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Considering a doubly holographic model, we study the black hole information paradox for the
eternal AdSd-RN black hole coupled to and in equilibrium with a d-dimensional conformal bath whose
state has been deformed by the charged scalar field coupled to a U(1) gauge field. Without a brane, the
spontaneous symmetry breaking of the gauge field on boundary systems can induce a second-order
phase transition of the charged scalar field at the critical temperature, known as holographic
superconductors. The bath deformation can significantly change its entanglement dynamics with the
black hole, resulting in variations in the Page curve and Page time. Our results indicate that
characteristic parameters of the Page curve, such as entanglement velocity, initial area difference and
Page time, can be used as suitable probes to detect superconducting phase transitions. In particular, the
entanglement velocity can also probe both Kasner flows and Josephson oscillations. When keeping the
endpoint of the radiation region fixed at twice the critical Page point, the entanglement velocity
(the internal backreaction) has a more significant influence on the Page time compared to the initial area
difference (the external backreaction).
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I. INTRODUCTION

A recent study on the black hole information paradox
confirms that information within a black hole can be
extracted through Hawking radiation, preserving the infor-
mation conservation and the quantum-mechanical unitarity
[1–4] (see, e.g., [5] for a review). Unlike previous calcu-
lations by Hawking [6], the novel research approach
focuses on the computation of the fine-grained entropy
of the late-time “radiation” regionR, emphasizing the need
to simultaneously consider the fine-grained entropy of an
interior region within the black hole, referred to as the
“island” I whose boundary corresponds to a “quantum
extreme surface” (QES) [7] ∂I .

SðRÞ ¼ min

�
ext

�
Areað∂IÞ
4GN

þ SmatterðI ∪ RÞ
��

: ð1Þ

1 Due to the entanglement between antiparticles within the
island and outward-radiating positive particles, when con-
sidering the entanglement entropy of both regions together,
particle-antiparticle pairs cancel each other out, resulting in
a total entanglement entropy smaller than that of the
isolated radiation region. This alignment with the Page
curve [8,9] demonstrates that the Hawking radiation
maintains unitarity, affirming the conservation of the black
hole information.
Early investigations into the island rule primarily centered

around two-dimensional dilaton gravity models. Because
the two-dimensional gravity allows for replica wormholes
[10,11], enabling a more rigorous derivation of the island
formula. Subsequently, the island rule was extended to
higher-dimensional scenarios through the use of doubly
holographic models [4,12]: the d-dimensional anti-de
Sitter (AdSd) gravity theory coupled to the matter [con-
formal field theory (CFTd)] that has a (dþ 1)-dimensional
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1The different calligraphic styles between the symbol “R” on
the left-hand side and the symbol “R” on the right-hand side in
Eq. (1) may cause confusion, hence clarification is required. the
symbol “R” on the left-hand side we mean the radiation in the full
quantum description. The full entropy of radiation SðRÞ can be
computed using the gravitational fine-grained entropy formula. In
contrast, the symbol “R” on the right-hand side we mean the
description of radiation in the semiclassical description [3,5].
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holographic dual, which is a higher-dimensional version of
theRandall-Sundrum (RS) setup [13,14]. TheAdSd-Einstein
gravity coupled with the CFTd-matter is referred to as the RS
brane or Planck brane. It is termed “double holography”
because it leverages two instances of the AdS/CFT holo-
graphic duality, thus establishing connections among three
equivalent descriptions for the same system [15–44]:

(I) Boundary perspective: A d-dimensional boundary
conformal field theory (BCFTd) with a (d − 1)-
dimensional boundary.

(II) Bulk perspective: An asymptotically AdSdþ1

Einstein gravity with an AdSd RS brane.
(III) Brane perspective: A CFTd living on the AdSd brane

with a boundary CFTd bath in the flat space linked
by transparent boundary conditions.

The description (III) precisely simulates the Hawking
radiation process of a black hole. The advantage of double
holography is that the entanglement dynamics between the
black hole and radiation region are reflected instantane-
ously in the corresponding entanglement wedges (EW)
in the bulk of description (II). Then, according to the
Ryu-Takayanagi/Hubeny-Rangamani-Takayanagi (RT/HRT)
formula [45,46], by replacing the computation of QES’s areas
with the computation of RT/HRT surface’s areas in the bulk of
the description (II) at different times, we can obtain the
entanglement entropy of the CFT in the black hole and
radiation region at different stages of the radiation.
Specifically, we consider a two-sided black hole coupled to
two flat baths, one on each side.More precisely,we fix one end
of theRT surface at the conformal boundary at a given location
xR. As we extend from xR into the bulk, there are two
candidate RT surfaces of interest. One is the extremal surface
whose endpoint terminates on the brane, called the “island
surface.” The other is the extremal surface that passes through
the black hole event horizon, reaches a radial critical point z�
inside the black hole, and then exits the horizon to reach
another boundary, known as the “Hartman-Maldacena (HM)
surface” [47]. In other words, with the doubly holographic

setup, the entanglement entropy of radiation can be simply
evaluated using the following formula

SðRÞ ¼ min
I

"
AreaðγI∪RÞ
4Gðdþ1Þ

N

#
; ð2Þ

where γI∪R is the standard codimension two HRT surface in
the bulk, corresponding to the HM surface (γHM) or island
surface (γI). Two candidate extremal surfaces in the doubly
holographic model are presented in Fig. 1(b). Because the
Einstein-Rosen (ER) bridge grows with time, the area of
theHMsurfaces increases from the initial time (t ¼ 0). On the
other hand, the area of the island surface is time-independent,
making it a constant. Figure 1(c) is the time-evolution curve of
the radiation region’s entanglement entropy, known as the
Page curve. It is worth noting that when using the doubly
holographic setup, the entanglement entropy of the radiation
for an eternal black hole generally does not saturate to twice
theBekenstein-HawkingentropySBH [12,21],

2which exhibits
noticeable differences from the analytical results obtained
using the s-wave approximation [3,48–60]. The initial part of
the Page curve, which increases with time, is obtained by
calculating the area of time-dependentHMsurfaces. The latter
part of the Page curve, which is independent of time, is
obtained by calculating the area of island surfaces. To obtain a
reasonable Page curve, the area of theHM surface at the initial
time (t ¼ 0)must be smaller than the area of the island surface.
Thus, the endpoint xR of the radiation region must be larger
than the “Page point” xp, which is the value of xR when the
initial HM surface’s area is equal to that of the island surface.
Both candidate extremal surfaces diverge at theUVconformal
boundary, so the standard holographic renormalizationwill be

FIG. 1. (a) The eternal two-side black hole and the island that emerges after Page time with QES outside the horizon. (b) Two different
candidate RT minimal surfaces in a doubly holographic setup. (c) The early part of the Page curve is determined by the time-dependent
HM surface, while the later part of the Page curve is determined by the constant island surface. The Page curve generally does not
saturate to 2SBH in the doubly holographic setup.

2It should be emphasized that the authors of [40] claim to have
provided the first-ever demonstration that, even when considering
the doubly holographic setup, the saturated value of entanglement
entropy after the Page time can be comparable to twice the
Bekenstein-Hawking entropy.
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used to remove these divergent terms using a cutoff
(ϵ ¼ z=zh ≪ 1) at the boundary.
Description III primarily discusses the coupling of a RS

brane and a nongravitating bath on the conformal boundary
with transport boundary conditions at their intersection (i.e.,
the defect). Due to conformal baths and transport boundary
conditions, the gravity on the brane becomes massive [17].
This raises a fundamental question: is it necessary, in our
physical reality, for gravitons to have mass to address the
black hole information paradox? In other words, do we
require such a bath for a comprehensive understanding of
our Universe? In fact, the bath imposes too many computa-
tional constraints. To investigate to how the presence of the
bath affects the explanation of the black hole information
paradox, the author of [29] introduces a scalar operator ϕ
as a new, tunable scale to deform the bath, allowing us to
explore how different degrees of bath deformation influence
the Page curve. The deformation triggers a holographic RG
flow [61–64]. A significant conclusions in [29] is that the
Page curve can serve as a probe for the holographic RG flow.
We hope to extend the research presented in [29] further.
Specifically, we intend to deform the bath using a charged
scalar field, which involves coupling the charged scalar field
with a U(1) gauge field. The U(1) symmetry is broken by the
gauge field, inducing a second-order phase transition of
the charged scalar field at the critical temperature, known
as holographic superconductors [65–67]. Motivated by the
exploration of utilizing entanglement entropy as a good probe
for detecting holographic superconducting phase transitions,
such as s-wave [68–77], p-wave [78–82], d-wave [83] metal/
superconductor phase transitions, and s-wave [84–90],
p-wave [91] insulator/superconductor phase transitions, this
article aims to explore, within the context of the doubly
holographic setup, not onlywhether the Page curve can probe
the Kasner flows, but more importantly, whether the Page
curve and Page time can track the information of the super-
conducting phase transition.
It should be noted that when considering tensionless

branes and using the RT formula to calculate the entangle-
ment entropy of the radiation, the correction due to quantum
fluctuations of the CFTon the brane is highly important and
non-negligible. Thus, in the double-holographic literature,
the tension is commonly taken to be very large. Only in this
limit, the entanglement entropy computed with the higher
dimensional RT prescription coincides with the entangle-
ment entropy computed using the island formula in the
induced theory on the brane, which has been pointed out in
Refs. [36,50]. Fortunately, just as in Ref. [17], we still
consider removing half of the space and calculating the
entanglement entropy by using the RT formula for the
tensionless limit.3 Actually, there are many other papers

about the double holography or the AdS/BCFTwith tension-
less branes, for examples [20,21,29,32,35,40,92–101].
Nevertheless, the results of our paper can be used to provide
a qualitative picture of the Page curve.
Similar to the neutral case [102,103], with no branes,

introducing a charged scalar field on the conformal
boundary transforms the geometry near the singularity of
the AdS-Reissner-Nordström (AdS-RN) black hole into a
Kasner universe. Furthermore, it is noteworthy that the
charged scalar hair brings about significant changes in the
dynamical structure inside the AdS-RN black hole.
Specifically, the black hole’s interior dynamics are cleanly
separated into three different epochs [104,105]: the collapse
of ER bridge, Joseph oscillations and Kasner universe; in
some cases, it even undergoes a process known as Kasner
inversions. Eventually, spacetime terminates at a spacelike
Kasner singularity, and it can be proven that there is no
Cauchy horizon [106–110].
The rest of the paper is organized as follows. In Sec. II,

we begin by constructing the necessary doubly holographic
model, ensuring that the geometry of the tensionless brane
and all matter fields satisfy the Neumann boundary con-
ditions (NBCs). In Sec. III, we review the holographic
superconductors with backreaction. In Sec. IV, we review
the internal structure of the black hole in the holographic
superconductivity model. In Sec. V, we study the Page
curve under bath deformation by calculating the area of the
HM surface and the island surface. In the final Sec. VI, we
present the conclusions drawn from our study and the work
we are interested in for the future.

II. THE DOUBLY HOLOGRAPHIC SETUP

The entire action of the (dþ 1)-dimensional asymptotic
AdSdþ1 spacetime considering a doubly holographic setup
reads

I ¼ 1

16πGdþ1
N

�Z
M
ddþ1x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ 2

Z
B
ddx

ffiffiffiffiffiffi
−h

p
ðK − TÞ þ 2

Z
∂

ddx
ffiffiffiffiffiffiffiffi
−h∂

p
K∂

þ 2

Z
B∩∂

dd−1x
ffiffiffiffiffiffiffi
−Σ

p
θ

�
þ
Z
M
ddþ1x

ffiffiffiffiffiffi
−g

p
Lm: ð3Þ

Here, B is the RS brane with tension T, which serves as a
gravitational part of the boundary of the bulk spacetime. K
is the trace of the extrinsic curvature Kab defined by
Kab ¼ hca▽cnb, where n represents the unit normal vector
on the brane. The first term in the second line of the above
action is the Gibbons-Hawking boundary term, where K∂ is
the trace of the extrinsic curvature on the conformal
boundary ∂ (as the nongravitational bath). The second
term in the second line of the above action represents the
junction term at the intersection of the brane B and
conformal boundary ∂. θ is the supplementary angle

3To give a different perspective, this is similar to considering
CFT matter with a smaller central charge in a double holography
model, where one expects corrections to the large-N limit of the
AdS/CFT correspondence.
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between the brane B and conformal boundary with
cosðθÞ ¼ nB · n∂, where nB and n∂ are two outward point
unit normal vectors at the brane B and conformal boundary
∂. g, h, h∂, and Σ denote the matrix determinant ofM, B, ∂,
and B ∩ ∂, respectively. In this paper, the Lagrangian
density Lm for a Maxwell field and a charged complex
scalar field will be considered [65–67]

Lm ¼ −
1

4
F2 − jDϕj2 −m2jϕj2; ð4Þ

where F ¼ dA is the field strength of the gauge field Awith
AtðzÞ ¼ μ − ρzd−2. Here μ is the chemical potential and ρ a
charge density. ϕ is a complex scalar field with mass m.
The covariant derivative is defined byD ¼ ▽ − iqA, where
q is the charge of the charged scalar field. It is important to
emphasize that, in order to align with the original theo-
retical model of holographic superconductors [65–67], we
have not considered the topological terms of the gauge field
in the brane action and the external magnetic field in the
ansatz of the gauge field. In fact, as of now, we still lack a
complete description of holographic superconductors
within the AdS/BCFT correspondence or the doubly holo-
graphic setup, which is an interesting direction for research
and we intend to leave it for future completion. This paper
could perhaps be understood as an attempt to extend the
holographic superconductor model for the first time under
the doubly holographic framework.
In the study of quantum Hall systems using the AdS/

BCFT, Fujita, Melnikov et al. found that for the simple
plane-symmetric black hole ansatz, only tensionless RS
branes are allowed [111,112]. Moreover, within that con-
text, the influence of the gauge field’s topological terms and
the external magnetic field proves to be essential. In the
research on the AdS/BCFT correspondence and Horndeski
gravity, Santos et al. also discovered that the plane-
symmetric charged 4-dimensional AdS black hole only
allows for tensionless RS branes in the AdS4=BCFT3

construction [113–115]. From the NBC of the gauge field
and considering a system with a finite charged density ρ,
Jeong et al. also found that the tension of the brane should
vanish [40] (as seen in the Appendix for the detailed
mathematical steps.). Thus, in our paper, for simplicity, we
also consider the holographic superconductor with the
tensionless brane in doubly holographic model.
When we impose the following NBC on the gravitational

part of the boundary, the RS brane is called the Planck brane

Kab − ðK − TÞhab ¼ 0: ð5Þ

Wewill start with the generic asymptotically AdSdþ1 planar
black hole written in Poincaré coordinates

ds2 ¼ L2

z2

"
−fðzÞe−χðzÞdt2 þ dz2

fðzÞ þ dx21 þ
Xd−1
i¼2

dx2i

#
: ð6Þ

Now, we will consider the surface z ¼ x1 tan θ as the
Planck brane, where θ is the supplementary angle between
the brane and the conformal boundary, as see in Fig. 2.
After computing the extrinsic curvature of the surface

Kab ¼ −
cos θ
L

hab; ð7Þ

we can get the tension by using the NBC (5)

T ¼ −
ðd − 1Þ cos θ

L
: ð8Þ

When the tension satisfies the following bound, the RS
brane is subcritical tension brane, also known as the Karch-
Randall (KR) brane

jTj < d − 1: ð9Þ

With no scalar field and U(1) gauge field, the induced
geometry of the KR brane is pure AdSd spacetime.
However, in this paper, we will consider the bath defor-
mation of a charged scalar field. As a result, the brane is
no longer a vacuum solution but a hair black hole.
Nevertheless, as long as we find the boundary that satisfy
NBC (5), the nonvacuum solution can still be a KR brane.
For simplicity in our calculations, we only consider the case
where the tension is absent

T ¼ 0

�
i:e:; θ ¼ π

2

�
: ð10Þ

In this setup, the brane has no backreaction on the back-
ground, but what we concern is the backreaction of the
matter field. Due to θ ¼ π=2 corresponding to the tension-
less limit, for convenience, we can take the hypersurface

x1 ¼ 0; ð11Þ

as the position of the brane, as shown in Fig. 2. We must
ensure that this hypersurface is indeed the appropriate KR
brane, meaning that the background geometry, the charged

FIG. 2. A schematic diagram of the tensionless Planck brane for
the tension T ¼ 0 with θ ¼ π=2.
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scalar field, and the gauge field all satisfy NBC (5), (13),
and (14) on the hypersurface. The outward pointing unit

normal vector on the hypersurface is nμ ¼ δμ1
z , where δμ1 is

the Kronecker delta and 1 denotes the x1 coordinate. then
the extrinsic curvature is

Kab ¼ hca▽cnb ¼ 0: ð12Þ

We can also find Kab ¼ 0 from the result (7) when
θ ¼ π=2. So this is indeed a tensionless KR brane. For
the U(1) gauge field Aμ, we can impose the following NBC
without the topological terms on the brane [21,116,117]:

Fμνnμhνa ¼ 0; ð13Þ

where hνa is the projection operator which gives the gauge
field and induced metric on the brane B: Āa ¼ hμaAμ and
hab ¼ hμahνbgμν. As for the charged scalar field [ϕ ¼ ϕðzÞ]
being independent of the coordinate x1, it evidently satisfies
a NBC [29,118]:

nμDμϕðzÞ ¼ zD1ϕðzÞ ¼ 0: ð14Þ

III. HOLOGRAPHIC SUPERCONDUCTORMODEL

In this section, we provide a brief overview of the
holographic superconductors with the backreaction. For a
more in-depth understanding, readers are encouraged to
refer to the Refs. [65–67,119–123]. The action of the bulk
is the (dþ 1)-dimensional AdSdþ1 Einstein-Maxwell
theory with a scalar field coupling U(1) gauge field

Ibulk ¼
1

16πGðdþ1Þ
N

Z
M
ddþ1x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

þ
Z
M
ddþ1x

ffiffiffiffiffiffi
−g

p �
−
1

4
F2 − jDϕj2 −m2jϕj2

�
; ð15Þ

where Gðdþ1Þ
N is the (dþ 1)-dimensional Newtonian gravi-

tational constant and we will take 16πGðdþ1Þ
N ¼ 1. R is the

Ricci scalar of spacetime. The negative cosmological
constant is

Λ ¼ −
dðd − 1Þ
2L2

; ð16Þ

where L is the AdS radius and we will set L ¼ 1 from here.
We will consider the following ansatz for the generic
asymptotically AdSdþ1 planar black hole and matter fields:

ds2 ¼ 1

z2

�
−fðzÞe−χðzÞdt2 þ dz2

fðzÞ þ
Xd−1
i¼1

dx2i

�
; ð17Þ

ϕ ¼ ϕðzÞ; Aμdxμ ¼ AtðzÞdt: ð18Þ

The Hawking temperature is

TH ¼ −
f0ðzÞe−χðzÞ=2

4π

				
z¼zh

: ð19Þ

We can get the equations of motion with four functions:
ϕðzÞ, AtðzÞ, χðzÞ, fðzÞ

ϕ00 −
�
d−1

z
−
f0

f
þ χ0

2

�
ϕ0 þ

�
q2A2

t eχ

f2
−
m2

z2f

�
ϕ¼ 0; ð20Þ

A00
t −

�
d − 3

z
−
χ0

2

�
A0
t −

2q2Atϕ
2

z2f
¼ 0; ð21Þ

χ0 −
2

d − 1

�
zϕ02 þ zq2A2

tϕ
2

f2
eχ
�

¼ 0; ð22Þ

f0 þ d
z
−
�
d
z
þ χ0

2

�
f −

1

d − 1

�
z3A02

t eχ

2
þm2ϕ2

z

�
¼ 0;

ð23Þ

where the prime denotes the derivative with respect to z.
For ϕ ¼ 0, the analytical solution to the above equations of
motion is the familiar (dþ 1)-dimensional AdSdþ1-RN
black hole

fðzÞ ¼ 1−
zd

zdh
−

d−2

2ðd− 1Þ
�
zd

zdh
−
z2d−2

z2d−2h

�
z2d−2h ρ2; ρ¼ μ

zd−2h

;

ð24Þ

AtðzÞ ¼ μ

�
1 −

zd−2

zd−2h

�
; χðzÞ ¼ 0; ð25Þ

where zh is the event horizon with fðzhÞ ¼ 0, μ is the
chemical potential, and ρ is the charge density. The
Hawking temperature for AdSdþ1-RN black hole is

TRN ¼ 1

zh

�
d
4π

−
ðd − 2Þ2z2d−2h ρ2

8πðd − 1Þ
�
: ð26Þ

For ϕ ≠ 0, we can expand the equations of motion
(20)–(23) near the horizon (z → zh) as considering
fðzhÞ ¼ 0, AtðzhÞ ¼ 0:

ϕðzÞ ¼ ϕ0 þ ϕ1ðz − zhÞ þ ϕ2ðz − zhÞ2 þ � � � ; ð27Þ

AtðzÞ ¼ A1ðz − zhÞ þ A2ðz − zhÞ2 þ � � � ; ð28Þ

χðzÞ ¼ χ0 þ χ1ðz − zhÞ þ χ2ðz − zhÞ2 þ � � � ; ð29Þ

fðzÞ ¼ f1ðz − zhÞ þ f2ðz − zhÞ2 þ � � � : ð30Þ

Using the numerical shooting method, we can determine
three constants ϕ0, A1, and χ0 that yield solutions satisfying
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the above equations of motion (20)–(23) and the following
boundary conditions: Near the boundary z → 0, the equa-
tions of motion (20)–(23) have asymptotic solutions:

ϕðzÞ ≈ ϕ−zΔ− þ ϕþzΔþ ; AtðzÞ ≈ μ − ρzd−2;

χðzÞ ≈ 0; fðzÞ ≈ 1; ð31Þ
where the conformal dimension Δ� is the dimension of the
operator

Δ� ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þm2

r
: ð32Þ

We can easily note that Δ ¼ Δ� satisfy a mass-dimension
renormalization

ΔðΔ − dÞ ¼ m2: ð33Þ
The AdS boundary is vacuum-stable only if m2 ≥ m2

BF.
m2

BF ¼ −d2=4 is the Breitenlohner-Freedman (BF) bound.
When m2 ¼ m2

BF, we have Δ− ¼ Δþ ¼ d=2. For
−d2=4 ≤ m2 < −d2=4þ 1, there are two quantization
schemes: according to the AdS/CFT dictionary, ϕþ is
the vacuum expectation value hOþi, while ϕ− is regarded
as the source of the dual operator O and should vanish
(ϕ− ¼ 0), or ϕ− is the vacuum expectation value hO−i,
while ϕþ is regarded as the source of the dual operator O
and should vanish (ϕþ ¼ 0). Form2 ≥ −d2=4þ 1, only the
Δþ-mode can be normalized. In Fig. 3, we provide the
condensation of these two operators with different charges.
Note that we have fixed the dimension and the mass of the
scalar field (i.e., d ¼ 3,m2 ¼ −2). Unless otherwise stated,
we maintain this setup in the following calculations.

IV. KASNER SOLUTIONS OF HOLOGRAPHIC
SUPERCONDUCTORS

As mentioned in the introduction, the interior of the
black hole with charged scalar hair exhibits intricate

dynamical behaviors. For instance, the relevant deforma-
tions can lead to the disappearance of the Cauchy horizon,
triggering several distinct dynamical regimes within the
black hole interior. These are the collapse of the ER bridge,
Josephson oscillations, Kasner universe, and in some cases,
a final Kasner inversion before reaching the Kasner
singularity. We will not delve into a detailed exposition
of the complete picture. Instead, we will provide a concise
overview of the Kasner solutions. Readers interested in a
more in-depth understanding of the details are encouraged
to refer to Refs. [104–110,124].
Near the singularity (z → ∞), we assume that we can

neglect the A0
t term in Eq. (23), the scalar-mass term, and its

charged term. Then these equations of motion (20)–(23)
approximate into

ϕ00 −
�
d − 1

z
−
f0

f
þ χ0

2

�
ϕ0 ¼ 0; ð34Þ

A00
t −

�
d − 3

z
−
χ0

2

�
A0
t ¼ 0; ð35Þ

χ0 −
2zϕ02

d − 1
¼ 0; ð36Þ

f0 −
�
d
z
þ χ0

2

�
f ¼ 0: ð37Þ

The solutions of these equations are

ϕ ¼ α
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
log z; A0

t ¼ Aoz−3þd−α2 ;

χ ¼ 2α2 log zþ χo; f ¼ −fozdþα2 ; ð38Þ

where α, Ao, and fo are integration constants. By using the
solutions (38), we can get metric components gtt and gzz

(a) (b)

FIG. 3. The value of the condensate as a function of the temperature, with the fixed charge of the scalar field, for two operatorsO− and
Oþ with conformal dimensions Δ− and Δþ, respectively.
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gtt ¼ −
fe−χ

z2
¼ foe−χoz−2þd−α2 ;

gzz ¼
1

z2fðzÞ ¼ −
z−2−d−α

2

fo
: ð39Þ

We have plotted −zg0tt=gtt, ϕ=z, logðgttÞ as a function of
z=zh for two different conformal dimensions Δ� in Fig. 4.
We can find the distinct epochs of the collapse of the ER
bridge and Josephson oscillations from the figure. The
metric also captures the behaviors of the oscillations.
Consider the following parameter transformations

τ ¼ cτz−
dþα2

2 ;

�
cτ ¼

2

ðdþ α2Þ ffiffiffiffiffi
fo

p
�
; ð40Þ

we can obtain the following Kasner solutions near the
singularity of the spacetime [125–127]:

ds2 ¼ −dτ2 þ ctτ2ptdt2 þ cxτ2pxdx⃗2d−1; ϕ ∼ −pϕ log τ;

ð41Þ

ct ¼
foe−χo

c2pt
τ

; cx ¼
1

c2px
τ

; ð42Þ

where the Kasner exponents fpt; px; pϕg are

pt ¼
2 − dþ α2

dþ α2
; px ¼

2

dþ α2
; pϕ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
α

dþ α2
;

ð43Þ

which satisfy the Kasner constraints

pt þ ðd − 1Þpx ¼ 1; p2
t þ ðd − 1Þp2

x þ p2
ϕ ¼ 1: ð44Þ

When pt < 0, corresponding to an ER bridge grows,
describe a “Kasner inversion” α → 1=α in which

pt → −
pt

2pt þ 1
: ð45Þ

(a)

(b)

FIG. 4. −z g0tt
gtt
, 3000 ϕ

z, 300
ϕ
z, logðgttÞ are plotted as a function of the radial coordinate z=zh for the two conformal dimensions and

corresponding temperatures (a) Δ− ¼ 1, T=Tc ¼ 0.9894; (b) Δþ ¼ 2, T=Tc ¼ 0.9830.
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In this case, the Kasner exponent pt changes its sign in the
inversions at late times. The first discovery of this inversion
was made by Hartnoll and his collaborators in [104,105]. In
Fig. 5, we show the variations of pt with T=Tc for two
different conformal dimensions Δ� as charge (q ¼ 1). The
strong oscillations are shown near the critical temperature
Tc. These oscillations in the Kasner exponents also reflect
the imprint of Josephson oscillations.

V. BATH DEFORMATIONS AND PAGE CURVES

This section constitutes the central component of our
article. Building upon the inspiration from the paper [29],
we investigate the Page curves for the eternal AdSdþ1

charged black hole within the context of a doubly holo-
graphic model, where the BCFT’s states in the conformal
bath are deformed by a charged scalar field. The specific
setup of this model is as follows: initially, we couple the
brane with the conformal bath and impose a transport
boundary condition at the interface between the brane and
the conformal bath, bringing them to thermodynamic
equilibrium. As the Hawking radiation reaches the Page
time, an interior region called the “island” forms within the
black hole (sometime, the island is outside the horizon [3]),
causing the computed entanglement entropy of the radia-
tion region to no longer increase continuously but instead
exhibit an initial rise followed by a plateau. The resulting
Page curves for this setup are termed the version of the
eternal black hole, as shown in Fig. 1(c).

A. Growth area of the Hartman-Maldacena surfaces

Before Page time, there is no contribution from the island
region. The candidate extremal surface is the time-
dependent HM surface [47]. As time progresses, the
extremal surface gets progressively closer to a specific
critical radius within the interior of the black hole. At late
times, the area of the extremal surface increases linearly

with time. When it gets close to the critical radius, the
growth velocity of the extremal surface tends toward a
constant value, which we call the entanglement velocity
[47,102,128]. Since the entanglement velocity is highly
sensitive to the geometric properties of the black hole’s
interior but not to the near-singularity region, we can use it
as a probe for exploring the interior of the black hole. We
will briefly explain this fact and apply it to our model.
Following the method applied in [21,29,129], we will
investigate the time evolution of the HM surface in doubly
holographic framework. First, considering a constant-x1 ¼
xR slice, the induced metric takes the following form:

ds2jx1¼xR ¼ 1

z2

"
−fðzÞe−χðzÞdt2 þ dz2

fðzÞ þ
Xd−1
i¼2

dx2i

#
: ð46Þ

For a time-dependent surface [z ¼ zðtÞ], the area function is

A¼ Vd−2

Z
dt

zðtÞd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f½zðtÞ�e−χ½zðtÞ� þ żðtÞ2

f½zðtÞ�

s
; ż¼ dz

dt
;

ð47Þ

where Vd−2 ¼
R Q

d−1
i¼2 dxi is an overall volume factor. Since

the volume factor is a constant, for convenience, we can
define the HM area density (which we will also refer to as
“area”) and its corresponding Lagrangian

AHM ¼ A
Vd−2

¼
Z

dt
zðtÞd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f½zðtÞ�e−χ½zðtÞ� þ żðtÞ2

f½zðtÞ�

s

¼
Z

dtL: ð48Þ

Due to the explicit time-independent Lagrangian, we can
identify that the “energy” E of the minimal surface is a

(a) (b)

FIG. 5. The Kasner exponent pt as a function of the temperature T=Tc after inversions. We have also shown pt < 0 before inversions
as a dashed red line.
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constant of motion

E ¼ ż
∂L
∂ż

− L ¼ fðzÞe−χðzÞ
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzÞe−χðzÞ þ ż2

fðzÞ
q ; ð49Þ

and the minimal surface has the following expression:

ż ¼ �fðzÞe−χðzÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fðzÞe−χðzÞ

z2ðd−1ÞE2

s
: ð50Þ

If there exists a location inside a black holewith a radius of z�
satisfying the condition (dzdt jz¼z� ¼ 0), we can readily derive
the constant E

E2 ¼ −
fðz�Þe−χðz�Þ

z2ðd−1Þ�
: ð51Þ

By substituting (50) into (48), and taking dt ¼ dz
ż into

account, we can get the area expression of the HM surface4

AHMðtbÞ ¼ 2

Z
z�

0

dz

zd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ þ eχðzÞz2ðd−1ÞE2

q : ð52Þ

Considering the following integral:Z
z�

0

dz
ż
¼

Z
t�

tb

dt ¼ t� − tb; ð53Þ

and the symmetry geodesic argument at the turning point
(t�ðz ¼ z�Þ ¼ 0), we can get the boundary time

tb ¼ −P
Z

z�

0

sgnðEÞeχ=2dz
fðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fðzÞe−χðzÞ=z2ðd−1ÞE2

q ; ð54Þ

whereP and sgnðEÞdenote theprincipal value and the signof
the “energy” E, respectively. Using the area expression (52)

and boundary time (54), we can numerically compute the
time-dependent area of the HM surface. To get the late-time
behavior (tb → ∞), let us first consider the following
function

gðzÞ ¼ −
fðzÞe−χðzÞ
z2ðd−1Þ

: ð55Þ

After substituting the Kasner solutions (38) into function
gðzÞ (55), we can find

gðzhÞ ¼ 0; lim
z→∞

gðzÞ ¼ lim
z→∞

f0e−χ0z2−d−α
2 ¼ 0;

gðzÞjz>zh > 0: ð56Þ

So, there is a critical radius zc inside the black hole that
maximizes gðzÞ, and the critical radius also satisfies (51)

E2
c þ

fðzcÞe−χðzcÞ
z2ðd−1Þc

¼ 0: ð57Þ

When z� → zc, the boundary time diverges (tb → ∞). Next,
by performing the derivative for the area expression of HM
surface AHM (52) with boundary time tb (54) while also
taking fðzcÞ < 0 into account, we can readily obtain the
growth rate of the HM surface area with respect to the
boundary time

∂AHM

∂tb
¼2

−fðzcÞe−χðzcÞ
z2ðd−1Þc jEcj

¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
fðzcÞe−χðzcÞ

z2ðd−1Þc

s
¼ 2v
zd−1h

; ð58Þ

where v is the entanglement velocity. For the AdSdþ1-
Schwarzschild brane, the entanglement velocity is

vAS ¼
ffiffiffi
d

p ðd − 2Þd−22d

½2ðd − 1Þ�d−1d : ð59Þ

For the AdSdþ1-RN brane, the entanglement velocity is

vARN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 23−

4
dz2d−2h ρ2ðd − 1Þ3−4

dðd − 2Þ2d½2ðd − 1Þ þ ðd − 2Þz2d−2h ρ2�2d−2
24−

4
dðd − 1Þ4−4

dðd − 2Þ2d−1½2ðd − 1Þ þ ðd − 2Þz2d−2h ρ2�2d−2

s
: ð60Þ

In Fig. 6,we show the entanglement velocity v as a function
of the Kasner exponent pt before the inversions. We find that
the entanglement velocity can not only probe the interior of
the black hole but also probe the Josephson oscillations,which
is significantly different from the solutions that deformed by a
neutral scalar field [29,102,103,130]. In Fig. 7, we show the

entanglement velocity v as a function of the bath deformation
qϕ� and the temperatureT=Tc.When thedeformation turnoff
(qϕ� ¼ 0), by comparing the critical entanglement velocity in
Figs. 7(a) and 7(b) with the same charge, we find that the
critical entanglement velocity will change with the conformal
dimension. This behavior is different from the neutral case
[29], wherein the critical entanglement velocity does not
change with the conformal dimension. This is not surprising
at all. When there is no backreaction, our geometry is an

4The factor of 2 in front of the integral is due to the
consideration of two side black hole.
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AdS-RN black hole. The critical temperaturewill changewith
different conformal dimensions, and fundamentally depends
on the charge density ρ of the black hole. In the case of neutral
deformation, without backreaction, the geometry is just an
AdS-Schwarzschild black hole, and its temperature is inde-
pendent of the conformal dimension. Similarly, the critical
Pagepoint, critical initial areadifference, and critical Page time
that we will discuss later all change with varying conformal
dimensions.
Furthermore, we also observe that the behaviors of the

entanglement velocity are related to the charges. When the
charge is small (e.g., when q ¼ 1), the entanglement
velocity initially decreases with an increase in deformation
(or a decrease in temperature), then slightly increases again
as it approaches zero temperature. It is worth noting that
this behavior is more pronounced in the case of Δ− ¼ 1.
When the charge is large (e.g., when q ¼ 12), the entan-
glement velocity increases initially with deformation, then
decreases. This behavior is more pronounced for Δþ ¼ 2
[as seen Figs. 7(b) and 7(f) for the curves of q ¼ 2; 3; 6, and
12]. It is important to emphasize that the entanglement

velocity will significantly impact on the Page time that we
will investigate later. In specific, an increase in the
entanglement velocity with the deformation will lead to
a decrease in the Page time, even the temperature decreases.
From subfigures (d), (e), (g), and (h) of Fig. 7, we can

observe that at the critical temperature Tc, the slope of the
entanglement velocity shows a clear discontinuity between
the superconducting (T < Tc) and normal phases (T > Tc),
which indicates that the entanglement velocity can serve as a
probe for superconducting phase transitions. Furthermore,
when we focus our attention on the difference in the
entanglement velocity between the superconducting phase
and the normal phase at the same temperature, we find a
smaller entanglement velocity difference for the charge
(q ¼ 12) compared to the charge (q ¼ 1), which is clear
because the larger charge, the closer it approaches the probe
limit (q → ∞).

B. Area of the island surface

As we mentioned in the introduction, to obtain the Page
curves, the initial area of the HM surface must be smaller

(a) (b)

FIG. 6. The entanglement velocity v as a function of the Kasner exponent pt for the charge (q ¼ 1) before the Kasner inversions.
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than the area of the island surface. This imposes a particular
constraint on values of xR regardless of the temperature and
conformal dimension. Specifically, the value of xR must be
larger than a critical point (the Page point) [17,21,29]. We
start from the induced metric for the time slice (t ¼ 0)

ds2jt¼0 ¼
1

z2

�
dz2

f
þ dx21 þ

Xd−2
i¼1

dx2i

�
: ð61Þ

Parameterize the coordinate x1 as a function of z, such that
for any surface [xðzÞ ¼ x1ðzÞ], the area function takes the
following form

A ¼ Vd−2

Z
dz
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðzÞ þ ẋðzÞ2
s

; ẋ ¼ dx1
dz

; ð62Þ

where Vd−2 ¼
R
dx2 � � � dxd−1 is an overall volume factor.

Following the steps for calculating the area of the HM
surfaces in the previous section, we define the area density
AI and its Lagrangian L for the island surface

AI ¼
A

Vd−2
¼

Z
dz
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðzÞ þ ẋðzÞ2
s

¼
Z

dzL: ð63Þ

(a)

(c) (d) (e)

(f) (g) (h)

(b)

FIG. 7. The entanglement velocity v as a function of the deformation (a) qϕ−=T; (b)
ffiffiffiffiffiffiffiffiffi
qϕþ

p
=T for different charges. (c),(f) represent

the variation of the entanglement velocity v with the temperature T=Tc, while (d),(e),(g),(h) represent the situation near the critical
temperature for the charge (q ¼ 1) and (q ¼ 12). To visually observe the transition of the entanglement velocity’s slope at the critical
temperature, in the (d),(g), we use a dashed line to represent the entanglement velocity corresponding to the normal phase extending
below the critical temperature.
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Then, we should minimize the area density AI and get
the extremal surface that satisfies the Euler-Lagrangian
equation

∂L
∂x

−
∂
2L

∂z∂ẋ
¼ 0; ð64Þ

which indicates that ∂L=∂ẋ is a constant of motion

ẋðzÞ
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðzÞ þ ẋðzÞ2
q ¼ C: ð65Þ

The boundary conditions for the extremal surface are

xð0Þ ¼ xR;
1

ẋðzÞ
				
z¼zT

¼ 0; ð66Þ

where zT is the turnaround point. This point represents
the boundary of the island region on the brane. Using
the Neumann condition, the constant of motion (65)
becomes

ẋðzÞ
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðzÞ þ ẋðzÞ2
q ¼ � 1

zd−1T

⇒ ẋðzÞ ¼ � zd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞ
z2ðd−1ÞT − z2ðd−1Þ

�q : ð67Þ

Using the Dirichlet boundary condition, we have

xR ¼
Z

xR

0

dx ¼
Z

zT

0

dz
zd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðzÞ½z2ðd−1ÞT − z2ðd−1Þ�
q : ð68Þ

From the above equation, it is evident that given a value of
xR, the turnaround point zT can be determined. By
substituting (67) into (63), we can obtain the area of the
island surface for a giving xR

AI ¼ 2

Z
zT

0

dz

zd−1
ffiffiffiffiffiffiffiffiffi
fðzÞp zd−1Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2ðd−1ÞT − z2ðd−1Þ
q : ð69Þ

For the initial HM surface (tb ¼ 0), according to Eq. (54), it
can be solved that E ¼ 0, and then, based on Eq. (51), it is
solved that z� ¼ zh. Lastly, according to expression (52),
we can derive the following expression for the initial HM
surface

AHMðtb ¼ 0Þ ¼ 2

Z
zh

0

dz

zd−1
ffiffiffiffiffiffiffiffiffi
fðzÞp : ð70Þ

As mentioned at the beginning of this section, there is a
Page curve if and only ifAHMð0Þ < AI . In other words, the

initial area difference should satisfy

ΔAð0Þ ¼ AI −AHMð0Þ > 0: ð71Þ

Since the area of the island surface depends on xR, a critical
Page point (xp ¼ xR) that satisfied ΔAð0Þ ¼ 0 should be
found. Considering that the island surface is also related to
the external structure of a black hole, the initial area
difference can be utilized to reflect the external back-
reaction. Another important thing to note is that near the
boundary (z → 0), both of the areas are divergent due to the
empty AdSdþ1 geometry so we will renormalize them by
setting a cutoff (ϵ ¼ z=zh ≪ 1). The dimensionless diver-
gent term is

zd−2h A∞ ¼ 2

ðd − 2Þ
1

ϵd−2
: ð72Þ

In Figs. 8(a) and 8(b), we show the finite part of the
initial area difference ΔAð0Þ as a function of xR=zh at the
critical temperature. The calculation at this step is to obtain
the Page point, which is the critical value of xR, where the
area of the island surface is equal to the area of the initial
HM surface. From Fig. 8(c), we find that the Page point
decreases as the charge increases at critical temperature,
which provides a helpful clue for us to need later to fix xR.
In Figs. 8(d) and 8(e), we also investigate the influence of
scalar deformations ðqϕ�Þ on the Page point. We observe
that the Page point decreases as the deformation increases,
indicating that black holes require fewer radiation degrees
of freedom to produce the Page curve. In other words, in the
case of stronger deformations at the conformal boundary,
the radiation regionR requires more degrees of freedom to
ensure the existence of the Page curve, which provides a
helpful clue for us to obtain the Page curve, by fixing a
reasonable endpoint xR of the radiation region R.
Specifically, if we choose xR larger than the critical
Page point (i.e., the Page point with zero deformation
qϕ� ¼ 0), then, subsequently, no matter how much the
scalar deformation increases, we can have a Page curve
uniquely associated with scalar deformation, which implies
that the Page curve for a specific radiation region can probe
Kasner flows [29].

C. Entanglement entropy and Page curves

We are now computing the Page curves for various
charges and two conformal dimensions. Based on the
analysis in the previous section, we learn that to get the
Page curve, the value of xR needs to be larger than the Page
point. Since the Page point decreases as the charge and
deformation increase, to make sure that we always have the
Page curve and a finite Page time regardless of the charge
and scalar deformation, we will set xR to be twice the
critical Page point for charge q ¼ 1. More specifically, we
will fix xR
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xR ¼ 2
xp
zh

¼
�
2 × 0.610; ðΔ− ¼ 1Þ;
2 × 0.912; ðΔþ ¼ 2Þ: ð73Þ

To obtain the Page curves, we calculate the entanglement
entropy of the radiation region using the time-dependent
HM surface that discussed in Sec. VA before Page time.
After the Page time, the entanglement entropy of the
radiation region is provided by the island surface that
discussed in Sec. V B. Since the island surface is time-
independent, the entanglement entropy of the radiation
region R no longer continues to increase after the Page
time. So, the Hawking radiation satisfies the unitarity of
quantum mechanics.
In Fig. 9, we present the Page curves of the systems at

the critical temperature [(a), (b)] and semi-critical temper-
ature [(c), (d)] for both conformal dimensions Δ�. From
subfigures (a), (b), we can observe that when the system
is at the critical temperature, the Page time decreases
with the charge growth, which is because as the charge
increases, the critical temperature of the boundary system
also increases. According to holographic duality, the
Hawking radiant temperature of the black hole increases,
leading to a faster saturation of the radiant entanglement
entropy. However, when considering scalar deformations in
the bath, the conventional pattern of higher temperature
leading to shorter Page time is not necessarily valid.

Specifically, in subfigures (c), (d), we investigate the Page
curves where the temperature is reduced to half the critical
temperature. Clearly, at this point, the influence of scalar
deformations and conformal dimensions becomes signifi-
cant. By comparing subfigures (a), (c), it may initially
appear that as the temperature decreases, the Page time
becomes longer. However, when we carefully examine the
green curve which corresponding to Δþ ¼ 2 and q ¼ 3 in
subfigures (b), (d), we can observe that despite the
temperature reduction, the Page time does not increase;
instead, it decreases. In Fig. 11, we can see more
intuitively that in some cases, with increasing deformation
and decreasing temperature, the Page time does not
increase but rather decreases. Furthermore, we also note
that the entanglement velocity increases with increasing
charge, in accordance with the results in Fig. 7. Finally, it
should be noted that the negative values exhibited in the
early stage of the Page curve in Fig. 9 are a result of
employing regularization from (72) [29]. If we use the
same regularization as in [12,21,40], the Page curve will
not exhibit negative values. It should be emphasized that
we are more focused on the temporal behavioral changes
of the radiative entanglement entropy rather than specific
values.
Apart from the entanglement velocity v, the initial area

difference ΔAð0Þ between the HM surfaces and island

(a)

(c) (d) (e)

(b)

FIG. 8. The area difference ΔAð0Þ versus xR for different charges with the conformal dimension (a) Δ− ¼ 1; (b) Δþ ¼ 2 at critical
temperature T ¼ Tc. (c) The Page point xp as a function of the charge at critical temperature. The Page point xp as a function of bath
deformations (d) qϕ−=T; (e)

ffiffiffiffiffiffiffiffiffi
qϕþ

p
=T.
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surfaces also affects the Page time. It raises the question of
which has a more significant impact on the Page time. We
employ a method similar to that in [29] to provide a brief
discussion on this issue. Without loss of generality, let us
consider the case where the charge (q ¼ 1) and conformal
dimension (Δ− ¼ 1), which corresponds to the red solid
line in Figs. 9(a) and 9(c). According to our numerical
calculations, the entanglement velocity, the initial area
difference, and the Page time at the critical temperature
and semicritical temperature are

vjT¼Tc
≈ 0.61155; vjT¼Tc

2
≈ 0.539485; ð74Þ

ΔAð0ÞjT¼Tc
≈ 1.474922; ΔAð0ÞjT¼Tc

2
≈ 1.576144;

ð75Þ

tp
zh

				
T¼Tc

≈ 1.56084;
tp
zh

				
T¼Tc

2

≈ 1.806469: ð76Þ

In the assumption that the evolution of the HM surface
is always linear, the Page time can be approximated using
(58) in the following manner

tp ≈
ΔAð0Þ
2v

; ð77Þ

then we can get the “first-order” variation in the Page
time δtp

δtp ≈
δðΔAð0ÞÞ

2v
−
ΔAð0Þ
2v2

δv: ð78Þ

We calculate the average values of ΔAð0Þ and v by using
the results (74) and (75), and then substitute them into the
formula above to obtain5

δtp ≈ 0.0879399þ 0.165962 ¼ 0.253902 ≈ 0.245629:

ð79Þ

The right side of the last approximately equal sign in the
above expression is from the numerical result (76) of
the Page time. Using the same approximate calculations,

(a) (b)

(c) (d)

FIG. 9. The Page curves for two conformal dimension (a),(c) Δ− ¼ 1; (b),(d) Δþ ¼ 2 at the critical temperature (a),(b) T ¼ Tc and
semi-critical temperature (c),(d) T ¼ Tc=2 are presented in terms of the area A and boundary time tb in units of zh.

5Express the above result as the sum of two terms and set
zh ¼ 1.
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we can obtain the change in the Page time from the critical
temperature to the semi-critical temperature for the case of
charge (q ¼ 1) and conformal dimension Δþ ¼ 2,

δtp ≈ 1.55988þ 3.55321 ¼ 5.11308 ≈ 5.65798: ð80Þ

Even these calculation are not always accurate.6 Still, it is
sufficient to demonstrate that the contribution from the
entanglement velocity v has a more significant impact on
the Page time than the contribution from the initial area
difference ΔAð0Þ, which further indicates that the back-
reaction from the interior of the black hole has a more
significant influence on the Page time than the backreaction

from the exterior of the black hole. Interestingly, our results
are exactly opposite to the findings regarding neutral scalar
deformations in [29].
In Figs. 10 and 11, we provide the initial area difference

and Page time as a function of bath deformation and
temperature, respectively. We found that the initial area
difference increases with increasing scalar deformation
(decreasing temperature). Since greater deformation leads
to a smaller Page point, keeping the value of xR constant
results in an increase in the initial area difference as the
Page point becomes smaller. The similar curves between
Figs. 8(d), 8(e) and 10(a), 10(b) (except one increasing
and one decreasing) indicates a connection between the
initial area difference and the Page point. We also observe
that the critical initial area difference (when qϕ� ¼ 0)
increases with an increase in the charge. This is because at
the critical temperature, the Page point decreases as the

(a)

(c) (d) (e)

(f) (g) (h)

(b)

FIG. 10. The initial area differences ΔAð0Þ are plotted as the function of deformations (a) qϕ−=T; (b)
ffiffiffiffiffiffiffiffiffi
qϕþ

p
=T. (c),(f) represent the

variation of initial area difference ΔAð0Þwith the temperature T=Tc for the different charges, while (d),(e),(g),(h) represent the situation
near the critical temperature for the charge (q ¼ 1) and (q ¼ 12).

6For example, in the case of q ¼ 12, this kind of approximate
calculation yields results that differ significantly from the
numerical results.
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charge increases, as seen the Fig. 8(c). Due to the clear
discontinuity in the slope of the initial area difference at the
critical temperature, the initial area difference can serve as a
valuable probe for superconducting phase transitions.
From the curves of all charges in Fig. 11(a) and the

curves for charge (q ¼ 1) in Fig. 11(b), it is not difficult to
observe that the Page time increases with the scalar
deformation. However, for the cases of the conformal
dimension (Δþ ¼ 2) and charges (q ¼ 2; 3; 6, and 12) in
Fig. 11(b), the Page time initially decreases and then
increases with deformation. This behavior is related to
the corresponding behavior of the entanglement velocity
which initially increases and then decreases with deforma-
tion in Fig. 7(b). This further indirectly validates our earlier

conclusion that the entanglement velocity has a more
significant impact on the Page time than the initial area
difference. In other words, the internal backreaction has a
more significant impact on the Page time than the external
backreaction. From Figs. 11(d), 11(e), 11(g), and 11(h), we
can observe that the slope of the Page time with respect to
temperature is discontinuous at the critical temperature.
This indicates that the Page time can serve as a valuable
probe for superconducting phase transitions.
It is worth noting that in all the calculations above, we

have fixed the value of xR to be twice the critical Page point
(73). In fact, whether internal or external backreaction has
a greater impact on the Page time also depends on the
value of xR, which is related to the radiation regionR [29].

(a)

(c) (d) (e)

(f) (g) (h)

(b)

FIG. 11. The Page times tp are plotted as functions of the deformation (a) qϕ−=T; (b)
ffiffiffiffiffiffiffiffiffi
qϕþ

p
=T. (c),(f) represent the variation in Page

time tp with the temperature T=Tc for different charges, while (d),(e),(g),(h) represent the situation near the critical temperature for the
charge q ¼ 1 and q ¼ 12. Since the page time for the case (Δþ ¼ 2, q ¼ 1) is too big compared with other cases, it is not convenient to
be presented in the same figure (b). The dashed line in the (d),(g) represents the Page time corresponding to the normal phase extending
below the critical temperature.
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To study this issue, we consider the variation in the initial
area difference δðΔAð0ÞÞ and the variation in the Page time
δtp between the critical temperature T ¼ Tc and the
semicritical temperature T ¼ Tc=2. Without loss of gen-
erality, we only consider the case of charge (q ¼ 1), while
keeping the other constants set as d ¼ 3 and m2 ¼ −2.
More specifically, we consider the following variation in
the initial area difference and the variation in the Page time:

δðΔAð0ÞÞ ¼ ΔAð0ÞjT¼Tc=2 − ΔAð0ÞjT¼Tc
; ð81Þ

δtp ¼ tpjT¼Tc=2 − tpjT¼Tc
: ð82Þ

In Fig. 12, the variations in the initial area difference and
the Page time are presented in terms of xR. From Fig. 12, it
is evident that the variation in the initial area difference
decreases as xR increases. However, according to (78), the
variation in Page time should also decrease continuously. In
fact, the variation in Page time initially decreases with
increasing xR and then linearly increases. Hence, we can
conclude that the initial decrease (when xR ≈ xp) in the
variation of the Page time is contributed by the variation in
the initial area difference. The subsequent linear increase

(when xR ≫ xp) in the variation of the Page time is
attributed to the second term in the expression (78), which
is the contribution of the variation in the entanglement
velocity. In other words, when xR ≈ xp, the external
backreaction has a more significant impact on the Page
time. When xR ≫ xp, the internal backreaction has a more
substantial influence on the Page time. Our conclusion
aligns perfectly with the findings regarding neutral scalar
deformations [29]. Finally, it is worth mentioning that in
our model, xR ¼ 2xp falls within the xR ≫ xp region,
which is why the previous calculations conclude that the
entanglement velocity has a more significant impact on
Page time than the initial area difference. However, for the
case of neutral scalar deformations [29], xR ¼ 2xp falls
within the xR ≈ xp region, and that is why the conclusion is
drawn that external backreaction has a more significant
influence on Page time than internal backreaction.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we employ a dual holographic model
that deforms the conformal bath with a charged scalar
field to investigate how the bath deformation affects the
Page curve. Unlike the neutral deformation, due to the

(a) (b)

(c) (d)

FIG. 12. The variations in the initial area difference and the Page time between the critical temperature and the semicritical temperature
are presented in terms of radiation xR region in units of zh.
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spontaneous symmetry breaking of the U(1) gauge field, it
induces a second-order phase transition of the charged
scalar field, known as the holographic superconductors.
We have discovered that the characteristic parameters of

the Page curve, such as entanglement velocity, initial area
difference, and Page time, can be used as suitable probes to
detect the superconducting phase transitions. Specifically,
the entanglement velocity can probe both the Kasner flows
and Josephson oscillations.
When keeping xR fixed, we find that the growth behavior

of the Page time with an increasing deformation parameter
(or decreasing temperature) is related to the conformal
dimension Δ�. Specifically, the Page time monotonically
increases with an increasing deformation for Δ− ¼ 1
(corresponding to the “Neumann” (Δ ¼ Δ−) quantization).
However, for Δþ ¼ 2 (corresponding to the “Dirichlet”
(Δ ¼ Δþ) quantization), and charges (q ¼ 2; 3; 6, and 12),
the Page time initially decreases and then increases with an
increasing deformation (or a decreasing temperature). The
behavior of the Page time decreasing as the temperature
lowers is closely related to the corresponding behavior of
the entanglement velocity. In the case of charge (q ¼ 1), the
behavior of the Page time is similar to the former. For Δþ,
the Page time is generally larger than the Page time for Δ−.
Furthermore, a larger charge leads to a smaller Page time
for the same conformal dimension and fixed temperature.
When xR is fixed at twice the critical Page point

xR ¼ 2xp, changes in the entanglement velocity (the internal
backreaction) has a more significant influence on the Page
time compared to changes in the initial area difference
(the external backreaction). By varying the value of xR,
we further discover that when xR ≫ xp, meaning the black
hole has more boundary degrees of freedom, the internal
backreaction has a more significant effect on the Page time
compared to the external backreaction, which is consistent
with results for the case of neutral scalar deformations [29].
In recent years, an information-theoretic quantity known

as computational complexity has been related to the
gravitational concept within the context of AdS/CFT
duality [131–135]. Interestingly, the holographic complex-
ity has also received extensive research in the holographic
superconducting model [76,83,136–140]. Inspired by pre-
vious research in the holographic complexity with the
doubly holographic model [24,24,129,141,142]. In the
future, we are interested in exploring the holographic
complexity of the holographic superconducting models
but with a doubly holographic setup.
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APPENDIX

In this appendix, following the steps of Ref. [40] and the
NBCs of the gauge field with topological terms, we will
demonstrate that for a system with a finite charge density ρ
but without an external magnetic field B, both the tension
of the brane and topological terms should vanish. First, we
consider the following NBC as in [111,112],

1

2
� F þ

�
Θ
8π2

þ k
4π

�
FjQ ¼ 0; ðA1Þ

where � is the epsilon symbol in AdS4, Θ and k originates
from the topological term and Chern-Simons term on the
brane. Substituting �F ¼ 1

2
� Fμνdxμ ∧ dxν and �Fμν ¼

1
2
ϵμνρσFρσ into NBC (A1), the above equation can be

rewritten as the following form in the component notation

1

4

ffiffiffiffiffiffi
−g

p
ϵμνρσFρσ þ

�
Θ
8π2

þ k
4π

�
FμνjQ ¼ 0: ðA2Þ

To restrict the bulk equation on Q, we may project it on a
3-form orthogonal to the normal vector nμ and obtain

−
1

2

ffiffiffiffiffiffi
−g

p
nνFνμ þ 1

2

�
Θ
8π2

þ k
4π

�
nνϵνμρσFρσ ¼ 0: ðA3Þ

To find the solution of the boundary equation, we define an
outward unit vector normal to Q

ðnt;nx;ny;nzÞ

¼ z
L

�
0;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fðzÞx01ðzÞ2

p ;0;−
fðzÞx01ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fðzÞx01ðzÞ2
p �

: ðA4Þ

Using the position of the Planck brane x1 ¼ z cotðθÞ and
pure AdS4 metric fðzÞ ¼ 1, the unit vector normal can be
rewritten as ðnt; nx; ny; nzÞ ¼ z

L ½0; sinðθÞ; 0;− cosðθÞ�. In
this appendix, we make the following simple ansatz for the
gauge fields

At ¼ μ − ρz; Ax ¼ −By; Ay;z ¼ 0: ðA5Þ

Then, Eq. (A3) gives two equations as

ρ cosðθÞ þ cpbB cosðθÞ ¼ 0;

B sinðθÞ − cpbρ sinðθÞ ¼ 0; ðA6Þ
where the constant cpb was defined as cpb ¼ Θ

4π2
þ k

2π.
When considering a system with a finite charge density
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ρ but without an external magnetic field B, from the above
equations in (A6), we can obtain

ðρ ≠ 0; B ¼ 0Þ∶ θ ¼ π

2
& cpb ¼ 0: ðA7Þ

In other words, both the tension of the brane and topo-
logical terms should vanish, as described in Ref. [40].

Since models involving Planck branes are bottom-up
models which, in principle, could not have a proper UV
completion, it is possible that the full-fledged string theory
solution dual to a charged system in the AdS/BCFT or a
doubly holographic setup does not look at all like a Planck
brane model, and from the bottom up, it is shown in this
constraint condition. Thus, from various points of view,
considering tensionless branes is simple and practical.
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