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We study interacting theories of N left-moving and N right-moving Floreanini-Jackiw bosons in two
dimensions. A parametrized family of such theories is shown to enjoy (nonmanifest) Lorentz invariance if
and only if its Lagrangian obeys a flow equation driven by a function of the energy-momentum tensor. We
discuss the canonical quantization of such theories along classical stress tensor flows, focusing on the case
of the root-TT deformation, where we obtain perturbative results for the deformed spectrum in a certain
large-momentum limit. In the special case N = N, we consider the quantum effective action for the root-
TT-deformed theory by expanding around a general classical background, and we find that the one-loop
contribution vanishes for backgrounds with constant scalar gradients. Our analysis can also be interpreted
via dual U(1) Chern-Simons theories in three dimensions, which might be used to describe deformations of

charged AdS; black holes or quantum Hall systems.
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I. INTRODUCTION

In physics, we are frequently interested in parametrized
families of classical or quantum field theories (QFTs). The
tangent vectors to these families often have an interpreta-
tion as operators within a given theory. One familiar
example appears in the study of conformal field theories,
which may possess certain exactly marginal operators.
Deforming a conformal field theory (CFT) by a marginal
operator generates motion on the conformal manifold,
which is one such family of theories.

Another simple one-parameter family generated from any
quantum field theory is the well-known renormalization
group (RG) flow. We can interpret this as a curve of theories
labeled by an energy scale u. For a CFT, this curve degenerates
to a single point, but for other QFT's, one finds an infinite family
of theories connecting two RG fixed points at the UV and IR
ends of this flow. The operator that plays the role of the tangent
vector to this curve is the trace of the energy-momentum tensor,
which generates scale transformations.

The renormalization group example is especially useful
because it is wuniversal: any translation-invariant field
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theory admits an energy-momentum tensor 7,,, SO we
may always deform by the trace 7%, to flow toward the
infrared. It is natural to explore other deformations con-
structed from the stress tensor, which are also universal.
These stress tensor deformations generate a larger class of
flows, which includes the renormalization group flow as a
special case, but which also includes other famous exam-
ples such as the TT deformation of two-dimensional
quantum field theories [1-3].

Even at the classical level, stress tensor flows often give
rise to interesting parametrized families of theories. For
instance, consider classical theories of a single Abelian
gauge field A, whose Lagrangians depend on the field
strength F,, but not its derivatives. Construct the para-
metrized family that contains the Maxwell theory,
L= —iF wF*, and all other theories that can be reached
from the Maxwell theory by deformations involving the
energy-momentum tensor. This family is precisely the
collection of theories of nonlinear electrodynamics that
are invariant under electric-magnetic duality rotations [4],
which is of interest in its own right.l

1Strictly speaking, there are some isolated points in this space
such as the Bialynicki-Birula theory [5] which are not connected
to Maxwell, so to be precise we should say that the family
generated in this way gives one connected component in the
space of duality-invariant theories.

Published by the American Physical Society
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Another example concerns theories of a two-form gauge
potential A, with a self-dual three-form field strength F,,
in six spacetime dimensions. Any family of such theories—
e.g., the collection of interacting chiral tensor theories that
describe the worldvolume theory on an M5-brane, labeled
by a parameter 7' that controls the tension of the brane—
also obeys a stress tensor flow equation [6]. We say that
both 4d theories of duality-invariant electrodynamics and
6d chiral tensor theories are closed under stress tensor
flows, in the sense that deforming any member of one of
these classes of theories by a Lorentz scalar constructed
from 7, produces another member of the same class.

In this paper, we will investigate another space of
theories, which is also closed under deformations involving
the energy-momentum tensor. The theories that we con-
sider here describe the dynamics of a collection of N chiral
and N antichiral bosonic fields in two spacetime dimen-
sions. Such theories of several chiral bosons appear in
many contexts, such as in the 7-duality symmetric formu-
lation of world sheet string theory [7,8]. The simplest
member of this class of theories, with N = 1 and N = 0, is
the theory of a single chiral boson which is described by the
Floreanini-Jackiw action [9], namely

1
Spy = 5/ dzx(at¢69¢ — Oppyp). (1.1)

Here we work in a 2d spacetime with coordinates (¢, 9). As
is well-known, it is not straightforward to write a manifestly
Lorentz-invariant Lagrangian for a field that obeys a
chirality (or self-duality) constraint. One approach, which
we will follow in this work, is to sacrifice manifest Lorentz
invariance and work with actions of the form (1.1) that
explicitly single out a preferred time coordinate ¢; we will
then need to impose that the theory enjoy a nonmanifest
Lorentz symmetry. Another strategy is to introduce one or
more auxiliary fields to restore manifest Lorentz invariance,
which is the tactic used to describe chiral tensor theories in
six dimensions using, e.g., the Pasti-Sorokin-Tonin (PST)
formulation [10-12] (and later extended to higher dimen-
sions [13]). A related technique was used to present a
manifestly Lorentz-invariant description of the Floreanini-
Jackiw action in [14].

For a single chiral (or antichiral) boson, it is known that
no continuous deformation of the free theory to include
Lorentz-invariant self-interactions is possible [13,15]
(although see Ref. [16] for such an interacting model
which is not continuously connected to the free theory). In
this work, we will give a new interpretation of this fact: all
Lorentz-invariant interacting chiral boson theories are
generated from stress tensor deformations, but (1.1) is a
fixed point of all such flows, and, therefore, there is no way
to deform it to include interactions. However, for a theory
with N > 1 chiral and N > 1 antichiral bosons, such self-
interactions are possible, and it is natural to describe them

with an interaction function V(dg¢’, 6943? ) that depends on
the spatial derivatives of the fields:

1 . ) N — R
Sint = E/sz(atff”aefﬁ' — 0,'0g' — V(aeéb” 5045'))-
(1.2)

In this expression, i = 1, ..., N runs over the chiral fields
and i = 1,...,N labels the antichiral fields. We will be
primarily interested in theories that are invariant under the
O(N) x O(N) symmetry rotating the chiral and antichiral
bosons among themselves, although we will give some
results that do not make this assumption; we will see that it
is also possible to promote (1.2) to include a target-space
metric  G;;, (_7,7 for the bosons, or couplings to an
antisymmetric tensor field B, B; ; [which in general breaks
O(N) x O(N)], without significantly changing our analy-
sis. Because the Lagrangian appearing in (1.2) is first-order
in time derivatives, the function V can also be interpreted as
the Hamiltonian of the model. This structure is similar to
that of the PST description of a 6d chiral tensor theory, after
gauge-fixing the auxiliary field v, of this formalism to the

value v, = 60ﬂ, whose action is

1 ..
SPST. gauge fixed = /dGX(ZBijaoA” —H(S,P)) (1.3)

Here s=1BUBM§;5;, and p=./p'p;, where
Pi = §€ijumB*B™, are two SO(5)-invariant quantities
constructed from the “magnetic field” B;;, where EV and
B are related to the fundamental field F; = dA, as
E = Fi0 Bl = F'/% and F denotes the Hodge dual of
F. This gauge-fixed form of the PST action is closely
related to the Perry-Schwarz formalism [17]. In our two-
dimensional example, the role of the magnetic components
B of the three-form field strength is played by the spatial
derivatives dy¢p’ and dy¢p’ of the bosons.

Although we will not consider other formulations of
chiral boson theories in this work, let us briefly mention
that several other approaches have been used to describe
such models. One presentation, due to Sen [18,19],
introduces an additional “spectator’” field which decouples
from the dynamics; T7T flows within this formalism have
been studied in [20—22].2 Another presentation introduced
by Mkrtchyan includes an additional auxiliary scalar field
R and reduces to the PST form of the chiral boson action
after integrating out R [24]. See Ref. [25] for a comparison
of some of these formulations and the realization of chiral

“The latter analysis also illuminates a surprising connection
between the solvability of 77-like deformations and that of
another deformation of quantum mechanics involving a cosh(p)
kinetic term [23].
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bosons via a 3d Chern-Simons theory. Finally, a notable
presentation by Siegel [26] expresses the chiral boson
action in terms of a symmetric and traceless auxiliary tensor
field 1%

1
SSicgel = _Z/ sz[aa¢aa¢
+ 2% (0uh — €2,0°9) (9p — €, P)]

= / dtde E(a,qﬁa,g{) — 0ph0p )

AOI _ /100

A g aa¢>2] . (1.4)

2

Siegel’s action (1.4) is classically equivalent to the
Floreanini-Jackiw action (1.1) assuming one can gauge

the two independent components of A% to (1%, 21) =
(4.—1) [27]. For applications extending Siegel’s action to
gravity and string theory, see Refs. [28-33]. The study of
chiral bosons and other self-dual fields has a long history,
and we refer the reader to an incomplete sampling [34—40]
of earlier work, and references therein, for other results.
Our motivation for studying this class of interacting
chiral boson theories in this work is twofold. The first
reason is purely classical: we would like to characterize the
space of all such interacting theories, each of which is
determined by an interaction function V, which enjoy
nonmanifest Lorentz invariance. As we will see, this
condition will require that the function V satisfy a certain
partial differential equation which is very similar to those
that appear in the cases of 4d duality-invariant electrody-
namics [4] and 6d chiral tensor theories [6]. The space of
solutions to this partial differential equation is intimately
connected to stress tensor flows. More precisely, given any
parametrized family of Lorentz-invariant theories with
interaction functions V¥ labeled by a parameter A, we
will show that 9,V can always be written as a function of
the stress tensor T,@ of the theory at the same value of the
parameter A. Conversely, any flow equation of the form

limV®W = v,

oV = f(1i. 7). lim

(1.5)

along with a Lorentz-invariant initial condition V), gives
rise to a one-parameter family of Lorentz-invariant theories.
Therefore, families of Lorentz-invariant interacting chiral
boson theories are in one-to-one correspondence with stress
tensor flows. These statements are the precise 2d analogs of
the 4d and 6d results in [4,6].

The second motivation for this study concerns quantiza-
tion. The general form (1.2) of an interacting theory is
convenient for canonical quantization, since the depend-
ence on time derivatives is fixed and thus the definition of
the conjugate momenta is unaffected by the interaction

function. One can study the quantization of theories in
this class in a uniform way, at least for cases that admit
a controlled perturbative expansion which makes calcu-
lations tractable. When we consider the quantization of a
one-parameter family of theories defined by interaction
functions VY that satisfy a differential equation of the form
(1.5), we will say that we are studying “quantization along
the classical flow.”

We will be especially interested in quantization along the
flow driven by the function

1 1
ayv(}') =R[T,] = ﬁ \/TﬂuTﬂU ) (T””)Z, (1.6)

where we suppress the dependence of T,, on the flow
parameter y. This nonanalytic combination R is the two-
dimensional root-T7 operator [41], which is the unique
marginal combination of stress tensors that defines a
classical flow equation which commutes with the irrelevant
TT flow in 2d. The root-TT deformation shares some
of the remarkable properties of the 7T deformation, such as
preserving classical integrability in many examples [42,43]
and admitting a holographic interpretation in terms of
modified boundary conditions for AdS; gravity [44.,45].
It also plays a role in classical flows for 3d gauge theories
[46] and has connections to BMS; symmetry and ultra/
nonrelativistic limits of 2d CFTs [47-49].

Another motivation for studying this operator is that
the corresponding commuting 77T-like and root-T7-like
flows in four spacetime dimensions, with the initial con-
dition given by the free Maxwell Lagrangian, were shown
in [50-54] to produce an interesting family of gauge
theories referred to as ModMax-Born-Infeld, which was
first written down in [15]. This family depends on two
parameters, A and y. When y is taken to zero, the theory
reduces to the 4d Born-Infeld model which gives an
effective description of the gauge dynamics on a D3-brane.
As 1 — 0, one recovers the so-called modified Maxwell or
ModMax theory, which is the unique conformally invariant
and electric-magnetic duality-invariant extension of the
Maxwell theory [55]. This theory can be supersymmetrized
[56-58], or deformed to include higher derivative inter-
actions [59], it admits a family of Carrollian analogs [60],
and the entire class of ModMax-Born-Infeld theories can be
lifted to a similar family of 6d chiral tensor theories [15]
which also satisfies commuting stress tensor flow equations
[6].3 For an introduction to theories of nonlinear electro-
dynamics, see the lecture notes [62].

Although several classical aspects of the ModMax
theory (and its ModMax-Born-Infeld extension) have been
studied [63-67], the quantization of this model appears to
be more subtle because the Lagrangian is nonanalytic

3See Ref. [61] for a construction of solutions of the 6d
ModMax-like chiral tensor theory coupled to gravity.
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around F,, = 0. One strategy is to perform perturbative
quantization of this theory around a nonzero background
for the field strength [68].* Another approach is to look
for lower-dimensional analogs of the ModMax theory,
which one might hope are simpler to quantize. The most
extreme case is to dimensionally reduce the modified
Maxwell theory all the way down to (0 + 1) spacetime
dimensions, which yields a theory of particle mechanics
known as the ModMax oscillator [70,71] that can be
quantized exactly [72]. An intermediate case is to reduce
ModMax from 4d to 2d, which was done in [53], and
this reduction yields precisely the same theory that
one obtains by deforming a collection of free scalars by
the 2d root-TT flow [41,73]. This “modified scalar” theory
is the model whose quantization we consider in the
present work.

For one nonchiral boson, or one left-moving and one-
right moving chiral boson, the modified scalar theory
collapses to a free massless scalar with a rescaled kinetic
term, but for multiple scalars, the theory is nontrivial.
As we will see later, the modified scalar theory with a
general number of scalars may also be related to a free
theory by a series of more complicated, nonlocal field
redefinitions; similar field redefinitions, and related non-
local “dressed” operators, have also played a role in the
study of TT flows [74-78].

One of our goals in studying the quantization of this
model is to test a flow equation for certain energies in a
root-TT-deformed CFT, which was obtained via a holo-
graphic analysis in [44]. Under some assumptions, this
equation predicts that the deformed energy E, associated
with a seed CFT state that has undeformed energy E, and
momentum Py is

E, = Eycosh(y) + \/ E§ — P§sinh(y).

This formula was derived for states dual to Bafiados-
Teitelboim-Zanelli (BTZ) black holes in AdS; with mass
M >0 and spin |J| < M, which correspond to constant
stress tensor backgrounds. We will, therefore, refer to the
flow equation (1.7) as the ‘“zero-mode energy formula”
since it applies to states of a CFT on a cylinder whose stress
tensors are constant along the circular direction (that is, the
formula applies to the zero mode of the stress tensor). It
would be quite unusual if this energy formula held
universally, even for states whose stress tensors are
spatially varying. And indeed, we will see explicitly in this
work that the zero-mode energy formula fails for states with
such spatial gradients. One might therefore think of (1.7) as

(1.7)

* Another approach would be to use heat kernel techniques. We
are grateful to Sergei Kuzenko and Dmitri Sorokin for discus-
sions on this topic and for informing us of their unpublished
results. See also [69] for a Master’s thesis which computes the
one-loop effective action for ModMax using such techniques.

the first term in a gradient expansion, which is corrected by
terms that depend on derivatives or.’°

The key ingredient in our check of the energy for-
mula (1.7), which allows us to resolve the square root
and perform a perturbative analysis, is to consider a
certain large-momentum limit and expand in powers of
%. Although this approach involves a specific choice of

background around which to expand, one could expand
around any field configuration for which the gradients of
the scalars are nonvanishing, since the combination of
stress tensors (1.6) which appears in the classical
Lagrangian for the modified scalar theory is only nonana-
lytic around zero-energy configurations. We will also
present a related analysis which involves expanding around
a general classical background for N = N, in which case
the equal number of chiral and antichiral bosons can be
assembled into a manifestly Lorentz-invariant theory of N
nonchiral bosons, and compute loop corrections to the
modified scalar action. This offers further insight into the
perturbative quantization of this model.

This paper is organized as follows. In Sec. II, we
compute the stress tensor for a generic interacting chiral
boson theory and study classical properties of flows driven
by functions of T,,, such as preservation of the Lorentz
invariance condition. We then give a complementary
perspective on such chiral boson theories in Sec. III,
interpreting them as the boundary duals to U(1) Chern-
Simons gauge theories, and we show that deformations
such as root-77T can be implemented using certain modified
boundary conditions for the bulk gauge fields. In Sec. IV,
we review general machinery for the canonical quantization
of first-order systems such as (1.2) along classical stress
tensor flows using a mode expansion; we then specialize to
quantization along the root-77 flow and study the cases of
(N,N) = (1,1)and (N, N) = (2,1) in detail. In Sec. V, we
perform a diagrammatic analysis of quantum corrections
along the root-TT flow for a deformed theory of N = N
nonchiral bosons, using the background field method.
Finally, Sec. VI summarizes our results and outlines
some interesting future directions. An order-by-order
analysis for more general stress tensor flows is presented
in Appendix A, and the computational steps used to
evaluate certain Feynman diagrams in dimensional regu-
larization have been relegated to Appendix B.

II. CLASSICAL STRESS TENSOR FLOWS
FOR CHIRAL BOSON THEORIES

In this section, we will discuss some generalities about
classical deformations of interacting chiral boson theories
which are driven by functions of the energy-momentum

>The idea of performing such a gradient expansion is philo-
sophically similar to the strategy adopted in hydrodynamics or
the fluid-gravity correspondence [79] (see Ref. [80] for a review).
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tensor. Quite generally, we refer to any differential equation
for the Lagrangian which takes the form

oL® B )
i )] 1)
along with an initial condition £*=0) = £) as a stress
tensor flow. We emphasize that the function f is a Lorentz
scalar constructed from the Hilbert stress tensor associated
with the Lagrangian £, and not with the undeformed
theory £©). For theories that can be coupled to gravity
using only the metric tensor g,z the stress tensor is
given by

2 65 oL
Taﬁ _ - — —2
/=g 5gaﬁ agaﬁ

+ gaﬁﬁ. (22)

However, for theories involving fermions or the chiral
bosons of interest in this work, the standard definition (2.2)
is not sufficient. We will instead need to work in a tetrad
formalism, introducing vielbein fields (or frame fields) E¢,,
so that

Yap = EaaEbﬁnab' (23)
We will use Greek symbols such as a and f to refer to
curved® indices in the two-dimensional spacetime with
metric g,; on which our fields are defined, in contrast with
early Latin letters such as a and b which refer to the flat
tangent-space indices that are raised and lowered with the
Minkowski metric #,;,. These are not to be confused with
the lowercase middle Latin symbols such as i, j which are
used to index the chiral scalars ¢, or their antichiral
variants 7, j which are decorated with a bar and label
the antichiral scalars ¢'.

We also define E = det(E“,) = /|g|- Because this
determinant is nonvanishing, the matrix £, has an inverse,
which we refer to as the inverse vielbein and write as E“,.
This inverse frame field obeys

EaaEah = 5ah9

E®E4y = 5%, (2.4)

and similarly

EauEﬂbgaﬁ = Nap- (25)
Within the tetrad formalism, the appropriate generalization
of the Hilbert stress tensor with one curved and one flat
index is defined by

5We use the term “curved” for spacetime indices, even when
we set the spacetime metric g, to the flat Minkowski metric 77,4,
to distinguish them from “flat” tangent space indices such as
those on 7,y,.

1 68
Tyt = ———o. 2.6
s ESE, (2:6)

All tangent space indices can be converted to spacetime
indices, or vice versa, by contracting with vielbeins or
inverse vielbeins as needed. For instance, the conventional
stress tensor with two curved indices is then

Top = T, E 19,p. (2.7)
The tetrad formalism will allow us to compute the energy-
momentum tensor and define stress tensor flows for an
arbitrary interacting chiral boson theory of the type in
Eq. (1.2). We will perform the coupling to vielbeins in such
a way that the stress tensor is automatically symmetric,
Top = Tp,, but this is not sufficient to guarantee that the
theory is invariant under boosts; for a generic choice of the
interaction function V/, the theory is not Lorentz invariant.
In this work, we will be primarily interested in theories
which do enjoy Lorentz invariance, although this Lorentz
symmetry will not be manifest within this formalism.
Therefore, we will now pause to discuss the nonmanifest
Lorentz invariance of these models, including the con-
ditions this imposes upon the interaction function V and the
connection between Lorentz symmetry and stress ten-
sor flows.

A. Lorentz invariance

We begin by reviewing one way to see the nonmanifest
Lorentz invariance of the simplest theory within the class of
interest, the Floreanini-Jackiw action describing a single
chiral boson. Although this is a well-known story, the
discussion will fix our notation and set the stage for the
analysis of Lorentz invariance with more general interac-
tion functions.

1. One free chiral boson

Much like the electric-magnetic duality invariance of the
4d Maxwell theory, which is a symmetry of the equations
of motion but not of the action itself, the Lorentz symmetry
of the chiral boson theories we study here will be easier to
understand at the level of the equations of motion. We
illustrate this simple principle beginning with the action
(1.1), which we rewrite for convenience:

1 .
s=3 [ g -4 2.8)
Here, we have defined
b 0p 2 a2
b=op="5. H=dp="7 (29

to ease notation. Now consider an infinitesimal Lorentz
boost A% = 6% + @”s with parameter wy; = —w;y = €.

046005-5
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In this section, we work in Lorentzian signature with

spacetime metric 7,5 = [' J]. The change in the compo-
nents of d%¢ is

8(0"¢) = 0y, (2.10)

and thus the components of the covector d,¢p = (¢, ¢')
transform as

b—dtep), P -d+eh  (211)
The change in the action (2.8) is therefore
65 =< / Px(g- @)+ 0. (212)

This is not an off-shell total derivative, so it is not manifest
that this transformation is a symmetry of the theory.
However, this property is more transparent if we work
directly with the equations of motion. The Euler-Lagrange
equation associated with (2.8) is

@ —¢" =0, (2.13)
where ¢ = 9,0y¢p. This equation of motion can be
expressed as dy(¢p — ¢') = 0, which means that the quantity
¢ — ¢' is independent of the spatial coordinate 6:

b—¢' =f(0).

The time-dependent function f(7) can be thought of as a
choice of gauge, which is not physically meaningful.
Indeed, suppose that we transform the function ¢ by

(2.14)

o = h(r) (2.15)
for a general time-dependent function 4. Then, 545 = h and
6¢' = 0, so the change in the Floreanini-Jackiw action is

6S:%/d%@ﬁ):%/d%@w@, (2.16)

which is an integral of a total spatial derivative, and thus the
action is unchanged. Therefore, given any solution to the
equations of motion which takes the form (2.14), we are
always free to perform a gauge transformation (2.15) with

h(t) = f(1),  (2.17)

t
oy = [ ).
which has the effect of eliminating the function f(z) on the
right side of (2.14), and thus brings the equation of motion
to the form

d—¢ =0. (2.18)

We will always work in the gauge (2.18) in what follows. If
we write Eq. (2.18) as
Ed.¢)=0. E=d—¢, (2.19)
then acting with a Lorentz transformation on this quantity £
gives
E=08(p—¢) =—eld—¢')=—-€E. (220)
That is, the variation of the equation of motion is propor-
tional to the equation of motion itself. This means that, on
the mass shell, the equations of motion are invariant under
Lorentz transformations, which we write as
o6& ~0, (2.21)
where the symbol ~ means “equal when the fields satisfy
their equations of motion.” This is sufficient for the theory
to enjoy Lorentz invariance.

From this simple exercise, we see that the Floreanini-
Jackiw theory of a single chiral boson does indeed exhibit
non-manifest Lorentz invariance. This discussion also
motivates a couple of definitions. We say that any function
O of the fields and their derivatives is a Lorentz-invariant
Sfunction it 60 ~ 0, that is, if the quantity O is invariant
under Lorentz transformations when the fields satisfy their
equations of motion. Likewise, we say that a Lagrangian £
defines a Lorentz-invariant theory if the Euler-Lagrange
equations associated with £ can be written as £ = 0 where
£ is a Lorentz-invariant function.

2. Multiple interacting bosons

We now promote the action to depend on N chiral bosons

¢' and N antichiral bosons ¢'. A general theory with inter-
actions that depend on spatial derivatives of the fields is’

s= [ex(ywe =i -ve.p). e

where we suppress indices on the fields in the argument of the
interaction function V. Following the notation of the N = 1
analysis above, we can write the equations of motion for this

model as a collection of equations £ = 0 and £ I = 0, where
oV = = dV

A A

(2.23)

Note that we do not distinguish between upstairs and
downstairs i, j and i, j indices on the scalars, instead
choosing index placement for typographical convenience.
In expressing the equations of motion as the vanishing of the

"In  this paper, we do not consider higher-derivative
interactions.
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quantities (2.23), we have also implicitly chosen the analog
of the gauge i(r) = 0, as in the discussion around Eq. (2.18)
for the case of one chiral boson.

Let us again consider a Lorentz boost parametrized by

Wy = —wjg = €. All of the fields transform in the same
way as before:

¢i _)¢i+€¢/i’ ¢/i _)¢/i+€¢i’

B =@ +ed.  F @ ted (2.24)

We now ask: under what conditions on the interaction
function V will the action (2.22) define a Lorentz-invariant

theory, which means that 6&' ~ 0 and 5& ~0 under this
Lorentz transformation? The variation of the chiral equa-
tions of motion is
2 2
a'v i — 0 V__
aqj/laqj/J a¢/ia¢/j
=ef/ — €Vij45j - €Vi54;j

~ €[¢/i - Vlej + VU_V/_]’

8E =5’ — 57

(2.25)

where in the second step we have introduced the notation

oV oV oV
= o ij = oo’ ij = agb’i@gi/j’

and so on, and in the third line, we have replaced the time

v (2.26)

derivatives ¢, sz using the equations of motion and

therefore used the on-shell equality symbol ~. An identical

calculation for the antichiral equations of motion gives
SE ~ el -V

(2.27)
Therefore, for the quantities & and & to be Lorentz-
invariant functions, we must impose the two conditions

1%

PV =VV @V = ViV (2.28)
It is convenient to write these two equations in terms of the

derivatives of products,

o1 1
¢/l + _a,(V;V]) - —0,(V]V]),

2 2
=1 1
¢’ +§(}i(vjvj) :E‘%(V}V}')» (2.29)

where the repeated j, j indices are summed and where

0, =-9 g = -9
i ad)/n i 0(]T)n"
We can now integrate the first of Eq. (2.29) with respect

to ¢/ and the second with respect to ¢ to find

(¢/i)2 + V;V} — Vjvj + C[(Q')/k#,gi/i{),

(@7 + Vv, = V3V + T ¢"). (2.30)

Here we have introduced two integration constants, C'
which is independent of ¢ and C i which is independent of
¢ i, Also note that Eq. (2.30) holds separately for each fixed
i and ; the quantity (¢')? is the square of one such fixed ¢
and is not summed on i. We can fix these integration
constants by noting that the choice of interaction function

(@797 + ¢ i), (2.31)

N[ —

V(g.9) =

which is just a sum of noninteracting chiral and antichiral
bosons, must necessarily satisfy the Lorentz-invariance
condition. This will be true if we choose

Ch=gigi+> ¢, C =g+ ¢ ¢~
=5 ki
(2.32)

which means that the two equations in (2.30) are propor-
tional to one another, and we are left with the single
condition

P - PG =V, V, = V;V; (2.33)
for Lorentz invariance. Suppose that we now further
assume that the interaction function is invariant under
O(N) rotations of the N chiral fields and O(N) rotations

of the N antichiral fields. This means that we can para-
metrize V as a function of the two invariants®

S = (@17 — §id).

(2.34)

(@7¢7 +¢id7),  P=

N —
0| —

Note that, for the theory defined by the free interaction
function (2.31), the quantities S and P represent the total
Hamiltonian density and momentum density, respectively.
In terms of these variables, the condition (2.33) can be
written as

28

= (2.35)

Partial differential equations of the schematic form (2.35)
have appeared in many contexts. Most directly relevant for
this analysis, precisely the same differential equation
appears as the condition for Lorentz invariance of the
phase space actions for theories of self-dual electrodynam-
ics in d = 4 or for chiral tensor theories in d = 6; see, for
instance, Secs. 2.2 and 2.3 of [15] for these two cases,
respectively. Our condition (2.35) is merely the 2d version

%The invariant S should not be confused with the action
S = f d?xL; we trust that the reader can distinguish between the
two based on context.
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of these results, in the case where one considers arbitrary
numbers of chiral and antichiral bosons. Note that, in the
case N = 0 which describes only chiral bosons, the two
invariants (2.34) collapse to
S=P, (2.36)

so that V is a function of one variable, and the constraint
(2.33) simplifies to

or in terms of the variable S = 1¢"¢/,
V= 1. (2.38)

This means that the only solution is the free case,
V =S8=1¢"¢", in accordance with known results. The
same conclusion holds for only antichiral bosons, N = 0

but N > 0.
A similar partial differential equation (PDE), which
differs only by signs, occurs as the condition for a
|

Lagrangian for 4d nonlinear electrodynamics to have
equations of motion that are invariant under electric-
magnetic duality rotations. In this case, the appropriate
PDE reads

2
Eg—;ﬁsﬁp—ﬁ% - 1, (239)

where now § = — % F, F*" and P = —%FWF”” are the two
independent Lorentz scalars that can be constructed from
the field strength F,, and F . denotes the Hodge dual of
F,, . This version of the differential equation, with the signs
as in (2.39), also appears as the condition for a certain class
of nonlinear sigma models in d = 2 to have equations of
motion which are equivalent to the flatness of a Lax
connection which takes a prescribed form [42] [see
Egs. (7.3)—(7.5) of [4] for the definitions of S and P in
this case].

In either presentation, with the choice of signs in (2.35)
or the one in (2.39), this differential equation has many
solutions besides the free one. For instance, Eq. (2.35)
admits the two-parameter family of solutions

1
V(S.P;y,A) = 1 (\/1 + 2A(cosh(y)S + sinh(y) V' S? — P?) + A*P? — 1).

(2.40)

This family of interaction functions is the 2d chiral boson analog of the two-parameter family of 4d ModMax-Born-Infeld
gauge theories, which we mentioned in the Introduction. As in the 4d case, the function V of Eq. (2.40) satisfies two
commuting flow equations which relate 9,V and 9,V to an irrelevant 77-like and a marginal root-77-like operator built
from the energy-momentum tensor of the model, respectively:

oV 1
a = _OTT = _Z (T ﬁTaﬁ - (T a)z)v

This example illustrates that, at least in this case, solutions
to the differential equation (2.35) can be obtained by
deforming the interaction function by Lorentz-invariant
quantities, such as Lorentz scalars constructed from 7.
This statement applies quite generally to any deformation
of V by a Lorentz-invariant function, as we describe next.

3. Lorentz-invariant functions

In the preceding discussion, we derived a condition on
the function V [Eq. (2.35)] which guarantees that this
interaction function describes a Lorentz-invariant theory.
By definition, this means that the equations of motion &', &£’
are Lorentz-invariant functions. One might ask, more
generally, given an arbitrary function O(S,P) which
depends on the two combinations S and P defined in
(2.34), under what conditions is @ a Lorentz-invariant
function? That is, for which operators O is 60 ~ 0, where §
is a Lorentz transformation?

1
a2

aV 1
_ _ TaﬁTaﬁ _ (Taa)Z‘

5 (2.41)

[

This question can be answered using a similar calcu-
lation as the one above. One has

8O(S,P) = Og8S + OpSP
= Og(¢16¢"7 + §I647) + Op(p 547 — §I54'7),
(2.42)

where subscripts represent partial derivatives with respect
to the argument. On-shell, one has the variations

S = ed) ~ eV, 5 = e’ =~ -Vi. (2.43)

and thus one finds
80 = eOg(¢'V; = §IV5) + €Op(¢7V; + V). (2.44)
Expressing the derivatives of V in terms of Vg and Vp using

V= (Vs+Vp)p",

Vi= (Vs — VP)4_5/77 (2.45)
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we conclude that 60 ~ 0 if and only if

S
VsOs + 5 (VsOp + VpOs) +VpOp =0. (246)

It is easy to see that the condition (2.46) is identical to the
constraint that one finds by expanding the Lorentz-invari-
ance condition (2.35) for a perturbed interaction function

V(S,P) - V(S,P)+10(S, P), (2.47)
assuming that V itself satisfies the Lorentz-invariance
condition, and then demanding that the deformed inter-
action function preserve this condition (2.35) to leading
order in A.

We conclude that linearized Lorentz-preserving defor-
mations of a boost-invariant theory of chiral bosons,
described by an interaction function V, are in one-to-one
correspondence with Lorentz-invariant functions O within
this same theory defined by V. Again, this result is the 2d
analog of the corresponding statements about linearized
deformations which preserve electric-magnetic duality
invariance in 4d [4] or PST gauge invariance in 6d [6].
As in those contexts, this extends to an all-orders result:
given a one-parameter family of interaction functions V(1)
with an initial condition Vy = V(4 =0) which satisfies
(2.35), the entire family of functions V(1) satisfies the
Lorentz invariance condition if and only if

(2.48)

where at each value of /, the function O obeys the
constraint (2.46) with respect to the interaction function
V(A) at the same value of .

There are several ways to prove this claim, which we will
not present in detail since they are similar to the 4d and 6d
cases. One strategy is to first argue that any such family of

Lorentz-invariant functions O can be expressed in terms

of Lorentz scalars constructed from Tf,'},), as we will show

shortly, and then to show that an all-orders flow of the form
(2.48) driven by a function of the stress tensor preserves the
Lorentz-invariance condition, by following an inductive
argument such as that in Appendix A. 1 of [4].

B. Stress tensor for general interacting theory

We now turn to the computation of the energy-momen-
tum tensor for a generic member of our class of chiral
boson theories. Contractions built from this stress tensor,
such as 7*, and T**T,,, are canonical examples of the
Lorentz-invariant functions which yield Lorentz-preserving
deformations (2.48) of the interaction function—and, in
fact, any such deformation can be expressed in terms of

such stress tensor scalars, as we will see.

To calculate the stress tensor defined in (2.6), we will
couple a general theory of chiral bosons to gravity in
the vielbein formulation following the approach of [81],
which demonstrated how to perform this coupling for the
standard Floreanini-Jackiw boson with interaction function
V(S,P) = S. In the case of a general interaction function,
the corresponding Lagrangian including the vielbein cou-
plings takes the form

1 .. . — == ;7 - _ _
L=5(Gyd'¢" =GP ¢") — (E, Ef +E7E)P
—EV(S,P) + Ly, (2.49)

where now S and P are coupled to the frame fields as

1

S=——(G::d"' ) + G 1P,

155 (Gl 8+ Gt )

1 e
P=—— (G, — G- §). 2.50
155 Gt = b ¥ (2:50)

A few remarks are in order. We work in light-cone
coordinates x¢ = x* for the tangent space indices, so the
vielbeins and inverse vielbeins carry one (4, —) index and
one (t,0) index. After varying with respect to the vielbeins,
we will set them to their flat-space values

1
E“F:—EHF:E‘_:E'_:—7
t ] [ t \/§
at the end of the calculation, which is appropriate for the
light-cone tangent space metric 1,;, = [ °, ;']. We have also

(2.51)

introduced general target-space metrics G;;(¢) and G;7(¢)
for the chiral and antichiral bosons, which does not affect
the computation of the stress tensor. In Eq. (2.49), we have
allowed for the inclusion of a general topological term L,
which does not couple to the frame fields and which
therefore drops out of the computation of 7,,. An example
of such a topological term is a coupling to a target-space
antisymmetric tensor field B, BZ}‘ In manifestly Lorentz-
invariant notation, which is perhaps more familiar, such a
coupling would be expressed as B,;e*d,¢'0s¢’ and is
independent of the metric.

Note that, in the special case G;; =&;;, Gij= 67,
Lo, = 0, and with the vielbeins equal to their flat-space
values (2.51), the Lagrangian (2.49) reduces to

L= @ -FN-Vs.P). 25

which agrees with (2.52), and the quantities S and P
become

(@Ug7 — @), (2.53)

N =

S= (@097 + ). P =

which agree with (2.34).
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It may come as a surprise that the kinetic terms in (2.49),

which involve ¢'¢p"/ and ¢'¢/, are independent of the
vielbeins and do not even include a factor of £ which plays
the role of /g that usually accompanies any scalar within a
spacetime integral. This is a consequence of the specific
method for coupling the chiral boson to gravity developed
in [81], which first introduces an unconstrained bosonic
field and then incorporates auxiliary fields P and b which
enforce the chirality constraint. This combined system is
then coupled to gravity, and then integrating out the
auxiliary fields P and b has the effect of eliminating the
factor of E that normally multiplies the kinetic term. We
will see in Sec. III that the absence of vielbein dependence
in these terms has a natural interpretation in the dual Chern-
Simons description of chiral boson theories.

We can now explicitly perform the variation with respect
to the vielbeins to compute the stress tensor 7,7, as defined
in Eq. (2.6), or more usefully, the version T,; with two
spacetime indices:

T,=V(S, P),
Tze =-P= THI’

Note that the off-diagonal terms of T,; are therefore
identical and both proportional to P, which has the
interpretation of the momentum along the @ circle. This
is a consequence of the way we have coupled to the
vielbeins in the second term of (2.49), which is proportional
to P but which vanishes in the flat-space limit.

In principle, one could consider more general couplings
of these chiral boson theories to vielbeins, which would
lead to stress tensors that may not be symmetric and which
are related to (2.54) by an improvement transformation.
However, we find the choice of coupling that we have made
here to be physically motivated for the problem of studying
flow equations of the form (2.48) which are connected to
the free interaction function (2.31). For instance, in the
quantum theory, the momentum along a circle of radius R is
quantized in units of %, and, therefore, cannot flow with any
deformation parametrized by a continuous A. The coupling
to frame fields which leads to (2.54) makes this manifest,
even at the level of the classical stress tensor, since for any
interaction function V(S, P), the linear momentum along
the circle is fixed to its value T,y = —P in the free theory.

The trace of the stress tensor,

Te(T) =T, = =2(V—-8SVs—PVp), (2.55)
vanishes if the interaction function V' is a homogeneous
function of degree 1 in its arguments, which is equivalent to
the scale invariance of the theory as expected. The other
Lorentz invariant that one can construct from the stress
tensor is

Tr(T?) = T"T,, =V =2P* + (V= 2(SVs + PVp))*
(2.56)

One can check by explicit computation that the two
invariants (2.55) and (2.56) each satisfy the condition
(2.46), assuming that the interaction function V itself obeys
the condition (2.35). In fact, more is true: given either of
these two Lorentz-invariant functions 7*, and T*T,,
locally and away from exceptional points, we can implicitly
express any other Lorentz-invariant function f in terms of
this stress tensor invariant. To see this, let f(S,P) and
g(S,P) be any two functions that satisfy the Lorentz-
invariance condition (2.46). Consider the Jacobian for the
change of variables from (S, P) to (f, g), namely

J:[fs f”}, (2.57)
gs 4gp
and, in particular, its determinant

det(J) = fsgp — fpYs- (2.58)

Since f and g each satisfy Eq. (2.46), we can solve this
equation to express one of the partial derivatives of each
function in terms of the other. For instance, we can choose

_fp(PVp +8Vs) _gp(PVp + 8Vs)
SVp + PV SVp+ PVy
(2.59)

Js=

s gs =

Substituting these into the determinant (2.58), we find

_frgp(PVp+SVs)  frge(PVp + SVs)

= 0.
SVp + PV SVp + PV

det(J) =

(2.60)

Because det(J) = 0, this change of variables is singular,
which means that there exists a functional relation of the form
F(f,g) = 0. By the implicit function theorem, under some
assumptions on the derivatives of F, we can locally express
f(S, P) as afunction of ¢(S, P), or vice versa. Thus, ignoring
exceptional points, any pair of Lorentz-invariant functions
are functionally dependent. Since the quantities 7T, and
T*, are examples of such invariant quantities, it follows that
any other Lorentz-invariant function—again, away from
singular points, and excluding trivial examples such as the
case where one of the functions is a constant—can be
expressed as a function of the stress tensor.

Combining this conclusion with the previous statement
around Eq. (2.48), it also follows that, given any para-
metrized family of interaction functions V(1) for Lorentz-
invariant theories, one can write

VD _ o = p(r). 2.

- (2.61)
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where in the last step we have used that O can be
implicitly expressed as a function of the stress tensor, given
that this OW satisfies the Lorentz-invariance condi-
tion (2.46).

Therefore, the stress tensor flows that we have intro-
duced in Eq. (2.1) are quite generic: any family of Lorentz-
invariant interaction functions obeys a differential equation
of this form, and conversely, any such flow equation (along
with a Lorentz-invariant initial condition) defines a family
of Lorentz-invariant interacting chiral boson theories.

Interesting examples of such flows are the ones defined
in Eq. (2.41), which are driven by the operators O, and R.
We can express these two operators in terms of the
interaction function V and its derivatives using the general
results (2.55) and (2.56):

1
Orp = V(SVs + PVp) =5 (V2 + P%),

R =+/(SVs+PVp+P)(SVs+PVp—P). (2.62)
One can check directly that the two-parameter family of
interaction functions (2.40) solves the flow equations
driven by the two operators given in (2.62).° The root-
TT flow equation can also be solved in more generality.
Suppose we begin from the flow equation

ov
a;_y) =-R=—/(SVs+PVp+P)(SVs+ PVp—P),

(2.63)

and we furthermore assume that the function V satisfies the
Lorentz-invariance condition (2.35) everywhere along the
flow (which it is guaranteed to do, assuming the initial
condition is Lorentz invariant). Then, the general solution
to the differential equation (2.63) with initial condition
V(y=0,8,P)=VyS,P) is

V(y,S,P) =V, (cosh(y)S +sinh(y)V/s? - P2,P). (2.64)

That is, we simply replace all occurrences of the variable S
in the initial condition V,(S,P) with the combination

cosh(y)S + sinh(y)V'S? — P2, while leaving all occur-
rences of P unchanged. The result is a solution to (2.63)
with the correct initial condition at y = 0.

Let us point out that the formulas (2.54) for the stress
tensor components are valid when N > 1 and N > 1. In the
case of all chiral bosons (N = 0), or all antichiral bosons
(N = 0), the two invariants S and P become proportional to
one another, so some of the structures in the Lagrangian

When y =0, one recovers the theory of T7T-deformed
Floreanini-Jackiw bosons, which also appears in the boundary
graviton action for AdS; gravity at a finite radial cutoff; see
Eq. (3.70) of [77].

collapse. For instance, for a theory of all chiral bosons, we
have S = P, and the components of the stress tensor are

T, = V(S)v
Ty=-S=Ty,

We have seen that the only solution to the Lorentz-
invariance condition (2.35) for all chiral bosons is
V =8, and the stress tensor for this theory is

_ l 1j /j|: 1 _1]
Ty =50"¢"| _ — (2.66)
Here one has 7%, =0 and T"/’T,,,; = 0. The same con-
clusion holds for all antichiral bosons, where we have
S = —P rather than S = P, but again one finds Tr(7) =
0 = Tr(7?). For either of these scenarios, since both
Lorentz scalars constructed from the stress tensor are
vanishing, the theory is a fixed point of all Lorentz-
preserving stress tensor deformations. "’

This gives another way to understand the fact that there is
no way to introduce Lorentz-invariant interactions as a
continuous deformation of a free theory involving only
chiral bosons or only antichiral bosons. Indeed, if a family
of such interacting theories did exist, they would neces-
sarily satisfy a stress tensor flow equation. But no such flow
can exist that includes the free theory V = S, as this theory
is left invariant by any stress tensor deformation. Since a
theory of only chiral bosons has the Hamiltonian
‘H =S8 = P, one can view it as a 2d version of the 4d
theory of Bialynicki-Birula electrodynamics, which is also
a fixed point of all stress tensor flows.

C. Self-duality and chirality

To conclude this section, we will point out one additional
feature of the chiral boson models considered here.
Although this property is trivially satisfied for any inter-
acting chiral boson theory, regardless of the interaction
function V (S, P), the analogous property for theories in the
dual Chern-Simons description will play an important role
in the next section.

Suppose that we begin with a general action of the form
that we have been considering, which we repeat here for
convenience:

19 Another way to see this is by considering complex coor-
dinates (w,w), with T =T, and T = T . A theory of all chiral
bosons has T = 0 and a theory of all antichiral bosons has 7 = 0.
In either case, the product TT vanishes, and the trace vanishes by
conformal invariance, so any Lorentz-preserving stress tensor
flow is trivial. Of course, one could generate nontrivial interacting
models by breaking Lorentz invariance and studying, for exam-

ple, f(T) [or £(T)] flows, but we will not pursue this option here.

046005-11



STEPHEN EBERT et al.

PHYS. REV. D 110, 046005 (2024)

S = / dzx(% B¢ —d ") - V(. P)). (2.67)

We would like to exchange the gradients d,¢' = (¢, ¢'*) of
the scalar fields for a vector field A, = (Ag,A;), and
likewise for the antichiral scalars. To do this, we introduce

a collection of Lagrange multiplier fields A% and %, and
write the equivalent action

1 o R
S— /dzx(z(AbA’I — ALAD) = V(S4. Py)
T .. I [ .
32 A = 0) =31 = 0, (269

Here the variables S, and P, are defined by replacing
instances of ¢ with A! and replacing ¢ with A’:

_1
2

1

$a = 5 (AlA} +ATAD), 5 ataf - ATAD).

(2.69)

PA:

If one integrates out the auxiliary fields A% and 1% in the
action (2.68), these fields simply act as Lagrange multi-
pliers that set Al = d,¢' and A’ = d,¢', and the action
then reduces to (2.67).

However, suppose that we wish to proceed in the
opposite direction, instead integrating out the fields A,
and Af;. To do this, we vary the action with respect to the
fields A/, and Aﬁ; to obtain their equations of motion, whose
solutions take the form

A= =2 =2(Vg, +Vp,)2%,

A = =2+ 2(V, = Vp )A%, (2.70)

Integrating out Al and Aé by replacing them with their on-
shell values (2.70) then gives

S = /d2x<§ (021 = Q0010) — v (S,, P))

+ (2.71)

(¢iaa/1m' - qg;aa/ia?)> )

N[ =

where we have integrated by parts to move the derivatives
on the final two terms, and where now S; and P, are
defined as

N S o
S/1 — 5(&01/{01 _~_101/101)7 Pl — (201/101 _/10%01)' (272)

NSH

Note that (2.72) involve the time components of the 4 fields,
rather than the spatial components. We see that the fields ¢’
and ¢’ act as Lagrange multipliers to enforce the constraints

0,44 =0 = 0, (2.73)
which admit the general solutions
W =ePogyt, 29 = ePoup, (2.74)

for some scalar fields y*, . Here we use the conventions
' =1, so

200 = 9yl =y,

ﬂli — —6,1// — —Wi,
A — 9.5 = H

M=oy =—p'.  (2.75)

After integrating out ¢’ and ¢’ and replacing A%, 2% in
favor of y', ', we arrive at the dual form of the action

s— [ ex(juw - -vis,p,) @79

where, according to the map in Eq. (2.75), the dualization
has replaced time components with space components in
the definition of the S and P variables,

105,11

1 i Lo i i i
Swzi(‘/"l/ + "), PW:E(WIWI —y'y'").
(2.77)

The result (2.76) is in fact identical to our starting point
(2.67). Therefore, any interacting chiral boson theory is
“self-dual” in the sense that the theory is left invariant under
the process of introducing auxiliary fields and then inte-
grating out to express the theory in terms of the “dual” y
variables rather than the original ¢ variables.

Versions of this simple argument are well-known in
various contexts. The observation that the standard
Floreanini-Jackiw action with V(S,P) = S exhibits this
self-duality appeared in [82], which we have simply
generalized to the interacting case. Similar manipulations
also appear, for instance, when discussing 7-duality in
string theory from the world sheet point of view.

However, we would like to emphasize two aspects of this
observation. The first is that, unlike Lorentz invariance—
which only holds for interaction functions that satisfy the
differential equation (2.35)—this self-duality holds for any
system of interacting chiral bosons, regardless of the form
of V(S, P). We will therefore take the view that the property
of self-duality should be part of the definition of a theory of
chiral bosons. Since we have seen that any chiral boson
theory enjoys self-duality in the sense described here when
presented in the Floreanini-Jackiw formulation, we will
demand that any other description of chiral bosons should
also have a corresponding self-duality property. That is, we
will take self-duality as a necessary condition for a theory
to describe chiral degrees of freedom.
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The second observation is that, if one rewrites the action
(2.68) as

1 . . ) 1-- _- —
S= / dzx <‘CA + Eim (Ail - a{ld)l) - 5/1(11 (Aﬁl - (z¢l)> ’
1, . . s
La=5 (ApAT — AgAY) = V(Sa. Pa), (2.78)

then the equations of motion for the fields A}, and Af; are

0L, Jai — 2%

A0 =2 =2, =2—.
0A}, 0AL

(2.79)

Therefore, in a sense, one can think of the fields A, 1 as the
duals (or conjugates) of the fields A and —A. Since the
fields A}, = d,¢" and A}, = 9,¢" are given by derivatives of
a scalar field on-shell, one can also view the relations (2.79)
as a sort of Legendre transform. From this perspective, the
self-duality of chiral boson models is the statement that
such theories are invariant under a Legendre transform, or
that one is free to rotate the fields A, and A, into their duals
Ay and —A,. This is very similar to the structure of theories
of duality-invariant nonlinear electrodynamics in four
dimensions, which are invariant under rotations mixing
the field strength F,, with a certain dual field strength
tensor G,,. We will review this structure in more detail
around Eq. (3.10) in the next section.

III. DEFORMATIONS OF DUAL
CHERN-SIMONS THEORIES

The chiral boson theories that we have considered in
section II often arise as the edge modes, or boundary duals,
associated with the dynamics of Chern-Simons gauge fields
in 3d bulk theories [83—85]. For instance, physical descrip-
tions of a quantum Hall droplet often involve a gauge field
defined on a disk whose circular boundary supports edge
modes modeled by chiral bosons [86—88]. Another exam-
ple is found in AdS; holography, where a collection of
U(1) Chern-Simons gauge fields in the bulk are dual to a
corresponding collection of chiral currents in the 2d
boundary. The addition of such bulk Chern-Simons terms
to the action for AdS; gravity allows BTZ black hole
solutions to carry U(1) charges [89-91].

In this section, we will show how stress tensor defor-
mations of 2d chiral boson theories can be interpreted from
the perspective of 3d bulk Chern-Simons gauge theories.
We will begin by making some preliminary observations
about the behavior of such 3d Chern-Simons theories in the
presence of general boundary terms.

A. U(1) Chern-Simons theories
with general boundary terms

Throughout this section, we will consider gauge theories
defined on a bulk spacetime manifold M3 with boundary

0M ;5. We will not specify whether 0M5 is a true physical
boundary or a conformal boundary, since our results apply
uniformly in both cases.

Let us give a concrete example for each of these two
cases to keep in mind as applications. In the former case,
with a physical boundary, an example is furnished by the
spacetime manifold M; = H; x R, where

Hy ={(x.y)lx.yER,y >0} (3.1)
is the upper half-plane, viewed as a spatial manifold, and
the factor of R, represents a noncompact time direction. In
this case, the boundary is IM; = R, x R,, where R, is the
spatial boundary 0H; = {(x,0)|x € R} and R, is again the
time direction.

An example of the latter case, with a conformal boun-
dary, is a three-dimensional negatively curved bulk mani-
fold M3, which asymptotically approaches an AdS;
spacetime that is characterized by a length scale &5y, .
The metric on Mj plays almost no role in this example,
since the bulk Chern-Simons action is topological, but it is
convenient to use the structure of the metric to characterize
the conformal boundary dM5;. The most general asymp-
totically AdS; metric can be written in the form of a
Fefferman-Graham expansion

£Aas ) @)
ds* :v;dpz + < F; +Gap (X) +PGap (xy)) dx*dx”.

(3.2)

The important point about this asymptotic form is that it
determines a conformal boundary d M5 for our spacetime,

located near p = 0, which has a boundary metric gg;j) (x7)
determined by the leading term in the expansion (3.2). Here
p has the interpretation of a bulk radial coordinate, whereas
x% label the two coordinates on the conformal boundary.
From now onwards, we will not distinguish between the
two qualitatively different cases above, using the notation
0M; for either type of boundary. We will describe the 2d
boundary in the Euclidean signature using coordinates
x* = (w,w) and the flat metric
ds* = gupdx®dxl = dwdw. (3.3)
Although this signature and coordinate choice differs from
the ones used in Sec. I, it allows for easier comparison with

the holographic analysis of the root-TT deformation in
[44]. We will also use the convention that
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which will introduce some unfamiliar factors of i in various
places.

Our primary interest is to study the dynamics of Abelian
gauge fields defined on the bulk manifold M;. Consider a
collection of U(1) gauge fields A;, i = 1,...,N, and A;,
i=1,...,N. Of course, the standard kinetic term for such

gauge fields is the Maxwell term F ,F “ where F' = dA' is
the field strength associated with the gauge field F'.
However, as we are in three spacetime dimensions, it is
also possible to write down a Chern-Simons term which
takes the form A; A dA’ for the gauge fields A’. The
Maxwell term involves two derivatives and two factors
of A;, whereas the Chern-Simons term has only a single
derivative and two factors of A;. Therefore, by power
counting, we see that the infrared behavior of the theory
will be dominated by the Chern-Simons terms.

This motivates us to study the gauge theory with purely
Chern-Simons couplings for the gauge fields A; and A;,
which we parametrize as

i . . -
ICS :g/(k”Ai /\dAJ—kl]Al’/\dAJ’), (35)

where k' and k'/ are constant matrices which we assume
are symmetric and have positive eigenvalues.'' These
matrices will play the role of the metrics G;; and G;J-
of Sec. IL

In addition to the Chern-Simons term (3.5), one can add
a boundary term of the form

loary = ~ 3 d*x\/9Loary(Aia» Azp).  (3.6)

T JoMs,

where Lyq, is a Lorentz scalar constructed from the
quantities A;, and Aj,, which are the restrictions of the
three-dimensional gauge fields to the boundary 0Ms.
The full description of the theory is then given by the
combined action

I :ICS +Ibdry‘ (37)

The standard choice of boundary term is the one which
corresponds to the free interaction function V(¢, ¢) given
in Eq. (2.31), and is written as

1 .. TITT %
Iay = =7 | @x/gg" (A Ajp + KAz Ajp).
T oM;
(3.8)

However, in this section we will be interested in studying
more general choices of the boundary term, especially
those which arise by deformations of the conventional
boundary term (3.8).

“Throughout this section we will use the symbol 7 rather than
S for actions to emphasize that we are in Euclidean signature.

It may seem strange that one can write down a general
boundary term (3.6) which is an arbitrary function of the
variables A,, and A;,, or after assuming Lorentz invariance
and O(N) x O(N) symmetry under rotations of the gauge
fields, an arbitrary function of the two combinations

S = = (KiIA?A} + KTA2AL),

P = (KiAZAL — KTASAL). (3.9)

N = N =

Any such boundary term Ly (S, P) is manifestly com-
patible with boundary Lorentz invariance. This is in
contrast with the analysis of Sec. II, where only interaction
functions V(S,P) which obey the differential equa-
tion (2.35) yield Lorentz-invariant theories.

The resolution to this tension is that the Floreanini-
Jackiw and Chern-Simons descriptions of Lorentz-invariant
chiral boson theories make different aspects of the models
manifest. In the Floreanini-Jackiw description of Sec. II, it
is manifest that the bosons ¢' are chiral since the theory is
automatically self-dual (which we take as part of the
definition of chirality) as we saw in Sec. I C. However,
it is not manifest that the Floreanini-Jackiw equations of
motion respect Lorentz invariance, and requiring boost
symmetry imposes a condition on V(S, P). Conversely, in
the Chern-Simons description, it is manifest that the boun-
dary theory enjoys Lorentz invariance since Ly, is a Lorentz
scalar. However, it is not manifest that the theory describes
chiral edge modes, which in particular requires that the
theory be self-dual under the appropriate notion of duality
transformation. Demanding chirality, or self-duality, will
yield a constraint on Ly, to be given in Eq. (3.35).

An analogy with electrodynamics is apt. Suppose that
one wishes to describe a theory of an Abelian gauge field
A, in four spacetime dimensions, whose Lagrangian £
depends on the field strength F,,, but not its derivatives. We
assume that the equations of motion of this theory are
invariant under both Lorentz transformations and under
electric-magnetic duality rotations §, which act as

8pF,, = 0G,,(F), (3.10)
where G, = —1¢,,,,G’ is the Hodge dual of G,,, which
is itself defined as

. oL
G =255 (3.11)

One option for describing such a theory is by giving the
Lagrangian L itself. As the Lagrangian is a Lorentz scalar,
this description makes Lorentz invariance manifest.
However, invariance under duality rotations (3.10) is not
automatic and requires that the Lagrangian satisfy the
differential equation (2.39).
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Another option is to describe the theory in terms of its
Hamiltonian H (D, B), where D =
placement. In these variables, the duahty transformation

T is the electric dis-

(3.10) acts as an SO(2) rotation which mixes the vectors D

and B. The most general duality-invariant Hamiltonian can
be written as a function of the two variables
1= 2 RI2 Ny R
=S(BP+IBP).  p=IDxBl. (3.12)
These quantities s and p are invariant under SO(3) rotations
of the spatial coordinates and under duality rotations, so
any Hamiltonian H(s, p) is manifestly duality-invariant.
However, because the canonical formulation has singled out
a time direction as special, Lorentz invariance is no longer
manifest. Imposing boost symmetry requires that the
Hamiltonian satisfy the differential equation
2, 28 2
Hs—i—;HsH,,nLH,, =1. (3.13)
The upshot is that, in the electrodynamics example, either
Lorentz invariance or duality invariance can be made
manifest, and then imposing a partial differential equation
will ensure that the remaining nonmanifest symmetry will be
respected.

In the chiral boson version of this story, the Floreanini-
Jackiw formulation is analogous to the Hamiltonian pre-
sentation of 4d duality-invariant electrodynamics, since any
theory of Floreanini-Jackiw bosons is automatically self-
dual although Lorentz invariance is not manifest. The
Chern-Simons presentation, on the other hand, is analogous
to the Lagrangian description, since Lorentz invariance is
manifest but self-duality is not guaranteed.

To understand the condition which must be imposed upon
the Chern-Simons boundary term to ensure self-duality,
which is the subject of Sec. III B, it will first be useful to
study the currents obtained from varying the boundary gauge
fields.

1. Boundary currents

Quite generically, we expect that gauge fields couple to
conserved currents. In the case of the 3d Chern-Simons
theory, although we have not coupled the bulk gauge fields to
any sources in M3, the variation of the on-shell action
localizes to a boundary term, so we can therefore define
boundary currents that live in dM5. We normalize these
currents as

_ 2m ol .

27n ol
i \/—5Al ‘on shell » 7=

\/—5Al |0n shell *

a

(3.14)

We would like to compute these currents in a Chern-Simons
theory with a general boundary term that is an arbitrary
function of the O(N) x O(N) invariant combinations S and
P. To do this, we consider a general variation of the action.

The Chern-Simons term varies as

i
Slos = —
CS 8 M,

- ]_CU((;A; A dA] + A; A d&AJ’))

(k(5A; N dA; + A; A dSA))

i .
=— kYOA; N dA;
471’ M3( ! J

i
81 M

- 7(’75A; VAN dAJ-)

d(K7A; A SA; — kTA; A SA5).  (3.15)

The first term vanishes after imposing the bulk equations of
motion dA; = 0 = dA s while the second term localizes to a
boundary contribution,

i o ez

—_ Al A/ l]Al A/ p
cs omshell 87z " (k aé k 1) )dx A dx”.
(3.16)
Since we are assuming that Ly, takes the form
Ebdry = f(Sv P>7 (317)
the variation of the boundary term can be written as
1 -
Olyary = _87T/9M3 Va((fs+ fp)kVATSA,
+ (fs — fp)kITA5AS,). (3.18)

In coordinates (w,w), after raising the indices using

AY =2A;; and AY = 2A,,,, the variation of the combined
action is then

i . .

= - (Ki(ALsAlL

— ALSA],
on-shell 87 oM Y W)

— ALSAL))

1 -, ) . ) )
~ L / VAKI(fs + F)(ALSAL + ALSAL)
4 OM;

— KI(AL6A],

n l’c”(fs — fp)(ALSAL + ALSALY).  (3.19)

Using /g = 5, we can therefore read off the currents (3.14),

7y = ik"/(fs HFp = DAL JE =K s+ fp o+ DAL

2

Ty = SHIfs= o+ VAL TF =Ry = fp = )AL
(3.20)
These can also be written more covariantly as
Joi = %k” (gaﬂ(fS +fp) + %eaﬁ)Af’
Je = LK (ga/;(f —fr) - —eaﬂ> A, (3.21)

046005-15



STEPHEN EBERT et al.

PHYS. REV. D 110, 046005 (2024)

which agrees with (3.20) for g, =1, €, = 1 = —€5,.

We note that variation of the total on-shell action has two
qualitatively different contributions. The terms in the first
line of (3.19) are “universal” in the sense that they are
present for any Chern-Simons theory and do not depend on
the details of the boundary term f(S, P). These universal
terms are also independent of the boundary metric, since
they come from the integral of a two-form. In contrast, the
terms on the second line of (3.19) are “model-dependent”
as they make explicit reference to the choice of boundary
term f(S, P). Furthermore, these terms are metric-depen-
dent and include an overall factor of /g.

These two types of terms are analogous to those in the
Lagrangian (2.49) which couples a generic chiral boson
theory to gravity. In that setting, the role of the “universal”
and metric-independent contributions is played by the kinetic
terms G,;¢)'¢'’ and G;;¢p' ¢, which, as we explained below
Eq. (2.53), do not include a factor of E. The Chern-Simons
perspective gives another way to understand the metric
independence of these terms, since they may be viewed as
the duals of contributions which arise from a topological bulk
term. Similarly, the remaining metric-dependent and inter-
action-function-dependent terms in (2.49) can be viewed as
the analogs of the second line of (3.19).

The expressions for the J¢ and J? also determine the
boundary conditions on the gauge fields which we impose in
order to have a well-defined variational principle. In general,
the on-shell variation of the action can be written as

I ~ / (J2SAL + J25AL).  (3.22)
on-shell oM, !

We must ensure that the quantity (3.22) vanishes to have a
good variational principle. To do this, we impose boundary
conditions which hold fixed some particular combination of
the boundary gauge fields A/, and A!. Schematically, this
constraint takes the form
F(AL) =0, (3.23)
where the precise form of the functions F and F depend on
the case under consideration. In particular, this means that the

allowed variations of the gauge fields must be constrained to
satisfy the equations

oF

-S5AL =0,
0AL,

oF -
~_5Al = 0. (3.24)
dA

a

For instance, if both of the boundary variations SA’, and SAL
are nonzero, the constraints (3.24) can in principle be inverted
to express one of these two boundary variations in terms of the
other. This means that only one combination of the boundary
gauge fields is free to fluctuate, while the other is held fixed.
This is in agreement with the general expectation that

imposing Dirichlet boundary conditions on both components
of the gauge field is too strong, and one would not find smooth
solutions to the equations of motion for generic choices of the
fixed gauge fields.

We also note that these boundary conditions will restrict
the class of bulk gauge transformations that are permissible.
A general gauge transformation A’ — A’ + dA}, A" — A" +
dA' in the bulk leads to a variation of the Chern-Simons
term which takes the form
(KidA* A N — kTTdAT A N,

Sles = SL (3.25)

T JoM,

which, for general choices of the gauge parameters, will not
be compatible with our choice of boundary conditions. We
must therefore allow only a subclass of bulk gauge trans-
formations which preserve the desired boundary condi-
tions. Physically, one can think of this restriction as giving
rise to physical degrees of freedom on the boundary.

To give a specific example illustrating the general
observations above, let us consider the standard boundary
term f = S. In this case, evaluating the currents (3.20)
gives

. . .. - [ —2=-7 -
JL=0, Ji,=-kiA}, Ji=-kKIAL Ji,=0.
w w 2 w 2 w
(3.26)

Therefore, with the conventional boundary term, the
currents J!, are purely holomorphic and the currents Ji,
are purely antiholomorphic. The variation of the on-shell
action is

ol

~ / (JLSAL + JLsAL).  (3.27)
on-shell oM,

The variation (3.27) vanishes if we require that SAL = 0
and 5,4_1{1, = 0, which is equivalent to imposing Dirichlet
boundary conditions on the components A% and Al at the
boundary dM;. For instance, one can demand that these
components are both set to zero, which corresponds to the
choice of functions F and F in (3.23) given by

F(Al) =AL =0,  F(AL) = AL =0. (3.28)
We must then allow only bulk gauge transformations which
do not change the values of A%, and A{V on the boundary, and
this restriction gives rise to boundary degrees of freedom.
To see why these degrees of freedom are chiral, it is
convenient to think of the holomorphic currents as Ji, =
d¢' and the antiholomorphic currents as Ji = d¢', where
the @' are ¢ = 1 free bosons. Then, it is clear that the Ji,
play the role of the left-moving chiral half of a nonchiral
boson, and the J iv act as the right-moving antichiral parts.
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B. Self-duality condition for Chern-Simons theories

Let us now consider the question of self-duality for
Chern-Simons theories. As we argued in Sec. IIC, self-
duality should be viewed as a necessary condition to
impose on the theory so that it describes chiral degrees
of freedom. In the Floreanini-Jackiw description, self-
duality meant that we could express the action either in
terms of the original variables A, = d,¢" or in terms of the
dual variables A}, = €,30’y’. The relationship between A,
and A, as expressed around Eq. (2.79), is very similar to the
relationship between the boundary Chern-Simons gauge
field A, and the corresponding current. Let us compare
them side-by-side. In Sec. II C, we had the relations

oL oL

Zaf s Yaiad

/Iai — _2_" _,
0Aq oA},

(3.29)
where in this formula the symbol A, refers to the vector
field appearing in the action (2.68). In the Chern-Simons
setting, we instead have the schematic relations

i 2mi 3l 27 0Lon shen
 VIAUoger VG 0AL
g — 2ol 2mi 0 e (5 30
V9 AL |on-shell V9 0AL

where now the symbol A, refers to the boundary Chern-
Simons gauge field.'” Insofar as the gauge field acts as a
good proxy for the gradient of the Floreanini-Jackiw
bosons, this suggests that the role of the dual variable A!,
is now played by
. 1 . — —
to=—3lb B=3TL
where the sign difference is due to the relative sign in
(2.79), which itself originates from the difference in signs
between the kinetic terms for chiral and antichiral bosons.
This analogy leads us to propose a notion of self-duality
for Chern-Simons theories. We will phrase this condition
via an infinitesimal transformation, rather than a finite one.
That is, in Sec. II C, the duality transformation was a Z,
action which replaced the fields A, with the fields 4,. In the
present context, we will instead propose a continuous
transformation which infinitesimally rotates the fields A’
and A, into their duals J/, and —J,.
We say that a Chern-Simons theory with boundary term
f(8,P) is self-dual if the on-shell variation of the action
identically vanishes under the transformation

! (3.31)

SAL = el SAL = —¢J'.. (3.32)

“In Eq. (3.30), the partial derivatives of the Lagrangian
Lon-shen are understood to be defined as the integrands of
corresponding variations of the on-shell action in the middle
expression of each line.

To see why this is the right notion of self-duality, let us find
the condition on the boundary term f(S, P) under which
the transformation (3.32) is a symmetry. By Eq. (3.22),
under this variation the change in the on-shell action is

51|0n—shell ~ / (JzaéAfl + j?éA;;)
0M3

—¢ / (JeJi, = JaTt), (3.33)
0M3

so the rotation (3.32) is a symmetry if and only if

JiJi —JLJL =0. (3.34)
Using the general expression (3.20) for the currents, and
expressing the condition in terms of S and P, we find that
(3.34) is equivalent to the condition

28

fot S fsfo+fh=1. (3.33)
Remarkably, the Chern-Simons boundary term is self-dual
if and only if it satisfies precisely the same differential
equation (2.35) which the Floreanini-Jackiw interaction
function V(S, P) must satisfy in order to guarantee Lorentz
invariance. Because of the identical structure of the con-
straints on f(S, P) and V(S, P), some of our observations
from Sec. II can be immediately translated to analogous
statements in the Chern-Simons setting.

For instance, if N = 0 so that the theory features only a
collection of unbarred gauge fields A!, but no barred fields
A}, the two invariants collapse as S = P and the only
solution to the constraint (3.35) is f(S,P) = S. This is
consistent with the comments around Eq. (2.38) in the
Floreanini-Jackiw formulation, namely that no Lorentz-
invariant interactions are possible for a system of purely
chiral (or purely antichiral) bosons. Here we are seeing the
Chern-Simons counterpart of this statement: although we
can write down any boundary term f(S) that we like, and
still respect boundary Lorentz invariance, only the choice
f(S) =S will respect chirality (or self-duality) of the
boundary theory.

In the remainder of this section, we will view the
differential equation (3.35) as a consistency condition
which a boundary term f(S, P) must satisfy to describe
chiral bosons. One can also understand this constraint as an
analog of electric-magnetic duality invariance for 3d
Chern-Simons theories. Of course, the conventional form
of electric-magnetic duality is inapplicable for 3d gauge
theories, since the Hodge dual of a two-form field strength
F, in three spacetime dimensions is a one-form, which is
interpreted as the field strength of a dual scalar rather than a
dual one-form. However, demanding invariance under the
duality rotation (3.32) is closely related to imposing
invariance under the rotations (3.10); in both cases, the
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symmetry exchanges the field appearing in the Lagrangian
with a certain dual that is defined via the derivative of the
Lagrangian with respect to this field.

1. Linear and nonlinear self-duality constraints
Jor currents

One typically describes a free chiral p-form field in 2p
dimensions, where p is odd, as a form which satisfies a
linear Hodge self-duality constraint. For instance, a free
chiral 3-form field F5 in six dimensions obeys *F3; = F3.
Likewise, the Floreanini-Jackiw bosons ¢, ¢’ with free
interaction function V(S,P) =S are self-dual and anti-
self-dual, respectively. Introducing interactions for such
p-forms then modifies this constraint to a nonlinear self-
duality condition, which can be viewed as determining the
self-dual part of the p-form as a function of the anti-self-
dual part, or vice versa.

We would now like to see how these self-duality
constraints can be understood from the Chern-Simons
description of chiral bosons. Since we are working in a
two-dimensional Euclidean spacetime, the appropriate self-
duality conditions for a one-form are imaginary self-duality
or anti-self-duality, since the definition of the Hodge star,

(V) = VgV %up, (3.36)
includes a factor of % from the measure |/g. With these
conventions, the dual of a general one-form V, with
components V,, and V is

(*V)(x = (_ivw’ ivﬂ/)' (337)
Thus, a holomorphic one-form V, = (V,,0) obeys an
imaginary anti-self-duality condition
xV = —iV, (3.38)
whereas a purely antiholomorphic one-form V,, = (0, V;)
is imaginary—self-dual,
*V =iV. (3.39)
We therefore see that all of the currents J; and J; of
Eq. (3.26), which correspond to the standard boundary term
f(S,P) =S, satisfy xJ;, = —iJ; and *J; = +iJ;. This
can also be expressed by defining the projectors onto
imaginary—self-dual and imaginary—anti-self-dual parts of a
one-form,
P + =

(1 F i) (3.40)

N =

In terms of these projectors, the fact that the J¢ are purely
holomorphic can be expressed as P_J¢ = J¢, and the fact
that the f%’ are purely antiholomorphic is equivalent to the

statement that P J = J¢. Therefore, by adding the boun-
dary term f(S,P) =S to the Chern-Simons action, we
obtain chiral currents which obey a linear self-duality
condition. This is the image of the usual statement that free
chiral p forms in 2p dimensions, for p odd, obey linear
self-duality constraints.

Next, we would like to understand how a more general
boundary term gives rise to a nonlinear self-duality con-
straint, which corresponds to an interacting system of
boundary chiral bosons. In this case, rather than obeying
the standard chirality constraints

P_J¢ =J¢, P =, (3.41)
which correspond to (linear) Hodge imaginary—self-duality
or imaginary—anti-self-duality,

the currents will satisfy more general, nonlinear, or twisted

self-duality conditions, each characterized by an operator
TO or TW:

wJ; =TWOJ,, wJ: =TWO;. (3.43)
In the case where 7() = —iI and 7 =il are both
proportional to the identity operator I, this reduces to the
standard chirality condition (3.42). In the more general case
we allow 7 and 7 ) to be nontrivial operators which can
depend on the fields.

Twisted self-dual boundary conditions characterized by
operators of this form have been considered in [25,92],
primarily in the setting of non-Abelian Chern-Simons
theories. In the Abelian case, which is the focus of this
work, no nontrivial operator 7 exists for a system obeying
(3.35) with either N = 0 or N = 0 (i.e., a self-dual theory
which only describes fields A‘IZ butno A¢, or with only A¢ but
none of the Af‘ respectively). This is again related to the
statement, which we have seen in Sec. Il A, that there are no
possible Lorentz-invariant interactions for a system of purely
chiral (or purely antichiral) bosons."> However, in a theory
which features both chiral and antichiral bosons—or both A{
and A? , from the Chern-Simons perspective—such Lorentz-
invariant interactions are possible, which manifests as the
existence of allowable operators 7 besides the identity.

It is easy to see that, for a general boundary term
Lyary = f(S, P), the currents

, i .. . . I .. .
Ty =gk (fs 4 fot DAL Ty = 2k (fs 4 fo = DAY
(3.44)

13Alternatively, this is because there are no solutions to the

self-duality equation (3.35) besides the trivial solution f(S, P) =
S when either N =0 or N = 0.
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satisfy the nonlinear self-duality condition
(+J)y = (TW), g/},

T —

1 0
i l_Zkiin Lstfe=l ‘| : (345)
K ALY fstfptl
This expression gives the components of the matrix 7 ()
with respect to its Lorentz indices a, # = w, w, where i is a
fixed internal index. When fg = 1 and fp = 0, we see that
T reduces to —il, which expresses the usual imaginary—
anti-self-duality constraint.
Similarly, the general currents

Ty = Ki(fs = fp= DAL Ty = 1R (fs = fr+ DA

(3.46)
satisfy the nonlinear self-duality condition
7N — (70 BT
(*J)(l - (T( ))(1/ ‘,/}’
. _ 2K (14 fp=f)
TW = l kikAﬁ,<—1+fp—fs)] : (3.47)
0 1

Likewise, when fs = 1 and fp» = 0, we see that 7 0 = I
so this reduces to the usual imaginary—self-duality con-
dition *J' = iJ'.

We should point out that, in other studies of twisted self-
duality in Chern-Simons theories such as [25,92], the
twisting operator 7 commutes with the Hodge star oper-
ation. As a result, acting with the Hodge star operator on
each side of the twisted self-duality constraint «J = 7J,
one has

xxJ =+TJ=TxJ="T"2. (3.48)
Since the Hodge star is an anti-involution, ** = —I, in
two Euclidean dimensions, one therefore arrives at the
constraint
T2 =1 (3.49)
In Lorentzian signature, this would instead give the con-
straint 72 = L.

However, in our case the twisting operators 7 () and T
have nontrivial structure in their Lorentz indices and
therefore do not commute with the Hodge star. This is
why, in our case, these twisting operators do not satisfy an
anti-involutive constraint such as (3.49).

One can now proceed as in the linear case and define
projection operators

' r 0 0 ) E?i“*fp—fs)
P<+l) = kijA{;v Sstfp—1 11’ P(ﬁ = EiAﬁ’<_1+fP_fS)‘| ’
kLAY, fs+fptl 0 1
r 1 0 /};;\{t (I14+fp=fs)
POt g | P =" TR
LkjAL fstfp+1 0 0

(3.50)

which satisfy the expected properties of orthogonal pro-
jectors,

:F
(3.51)
along with the chirality conditions
pogi—yi, plji—o, PUJ=J, POJ—o.
(3.52)

Therefore, even in the interacting case, one can view the
currents as satisfying an appropriate nonlinear self-duality
constraint. This expresses, in Chern-Simons language, the
equations of motion (2.23) for interacting Floreanini-
Jackiw bosons.

We should point out that this construction has now

produced two separate pairs of projection operators P@ and

1_39 for each fixed choice of indices i, i, or equivalently, two

separate twist operators 7 () and 7. This is in contrast
with the linear—self-duality constraint, which is described
by only two projectors P, = %(1 F i*), where

P, =P, P_=P_. (3.53)
In the linear case, there are relations that cause these four
operators to collapse to just two independent projectors,
and it is clear that these operators project onto one-
dimensional eigenspaces which represent physically oppo-
site chiralities.

In the nonlinear case, there are also relations (albeit more
complicated ones) between the two twist operators. For
instance, one can see that 7 () can be obtained from 7 ) by
simultaneously transposing the matrix in its Lorentz indices
and interchanging all barred and unbarred quantities. That
is, one exchanges

ki < ki, Al < Al w<w, (3.54)
which also has the effect of sending P — —P (and thus
fp — —fp). This relation holds regardless of the choice of
boundary term. When the function f (S, P) satisfies the self-
duality condition (3.35) necessary to describe chiral modes,
there are further constraints between the twist operators.
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To see one such constraint, we can rewrite (3.35) as

JEA T =T A %JL (3.55)
Since *J' = TW Ji and *J' = T Ji this relation can also
be expressed as

JANTOg =J A TOF (3.56)
Equation (3.56) is a consequence of the fact that, when the
boundary term obeys the self-duality constraint, the chiral
and antichiral twist operators are “compatible” in a sense

which generalizes the statements that 7() = —7T @, or that
the projection operators satisfy (3.53), in the linear case.

C. Current deformations of boundary terms

We will now consider flow equations which modify the
boundary term L4y of a bulk Chern-Simons theory.14 In
particular, we are interested in differential equations for
Lygry Which are driven by conserved quantities. We will
refer to any such flow equation as a “current deformation”
regardless of whether the conserved currents driving the
flow are the objects J/, and J/, defined in Eq. (3.14), or the
energy-momentum tensor 7,5, which is another type of
conserved current in the theory.

Let us first study deformations which involve the spin-
one currents J!, and J',. A general flow equation in this class
takes the form

a‘dery _

O, T A),
aﬁ ((l )

(3.57)
where O is a Lorentz scalar and O(N) x O(N) singlet
constructed from the currents. Within this class, there are
fewer interesting possibilities. The most natural deforma-
tion to consider is to begin with the conventional boundary
term L4y = S and deform by a marginal combination of
the form

O =kJiJ9 or O=k;JiJv. (3.58)
However, by virtue of the chirality of the currents given in
Eq. (3.26), both of these operators vanish. One might
instead construct a deforming operator which mixes the
currents on the two sides, such as

O = CyliJu, (3.59)

where Cj; is a constant tensor with mixed indices. For
instance, in the case N = N, we do not need to distinguish

" Although we focus on U(1) Chern-Simons theories in this
work, stress tensor deformations of the boundary term for
SL(2) x SL(2) Chern-Simons have been considered in [93-95].

between barred and unbarred indices and can choose
C;=46;=0; j.15 Let us consider the effect of this defor-
mation with the simplifying assumption k" = k' = §/. In
this case, at leading order in the deformation parameter, one
finds a deformed boundary term

£, = 5 (AAL + AR + AR, (3.60)
up to the normalization of A. That is, such an operator has
introduced an off-diagonal mixing between the barred and
unbarred gauge fields. Ignoring possible subtleties about
quantization of the Chern-Simons levels, such a quadratic
mixing can always be undone by performing a Bogoliubov-
like field redefinition. Indeed, note that beginning with the

undeformed boundary term

1 S
<L idy  Ge
and then performing a change of variables to
Al, = cosh(u)B!, + sinh(u)BY,,
Al = cosh(u)B!, + sinh(u)Bi, (3.62)

gives the transformed boundary term

o _
Lig, = cosh(2) 5 (BIBl, + B{B}) + tanh(240) BBy |
(3.63)

Up to an overall rescaling, this is equivalent to the deformed
boundary term (3.60) if we identify tanh(2u) = A. Therefore,
the marginal JJ deformation of Eq. (3.59) can be viewed as
inducing a rotation between the fields A/, and Aﬁ, We will see
later that the root-7'T deformation, inthe case N = N = 1, is
qualitatively similar to this JJ deformation.

In principle, one could consider more general operators
constructed from the currents J and J, such as powers
of the form O = (JiJ*)" or other structures such as
0= (J;J;J“J_'J_/}/T)m, both of which preserve O(N) x O(N)
symmetry. These operators are irrelevant for n > 1 and
m > %, respectively. However, we will now instead turn
our attention to deformations which are constructed from the
energy-momentum tensor,

a/:,bdry _

o, ).

aff?

(3.64)

Bof course, when N # N, a deformation of this form does not
preserve O(N) x O(N) symmetry. For instance, a deformation by

M JiJie, where M = min(N,N), treats the currents asym-
metrically.

046005-20



FLOWS IN THE SPACE OF INTERACTING CHIRAL BOSON ...

PHYS. REV. D 110, 046005 (2024)

The first choice that one must make in defining such a flow is
which stress tensor to use. There are generally many
definitions of the energy-momentum tensor which are all
conserved but which differ by improvement transformations.
One natural choice is the Hilbert stress tensor defined by
varying the metric. Of course, neither the Chern-Simons
action (3.5) nor the boundary action (3.6) depends on the bulk
metric, but the term /g, does depend on the boundary
metric. One can therefore define a boundary stress tensor,

2 ol 2 61
T(l/} =T = ap = = bs;y . (365)
V9 6y V9 6

However, this stress tensor is qualitatively different from the
one obtained in Eq. (2.54) by coupling a chiral boson theory
to vielbeins. In that context, the coupling to vielbeins treated
chiral and antichiral modes differently, and as a result the
stress tensor component 7,y = —P is sensitive to the differ-
ence between chiral and antichiral fields. Exchanging the
fields ¢ with ¢, and vice versa, reverses the sign of P and
therefore changes T .

In contrast, since both the barred gauge fields and unbarred
gauge fields couple to the boundary metric in the same way,
the Hilbert stress tensor (3.65) treats the fields Al and A? on
equal footing. Unlike (2.54), the Hilbert stress tensor
associated with the standard boundary Lagrangian Lyg, =
S is unchanged under the process of exchanging barred and
unbarred gauge fields. To make this point explicit, let us write
this boundary term as

1 . s -
‘dery - ESaa, Saﬂ - kleiaAjﬂ + klefaAjﬂ' (366)
With this definition, one has S,* = 2S. The Hilbert stress
tensor computed from (3.66), after rescaling to eliminate the
overall prefactor of — ﬁ in lygry, 18

Tup = =Sap + GapS- (3.67)

Deforming the standard boundary term by a generic function
of the stress tensor (3.67), which necessarily involves the
single independent nonvanishing Lorentz invariant 7% T o,
will introduce dependence on the new variable

Sy = S,pS. (3.68)

Note that S, is functionally independent from the invariant
P= %(k"fAl‘?‘Aé -k JAZ“A(’X) Therefore, the class of boun-
dary terms that can be described by functions f(S, P) is not
closed under deformations by the Hilbert stress tensor.
Instead, to describe flows driven by this choice of stress
tensor, we should instead parametrize the boundary term as a
function of different invariants:

Loary = f(S1.52). (3.69)

where

Sy =Tr(S) = S,* =28, S, =Tr(S2) =S,5%.  (3.70)

The structure of Hilbert stress tensor deformations of the class
of functions (3.69) is identical to the structure of such flows
for a collection of nonchiral bosons. Indeed, as was worked
out in [41], a general Lagrangian for a collection of N
nonchiral bosons ¢ with target-space metric G, ;is afunction
of the matrix

Xa/} = Gl'jaa@iaﬁgﬂi, (371)
which has two independent traces,
x; = Tr(X) = X,%, x =Tr(X?) = X, /X (3.72)

All higher traces can be expressed in terms of x; and x, using
identities derived from the Cayley-Hamilton theorem for
2 x 2 matrices. Precisely the same results apply in the
Chern-Simons context, except replacing the matrix X,” with
S,” and thus replacing the invariants x, and x, with S, and S,.
For instance, the Hilbert stress tensor associated with a
general boundary term (3.69) is

af af
LSy = 4280 STy + Gapf-
oS,

Ty = —2
o 05,

(3.73)
One can then construct deformations of the boundary term
which depend on the two independent traces of the stress
tensor, which can be written as

of of of
aff — 2 ) _ 7 -
197, 2<f+251082><f 251<asl+slas2>>

of \? of\> . of of

82( 2N yas,( (2L yes, 29

i 2<asz> " 2((651) %198, as,

of of
-2 —282 L s 3.74
35, (f ‘aSz>> 374)
of of

T¢ = =28, — —48§, — +2f. 3.75
p S 23, S, 0S2+ f ( )

All of the results concerning stress tensor flows for nonchiral
bosons in two dimensions (see, for instance, [41] and Sec. 4 of
[54]) therefore immediately apply to deformations of Chern-
Simons boundary terms which take the form (3.69).

One way to think about this class of deformations, using
the parametrization (3.69) and the Hilbert stress tensor, is
the following. In the case N = N—when the unbarred
gauge fields A}, and barred gauge fields A are dual to equal
numbers of chiral bosons ¢’ and antichiral bosons ¢,
respectively—one can collect these fields into a collection
of nonchiral bosons ¢’ as

1

¢ =— (" +4"). (3.76)

S

2
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We will revisit the quantization of the boundary theory after
performing this repackaging of the field content into
nonchiral fields in Sec. V. We claim that deformations
using the Hilbert stress tensor and the parametrization
(3.69) are appropriate for understanding flows in which the
bosons are assembled into nonchiral fields in this way. This
is why such flows are naturally studied using the invariants
(S1,S,), which have the same structure as the ones
appearing in TT-like deformations of nonchiral bosons,
rather than the invariants (S, P), which we have used in
Sec. II to understand stress tensor flows for chiral bosons.
One might ask whether there is a different presentation of
stress tensor deformations for the boundary term whose
structure is more similar to that of flows in the Floreanini-
Jackiw description of Sec. II. This brings us to the second
natural choice of stress tensor, besides the Hilbert definition
in Eq. (3.65). Rather than coupling the boundary theory to a
metric on d M3, one could instead couple to vielbeins in the
same way as we did in Eq. (2.49) for chiral boson theories.
To do this, we again introduce frame fields E“,, although
now the flat indices will be raised or lowered with the
Euclidean tangent-space metric 7, = [° ol- In this case, the
appropriate flat-space values for the vielbeins are

1
Ef =E; =——

7

whose inverses produce the desired spacetime metric
ds? = dwdw,

El=E; =0, (3.77)

0 3
EZIE/b;’”ah = gaﬂ = |: 1 :| . (378)
5 0

One can then couple the Chern-Simons boundary term Zp,,
to vielbeins as

Ty = ——— / Px(2ELE= — EXE=)P + 2Ef(S, P)),
16z oM;
(3.79)

where we include factors of 2 since, in the conventions of
this section, E = % Likewise, the overall factor of i in
(3.79) arises because /g = % but E = % To compare with

Eq. (2.49), note that in the conventions of Sec. II, we
instead had E = 1. Now § and P are coupled to vielbeins as

1
A(ELE; + ELEL + ESE, + ELES)
x (KIA, Al + KA, AL),

B 1

- AE}E; + E;E; +ESE, + ELE7)

X (kiinwA{;v - ]_CZTJ_.AtTwAé')’

P

(3.80)

in such a way that they reduce to their flat-space values
when the vielbeins are given by (3.77). Because these
expressions are written with explicit (w, w) indices, the
resulting coupling to gravity is not manifestly Lorentz
invariant. However, this is to be expected since we are
performing the equivalent of the procedure used in
Eq. (2.49) for coupling Floreanini-Jackiw bosons to grav-
ity, which is also not manifestly Lorentz invariant.

We now compute the stress tensor (2.6) using this
coupling to the frame fields. To make comparison with
the results of Sec. II easier, we will re scale the stress tensor
by an overall factor to absorb the multiplicative constant of
—ﬁ in the boundary term (3.79), as well as the relative
factor of 2 due to the conventions for the vielbein in this
section. Therefore, we instead compute

8zi 68
and convert to spacetime indices to find
1
Ty = —Z(2SVS +2P(14Vyp)),
1
TWW - TWW - E(V - SVS - PVP),
1

The two Lorentz scalars that we use for constructing flows
are therefore

Te, =2(V = SVs—PVp),

T%T,5 =V?—=2P>+ (V-2(SVs+ PVp))%, (3.83)
which exactly match Egs. (2.55) and (2.56).

It now follows that all of our comments about stress
tensor flows in Sec. I immediately apply to deformations
of Chern-Simons boundary terms which are constructed
using the stress tensor (3.81) obtained from coupling to
vielbeins, as opposed to the standard Hilbert stress tensor.
For instance, any deformation by a function of the vielbein
stress tensor (3.81) necessarily preserves the condition
(3.35). This means that, if one begins with a seed
Chern-Simons boundary term which is invariant under
the symmetry (3.32) that guarantees the chirality (or self-
duality) of the theory, and then deforms this seed by any
function of the energy-momentum tensor, the resulting
deformed boundary term will also be invariant under the
same symmetry. Furthermore, any one-parameter family of
Chern-Simons boundary terms which are all invariant
under the duality rotation (3.32) must satisfy a differential
equation driven by a function of the vielbein stress tensor.

It also follows that the closed-form solutions to
flow equations driven by functions of the stress tensor
discussed in Sec. II—such as the two-parameter family of
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solutions (2.40) to the commuting 77 and root-TT flow
equations—also have obvious analogs for deformations of
Chern-Simons boundary terms. Besides solving these
differential equations directly, a complementary way to
analyze stress tensor deformations is by performing a
perturbative expansion which computes the deformed
action order-by-order in the flow parameter. This approach
is discussed in Appendix A for deformations by various
functions of the energy-momentum tensor, using the
version of T, defined by coupling to vielbeins.

To conclude this section, let us summarize and mention
some applications. We have seen that the boundary term
of a bulk U(1) Chern-Simons theory can be deformed
either by functions of the Hilbert stress tensor or by
functions of the vielbein stress tensor (3.81). The former
deformations lead to a class of modified boundary terms
Lyary(S1.S) with the same properties as Lagrangians
obtained by stress tensor deformations of nonchiral boson
theories. Conversely, the latter flows generate a family of
boundary terms Ly (S, P) with the same structure as
the Lagrangians in Sec. II arising from stress tensor
deformations of chiral boson theories. We have thus
described two complementary ways to view deformations
of Chern-Simons boundary terms by functions of the
energy-momentum tensor.

These results provide a general framework for studying
three-dimensional U(1) Chern-Simons theories subject to
boundary deformations. Throughout our discussion, we
have been agnostic as to the specific setting in which
such Chern-Simons terms arise, but let us briefly mention
two specific applications of the formalism we have devel-
oped. One context in which these results could be useful
is when considering AdS;/CFT, holography with U(1)
gauge fields. One could use our machinery to derive flow
equations for various observables under stress tensor
deformations, just as [95] found expressions for 7T7-
deformed Wilson lines and loops, and [44] obtained
formulas for the masses of BTZ black holes under a
boundary root-77 deformation. For instance, one could
use the results of this section to analyze the dependence of
the U(1) charges of charged BTZ black holes as a function
of the deformation parameter for boundary 7T or root-TT
deformations. Another possible application of these results
is to study quantum Hall systems subject to boundary
deformations, which we will briefly describe in the con-
clusion of this paper.

IV. QUANTIZATION ALONG CLASSICAL FLOWS

In this section, we will consider the quantization of a
member of the general class of interacting chiral boson
models. We will work purely within the Floreanini-Jackiw
description, described by an action of the form (2.22),
rather than in the Chern-Simons formulation of Sec. III. We
will also work in Lorentzian signature with spacetime

coordinates (7,6). Although in the preceding discussion
we have been agnostic as to the spacetime topology, within
this section we will assume that 8 is compact and subject to
the identification 6 ~ 8 + 2z. We focus on the case of a
compact spatial manifold because our primary observable
of interest is the finite-volume spectrum of energy levels
E,, and in particular how these energies depend on a
deformation parameter along a stress tensor flow.

The most well-studied example of a stress tensor
deformation for which the deformed cylinder spectrum
can be determined is the 77T deformation. Under the TT
flow, the energy levels of the deformed theory obey the
inviscid Burgers’ equation,

aEn_E 0En+Pﬁ
g "OR R’

(4.1)

where R is the radius of the cylinder and E,, P, are the
energy and momentum of the eigenstate under consider-
ation [1—3].16

This example is remarkable because the flow equa-
tion (4.1) can be proven directly at the quantum level using
the properties of the local 7T operator, which is defined by

Orp(x) = Wm(TP(x)Ty5(y) = T (x) T 4(y)).

y—=Xx

(4.2)

It was demonstrated in [1] that the coincident point limit on
the right side of (4.2) actually gives rise to a well-defined
local operator, up to total derivative ambiguities which
can be ignored. One can therefore prove results about a
TT-deformed quantum field theory at the quantum level
using the properties of this operator; for instance, an
argument involving a certain factorization property of
Or7 and the interpretation of the components of the stress
tensor in terms of energy and momentum lead to the flow
equation (4.1)."

This is in contrast with a different method for attempting
to learn about the quantum mechanical properties of a stress
tensor deformation, which we refer to as quantization along
a classical flow. In this case, one first finds the solution to a
differential equation of the form (2.1) for the Lagrangian of
a deformed theory, and then attempts to quantize this
deformed Lagrangian directly.

One can also study various generalizations of this flow
for the spectrum, such as the energy levels of tensor product
theories where the factors are sequentially deformed by multiple
TT flows [96].

""These statements are special to d = 2, and it is not known
whether there exists a higher-dimensional version of the quantum
TT operator with similar properties; see Ref. [97] for a discussion
of the challenges in doing so. However, in d > 2 one can define
point-split stress tensor bilinears which factorize to leading order
at large N [98,99], and a new proposal for O(ﬁ) corrections was
made in Eq. (1.58) of [100].
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Assuming that a given classical deformation can be
rigorously defined at the quantum level, we do not expect
that quantization along the classical flow will give accurate
information about all aspects of the deformed quantum field
theory. Indeed, this is already true for the TT deformation.
For instance, it can be shown that the S-matrix of a T7-
deformed quantum field theory is equal to the S-matrix of the
undeformed theory multiplied by a certain momentum-
dependent phase known as a Castillejo-Dalitz-Dyson
(CDD) factor [101,102]. However, if one studies scattering
using quantization along the classical 7T flow, one finds that
this CDD factor is not reproduced unless one adds specific
counterterms which are engineered to obtain the expected
scattering behavior [21,103,104]. Therefore, quantization
along the classical flow is not sufficient to fully characterize
the properties of the 77-deformed theory without additional
input from the quantum definition."®

Despite this, one may hope that quantization of a
classical deformed Lagrangian will still give some infor-
mation about the corresponding deformation at the quan-
tum level, at least in particular limiting cases. For instance,
the solution to the classical 77 flow equation beginning
from a seed theory of free scalars is the Nambu-Goto action
of string theory, and one generically expects that string
theories exhibit a high-energy density of states which is
Hagedorn rather than Cardy. This predicted Hagedorn
scaling agrees with an analysis of the high-energy behavior
of a TT-deformed CFT at the quantum level, which can be
seen either from the energies [3] or the partition function
[107,108]. Thus, certain limiting features of the quantum
theory can still be inferred from the TT-deformed classical
Lagrangian.

For other stress tensor deformations, such as the root-7T
flow, it is not yet known whether one can give a rigorous
definition of the deforming operator at the quantum level."
Therefore, we do not yet have any exact data about the
deformed quantum theory against which to compare results
obtained by other methods. However, extrapolating from the
TT case, one might perform quantization along a classical
root-T7T flow in the hope that this procedure will still give
useful information in certain limits. Our goal in this section is
to carry out this quantization procedure for root-77-
deformed theories of chiral bosons and examine the behavior
of the deformed spectrum in such limiting cases.

One regime for which we have additional data about the
root-TT-deformed spectrum is the limit of a large-c holo-
graphic CFT which admits a bulk AdS; dual. When

'8 Another argument for this conclusion is that quantization of
fermionic fields along classical TT flows can give different
Hilbert spaces depending on which definition of the stress tensor
one uses [105,106].

"However, see Ref. [109] for a recent proposal for the
quantum definition of the root-T7 deformation and a computa-
tion of deformed correlation functions.

restricting to states for which the stress tensor is approx-
imately constant (which are dual to BTZ black holes), one
obtains the formula (1.7) for the root-77- deformed
spectrum [44]. We will see that our analysis using quan-
tization along the classical flow agrees with this “zero-
mode formula” for states that correspond to constant
stress tensor backgrounds. However, we will also be able
to probe other limits of a root-T7T-deformed theory, such as
a large-momentum limit which is not close to a constant
stress tensor configuration for which the zero-mode for-
mula is expected to apply. This result may therefore give
novel information about the behavior of a putative root-
TT-deformed field theory in a different regime.

A. Generalities on quantization

Let us now study the quantum mechanics of interacting
chiral boson models such as (2.22). This Floreanini-Jackiw
form of the Lagrangian, although it is not manifestly
Lorentz invariant, is nonetheless convenient for quantiza-
tion because it is first-order in time derivatives. This allows
us to perform canonical quantization in a uniform way
which does not depend on the details of the interaction
function V (S, P).

We begin by reviewing some basic features of quantiza-
tion of first-order systems in the simpler setting of (0 + 1)-
dimensional theories, i.e., particle mechanics.

1. Quantization of first-order particle mechanics

We will first consider a collection of (0 + 1)-dimensional
fields g,(¢), whose time derivatives will be denoted ¢;(¢). A
general first-order Lagrangian for such a system takes the
form

|
L= EC”%‘CI; - V(q), (4.3)
where C% is a nonsingular constant matrix. Without loss of
generality, we may assume that C” is antisymmetric.
Indeed, if we instead split C/ = Clil + C%) into symmet-
ric and antisymmetric parts, the Lagrangian would be

11 d
L:EC[U]%%’+—C(”)—(qul‘)—V(CI),

5 o (4.4)

where the second term is a total time derivative that can be
ignored.
The canonical momentum which is conjugate to g;(t) is

oL 1

J=—=_Cllg,, 4.5
P'=5g, "2 (4.5)
and thus the Hamiltonian associated with (4.3) is
oL .
H(g.p)=~-4;—=L=V(q). (4.6)

94,
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The Hamiltonian (4.6) appears to depend only on the
position variables but not on the momenta, but this is
misleading, since Eq. (4.5) implies that some combinations
of the g; are momenta. The Euler-Lagrange equations
arising from the Lagrangian (4.3) are

. oH
CYqg; =—, (4.7)
where we now use the symbols V and H interchangeably.
Alternatively, by defining C;; to be the inverse matrix

(C™");; of CY, the equations of motion can be written as

oH

. 4.8
u aq] ( )

g =C

Next, we consider the quantization of this model.
Ordinarily, for Lagrangians which are quadratic in time
derivatives, one would impose the canonical commutation
relations

However, imposing the relations (4.9) for a first-order
system such as (4.3) gives results that differ from the
correct commutation relations by a factor of 2. To arrive at
the correct relations, we follow the prescription outlined in
Appendix A of [9], and further justified in [110], which is
to define commutators so that the Heisenberg-picture time
evolution of operators in the quantum theory takes the same
form as the classical Euler-Lagrange equations.20

In general, the Heisenberg equation of motion for an
operator O reads O = i[H, O]. In the case of the operator
O = g;, we have

oH
g, =iH,q;]=1—1q;, g 4.10
Hoal=i5 lapal @10

Comparing (4.10) to (4.8), we find that the two take the
same form if we identify

[qi’CIj} = iCij- (4.11)
As we mentioned, since p/ =1 Cg;, this differs from the
canonical prescription (4.9) which would give [g;,¢q;] =
2iC;;. The errant factor of 2 is due to the fact that, in a first-
order system, there is a constraint on the phase space.

“In  conventional quantum systems with second-order
Lagrangians, the fact that these two equations should take the
same form is the content of the Ehrenfest theorem. We demand
that the same is true here.

2. Quantization of first-order field theories

Having reviewed the quantum mechanics of first-order
(0 + 1)-dimensional systems, we now turn to the quantiza-
tion of first-order (1 + 1)-dimensional field theories, and in
particular the theories of chiral bosons which are the focus
of this work.

As a simple example to set the stage, we will first
consider a single chiral boson described by the Floreanini-
Jackiw Lagrangian (1.1) which we repeat here:

L=(¢d-d'¢). (4.12)

N =

As usual, we write ¢ for the time derivative of ¢ and ¢’ for
the spatial derivative of ¢. The quantization of this system
in infinite volume, i.e., with a spatial coordinate x € R, was
first studied in [9]. In short, one can view x as a continuous
generalization of the discrete labels i, j in (4.3) and rewrite
the first term as

% / dxd.(x, )d(x. 1)

=5 [ dx [ dyotx=y)optx.0dtr.0)
N _%/dx/dywxfs(x—y)h/)(x, Dp(y.1).  (4.13)

The role of the constant antisymmetric matrix C” in the
particle mechanics example is now played by the function

Clx—y)=-05(x—-y), (4.14)
and the role of the inverse matrix C;; is played by Green’s

function of C(x —y). This suggests that we impose the
commutation relations

$().40)] = —3sen(x=y).  (415)
which is the field theory analog of (4.11) and which
matches the result in [9]. It is then straightforward to
use the above equal-time commutation relations to confirm
the Heisenberg equations of motion are indeed equivalent
to the Euler-Lagrange equations of the Lagrangian (4.12),
which describe a chiral boson:

% =-i[O.H = ¢=¢. (4.16)
Next, we will study this theory in finite volume. We now
replace the spatial coordinate x € R with an angular
coordinate @ labeling a position on S!, and subject to
the identification 6 ~ 0 + 2z. We will also assume that the
target space is compact, which means that ¢ likewise takes

values in a circle so that ¢ ~ ¢ 4 2z. As we will see, the
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structure of this theory on a cylinder is closely related to the
particle mechanics example considered above.

First, let us write the function ¢(z,6) using a mode
expansion:

(4.17)

We have included a zero-mode term x(#) in addition to
a momentum contribution which is linear in @; the latter
is permissible, despite not being periodic in 6, since both
0~0+2x and ¢ ~ ¢ + 27, so such a term is compatible
with our identifications if p € Z. The remaining sum is the
standard Fourier expansion of the periodic part of ¢ in the 8
direction.

It is now necessary to distinguish between the
Lagrangian density £ and the Lagrangian L = [d6L.
Substituting the mode expansion (4.17) into the
Lagrangian density (4.12) and performing the integral over
the 0 coordinate gives

2n ] ©
L= /(; doL = px — 7TP2 +% <Z<aj1an - anaj;))

n=1

| ; .
_ (EZn(anaIl + aj,a,,)),

n=1

(4.18)

where we have dropped a term that is a total derivative in
time. Because p is integer-quantized, as we mentioned
above, the first term describes the well-known quantum
system which is a particle on a ring. The Hilbert space is
generated by states | p) labeled by integer p € Z with energy
E,==x p?. The remaining terms are nothing but the familiar
first-order particle mechanics system discussed previously.
To make this analogy clearer, it is convenient to define

a_, = ay, (4.19)

so that the Lagrangian can be written as

i )
L = px—np>+ 3 (Z(d_nan - d,,a_n)>

n=1
1 ()
- EZn(ana_n—l—a_nan) .
n=1

The a,’s now play the role of ¢;’s, except the modes are
labeled by n € Z so the phase space is infinite-dimensional.
Comparing the two sums in the Lagrangian (4.20) with the
general form (4.3), we find that the two agree if we identify

(4.20)

C"" = isgn(n)s, _,. (4.21)

Therefore, when we promote the a,, from functions appear-
ing in the expansion of the classical field ¢ to quantum
operators, the appropriate commutation relations (4.11)
are

la,,a,] = sgn(n)s, _,. (4.22)
When expressed in terms of afn, this is the familiar commu-
tation relation of ladder operators:
[am aT ] = 6n,m' (423)
It is perhaps surprising that, if we had worked with the
Fourier modes a,, of the field ¢ from the beginning (rather
than with the field ¢ itself), then imposing the standard
commutation relations (4.23) gives the correct result, without
the errant factor of 2 which we mentioned around
Eq. (4.11) that occurs due to the phase space constraint
on first-order systems. The reason for this is that, after
performing the mode expansion, the positive Fourier modes
a, with n > 0 act as the position variables and the negative

modes a, withn < 0 (orequivalently ap)actas the conjugate
momentum variables. Therefore, in Fourier space, the
separation between coordinates and momenta is automatic,
and we need not impose phase space constraints or consider
commutation relations such as (4.11) which naively appear to
involve two position variables.”!

The Hamiltonian obtained from the Legendre transform
of the Lagrangian (4.20), written in terms of aIL rather than

a_,, is

o8]
H=rp*+ Z n(a,a, + aya,)
n=1

N =

1 (&)
=—-——+ ﬂp2 + Znalan,

i (4.24)

n=1

where we have used anaf, = af,an + 1 and the well-known
{-function regularization

(4.25)

It is straightforward to generalize the above discussion
to the case of multiple chiral and antichiral bosons. We
work with a Lagrangian density for N chiral bosons ¢/,
i=1,...,n, and N antichiral bosons ¢', of the form (1.2)
which we have been considering in Sec. II. For simplicity
we take trivial target-space metrics for the bosons,

*'See Sec. 6.1.3 of [111] for a pedagogical review of the
quantization of the chiral boson from this momentum-space
perspective, and later sections of this reference for applications to
quantum Hall physics.
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G;; = 6;; and Gf]‘ = 6;;. The Lagrangian density for this
system is then

L= @~ F) -V B). (426

We expand both the chiral and anitchiral fields in modes as

x (by,(e™™ 4 b (1)e™?). (4.27)

The nonzero commutation relations between the various
expansion coefficients are

[%:, pj] = 673,
bl ) = ij0um,  (4.28)

[xbpj] = i(sij?
[ai,m a;,m] = 5ij5nmv [b?,n’
with all other commutators vanishing.

Note that here we take all ¢; and ¢; to be compact with
radius 2z. Therefore, the eigenvalues of p; and p; must be
integers. The Hamiltonian is given by

27 _
H= A dov (¢, 4. (4.29)

The commutation relations (4.28) allow us to build the
Hilbert space of the quantum theory for any potential V. In
the next subsection, we will use this to study the spectrum
of the modified scalar theory, that is, the theory obtained by
applying a root-TT deformation to a seed theory of free
chiral and antichiral bosons.

B. Root-TT-deformed spectrum

We will now use the formalism reviewed in Sec. [V A to
study root-TT-deformed free boson theories. In principle,
this can be done for any numbers (N,N) of chiral and
antichiral bosons, respectively. However, there is a sharp
distinction between the case N = N = 1, for which the
deformation is comparatively simple and can be interpreted
as a rescaling of the target-space radius for the boson, and
all other cases with N > 1 and N > 1, where the deforma-
tion is more nontrivial.”> We will therefore first discuss the
simpler case N = N = 1 in detail, and then as an illus-
trative example of the latter class, we will study the
example with N =2 and N = 1. We expect that the

2Note that if either N = 0 or N = 0, then the theory is a fixed
point of stress tensor flows so the root-7T deformation is trivial.

qualitative features of the deformed (N, N) = (2, 1) model
will be similar to those of theories with larger N and N.

1. One compact boson

Let us begin by studying the root-7T deformation of a
single (nonchiral) ¢ = 1 compact boson, or equivalently, a
pair of N = 1 left-moving and N = 1 right-moving chiral
bosons. It was already mentioned in the initial work [41]
that, in this case, the root-TT flow simply rescales the
kinetic term for the boson, which corresponds to a change
in the radius if the scalar is compact. We will revisit this
claim by describing the deformed model in terms of chiral
bosons and determining the quantum spectrum exactly to
confirm that the root-77 deformation of a compact boson is
just a change of radius.

This formalism also provides a way to realize a compact
boson at an arbitrary radius—even at irrational points
where the theory does not factorize into the chiral part
and antichiral part—using a Lagrangian for one chiral and
one antichiral boson with a quadratic mixing term.
Furthermore, treating this example in detail will allow us
to test the zero-mode formula given in Eq. (1.7) that is
expected, due to evidence from holography [44], to
describe the energies of states in root-77-deformed
CFTs for which the energy-momentum tensor is constant
in space. We will see explicitly that this zero-mode formula
fails to give the energies of deformed states for which this
assumption is violated.

The Lagrangian for a root-TT-deformed seed theory of
one left-moving and one right-moving chiral boson takes
the form (1.2) with an interaction function V (S, P, ) given
by the 1 — 0 limit of Eq. (2.40). To be pedantic, the
resulting Lagrangian is technically

/i 77 COSh(]’)
@~ -5

= sinh(y)/ (#')*(#')*.

That is, because ¢’ and ¢ can take both positive and
negative values, the final term is really proportional to
|¢'| - |¢'|. However, we will ignore this subtlety and simply
replace \/(¢')*(¢')? with ¢'¢’. This can be justified, for
instance, by restricting attention to small fluctuations of the
fields around a background for which the gradients are
large and positive, so that both ¢’ and ¢’ have fixed positive
signs. This corresponds to a solution with large positive
values of p; and p; in the expansion of Eq. (4.27). We will
take a similar large-momentum limit in the analysis with
several bosons below, again resolving the square root,
which is more nontrivial in that setting because of an
additional term under the root.

After making this simplification, the Lagrangian we wish
to study becomes

ﬁ(}’) — (¢/2 4 &/2)

(4.30)
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w (¢ + ) — sinh(y)d/' .

(4.31)

L0 =2 (¢d~ ) -

N[ =

As discussed previously, the Hilbert space factorizes into
two parts: the particles on a ring and the infinite tower of
harmonic oscillators. Due to the special form of (4.31), the
Hamiltonian does not mix the two parts. Therefore, we can
study them separately.

Let us first consider the sector of the Hilbert space which
describes the particles on a ring. We write the states in this
Hilbert space as |p, p), which are labeled by two quantized
momenta p, p € Z. The corresponding Hamiltonian and the
momentum operator are

Hgg = n(p? + p*) cosh(y) + 2z pp sinh(y),
Pl = n(p® = p*) = P, (4.32)

where we use the subscript PR to denote particles on a ring.
Because the corresponding undeformed states at y = 0
have energies

(4.33)
|

@' — ¢" cosh(y) — ¢" sinh(y) = 0,

we see that the prediction for the deformed energies from
the zero-mode formula (1.7) is

0 0)\2 0)\2 .
Efp = H) cosh(y) +\/ (HI)” = (P{)? sinh(y)
= n(p* + p*) cosh(y)
T/ (@(p? + p)* = (a(p? - p?))? sinh(y)
= z(p® + p*) cosh(y) + 2zpp sinh(y),

(4.34)

which indeed agrees with the true deformed energies Hgg

of Eq. (4.32), subject to the usual caveat that we have used
the assumption +/p?p> = pp.

It is not too surprising that these states have deformed
energies which agree with the zero-mode formula, since the
corresponding saddle points have constant stress-energy
tensors, and this is the assumption under which the
formula (1.7) was derived in holography.

To see this explicitly, we look for solutions to the
equations of motion associated with the deformed
Lagrangian £) in Eq. (4.31), which are

¢ + ¢ cosh(y) + ¢ sinh(y) = 0. (4.35)

One can integrate these equations with respect to the spatial coordinate @, up to an undetermined integration constant /()
which is an arbitrary function of 7. As in the discussion around Eq. (2.18), one can always set h(z) = 0 by a gauge
transformation. Specializing to this 2 = 0 gauge, the equations of motion become

¢ — @' cosh(y) — ¢’ sinh(y) = 0,

We wish to solve the equations of motion (4.36) subject to the boundary conditions

PO+ 27, 1) — p(0.1) = 2xp,

where p, p € Z. The desired solutions with such periodic boundary conditions are

") = p0+ (pcosh(y) + psinh(y))z.

Since these solutions ¢§77) and (j_);,’/) depend on ¢, 6 linearly,
the corresponding stress-energy tensor is constant. There-
fore, it is reasonable that the energies of these states are
indeed governed by the energy formula derived via
AdS;/CFT, holography for constant stress tensor back-
grounds, as we found around Eq. (4.34).7

We would also like to point out that the energies of these
states agree with the energies of momentum states for a

23Strictly speaking, the derivation of this zero-mode formula
also assumes that the boundary theory is a large-c holographic
CFT for which we can trust semiclassical bulk gravity. However,
this assumption does not seem strictly necessary for the zero-
mode formula to hold, since the theory we study here has ¢ = 1.

¢ + ¢/ cosh(y) + ¢' sinh(y) = 0. (4.36)
B0+ 27.1) — §(6.1) = 2xp. (4.37)
(ﬁg’) = pO — (p cosh(y) + psinh(y))z. (4.38)

compact boson with a different radius. To see this, it is
convenient to change variables as

_ _ - Y
w=+z(p+p), w=+z(p-p), R=exp (—5>7
(4.39)
so that the deformed Hamiltonian (4.32) can be written as

1 (w?
Hig =5 <R2 + R2w2>.

This supports the claim that the root-77 deformation, in
this case, corresponds to a rescaling of the target-space

(4.40)
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radius for the compact boson. However, to verify this
conclusion, we should also study the effect of the defor-
mation in the other sector of the Hilbert space, which
describes an infinite tower of harmonic oscillators.

We turn to this task now. Expanding the field ¢ and ¢ as
in (4.27), we find the Hamiltonian operator and the
momentum operator for this oscillator sector are given by

Hg% = Z n(aja, + bib,) cosh(y)
n=1
S (4 1
A .
nbn nbn h - h ,
+ ; n(ayby, + a,b,) sinh(y) T (7)
ng = Zn(a;};d,‘ - blbn)’ (441)

n=1

where we have performed normal ordering as before and
where OS stands for oscillators. This Hamiltonian has
exactly the same spectrum as its undeformed counterpart,
which can be made manifest by the following Bogoliubov
transformation:

a, cosh <g) — b sinh (g) ,
E,, cosh <£> - &j; sinh (g) .

We note that this has the same structure as the change of
variables which diagonalized the mixing term between the
two Chern-Simons gauge fields in Eq. (3.62). This trans-
formation preserves the commutation relation, i.e.,

ay

b, (4.42)

(4.43)

In terms of the new oscillators, the Hamiltonian then
reduces to the undeformed one,

o0

. L
HY =——+ n(aa, + bjb,),

3 (4.44)

n=1

1 - -
HY) = / do [2 (6F + ¢7 + ¢F) cosh(y) + 1/ + ¢5d, sinh(y)] :

while the momentum operator is unchanged,

[e+]
P =" n(aha, - bjb,).

n=1

(4.45)

Hence, we conclude that the energies in the oscillator sector
of the Hilbert space do not flow under the root-TT
deformation. This agrees with the effect of changing the
radius for a compact boson, which likewise does not

change the energies of oscillator excitations.

Therefore, combining this result with the flow of Hf,y]g,

we conclude that indeed the root-7T deformation corre-
sponds to a change of radius for a single compact boson.
We have also verified that the zero-mode energy for-
mula (1.7) proposed in [44] does not apply to generic states in
a root-TT-deformed CFT. For instance, any state with p =
p = 0 but with oscillator excitations will have an energy that
is unchanged by the root-T'7 flow, whereas the formula (1.7)
would predict that the energy flows with y. This is because
such oscillator states have nonconstant stress tensors and
therefore violate the assumptions under which the zero-mode
formula was derived. However, we reiterate that the states
which do have constant stress tensors—namely, states with
general p and p but no oscillator excitations—indeed have
energies which flow according to the zero-mode formula.

2. Multiple compact bosons

Next, we aim to study the spectrum for the theory of
root-TT-deformed free bosons when there are more fields,
rather than just a single left-mover and a single right-mover.
All of these cases are qualitatively similar, in the sense that
the argument of the square root appearing in the Lagrangian
is no longer a perfect square, and thus cannot be resolved to
a simple product of fields as in the N = N = 1 case above.
For simplicity, we will therefore focus on the first nontrivial
case, which has N = 2 left-movers and N = 1 right-movers
(the case with N = 1 and N = 2 is identical, after exchang-
ing chiral and antichiral fields).

The Hamiltonian for the deformed (N,N)= (2,1)
theory is

(4.46)

To resolve the square root, our strategy will be to expand in large positive momenta and compute the energies perturbatively.

The mode expansion for the fields takes the form

I 1 . .
¢j = pjg + _2” Z \/_ﬁ (aj‘nemﬁ + a;’ne—mB)’
v n=1

- 1 & . o
¢1 = p19 + \/—Z_ﬂZ% (b?ne’”g + bl’ne 0), (447)
n=1

where j = 1, 2 and periodicity requires p;, p, p» € Z. Substituting the expansion (4.47) into our Hamiltonian (4.46) and

expanding in large p; and p, to leading order we find

046005-29



STEPHEN EBERT et al. PHYS. REV. D 110, 046005 (2024)

_ 1 & -
HO — <ﬂ(p’f‘ + P3P - gt > n(Ny, + Ny, + Nl,n)> cosh(y)

n=1

+ <27zp11")1 + Z n(ay by, + a},lb},l)> sinh(y) + - - -, (4.48)

n=1

where N, , = a;na,-,n and Ny, = b;nbl.n are number operators at level n for left- and right-movers, respectively.
We would now like to compare the spectrum of the true large-momentum Hamiltonian (4.48) to the zero-mode formula (1.7)

predicted from holography for states with constant stress tensors. The undeformed Hamiltonian and momentum are

L —
HO =2(p+ 3+ P =g+ 2 N1t Nas + Wi,

n=1

1 - _
+ Zn(Nl,n +N2.n _N],n)'

pO) — 2 2 _p2)— —
”(P1+P2 P1) 24 -

(4.49)
Let us restrict to an eigenstate of both the momentum operators py, p,, p; and the number operators Ny ,,, N, ,,, Ny, in the
undeformed theory. The energy and momentum of such a state are also given by the expressions (4.49), if we simply reinterpret
each symbol representing an operator as instead representing the corresponding eigenvalue.24

Substituting the energy and momentum eigenvalues for this state into the zero-mode formula (1.7) then gives a predicted

value for a deformed energy:

_ I & - .
EV) e = <ﬂ(p% +p3+pi) - g T > n(Ny, + Nay + Nl,n)) cosh(y) + 2zp; py sinh(y) +---.

n=1

We should stress that Eq. (1.7) is a prediction for the
deformed spectrum and not for the deformed eigenstates.
Therefore, even if Eq. (4.50) were correct, this would
simply mean that there exists some state in the deformed
theory whose energy is EEQO mode-

However, with this caveat aside, it is now easy to see
why the formula (4.50) is incorrect, and what effect it
fails to take into account. Were it not for the final

term in the true Hamiltonian (4.48), which involves
S n(ay by, +aj bl ), then any eigenstate of the
undeformed theory would remain an eigenstate of the
deformed theory at this order in the momentum expan-
sion, and its energy would indeed be given by (4.50).
This is simply because the first several terms of the true
Hamiltonian (4.48) agree with the zero-mode prediction
(4.50), after replacing operators with their eigenvalues.
However, the presence of this final term in (4.48) means
that an eigenstate of the undeformed Hamiltonian will
not remain an eigenstate in the deformed theory, since
terms such as a,b;, will mix such a state into other
states with different oscillator numbers. We con-
clude that the zero-mode energy formula (4.50) is not
correct for the deformed spectrum, even in this large-
momentum limit.

*We have chosen not to denote operators by decorating
them with hats, which would distinguish between operators
N, and their corresponding eigenvalues N, to avoid cluttering
the formulas.

(4.50)

[

3. Possible interpretation of root-T T deformation
for higher N, N

We have seen that, in the special case N = N =1, the
root-TT deformations of chiral bosons admits a simple
interpretation as a rescaling of the target-space radius. This
can also be understood from the observation that, for this
case, the oscillator sector of the deformed theory is equivalent
to that of the undeformed theory due to the Bogoliubov
transformation (4.42). To conclude this section, we would
like to make some speculative remarks about possible
generalizations of this interpretation to cases with higher
N and N, which seem considerably more complicated.

First, let us point out that, for the case (N, N) = (1, 1), the
Bogoliubov transformation which returns the oscillator sector
of the root-7T-deformed theory to its undeformed form also
has an analog at the level of the Lagrangian and Hamiltonian
densities. Indeed, for the quadratic theory (4.31), one can
write the Lagrangian and Hamiltonian densities as

1 =

. - 1 -
L=5(@0-DD)— (9?87,

1 -
H — E (@/2 + (1)/2)7
where we have made a field redefinition

(5)= (=) (4)

(3)- (e o ) (5

(4.51)

(4.52)
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The deformed equations of motion, written in terms of the
new fields ® and @, are

/

=@, & =-d, (4.53)

which take the same form as those in the undeformed theory.
Again, this is analogous to the field redefinition (3.62) in the
Chern-Simons setting, which undoes a similar quadratic
mixing between the barred and unbarred fields induced by
a JJ deformation.

Next, let us consider how this observation might extend
to multiple bosons. We focus on the case of N = N for
simplicity. The deformed Hamiltonian density for an equal
number of left- and right-moving chiral bosons is

| o —
HW — 5 (0] + &) cosh(y) + /b’ sinh(y).
(4.54)

We now ask whether some more complicated field redefi-
nition might return this Hamiltonian to a quadratic one, as
in the case of (4.51). When N = N = 2, at least formally,
one can attempt to perform a change of variables that
resembles a transformation to polar coordinates in a 2d
target space:

<¢q .1) > < P (0, 1) cos (0/(6, 1)) >

(]5’2 (0,1) Y (0, 1)sin (0/(6,1)) ’

(]_5’1 (0,1) B 7(0,1) cos (@’(9, 1))

<¢‘>;<e’ r>> - <f'<e, () sin (6/(6.1)) ) e

Here we interpret ®(0, ¢) and (6, t) as spatial derivatives
of new fields which depend on the derivatives ¢'(6, ) in a
nonlinear way. In terms of these quantities, the Hamiltonian
density (4.54) with N = N = 2 takes the form

1 - -
HW =2 (@F +¢7 + &F + §7) cosh(y)

/(@7 + PR (@R + @2) sinh(y)

1
=3 (r? + 7?) cosh(y) + r'¥ sinh(y), (4.56)

where we assumed 7 > 0 in order to simplify the square
root. Now we perform a second field redefinition, just as in
(4.52), to a new field p:

(r(&, t)) ( cosh(%)
7(6,1))  \ —sinh(})
Expressing the Hamiltonian density (4.56) in terms of the p
variables rather than the r variables, we conclude

—sinhf)) ( p(0.1)

6.1 ) (4.57)

HW == (p? + p?). (4.58)

N[ =

Therefore, again at a formal classical level, it appears
that this series of field redefinitions has returned the
Hamiltonian density to that of the free theory.
Furthermore, the latter change of variables (4.57) can be
interpreted as rescaling the overall target-space radius r,
much as in the (N, N) = (1,1) case. For a larger number
of bosons N = N > 2, one can perform a similar series
of manipulations using higher-dimensional spherical
coordinates.

Several technical issues preclude us from taking this
series of field redefinitions seriously, at least without
further investigation. First, the change of variables (4.55)
was at the level of derivatives of the fields, and it is not clear
that this corresponds to a sensible change of variables for
the fields themselves. Second, all of these manipulations
have been purely classical, and it is not guaranteed that one
could make sense of these field redefinitions within a path
integral (which would produce Jacobian factors from each
change of variables). And third, we have not been careful
about the identifications that each field is subject to. For
instance, if indeed the field ® can be interpreted as a target-
space angle in polar coordinates, then it should be subject to
the identification ® ~ © + 2.

Nonetheless, it would be very interesting if an argument
of this form could be used to endow the root-77 deforma-
tion of N chiral and antichiral bosons with a geometrical
target-space interpretation.

V. PERTURBATIVE QUANTIZATION USING
THE BACKGROUND FIELD METHOD

In the preceding sections, we have considered interacting
theories with arbitrary numbers N, N of chiral and anti-
chiral bosons, respectively, and sacrificed manifest Lorentz
invariance in order to use a first-order formulation which is
convenient for canonical quantization. In the special case
N = N, however, we also have the option of assembling the
field content of our theory into N nonchiral bosons by
summing the left-movers and right-movers:

(¢ + ). (5.1)

. 1
[ J—
MY
Here we now use the same index i = 1, ..., N for both the
chiral and antichiral fields, rather than distinct indices i and
i. As this change of variables is merely a field redefinition,
stress tensor deformations of such a theory of N bosons
must be equivalent, regardless of whether the theory is
presented in terms of left-movers and right-movers ¢', (F ,
or in terms of their nonchiral counterparts ¢'. Indeed, for
the case of the TT deformation of a free seed theory, this
equivalence was checked explicitly in [94].
In this section, we will provide a complementary analysis
of the perturbative quantization of the modified scalar
theory using this presentation in terms of nonchiral fields
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¢". For concreteness, we will focus on the case where both
the fields ¢’ and the Lorentzian spacetime coordinates (z, x)
are noncompact, and we will use middle Greek letters like
u, v (rather than early Greek letters like a, f, which were
used in Secs. II and III) for spacetime indices in this section.
We will write g, for the (Minkowski) spacetime metric.

In terms of the nonchiral fields ¢, the Lagrangian for the
modified scalar theory can be written in the manifestly
Lorentz-invariant form

1 S
L= 3 (cosh(y)o,¢'d ¢’

+ sinh(y)\/ 2(0,0'* ") (0,0 0"9’) = (0,90'0')?).
(5.2)

The advantage of this representation is that one can more
easily apply standard diagrammatic techniques to compute
loop corrections in the quantum theory. Of course, the
second term in the Lagrangian (5.2) is still nonanalytic
around the vacuum of the theory, or around any field
configuration for which

3,9 = 0. (5.3)

We will circumvent this issue by working in a background
field expansion around a field configuration ¢’ for the
scalars which we assume has nonzero gradients and which
satisfies the classical equations of motion for the theory, but
which is otherwise arbitrary.

A. Background field expansion and Feynman rules

Throughout this section, we will use the notation

o' =C+ Q' (5.4)
where C' is a classical (background) field configuration
around which we perform our expansion and Q' is a
quantum field which is allowed to fluctuate within the path
integral. This classical background C' is the analog of the
large-momentum configuration around which we per-
formed our expansion in Sec. IV B. Our goal will be to
investigate the terms which contribute to the quantum
effective action, as a function of the background C'.

To avoid cluttering the formulas, it will also be conven-
ient to adopt the following shorthand for spacetime
derivatives of the various fields:
¢, =9,C, 0, =9,0"
In our analysis of chiral boson theories, we introduced two
useful quantities S and P in Eq. (2.34) which were
independent combinations of derivatives of the scalar
fields. In the present nonchiral analysis, let us similarly
introduce the quantities

S:(p”igﬂﬂi,

@) = 0.9, (5.5)

P2 =0, ¢" ¢ p". (5.6)

We note that these are not the precise analogs of S and P in
the chiral setting; for instance, the role of the combination
§? — P? in Sec. Il is now played by 2P? — S°. Therefore, in
terms of these quantities (5.6), the modified scalar
Lagrangian (5.2) can be written as
1

L= 3 (cosh(y)S + sinh(y)V2P? — $?).  (5.7)
We decompose S into a classical piece S¢ and a quantum
piece Sy, along with a cross term:

S = (Cﬂi + Qﬂi)(Cﬂi + Qﬂi)
— C/C’” + zcﬂiQm’ + QﬂiQﬂi.
e

~——
Se So

(5.8)

Next, we will consider the splitting of S?> and P? into
classical and quantum pieces. Because we assume that the
field configuration C' is a solution to the classical equations
of motion, by definition the action is stationary to linear
order when expanding around such a solution. This means
that the effective action cannot contain any terms which are
linear in the fluctuation field Q, because the sum of all
such contributions must conspire to form an on-shell total
derivative. We will therefore label all terms linear in Q*' as
“on-shell deriv’” and ignore them in what follows, although
with the caveat that individual terms of this form need not
separately drop out; we are only guaranteed that the
combined effect of all such terms is to form an on-shell
total derivative.

With this in mind, the quantity S* can be expanded as

§? = S%+485.C,/Q" + 2505, +4C, QM C, I QY
——
on-shell deriv

+48,C, 10" + 8%
o) 0@

~ 82 +28-5,+4C, Q" C,I QY 5.9
C 0] M

where the symbol ~ means equal modulo all terms that are
either linear in Q' (which will form on-shell total deriv-
atives) or that are of cubic order or higher in Q' (which do
not contribute to the one-loop effective action). A similar
computation for P? gives

P2 =C,/CHC/CY +4C, CrCY Q) +2C,/CYQ, QM
on-shell deriv
+20,/C"Q,/CM +20,'C'C,/ Q" + O(Q°)
~ CﬂiC”jCDiC”j + 2CﬂiC”in,jQ"j 4 2QﬂiC”in,jC”j
+2Q,iCYC,iQn. (5.10)

Therefore, the combination 2P? — S? under the square root
in (5.7) has an expansion
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2P — 2 ~2P% — §2 —28:8o —4C, QM C, I QY
+4C,/CYQ,/ 0" +40,/CYQ, I CH
+49Q,'cviC,in

=2P% - 5% +20Q,. (5.11)

Here we introduce the shorthand Q; which is proportional
to the correction to the classical part of (5.11) up to
quadratic order in fluctuations,

Q) = —ScSp —2C,'Q"'C,/ QY +2C,'C"Q,/ QW

+20,/CYQ,/CM +2Q,'CYC, QM (5.12)

which is not to be confused with Q' or Q' = 9,0". Let us
also define Q, ~ O to be the square of this quantity,
retaining terms only up to second order in Q', so that

Q, = 45¢C,/Q"C,/Q" = 8ScC,I QT CHCIQ,k

+16(C,iC*CriQ k)2, (5.13)

In terms of these combinations, we can expand the square
root appearing in (5.7) as

VTN Py .
V2P% - 5%
Q

—— . 5.14
2(2P% - %)% (5-14)

Finally, we can express the modified scalar Lagrangian

expanded to quadratic order in fluctuations around a given
classical solution as

1
L~Leo+ 2 <cosh(y)SQ

V2PL—S2 202PL-S%)) ) T

where L represents the Lagrangian evaluated on the
background solution C', i.e.,

inh
+ sz(y) /2P — 52,

It is also convenient to write the Lagrangian for the quantum
field Q' in terms of a bilinear form. Defining the tensor

-+ sinh(y) <

cosh
Lo= 2(7) .

(5.16)

ij i j ke ksij j i i j
b (—chﬂyaf —2C,iC,i +2C,kC }5 +2C,iC,[ +2C,iCrig,,
1172

N

B 48%C,C,J —8ScClC keric,k + 16C,,ka’iCﬂkCTmCTfC,,m> (5.17)
40P - 527 |
we can write the Lagrangian L, for the fluctuating field as
. (cosh(y T i\ i
Ly = Q! < > )g’,D(SJ + sinh(y)P,, 1> oY, (5.18)
or after integrating by parts to move the derivative acting on Q" = 0*Q’, as
ifcosh(y) i | . Ay 1 ij j
Lo=-0 75/0 + sinh(y)(0*P,," )0" 4 sinh(y)P,, " o*o* | Q. (5.19)
The first term in (5.19) is proportional to a conventional i i o
free kinetic term for the fields Q'. The second and third =~ cosh(y) e (5.20)

terms, involving P, " and its derivative, encode the
interactions which are induced by expanding around the
classical field configuration C'.

1. Feynman rules

Now that we have obtained the Lagrangian (5.19), we
may read off the Feynman rules which we will need
for computing diagrams. The propagator for the quantum
field is

Next, we must work out the vertex associated with the
interaction between Q' and the classical field via the
combination P,,™". We will draw quantum fields as solid
lines and the cumulative effect of the background fields as a
single coiled line. Consider the trivalent interaction
between a field Q' with momentum p, a field @/ with
momentum ¢, and an insertion of the background P, ™"
with momentum r. This vertex can be visualized as
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(5.21)

/J/?V;m7n

Let the vertex factor for this interaction be g; j.zs There are
four ways that we can get a contribution to this factor from
|

the Lagrangian (5.19). First, there is a piece arising from the
term sinh(y)(0"P,,"")0" when m = j and n = i, which
gives a term proportional to r#g” because of the first
derivative 0" acting on P, and the second derivative ¢”
acting on Q/. There is another term which arises from m =
i and n = j, where the derivative acts on Q' to produce a
factor of p*. Then, there are two more contributions from
the term sinh(y)P,,"" 00", when either m = j and n = i,
or when m = i and n = j, which come with factors of ¢*¢*
or ptpY from the two derivatives acting on Q/ or Q'
respectively. Altogether, the value of this vertex is

gij — isinh<y)(5mj5niplrlnvnrﬂqv + 5mi5njpzzynrﬂpu + 5mj5niPIr;§/nq/4qy + 5mi5njp:1ynpﬂpv)
— iSinh(y)P;z/n<—5mj5ni(q” + pﬂ)ql/ _ 5mi5nj(q/4 + pu)pu + 5mj5niq/,tqv + 5mi5njp;4pv)

= —2isinh(y) P (88" prg? + M5 g p)

= —2isinh(y) Py, p"¢",

where in the second step we have used * = —¢g* — p* and
in the last step we have used P,']D = Pﬁ, This gives the
desired value of the trivalent vertex g;; between Q', 0/, and
the classical background. However, in the calculations that
follow, it will be convenient to factor out the dependence on
P} and use an “uncontracted” vertex factor g defined by

9ij = PZZ"@%”)W,

(g7 = =2isinh(y)o™ ;8" ;ptq". (5.23)
Let us emphasize that (g7;")* is not the full value of the
interaction vertex, but rather a useful intermediate quantity
which has removed all factors of PJ". After computing
Feynman diagrams using “uncontracted” vertices §, we
must contract the final result with one factor of P, for each
vertex in order to recover the true value of the diagram.

B. Quantum effective action

We are now ready to compute the leading quantum
corrections to the modified scalar Lagrangian. Most of our
discussion will focus on the one-loop effective action,
defined by the first term beyond the classical contribution
in the expansion

. . 5’
r[c] = S[C] + ETr {log <5¢i5¢j>

kCJ +ol (5.24)

»The vertex factor g;j should not be confused with the target-
space metric G;;(¢) for the bosons which appears in Eq. (2.49).
We also note that the value r of the classical field momentum
must be integrated over in this trivalent interaction, but we do not
include this integral in the expression (5.22) for g;;.

(5.22)

|

Although we are primarily interested in the one-loop
contribution to I', we will also present some partial results
concerning corrections at higher-loop order.

There are several techniques for computing the one-loop
effective action I'. One way is to use heat kernel methods;
we will not pursue this strategy here, but we refer the reader
to the thesis [69] for a discussion of this approach in the
related context of the 4d ModMax theory. Rather, we will
compute contributions to the effective action perturbatively,
using the Feynman rules derived in the preceding sub-
section. This amounts to a diagrammatic evaluation of the

551'258(,;/’ which is the
operator appearing in L, that we have computed
in Eq. (5.19).

In particular, our goal is to evaluate divergent Feynman
diagrams in the modified scalar theory using dimensional
regularization, as a function of the background configura-
tion C'. Each such divergent contribution necessitates the
addition of an appropriate counterterm to cancel the
divergence. The collection of all such counterterms which
must be added to the classical Lagrangian therefore
reproduces the additional terms that appear in the quantum
effective action, giving a characterization of the corrections
in the expansion (5.24).

one-loop determinant of the operator

1. Constant background, one-loop diagrams

Let us begin by considering the simpler case in which the
background field configuration C' is linear in the spacetime
coordinates, which means that the classical field has
constant gradients. That is, we assume that C, = 9,C'
is constant for such backgrounds, so that d,C," = 0 for all
U, v, i. In this case, no momentum can flow through the
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classical fields in the interaction vertex (5.21), which
implies that r = 0 and thus p = —q.

To obtain the one-loop effective action I', we must
evaluate all Feynman diagrams built from the quantum
|

field propagator and interaction vertex (5.21) which contain
at most one loop. This corresponds to an infinite series of
diagrams given by

FW@+W+?§M+W (5.25)

Let D, represent the value of the diagram in the series
(5.25) which has n insertions of the classical background.
The first diagram in this infinite series is

(5.26)

Ky Vi, m

Following the comments around Eq. (5.23), we will
evaluate this diagram—and the others in this section—
by using the Feynman rule associated with the uncontracted
vertex factor g, and then contracting with P};". Doing this
and simplifying the resulting sum of Kronecker delta
functions using symmetry, one finds

mn g im Sjn ddf
D, = P} sinh(y)5" &/ /(2ﬂ>d

A term in the integrand which is proportional to £#£* will
produce a result which scales like #? and which is a
symmetric tensor in u and v. The only constant symmetric
two-tensor in the problem is the spacetime metric ¢, so
the integral of such a term must be proportional to #?g* .
By taking the trace, one can fix the dimensionless constant
to be é. Thus, within the integral, we can make the
replacement

(2i¢"¢)Di. (5.27)

1
e — S, (5.28)

Using this replacement and the propagator (5.20), we find

2 tanh di¢

D, = g () Py / (2ﬂ)dgﬂ”. (5.29)
The integrand is now independent of #. Although this
integral diverges as A¢ with a naive cutoff at momentum A,
within dimensional regularization it is exactly zero [112].

This result relies only on the momentum dependence of
the integral. However, note that the insertions of additional
vertices appearing in the higher one-loop diagrams D,, will
not change the momentum dependence of the integral. In
general, we will have n propagators D;; of the form (5.20),
each of which is proportional to #, and n copies of the vertex
factor (5.23). Because the vertex factor contains products of
momenta such as £#¢%, the integrand of D,, will involve a
product of 2n momenta. We can replace such factors using a
generalization of the argument which led to the replacement
rule (5.28). Thatis, any integral involving a totally symmetric
product of 2n momenta must yield a result which is propor-
tional to 72" multiplied by a totally symmetrized combination
of n metric tensors, since the metric is the only symmetric
tensor in the problem. This leads to the replacement

d £ (d—-2)"(2n — 1)
Hai-1 fHai (k2 . .. gHon—1Hon)
ll T @-2ramn 7 e

(5.30)

where we have used the double factorial n!!=n-
(n—2)---4-2. We thus find an overall factor of #>" from
the vertex factors, in addition to a compensating factor of ﬁ
from the n copies of the propagator, each of which scales like
#. Note that all of these momenta are equal due to momentum
conservation around the loop, as we assumed that no
momentum can be carried by the classical fields, so the
powers of loop momentum precisely cancel. Therefore, every
diagram D, involves an integrand which is independent of
momentum, and thus vanishes in dimensional regularization
just as D; does.

We conclude that the perturbative one-loop effective
action I'[C"], with constant background field strength C,’,
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vanishes in dimensional regularization. This implies that
under these assumptions, there are no one-loop corrections
to the classical theory.

2. Constant background, multiloop diagrams

Proceeding to higher loops, more vertices in the pertur-
bative expansion become accessible, beginning at two
loops with a vertex cubic in the quantum field. The first
of such diagrams that is not a tadpole, shown in Eq. (5.31),
emerges at order O(y?), and one can show that it non-
trivially vanishes within dimensional regularization,

The introduction of multiple loop momenta prevents the
simple argument in the one-loop case from generalizing
immediately. However, since with constant backgrounds
there cannot be any external momenta and there is no
characteristic scale present in these integrals, it will always
be possible to iteratively symmetrize using (5.30) and
integrate over each loop momentum, leaving a symmetriz-
able integral that will vanish in dimensional regularization.
Therefore, we expect that the argument presented above
generalizes to all loops, implying that the full effective action
['[C!] admits no corrections for constant background field
strengths C,".

3. Background-varying, one-loop diagrams

We now study the more general case in which we do not
assume that a#c/ =0, instead allowing the background
field to vary. Besides requiring that the field configuration
C' is a solution to the classical equations of motion, we
make no further assumptions.

For this general background analysis, let us use the same
notation D,, for the diagrams appearing in the infinite sum
(5.25). The first diagram in this series, D, is unchanged
from the constant background case, and thus it identically
vanishes in dimensional regularization.

The first nontrivial diagram is

Uk

As usual, it will be convenient to strip off factors of P,,"
when computing the value of this diagram. This corre-
sponds to evaluating the diagram using the “uncontracted”
vertex § of (5.23) and contracting the result with factors of
P,,". To this end, let us write the value of the diagram as

_tanb’(y) [ d% % 1
D, = 2 / (2n)dP“” (=a) </ 2r)4 2 (¢ + q)?

x (k81 er (¢ 4 q) + 8167 (¢ + q)F¢v)

. (5km51”f/’(f—|— C])T + 5knélm(bﬂ+ q)pfr)>Pmen(q)‘
(5.33)

Using the symmetry property P,/ = P,,/', this can also be
expressed as

ddq i vpT i
D, = 2 tanh(y) / Pl TE P g). (534
where we have defined the simpler integral
d¢ (¢ + q) e (¢ + q)¢”
I8 = , 5.35
= [y e >33

and where our conventions for symmetrization are
) = LT + 7).

To study the divergence structure of the diagram D,, it
suffices to evaluate the quantity Z5”° in dimensional
regularization, which is performed in Appendix B 1. The
resulting divergent contribution is

1\ —i
Tt — | Z 2( AV 0T P T T P
+2(¢°¢"9" + ¢°q" 9" + ¢4 + 979"
+4(¢"q" s+ 97q"q")]- (5.36)

To cancel this % divergence, one would introduce a counter-
term which involves two factors of Pﬂ,,if in the Lagrangian.
Therefore, in the background-varying case, there is a
nontrivial contribution to the quantum effective action at
one loop. Because the higher diagrams D, will involve
higher powers of y, the result (5.36) represents the complete
one-loop effective action at O(y?).

With the two-vertex diagram evaluated, to complete the
computation of the one-loop effective action, we seek to
evaluate all remaining diagrams containing one loop.
Fortunately, there is only one diagram D,, for each number
of vertices n. The details of the evaluation of this diagram
are presented in Appendix B 2. Here we merely summarize
the results. The value of Z, can be written as
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(T, = (n—1)! / (de> (gxi—l>

x (Co, " + 15, (5.37)

where we have defined

i(d—2)11(2n - 1!
(d—2+2n)!1

xl"(—;i)Ad

i(d—2)!1(2n = 3)!!
(d—4+2n)!
2n  2n

303 g . g, .

a=1 b>a

‘F(n—l—l—‘z—i) _51 i
g (172

The notation gt #» refers to a symmetrized product
of metric tensor factors, which is defined in Eq. (B33).
Similarly, gl###«#} is shorthand for such a symmetrized
product of metrics which omits the two indices y, and 4,
which is explained in more detail around Eq. (B35).
Finally, the function f#(x, g, a) is defined in Eq. (B32).

In dimensional regularization, with d = 2(1 + ¢) and as
€ — 0, the overall momentum dependence and divergence
structure of these terms is

I'(n+ ‘51)
(@)

17 "Hon

HiHon
C2n -

17Hon
Dgn -

(5.38)

1
Ry 2 e
CZ; 2n N—q g:“l Han

2n  2n

DA Hon Z Z glaghe g{#ﬂu M}

a 1 b>a

(5.39)

which is of the same qualitative form as the one-loop, two-
vertex contribution (5.36).

Therefore, the full one-loop effective action for the
modified scalar theory is obtained by introducing counter-
terms that cancel the divergent contributions which we have
described in Egs. (5.36) and (5.39). Because, after Fourier
transforms, only two derivatives arise acting on the external
background vertices, and the counterterms are invariant
under classical conformal transformations.

4. Background varying, two vertex, m-loop diagrams

One could imagine computing the quantum effective
action (5.24) using a double expansion in both the number
n of vertices and the number m of loops. The preceding
subsections have discussed the contributions at one loop
but for any number of vertices. We have also argued that
higher-loop corrections vanish when expanding around
constant backgrounds.

It is then natural to ask what one can say about the
higher-loop contributions in the general case of varying
backgrounds. Although the structure of the problem
quickly becomes quite complicated, we can make some
general remarks by restricting to two vertices but any
number of loops. For instance, we can consider a diagram
with m + 1 internal quantum field lines, each of which runs
between two interaction vertices with a classical back-
ground field, thus forming m loops:

We use the notation D,, ,, for a diagram which has m loops
and n vertices. In this notation, the one-loop diagrams
which we called D,, in the preceding subsections would be
denoted D, ,,. For example, the diagram D, of Eq. (5.32)
would be written as D ,, since it is of the form in Eq. (5.40)
with m = 1 because it has 2 = 1 + 1 internal lines between
two vertices and thus one loop. Similarly, a diagram with
four internal lines between two vertices would have three
loops and be denoted D; ».

To study the diagrams D,, ,, we will need to derive a new
Feynman rule for the (m 4+ 2)-valent vertex involving
(m + 1) quantum fields lines and one insertion of the
classical background. These higher vertex factors will come
from further terms in the expansion of the square root in
Eq. (5.14),

50
£=\ N/ (2P% — S2)N-:

Z ll lMIll “Hm Haﬂ Qlk

M=2

=\/2P% -
=4/2P% -

8

(5.41)

In the first line, the factor of 2% is a choice of normalization
which is needed to match our conventions for Q; and Q,
above. We will not compute the higher terms Q explicitly,
but we instead schematically denote the collection of all
contributions from these terms which involve a product of
M derivatives of the quantum fields by writing the tensor
piviv, . When M = 2, this is precisely the tensor P,,"/
of Eq. (5.17). We have changed the summation variable to
M in the second line to emphasize that one must collect
contributions from several Qp at each fixed order in M.
There are no linear vertices in Qi, so the M = 1 term is
absent, but both the N = 1 term Q; and the N = 2 term O,
of the first sum contribute to the quadratic M = 2 inter-
action of the second sum, and so on.
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In terms of the tensors P11,

,, Which are defined implicitly through the expansion in Eq. (5.41), the Feynman rule for

an (M + 1)-valent interaction with one classical field insertion is

Q0 pMM

/I/l’.-.

Using this Feynman rule, we can compute the value of the
diagram D,,, in Eq. (5.40). Such a diagram has two
vertices of the form (5.42), each with M = m + 1, along
with m loop momenta #;. The contribution from this
diagram is given by the integral

o ol <(2126>1d (/ ﬁ éﬁd)
R

m2 —

. <—
m+1
j=1 Py Puj
m+1
Pk bk | piiime —
x (H p’kaA>P " Ml"'ﬂm+1( C])-
k=1

Here the momenta of the internal lines are chosen to
be py=q-¢,, pj=¢;_,—¢; for l <i<m+1, and
DPmy1 = —C . sO that the total momentum satisfies

(5.43)

m+-1

ZP:‘ =4q.
i=1

Besides the diagrams D,, , drawn in Eq. (5.40), one might
ask whether we should account for additional diagrams
where a loop begins and ends on the same vertex. However,
diagrams of this form do not contribute, as they vanish in
dimensional regularization. We can see this by noting that
the momentum # running in such a loop will appear in the
vertex factor only in the combination £##¥, and in the
propagator in the form # Therefore, the value of any
diagram will be proportional to

Qe e g [l
e ="t a6

which we have seen vanishes in dimensional regularization
in the limit d — 2, as desired.

(5.44)

7/LM; V17..-

(5.42)

M
d
/d gPim, (o) [ e
k=1

VM

Next, let us consider the divergence structure of the
diagram D, ,. It is convenient to isolate the part of the
integrand which depends on the loop momenta and evaluate
it separately. To do this, let us define

() m ddf m+1 P
= (T12%) (o) (E ).
2)4ij} g(zﬂ)d iy pjlpm H « P

(5.46)
Here we use {ij} as a shorthand for the multi-index
{iv-iprijr o jm} and {pv} for {puy - pyavy -
Uity We will sometimes suppress these multi-indices
in writing &,,, for convenience. The quantity %, , deter-
mines the value of the diagram D,,, as

sinh?(y) diq . .
D — Pll"'lm+] v
m2 COShmH( )/ (Zﬂ)d vy m+l(q)

X (2 )%“D}}P]l Jm+1” S (—q),

(5.47)

so to understand the divergences in D,,,, it suffices to
understand those in £, ,.

One can evaluate ¥, , by performing the integral over
each loop momentum in succession. The details of one such
integration, namely the integral over the final variable ,,,
are presented in Appendix B 3. After evaluating this
single integral over £,,, one obtains a result proportional
to I(—4)#?_,. One can then apply the same argument
recursively to conclude that performing all m of the
integrals generates m factors of this form. After evaluating
all m integrals, the final dependence on the momentum ¢
takes the form

(5.48)
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where we show only the dependence on ¢ and d but
suppress the tensor structure in the i, j, y, v indices.*

It is also useful to translate the divergence structure of
Eq. (5.48) in dimensional regularization to an equivalent
dependence on a momentum cutoff A. For d = 2(1 + ¢€) we

have the limiting behavior I'(— %) ~1 and a divergence

proportional to % in dimensional regularization corresponds
to a logarithmic divergence of the form log(A). Therefore,
the m-loop, 2-vertex contributions from (5.48) yield diver-
gences of the form

v Ly\» m m
@) ~ (1)~ og . (549

This is a different divergence structure than the one
which we have seen in our study of the one-loop effective
action, which would necessitate the addition of different
counterterms. It is interesting to note that each of these
counterterms is classically conformal and has a different
higher derivative dependence on the external classical field
momenta.

We conclude this section with some further comments.
Even though our analysis for nonconstant backgrounds is
very preliminary, no clear organizational principle seems to
emerge in this hierarchy of divergences and necessary
counterterms. Though this might be a feature of our
perturbative approach, it begins to suggest that this non-
analytic model is nonrenormalizable, which might also
spoil the quantum conformal invariance of the model.
Ultimately, the theory might retain a sensible interpretation
only as an effective field theory. Yet, it remains a very
interesting fact that there are no quantum corrections for
constant background fields Cﬂ". We leave other open
questions for further future investigations.

VI. CONCLUSION

In this work, we have explored the space of interacting
chiral boson theories from several perspectives. We showed
that, when written in a Floreanini-Jackiw representation,
the property of nonmanifest Lorentz invariance is closely
related to stress tensor deformations: indeed, every para-
metrized family of Lorentz-invariant chiral boson theories
can be interpreted as a deformation by some function of the
energy-momentum tensor. In the dual description using
U(1) gauge fields with a Chern-Simons action, Lorentz
invariance is manifest but chirality (or self-duality) is not,
and in this setting we find that every family of self-dual
Chern-Simons boundary terms likewise obeys a flow
equation driven by a function of the stress tensor. We have

*Each integral yields six different symmetrizations of the
external indices. Thus, the exact form of an m-loop diagram
contains many different index structures and is challenging to
write explicitly in general.

also explained how a general boundary term for such a bulk
U(1) Chern-Simons theory imposes modified boundary
conditions on the gauge fields which lead to a nonlinear
self-duality condition for the currents; this mirrors the
analogous nonlinear self-duality constraints obeyed by
interacting Floreanini-Jackiw bosons.

We then studied the quantization of interacting chiral
boson models, focusing on a root-TT-deformed system of
free bosons. We characterized the finite-volume spectrum
for both one left-moving and one right-moving boson,
where the root-77 deformation acts as a rescaling of the
target-space radius, and also for two left-moving bosons
and one right-moving boson, where the deformation is
more complicated but can be analyzed perturbatively in a
large-momentum expansion. In doing so, we confirmed
that the zero-mode formula (1.7) derived via holography
does not apply to generic states, but does apply in certain
states with constant stress tensors. We also gave a classical/
heuristic argument on how a set of field redefinitions might
turn all these models into free ones. Finally, we have
studied the quantum effective action for the theory of root-
TT-deformed bosons with equal numbers of left- and right-
movers. Intriguingly, we find that the one-loop effective
action vanishes around classical backgrounds which are
linear in the spacetime coordinates.

There are several interesting directions for future
research, some of which we summarize in what follows.
Understanding more about these issues, and in particular
developing a clearer picture of field theories with nonana-
lytic interaction terms such as the modified scalar theory,
may teach us new lessons about previously unexplored
models within the space of quantum field theories.

A. Supersymmetry

There has been a great deal of work on supersymmetric
extensions of deformations constructed from the energy-
momentum tensor [113-121] and other conserved currents
[122], including analogous deformations of 1d theories by
conserved charges [71,95,123-125].

A natural direction for further investigation is to seek
such a supersymmetric generalization of the results in this
work. This would involve coupling a supersymmetric
theory of interacting chiral bosons and their fermionic
superpartners to supergravity, which would give expres-
sions for the fields in the stress tensor supermultiplet.

In the case of a single free chiral boson and its fermionic
partner, the procedure for performing this coupling to
supergravity was explained in [81], building on earlier
results for the supergravity couplings of nonchiral fields
[126]. The bosonic truncation of this supergravity coupling
reproduces the coupling to vielbeins which we have used in
this work. It would be interesting to generalize this
technique and couple an arbitrary number of chiral and
antichiral bosons, and their fermionic counterparts, to
supergravity, and then consider flows in the space of such
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supersymmetric interacting theories, much as we have done
here. In principle, one could perform this analysis either
using component fields—which was the strategy adopted in
[81]—or using a superspace formulation, such as the one
employed in [28,127]. One might also hope to interpret
these theories using a bulk description involving a super-
symmetric Chern-Simons theory, which would give a
supersymmetric generalization of the results in Sec. III.

B. Quantum Hall physics

A famous application of U(1) Chern-Simons theories,
and the chiral bosons which describe their edge modes,
occurs in the study of the quantum Hall effect. The essential
reason for this, as we mentioned in Sec. III, is that the
Chern-Simons term is more relevant at low energies than
the Maxwell term. Therefore, in an effectively (2 + 1)-
dimensional system—such as a flat slab of material subject
to a background magnetic field—one expects that the low-
energy effective action S[A] will be controlled by the
Chern-Simons term Scg[A]. Computing the associated
current which we defined in Eq. (3.14),

OScs

J; :
1754,

(6.1)

therefore gives predictions for the behavior of the system.
For instance, in the integer quantum Hall effect, this current
J; agrees with the Hall conductivity of an integer number of
filled Landau levels, if this integer v € Z is related to the
Chern-Simons level appropriately.

We have seen that a Chern-Simons theory on a manifold
with boundary supports chiral bosons on the edge. In the
quantum Hall setting, these chiral edge modes describe
propagating fluctuations in the charge density at the edge of
the physical sample. Remarkably, the quantum mechanics
of this chiral boson theory contains a great deal of
information about the interior of the sample. For instance,
by carrying out the quantization of a single Floreanini-
Jackiw boson as we described in Sec. IVA, one finds a
Hamiltonian which correctly predicts the spectrum (includ-
ing degeneracies) of excited modes for the Laughlin wave
function which describes the fractional quantum Hall
effect.”’

One might ask whether the modified Chern-Simons
boundary terms which we have considered in this work
could be used to model some variant of a conventional
quantum Hall system. For instance, it would be very
interesting if an experimentally realizable modification
of a quantum Hall droplet would subject the system to a
boundary term such as the one which is generated by the
root-TT deformation. If so, this could offer a way to study

’See the reviews [111,128], or the incomplete sampling of
some of the original works [129-131], for further discussion on
this subject.

the effective dynamics of the modified scalar theory—and
other theories obtained via stress tensor deformations—in
the laboratory.

C. Nonperturbative analysis

All of the results concerning the quantum theory of root-
TT-deformed bosons presented in this work have been
obtained in perturbation theory, by expanding around a
classical background. For instance, we have attempted a
perturbative analysis of the effective action and noticed that
a hierarchy of counterterms emerged in the modified scalar
theory. However, it seems likely that the most interesting
features of root-TT-deformed theories at the quantum
level—assuming that they exist—will only be visible
nonperturbatively. It is therefore important to find a way
to study the quantization of such root-77-deformed the-
ories beyond perturbation theory, which will likely require
a new perspective.

One way to reframe these deformed theories, which may
be useful for a nonperturbative analysis, is via geometry. In
the case of the related 77 deformation, many insights have
resulted from presentations of the flow in terms of coupling
to gravity [132,133] or random geometry [107], or by
realizing the deformation via a field-dependent change of
variables [53,134-136]. The root-T7T deformation appears
to admit a similar geometrical interpretation [137,138].
Perhaps relatedly, the modified scalar Lagrangian (5.2) can
be rewritten as

1 L
L= Eglwaﬂ(play(pl,
g" = cosh(y)n"

+ sinh(y) (

2049 ¥ ) — 0,0 P ¢/ )
V20,0'0 ¢4 " — (0,9'¢)2)
(6.2)

which is equivalent to a theory of free scalar fields coupled
to a field-dependent metric. Even at the perturbative level,
such a rewriting of the deformation may be useful—for
instance, it may be possible to adapt existing heat kernel
techniques28 which compute the quantum effective
actions for theories on background metrics to handle field-
dependent metrics such as (6.2), which could reproduce
results like those in Sec. V from a different point of view.
However, it would be even more useful if such a geomet-
rical presentation of the root-TT flow could furnish us with
a nonperturbative definition of the quantum theory.
Another potential way to approach the study of renorm-
alization of the modified scalar theory, and analyze its
quantum conformal symmetry, is by using nonperturbative
functional renormalization group approaches. An attempt

See Ref. [139] and references therein for a review.
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to use such techniques for TT deformed scalar theories has
been made in [140]. It would be intriguing to reattempt this
analysis for nonanalytic models and generic 77-like
deformations, including root-TT.

A third strategy is to bypass the classical Lagrangian (5.2)
and attempt to define the quantum modified scalar theory
directly by characterizing the set of local operators in the
theory along with their correlation functions. For instance,
one could proceed under the assumption that the theory in
question is a CFT, and see whether this leads to a contra-
diction.”” Here there appears to be an interesting tension.
Standard lore suggests that, in any CFT, with a conserved
vector current J, its Hodge dual *J must also be conserved.
For a putative theory of root-T7-deformed ¢', it appears that
the operators J;, = d,¢' should not be conserved at finite y
due to the source terms in the equations of motion, although
their duals J’ = ¢€,,0°¢" are conserved (at least for non-
compact scalars) OIf the quantum modified scalar theory
does exist, it would be very interesting to see how this tension
is resolved. Perhaps the quantum theory is not a CFT, or
perhaps it is not even a local quantum field theory, much as a
TT-deformed CFT is believed to become nonlocal due to its
Hagedorn density of states at high energies.
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APPENDIX A: PERTURBATIVE f(T¢,, T*T p)"
DEFORMED ACTIONS

Throughout this paper, we have considered various
deformations which are constructed from the energy-
momentum tensor. Although the most important examples
within this class are the TT and root-TT flows, it appears that
general stress tensor deformations nonetheless have inter-
esting properties—for instance, we have shown that every
parametrized family of interacting 2d chiral boson theories
which enjoys nonmanifest Lorentz invariance admits an
interpretation as a stress tensor deformation. This is a 2d
analog of similar theorems about 4d theories of duality-
invariant electrodynamics [4] or 6d chiral tensor theories [6].

Motivated by these observations, one may wish to study
2d deformations by other functions of the energy-momen-
tum tensor, besides the ones considered in the body of this
manuscript. One way to do this is to solve the resulting flow
equations perturbatively, i.e., order-by-order in the defor-
mation parameter. In this appendix we will use the symbol g
for the parameter of a general stress tensor flow, which is
not to be confused with the metric g, or its determinant.

Let us therefore consider the following general class of
operators in 2d which can be expressed in terms of the two
independent Lorentz scalars that can be built from the stress
tensor, namely Tr(T) = T%, and Tr(T?) = T*T

f(Taa? TaﬁTa[)’)' (Al)
We note that all higher traces of the stress tensor, Tr(7™") for
n > 2, can be expressed in terms of these two lower traces.
Given such an operator, we wish to study the flow equation3 !

= / xEf(T%,, TT 4p). (A2)

The solution to (A2) can be written as a series expansion,

+Zg /dszf

where we write f(7%,. T*T,g),, for the term of order ¢ in
the expression for the f(T%,, T% T,s) operator computed
from the action at order ¢”~!. Because each term in this

ar TaﬂTaﬂ)m—l’ (A3)

3!0ne can also consider flows driven by a function f which has
explicit dependence on the deformation parameter g. For instance,
the so-called TT + A, deformation is defined by performing a
TT deformation and then activating a cosmological constant
proportional to % See Refs. [143-148] for further details.
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expansion only depends on the data of lower-order terms, one
can build up the solution iteratively in powers of g.

As in Sec. II of the main text, we will work in the tetrad
formalism with a Lorentzian tangent-space metric and with
spacetime coordinates x* = (z,0). A general spacetime
metric can therefore be expanded in terms of vielbeins as

Gap = E“ o E” iy
2EE,

B _< ETEg+EET
EYE y+EEY

2E*yE,

) (A4)

The stress tensor associated with a general action S, which
has been coupled to gravity using the vielbeins E“,, can be
written as

1 aS
s EaEaa p
98 oS - oS S -
B 1<aE—+E+ o B e BNt g, E )

E agﬁ E+9 J’_dE’ E™y agﬁ E+9 +0E’ E”

(A5)
!

1 o
SO =3 / dx /=39 0.9' 0y’

We will use the general expression (A5) for the stress
tensor, along with the expansion (A3), to perturbatively
solve the flow equation (A2) for various choices of the
f(T%,. T*T,z) operator.

We begin by finding perturbative solutions for some of
the flow equations considered in the main text, before
generalizing to other deformations which were not con-
sidered in the body. In our examples, we compute the stress
tensor (A5) using the vielbein formalism due to computa-
tional speed in Mathematica, but we note that the metric
formalism gives identical results.

1. Root-TT perturbative flow for multiple bosons

For our first example, we will consider the perturbative
solution to the root-TT flow equation for an arbitrary
number of nonchiral bosons ¢, i = 1,...,N. This flow
equation was first solved in closed-form in [41].

We take a seed action which describes N free massless
bosons in Lorentzian signature

:/QJWWMWHEFWW%FMV%VWWW7 (6)
E

which have been coupled to gravity using the tetrad formalism. We then deform using the root-T7 operator, which

corresponds to the general f(T%,. T*T,s) operator of Eq. (A1) being

1 1
f(Taav TaﬁT{l/i) = R(}/) = 7§ \/TaﬂTa/} - 5 (Ta(l)z' (A7)
In this case, the perturbative solution (A3) to the flow equation takes the form
0) 4 iﬁ #xERV (A8)
m X m—1
m=1

Following the conventions in the main text, we use the symbol y for the flow parameter of a root-7T deformation, rather
than the variable g which stood for the parameter in a general deformation above.

The first few terms in this perturbative expansion are

N =

Y N
R | = 5\/(47’ —¢")@' =)+ )@+ 7)., R =5 (00 + @),

| e | ) ) 1

1
Rl = 3R I Rl = Rl =55 R e Rl = 135 R e (49)

gRl |ﬂat’

where “flat” means that we have set the vielbeins to their flat-space values (2.51).
We note that the quantities appearing in (A9) can be written in terms of the manifestly Lorentz-invariant combinations

(0,0'9") (0,0 ¢)) = (=g + ¢" ") (=" + @' 9)

= (@'9') + (#"9") = 2(¢'9")? (A10)
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and

2(0,¢'¢")(0,0/0"¢p)) — (0,0'0"¢")> = (¢'¢")* + (¢/'¢")> — 4(¢'¢")* + 244’ 9V o'
= (@' = ¢") (@' = ¢") (¢ + ¢") (¢ + ¢"). (AL1)

In terms of these quantities, one finds that the perturbative expansion to the flow equation converges to the solution (5.2),
0 Pt P Vnm P e L0
S = §0) 4 / dtdo <7Roy lftat + ERIJ/ e + gRoy | + ﬂRly e + mRoy lftat + ﬁR( lftat - >

—l/dzdea g (14540 7 4 op)
=3 a7 2 Toa T YV

3 5
i oy i .7
V20000 - 007 P14+ L0 )]

:% / d1d0 [cosh(y)0,g/ 0"’ + sinh(1)/2(0,6/# ') (0,00 ¢)) - (3,90 )?]. (A12)

2. Root-TT perturbative flow for Chern-Simons

An almost identical calculation can be performed to study the perturbative root-T7 deformation of the Chern-Simons
boundary action given in (3.8). The first few terms in the expansion are

1 - e — —
R(()y) |ﬂat = E \/(kl]AiwAjw + kl]Afva]'M))(kmnAmv'vAnv'v + k™ nArh v'vAr'L \7\/)3

1 . - 1 1
RY | = ~ix (kA Ajy + kA7, A57). RY |t = ER((’Y) [ fat: RY | = gR(ly) |ftats (A13)
where now “flat” means that we have set the vielbeins equal to the values (3.77) appropriate for a flat Euclidean tangent
space metric, following the conventions of Sec. III.
Therefore, the root-TT-deformed Chern-Simons boundary action is

. L 2
1M =1 awdw (—(k"f'AiWA o+ KA, A55) <1 +L 4 O(y“)))
i 8 oM; 2

] T - - _— - -_ 3
+ L dwdw \/(kiinwAjw + ]_CIJAEWA_'W)(km”AmWAnW + k" ”Ar'n v'vAr'l v'v) 4 + y_ + O(ys)
87 Jom, ! 6
= awaw [— cosh(y) (KUA A s + KTA7,A55)
87 oM
+ sinh(y) \/(kiinwAjw + ]_CZ]AEWA}W)(kmnAmwAnw + k™A A w)] . (A14)

3. TT perturbative flow for a single boson

For our next example, we will consider the irrelevant 77T flow rather than the marginal root-7'T flow. For simplicity, we
will restrict to a deformation of a single bosonic field ¢ whose seed action is that of a free massless field. From the general
f(T%,, T T,s) deformation of (A1), we recover the usual TT deformation by taking

1
F(T% T T o) = =5 (T = (1%,)2) (A15)
Evaluating a few of the terms in the perturbative expansion, we find

, - 15,
(=9 + 7)., TTylpy =——(—¢* + )" (A16)

_ 1 ) _
TT0|ﬂat =7 (_(pz =+ 4’/2)2’ TT, |ﬂat = 16

4

N[ =
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This series expansion then converges to the well-known 7T-deformed action,

/12

1 A
SW = / dtdo [5 (9" +?) =3 (=0 + ") +

(_ '2+ /2)3_5_13(_ '2_|_ /2)4+"_
4 YT 16 2

/dtde—[\/1+2/1 > +9?) - 1] (A17)

4. TTs perturbative flow for multiple bosons

Next, we turn our attention to a deformation which was not considered in the body of this manuscript. Consider a
deformation by the relevant TTs operator, which we define by

o 1/1 3
TT: = 3 (2(T”ﬂTﬁa - (T"a)2)> . (A18)

We will again consider a seed action for N massless free bosons, given in Eq. (A6). The perturbative expansion for the
TTs-deformed action takes the form

+Z / I*xETT:, |, (A19)
and a few of the coefficients are

_1 1. . N N . ol
TTl e = b (9" — @) (¢ — @) + @) (¢ + @),

-1 B _¢i¢i+§0/i§0/
TT g = e si 1Y (i 1Y (5 Ny NI
9-2[(¢" — ¢") (@' — ") (@' + #")(¢' +¢")]
1 ol ai\2 Ui 12 2 _ 14 Y] BN) )
7|y — - PP) (@ ¢")? +12(¢'9")* — 149'¢'9" (A20)

216[(¢" - )(f/) = @)@ +0")(@ + ¢")]
For this deformation, it does not seem possible to find an all-orders closed-form solution to the flow equation, but the
perturbative 773-deformed action to O(4) is

Lo iy A i\ (o NPy, (i N
5@ =/dtd9<§(—so‘<p +¢ ¢’)+§[(fﬂ — ") (' = @) (' + ") () + 9]
/12 —¢'¢' + ¢
Ty (9" = @) (9" — @) + @) (¢ + @)
R (99 + (¢ +12(¢'¢") — 14979 ¢ >
648  (¢' = ") (" — ") (@' + @) (¢ + @) '

(A21)

5. f(T%,, T*T ) perturbative flow for multiple bosons

To conclude this appendix, we note that one can also study the perturbative solution to the flow driven by the
f(T%. TT ) = f(z,x) operator of Eq. (A1) for an arbitrary function . We again take the initial condition for the flow to
be the action (A6) for N free massless bosons. The first few terms in the perturbative expansion are

0 2
A0 T Tl = £, (T TT )l = (52 (A2

where

N[ =

= %(r/)" — @)@ = @) + 7))+ ¢7) =5 (2(0,0' 9 (0,0 p7) — (,0'0"9")?).

y=—¢'¢'+¢"¢" = 0,0'0¢p". (A23)
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The perturbative action at O(g?) is

2
S = / dtd6 B + gf(x) + 2¢*xy <a];ix)> + - ] .

(A24)

Furthermore, to summarize in the table below, one can check Eq. (A24) recovers the correct coefficients at O(g?) for the
perturbative actions describing N free massless bosons considered in this appendix.

Operator f(x) Action

VTT NG SO = [dido+y\/E+5y + -] =1 [ drdblcosh(y)y + sinh(y)v/2x]
T? _1% S§W = fdtde[g—gwr%xyf . -}l: fzdz@@
TTs ;_% SW = [ dtdof + ;—;‘xz + ﬁx‘—% -]

In principle, one could also study the perturbative quantization of these more general f(7?,, T“ﬂTaﬂ)-deformed scalar
models. For instance, one could use the background field expansion and determine their Feynman rules as done in Sec. V
for the modified scalar theory, or study canonical quantization following Sec. IV.

APPENDIX B: DETAILS OF FEYNMAN
DIAGRAM CALCULATIONS

In this appendix, we collect the technical details of
certain evaluations of Feynman diagrams which occur in
the analysis of Sec. V.

1. One-loop, two-vertex calculation

Let us first focus on the divergence structure of the
diagram D, of EWq. (5.32), which we repeat here for
convenience:

As we mentioned around Eq. (5.35), the value of
this diagram can be expressed in terms of the simpler
quantity

(B2)

THPT _ / ddf (f + q)l/fﬂ (f + q)Tfp
2 = d 2 7] .
(27) (¢ +q)

All of the dependence on loop momenta is encoded
within Z5”°, which we will also write as Z, with
indices suppressed for simplicity. From the value of
1Z,, the original diagram D, is recovered from the
expression (5.34), which only involves additional depend-
ence on the classical background via the tensor P,,” and
an additional integration over the momentum gq.
Therefore, to study the divergences arising from the
loop, it suffices to perform dimensional regularization
of the quantity Z,.

Expanding out the products and introducing a
Feynman parameter x to resolve the denominator, we find

A6 LM+ OGP - PO+ G

e

(27)
di¢

(¢ + q)?
LOVETED G OGP - OETE - O GTEY

/ <2n>d/o @

[2(1 = x) +x(¢ + )’

(2m)¢

/ ddy /1 CYORECTEP + VORGP 4 GO + P ORGP
0 (2 +x(2¢,4" + ¢°)]?

(B3)

B / ddg /1 AOLTEN L OGP+ O+ GG
B 0 (2" + xg")? + x(1 — x)g*? '

(27)¢
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In the final step, we have completed the square in the denominator by adding and subtracting ¢°x>. We now shift the
integration variable from £# to

=" — xqg, (B4)

which causes the denominator to become even in #’, and thus terms in the numerator which are odd in £# will vanish by
symmetry. We immediately drop the primes on £# and write the surviving terms as

di¢ 1 COrEeTer X2 gheT gl (x* =2x + 1)g*t g ¢?
“:/CEFA &ﬂ+q%u—mV*Kﬂ+q%u—mV @+ (1 - )
L=t g O+ O+ ) (-2 xz)t]”q”qfq”}
(% + ¢*x(1 — x)]? (2?4 ¢*x(1 — x))?
_ /dd_f/l dx{ A A N X2 ghetgd (1 —x)*g*t g er
2a)Jo L+ @x(1-x) (2 +¢x(1-x)* [+ ¢x(1-x)P

1= U ) LT PP VLU LT P VLU 4T of UV Al AT AP 21_21/”1,0
L HL=X)(¢" @+ g O+ O+ g X X)]qqqq]’ (B5)

[£% + ¢*x(1 = x))? [£% + ¢*x(1 = x))?

where in the last expression we have factored various polynomials.
By a symmetry argument similar to the one discussed around Egs. (5.28) and (5.30), within the integral we can replace

products of loop momenta with symmetrized combinations of metric tensors:
1
P _f2 1
— d gf s
1
Ol —» ——— g gt ? gt gr). B6
~ddryl W e g7g) (B6)

Applying the replacements (B6), the integral 7, becomes

7 /ddf /1d ( A e ol e o S A L 4 22 (1-x)°¢"q"q"
2= | 5a X -
o \d(

(27)4 d+2) [*+¢*x(1-x)? d[?+ @x(1=x)  d[*+ ¢*x(1 —x))?
L 21 =X)(¢" "y + ¢ + ¢S + ¢7q'q) | (1 X)ZQDQ”C]T‘I”> (B7)
d (% + ¢*x(1 — x)]? 2+ ¢*x(1=x)* )

It will be convenient to make use of the standard result

dd—bﬂ lej =i(=1)“ F(ﬂ +%)F(a_ﬂ _%) (g—(l+ )
[ e O g S (5

which can be found, for instance, in Eq. (A.4) in [112]. Using (B8) with
A? = —¢*x(1 =x) (B9)

in Eq. (B7), we find

Ad-2 d d
+— D145 )01 =5 |x(1 =x)(¢"q"9” + ¢"q"q" + 9"a°¢" + ¢ 4"q")
Ad-2 d d Ad-2 d d
= (142 )r(1-2 )¢ g + =T 1+ )T( 1 =2 ) (1 =x)2¢" ¢’ ¢
+— (+2)< 2>xg”qq+d (+2>< 2)( x)°g"q"q
d—4 d d 2 2
+ AT 3 r 2—5 [x*(1 —=x)%q"q"q" q" |. (B10)
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Using gamma function identities and some algebra, one can simplify this to

iF(— gl) 1 Ad d-2
= A dx (7 (49" + ¢7g" + ¢°g") - —— "¢
dAd—Z dAd—Z
- (1-x)2g"q"q" - 2 x(1 =x)(¢"q"g” + 9" ¢"¢" + ¢"a°q" + 4"’ 4" q")
d(d —2)A%*
( 4) x2(1 _x)unquqrqp>_ (Bll)

After substituting in for A? using the definition (B9), we can now evaluate the resulting integrals using the formula

Adxx "1 =x)! = (a+ﬁ) B(a,p), (B12)

which we recognize as the definition of the beta function B(a, f). By doing this, we find

T _d |

7, =08 [ ar (=2 al1 = 0 - a0 1= 0 g
4(4x)2 Jo
+ql=x(1 = 0B (g + ¢7¢" + ¢g) — dq*2[(—x)T (1 = %) ¢ g g
+dg"?[~x(1 = )P (¢"q"g" + 9" ¢"¢" + ¢"4°¢ + g””cM’))

(=1 %’)( r@E+1)?

=t \CTaay O )
r 2 r 2
+dg*- 27(1“@(4:;) L lgoaia + ¢7ataf) + dld - 2)g* (<d+2)) 4"4"q°q’
L¢+1)?
+dq™ 2—%6;; 2)) (@°q"g” + ¢"¢'d" + 9" q°¢ + g”"q”q’)>~ (B13)

Note that each term in (B13) scales as ¢“, as expected. Factoring out the gamma functions, we have found

_l(_l)%r(_%)r(%+l)2 d( v ,pt vt T d—4 v T
2= 4(4n)f  T(d+2) [q°(¢" 9" + 979" + ¢"9") +d(d - 2)¢""q"¢"q°q"

+dg (g q" 9" + 979" + ¢Mq° ¢ + 974" q7) + (d+2)q" (¢ ¢ g + 97" q)]. (B14)

Finally, to perform dimensional regularization, we set the spacetime dimension to d = 2 + 2¢ and take ¢ — 0 using the
limiting behavior

1
IN-1-¢)=——y+1+0(¢) (B15)
€
for the gamma functions. Keeping only divergent terms, we arrive at the final expression
1 —i
1, = <g> W [ (d“F" + ¢7d" + ¢°97) +2(¢° 4" 9" + ¢ + 9T + ¢ T) + HI T+ 77 ).
(B16)

This completes the evaluation of the divergent contribution from 7,, which justifies the result (5.36) which was quoted in
the body of the paper.
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2. One-loop, n-vertex calculation

The n-vertex diagram D, can be computed via a
generalization of the method used in Appendix B 1. We
again write £ for the loop momentum, and we label the
external momenta as ¢;, for i =0, ..., n — 1, with momen-
tum conservation implying that

n—2
Guot == > 4
i=0

As we did with D, in Eq. (5.33), let us strip off various
factors of P,/ to write

D, = (—Ztalllh(}’))”/ (éig%ﬁ%(%))

diqy i g, i
X ((2 )d Plllzsllizl(ql) o (zﬂn)d Pﬂnzinlf_%nﬂZn—z (qn—Z)
Pl nll o (Gney In HiH2--Hon-1Fon B18§
Hon—1H2n

(B17)

where 7, is the simpler integral

(In)ﬂlﬂz”'llznf]ﬂz”

s
« <kH1 <f + ZO%)M_] (f + gq])m). (B19)

We will further break up Z,, into pieces and evaluate each
piece in turn. Let us write the integrand of (B19) as a
product

d’¢
(1’ )ﬂlﬂz Hon-tHon — ( ) 'p VH1H2 Fan-1Fon (BZO)
" 2r
where the symbol
n—1 i -2
Pn:H<f+qu> (B21)
i=0 j=0

refers to the collection of all factors in Z, which come from
propagators, and the symbol

k=1 Hok—1 k=1 Hok
V/‘lﬂ” Hon—1H2n — H < + q]) (f + Zq]) s
(B22)

which we will sometimes abbreviate as V), refers to the
pieces coming from vertex factors.

To highlight the divergence structure of the diagram D,,,
we will focus on performing the loop momentum integral of
various terms appearing in the product PV of Eq. (B20), and

neglect the additional structure arising from the contraction

with the various tensors P,",J,', to obtain D,, in (B18).

Let us begin by simplifying the product P of n
propagator factors. In general, we can write the product
of n propagators using a Feynman parametrization:

o= (oe)o(Snm1) 5o
(B23)

The product of propagators inside the loop can thus be
expressed as

o () ()]
(B24)

As > ,x; =1, we can expand and reduce the square
bracketed term to

_ [52 +3 % <2£ﬂjzl;q7 + (JZ[O:(]])ZH_”
“[(r Egra) - (S3m0)
+3 (; q ,> 2} B (B25)

We change variables in the loop momentum by shifting

il —ZZX,CI,,

i=0 j=0

(B26)

so that the bracketed expression becomes
J 27 -n i 2
Yoy a) | = |- (X2 k)
j=0 =0
i 2 -n
+X (X a)]
j=0

(B27)

where we have defined

- (Zl jzi;x,»qjy - in (2; q,,-)z- (B28)

1 J=
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Overall this allows us to write the propagators as Next, let us turn to the contributions from the vertices in

Eq. (B22), which yield factors of momenta in the numerator

-l of the integrand. Under the change of variables (B26)

P=(n-1) / (H dx; > <Z Xi— 1) (% =A%) which renders the denominator of P quadratic in ¢, the
i=0

vertex factor contribution becomes
(B29)

n n—1 i k—1 Hok—1 n—-1 i k—1 Hok
VHIH2 fonHon — H (f - Z xiq; + Z qj> <f - Z xiq; + Z qj) . (B30)
7=0 =0

k=1 i=0 j=0 i=0 j=0

We expand this product in descending powers of £ as only powers #2" and #>"~? will lead to divergent terms. We have that

2n 2n
VHI Ho1Hon — Hﬂtzk PR ZZ <H Lﬂm)fm x,q.a)f"(x,q,b) + O(£*4), (B31)
a=1 b>a \c#a,b

where we have defined for brevity

[l

n—1 i L%

“(x,q,a Z x,q’; + Z q;. (B32)

i=0 j= j=0
Next, we will replace products of loop momenta using the generalized symmetrization rule of Eq. (5.30). To ease
notation, let us write

Gt = gl L ghtaeitin) (B33)

for the symmetrized combination of derivatives appearing in this expression. When no confusion is possible, we will also
write g¥#} for (B33), where {u} is understood to refer to a multi-index {s} = y; - - - u,,. With this notation, the replacement
rule becomes

n £2(d = 2)11(2n — )11
Hoi-1 PH2i Hon B34
1.1:[1"”””_) d—21mm 9" (B34)

This transforms the vertex factor contribution to

VHIH2 Hon—1Hon —

£2(d —2)11(2n — 1)!! O 2d =2)N2n =3NS
(d=2+2n)!! (d—4+2n)!! 2;9{” Hato} fha(x, q, a) 1 (x, g, b)
a >a

+ 0. (B35)

gﬂl /‘2)1

In Eq. (B35), we have written gi###a#0} to refer to a product of the form (B33) in which the multi-index {u} runs over all
possible values except for the two indices u, and p,;, which are excluded.
Let us now combine the pieces and identify the divergent terms in D,. We can evaluate

dp
(_’[n)lllllz'“/lzn :/ uid ’PVM]MZ “Han

(2n)?
[ d B L (rd=2)n@n-n1
_/(27:) / (de> <;x, 1)(f2 A?) ( d—21mm 7
Dn—2 n— 2n  2n
+- <(5 f):gz TS S gt (. g.) (.. >+O(f2”_4)>’ (B36)
a=1 b>a
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in terms of the known integral
d 24 d _p_d
/ = 2{—2 =i(-1)* F('B+2),F(a p=3) A2(gath),
(2m)? (22 =A%) (4750 (@)L (5)
First, let us justify why the terms of order #2"~* and lower in Eq. (B36) will not give divergent contributions. A term

proportional to #2"~* in the parentheses of (B36), after multiplying the propagator factor (£? — A?)™", gives a term in the
integrand of the form (B37) with @ = n and f# = n — 2. Such a term gives a contribution

d 2(n=2)
/ﬁf— _ i(_1>n+(n—2) F(”

(2n) (= &%) (nfr(mr )

(B37)

d d
—2+9r2-9 A2(-n+(n-2))

(B38)

In the limit as d — 2, the two factors of gamma functions in the numerator of (B38) tend to I'(n — 1) and I'(1), which are
both finite since n > 2. Since we are only interested in computing the divergent contributions arising from these diagrams,
we ignore these terms. Similarly, any terms of lower order in £ can be evaluated in the same way but with even smaller
values of 5, which also lead to finite contributions from the gamma functions.

Let us therefore focus on the divergent terms. The term in the integrand proportional to #2" in Eq. (B36) takes the form
(B37) with @ = # = n. Similarly, the term in the integrand that scales as #>"~2 is of the form (B37) with @ = n and
p = n — 1. Evaluating the loop momentum integrals then gives

(L = =1 [ (de> (Zx ) (T (4;2;;)?(d)r(_g)w

2

i(d=2)"1@2n = 3)" Y atn} fia(x, g, a) f* (x, L(n 1+) _d _
(d—4+2n)!! ;;9 Fats} fita(x, . a) f* (x. q. D) - (4zz)zr(n)r(g)r(1 2)Ad 2). (B39)

To better analyze the divergence structure, it is useful to define shorthand notation for the two terms appearing in (B39),

which we call C5,"**" and D},

CM]"'llzzr = (d 2)”(2}1 _ 1) gﬂl ‘Hon F(l’l +%)
2n (d—=2+2n)!! (4z)iT(n)T(2)
D — 1d=2)1(2n = 3)!1 SN <
2n =

(d—4+2n)!!

a=1 b>a

Both contributions C5! > and D5 scale as ¢¢ and
contain a polynomial in x; of degree d. In C5! ", this g¢
dependence is contained within A?, and for D5, the
power of ¢¢~2 from A?%? is compensated by two factors of
g, one of which sits in each function f*.

Therefore, we conclude that in the limit d — 2, all such n
vertex diagrams have the same general structure as the two-
vertex diagram which we saw in (B16). In particular, both
C5. " and D" generate divergences of the form 1
because they are proportional to I'(—=%) and I'(1-9),
respectively.

We conclude that

1
HiHon
C2n

ng/‘l'"ﬂ?.n s

| A Zn: zn: gHa ghs gUHFHa s}

a 1 b>a

(B41)

_C_l Ad
2 b

Zzg{ﬂ#aﬂb}fua(x g.a)f*(x,q.b) -

C(n—1+9

RV A (B40
(4n)r(n)r ) )

d
r(1--)ad2

3. m-loop, two-vertex calculation

In this appendix, we will show how to evaluate the integral
over one of the m-loop momenta #; which appear in the
expression for the two-vertex, m-loop diagram of Eq. (5.40). It
suffices to integrate over the final momentum 7Z,,, since the
result may then be iterated to evaluate the other m — 1 integrals.

Therefore, let us focus on performing the integration over
¢, in the quantity &,,, of Eq. (5.46). Specifically, we will
compute the quantity

V1 pTm+1 — VUm
Lm.zz/ddbﬂmfm fm (fm fm—l) (fm

- fm—])fm
f%n(fm_fm—l)z .

(B42)

This object L,, , is proportional to the remaining integrand
that one finds by performing the integral over Z,, in the
definition of £,,. As we will see, after obtaining an
expression for L, ,, this result can be used recursively to
evaluate &, , itself.
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We notice the integral in Eq. (B42) is exactly of the form of the one appearing in the one-loop, two-vertex diagram which
we evaluated in Appendix B 1. Proceeding in the same way, we introduce a Feynman parameter x to write

l/ﬂl;;ln+] f:}{'“ (fm _ I/ﬂm_] )um(f

—Cpy)™

L, ,= [ d, dx m-l
2 / " [(1 _x)l’ﬂ%n+x(l’ﬂ _fm 1)2]2

_/ddf dxﬁ"m“f;'f“(fm—fm—l)””‘(f — )™

)

-,

[l’ﬂz +x(2fm'l'ﬂm—l_ -1 ]

[(f —l—xfm_l) —xzfz 1+xfm 1] ’

or after shifting the integration variable as ¢, — ¢,, — x£,,_,

(l’ﬂm - xz’ﬂm—l)ym+1 (l’ﬂm - xfm—l)fm+1 (l’ﬂm B (1 B x)l’ﬂm 1)vm (l’ﬂm B (1 - x)l’ﬂm—l)rm

L,,= [ d, dx B44
wa= [ @ 72 <l )2, (B4
We may keep only even powers of £, in the integrand, as odd powers vanish by symmetry:
fl;';zﬂ f;;nﬂ flr/r’zﬂ ffhn 2 f”mﬂ f7m+l f”m f‘tm 1— fl/mﬂ Tm+l fl/m Tm
Lmzz/ddfmdx X 1 - i’x( x) Lt
: (22 + x(1 = x)£2_,]?
x<1 _ x)fl/mm:ll f:ﬁ"“f;;"_ll/ﬂ;rm (1 _ x)2fym+lf m+1 f”m f;;n | +x (1 _ X)pr’;;wrll I/ﬂ”,ln:l f”m me (B45)
[l’ﬂ%rl+x(1 _x)fm—l] '

We now replace products of 7}, with powers of 7, and symmetrized metric factors, following the generalized
symmetrization rule (5.30), which yields

4 ) i )
L _ / dd{ W d(3di:12) g(l/m+1m+1gl/mf,n) + x2 %gﬂml’m fl/,nJrl meJrl 4 x(l ) f‘}n gymﬂzzm bp;;nji fn’ln—l
" ' 122+ x(1 = x)22_ |2

i Uy AYm+ m 3 1 Tomsl I/m Tm _ Vim+1 pTm+1 pVm T
+X(1 _x) L;’” mH mfm llf (1 _x>2%gum+ " f f +x2(1 x)2l’ﬂm—lll’ﬂm—ifm—lfm—l ) (B46)
[0 +x(1=x)¢7

Splitting the numerator up, we can once again apply the standard formula (B37) with

A? = —x(1 —x)?

m—1°

(B47)

which gives

i 1 3 d d x? d
Lm - @@ dx - (Dm+17m+l me)F 2 + _) F (_ _> Ad + — HmYm f””'+l fT”'+]F(1 + _)F< — _) Ad_

1- . d d 1- b d
+x( x)g”m“”mfn:'iif,,:‘_lF(l+§>F<1—‘>Ad‘2+x7(dx) T 1F< F<1 >A“

d 2 2

1-— 2 v T v, T
_|_< —dx> gmerITerlflr:,:”_lf:’;"_lF(l —|—g>r<1 _§> Ad_z +x (1 _x)ZKn‘rlnﬁ»llan»]f " fm (g (2__> Ad 4)

(B48)

Replacing A using its definition in Eq. (B47), we see that each term contains d overall factors of loop momenta:
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i

1 3 d
- - (ym+17m+l m7m> — PR— —_ 2 d
L, (47:)(2‘1F(§)A dx(d(d—l— 2)g g F(2+ 2)F< 2> (x(1 =x))2t5,_,

1 Vit i d d
+dg””'y’"fn;’fif”:’iir(l +2)F<1 —2>xg+1(1 —x)g_lf;in__zl

tgoediien n(1+5)r(1-5) 6l -0t
#gar (145 (1=5) 6t - e
pgoermr (14 9)0(1-§ ) 0t i
4T (g) r (2 - g) (x(1 = x) )4t £mes pn lf;;"_lfg;_ﬁ) .

(B49)

We now use the identity I'(1 + x) = xI'(x) to factor and cancel the gamma functions, and finally evaluate the Feynman
integrals, giving the result
ir(—9) <3(1 +4)4 (d 2 @)(-9) d d
— <Vm+17m+] me>r — + 1 fd + u v f”m+lf‘tm+lr‘ — + 2 F — fd_z
(4ﬂ')gr(d—|— 2) g -gv 2 m—1 d g m—1% m—1 2 m—1

m,2

d(d+2) 2

d

é(_i) d dy T, d d d 2 v, 7, v, 7
+2 d2 g”m+1’m+11“<§+2>F<§>f,,j‘_1£nf_lffn‘_21 + <1 —§> <—§>F<§+ 1) f,,;'_*l‘f,,;’_*if,;;'_lf,,;"_lfg;“l>.

(B50)

%(_%) 12 d 2 Tim+1 pTm d—2 %(_g) 7 12 d ? Yt 2 d—2
2> 2 vl 5+1 A AN +Tgm+l T 5+1 AN AN A

We see that all terms scale as 29 _, and the only divergent gamma function is I'(—%). This establishes the result used in the
body of the paper, in the text above Eq. (5.48), which can then be applied iteratively to evaluate the remaining loop integrals.
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