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We consider rotational holographic transport in strongly coupled 2þ 1-dimensional systems, from the
point of view of 3þ 1-dimensional gravity. We consider the moment of inertia I as a kind of transport
coefficient, identified with the moment of inertia of a charged rotating black hole in AdS4 background.
In the low-temperature region, we find the behavior of the density I=A with temperature T and angular
velocity Ω and find a quadratic behavior for ∂ðI=AÞ=∂Ω with T, in the presence of some charge Q.
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I. INTRODUCTION

The AdS/CFT correspondence (see the book [1] for a
review) was initially a top-down construction in string
theory, starting with Maldacena’s seminal paper [2]. In the
case of specific theories, related to AdSn × Xm back-
grounds, for instance, N ¼ 4 Super-Yang Mills vs
AdS5 × S5, one has a map between perturbative classical
gravity and nonperturbative field theory, or vice versa,
starting with [3,4]. Finite temperature for the field theory
was introduced in [5] by having black holes in the anti–de
Sitter (AdS) background, which could, in those cases, be
thought of as a near-horizon near-extremal limit of non-
extremal branes [6].
The phenomenological extension of the original AdS/

CFT correspondence led both to non-AdS backgrounds
(the “gauge/gravity duality”) and to general theories in AdS
background, not necessarily coming from string theory, for
which one of the most common applications is to strongly
coupled condensed matter systems (AdS/condensed matter
theory, see the book [7] for a review). Since these are
usually at finite temperatures, black holes in AdS back-
grounds are usually used for the description of more
realistic systems.
One of the most relevant phenomena in condensed matter

is transport, so holographic transport has been the subject of a
lot of research (see, for instance, [7,8]). Usually, one focuses
on the transport of electric charge and heat, with the transport

coefficients being electric and thermal conductivities and
thermoelectrical (mixed) ones.
But it is interesting to consider also rotation in the field

theory for the condensed matter system, which would
correspond to considering a rotating black hole in AdS,
so Kerr-Newman-AdS black hole. This would be, for
instance, the case of a Bose condensate at very low
temperatures (for instance, after using evaporative cooling
to get to super low temperatures), rotating in a magnetic
trap. In that case, it would be very hard to measure electric
or heat transport, but rotation can be thought of as a
different kind of transport. Indeed, we can impose rotation
at a certain angular velocity ω (input), for instance, by
fixing ω for the trap and find the resulting angular
momentum J of the condensed matter material (response
of the system). In linear response theory, we would have

J ¼ Iω; ð1:1Þ

where I, the momentum of inertia of the material, would be
defined as the transport coefficient in this case. Then, this
must be understood as δJ ¼ Iδω, for δω → 0.
Rotating field theory systems via holography have been

considered before in the context of strongly coupled quark-
gluon plasma (for example, in [9,10]), while in the context
of condensed matter, only in the context of holographic
superconductors (see, for instance, [11]).
However, we would like to understand them a bit more

generally, in the context of more general thermodynamics,
specifically black hole thermodynamics on the gravitational
side, as well as to study the implications of rotation viewed
as transport.
The most general axially symmetric black hole solution

to Einstein’s equations is the Kerr-Newman one containing
mass, charge, and angular momentum. This solution also
exists on a background with a negative cosmological
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constant and, therefore, can be used in AdS/CFT, as its
asymptotic behavior is well understood.
In [12], shortly after the AdS/CFT correspondence was

defined, the effects of rotation were investigated under the
duality. In particular, the angular velocity at the boundary
of space-time was shown to be finite, and therefore the
relation to the field theory has to be appropriately defined,
such that the thermodynamics of the black hole is described
correctly. The finite angular velocity at the boundary
translates to rotation in the dual field theory, with a
modification that we will present.
The paper is organized as follows. In Sec. II we briefly

review the most important properties of the Kerr-Newman-
AdS space-time that will be relevant to our subsequent
description of thermodynamics and moment of inertia,
presenting the low-temperature expansion explicitly.
Section III contains the main results for the angular velocity
and moment of inertia of this solution. We also present an
interpretation of the dual field theory and how the moment
of inertia can be seen as a response function in the
thermodynamic sense. Finally, in Sec. IV we summarize
the results and discuss open possibilities.

II. CHARGED ROTATING BLACK HOLE IN AdS

The Kerr-Newman solution of Einstein’s equations
describes an axially symmetric black hole with mass,
angular momentum, and electric charge. It was first
introduced in [13], in an asymptotically flat background.
The same type of solution was then obtained in an
asymptotically AdS space-time background [14] and is
particularly interesting in the context of holographic
duality, as the theory on the boundary has an associated
angular velocity. In Boyer-Lindquist coordinates the line
element reads

ds2 ¼ −
Δr

ρ2

�
dt −

a
Ξ
sin2θdϕ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ sin2θΔθ

ρ2

�
adt −

ðr2 þ a2Þ
Ξ

dϕ

�
2

; ð2:1Þ

where we have defined

ρ2 ¼ r2 þ a2 cos2 θ;

Δr ¼ ðr2 þ a2Þð1þ l−2r2Þ − 2mrþQ2;

Δθ ¼ 1 − l−2a2 cos2 θ;

Ξ ¼ 1 − l−2a2 ð2:2Þ

and use units such that c ¼ GN ¼ 1. The parameter a is
associated with the rotation of the black hole,m to its mass,
Q to the electric charge, and

l−2 ¼ −
Λ
3

ð2:3Þ

is the AdS radius, defined relative to the negative cosmo-
logical constant Λ.
As discussed in [12,15], the solution is regular as long

as some conditions are satisfied. These conditions can be
seen as constraints on the parameters m, a, Q and are
obtained from investigation of the event horizon, which is
defined by

Δrþ ¼ 0; ð2:4Þ

rþ being the largest root of the equation. It can be shown
that the cosmic censorship is satisfied only if the mass
parameter is above a certain critical value,

mc¼
l

3
ffiffiffi
6

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þl−2a2Þ2þ12l−2ða2þQ2Þ
q

þ2ð1þl−2a2Þ
�

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þl−2a2Þ2þ12l−2ða2þQ2Þ
q

−ð1þl−2a2Þ
�
1=2

:

ð2:5Þ

The parameter a is also bounded by a2 ≤ l2. When the
inequality is saturated, the boundary of the space-time
rotates at the speed of light. This defines an extremal black
hole and was thoroughly investigated in [12].

A. Thermodynamic variables

We quote the main results for the Kerr-Newman-AdS
thermodynamics, which was extensively studied in [15].
The temperature is obtained from the regularity of the
solution with analytical continuation of the time coordinate
t → iτ and rotation parameter a → ia. The regularity
conditions at the horizon require the periodicity conditions
τ ∼ τ þ β in τ, and ϕ ∼ ϕþ iβωðr → rþÞ in the polar
angle. Explicitly, the temperature is given by

β≡T−1 ¼ 4πðr2þþa2Þ
rþð1þa2l−2þ3r2þl−2− ða2þQ2Þr−2þ Þ : ð2:6Þ

The area of the (outer) horizon rþ can be computed
directly from the metric, giving

A ¼ 4πðr2þ þ a2Þ
Ξ

; ð2:7Þ

where Ξ was defined in Eq. (2.2). The area in the equation
above is related to the entropy by the Bekenstein-Hawking
formula S ¼ A

4
(for GN ¼ 1).

The angular velocity and angular momentum are the
most relevant quantities for our work. Space-times with
nonvanishing angular momentum in asymptotically AdS
backgrounds are particularly interesting because the
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angular velocity at the boundary is finite [12]. For general r
the angular velocity reads

ω ¼ aΞ
Σ2

½Δθðr2 þ a2Þ − Δr�: ð2:8Þ

This can be obtained by writing Eq. (2.1) in the so-called
normal form,

ds2 ¼ −N2dt2 þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2

þ Σ2 sin2 θ
ρ2Ξ2

ðdϕ − ωdtÞ2; ð2:9Þ

where

Σ2 ¼ ðr2 þ a2Þ2Δθ − a2Δr sin2 θ; ð2:10Þ
and

N2 ¼ ρ2ΔrΔθ

Σ2
: ð2:11Þ

The “thermodynamic angular velocity” is given by the
difference between the value of the angular velocity at the
horizon and at infinity,

Ω ¼ lim
r→rþ

ω − lim
r→∞

ω ¼ að1þ r2þl−2Þ
r2þ þ a2

: ð2:12Þ

Note that this is different from the result in flat space,
where there is no rotation of the solution at r → ∞. In AdS
space, because of the finite value at infinity, the relation to
the boundary field theory is given by the above difference.
The angular momentum and total mass can be computed

by Komar integral methods, whereas the total electric
charge is obtained by using the computation of electric
potential flux, as in [16]. One finds, in terms of the constant
parameters a, m, Q of the solution, that the total angular
momentum, total mass, and total electric charge are
given by

J ¼ am
Ξ2

; ð2:13Þ

M ¼ m
Ξ2

; ð2:14Þ

Q ¼ Q
Ξ
: ð2:15Þ

Finally, the electric potential is obtained similar to the
angular velocity: one computes the difference between its
value at infinity and the horizon,

Φ ¼ Qrþ
r2þ þ a2

: ð2:16Þ

These are all the thermodynamic variables of the system,
which can be used to write the relevant thermodynamic
potentials.

B. Euclidean action and thermodynamic potentials

The metric (2.1) is a solution of the equations of motion
obtained from the action

S ¼ −
1

16π

Z
ddx

ffiffiffiffiffiffi
−g

p ðR − 2l−2 − F2Þ; ð2:17Þ

with Fab ¼ 2∂½aAb� the field strength of the electromagnetic
field, and F2 ¼ FabFab. The gauge potential reads1

A ¼ −
Qr
ρ3

�
dt −

a
Ξ2

sin2 θdϕ

�
: ð2:18Þ

To obtain a finite result for the action (which is mapped to
the thermodynamics potential), we have to do the holo-
graphic renormalization [17–20]. This process involves
adding two terms, one associated with the boundary and
a counterterm necessary to remove divergences. These terms
will not affect the equations of motion and are included with
the only purpose of making the (Euclidean) on-shell action
finite. Explicitly, the expression is

I ¼ Ibulk þ I∂ þ ICT

¼ −
1

16πG

Z
M

d4x
ffiffiffi
g

p ½R − 2Λ − F2�

−
1

8πG

Z
∂M

d3x
ffiffiffi
h

p
K þ ICT; ð2:19Þ

where we have already written t ↦ it. The second term is
theGibbons-Hawking term, a surface term depending on the
induced metric at the boundary hij, and the trace of the
extrinsic curvature K ¼ ∇jnj, where nj is the vector
orthonormal to hij.
The counterterm, ICT has a standard form [21]2

ICT ¼
Z
∂M

d3x
ffiffiffi
h

p �
2

l
þ lR

2

�
; ð2:20Þ

where R is the Ricci scalar of the induced metric at the
boundary.
Choosing the boundary metric to be ∂M ¼ S1 × S2,

where S1 is the time circle and S2 is a two-sphere with large

1The most general form of the potential contains another term
dependent on the magnetic charge. Here we are setting it to zero
from the beginning.

2Potential curvature squared terms RijRij and R2 vanish on
the boundary at infinity, so were omitted.
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radius, which is sent to infinity after integration, the on-
shell action is

I¼ β

4l2Ξ

�
−r3þþl2Ξrþþ

l2ða2þQ2Þ
rþ

þ 2l2Q2rþ
ðr2þþa2Þ

�
: ð2:21Þ

The on-shell action (2.21) is related to the thermody-
namic potential via the temperature,

GðT;Ω;ΦÞ ¼ TI; ð2:22Þ
from which we can, in principle, extract the other relevant
quantities by taking derivatives, such as the entropy S, the
angular momentum J, and the electric charge Q. However,
this is a very hard task to do analytically, due to the relation
between the black hole parameters rþ; a; Q and the
thermodynamic quantities presented in Sec. II A.

C. Low-temperature expansion

To completely rewrite the thermodynamics in terms of
the variables presented in Sec. II A, we need to solve a
system of three equations relating frþ; a; Qg to fT;Ω;Qg.
These are Eqs. (2.6), (2.12), and (2.15). This is a nonlinear
system of equations, and we resort to approximations to
solve for the temperature, which is the variable we are most
interested in, and to numerical methods to solve for the
rotation parameter a. The relation between Q and Q is
straightforward from Eq. (2.15).
Equation (2.6) has four distinct roots when we solve it

for rþðTÞ. To choose one of them, we check which are real
and greater than zero for any a, Q. The only root that
satisfies these criteria is

rþ ¼ r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2 − l2 þ η

p
ffiffiffi
6

p ; ð2:23Þ

where

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ l4 þ 14a2l2 þ 12Q2l2

p
: ð2:24Þ

From the definition of rþ, Eq. (2.4), we have

m ¼ 1

2rþ
½ðr2þ þ a2Þð1þ l−2r2þÞ þQ2�: ð2:25Þ

For r0 given by (2.23), one finds thatm ¼ mc, meaning that
we are close to the extremality regime of the black hole.
We rewrite the temperature as

Tðr0 þ δrÞ ≈ Aða;QÞδr; ð2:26Þ

where we keep δr up to the first order in the expansion. We
find the function Aða;QÞ is

Aða;QÞ ¼ 3½η2 − ηða2 þ l2Þ�
l2πðl2 − 5a2 − ηÞða2 þ l2 − ηÞ : ð2:27Þ

Now if we let T become an independent variable we can
rewrite δr ¼ TA−1ða;QÞ, and have T ≪ 1, such that the
condition for δr ≪ 1 is always satisfied. So by replacing

rþ ↦ r0 þ δr ð2:28Þ

in the expressions (2.12) and (2.13), for angular velocity
and angular momentum, we have them close to zero
temperature.

III. MOMENT OF INERTIA AND HOLOGRAPHIC
ROTATIONAL TRANSPORT

A. Moment of inertia

We are interested in the thermodynamics and holo-
graphic transport of the dual system, based on the for-
mulas from the previous section. As mentioned in the
Introduction, the relevant quantity is the moment of inertia
of the system, defined by

I ¼ J=Ω; ð3:1Þ

where Ω and J were defined in Eqs. (2.12) and (2.13),
respectively. To obtain the expression in terms of the
temperature we note that the angular momenta (2.13)
can be written as

J ¼ a
2Ξ2rþ

½ðr2þ þ a2Þð1þ l2r2þÞ þ q2�; ð3:2Þ

where the definition of rþ was used to write m in terms of
the horizon radius. The low-temperature expansion is
achieved by the replacement rþ → r0 þ δr, as in (2.28).
To avoid considerations regarding the physical size of

the dual object being described by the dual theory, we will
investigate the behavior of the density of the moment of
inertia, I=A. The area A is given by Eq. (2.7), and I ¼ J=Ω
is first determined in terms of parameters frþ; a; Qg, then
solved for rþ and Q in terms of T, Q. Finally, we will use
numerical simulations to plot these as functions of the
rotation parameter a and solve the equation in terms of Ω.
From now on we consider l ¼ 10 and therefore restrict

a ≤ l. Choosing this value for l ensures that the cosmo-
logical constant Λ ∼ 10−2 ≪ 1, from the definition of the
AdS radius in Eq. (2.3). The action then is just the Einstein-
Hilbert with a Maxwell term, allowing us to neglect stringy
corrections and apply the classical gravity approximation.
We are interested in results that are expressed in terms of

physical variables, obeying physical constraints, which can
also be interpreted from the point of view of the dual field
theory. The physical variables are ðJ;M;QÞ and (angular
momentum, mass, charge) and not the black hole param-
eters ða;m;QÞ, as well as Ω, A (angular velocity, area).
The angular velocity must be smaller than the speed of

light and this becomes a constraint on the relevant physics.
As discussed in [15], the angular velocity will be smaller
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than the speed of light when Ω < 1=l, in which case one
can define a timelike Killing vector globally outside the
event horizon, such that the black hole is in thermal
equilibrium with thermal radiation all the way to infinity,
and thermodynamics can be consistently defined.
Even though a is not a physical parameter, we consider

its variation with the physical velocity Ω, as a function of
the chargeQ (for fixed T, understood as the temperature of
the dual field theory), in Fig. 1. We observe that at physical
charge Q ¼ 0 (and thus also at parameter Q ¼ 0) for small
a, we are in the unphysical region of Ω > 1=l ¼ 0.1. For a
clearer picture, we plot a vs Ω for Q ¼ 0 and Q ¼ 3, for
T ¼ 0 and T ¼ 0.1, as in Fig. 2, finding that Q ¼ 0 is
unphysical for small a (small J). From the black hole
perspective, it is clear that small temperatures are achieved
when we are near criticality, so small Q means that a must
be close to its maximal value, and then Ω is also large. But
from the point of physical parameters (interpretable, and
tunable in the dual field theory), it is less clear.
The moment of inertia grows with system size, and the

relevant system size in the black hole is its area, mapped to
the area (“volume”) in the 2þ 1-dimensional field theory.
Then, as we already mentioned, if we want to obtain results
that are independent on the area, we should calculate
densities, in particular the density I=A, moment of inertia
over area.

We first plot the density of the moment of inertia I=A as a
function of Ω, at various fixed Q’s, but for T ¼ 0.1, in
Fig. 3. At fixed temperature and different (fixed) electric
charges, the main difference with higher charges is the
value of I

A at zero angular velocity. Then in Fig. 4 we plot
the density of the moment of inertia I=A as a function of Ω
at fixed Q ¼ 3, but for different temperatures. Both
pictures correspond to the same plot, the difference is
the left panel is enlarged for smaller values of I=A.
Values of Ω that are interesting from the point of view of

the dual field theory are ones that are well below the speed
of light (the maximum line at Ω ¼ 0.1). But we see that, in
these cases, I=A is almost constant as a function of Ω, the
only change is that I=AðΩ ¼ 0Þ depends on T and Q. This
is reasonable since the moment of inertia should not go to
zero at T ¼ 0 or Ω ¼ 0, but rather to a constant.
On the other hand, that means that it is better to plot its

variation ∂ðI=AÞ=∂Ω as a function of Ω or T. For the
purposes of the dual field theory, usually the dependence
on the temperature is more interesting. Therefore, in
Fig. 5 (up), we have plotted ∂ðI=AÞ=∂Ω as a function of
T, for two (small) values of Ω and Q ¼ 3. In these cases,
the dots are fitted with a quadratic (ax2 þ bxþ c), as the
blue line.

FIG. 1. Angular velocity Ω and corresponding values of a. The
temperature is fixed at T ¼ 0.1.

FIG. 2. aðΩÞ for T ¼ 0 and T ¼ 0.1. Left: charge Q ¼ 0. Right: charge Q ¼ 3.

FIG. 3. Moment of inertia over area I=A, as a function of
angular velocity Ω, for nonzero charge. The temperature is fixed
at T ¼ 0.1.
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On the other hand, in Fig. 5 (down) we also plotted the
same at much larger Q, Q ¼ 100, and we obtain that there
is a minimum around T ¼ 0.2. This is indicative of a phase
transition, for this large Q value, though the large value is
probably unphysical.

B. Dual theory interpretation

It was already found in [11] that the Kerr-Newman-AdS
space-time describes some properties of rotating super-
conductors in the strongly coupled regime.
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FIG. 4. Moment of inertia over area I=A vs angular velocity Ω, for different temperatures. The charge is fixed at Q ¼ 3.
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FIG. 5. The variation dðI=AÞ=dΩ against T, at fixed Ω andQ ¼ 3, for Ω ¼ 0.001 (upper left), Ω ¼ 0.0005 (upper right), and also for
Q ¼ 100 and Ω ¼ 0.001 (down).
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But, more generally, we want to consider the thermo-
dynamics of strongly coupled condensed matter systems
under rotation as coming from the thermodynamics of the
rotating black hole in AdS. As we have seen, one important
ingredient, in the presence of rotation, is the overall charge.
In this case, we want to think of rotation as a kind of

transport, as explained in the Introduction: we input the
angular velocity Ω (which is a tunable quantity), and in
linear response theory, we find the angular momentum
J ¼ IΩ, so the transport coefficient is I ¼ J=Ω.
But on the gravity side, the area (volume in 2þ 1

dimensions) of the material is mapped to the horizon size
A so, in order to have a result independent of the size of the
material, we should divide by it, which is why we have
plotted the density ofmoment of inertia I=A, instead of just I.
We have obtained, not surprisingly, since I characterizes

the material just like the effective mass m� ¼ p=v, that I is
approximately constant as function of Ω and T at small
temperatures T, which are relevant for strongly coupled
materials. We have therefore plotted the derivative
∂ðI=AÞ=∂Ω as a function of T, and we have obtained an
approximately quadratic behavior, which should be some-
thing that could be experimentally measured.
We have also found that the system needs an overall

charge in order to have a sensible map to the gravity dual at
low temperatures and small rotations. This means that the
experimental setup relevant for this cannot be a pure
Bose condensate at very low temperatures, but it must
have some electrically charged component, perhaps some
free electrons.
If the charge becomes too large, we have found that

∂ðI=AÞ=∂Ω decreases as a function of temperature and then
starts to increase after a minimum, which could indicate a
phase transition. Except that values of Q are large enough
so that it probably would break up the strongly coupled
material, and the temperature is large enough that the
(small T) approximations used are not valid. So we do not
expect this behavior to be relevant in the real world.

IV. CONCLUSIONS

In this work we have considered holographic rotational
transport in 2þ 1 dimensions, specifically the moment of
inertia I ¼ J=Ω, understood as a transport coefficient, from
the point of view of the gravity dual Kerr-Newman-AdS
black hole in 3þ 1 dimensions and its thermodynamics.
Since the expressions we obtained were considerably
complicated, we used an approximation, restricting to
low temperatures, which is the domain of most interest
for strongly coupled 2þ 1-dimensional condensed matter
systems. For the relevant formulas, specifically for the
density of the moment of inertia I=A, we used numerical
approximations and plotted the solutions in Sec. III.

We have found that the density of the moment of inertia
I=A changes littlewithΩ and T for small T, as expected for a
quantity that in solidswould be a constant, butwe have found
that its derivative ∂ðI=AÞ=∂Ω as a function of T is a rising
quadratic form, for not too large a chargeQ, something that
could be checked experimentally. However, we note that
having a nonzero charge, which was necessary for a con-
sistent map to the gravity dual, would mean perhaps that the
strongly coupled system (perhaps Bose condensate) would
need to have an electron component.
We should also note that the near extremality of the

black hole was a feature of the regime we were interested
in the field theory: it was necessary in order to have a
small temperature T, yet a nontrivial rotation Ω and mass
M (as well as a nonzero entropy). Going further away
from extremality would imply a larger temperature T, but
that is of less interest in condensed matter (as well as
being harder to analyze in gravity). Also, in this work we
have considered a spherical black hole horizon. One could
consider also a planar horizon, but it is unclear how to
analyze that in the case of a two-dimensional rotation in
the planar horizon. Other possibilities that have been
considered are cylindrical or toroidal horizons (since in
two spatial dimensions, these correspond to just identi-
fications of the plane), the former, for instance, in [10],
with cylinder rotation around its axis, but it is not clear
how they are related to the rotation of a condensed matter
system.
For future research, it would be interesting to study linear

transport of velocity, meaning the effective mass m�,
relating an input velocity v to an output momentum p,
p ¼ m�v, but that would be both harder to simulate in the
gravity dual and harder to devise an experimental setup.
It would also be interesting to consider the interplay of

rotation with other factors, like a magnetic field, which is
present in the relevant cases: the evaporative cooling of
Bose-Einstein condensates down to very low temperatures
is usually done in the presence of magnetic traps. The
(condensed matter) theory of rotating Bose-Einstein con-
densate in traps was already started, for instance, in [22].
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