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We investigate the effect of the charm quark on the chiral phase transition of light quarks at finite
temperature based on the four-flavor soft-wall holographic QCD model. In the massless limit, we find that
the thermal chiral phase transition is of the second order in the four-quark-flavor system. In the case with
the massive charm quark and the massless light and strange quarks, the order of the phase transition
changes to the first order. This is due to the quark-flavor symmetry breaking which is associated with the
violation of the Uð1Þ axial symmetry. Once the light and strange quarks get massive, the explicit chiral
symmetry breaking becomes eminent, and then the crossover phase transition is realized at the physical
quark masses. We also map the order of the phase transition on a phase diagram in the quark-mass plane
where the light- and strange-quark masses are degenerate but differ from the value of the charm-quark
mass. This phase diagram is an extension of the conventional Columbia plot to the four-quark-flavor
system. The critical exponents related to the chiral phase transition are also addressed.
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I. INTRODUCTION

Investigating the thermal QCD phase transition is an
important subject for understanding the hot environment
relevant to the initial stage of heavy-ion collisions and the
early Universe. To clarify its phase structure, the order
of the chiral phase transition, especially depending on the
number of quark flavors (Nf) and the current quark masses
(mf), has been extensively investigated by the lattice QCD
framework [1–7], the functional renormalization group
(FRG) method [8–15], Dyson-Schwinger equations [16,17],
and chiral effective model approaches [18–20].
In a pioneering work, the existence of universality

classes has been investigated by using the renormalization
group analysis in the linear sigma model approach at
the one-loop calculation with the ϵ expansion. They have
concluded that the chiral phase transition is of the first order
for Nf ≥ 3 with massless quarks [18]. Motivated by this
first research, the order of the chiral phase transition in the
three-quark-flavor system (Nf ¼ 3) has been mapped onto

the plane of the light- and strange-quark masses. This
phase diagram is referred to as the Columbia plot [1].
Using effective model approaches with the three-quark
flavors, it has been suggested that a domain of the first-
order phase transition emerges around the small quark-
mass regions [18–20]. These model analyses imply that
the emergence of the chiral first-order phase transition is
closely linked to the Uð1Þ axial anomaly. However, the
definite evidence of the first-order domain has not been
observed in lattice QCD simulations. The specifics of the
Columbia plot remains unclear, and the details of the
chiral phase transition depending on the quark flavors are
still not well understood.
Shifting our focus to the multiflavor system (Nf ≥ 4)

could offer a fresh perspective on the thermal QCD phase
transition. Recently, the lattice QCD study has endeavored
to extend the Columbia plot to the multiflavor system
incorporating more than four-quark flavors [21]. According
to this lattice simulation, the chiral phase transition is
estimated to be of the second order with Nf ≤ 6 after
extrapolation to the massless limit. This lattice estimation
actually differs from the first study based on searching the
universality class in the linear sigma model approach [18].
Investigating the chiral phase transition in the multiflavor
system has, thus, more clearly highlighted the distinction
between the lattice QCD observation and the effective
model results.
Although the extension has been made by the recent

lattice work [21], our understanding of the phase structure
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in the multiflavor system is still limited even compared to
the study of the conventional Columbia plot described with
the light and strange flavors. In our study, we address the
thermal chiral phase transition in such a multiflavor system,
specifically focusing on the four-quark-flavor system, by
using the holographic QCD approach, and investigate
details such as critical exponents related to the chiral phase
transition with Nf ¼ 4.
The anti–de Sitter/conformal field theory (AdS/CFT)

correspondence and the conjecture of the gravity/gauge
duality is a powerful tool for investigating the nonpertur-
bative QCD property [22,23]. There are two main
approaches in holographic QCD: the top-down approach
and the bottom-up approach. The top-down approach
begins with a string theory in high dimensions and attempts
to create a low-dimensional theory with characteristics
similar to QCD. On the other hand, the bottom-up approach
starts with established QCD phenomenology and tries to
understand the features that its high-dimensional gravita-
tional dual exhibits. As a development of the bottom-up
approach, the dilaton configuration plays an important role
in providing the realistic QCD phenomena [24–26]: Taking
into account the infrared (IR) behavior of the dilaton, the
soft-wall AdS/QCD model can successfully reproduce
the linear behavior of meson spectra [24]. Furthermore,
the spontaneous chiral symmetry breaking in the chiral
limit is well described by the ultraviolet (UV) behavior of
the dilaton [25–27]. In this study, we use the bottom-up
holographic QCD, which has been employed to explain the
QCD phenomena observed in experimental physics.
With the developed soft-wall model, the phase

structure has been studied at finite temperature and/or
finite chemical potentials [25–33]. The Columbia plot
has also been described by the previous study in the
holographic approach. In our study, we extend the
previous works of the soft-wall model to the four-
quark-flavor system at finite temperature and propose
the extended Columbia plot. To characterize the phase
structure with Nf ¼ 4, we also investigate the critical
exponents associated with the order parameter of the
chiral phase transition.
The paper is organized as follows. First, we will

provide a brief introduction about the soft-wall AdS/
QCD models with Nf ¼ 4 and present the computation
of the order parameter (quark condensate) in Sec. II.
Then, in Sec. III, we will study the order of the chiral
phase transition for the two-, three-, and four-quark-
flavor systems. Additionally, we will map the order of the
chiral phase transition in the three-quark-flavor system
onto the plane of the light- and strange-quark masses, and
we will investigate the charm-quark-mass contribution.
Toward the end of Sec. III, we will reach the main goal
of our work, which is the extension of the conventional
Colombia plot in the three-quark-flavor system to
the four-quark-flavor system where the light- and

strange-quark masses are degenerate but differ from
the value of the charm-quark mass. In this section, we
will also address the critical exponents related to the
chiral phase transition. Finally, we will summarize and
discuss the results in Sec. IV.

II. Nf -QUARK-FLAVOR SYSTEM BASED ON
HOLOGRAPHIC QCD APPROACH

Our aim of this paper is to investigate the quark-flavor
dependence on the chiral phase diagram based on the
holographic QCD approach. In this section, we begin by
giving a brief review of the soft-wall model which is
applicable to the chiral phase transition at finite temper-
ature. This model is defined in the AdS5 space-time.
The temperature is introduced through the geometries with
black holes, and it is described by the background metric
where there is no dynamical contribution. In our work,
we take the solution of the simple AdS-Schwarzschild
(AdS-SW) black hole:

ds2 ¼ L2

z2

�
−fðzÞdt2 þ 1

fðzÞ dz
2 þ dxidxi

�
; ð1Þ

where z represents the fifth coordinate and L the radius
of the AdS curvature (L is set to 1 below for simplicity).
The function fðzÞ is given by

fðzÞ ¼ 1 −
z4

z4h
; ð2Þ

where zh denotes the black hole horizon defined at
fðzhÞ ¼ 0. Using this function fðzÞ, we have the
Hawking temperature formula at the black hole horizon:

T ¼ 1

4π

���� dfðzÞdz

����
z→zh

¼ 1

πzh
: ð3Þ

This T is identified as the temperature of the hot QCD
system within the holographic model approach.

A. Soft-wall model with multiquark flavors

Following the original work of the bottom-up holo-
graphic QCD model [24], we employ a five-dimensional
gauge model respecting the UðNfÞL × UðNfÞR sym-
metry with Nf being the number of quark flavors.
The five-dimensional model is described by the bulk
left (LM) and right (RM) gauge fields. To incorporate the
quark condensation operator in the bottom-up approach,
we introduce a bulk scalar field X which is a Nf × Nf

matrix and transforms as bifundamental representation
under the UðNfÞL ×UðNfÞR symmetry. Furthermore,
considering the breaking of the conformal invariance,
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we also include the dilaton background field ΦðzÞ which acts as a smooth cutoff. The five-dimensional soft-wall
action takes the form

SM ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p
e−Φ

�
Tr

�
ðDMXÞ†ðDMXÞ þ

1

4g25
ðLMNLMN þ RMNRMNÞ

�
þ VðXÞ

	
; ð4Þ

where g denotes the determinant of metric gMN :ffiffiffiffiffiffi−gp ¼ ð1=zÞ5; the covariant derivative of X is given
by DMX ¼ ∂MX − iLMX þ iXRM; LMN and RMN are the
field strength defined as LMN ¼∂MLN−∂NLM− i½LN;LM�
and RMN ¼ ∂MRN − ∂NRM − i½RN; RM� in terms of the
left- and right-hand gauge field, respectively; g5 denotes
the gauge coupling constant determined by matching
with the UV asymptotic behavior of the vector current
correlator g25 ¼ 12π2=Nc [34]. VðXÞ represents the scalar
potential which takes the polynomial form of X:

VðXÞ ¼ V0ðXÞ þ Vdet: ð5Þ

V0 is constructed by only the quark-flavor symmetric
interactions, which is actually invariant under the
UðNfÞL ×UðNfÞR symmetry:

V0ðXÞ ¼ M2
5Tr½X†X� þ λTr½jXj4�; ð6Þ

where the mass parameter M2
5 is given by M2

5 ¼ ðΔ − pÞ
ðΔþ p − 4Þ ¼ −3 with Δ ¼ 3 and p ¼ 0 through the
holographic dictionary and λ is a positive-dimensionless
quartic coupling. In the absence of the X4 term, the
quark condensate is linked with the current quark mass.
At the chiral limit, the condensate accidentally vanishes.
To avoid this issue, the X4 term is included in the
potential V0ðXÞ [35].

In addition, the potential part VðXÞ also has the deter-
minant term as in Ref. [36] to provide the quark-flavor
mixing term:

Vdet ¼ γRe½detðXÞ�; ð7Þ

with γ being a real parameter. Note that this determinant
term is anomalous under the Uð1ÞA symmetry, but it is
invariant under the SUðNfÞL × SUðNfÞR.
In this study, we mainly focus on the four-flavor system.

Hence, the following analysis is based on the soft-wall
model with Nf ¼ 4.
To determine the classical solution of X, we consider the

static homogeneous expectation value of the scalar field:

X0 ¼ diag

�
χuðzÞffiffiffi

2
p ;

χdðzÞffiffiffi
2

p ;
χsðzÞffiffiffi

2
p ;

χcðzÞffiffiffi
2

p
�
; ð8Þ

where the factor 1ffiffi
2

p is taken to get a canonical form of the

kinetic terms of χf (f ¼ u, d, s, c). In this study, we impose
the isospin symmetry ml ¼ mu ¼ md so that the light
sector of the scalar field X0 takes χl ¼ χu ¼ χd through
the matching condition with QCD. Since we are concerned
with the chiral phase transition, we set the bulk gauge fields
LM and RM to zero. With this setup, the action in Eq. (4) is
evaluated as

S½χl; χs; χc� ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p
e−Φ

�
gzz

�
χ02l þ 1

2
χ02s þ 1

2
χ02c

�

þ
�
−3

�
χ2l þ

1

2
χ2s þ

1

2
χ2c

�
þ v4ð2χ4l þ χ4s þ χ4cÞ þ 3vdetχ2l χsχc

�	
ð9Þ

with vdet ¼ γ=12 and v4 ¼ λ=4.
From this action, the equations of motion for χf (f ¼ l, s, c) read

χ00l þ
�
−
3

z
−Φ0 þ f0

f

�
χ0l þ

1

z2f
ð3χl − 3vdetχlχsχc − 4v4χ3l Þ ¼ 0;

χ00s þ
�
−
3

z
−Φ0 þ f0

f

�
χ0s þ

1

z2f
ð3χs − 3vdetχ2l χc − 4v4χ3sÞ ¼ 0;

χ00c þ
�
−
3

z
−Φ0 þ f0

f

�
χ0c þ

e1

z2f
ð3χc − 3vdetχ2l χs − 4v4χ3cÞ ¼ 0; ð10Þ
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where the prime denotes the derivative with respect to z
component. These equations are a set of coupled equations,
which is driven by the determinant term associated with the
quark-flavor violation (ml ≠ ms ≠ mc). Indeed, in the four-
quark-flavor symmetric limit ml ¼ ms ¼ mc, the three
coupled equations reduce to a single equation.
In the soft-wall holographic QCD model, a nondynam-

ical background field called dilaton fieldΦ, which is only a
function of z added to break the conformality of the AdS
space, plays an important role in the phenomenological
observation and the chiral dynamics. Since the dilaton
modifies the equations of motion, it affects meson spectra,
form factors, and any other property derived from the
action. A positive dilaton field at the infrared (IR) region
ϕðz → ∞Þ ≈þz2 is necessary to get the linear confinement
[24]. In contrast to the IR region, the dilaton field has to be
a negative quadratic ϕðz → 0Þ ≈ −z2 in the ultraviolet (UV)
limit to describe the spontaneous symmetry breaking in the
chiral limit, as pointed out in Refs. [25,26]. The specific
profile of the dilaton field, which respect both the IR and
UV behavior, is proposed as [25]

ΦðzÞ ¼ −μ21z2 þ ðμ21 þ μ20Þz2 tanhðμ22z2Þ; ð11Þ

where the parameter μ0 ¼ 0.43 GeV is fixed by the radial
excitation of the ρ meson masses and μ1 ¼ 0.83 GeV and
μ2 ¼ 0.176 GeV are chosen to get the critical temperature
of the second-order phase transition around 150 MeV for
Nf ¼ 2 with massless quarks [25,26].

B. Matching condition with QCD and numerical
demonstration

Using the holographic correspondence, the quark con-
densate in QCD is extracted from the UV asymptotic
behavior of the scalar fields χf (f ¼ l, s, c) in the five-
dimensional model [24,34], which serves as the order
parameter of the spontaneous chiral symmetry breaking.
Indeed, X=z is dual to the q̄q operator within the holo-
graphic QCD approach. Through the matching condition
with QCD at the UV (z → 0), X=z is identified as the
current quark mass mf corresponding to the source of the
quark condensate.
The UV solutions of χf can be obtained by using the

Frobenius method near the boundary z ¼ 0 [37]. At small
z, the general expressions of χf are given by

χl¼alz−
�
μ21−a2l v4−

3

2
asacvdet

�
alz3 logðzÞþblz3þ���;

χs¼asz−
�
μ21as−a3sv4−

3

2
a2l acvdet

�
z3 logðzÞþbsz3þ���;

χc¼acz−
�
μ21ac−a3cv4−

3

2
a2l asvdet

�
z3 logðzÞþbcz3þ���;

ð12Þ

where af and bf are the integral constants of the three
coupled differential equations. Owing to the holographic
dual of QCD at the UV boundary, the coefficients of the z
terms in Eq. (12) correspond to the current quark masses:

al ¼ mlζ; as ¼ msζ; ac ¼ mcζ; ð13Þ

with ζ ¼
ffiffiffiffi
Nc

p
2π [38]. By considering the linear response with

respect to the current quark masses, the coefficients of the
z3 terms in Eq. (12) are identified as the quark condensates,
σl ≡ hūui ¼ hd̄di, σs ≡ hs̄si, and σc ≡ hc̄ci:

bl ¼
σl
ζ
; bs ¼

σs
ζ
; bc ¼

σc
ζ
: ð14Þ

In the numerical calculation, the integral constants af are
treated as input parameters with the values of quark masses.
On the other hand, bf linked with quark condensates are
determined by solving the equations of motion in Eq. (10)
with appropriate boundary conditions.
To numerically solve the equations of motion, we first

impose the boundary condition near the UV:

lim
ϵ→0

χlðϵÞ
ϵ

¼mlζ; lim
ϵ→0

χsðϵÞ
ϵ

¼msζ; lim
ϵ→0

χcðϵÞ
ϵ

¼mcζ;

ð15Þ

where ϵ is a small number. In addition, another boundary
condition arises from the black hole horizon defined at
fðzhÞ ¼ 0. In fact, the coupled equations of motion in
Eq. (10) have a singularity at the horizon z ¼ zh, resulting
in the unexpected divergence of χf. To avoid the singularity
at the horizon z ¼ zh, the following boundary condition
should be applied to numerically solve the equations of
motion:

f0χ0l þ
1

z2
ð3χl − 3vdetχlχsχc − 4v4χ3l Þjz¼zh−ϵ ¼ 0;

f0χ0s þ
1

z2
ð3χs − 3vdetχ2l χc − 4v4χ3sÞjz¼zh−ϵ ¼ 0;

f0χ0c þ
1

z2
ð3χc − 3vdetχ2l χs − 4v4χ3cÞjz¼zh−ϵ ¼ 0: ð16Þ

With these boundary conditions, we perform numerical
calculations in several cases to provide practical exam-
ples, below.
The coupled equations of motion in Eq. (10) can be

solved by utilizing the shooting method with the boundary
conditions specified in Eqs. (15) and (16) (the outline of the
shooting method is given in Refs. [25,33]). By shooting
from the near-horizon limit z ¼ zh − ϵ to the near-UV
boundary z ¼ ϵ, we obtain the numerical solutions of χf for
the case of the four-flavor symmetric massless limit ml ¼
ms ¼ mc ¼ 0 in Fig. 1, where we take T ¼ 0.100 GeV and
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T ¼ 0.150 GeV corresponding to zh ≃ 3.18 GeV−1 and
zh ≃ 2.12 GeV−1, respectively. This figure shows that the
numerical solutions of χf surely satisfy the boundary
conditions and there is no singularity. Note that the
solutions of the scalar fields result in χl ¼ χs ¼ χc, owing
to the four-flavor symmetry, which implies that the quark
condensates are equal for each other: σl ¼ σs ¼ σc. The
value of the parameter v4 is fixed at v4 ¼ 8 by following the
parameter set in the previous analyses based on the soft-
wall model with Nf ¼ 2 and Nf ¼ 3 [25,26], which is also
similar to the values of the quartic term couplings presented
in Ref. [39]. For Nf ¼ 3, the vdet parameter is defined by
the coupling of the determinant term as vdet ¼ γ

6
ffiffi
2

p and

assigned to be −3 [25,26]. As for Nf ¼ 4, the parameter
vdet is given by vdet ¼ γ

12
. Since one can go from the four-

quark-flavor system to the three-quark-flavor system by
integrating out the contribution of the charm quark with the
heavy quark limit, mc → ∞, the parameter vdet is redefined
as vdet ¼ γ=ð12χcðzhÞjmc→∞Þ. To match the value in the
three-flavor system, vdet in the four-flavor system is
assigned to be −7.07.
The quark condensate σf is determined by fitting the UV

behavior of χf in Eq. (12). In the case of the massless
quarks, the solution of σf is identical for all flavors,
resulting in equal condensates: σl ¼ σs ¼ σc. The values
of the condensates for T¼0.100GeV and T ¼ 0.150 GeV
are evaluated as σl ¼ σs ¼ σc ¼ ð0.3794 GeVÞ3 and
σl ¼ σs ¼ σc ¼ ð0.2276 GeVÞ3, respectively.
Similarly, the equation of motions for χf in the case

of massive quarks can also be solved numerically. In
Fig. 2, we display the solutions of χf with the physical
quark masses ml ¼ 3.45 MeV, ms ¼ 93.4 MeV, and
mc ¼ 1.27 GeV [40], where the temperature is taken as
T ¼ 0.150 GeV. This figure clearly shows that the

solutions χf take different values owing to the violation
of the SUð4Þ quark-flavor symmetry. This violation is
reflected in the quark condensates σl ¼ ð0.3552 GeVÞ3,
σs ¼ ð0.341 GeVÞ3, and σc ¼ ð0.3128 GeVÞ3.
To verify the consistency of the model, the Gell-Mann-

Oakes-Renner (GOR) relation is used: f2πm2
π ¼ 2mqσ. The

value of the light-quark condensate at zero temperature
for physical quark masses is obtained. With the values
of the light-quark mass and condensate, the pion mass
and the pion decay constant are evaluated (see Ref. [39]
for details on calculating the meson spectra and decay
constants). For the physical quark mass, we have the
light-quark condensate σl ¼ 0.07095 GeV3, the pion mass
mπ ¼ 0.17957 GeV, and the pion decay constant
fπ ¼ 0.12314 GeV. Actually, these values satisfy the
GOR relation.

FIG. 2. Solutions of χl, χs, and χc as functions of z at the
physical quark masses ml ¼ 3.45 MeV, ms ¼ 93.4 MeV, and
mc ¼ 1.27 GeV and temperature T ¼ 0.150 GeV.

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5 1.0 1.5 2.00.00

0.02

0.04

0.06

0.08

0.10

(a) (b)

FIG. 1. Solutions of χl, χs, and χc as functions of holographic coordinate z at massless limit ml ¼ ms ¼ mc ¼ 0 for T ¼ 0.100 GeV
(a) and T ¼ 0.150 GeV (b).
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III. CHIRAL PHASE TRANSITION WITH
FOUR-QUARK FLAVORS

With the above setup, we are now ready to explore the
chiral phase transition including the four-quark flavors.
In this section, we will discuss the temperature depend-

ence of the quark condensate and the order of the chiral
phase transition. This study is based on the soft-wall
holographic QCD model in the four-flavor framework with
Nf ¼ 4. By taking a heavy quark-mass limit for the strange
and/or charm quarks, we can address the two- and three-
quark-flavor systems. At the beginning of this section, we
will study the order of the chiral phase transition at the
physical quark mass for the three- and four-quark-flavor
systems, respectively. To validate our approach, we will
also explore the chiral restoration for the two-quark-flavor
system. With the results of the order of the chiral phase
transition, we will describe the conventional Colombia
plot for the three-quark-flavor system and investigate the
charm-quark-mass contribution to the Colombia plot.
Toward the end of this section, we will propose the
extended Columbia plot for the four-quark-flavor system
where the light- and strange-quark masses are degenerate
but differ from the value of the charm-quark mass.
Furthermore, we will also provide the critical exponents
related to the chiral phase transition for two-, three-, and
four-quark-flavor systems.

A. Chiral crossover with physical quark masses
in three- and four-quark-flavor systems

In this subsection, we discuss the chiral phase transition
at physical quark masses with three- and four-quark flavors.
To exhibit the temperature dependence on the light-quark
condensate (chiral condensate), we take the following
values of the physical quark masses in the case of the

four-quark flavors: ml ¼ 3.45 MeV, ms ¼ 93.4 MeV, and
mc ¼ 1.27 GeV [40]. On the other hand, to get from the
soft-wall model with Nf ¼ 4 to the three-quark-flavor
system, the value of the charm-quark mass is changed to
a heavy one, which is taken as mc ¼ 3 GeV in our study,
while the light- and strange-quark masses are fixed as the
physical values.
In Fig. 3, we plot the light-quark condensate σl as a

function of temperature in the case of the three- and four-
quark-flavor systems with the physical quark masses.
Figure 3(a) shows that the chiral condensate smoothly
decreases with the increase of the temperature but does not
take exact zero even at high temperatures. This implies that
the holographic QCD model in Eq. (4) undergoes the chiral
crossover and the chiral symmetry is approximately
restored at finite temperatures.
The chiral crossover is characterized by the pseudocrit-

ical temperature which is evaluated by the reflection point
of the quark condensate: d2σl=dT2jT¼Tpc

¼ 0. Figure 3(b)
shows the variation of σl with temperature, which has the
peak structure. The temperature at the peak point actually
corresponds to the pseudocritical temperature Tpc. For the
three-quark-flavor system with physical masses of light and
strange quarks, the pseudocritical temperature is evaluated
as TpcjhQCD ¼ 0.1729 GeV. This value is smaller than the
conventional effective model results like the Nambu–Jona-
Lasinio (NJL) evaluation: TpcjNJL ≃ 0.189 GeV [41]. On
the other hand, the estimate of the holographic QCD is
larger than the lattice observation of the three-flavor QCD
with the physical quark masses, Tpcjlat ∼ 0.1565 GeV [42].
In comparison with the lattice QCD observation, there
exists a 10% deviation. However, the holographic QCD
model is defined at the large Nc, so that the deviation by
about 30% would be acceptable within the large-Nc

0.10 0.12 0.14 0.16 0.18 0.20
0.00

0.02

0.04

0.06

0.08

0.150 0.155 0.160 0.165 0.170 0.175 0.180
0

1

2

3

4

5

6

(a) (b)

FIG. 3. (a) The light-quark condensate behavior for the four-quark flavors (dashed blue line denoted with Nf ¼ 2þ 1þ 1) and the
three-quark flavors (dot-dashed red line with Nf ¼ 2þ 1) with the physical quark masses. (b) The variation of σl with respect to
temperature T for a similar case as (a). The maximum points correspond to the pseudocritical temperatures (Tpc). The pseudocritical
temperatures are Tc ¼ 0.1703 and 0.1729 GeV for the four- and three-quark flavors, respectively.
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approximation.1 Thus, our result qualitatively aligns well
with the lattice observation.
We also evaluate the pseudocritical temperature for the

four-quark-flavor system with the physical quark masses,
which is TpcjhQCD ¼ 0.1703 GeV. Although the physical
charm-quark mass reduces the pseudocritical temperature,
the decrement is relatively small.

B. Two-flavor chiral phase transition
from the four-flavor framework

When the quark masses deviate from their physical
values, the chiral crossover would change to the first- or
second-order phase transition, as was observed in the
previous holographic studies [25–33]. Using the soft-wall
model with Nf ¼ 4, we explore the influence of quark
masses on the chiral phase transition. To facilitate our
discussion on the chiral restoration, we focus on the two-
quark-flavor system in this subsection, which is effectively
realized by taking the heavy quark-mass limit for the
strange and charm quarks.
In Fig. 4, we show the influence of the light-quark mass

on the chiral phase transition for the two-quark-flavor

system, where the strange- and charm-quark masses
are taken as ms ¼ 1 GeV and mc ¼ 3 GeV, respectively,
to be effectively integrated out from the four-flavor
framework. Like in the case of the three- and four-
quark-flavor system, we observe the chiral crossover with
the physical value of the light-quark mass, as depicted in
Fig. 4(a). The pseudocritical temperature is determined to
be Tpc ¼ 0.2124 GeV from Fig. 4(b). When comparing
the cases of the three- and four-quark-flavor systems, the
two-flavor pseudocritical temperature is higher. This shows
that the inclusion of the strange quark significantly reduces
the pseudocritical temperature in both the three- and four-
quark-flavor systems.
When taking the chiral limit (ml ¼ 0), the chiral cross-

over is changed to the chiral second-order phase transition.
The critical temperature of the second-order phase tran-
sition reads Tc ¼ 0.2123 GeV, determined from the point
of the divergence in Fig. 4(b). After reaching the critical
temperature, the chiral condensate becomes zero, so that
the chiral symmetry is completely restored at high temper-
atures T > Tc. Moreover, this second order is anticipated to
belong to the Oð4Þ universality class [18].
Indeed, the second-order phase transition has also been

observed in the previous study for the massless two-quark-
flavor system based on the soft-wall model with Nf ¼ 2

and Nf ¼ 3 (where the strange quark is taken to be heavy)
[25,26]. Here, our numerical analysis certainly shows that
the soft-wall model with Nf ¼ 4 can effectively replicate
the two-flavor chiral phase transition by taking the heavy
mass limit of the strange and charm quarks.

C. Three-flavor first-order phase transition
and influence of charm-quark mass

The previous studies based on the soft-wall model with
Nf ¼ 3 have also provided the chiral first-order phase
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FIG. 4. (a) Temperature dependence of the light-quark condensate with the large strange-quark mass ms ¼ 1 GeV and charm-quark
mass mc ¼ 3 GeV. This case corresponds to the two-quark-flavor system for the massless (solid blue line) and physical quark mass
(dashed red line) of the light quark. (b) The variation of σl with temperature T with similar color coding as (a).

1In the AdS/QCD correspondence from one side there is a
classical supergravity theory, and from the other side there is a
gauge theory at the large-Nc limit (only the leading term in the
large-Nc expansion contributes to the correspondence). In order
to apply the AdS/QCD correspondence to the real world QCD
physics, we need to extrapolate the number of color to Nc ¼ 3,
and this extrapolation requires one to add the corrections to the
gravity side (quantum correction), which can be obtained as loop
effects when one replaces the classical action with an effective
action [43]. The leading-order correction to the supergravity
action is on the order of Oð1=NcÞ. Then, one can naively expect
that the theoretical uncertainty is around 30% [44–46]. Unfortu-
nately, the evaluation of the next-to-leading order of the 1=Nc
expansions is not established in holographic QCD.
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transition in the case of the massless three-quark
flavors and have shown that the first-order phase tran-
sition is driven by the quark-flavor symmetry breaking
via the determinant term Vdet tagged with the parameter
vdet [25,26]. To address the first-order phase transition
in the framework of the soft-wall model with Nf ¼ 4, we
move onto the three-quark-flavor system in this subsec-
tion. In addition, we also consider the influence of the
finite charm-quark mass on the three-flavor first-order
phase transition.
Figure 5(a) shows the contribution of the parameter vdet

on the chiral phase transition. Here, we set the massless
three-quark-flavor system where the charm-quark mass
takes the heavy value (mc ¼ 3 GeV) to be integrated
out. This figure clearly shows that the presence of the
determinant term surely induces the first-order phase
transition even when starting from the framework of the
soft-wall model with Nf ¼ 4.
Next, adjusting the charm-quark mass to be small, we

consider the influence of the charm-quark mass on the first-
order phase transition. Figure 5(b) shows that the critical
temperature is moved to the low-temperature region with
the decrease of mc, while the first-order phase transition is
intact for the finite charm-quark mass.
Turning on the mass of the light quark, the chiral

symmetry is explicitly broken and is not completely
restored even at high temperatures. Then, the first-order
phase transition is contaminated by the current quark mass
and makes the phase transition crossover at the sufficient
value of the quark mass. As for the case of themc ¼ 3 GeV
[see Fig. 6(a)], the order of the phase transition is altered at
ml ¼ ms ∼ 10 MeV. This quark-mass value represents the
critical quark mass to separate the region between the first-
order and crossover domains. As the charm-quark mass
decreases, the critical quark mass is shifted to be small, as

depicted in other panels in Fig. 6: The critical masses
are evaluated asml ¼ ms ∼ 10.5 MeV,ml ¼ ms ∼ 9 MeV,
ml ¼ ms ∼ 7 MeV, andml¼ms∼4MeV formc ¼ 3 GeV,
mc ¼ 2 GeV, mc ¼ 1.2 GeV, and mc ¼ 0.5 GeV,
respectively.
To grasp the quark-mass dependence on the chiral phase

transition, we map the order of the chiral phase transition
on a phase diagram in the quark-mass plane of ml and ms,
as shown in Fig. 7. This figure is a sort of the Columbia
plot, in which the charm-quark-mass contribution is
included. Here, we have considered the four different
values of the charm-quark mass. The four solid lines
corresponding to each charm-quark mass represent the
critical quark masses of ml and ms. The colored domain
denotes the region where the first-order phase transition
occurs, while the white regions signify the occurrence of
the chiral crossover.
In the three-quark-flavor system, corresponding to the

case of mc ¼ 3 GeV, the first-order domain is distant from
the physical point. Furthermore, when compared to the
lattice observation of the chiral crossover [5], our estimated
first-order domain does not touch the lattice data. Such a
narrow first-order domain has been also reported in a mean-
field level analysis of the NJL model [20] and the FRG
method with the constant anomaly coupling [13].
As the charm-quark mass decreases, the charm-quark

contribution becomes significant in the thermal system.
The phase diagram in Fig. 7 shows that the first-order
domain shrinks by adjustingmc↘0. The first-order domain
is also contaminated by the charm-quark contribution. This
contamination implies that the first-order domain vanishes
in the massless limit of the charm quark. The fate of the
first-order domain in the four-flavor system with the
massless charm quark will be discussed in the subsequent
subsection.
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FIG. 5. (a) The light-quark condensate as a function of temperature without (vdet ¼ 0) and with (vdet ¼ −7.07) the contribution of the
determinant term. (b) Light-quark condensate as a function of temperature for a fixed value of ml ¼ ms ¼ 0 and changing charm-quark
mass as mc ¼ 0.50 GeV (solid blue line), mc ¼ 1.20 GeV (dashed red line), mc ¼ 2 GeV (dash-dotted green line), and mc ¼ 3 GeV
(dashed magenta line).
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D. Emergence of second-order phase transition
and four-flavor phase diagram

Moving onto the massless four-quark-flavor system, we
make a plot of the chiral phase transition in a way similar to
the case of the massless three-flavor system in Fig. 5(a). In
this case, the second-order phase transition emerges, as
shown in Fig. 8. The figure indicates that the presence of
the determinant term is irrelevant to the second-order phase
transition. This is in contrast to the massless three-flavor
system depicted in Fig. 5(a), and the critical temperature is
not influenced by the determinant term contribution,
holding steady at Tc ¼ 0.1515 GeV.
As shown below, the mechanism of the second-order

phase transition with the massless four-quark flavors is
analogous to that with the massless two-quark flavors.
In the flavor-symmetric system for Nf ¼ 4, where
χl ¼ χs ¼ χc, the potential VðXÞ is expressed as

VðχlÞ ¼ aχ2l þ bχ4l ; ð17Þ

with a ¼ −6 and b ¼ 4v4 þ 3vdet. On the other hand, the
potential for Nf ¼ 2 goes like

VðχlÞ ¼ āχ2l þ b̄χ4l ; ð18Þ

where ā and b̄ are give by ā ¼ −6þ v̄det and b̄ ¼ 2v4 with
v̄det ¼ γ=2 being the parameter of the determinant term for
Nf ¼ 2. The potentials in the soft-wall model exhibit the
same structure for both the two- and four-quark flavors:
The potentials are constructed by only the χ2l and χ4l terms.
In these cases, the contribution of the determinant term
becomes invisible in the potential structure. This is because
the determinant term for Nf ¼ 4 (Nf ¼ 2) is incorporated
into the χ4l term (the χ2l term). Owing to the similarity to the
potential form in the massless two-quark-flavor system, the
second-order phase transition also manifests in the massless
four-flavor system. Moreover, this similarity would indi-
cate that the universality class of the second order in the
massless four-quark flavors may align with that observed in
the massless two-quark flavors.
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FIG. 6. (a) The temperature dependence of the light-quark condensate for a fixed value of mc ¼ 3 GeV and changing the degenerate
light- and strange-quark masses to see how the order of phase transition changes by changing the mass, asml ¼ ms ¼ 9.3 MeV (dashed
blue line),ml ¼ ms ¼ 10.5 MeV (solid red line), andml ¼ ms ¼ 11.7 MeV (dash-dotted green line). The color for (b)–(d) is similar to
(a) with different quark masses.
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Furthermore, the steady behavior of the critical temper-
ature forNf ¼ 4 can also be understood as analogous to the
observations in the two-flavor system. The previous study
has shown that the critical temperature with the massless
two-quark flavors remains unaffected by the choice of v4
and is instead determined by only the parameter set in the
dilaton profile [26]. Given this fact, the critical temperature
with the massless four-quark flavors is not shifted by the
contribution of the determinant term, because vdet is
absorbed into the parameter of the χ4l term.

When the finite mass of the light quark is introduced in
the four-quark-flavor system, the second-order phase tran-
sition is contaminated, similar to the case of the first-order
phase transition in the three-quark-flavor system shown in
Fig. 6. Figure 9 clearly illustrates that the light-quark mass
makes the second-order phase transition crossover. In
contrast to the three-flavor first-order phase transition, this
system promptly undergoes the chiral crossover as soon as
the quark mass becomes massive, leading to the absence of
a critical mass of the light quark in the case of mc ¼ 0.
Next, we move onto the case of the massive charm quark

from the massless four-quark-flavor system. Figure 10
illustrates that, as the charm-quark mass increases, the
second-order phase transition shifts to the first-order phase
transition around mc ∼ 5 MeV. This value represents the

FIG. 8. The quark condensate as a function of temperature for
the massless quarks at vdet ¼ −7.07 (solid blue line) and vdet ¼ 0
(dashed red line).

FIG. 7. The phase diagram for chiral phase transition in the
ml −ms plane with four different values of charm-quark mass.
The solid red line shows the critical line (second-order line)
between the first-order region (the bottom left corner) and the
crossover region (the upper right corner) at mc ¼ 0.50 GeV.
Similar critical line is shown formc ¼ 1.20 GeV (solid blue line),
mc ¼ 2.0 GeV (solid green line), and mc ¼ 3.0 GeV (solid
magenta line). Note that there exists the second-order line in
the ms axis above the critical value of the strange-quark mass
corresponding to the tricritical point. The white region represents
the crossover domain, and the ml axis above the critical value of
the light-quark mass also falls within the crossover domain. The
orange points are lattice QCD results taken from Refs. [4,5,7]
which are in the crossover region.

FIG. 9. Light-quark condensate as a function of temperature for
massless charm quark and different values of the light- and
strange-quark masses as ml ¼ ms ¼ 0 (solid blue line), ml ¼
ms ¼ 0.5 MeV (dashed red line), and ml ¼ ms ¼ 1 MeV (dash-
dotted green line).

FIG. 10. The light-quark condensate as a function of temper-
ature for massless light and strange quarks ml ¼ ms ¼ 0 and
changing charm-quark mass to see how the order of phase
transition changes by changing the charm-quark mass as mc ¼
2 MeV (dash-dotted green line), mc ¼ 4 MeV (dashed red line),
and mc ¼ 6 MeV (solid line). The critical charm-quark mass that
changes the order of the chiral phase transition from second order
to first order is between 4 and 6 MeV.
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critical charm-quark mass that distinguishes between the
crossover and the first-order phase transition.
By combining the results of Figs. 8–10, we depict the

phase diagram at the four-quark-flavor system in Fig. 11,
where ml and ms are degenerate but differ from mc. This
phase diagram is on the ml¼s −mc plane, which is mainly
drawn by the first-order domain and the crossover domain.
The coexistence of the two domains in the phase diagram is
formed by the competition between the contribution of the
determinant term associated with the flavor symmetry
breaking and the current quark-mass source related to
the explicit chiral symmetry breaking, similar to the phase
diagram on the ml −ms plane shown in Fig. 7.
Furthermore, there exists the tricritical point on the

ml¼s −mc plane (ml degenerates with ms), at which the
three domains of crossover, first-, and second-order phase
transitions merge. Of interest is that the tricritical point
corresponds to the critical charm-quark mass estimated in
Fig. 10 and stems from the massless four-quark-flavor
limit where the second-order phase transition observed in
Fig. 8 emerges.
Our proposed extended-Columbia plot would be also

characterized by the critical exponents, which is evaluated
in the subsequent subsection.

E. Critical temperatures with massless quarks

With the above results of the critical temperatures in
the massless systems, we make a comparison between the
holographic estimates and other model results based on the
FRGmethod in Fig. 12. The FRGmethod [8,9,15] provides

the second-order phase transition for Nf ¼ 2, 3, 4.
However, our soft-wall model in the three-quark-flavor
system provides the first-order phase transition, while the
second-order phase transition arises in the two- and four-
quark-flavor systems. Despite the discrepancy in the phase
transition order between the soft-wall model and other
model results, our estimated critical temperatures can be
considered to be comparable to those of other models when
taking account of the large-Nc approximation.

F. Critical exponents

This subsection delves into the criticality of chiral phase
transition at finite temperature across various regions of the
Columbia plot in Figs. 7 and 11. The scaling behavior of
the quark condensate is characterized by critical exponents
β and δ near the critical point. To this end, we introduce the
reduced temperature t, which is defined as t ¼ T−Tc

Tc
, where

Tc represents the critical temperature of the second-order
chiral phase transition.
The light-quark chiral condensate near the critical

temperature can be defined as [47]

σlðt → 0Þ ∝ jtjβ: ð19Þ

Note that the order parameter is nonzero even at the
critical temperature when the value of the light-quark
mass takes finite values. This light-quark-mass dependence
allows us to write the other critical-scaling relation as the
following:

σlðt; mlÞ ¼ m1=δ
l fσlðt=m1=ðδβÞ

l Þ; for ml ∼mcri
l ; ð20Þ

where fσl is a function of the scaling variable t=m
1=ðδβÞ
l and

mcri
l denotes the critical mass of the light quarks at the

FIG. 11. The phase diagram for chiral phase transition in the
ml¼s −mc plane. The solid red line shows the critical line
(second-order line) between the first-order region (light-green
shaded area) and the crossover region (the white region). The
tricritical point is located at mc ∼ 4 MeV for which the order of
chiral phase transition changes from second-order to first-order
phase transition. Below the tricritical point, there is only second-
order phase transition on the y axis which is at massless
ml¼s ¼ 0, and the order changes to crossover for any deviation
from the massless limit. The blue band corresponds to the naive
30% corrections from the large-Nc estimation.
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FIG. 12. The critical temperature as a function of the number of
flavors for massless quarks. The blue diamond is the results from
our calculations, the error bar represents the 30% systematic
uncertainty coming from the extrapolation of the number of color
to Nc ¼ 3, and the red open circles are the results of the FRG
model [8,9].
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second order of the chiral phase transition. When the light-
quark mass is close to its critical value, fσl becomes
independent of the light-quark mass. This behavior is
known as the universal scaling function of the light-quark
mass. Hence, taking ml → mcri

l at the critical temperature,
one can find the following scaling of the light-quark mass:

σlðt ¼ 0; ml → mcri
l Þ ∝ m1=δ

l : ð21Þ

Note that the strange- and/or charm-quark mass are fixed
constant values when we evaluate the critical exponent δ.
Let us start by examining the scenario for the two-quark-

flavor system where the masses of the strange and charm
quarks are large enough to be integrated out from the
action. According to Fig. 4, the critical temperature of
the two-flavor case at the chiral limit is Tc ¼ 0.2122 GeV.
The value of β and δ extracted from fitting Eqs. (19)
and (21), respectively, are β ¼ 0.50 and δ ¼ 3.0, and we
make a comparison with other models in Table I. Our
estimations are in line with the mean-field approximation of
β ¼ 1=2 and δ ¼ 3 [47].
Next, we move onto the three-quark-flavor system with

the large charm-quark mass (mc ¼ 3 GeV). As shown
in the Columbia plot in Fig. 7, the second-order line
divides the chiral phase transition into two regions: the
first-order region and the crossover region. Furthermore,
there exists the tricritical point. Here, we consider three
cases: case (i) across the first-order region to the crossover
region for the degenerate light- and strange-quark mass (at
the critical massesmcri

l ¼ mcri
s ¼ 10.5 MeV), case (ii) at the

tricritical point with mtri
l ¼ 0 and mtri

s ¼ 61.5 MeV, and
case (iii) from the second-order line to the crossover region
atmcri

l ¼ 0 andmcri
s ¼ 100 MeV. The results of these cases

are presented in Table II. Intriguingly, the critical exponents
at the tricritical point β ¼ 0.25 and δ ¼ 4.9match well with
the values in the mean-field approximation [47]. However,
altering the critical values of the strange-quark mass as well
as the light-quark mass leads to changes in the critical
exponents, deviating them from the mean-field values.
Finally, we evaluate the critical exponents for the four-

quark-flavor system in Fig. 11, where ml and ms are
degenerate but differ from mc. Similar to the three-quark-
flavor system, we consider the three cases: case (i) across

the first-order region to the crossover regions at the critical
masses mcri

l¼s ¼ 4 MeV and mcri
c ¼ 500 MeV, case (ii) at

the tricritical point with mtri
l¼s ¼ 0 and mtri

c ¼ 4 MeV, and
case (iii) from the second-order line to the crossover region
at mcri

l¼s ¼ 0 and mcri
c ¼ 0. The values of the critical

exponents are given in Table III. Our evaluation of the
critical exponents at the tricritical point would characterize
the extended Columbia plot.
It is worth mentioning that one can also obtain the critical

exponents from the chiral susceptibility, χ ¼ ∂σl=∂ml. The
temperature dependence of the chiral susceptibility is
plotted in Fig. 13 (upper panel). This figure shows that
the chiral susceptibility has the peak structure where the
temperature corresponds to the pseudocritical temperature
estimated from the quark condensate.
Moreover, taking the derivative of Eq. (21) with respect

to the light-quark mass, we can write the chiral suscep-
tibility by using the critical exponents and scaling function:

χðt; mlÞ ¼ m1=δ−1
l fχðt=m1=ðδβÞ

l Þ; for ml ∼mcri
l ; ð22Þ

where fχ is the universal function in terms of the chiral
susceptibility, which should be connected with fσl . In the

lower panel in Fig. 13, we have showed χ=m1=δ−1
l as

the function of the scaling variable t=m1=δβ
l with different

quark masses for three- (Tc ¼ 0.1721 GeV) and
four- (Tc ¼ 0.170 GeV) quark-flavor systems. χ=m1=δ−1

l
for different values of the light-quark masses are

TABLE I. The comparison of the values of the critical ex-
ponents β and δ for the two-quark-flavor system with the mean-
field approximation, O(4) scaling theory, Z(2) universality class,
and Einstein-Maxwell-dilaton holographic QCD (hQCD).

Model β δ

Mean field (Nf ¼ 2) [47] 1=2 3
O(4) scaling theory [47] 0.38 4.8
Einstein-Maxwell-dilaton hQCD: Nf ¼ 2 [48] 0.32 4.9
hQCD: (mcri

l ¼ 0; ms ¼ 1 GeV and mc ¼ 3 GeV) 0.50 3.0

TABLE II. The same as in Table I but for the three-quark-flavor
system.

Model β δ

Mean field (Nf ¼ 2) [47] 1=2 3
Mean field (Nf ¼ 2þ 1 @ tricritical points) [47] 1=4 5
O(4) scaling theory [47] 0.38 4.8
Z(2) universality class [49] 0.32 4.8
hQCD: (mcri

l ¼ mcri
s ¼ 10.5 MeV; mc ¼ 3 GeV) 0.48 2.2

hQCD: (mtri
l ¼ 0, mtri

s ¼ 61.5 MeV; mc ¼ 3 GeV) 0.25 4.9
hQCD: (mcri

l ¼ 0, mcri
s ¼ 100 MeV; mc ¼ 3 GeV) 0.47 3.2

TABLE III. The same as in Table I but for the four-quark-flavor
system.

Model β δ

Mean field (Nf ¼ 2) [47] 1=2 3
Mean field (Nf ¼ 2þ 1 @ tricritical point) [47] 1=4 5
O(4) scaling theory [47] 0.38 4.8
Z(2) universality class [49] 0.32 4.8
hQCD: (mcri

l¼s ¼ 4 MeV, mcri
c ¼ 500 MeV) 0.43 2.6

hQCD: (mtri
l¼s ¼ 0, mtri

c ¼ 4 MeV) 0.41 3.6
hQCD: (mcri

l¼s ¼ 0, mcri
c ¼ 0) 0.46 3.1
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approximately collapsed to one curve, identifying it as
the universal function of the light-quark masses fχ . Note
that, as the light-quark mass becomes large and deviates
from its critical values, the collapsed curve starts to
separate, implying that χ=m1=δ−1

l no longer behaves as
the universal function. With the universal function
fχ ¼ χ=m1=δ−1

l , we can read the critical exponent δ through

χðt ¼ 0; ml → mcri
l Þ ∝ m1=δ−1

l . Now we consider one case
where ms ¼ 93.4 MeV and mc ¼ 3 GeV, and then the
critical exponent δ is evaluated as δ ¼ 3.3. This is
the same value as the one obtained from Eq. (21) with
the similar condition.

IV. SUMMARY AND DISCUSSION

In this paper, we have explored the quark-flavor
and -mass dependence on the thermal chiral phase tran-
sition. In order to clarify the phase structure on the quark-
mass plane, we have employed the soft-wall holographic
QCDmodel withNf ¼ 4, in which the quark-flavor mixing
is incorporated through the determinant term interaction.

By using the holographic model framework, the four-
quark-flavor system is described and is applicable to finite
temperature across the chiral phase transition. Furthermore,
the holographic four-quark-flavor system can be reduced to
the two- or three-quark-flavor system by taking the heavy
mass limit of the charm and/or strange quark.
First, we have investigated the three-quark-flavor sys-

tem with the physical quark masses. In this case, we have
observed that the soft-wall model surely undergoes
the chiral crossover and its pseudocritical temperature
aligns well with the lattice QCD simulations within the
large-Nc approximation. In addition, we have also con-
firmed that the four-flavor model framework is capable of
reproducing the observations of the phase transition order
from prior holographic studies with Nf ¼ 2, 3: In the
massless limit of the two-quark- (three-quark-) flavor
system, the holographic model with Nf ¼ 4 yields the
second- (first-) order phase transition, consistent with the
prior studies [25,26]. This first-order phase transition is
driven by the contribution of the determinant term, similar
to the prior studies [25,26].

FIG. 13. Upper panel: quark-mass dependence of the temperature dependence of the chiral susceptibility with different quark masses
for three- (left) and four- (right) quark-flavor systems. Lower panel: rescaled chiral susceptibility as the function of the scaling variable
t=m1=δβ

l with different quark masses for three- (left) and four- (right) quark-flavor systems. The value of the critical exponents in the case
of mcri

l ¼ 0, mcri
s ¼ 93.4 MeV, and mc ¼ 3 GeV are β ¼ 0.47 and δ ¼ 3.3. For the case of four quark flavors, mcri

l ¼ 0,
mcri

s ¼ 93.4 MeV, and mc ¼ 1.27 GeV, the critical exponents are evaluated as β ¼ 0.50 and δ ¼ 3.0.
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Applying our framework to the three-quark-flavor sys-
tem for various values of quark masses, we have illustrated
the chiral phase diagram on the plane of the light-quark
mass ml and the strange-quark mass ms, which is a part of
the Columbia plot. For the region where ml and ms are
small compared to their physical values, the phase diagram
is dominated by the first-order transition owing to the
presence of the determinant term. The first-order domain is
also distant from the chiral crossover points measured in
lattice QCD simulations [4,5,7].
Moreover, we have also investigated the influence of

the charm-quark mass on the chiral phase diagram on the
ml −ms plane, especially the first-order domain. It has
been found that, by adjusting the charm-quark mass to be
small, the first-order domain shrinks. It implies that the
first-order domain disappears at the massless limit of the
charm-quark mass. To further explore the disappearance of
the first-order domain, we have investigated the massless
four-quark-flavor system, resulting in the emergence of
the second-order phase transition. The second-order phase
transition emerged with massless four-quark flavors can be
understood by the mechanism analogous to that observed in
the massless two-quark-flavor system. Indeed, in the case
of the massless quark system for both Nf ¼ 2 and Nf ¼ 4,
the determinant term is absorbed into other interaction
terms described by even functions of the scalar field.
Consequently, its contribution becomes irrelevant to evalu-
ating the order of the chiral phase transition.
Given the phase transition order observed in the massless

four-quark-flavor system, we have proposed the new phase
diagram with the four-quark flavors, which is described on
the ml¼s −mc plane. Even for the four-quark-flavor sys-
tem, both the first-order domain and the crossover domain
coexist in the phase diagram. We have found that the
tricritical point exists in the mc axis, specifically at
mc ∼ 4 MeV for ml¼s ¼ 0. This tricritical point stems
from the massless four-quark-flavor limit where the sec-
ond-order phase transition occurs.
Incidentally, our estimated critical temperatures are com-

parable to these of FRG method in the massless systems
within the systematic uncertainty [8,9,15]. However, the
phase transition order of the holographic model, especially
observed in the three-quark-flavor system, is in contrast to
the other model observations.
Finally, we estimate the critical exponents in our model

for two-, three-, and four-quark-flavor systems. The esti-
mated values of the critical exponents β and δ for the two-
quark-flavor system and the three-quark-flavor system at
the tricritical point are consistent with the mean-field
approximation. For the four-quark-flavor system, our
estimated critical exponents at the tricritical point would
characterize our proposed extended-Colombia plot, which
warrants further study in other model approaches.
Below, we provide some comments on our findings and

their implications.

(i) As the pioneering work for the phase diagram on the
quark-mass plane, the linear sigma model has
predicted the first-order phase transition for the
massless four-quark-flavor system [18]. In contrast,
the soft-wall holographic QCD model exhibits the
second-order phase transition. This estimation is
consistent with the recent prospect of the lattice
QCD simulations [21].

(ii) The conventional NJL model also provides the
first-order phase transition for the massless
three-quark flavors, which is triggered by the
instanton-induced anomaly term. Actually, the
instanton-induced anomaly term is described by
the determinant term, which is called the
Kobayashi-Maskawa-’t Hooft interaction [50–53].
However, the determinant term in the soft-wall
model would not be directly linked with the
Kobayashi-Maskawa-’t Hooft term, and the in-
stanton contribution is still unclear within the
holographic QCD framework at finite temperature.
Hence, it is worth to study the role of the
determinant term and find out the holographic
dual associated with the instanton contribution
that affects the order of the chiral phase transition.

(iii) Figure 12 implies that, by taking the extrapolation
of the number of the quark flavor, the critical
temperature would be zero at the large number of
the quark flavor. Actually, other effective models
have shown that the critical temperature vanishes
at the large number of the quark flavor and have
pointed out the appearance of the conformal
window [54–59]. Furthermore, the conformal win-
dow has been also studied in the lattice QCD
simulation at finite temperatures [21]. Therefore, it
is interesting that the soft-wall model approach is
extended to the more multiflavor system and is
addressed to the conformal window. At any rate,
our new phase diagram with the four-quark flavor
in Fig. 11 characterized by critical exponents is a
milestone in investigating the chiral phase struc-
ture in the multiflavor system.
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