞφ̇iφ0i

E
; ðA6Þ

which have been coupled to gravity using the tetrad formalism. We then deform using the root-TT̄ operator, which
corresponds to the general fðTα

α; TαβTαβÞ operator of Eq. (A1) being

fðTα
α; TαβTαβÞ ¼ RðγÞ ¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TαβTαβ −

1

2
ðTα

αÞ2
r

: ðA7Þ

In this case, the perturbative solution (A3) to the flow equation takes the form

SðγÞ ¼ Sð0Þ þ
X∞
m¼1

γm

m

Z
d2xERðγÞ

m−1: ðA8Þ

Following the conventions in the main text, we use the symbol γ for the flow parameter of a root-TT̄ deformation, rather
than the variable g which stood for the parameter in a general deformation above.
The first few terms in this perturbative expansion are

RðγÞ
0 jflat ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ

q
; RðγÞ

1 jflat ¼
1

2
ð−φ̇iφ̇i þ φ0iφ0iÞ;

RðγÞ
2 jflat ¼

1

2
RðγÞ

0 jflat; RðγÞ
3 jflat ¼

1

6
RðγÞ

1 jflat; RðγÞ
4 jflat ¼

1

24
RðγÞ

0 jflat; RðγÞ
5 jflat ¼

1

120
RðγÞ

1 jflat; ðA9Þ

where “flat” means that we have set the vielbeins to their flat-space values (2.51).
We note that the quantities appearing in (A9) can be written in terms of the manifestly Lorentz-invariant combinations

ð∂μφi
∂
νφiÞð∂νφj

∂
μφjÞ ¼ ð−φ̇iφ̇j þ φ0iφ0jÞð−φ̇iφ̇j þ φ0iφ0jÞ

¼ ðφ̇iφ̇iÞ2 þ ðφ0iφ0iÞ2 − 2ðφ̇iφ0iÞ2 ðA10Þ
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and

2ð∂μφi
∂
νφiÞð∂νφj

∂
μφjÞ − ð∂μφi

∂
μφiÞ2 ¼ ðφ̇iφ̇iÞ2 þ ðφ0iφ0iÞ2 − 4ðφ̇iφ0iÞ2 þ 2φ̇iφ̇iφ0jφ0j

¼ ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ: ðA11Þ
In terms of these quantities, one finds that the perturbative expansion to the flow equation converges to the solution (5.2),

SðγÞ ¼ Sð0Þ þ
Z

dtdθ

�
γRðγÞ

0 jflat þ
γ2

2
RðγÞ

1 jflat þ
γ3

6
RðγÞ

0 jflat þ
γ4

24
RðγÞ

1 jflat þ
γ5

120
RðγÞ

0 jflat þ
γ6

720
RðγÞ

1 jflat þ � � �
�

¼ 1

2

Z
dtdθ

�
∂αφ

i
∂
αφi

�
1þ γ2

2
þ γ4

24
þ γ6

720
þOðγ8Þ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð∂μφi

∂
νφiÞð∂νφj

∂
μφjÞ − ð∂μφi

∂
μφiÞ2

q �
γ þ γ3

6
þ γ5

120
þOðγ7Þ

��

¼ 1

2

Z
dtdθ

h
coshðγÞ∂αφi

∂
αφi þ sinhðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð∂μφi

∂
νφiÞð∂νφj

∂
μφjÞ − ð∂μφi

∂
μφiÞ2

q i
: ðA12Þ

2. Root-TT̄ perturbative flow for Chern-Simons

An almost identical calculation can be performed to study the perturbative root-TT̄ deformation of the Chern-Simons
boundary action given in (3.8). The first few terms in the expansion are

RðγÞ
0 jflat ¼

1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkijAiwAjw þ k̄ī j̄ĀīwĀj̄wÞðkmnAmw̄Anw̄ þ k̄m̄ n̄Ām̄ w̄Ān̄ w̄Þ

q
;

RðγÞ
1 jflat ¼ −

1

4π
ðkijAiwAjw̄ þ k̄ī j̄ĀīwĀj̄ w̄Þ; RðγÞ

2 jflat ¼
1

2
RðγÞ

0 jflat; RðγÞ
3 jflat ¼

1

6
RðγÞ

1 jflat; ðA13Þ

where now “flat” means that we have set the vielbeins equal to the values (3.77) appropriate for a flat Euclidean tangent
space metric, following the conventions of Sec. III.
Therefore, the root-TT̄-deformed Chern-Simons boundary action is

IðγÞ
∂M3

¼ i
8π

Z
∂M3

dwdw̄

�
−ðkijAiwAjw̄ þ k̄ī j̄ĀīwĀj̄ w̄Þ

�
1þ γ2

2
þOðγ4Þ

��

þ i
8π

Z
∂M3

dwdw̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkijAiwAjw þ k̄ī j̄ĀīwĀj̄wÞðkmnAmw̄Anw̄ þ k̄m̄ n̄Ām̄ w̄Ān̄ w̄Þ

q �
γ þ γ3

6
þOðγ5Þ

�

¼ i
8π

Z
∂M3

dwdw̄
h
− coshðγÞðkijAiwAjw̄ þ k̄ī j̄ĀīwĀj̄ w̄Þ

þ sinhðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkijAiwAjw þ k̄ī j̄ĀīwĀj̄wÞðkmnAmw̄Anw̄ þ k̄m̄ n̄Ām̄ w̄Ān̄ w̄Þ

q i
: ðA14Þ

3. TT̄ perturbative flow for a single boson

For our next example, we will consider the irrelevant TT̄ flow rather than the marginal root-TT̄ flow. For simplicity, we
will restrict to a deformation of a single bosonic field φ whose seed action is that of a free massless field. From the general
fðTα

α; TαβTαβÞ deformation of (A1), we recover the usual TT̄ deformation by taking

fðTα
α; TαβTαβÞ ¼ −

1

2
ðTα

βTβ
α − ðTα

αÞ2Þ: ðA15Þ

Evaluating a few of the terms in the perturbative expansion, we find

TT̄0jflat ¼ −
1

4
ð−φ̇2 þ φ02Þ2; TT̄1jflat ¼

1

2
ð−φ̇2 þ φ02Þ3; TT̄2jflat ¼ −

15

16
ð−φ̇2 þ φ02Þ4: ðA16Þ
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This series expansion then converges to the well-known TT̄-deformed action,

SðλÞ ¼
Z

dtdθ

�
1

2
ð−φ̇2 þ φ02Þ − λ

4
ð−φ̇2 þ φ02Þ2 þ λ2

4
ð−φ̇2 þ φ02Þ3 − 5λ3

16
ð−φ̇2 þ φ02Þ4 þ � � �

�

¼
Z

dtdθ
1

2λ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λð−φ̇2 þ φ02Þ

q
− 1
i
: ðA17Þ

4. TT̄
1
3 perturbative flow for multiple bosons

Next, we turn our attention to a deformation which was not considered in the body of this manuscript. Consider a
deformation by the relevant TT̄

1
3 operator, which we define by

TT̄
1
3 ¼ 1

2

�
1

2
ðTα

βTβ
α − ðTα

αÞ2Þ
�1

3

: ðA18Þ

We will again consider a seed action for N massless free bosons, given in Eq. (A6). The perturbative expansion for the
TT̄

1
3-deformed action takes the form

SðλÞ ¼ Sð0Þ þ
X∞
m¼1

λm

m

Z
d2xETT̄

1
3

m−1; ðA19Þ

and a few of the coefficients are

TT̄
1
3

0jflat ¼
1

2
5
3

½ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ�13;

TT̄
1
3

1jflat ¼
−φ̇iφ̇i þ φ0iφ0i

9 · 2
1
3½ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ�13 ;

TT̄
1
3

2jflat ¼ −
ðφ̇iφ̇iÞ2 þ ðφ0iφ0iÞ2 þ 12ðφ̇iφ0iÞ2 − 14φ̇iφ̇iφ0jφ0j

216½ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ� : ðA20Þ

For this deformation, it does not seem possible to find an all-orders closed-form solution to the flow equation, but the
perturbative TT̄

1
3-deformed action to Oðλ3Þ is

SðλÞ ¼
Z

dtdθ

�
1

2
ð−φ̇iφ̇i þ φ0iφ0iÞ þ λ

2
5
3

½ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ�13

þ λ2

9 · 2
4
3

−φ̇iφ̇i þ φ0iφ0i

½ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ�13

−
λ3

648

ðφ̇iφ̇iÞ2 þ ðφ0iφ0iÞ2 þ 12ðφ̇iφ0iÞ2 − 14φ̇iφ̇iφ0jφ0j

ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ þ � � �
�
: ðA21Þ

5. f ðTα
α;TαβTαβÞ perturbative flow for multiple bosons

To conclude this appendix, we note that one can also study the perturbative solution to the flow driven by the
fðTα

α; TαβTαβÞ ¼ fðz; xÞ operator of Eq. (A1) for an arbitrary function f. We again take the initial condition for the flow to
be the action (A6) for N free massless bosons. The first few terms in the perturbative expansion are

fðTα
α; TαβTαβÞ0jflat ¼ fðxÞ; fðTα

α; TαβTαβÞ1jflat ¼ 4xy

�
∂fðxÞ
∂x

�
2

; ðA22Þ

where

x ¼ 1

2
ðφ̇i − φ0iÞðφ̇i − φ0iÞðφ̇j þ φ0jÞðφ̇j þ φ0jÞ ¼ 1

2
ð2ð∂μφi

∂
νφiÞð∂νφj

∂
μφjÞ − ð∂μφi

∂
μφiÞ2Þ;

y ¼ −φ̇iφ̇i þ φ0iφ0i ¼ ∂μφ
i
∂
μφi: ðA23Þ
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The perturbative action at Oðg2Þ is

SðgÞ ¼
Z

dtdθ

�
y
2
þ gfðxÞ þ 2g2xy

�
∂fðxÞ
∂x

�
2

þ � � �
�
: ðA24Þ

Furthermore, to summarize in the table below, one can check Eq. (A24) recovers the correct coefficients at Oðg2Þ for the
perturbative actions describing N free massless bosons considered in this appendix.

Operator fðxÞ Actionffiffiffiffiffiffiffi
TT̄

p ffiffi
x
2

p
SðγÞ ¼ R dtdθ½y

2
þ γ

ffiffi
x
2

p þ γ2

4
yþ � � �� ¼ 1

2

R
dtdθ½coshðγÞyþ sinhðγÞ ffiffiffiffiffi

2x
p �

TT̄ − x
2 SðλÞ ¼ R dtdθ½y

2
− λ

2
xþ λ2

2
xyþ � � �� ¼ R dtdθ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2λyþλ2ðy2−2xÞ
p

−1
2λ

TT̄
1
3 x

1
3

2
4
3

SðλÞ ¼ R dtdθ½y
2
þ λ

2
4
3

x
1
3 þ λ2

9·2
5
3

y

x
1
3

þ � � ��

In principle, one could also study the perturbative quantization of these more general fðTα
α; TαβTαβÞ-deformed scalar

models. For instance, one could use the background field expansion and determine their Feynman rules as done in Sec. V
for the modified scalar theory, or study canonical quantization following Sec. IV.

APPENDIX B: DETAILS OF FEYNMAN
DIAGRAM CALCULATIONS

In this appendix, we collect the technical details of
certain evaluations of Feynman diagrams which occur in
the analysis of Sec. V.

1. One-loop, two-vertex calculation

Let us first focus on the divergence structure of the
diagram D2 of EWq. (5.32), which we repeat here for
convenience:

ðB1Þ

As we mentioned around Eq. (5.35), the value of
this diagram can be expressed in terms of the simpler
quantity

Iμνρτ
2 ¼

Z
ddl
ð2πÞd

ðlþ qÞνlμðlþ qÞτlρ

l2ðlþ qÞ2 : ðB2Þ

All of the dependence on loop momenta is encoded
within Iμνρτ

2 , which we will also write as I2 with
indices suppressed for simplicity. From the value of
I2, the original diagram D2 is recovered from the
expression (5.34), which only involves additional depend-
ence on the classical background via the tensor Pμν

ij and
an additional integration over the momentum q.
Therefore, to study the divergences arising from the
loop, it suffices to perform dimensional regularization
of the quantity I2.
Expanding out the products and introducing a

Feynman parameter x to resolve the denominator, we find

I2 ¼
Z

ddl
ð2πÞd

lνlμlτlρ þ lνlμqτlρ þ qνlμlτlρ þ qνlμqτlρ

l2ðlþ qÞ2

¼
Z

ddl
ð2πÞd

Z
1

0

dx
lνlμlτlρ þ lνlμqτlρ þ qνlμlτlρ þ qνlμqτlρ

½l2ð1 − xÞ þ xðlþ qÞ2�2

¼
Z

ddl
ð2πÞd

Z
1

0

dx
lνlμlτlρ þ lνlμqτlρ þ qνlμlτlρ þ qνlμqτlρ

½l2 þ xð2lμqμ þ q2Þ�2

¼
Z

ddl
ð2πÞd

Z
1

0

dx
lνlμlτlρ þ lνlμqτlρ þ qνlμlτlρ þ qνlμqτlρ

½ðlμ þ xqμÞ2 þ xð1 − xÞq2�2 : ðB3Þ
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In the final step, we have completed the square in the denominator by adding and subtracting q2x2. We now shift the
integration variable from lμ to

l0μ ¼ lμ − xqμ; ðB4Þ
which causes the denominator to become even in l0, and thus terms in the numerator which are odd in l0μ will vanish by
symmetry. We immediately drop the primes on l0μ and write the surviving terms as

I2 ¼
Z

ddl
ð2πÞd

Z
1

0

dx

�
lνlμlτlρ

ðl2 þ q2xð1 − xÞÞ2 þ
x2lνqμlτqρ

ðl2 þ q2xð1 − xÞÞ2 þ
ðx2 − 2xþ 1Þqνlμqτlρ

ðl2 þ q2xð1 − xÞÞ2

þ ðx2 − xÞðqνqμlτlρ þ qνlμlτqρ þ lνlμqτqρ þ lνqμqτlρÞ
½l2 þ q2xð1 − xÞ�2 þ ðx4 − 2x3 þ x2Þqνqμqτqρ

ðl2 þ q2xð1 − xÞÞ2
�

¼
Z

ddl
ð2πÞd

Z
1

0

dx

�
lνlμlτlρ

ðl2 þ q2xð1 − xÞÞ2 þ
x2lνqμlτqρ

ðl2 þ q2xð1 − xÞÞ2 þ
ð1 − xÞ2qνlμqτlρ

½l2 þ q2xð1 − xÞ�2

þ xð1 − xÞðqνqμlτlρ þ qνlμlτqρ þ lνlμqτqρ þ lνqμqτlρÞ
½l2 þ q2xð1 − xÞ�2 þ ½x2ð1 − xÞ2�qνqμqτqρ

½l2 þ q2xð1 − xÞ�2
�
; ðB5Þ

where in the last expression we have factored various polynomials.
By a symmetry argument similar to the one discussed around Eqs. (5.28) and (5.30), within the integral we can replace

products of loop momenta with symmetrized combinations of metric tensors:

lμlν →
1

d
l2gμν;

lμlνlρlτ →
1

dðdþ 2Þl
4ðgμνgρτ þ gμρgντ þ gμτgνρÞ: ðB6Þ

Applying the replacements (B6), the integral I2 becomes

I2 ¼
Z

ddl
ð2πÞd

Z
1

0

dx

�
l4

dðdþ 2Þ
gμνgρτ þ gμτgνρ þ gμρgντ

½l2 þ q2xð1 − xÞ�2 þ l2

d
x2gντqμqρ

½l2 þ q2xð1 − xÞ�2 þ
l2

d
ð1 − xÞ2gμρqνqτ

½l2 þ q2xð1 − xÞ�2

þ l2

d
xð1 − xÞðqνqμgτρ þ gμτqνqρ þ gνμqτqρ þ gνρqμqτÞ

½l2 þ q2xð1 − xÞ�2 þ x2ð1 − xÞ2qνqμqτqρ
½l2 þ q2xð1 − xÞ�2

�
: ðB7Þ

It will be convenient to make use of the standard resultZ
ddl
ð2πÞd

l2β

ðl2 − Δ2Þα ¼ ið−1Þαþβ
Γðβ þ d

2
ÞΓðα − β − d

2
Þ

ð4πÞd2ΓðαÞΓðd
2
Þ Δ2ðd

2
−αþβÞ; ðB8Þ

which can be found, for instance, in Eq. (A.4) in [112]. Using (B8) with

Δ2 ¼ −q2xð1 − xÞ ðB9Þ

in Eq. (B7), we find

I2 ¼
i

ð4πÞd2Γð2ÞΓðd
2
Þ

Z
1

0

dx

�
Δd

dðdþ 2ÞΓ
�
2þ d

2

�
Γ
�
−
d
2

�
ðgμνgρτ þ gμρgντ þ gμτgνρÞ

þ Δd−2

d
Γ
�
1þ d

2

�
Γ
�
1 −

d
2

�
xð1 − xÞðqνqμgτρ þ gμτqνqρ þ gνμqτqρ þ gνρqμqτÞ

þ Δd−2

d
Γ
�
1þ d

2

�
Γ
�
1 −

d
2

�
x2gντqμqρ þ Δd−2

d
Γ
�
1þ d

2

�
Γ
�
1 −

d
2

�
ð1 − xÞ2gμρqνqτ

þ Δd−4Γ
�
d
2

�
Γ
�
2 −

d
2

�
½x2ð1 − xÞ2�qνqμqτqρ

�
: ðB10Þ
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Using gamma function identities and some algebra, one can simplify this to

I2 ¼
iΓð− d

2
Þ

ð4πÞd2
Z

1

0

dx

�
Δd

4
ðgμνgρτ þ gμρgντ þ gμτgνρÞ − dΔd−2

4
x2gντqμqρ

−
dΔd−2

4
ð1 − xÞ2gμρqνqτ − dΔd−2

4
xð1 − xÞðqνqμgτρ þ gμτqνqρ þ gνμqτqρ þ gνρqμqτÞ

þ dðd − 2ÞΔd−4

4
x2ð1 − xÞ2qνqμqτqρ

�
: ðB11Þ

After substituting in for Δ2 using the definition (B9), we can now evaluate the resulting integrals using the formula

Z
1

0

dxxα−1ð1 − xÞβ−1 ¼ ΓðαÞΓðβÞ
Γðαþ βÞ ¼ Bðα; βÞ; ðB12Þ

which we recognize as the definition of the beta function Bðα; βÞ. By doing this, we find

I2 ¼
iΓð− d

2
Þ

4ð4πÞd2
Z

1

0

dx

�
dðd − 2Þqd−4½−xð1 − xÞ�d2qνqμqτqρ − dqd−2ð−xÞd2−1ð1 − xÞd2þ1gμρqνqτ

þ qd½−xð1 − xÞ�d2ðgμνgρτ þ gμρgντ þ gμτgνρÞ − dqd−2½ð−xÞd2þ1ð1 − xÞd2−1�gντqμqρ

þ dqd−2½−xð1 − xÞ�d2ðqνqμgτρ þ gμτqνqρ þ gνμqτqρ þ gνρqμqτÞ
�

¼ ið−1Þd2Γð− d
2
Þ

4ð4πÞd2
�
qd

Γðd
2
þ 1Þ2

Γðdþ 2Þ ðg
μνgρτ þ gμρgντ þ gμτgνρÞ

þ dqd−2
Γðd

2
ÞΓðd

2
þ 2Þ

Γðdþ 2Þ ½gμρqνqτ þ gντqμqρ� þ dðd − 2Þqd−4 Γð
d
2
þ 1Þ2

Γðdþ 2Þ q
νqμqτqρ

þ dqd−2
Γðd

2
þ 1Þ2

Γðdþ 2Þ ðq
νqμgτρ þ gμτqνqρ þ gνμqτqρ þ gνρqμqτÞ

�
: ðB13Þ

Note that each term in (B13) scales as qd, as expected. Factoring out the gamma functions, we have found

I2 ¼
ið−1Þd2Γð− d

2
Þ

4ð4πÞd2
Γðd

2
þ 1Þ2

Γðdþ 2Þ ½q
dðgμνgρτ þ gμρgντ þ gμτgνρÞ þ dðd − 2Þqd−4qνqμqτqρ

þ dqd−2ðqνqμgτρ þ gμτqνqρ þ gνμqτqρ þ gνρqμqτÞ þ ðdþ 2Þqd−2ðgμρqνqτ þ gντqμqρÞ�: ðB14Þ

Finally, to perform dimensional regularization, we set the spacetime dimension to d ¼ 2þ 2ϵ and take ϵ → 0 using the
limiting behavior

Γð−1 − ϵÞ ¼ 1

ϵ
− γ þ 1þOðϵÞ ðB15Þ

for the gamma functions. Keeping only divergent terms, we arrive at the final expression

I2 ¼
�
1

ϵ

�
−i

24ð4πÞ ½q
2ðgμνgρτ þ gμρgντ þ gμτgνρÞ þ 2ðqνqμgτρ þ gμτqνqρ þ gνμqτqρ þ gνρqμqτÞ þ 4ðgμρqνqτ þ gντqμqρÞ�:

ðB16Þ

This completes the evaluation of the divergent contribution from I2, which justifies the result (5.36) which was quoted in
the body of the paper.
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2. One-loop, n-vertex calculation

The n-vertex diagram Dn can be computed via a
generalization of the method used in Appendix B 1. We
again write l for the loop momentum, and we label the
external momenta as qi, for i ¼ 0;…; n − 1, with momen-
tum conservation implying that

qn−1 ¼ −
Xn−2
i¼0

qi: ðB17Þ

As we did with D2 in Eq. (5.33), let us strip off various
factors of Pμν

ij to write

Dn ¼
ð−2 tanhðγÞÞn

n

Z �
ddq0
ð2πÞd P

i1i2
μ1μ2ðq0Þ

�

×

�
ddq0
ð2πÞd P

i2i3
μ3μ4ðq1Þ

�
� � �
�
ddqn−2
ð2πÞd Pin−1in

μ2n−3μ2n−2ðqn−2Þ
�

· Pini1
μ2n−1μ2nðqn−1ÞðInÞμ1μ2…μ2n−1μ2n ; ðB18Þ

where In is the simpler integral

ðInÞμ1μ2���μ2n−1μ2n

¼
Z

ddl
ð2πÞd

 Yn−1
i¼0

 
lþ

Xi
j¼0

qj

!−2!

×

 Yn
k¼1

 
lþ

Xk−1
j¼0

qj

!
μ2k−1
 
lþ

Xk−1
j¼0

qj

!
μ2k
!
: ðB19Þ

We will further break up In into pieces and evaluate each
piece in turn. Let us write the integrand of (B19) as a
product

ðInÞμ1μ2���μ2n−1μ2n ¼
Z

ddl
ð2πÞd PnVμ1μ2���μ2n−1μ2n ; ðB20Þ

where the symbol

Pn ¼
Yn−1
i¼0

�
lþ

Xi
j¼0

qj

�−2

ðB21Þ

refers to the collection of all factors in In which come from
propagators, and the symbol

Vμ1μ2���μ2n−1μ2n ¼
Yn
k¼1

�
lþ

Xk−1
j¼0

qj

�μ2k−1�
lþ

Xk−1
j¼0

qj

�μ2k

;

ðB22Þ

which we will sometimes abbreviate as V, refers to the
pieces coming from vertex factors.
To highlight the divergence structure of the diagram Dn,

we will focus on performing the loop momentum integral of
various terms appearing in the productPV of Eq. (B20), and

neglect the additional structure arising from the contraction
with the various tensors Pij

μν to obtain Dn in (B18).
Let us begin by simplifying the product P of n

propagator factors. In general, we can write the product
of n propagators using a Feynman parametrization:

Yn−1
i¼0

A−1
i ¼

Z
1

0

�Yn−1
i¼0

dxi

�
δ

�Xn−1
i¼0

xi − 1

� ðn − 1Þ!
½Pi xiAi�n

:

ðB23Þ

The product of propagators inside the loop can thus be
expressed as

P¼
Z

1

0

�Yn−1
i¼0

dxi

�
δ

�Xn−1
i¼0

xi−1

��Xn−1
i¼0

xi

�
lþ

Xi
j¼0

qj

�2�−n
:

ðB24Þ

As
P

i xi ¼ 1, we can expand and reduce the square
bracketed term to

�X
i
xi

�
lþ

Xi
j¼0

qj

�
2
�
−n

¼
�
l2 þ

X
i
xi

�
2lμ

Xi
j¼0

qμj þ
�Xi

j¼0

qj

�
2
��

−n

¼
��

lþ
X

i

Xi
j¼0

xiqj

�
2

−
�X

i

Xi
j¼0

xiqj

�
2

þ
X

i
xi

�Xi
j¼0

qj

�
2
�
−n
: ðB25Þ

We change variables in the loop momentum by shifting

lμ → lμ −
Xn−1
i¼0

Xi
j¼0

xiq
μ
j ; ðB26Þ

so that the bracketed expression becomes

�X
i
xi

�
lþ

Xi
j¼0

qj

�
2
�
−n

¼
�
l2 −

�X
i

Xi
j¼0

xiqj

�
2

þ
X

i
xi

�Xi
j¼0

qj

�
2
�
−n

¼ ½l2 − Δ2�−n; ðB27Þ

where we have defined

Δ2 ¼
�X

i

Xi
j¼0

xiqj

�2

−
X
i

xi

�Xi
j¼0

qj

�2

: ðB28Þ
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Overall this allows us to write the propagators as

P ¼ ðn − 1Þ!
Z

1

0

�Yn−1
i¼0

dxi

�
δ

�Xn−1
i¼0

xi − 1

�
ðl2 − Δ2Þ−n:

ðB29Þ

Next, let us turn to the contributions from the vertices in
Eq. (B22), which yield factors of momenta in the numerator
of the integrand. Under the change of variables (B26)
which renders the denominator of P quadratic in l, the
vertex factor contribution becomes

Vμ1μ2���μ2n−1μ2n ¼
Yn
k¼1

�
l −

Xn−1
i¼0

Xi
j¼0

xiqj þ
Xk−1
j¼0

qj

�μ2k−1�
l −

Xn−1
i¼0

Xi
j¼0

xiqj þ
Xk−1
j¼0

qj

�μ2k

: ðB30Þ

We expand this product in descending powers of l as only powers l2n and l2n−2 will lead to divergent terms. We have that

Vμ1μ2���μ2n−1μ2n ¼
Yn
k¼1

lμ2k−1lμ2k þ
X2n
a¼1

X2n
b>a

�Y2n
c≠a;b

lμc

�
fμaðx; q; aÞfμbðx; q; bÞ þOðl2n−4Þ; ðB31Þ

where we have defined for brevity

fμðx; q; aÞ ¼
Xn−1
i¼0

Xi
j¼0

xiq
μ
j þ

Xba−12 c

j¼0

qμj : ðB32Þ

Next, we will replace products of loop momenta using the generalized symmetrization rule of Eq. (5.30). To ease
notation, let us write

gμ1���μn ¼ gðμ1μ2 � � � gμn−1μnÞ ðB33Þ

for the symmetrized combination of derivatives appearing in this expression. When no confusion is possible, we will also
write gfμg for (B33), where fμg is understood to refer to a multi-index fμg ¼ μ1 � � � μn. With this notation, the replacement
rule becomes

Yn
i¼1

lμ2i−1lμ2i →
l2nðd − 2Þ!!ð2n − 1Þ!!

ðd − 2þ 2nÞ!! gμ1���μ2n : ðB34Þ

This transforms the vertex factor contribution to

Vμ1μ2���μ2n−1μ2n ¼ l2nðd − 2Þ!!ð2n − 1Þ!!
ðd − 2þ 2nÞ!! gμ1���μ2n þ l2n−2ðd − 2Þ!!ð2n − 3Þ!!

ðd − 4þ 2nÞ!!
X2n
a¼1

X2n
b>a

gfμ≠μa;μbgfμaðx; q; aÞfμbðx; q; bÞ

þOðl2n−4Þ: ðB35Þ

In Eq. (B35), we have written gfμ≠μa;μbg to refer to a product of the form (B33) in which the multi-index fμg runs over all
possible values except for the two indices μa and μb, which are excluded.
Let us now combine the pieces and identify the divergent terms in Dn. We can evaluate

ðInÞμ1μ2���μ2n ¼
Z

ddl
ð2πÞd PV

μ1μ2���μ2n

¼
Z

ddl
ð2πÞd ðn − 1Þ!

Z
1

0

�Yn−1
i¼0

dxi

�
δ

�Xn−1
i¼0

xi − 1

�
ðl2 − Δ2Þ−n ·

�
l2nðd − 2Þ!!ð2n − 1Þ!!

ðd − 2þ 2nÞ!! gμ1���μ2n

þ l2n−2ðd − 2Þ!!ð2n − 3Þ!!
ðd − 4þ 2nÞ!!

X2n
a¼1

X2n
b>a

gfμ≠μa;μbgfμaðx; q; aÞfμbðx; q; bÞ þOðl2n−4Þ
�
; ðB36Þ
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in terms of the known integralZ
ddl
ð2πÞd

l2β

ðl2 − Δ2Þα ¼ ið−1Þαþβ
Γðβ þ d

2
ÞΓðα − β − d

2
Þ

ð4πÞd2ΓðαÞΓðd
2
Þ Δ2ðd

2
−αþβÞ: ðB37Þ

First, let us justify why the terms of order l2n−4 and lower in Eq. (B36) will not give divergent contributions. A term
proportional to l2n−4 in the parentheses of (B36), after multiplying the propagator factor ðl2 − Δ2Þ−n, gives a term in the
integrand of the form (B37) with α ¼ n and β ¼ n − 2. Such a term gives a contributionZ

ddl
ð2πÞd

l2ðn−2Þ

ðl2 − Δ2Þn ¼ ið−1Þnþðn−2Þ Γðn − 2þ d
2
ÞΓð2 − d

2
Þ

ð4πÞd2ΓðnÞΓðd
2
Þ Δ2ðd

2
−nþðn−2ÞÞ: ðB38Þ

In the limit as d → 2, the two factors of gamma functions in the numerator of (B38) tend to Γðn − 1Þ and Γð1Þ, which are
both finite since n > 2. Since we are only interested in computing the divergent contributions arising from these diagrams,
we ignore these terms. Similarly, any terms of lower order in l can be evaluated in the same way but with even smaller
values of β, which also lead to finite contributions from the gamma functions.
Let us therefore focus on the divergent terms. The term in the integrand proportional to l2n in Eq. (B36) takes the form

(B37) with α ¼ β ¼ n. Similarly, the term in the integrand that scales as l2n−2 is of the form (B37) with α ¼ n and
β ¼ n − 1. Evaluating the loop momentum integrals then gives

ðInÞμ1μ2���μ2n ¼ ðn − 1Þ!
Z

1

0

�Yn−1
i¼0

dxi

�
δ

�Xn−1
i¼0

xi − 1

�
·
�
iðd − 2Þ!!ð2n − 1Þ!!

ðd − 2þ 2nÞ!! gμ1���μ2n
Γðnþ d

2
Þ

ð4πÞd2ΓðnÞΓðd
2
ÞΓ
�
−
d
2

�
Δd

þ iðd − 2Þ!!ð2n − 3Þ!!
ðd − 4þ 2nÞ!!

X2n
a¼1

X2n
b>a

gfμ≠μa;μbgfμaðx; q; aÞfμbðx; q; bÞ · Γðn − 1þ d
2
Þ

ð4πÞd2ΓðnÞΓðd
2
ÞΓ
�
1 −

d
2

�
Δd−2

�
: ðB39Þ

To better analyze the divergence structure, it is useful to define shorthand notation for the two terms appearing in (B39),
which we call Cμ1…μ2n

2n and Dμ1…μ2n
2n :

Cμ1���μ2n
2n ≡ iðd − 2Þ!!ð2n − 1Þ!!

ðd − 2þ 2nÞ!! gμ1���μ2n
Γðnþ d

2
Þ

ð4πÞd2ΓðnÞΓðd
2
ÞΓ
�
−
d
2

�
Δd;

Dμ1���μ2n
2n ≡ iðd − 2Þ!!ð2n − 3Þ!!

ðd − 4þ 2nÞ!!
X2n
a¼1

X2n
b>a

gfμ≠μa;μbgfμaðx; q; aÞfμbðx; q; bÞ · Γðn − 1þ d
2
Þ

ð4πÞd2ΓðnÞΓðd
2
ÞΓ
�
1 −

d
2

�
Δd−2: ðB40Þ

Both contributions Cμ1���μ2n
2n and Dμ1���μ2n

2n scale as qd and
contain a polynomial in xi of degree d. In Cμ1���μ2n

2n , this qd

dependence is contained within Δd, and for Dμ1���μ2n
2n , the

power of qd−2 from Δd−2 is compensated by two factors of
q, one of which sits in each function fμ.
Therefore, we conclude that in the limit d → 2, all such n

vertex diagrams have the same general structure as the two-
vertex diagram which we saw in (B16). In particular, both
Cμ1���μ2n

2n and Dμ1���μ2n
2n generate divergences of the form 1

ϵ

because they are proportional to Γð− d
2
Þ and Γð1 − d

2
Þ,

respectively.
We conclude that

Cμ1���μ2n
2n ∼

1

ϵ
q2gμ1���μ2n ;

Dμ1���μ2n
2n ∼

1

ϵ

X2n
a¼1

X2n
b>a

qμaqμbgfμ≠μa;μbg: ðB41Þ

3. m-loop, two-vertex calculation

In this appendix, we will show how to evaluate the integral
over one of the m-loop momenta li which appear in the
expression for the two-vertex,m-loop diagram of Eq. (5.40). It
suffices to integrate over the final momentum lm, since the
resultmay thenbe iterated to evaluate theotherm − 1 integrals.
Therefore, let us focus on performing the integration over

lm in the quantity Lm;2 of Eq. (5.46). Specifically, we will
compute the quantity

Lm;2 ¼
Z

ddlm
lνmþ1
m lτmþ1

m ðlm − lm−1Þνmðlm − lm−1Þτm
l2
mðlm − lm−1Þ2

:

ðB42Þ
This object Lm;2 is proportional to the remaining integrand
that one finds by performing the integral over lm in the
definition of Lm;2. As we will see, after obtaining an
expression for Lm;2, this result can be used recursively to
evaluate Lm;2 itself.
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We notice the integral in Eq. (B42) is exactly of the form of the one appearing in the one-loop, two-vertex diagram which
we evaluated in Appendix B 1. Proceeding in the same way, we introduce a Feynman parameter x to write

Lm;2 ¼
Z

ddlmdx
lνmþ1
m lτmþ1

m ðlm − lm−1Þνmðlm − lm−1Þτm
½ð1 − xÞl2

m þ xðlm − lm−1Þ2�2

¼
Z

ddlmdx
lνmþ1
m lτmþ1

m ðlm − lm−1Þνmðlm − lm−1Þτm
½l2

m þ xð2lm · lm−1 − l2
m−1Þ�2

¼
Z

ddlmdx
lνmþ1
m lτmþ1

m ðlm − lm−1Þνmðlm − lm−1Þτm
½ðlm þ xlm−1Þ2 − x2l2

m−1 þ xl2
m−1�2

; ðB43Þ

or after shifting the integration variable as lm → lm − xlm−1,

Lm;2 ¼
Z

ddlmdx
ðlm − xlm−1Þνmþ1ðlm − xlm−1Þτmþ1ðlm − ð1 − xÞlm−1Þνmðlm − ð1 − xÞlm−1Þτm

½l2
m þ xð1 − xÞl2

m−1�2
: ðB44Þ

We may keep only even powers of lm in the integrand, as odd powers vanish by symmetry:

Lm;2 ¼
Z

ddlmdx

�
lνmþ1
m lτmþ1

m lνm
m lτm

m þ x2lνmþ1

m−1l
τmþ1

m−1l
νm
m lτm

m þ xð1 − xÞlνmþ1
m lτmþ1

m−1l
νm
m lτm

m−1
½l2

m þ xð1 − xÞl2
m−1�2

þ xð1 − xÞlνmþ1

m−1l
τmþ1
m lνm

m−1l
τm
m þ ð1 − xÞ2lνmþ1

m lτmþ1
m lνm

m−1l
τm
m−1 þ x2ð1 − xÞ2lνmþ1

m−1l
τmþ1

m−1l
νm
m−1l

τm
m−1

½l2
m þ xð1 − xÞl2

m−1�2
�
: ðB45Þ

We now replace products of lμ
m with powers of lm and symmetrized metric factors, following the generalized

symmetrization rule (5.30), which yields

Lm;2 ¼
Z

ddlmdx

 
3l4m

dðdþ2Þ g
ðνmþ1τmþ1gνmτmÞ þ x2 l2m

d gμmνmlνmþ1

m−1l
τmþ1

m−1 þ xð1 − xÞ l2md gνmþ1νmlτmþ1

m−1l
τm
m−1

½l2
m þ xð1 − xÞl2

m−1�2

þ xð1 − xÞ l2md gτmþ1νmlνmþ1

m−1l
τm
m−1 þ ð1 − xÞ2 l2

m
d gνmþ1τmþ1lνm

m−1l
τm
m−1 þ x2ð1 − xÞ2lνmþ1

m−1l
τmþ1

m−1l
νm
m−1l

τm
m−1

½l2
m þ xð1 − xÞl2

m−1�2
!
: ðB46Þ

Splitting the numerator up, we can once again apply the standard formula (B37) with

Δ2 ¼ −xð1 − xÞl2
m−1; ðB47Þ

which gives

Lm;2 ¼
i

ð4πÞd2Γðd
2
Þ

Z
1

0

dx

�
3

dðdþ 2Þ g
ðνmþ1τmþ1gνmτmÞΓ

�
2þ d

2

�
Γ
�
−
d
2

�
Δd þ x2

d
gμmνmlνmþ1

m−1l
τmþ1

m−1Γ
�
1þ d

2

�
Γ
�
1 −

d
2

�
Δd−2

þ xð1 − xÞ
d

gνmþ1νmlτmþ1

m−1l
τm
m−1Γ

�
1þ d

2

�
Γ
�
1 −

d
2

�
Δd−2 þ xð1 − xÞ

d
gτmþ1νmlνmþ1

m−1l
τm
m−1Γ

�
1þ d

2

�
Γ
�
1 −

d
2

�
Δd−2

þ ð1 − xÞ2
d

gνmþ1τmþ1lνm
m−1l

τm
m−1Γ

�
1þ d

2

�
Γ
�
1 −

d
2

�
Δd−2 þ x2ð1 − xÞ2lνmþ1

m−1l
τmþ1

m−1l
νm
m−1l

τm
m−1Γ

�
d
2

�
Γ
�
2 −

d
2

�
Δd−4

�
:

ðB48Þ

Replacing Δ using its definition in Eq. (B47), we see that each term contains d overall factors of loop momenta:
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Lm;2 ¼
i

ð4πÞd2Γðd
2
Þ

Z
1

0

dx

�
3

dðdþ 2Þ g
ðνmþ1τmþ1gνmτmÞΓ

�
2þ d

2

�
Γ
�
−
d
2

�
ðxð1 − xÞÞd2ld

m−1

þ 1

d
gμmνmlνmþ1

m−1l
τmþ1

m−1Γ
�
1þ d

2

�
Γ
�
1 −

d
2

�
x
d
2
þ1ð1 − xÞd2−1ld−2

m−1

þ 1

d
gνmþ1νmlτmþ1

m−1l
τm
m−1Γ

�
1þ d

2

�
Γ
�
1 −

d
2

�
ðxð1 − xÞÞd2ld−2

m−1

þ 1

d
gτmþ1νmΓ

�
1þ d

2

�
Γ
�
1 −

d
2

�
ðxð1 − xÞÞd2lνmþ1

m−1l
τm
m−1l

d−2
m−1

þ 1

d
gνmþ1τmþ1Γ

�
1þ d

2

�
Γ
�
1 −

d
2

�
x
d
2
−1ð1 − xÞd2þ1lνm

m−1l
τm
m−1l

d−2
m−1

þ Γ
�
d
2

�
Γ
�
2 −

d
2

�
ðxð1 − xÞÞd2lνmþ1

m−1l
τmþ1

m−1l
νm
m−1l

τm
m−1l

d−4
m−1

�
: ðB49Þ

We now use the identity Γð1þ xÞ ¼ xΓðxÞ to factor and cancel the gamma functions, and finally evaluate the Feynman
integrals, giving the result

Lm;2 ¼
iΓð− d

2
Þ

ð4πÞd2Γðdþ 2Þ

�
3ð1þ d

2
Þ d
2

dðdþ 2Þ g
ðνmþ1τmþ1gνmτmÞΓ

�
d
2
þ 1

�
2

ld
m−1 þ

ðd
2
Þð− d

2
Þ

d
gμmνmlνmþ1

m−1l
τmþ1

m−1Γ
�
d
2
þ 2
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We see that all terms scale as ld
m−1 and the only divergent gamma function is Γð− d

2
Þ. This establishes the result used in the

body of the paper, in the text above Eq. (5.48), which can then be applied iteratively to evaluate the remaining loop integrals.
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