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The effective Hamiltonians for chiral supersymmetric gauge theories at small spatial volume are
generalizations of the Hamiltonians describing the motion of a scalar or a spinor particle in a field of Dirac
monopoles (we are dealing in fact with a certain lattice of monopoles supplemented with a periodic singular
potential). The gauge fields in such Hamiltonians belong to the Cartan subalgebras of the corresponding
gauge algebras. Such a construction exists for all groups admitting complex representations, i.e., for
SUðN ≥ 3Þ, Spinð4nþ 2Þ with n ≥ 1 and E6. We give explicit expressions for these Hamiltonians for
SUð3Þ, SUð4Þ ≃ Spinð6Þ and for SUð5Þ. The simplified version of such a Hamiltonian, deprived of
fermion terms, of the extra scalar potential and when only one node of the lattice is taken into consideration,
describe a 3r-dimensional motion (r being the rank of the group) in the field what we call a “Cartan
monopole.” As is the case for the ordinary monopole, the Lagrangian of this system enjoys gauge
symmetry, rotational symmetry, and the parameter, generalizing the notion of magnetic charge for Cartan
monopoles, is quantized.
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I. DIRAC MONOPOLE AND ASSOCIATED
HAMILTONIANS

We start with recalling some basic facts concerning the
dynamics of Dirac monopole [1]. The magnetic field has a
Coulomb form:

Hi ¼
qxi
r3

; ð1:1Þ

where q is the magnetic charge.
The corresponding gauge potentials may be chosen in

the form

Ax¼−
qy

rðrþzÞ ; Ay¼
qx

rðrþzÞ ; Az¼0: ð1:2Þ

The field (1.2) is singular on the Dirac string,
x ¼ nr ¼ ð0; 0;−rÞ. Any other direction n of the string
can be chosen. In particular, one can choose n ¼ ð0; 0; 1Þ,
in which case the vector potentials

Ãx¼
qy

rðr−zÞ ; Ãy¼−
qx

rðr−zÞ ; Ãz¼0 ð1:3Þ

have the same curl (1.1).

The potentials (1.2) and (1.3) are related by a gauge
transformation

Ãj ¼ Aj − ∂jχ; ð1:4Þ

with

χðx; y; zÞ ¼ 2q arctan
y
x
¼ 2qϕ; ð1:5Þ

where ϕ is the azimuthal angle.
By considering the interaction of the monopole with a

particle carrying an electric charge e, one derives the
quantization condition,

qe ¼ n
2
; ð1:6Þ

with integer n.1 There are two physical ways and a more
mathematical way to derive (1.6):
(1) One can calculate the angular momentum of the

electromagnetic field created by the monopole and
the electric charge,

Jfield ¼ 1

4π

Z
dx½x × ½E ×H��; ð1:7Þ

and require for it to be equal to n=2 with integer n.
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1It is written in the unit system ℏ ¼ c ¼ 1. In the following, we
will always set e ¼ 1 (with the positive sign, not the negative one
as it would be for a physical electron) so that q ¼ n=2.
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(2) One can consider the Schrödinger equation describ-
ing the motion of the charged particle in the
monopole field,

ĤΨ ¼ 1

2
ðP̂j þAjÞ2Ψ ¼ EΨ; ð1:8Þ

with P̂j ¼ −i∂=∂xj. The gauge transformation (1.4)
induces the corresponding transformation of the
eigenfunctions of (1.8): Ψ̃ ¼ eiχΨ. The requirement
for eiχ and hence for the wave function to be
uniquely defined brings about the condition (1.6).2

(3) A more mathematical derivation was suggested in
Ref. [3]. Separating in (1.2) the radial dependence,
we arrive at an Abelian gauge field on S2 that is
singular at its south pole. Likewise, the field (1.3) is
singular at its north pole.
One now can construct a fiber bundle subdividing

S2 into two charts: the north hemisphere where the
gauge field has the form

Ax ¼ −
q sin θ sinϕ
rð1þ cos θÞ ; Ay ¼

q sin θ cosϕ
rð1þ cos θÞ ;

Az ¼ 0 ð1:9Þ

and the south hemisphere where

Ãx ¼
q sin θ sinϕ
rð1 − cos θÞ ; Ãy ¼ −

q sin θ cosϕ
rð1 − cos θÞ ;

Ãz ¼ 0: ð1:10Þ

Two charts overlap on the equator, and if we require
for Ãj and Aj to be related there by a uniquely
defined gauge transformation, the quantization con-
dition (1.6) follows.

The Lagrangian, corresponding to the classical version
of the quantum Hamiltonian in (1.8), reads

L ¼ ẋjẋj
2

− ẋjAjðxÞ: ð1:11Þ

Proposition 1. The action S of the system (1.11) with
H ¼ ∇ ×A given in Eq. (1.1) is invariant under rotations.
The conserved angular momentum is

Jm ¼ εmnkxnẋk þ
qxm
r

¼ εmnkxnðPþAÞk þ
qxm
r

: ð1:12Þ

Proof. It is quite explicit. The variation of the Lagrangian
under δxj ¼ εjmnαmxn is

δL ¼ −αm
�
εjmnẋnAj þ ẋj

∂Aj

∂xp
εpmnxn

�
: ð1:13Þ

After some massaging—flipping the time derivative in the
first term and renaming the indices in the second term—this
can be represented as

δL ¼ −αm
d
dt

ðεjmnxnAjÞ þ αmðxpHm − δmpxnHnÞẋp

¼ −αm
d
dt

�
εjmnxnAj þ

qxm
r

�
; ð1:14Þ

so that
R
Ldt is invariant.

The conserved angular momentum can be derived by a
standard Noether method.3 ▪
The term qxm=r in Jm is nothing but the angular

momentum (1.7) of the electromagnetic field.
Remark. The fact that the Lagrangian (1.11) enjoys

rotational invariance is not completely trivial. It would be if
the potential

A ¼ qx × n
rðr − x · nÞ

transformed as a vector under rotations of coordinates. But
it does not. Aj transform as vector components only if one
simultaneously rotates the direction n of the Dirac string.
But such a transformation acting not only on the dynamic
variables xj but also on the parameters nj does not have
Noether nature and the invariance under such transforma-
tion does not directly entail the existence of an integral of
motion.
The Schrödinger equation (1.8) with the monopole vector

potentials was solved by Tamm [4]. The wave functions are
expressed via Jacobi polynomials. The allowed eigenvalues
of Ĵ2 are jðjþ 1Þwith j ¼ jqj; jqj þ 1;…. The spectrum is

EL¼0;1;… ¼ jðjþ 1Þ − q2 ð1:15Þ

with 2jþ 1 degenerate states on each level.
For a spin 1

2
particle, the quantum Hamiltonian acquires a

matrix form. We have to add to (1.8) the term γ
4
Hiσi, where

γ is the gyromagnetic ratio of the particle. This Schrödinger
problem was also solved [5].2Well, one can abandon the idea of gauge invariance, pick up a

particular direction of the Dirac string, in which case the spectral
problem for the Hamiltonian (1.8) can in principle be formulated
even for fractional magnetic charges. This means, however,
that the Dirac string becomes observable, which is not what
we want [2].

3The simplest way to proceed is first to find J3 by evaluating
the variation of the Lagrangian with the vector potentials (1.9)
under time-dependent rotations around the third axis. From this,
the covariant expression (1.12) can be easily restored.
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II. EFFECTIVEHAMILTONIAN FORTHECHIRAL
SUPERSYMMETRIC QED

We will show here how the Hamiltonian describing the
interaction of charged particles with magnetic monopole
appears naturally as an effective Hamiltonian for a chiral
Abelian supersymmetric gauge theory placed in a small
spatial box [6] (see also the review [7] and chapter 8 of [8]).
The simplest such theory includes a vector multiplet V,

eight left-handed chiral matter superfields carrying charge4

e and a right-handed superfield with charge 2e. In this case,
in contrast to the ordinary QED or supersymmetric QED
(SQED), the theory has no chiral left-right symmetry, but it

is still anomaly free and renormalizable due to the fact that
the sums of the cubes of the charges for the left-handed and
right-handed fermions are the same.
It is convenient to describe it only in terms of left chiral

multiplets with eight multiplets Sf carrying a unit charge e
and a multiplet T carrying the charge −2e. Then

X
k

q3k ¼ 0; ð2:1Þ

where the sum runs over all the multiplets. The Lagrangian
of the model reads

L ¼ 1

4

Z
d4θðS̄feeVSf þ T̄e−2eVTÞ þ

�
1

8

Z
d2θWαWα þ c:c:

�
: ð2:2Þ

We put this theory in a finite spatial box of length L and
impose periodic boundary conditions. If e ≪ 1, which we
assume, then one can proceed in the spirit of [9] and
subdivide all the dynamical variables in two classes:
(1) slow variables, which are the zero Fourier harmonics

of the gauge field cj ¼ Að0Þ
j and their superpartners

ηα ¼ λð0Þα and
(2) fast variables—all the rest.

The theory is invariant under gauge transformations, which
include also large (topologically nontrivial) gauge trans-
formations5

Aj→Ajþ
2πnj
eL

;

ðsf;ψfÞ→ðsf;ψfÞe−2πin·x=L; ðt;ξÞ→ðt;ξÞe4πin·x=L: ð2:3Þ

Then the zero modes of AjðxÞ lie on a dual torus,
cj ∈ ½0; 2π=ðeLÞ�.
Bearing this in mind, the characteristic excitation energy

of slow degrees of freedom is Eslow ∼ e2=L, which is much
less than the characteristic excitation energy of fast vari-
ables, Efast ∼ 1=L. The latter can be integrated over to
derive the effective Hamiltonian including only slow
variables.

In the lowest Born-Oppenheimer approximation [10],
the effective supercharges and the Hamiltonian read [6]

Q̂eff
α ¼ ½ðσkÞαβðP̂k þAkÞ þ iδβαD�ηβ;

ˆ̄Qα eff ¼ η̄β½ðσkÞβαðP̂k þAkÞ − iδαβD�; ð2:4Þ

Ĥeff ¼ 1

2
ðP̂k þAkÞ2 þ

1

2
D2 þH · η̄ση; ð2:5Þ

where

DðcÞ ¼ 4
X
n

1

jc − 2πn
eL j −

1

2

X
n

1

jc − πn
eL j

ð2:6Þ

and AðcÞ is related to DðcÞ according to

H ¼ ∇ ×A ¼ ∇D: ð2:7Þ

The algebra

fQ̂eff
α ; ˆ̄Qβ effg ¼ 2δβαĤeff ð2:8Þ

holds. The system belongs to a class of N ¼ 2 super-
symmetric quantum mechanical systems constructed
in [11].
The function (2.6) is periodic in c with the period

2π=ðeLÞ. We see a kind of crystal shown in Fig. 1. In
each node of this crystal, sits a monopole. The blue blob
marks the site with the monopole of charge −7=2. The red
blobs mark the sites with the monopoles of charge 1=2.
Note that the net magnetic charge of the elementary cell is
zero—which is a consequence of the condition (2.1).

4It is a physical electric charge that we assume to be positive
(as far as the fields in a hypothetical supersymmetric theory may
be called physical), not the charge e that entered Eq. (1.6) and that
we set to 1. The monopoles that we are interested in in this paper
enter the effective Hamiltonians living in unphysical field spaces.

5In principle, one could relax the invariance requirement and
impose a generic superselection rule such that all the wave
functionals Ψ½A; sf;ψf; i; ξ� are multiplied by a phase factor
expfiθjnjg with some particular nj after the transformation (2.3).
But to keep supersymmetry, we have to stay in the sector with
zero angle θ ¼ 0.
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Consider the Hamiltonian (2.5) in the vicinity of one of
the red nodes. It acts on the wave functions with fermion
charges F ¼ 0, 1, 2. In the bosonic sectors, the Hamiltonian
includes a monopole term like in (1.8) and an extra singular
scalar potential. In the sector F ¼ 1, also the last term in
(2.5) works. One may represent the wave function
ΨF¼1ðc; ηαÞ ¼ ΨαðcÞηα as a spinor, so that the term H ·
η̄ση acquires the form H · σ and describes the interaction
with the magnetic moment of the spin 1

2
particle with the

gyromagnetic ratio γ ¼ 4 (twice as large as for an electron).
The equation for the radial wave function χðrÞ in the

vicinity of the red node is

−
1

2r
∂
2

ð∂rÞ2 ðrχÞ −
1

8r2
χ ¼ Eχ; ð2:9Þ

where r is the distance from the node. This equation has a
zero energy solution, χðrÞ ∼ 1=

ffiffiffi
r

p
. The normalization

integral
R
r2χðrÞdr for this solution diverges, but one

can deform the Hamiltonian (2.5) adding a positive

constant C to DðcÞ, so that the condition (2.7) and the
algebra (2.8) still hold. Then the zero energy solution of the
corresponding radial equation would include an exponen-
tial factor e−Cr and the wave function becomes normal-
izable. Moreover, for large enough C, the zero mode that
we found will be concentrated in the region around the
chosen red node and will not sense the presence of other
nodes. As the elementary cell involves seven red monop-
oles with a positive magnetic charge and as, for positive C,
there is no zero-energy solution around a blue negatively
charged monopole, we can derive the existence of seven
zero energy solutions—not only for the deformed, but also
for the undeformed effective Hamiltonian and hence [9]
also for the complicated field Hamiltonian of the original
theory (2.2). All these states are fermionic and hence the
Witten index IW of chiral SQED in (2.2) is equal to [6,8]

IW ¼ −7: ð2:10Þ

One can also invent more complicated anomaly-free chiral
SQED theories. Take for example the theory involving 27
left multiplets with charge e and a left multiplet of charge
−3e. In that case, the Witten index is equal to −26.

III. SUð3Þ THEORY

These constructions can be generalized to non-Abelian
theories. The group SUð2Þ has only self-conjugate repre-
sentations, and the corresponding theories are not chiral.
The simplest chiral non-Abelian supersymmetric gauge
theory is based on SUð3Þ. It includes, besides the vector
multiplet, seven matter chiral multiplets in the fundamental
group representation 3 and a multiplet in the representation
6̄. In terms of superfields, the Lagrangian of the model is

L ¼
�
1

4
Tr

Z
d2θ ŴαŴα þ c:c:

�
þ 1

4

Z
d4θ

�X7
f¼1

S̄fjegV̂Sfj þΦjke−gV̂Φ̄jk

�
; ð3:1Þ

with j, k ¼ 1, 2, 3 and Φjk ¼ Φkj.
The generators of the group in the sextet representation

read

ðTaÞklij ¼
1

2

�ðtaÞki δlj þ ðtaÞliδkj þ ðtaÞkjδli þ ðtaÞljδki
�
; ð3:2Þ

where ta are the generators in the fundamental representa-
tion and the factor 1=2 stems from the requirement that Ta

satisfy the same commutation relations, ½Ta; Tb� ¼ ifabcTc,
as ta. Then

TrfTðaTbTcÞg ¼ 7TrftðatbtcÞg ¼ 7

4
dabc: ð3:3Þ

The contribution of each matter multiplet to the chiral
anomaly is proportional to TrfTðaTbTcÞg for the generators
in the corresponding representation. For the theory (3.1), the
anomaly cancels and the theory is gauge invariant and
renormalizable.
The effective Hamiltonian at small finite box can be

found along the same lines as for the Abelian theory. We
have six bosonic slow variables—zero Fourier modes of the
gauge fields belonging to the Cartan subalgebra of SUð3Þ,

FIG. 1. A unit cubic cell of the monopole crystal in field space.
The edge of the cube is 2π=ðeLÞ.

ANDREI SMILGA PHYS. REV. D 110, 045026 (2024)

045026-4



which can be represented as

Aata ¼ 1

2
diagða; b − a;−bÞ; ð3:4Þ

with aj; bj ∈ ½0; 4πgLÞ [the shifts of aj, bj by 4π=ðgLÞ boil
down to topologically trivial gauge transformations]. The
Hamiltonian also includes their fermion superpartners

ηðaÞα ¼ η3α þ
η8αffiffiffi
3

p ;

ηðbÞα ¼ 2η8αffiffiffi
3

p ; ð3:5Þ

and their conjugates. They have the following anticommu-
tators:

f ˆ̄ηðaÞβ; ηðaÞα g ¼ f ˆ̄ηðbÞβ; ηðbÞα g ¼ 4

3
δβα;

f ˆ̄ηðaÞβ; ηðbÞα g ¼ f ˆ̄ηðbÞβ; ηðaÞα g ¼ 2

3
δβα: ð3:6Þ

In contrast to the pure SYM theory where the effective
Hamiltonian to the lowest Born-Oppenheimer order
describes free motion in a, b space [9], in the chiral case,
the effective supercharges and Hamiltonian have a rather
nontrivial form. One can derive [12]6

Q̂eff
α ¼ ηðaÞβ ½ðσkÞαβðP̂ðaÞ

k þAðaÞ
k Þ þ iδβαDðaÞ�

þ ηðbÞβ ½ðσkÞαβðP̂ðbÞ
k þAðbÞ

k Þ þ iδβαDðbÞ�;
ˆ̄Qα eff ¼ ˆ̄ηðaÞβ½ðσkÞβαðP̂ðaÞ

k þAðaÞ
k Þ − iδαβDðaÞ�

þ ˆ̄ηðbÞβ½ðσkÞβαðP̂ðbÞ
k þAðbÞ

k Þ − iδαβDðbÞ�; ð3:7Þ

and

Ĥeff ¼ 2

3
½ðP̂ðaÞ

k þAðaÞ
k Þ2 þ ðP̂ðbÞ

k þAðbÞ
k Þ2 þ ðP̂ðaÞ

k þAðaÞ
k ÞðP̂ðbÞ

k þAðbÞ
k Þ

þD2
ðaÞ þD2

ðbÞ þDðaÞDðbÞ�
þHðaÞ ˆ̄ηðaÞσηðaÞ þHðbÞ ˆ̄ηðbÞσηðbÞ þHðabÞð ˆ̄ηðaÞσηðbÞ þ ˆ̄ηbσηðaÞÞ:

ð3:8Þ

Here P̂ðaÞ
k ¼ −i∂=∂ak and P̂ðbÞ

k ¼ −i∂=∂bk. The functions DðaÞ and DðaÞ represent the following infinite sums:

DðaÞ ¼
9

2

X
n

�
1

ja − 4πnj −
1

ja − b − 4πnj
�
−
1

2

X
n

�
1

ja − 2πnj −
1

ja − b − 2πnj
�
;

DðbÞ ¼
9

2

X
n

�
1

ja − b − 4πnj −
1

jb − 4πnj
�
−
1

2

X
n

�
1

ja − b − 2πnj −
1

jb − 2πnj
�

ð3:9Þ

(we have set g ¼ L ¼ 1). We see a nontrivial crystal
structure in six-dimensional configuration space.
The vector potentials Aða;bÞ are related to Dða;bÞ so that

HðaÞ
j ≡εjkl∂

a
kA

ðaÞ
l ¼∂

a
jDðaÞ;

HðbÞ
j ≡εjkl∂

b
kA

ðbÞ
l ¼∂

b
jDðbÞ;

εjklH
ðabÞ
j ≡∂

a
kA

ðbÞ
l −∂

b
lA

ðaÞ
k ¼ εjkl∂

a
jDðbÞ ¼ εjkl∂

b
jDðaÞ:

ð3:10Þ

In Ref. [12], we performed an attempt to calculate theWitten
index for this Hamiltonian and hence for the original theory.
Unfortunately, we could not do that: the system is rather

complicated, and it is difficult to solve the Schrödinger

equation or the equations Q̂eff
α Ψ ¼ ˆ̄Qα effΨ ¼ 0. analyti-

cally. An attempt to calculate the index via the functional
integral in the approximation where only the zero Fourier
modes in Euclidean time are taken into account [13] also
failed: such a calculation gave a fractional result for the
index. The reason is that the Hamiltonian (3.8) involves
strong singularities at an ¼ 0. These singularities invalidate
the Cecotti-Girardello approximation: an estimate shows

6This derivation for SUð3Þ is spelled out in detail in the book
[8]. In the Appendix, we will describe a similar derivation for
SUð4Þ.
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that the contributions of zero and nonzero Fourier modes in
the functional integral are of the same order.7

In this paper, we will concentrate on studying the
properties of the bosonic part of the Hamiltonian (3.8)
for SUð3Þ and other groups. We will keep there only the
kinetic part,

Ĥ ¼ 2

3

�	
P̂ðaÞ
k þAðaÞ

k



2 þ 	

P̂ðbÞ
k þAðbÞ

k



2

þ 	
P̂ðaÞ
k þAðaÞ

k


	
P̂ðbÞ
k þAðbÞ

k


�
; ð3:11Þ

and consider it only in the vicinity of the “corner” a0 ¼
b0 ¼ 0 so that8

DðaÞ ¼ q

�
1

ρab
−

1

ρa

�
; DðbÞ ¼ q

�
1

ρb
−

1

ρab

�
ð3:12Þ

with ρa ¼ jaj, ρb ¼ jbj, ρab ¼ ja − bj, while the general-
ized vector potentials and magnetic fields are still related to
DðaÞ;ðbÞ by (3.10). The magnetic fields have the form

HðaÞ ¼ q

�
a
ρ3a

−
a − b
ρ3ab

�
;

HðbÞ ¼ q

�
−

b
ρ3b

þ b − a
ρ3ab

�
;

HðabÞ ¼ qða − bÞ
ρ3ab

: ð3:13Þ

The vector potentials may be chosen in the gauge

AðaÞ
x ¼ q

�
−

ay
ρaðρa þ azÞ

þ ða − bÞy
ρab½ρab þ ða − bÞz�

�
;

AðaÞ
y ¼ q

�
ax

ρaðρa þ azÞ
−

ða − bÞx
ρab½ρab þ ða − bÞz�

�
;

AðbÞ
x ¼ q

�
−

by
ρbðρb − bzÞ

þ ðb − aÞy
ρab½ρab − ðb − aÞz�

�
;

AðbÞ
y ¼ q

�
bx

ρbðρb − bzÞ
−

ðb − aÞx
ρab½ρab − ðb − aÞz�

�
;

AðaÞ
z ¼ AðbÞ

z ¼ 0: ð3:14Þ

The symmetry relations

AðaÞð−b;−aÞ¼−AðbÞða;bÞ;
HðaÞð−b;−aÞ¼HðbÞða;bÞ; HðabÞð−b;−aÞ¼HðabÞða;bÞ

ð3:15Þ

hold. Note that the directions of the Dirac strings for AðaÞ

and AðbÞ are correlated or, better to say, anticorrelated.
Otherwise the symmetry (3.15) would not be there and the
relations (3.10) would not be satisfied.
This is what we will call a Cartan monopole.

A. Dynamics of the system (3.11)

The Lagrangian that corresponds to (3.11) reads

L ¼ 1

2
ðȧ2 þ ḃ2 − ȧ · ḃÞ − ȧAa − ḃAb: ð3:16Þ

Proposition 2. The action
R
Ldt for the Lagrangian

(3.16) is invariant under rotations

δaj ¼ εjmnαman; δbj ¼ εjmnαmbn: ð3:17Þ

The corresponding integral of motion reads

Jm ¼ εmnk

�
anðPðaÞ þAðaÞÞk þ bnðPðbÞ þAðbÞÞk

�
− amDðaÞ − bmDðbÞ: ð3:18Þ

Proof. It goes along the similar lines as in the
Abelian case.9

Consider the variation of the Lagrangian (3.16) under
(3.17). We have

δL ¼ −δðȧjAðaÞ
j þ ḃjA

ðbÞ
j Þ

¼ −αmεjmnðȧnAðaÞ
j þ ḃnA

ðbÞ
j Þ

− αmεpmn

�
ȧj

�
∂AðaÞ

j

∂ap
an þ

∂AðaÞ
j

∂bp
bn

�

þ ḃj

�
∂AðbÞ

j

∂ap
an þ

∂AðbÞ
j

∂bp
bn

��
: ð3:19Þ

Flipping the derivatives in the first term, we derive
7However, in spite of the fact that the Cecotti-Girardello

approximation is not justified also in the Abelian case, such a
calculation gave a correct answer (2.10) for the Abelian theory
[6]. The reason by which it works for the Hamiltonian (2.5), but
does not work for the Hamiltonian (3.8) is presently not clear.

8We have introduced here a factor q—the “charge” of the
Cartan monopole. We will see soon that this charge can acquire
any integer or half-integer value, as it was the case for the
ordinary monopole. The actual value of the charge for the
effective monopole of the chiral SUð3Þ theory sitting in
the corner is q ¼ −4.

9Well, the Hamiltonian (3.11) is defined on the Cartan
subalgebra of SUð3Þ, which is also Abelian, but it came from
non-Abelian studies.
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δL ¼ −αmεjmn
d
dt

ðanAðaÞ
j þ bnA

ðbÞ
j Þ þ αmεpmn

�
anȧj

�
∂AðaÞ

p

∂aj
−
∂AðaÞ

j

∂ap

�
þ bnḃj

�
∂AðbÞ

p

∂bj
−
∂AðbÞ

j

∂bp

��

þ αmεpmn

�
anḃj

�
∂AðaÞ

p

∂bj
−
∂AðbÞ

j

∂ap

�
þ bnȧj

�
∂AðbÞ

p

∂aj
−
∂AðaÞ

j

∂bp

��
: ð3:20Þ

Use now the relations (3.10). The second and the third line
in Eq. (3.20) acquire the form

αmεpmnεjps
�
anȧjH

ðaÞ
s þ bnḃjH

ðaÞ
s þ ðanḃj þ bnȧjÞHðabÞ

s
�
:

ð3:21Þ

Bearing in mind (3.13), the magnetic fields HðaÞ
s and HðbÞ

s

can be represented as

HðaÞ
s ¼ qas

ρ3a
−Hab

s ; HðbÞ
s ¼ −

qbs
ρ3a

−Hab
s :

Take the term qas=ρ3a inH
ðaÞ
s and substitute it in (3.21). We

may observe that this contribution in δL has the same
structure as in the Abelian case [see Eq. (1.14)] and boils
down to a total derivative ∝ dðam=ρaÞ=dt. By the same

token, the contribution due to the term −qbs=ρ3b in HðbÞ
s

boils down to a total derivative ∝ dðbm=ρbÞ=dt. We are left
with the contribution

αmεpmnεjps½−anȧj − bnḃj þ anḃj þ bnȧj�Hab
s

¼ qαmðδmjδns − δmsδnjÞðȧj − ḃjÞða − bÞnða − bÞs=ρ3ab;
ð3:22Þ

which also gives a total derivative ∝ d½ða − bÞm=ρab�=dt.
The integral of motion (3.18) can be derived by the

standard Noether procedure. ▪
In addition, the action is invariant under the trans-

formations (the remnant of gauge transformations of the
original field theory)

AðaÞ
j → AðaÞ

j − ∂
a
jFða; bÞ; AðbÞ

j → AðbÞ
j − ∂

b
jFða; bÞ:

ð3:23Þ

The curls HðaÞ, Hb, and HðabÞ keep their form
under (3.23).
As is the case for the ordinary Dirac monopole, the

Cartan monopole charge q is quantized to be integer or
half-integer. To see this, consider the gauge transformation
(3.23) with

Fða; bÞ ¼ 2q
�
arctan

ay
ax

þ arctan
by
bx

− arctan
ða − bÞy
ða − bÞx

�
:

ð3:24Þ

After this transformation, the vector potentials (3.14)
acquire the form

ÃðaÞ
x ¼ q

�
ay

ρaðρa − azÞ
−

ða − bÞy
ρab½ρab − ða − bÞz�

�
;

ÃðaÞ
y ¼ q

�
−

ax
ρaðρa − azÞ

þ ða − bÞx
ρab½ρab − ða − bÞz�

�
;

ÃðbÞ
x ¼ q

�
by

ρbðρb þ bzÞ
−

ðb − aÞy
ρab½ρab þ ðb − aÞz�

�
;

ÃðbÞ
y ¼ q

�
−

bx
ρbðρb þ bzÞ

þ ðb − aÞx
ρab½ρab þ ðb − aÞz�

�
;

ÃðaÞ
z ¼ ÃðbÞ

z ¼ 0; ð3:25Þ

which corresponds to the opposite direction of the Dirac
strings, compared to (3.14).
The eigenfunctions of (3.11) with the vector potentials in

(3.25) and in (3.14) are related as

Ψ̃ða; bÞ ¼ expfiFða; bÞgΨða; bÞ: ð3:26Þ

For the wave function to be uniquely defined, we must
require for expfiFða; bÞg to be uniquely defined. And this
is so if and only if q is an integer or half-integer.
Note that one also can consider a generalized asymmetric

Cartan monopole with the gauge potentials

AðaÞ
x ¼ −qa

ay
ρaðρa þ azÞ

þ qab
ða − bÞy

ρab½ρab þ ða − bÞz�
;

AðaÞ
y ¼ qa

ax
ρaðρa þ azÞ

− qab
ða − bÞx

ρab½ρab þ ða − bÞz�
;

AðbÞ
x ¼ −qb

by
ρbðρb − bzÞ

þ qab
ðb − aÞy

ρab½ρab − ðb − aÞz�
;

AðbÞ
y ¼ qb

bx
ρbðρb − bzÞ

− qab
ðb − aÞx

ρab½ρab − ðb − aÞz�
;

AðaÞ
z ¼ AðbÞ

z ¼ 0; ð3:27Þ

or the potential related to (3.27) by (3.23). In particular, the
gauge transformations with
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Faða; bÞ ¼ 2qa arctan
ay
ax

; Fbða; bÞ ¼ 2qb arctan
by
bx
;

Fabða; bÞ ¼ 2qab arctan
ða − bÞy
ða − bÞx

ð3:28Þ

reverse the direction of one of the Dirac strings in (3.27).
The condition for expfiFða; bÞg to be uniquely defined
leads to the requirement for qa, qb, and qab to be integer or
half-integer.

B. Theory including a decuplet

As was mentioned above, there are many different chiral
anomaly-free theories. For example, the sextetΦðjkÞ in (3.1)
may be replaced by a decuplet ΦðjklÞ. The generators Ta in
this representation are normalized so that ½Ta; Tb� ¼
ifabcTc read

ðTaÞpmn
jkl ¼ 1

6
½ðtaÞpi ðδmj δnk þ δnjδ

m
k Þ þ 8 similar terms�:

ð3:29Þ

One can derive (see Appendix) that

TrfTðaTbTcÞg ¼ 27TrftðatbtcÞg; ð3:30Þ

and one needs 27 triplets to compensate the anomaly of an
antidecuplet.
The effective Hamiltonian in this theory may be calcu-

lated in the same way as in the theory (3.1). We will not
describe here the details of this calculation, referring the
reader to Refs. [8,12] and to the Appendix, and will just
quote the result. To assure the algebra (2.8), the effective
supercharges and the Hamiltonian must have the same
structure (3.7), (3.8) as for the theory (3.1), and they do.
Remarkably, also the functions DðaÞ;ðbÞ have a quite

similar structure:

DðaÞ ¼
27

2

X
n

�
1

ja − 4πnj −
1

ja − b − 4πnj
�
−
1

2

X
n

�
1

ja − 4πn
3
j −

1

ja − b − 4πn
3
j
�
;

DðbÞ ¼
27

2

X
n

�
1

ja − b − 4πnj −
1

jb − 4πnj
�
−
1

2

X
n

�
1

ja − b − 4πn
3
j −

1

jb − 4πn
3
j
�
: ð3:31Þ

IV. OTHER GROUPS AND OTHER MONOPOLES

A. SUð4Þ
Consider a chiral supersymmetric theory based on SUð4Þ

gauge group, which involves eight matter multiplets in
fundamental representation [the quartets with the Dynkin
labels (1,0,0)] and also an antidecupletΦðjkÞ with the Dynkin
labels (0,0,2).This is a directSUð4Þ analogof the theory (3.1).
We need eight quartets for one antidecuplet to cancel the

anomaly. Indeed, a generalization of the relation (3.3) to
higher SUðNÞ groups is

TrfTðaTbTcÞg ¼ ðN þ 4ÞTrftðatbtcÞg: ð4:1Þ

Take a Cartan background

Aata ¼ 1

2
diagða; b − a; c − b;−cÞ: ð4:2Þ

The calculation of the effective supercharges and
Hamiltonian goes along the same lines as for SUð3Þ.
Some details of this calculation are given in the
Appendix. We derive

Q̂eff
α ¼ ηðaÞβ ½ðσkÞαβðP̂ðaÞ

k þAðaÞ
k Þ þ iδβαDðaÞ�

þ ηðbÞβ ½ðσkÞαβðP̂ðbÞ
k þAðbÞ

k Þ þ iδβαDðbÞ�
þ ηðcÞβ ½ðσkÞαβðP̂ðcÞ

k þAðcÞ
k Þ þ iδβαDðcÞ� ð4:3Þ

and similarly for ˆ̄Qα eff expressed via η̄ðaÞα etc. Here

ηðaÞα ¼ η3α þ
η8αffiffiffi
3

p þ η15αffiffiffi
6

p ;

ηðbÞα ¼ 2

�
η8αffiffiffi
3

p þ η15αffiffiffi
6

p
�
;

ηðcÞα ¼ 3η15αffiffiffi
6

p : ð4:4Þ

Note that

fη̄ðaÞβ;ηðaÞα g¼fη̄ðcÞβ;ηðcÞα g¼3

2
δβα; fη̄ðbÞβ;ηðbÞα g¼2δβα;

fη̄ðaÞβ;ηðbÞα g¼fη̄ðbÞβ;ηðaÞα g¼fη̄ðbÞβ;ηðcÞα g¼fη̄ðcÞβ;ηðbÞα g¼δβα;

fη̄ðaÞβ;ηðcÞα g¼fη̄ðcÞβ;ηðaÞα g¼1

2
δβα: ð4:5Þ
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The functions DðaÞ, DðbÞ, and DðcÞ represent the following sums:

DðaÞ ¼ 4
X
n

�
1

ja − 4πnj −
1

ja − b − 4πnj
�
−
1

2

X
n

�
1

ja − 2πnj −
1

ja − b − 2πnj
�
;

DðbÞ ¼ 4
X
n

�
1

ja − b − 4πnj −
1

jb − c − 4πnj
�
−
1

2

X
n

�
1

ja − b − 2πnj −
1

jb − c − 2πnj
�
;

DðcÞ ¼ 4
X
n

�
1

jb − c − 4πnj −
1

jc − 4πnj
�
−
1

2

X
n

�
1

jb − c − 2πnj −
1

jc − 2πnj
�
: ð4:6Þ

The curls of AðaÞ
k ;AðbÞ

k ;AðcÞ
k are related to the gradients of

DðaÞ;DðbÞ;DðcÞ in the same way as in (3.10):

HðaÞ
j ≡εjkl∂

a
kA

ðaÞ
l ¼∂

a
jDðaÞ;

HðbÞ
j ≡εjkl∂

b
kA

ðbÞ
l ¼∂

b
jDðbÞ;

HðcÞ
j ≡εjkl∂

c
kA

ðcÞ
l ¼ ∂

c
jDðcÞ;

εjklH
ðabÞ
j ≡∂

a
kA

ðbÞ
l −∂

b
lA

ðaÞ
k ¼ εjkl∂

a
jDðbÞ ¼ εjkl∂

b
jDðaÞ;

εjklH
ðbcÞ
j ≡∂

b
kA

ðcÞ
l −∂

c
lA

ðbÞ
k ¼ εjkl∂

b
jDðcÞ ¼ εjkl∂

c
jDðbÞ;

εjklH
ðacÞ
j ≡∂

a
kA

ðcÞ
l −∂

c
lA

ðaÞ
k ¼ εjkl∂

a
jDðcÞ ¼ εjkl∂

c
jDðaÞ ¼0:

ð4:7Þ

Calculating the anticommutator f ˆ̄Qα eff ; Q̂eff
α g, one can

derive an expression for the effective Hamiltonian. It
represents a rather obvious generalization of (3.8). For
example, bearing in mind (4.5), one can write a contribu-
tion

Ĥeff
D ¼ 3

4
ðD2

ðaÞ þD2
ðcÞÞ þD2

ðbÞ þDðaÞDðbÞ þDðbÞDðcÞ

þ 1

2
DðaÞDðcÞ: ð4:8Þ

Another contribution represents an analogous quadratic

form of P̂ða;b;cÞ
k þAða;b;cÞ

k :

Ĥeff
A ¼3

4
½ðP̂a

kþAðaÞ
k Þ2þðP̂c

kþAðcÞ
k Þ2�þðP̂b

kþAðbÞ
k Þ2

þðP̂a
kþAðaÞ

k ÞðP̂b
kþAðbÞ

k ÞþðP̂b
kþAðbÞ

k ÞðP̂c
kþAðcÞ

k Þ

þ1

2
ðP̂a

kþAðaÞ
k ÞðP̂c

kþAðcÞ
k Þ: ð4:9Þ

And there are six bifermion terms including
HðaÞ;HðbcÞ, etc.
The Cartan monopole for the suð4Þ algebra may be

defined as a system with the Hamiltonian (4.9) where
the vector potentials are related to DðaÞ, DðbÞ, and DðcÞ,
given by

DðaÞ ¼ q

�
1

ja − bj −
1

jaj
�
;

DðbÞ ¼ q

�
1

jb − cj −
1

ja − bj
�
;

DðcÞ ¼ q

�
1

jcj −
1

jb − cj
�
; ð4:10Þ

as in (4.7). One can choose

AðaÞ
x ¼ q

�
−

ay
ρaðρa þ azÞ

þ ða − bÞy
ρab½ρab þ ða − bÞz�

�
;

AðaÞ
y ¼ q

�
ax

ρaðρa þ azÞ
−

ða − bÞx
ρab½ρab þ ða − bÞz�

�
;

AðbÞ
x ¼ q

� ðc − bÞy
ρbcðρbc þ ðc − bÞzÞ

þ ðb − aÞy
ρab½ρab þ ða − bÞz�

�
;

AðbÞ
y ¼ q

� ðb − cÞx
ρbcðρbc þ ðc − bÞzÞ

þ ðb − aÞx
ρab½ρab þ ða − bÞz�

�
;

AðcÞ
x ¼ q

� ðb − cÞy
ρbcðρbc þ ðc − bÞzÞ

þ cy
ρc½ρc þ cz�

�
;

AðcÞ
y ¼ q

� ðc − bÞx
ρbcðρbc þ ðc − bÞzÞ

−
cx

ρab½ρc þ cz�
�
;

AðaÞ
z ¼ AðbÞ

z ¼ AðcÞ
z ¼ 0: ð4:11Þ

The corresponding Lagrangian reads

L ¼ 1

2

�
ȧ2 þ ċ2 þ ḃ2 − ḃ · ðȧþ ċÞ�

− ȧ ·AðaÞ − ḃ ·AðbÞ − ċ ·AðcÞ: ð4:12Þ
It has the properties similar to the Lagrangian (3.16): it is
invariant under the gauge transformations,

AðaÞ
j →AðaÞ

j þ∂
a
jFða;b;cÞ; AðbÞ

j →AðbÞ
j þ∂

b
jFða;b;cÞ;

AðcÞ
j →AðcÞ

j þ∂
c
jFða;b;cÞ; ð4:13Þ

and under the rotations,10

10This can be proven in exactly the same way as in the suð3Þ
case.
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δaj¼ εjmnαman; δbj¼ εjmnαmbn; δcj¼ εjmnαmcn:

ð4:14Þ

The conserved angular momentum reads:

Jm ¼ εmnk

�
anðPðaÞ þAðaÞÞk þ bnðPðbÞ

þAðbÞÞk þ cnðPðcÞ þAðcÞÞk
�

− amDðaÞ − bmDðbÞ − cmDðcÞ: ð4:15Þ

The charge q is quantized to be integer or half-integer, as it
was the case for the ordinary monopole and for the suð3Þ
Cartan monopole.

B. SUð5Þ
For any SUðNÞ group, one can consider the chiral

supersymmetric gauge theory with N þ 4 fundamental
multiplets carrying the Dynkin labels ð1; 0;…; 0Þ and a
symmetric multiplet with the labels ð0;…; 0; 2Þ. The chiral

anomaly cancels for this theory. The effective Hamiltonians
and the related Cartan monopoles have the form similar to
that in the cases N ¼ 3, 4 treated above.
But there is another interesting (especially, for possible

phenomenological applications) anomaly-free chiral theory,
which involves a quintetwith theDynkin labels (1, 0, 0, 0) and
an antisymmetric decuplet with the Dynkin labels (0, 0, 1, 0).
The effective supercharges andHamiltonianwere determined
in [12]. Here we only quote the results. The slow bosonic
variables have the form

Aata ¼ 1

2
diagða; b − a; c − b; d − c;−dÞ: ð4:16Þ

The effective supercharge looks similar to (4.3), but it now

includes an extra term ∝ ηðdÞα .
The functions DðaÞ;DðbÞ;DðcÞ;DðdÞ are given by the

following sums

DðaÞ ¼
1

2

X
n

�
1

janj
þ 1

jða − cÞnj
þ 1

jðb − aþ d − cÞnj
þ 1

jðb − a − dÞnj

−
1

jða − bÞnj
−

1

jðaþ c − bÞnj
−

1

jðaþ d − cÞnj
−

1

jða − dÞnj
�
;

DðbÞ ¼
1

2

X
n

�
1

jða − bÞnj
þ 1

jðb − dÞnj
þ 1

jðaþ c − bÞnj
þ 1

jðb − cþ dÞnj

−
1

jbnj
−

1

jðb − cÞnj
−

1

jðb − a − dÞnj
−

1

jðb − aþ d − cÞnj
�
;

DðcÞ ¼
1

2

X
n

�
1

jcnj
þ 1

jðb − cÞnj
þ 1

jða − cþ dÞnj
þ 1

jðb − aþ d − cÞnj

−
1

jðd − cÞnj
−

1

jða − cÞnj
−

1

jðaþ c − bÞnj
−

1

jðc − b − dÞnj
�
;

DðdÞ ¼
1

2

X
n

�
1

jðd − cÞnj
þ 1

jðd − aÞnj
þ 1

jðc − b − dÞnj
þ 1

jðb − a − dÞnj

−
1

jdnj
−

1

jðb − dÞnj
−

1

jðaþ d − cÞnj
−

1

jðb − aþ d − cÞnj
�
; ð4:17Þ

where an ¼ a − 4πn. In this case, the elementary cell of our 12-dimensional crystal includes only one node: the
antisymmetric decuplet has only mixed components, which have the same periodicity pattern as the quintet components.
The anticommutator of the supercharges gives the Hamiltonian, which has a structure analogous to the structure of SUð3Þ
and SUð4Þ effective Hamiltonians, but has more terms. For example, the scalar potential is now given by the following
quadratic form:

Ĥeff
D ¼ 1

5

�
4ðD2

ðaÞ þD2
ðdÞÞ þ 6ðD2

ðbÞ þD2
ðcÞÞ þ 6ðDðaÞDðbÞ þDðcÞDðdÞÞ

þ4ðDðaÞDðcÞ þDðbÞDðdÞÞ þ 2DðaÞDðdÞ þ 8DðbÞDðcÞ
�
: ð4:18Þ

It would be interesting to study the dynamics of the corresponding Cartan monopole.
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C. Spinð4n+ 2Þ and E6

Similar constructions exist for all groups admitting com-
plex representations: for all higher unitary groups, for
Spinð4nþ 2Þ and for E6. The specific of Spinð4nþ 2Þ
and E6 theories is that they are free from anomalies for any
matter content, and we can consider only the theories
including a single matter supermultiplet. For example, a
fundamental spinor 16-plet in SOð10Þ [14] or a fundamental
27-plet in E6 [15]. The reason is that, though these repre-
sentations are complex, the tensor dabc ¼ TrfTðaTbTcÞg
vanishes for these groups.
The simplest way to see this is to inspect Tables 44, 48 in

the review [16]. The symmetrized tensor products of the
adjoint representations in SOð10Þ and E6 are

SOð10Þ∶ ð45 × 45Þs ¼ 1þ 54þ 210þ 770;

E6∶ ð78 × 78Þs ¼ 1þ 650þ 2430: ð4:19Þ

Adjoint representations are absent in these expansions,
which means that TðaTbTcÞ is not a singlet and has a
zero trace.
For orthogonal groups, one can give a simple math-

ematical reason for this fact [17].
Consider the form F ¼ TrfX3g defined on a Lie algebra

g. It is invariant under the action of the group. Expanding
X ¼ Xata, one can represent it as

F ¼ 1

4
dabcXaXbXc:

Now we can restrict this form to X ¼ Xãtã, ã ¼ 1;…; r,
belonging to the Cartan subalgebra of g. Then
F̃ ¼ TrfðXãtãÞ3g ∝ dã b̃ c̃XãXb̃Xc̃ is invariant under the
action of the Weyl group. For example, for the Cartan
subalgebra element X ¼ diagðα; β; γ ¼ −α − βÞ of suð3Þ,
F̃ ¼ α3 þ β3 þ γ3, which is invariant under the permuta-
tion of α, β, γ. Similarly, for higher unitary groups.
The existence of a Weyl-invariant homogeneous cubic

polynomial defined on the Cartan subalgebra is a necessary
and sufficient condition for the trace TrfTðaTbTcÞg to be
nonzero.
Consider now the algebra soð10Þ and its Cartan sub-

algebra. An element of the latter is a five-dimensional
vector xj. The Weyl group includes the permutations of xj
and also the reflections when a couple of components of xj
changes simultaneously the sign. But a nonzero cubic
polynomial of xj invariant under all the Weyl transforma-
tions does not exist. Indeed, to be invariant under the
reflections that change the sign of any pair of x2, x3, x4, x5,
but not of x1, such a polynomial should have the form
P3ðxjÞ ¼ x1

P
5
j¼2 ajx

2
j . But such a polynomial is not

invariant under permutations.

A more heuristic argument in favor of the absence of the
chiral anomaly in SOð10Þ and E6 comes from the branch-
ing rules for their multiplets under embeddings E6 ⊃
SOð10Þ ×Uð1Þ and SOð10Þ ⊃ SUð5Þ ×Uð1Þ. The funda-
mental 27-plet of E6 is split into a spinor, vector, and singlet
of SOð10Þ, 27 → 16þ 10þ 1, and the 16-plet of SOð10Þ
is further split into a quintet, antidecuplet, and singlet of
SUð5Þ. And we have already learned that the SUð5Þ theory
with such a matter content is anomaly free.
The absence of anomalies in the theories based on

SOð10Þ and E6 led people to consider these theories
including each a single fundamental matter multiplet as
candidates for the theories of grand unification [14,15]. It
would be interesting to evaluate the effective Hamiltonians
for the supersymmetric version of these theories in the same
spirit as we did it for the unitary groups, to study them and
find out in the end of the day whether supersymmetry is
spontaneously broken there or not.
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APPENDIX: EVALUATION OF EFFECTIVE
HAMILTONIANS

1. Decuplet contribution in SUð3Þ theory
Let us first derive (3.30). One can do it quite directly,

using the representation (3.29), but there exists a simpler
and nicer way [18]. To find the coefficient in (3.24), it
suffices to calculate TrfðT8Þ3g and compare it with
Trfðt8Þ3g. It is convenient to choose the normalization t8 ¼
diagð1; 1;−2Þ and the corresponding normalization for T8

in the higher representations. Consider the embedding
SUð2Þ × Uð1Þ ⊂ SUð3Þ such that T8 is projected on the
generator of theUð1Þ subgroup. The branching rules for the
triplet, sextet, and decuplet are

3 → 2ð1Þ þ 1ð−2Þ;
6 → 3ð2Þ þ 2ð−1Þ þ 1ð−4Þ;

10 → 4ð3Þ þ 3ð0Þ þ 2ð−3Þ þ 1ð−6Þ; ðA1Þ

where 2; 3; 4 are the SUð2Þ multiplets and the numbers in
the parentheses are the Uð1Þ charges. Then Trfðt8Þ3g ¼
2 · 13 þ 1 · ð−2Þ3 ¼ −6. For the sextet and decuplet we
have

Tr6fðT8Þ3g ¼ 3 · 23 þ 2 · ð−1Þ3 þ 1 · ð−4Þ3
¼ −42 ¼ 7Trfðt8Þ3g;

Tr10fðT8Þ3g ¼ 4 · 33 þ 2 · ð−3Þ3 þ 1 · ð−6Þ3
¼ −162 ¼ 27Trfðt8Þ3g: ðA2Þ
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For an arbitrary symmetric representation ðp; 0Þ,

TrpfðT8Þ3g¼pðpþ1Þðpþ2Þðpþ3Þð2pþ3Þ
120

Trfðt8Þ3g:
ðA3Þ

As was mentioned, the effective supercharges and
Hamiltonian have the form (3.7), (3.8), and the only
problem is to evaluate the contribution of the matter
multiplets in DðaÞ and DðbÞ. The contribution of a triplet
and a sextet was found in [12], and these calculations were
spelled out in detail in [8], where we refer the reader. For a

triplet, it was

DðaÞðtriplÞ ¼
1

2

X
n

�
1

ja − 4πnj −
1

ja − b − 4πnj
�
;

DðbÞðtriplÞ ¼
1

2

X
n

�
1

ja − b − 4πnj −
1

jb − 4πnj
�
; ðA4Þ

where the individual terms in these sums came from the
matter Fourier modes ∝ e2πin·x=L. The antisextet contribu-
tion was

DðaÞðsextÞ ¼
X
n

�
1

ja − 4πnj −
1

ja − b − 4πnj
�
−
1

2

X
n

�
1

ja − 2πnj −
1

ja − b − 2πnj
�
;

DðbÞðsextÞ ¼
X
n

�
1

ja − b − 4πnj −
1

jb − 4πnj
�
−
1

2

X
n

�
1

ja − 2πnj −
1

ja − b − 2πnj
�
: ðA5Þ

Here the terms in the first sums come from the mixed sextet component ϕ12;ϕ13;ϕ23 while the terms in the second sums
come from the components ϕ11ðxÞ;ϕ22ðxÞ;ϕ33ðxÞ, which, in contrast to the mixed components and the triplet fields, make
“two turns,” being multiplied by e�4πix rather than by e�2πix to compensate the gauge shifts ax → ax þ 4π or bx → bx þ 4π.
Multiplying (A4) by 7 and adding (A5), we arrive at (3.9).
To determine the contribution of the decuplet, we first find the part of the Hamiltonian describing the interaction of the

slow Abelian gauge fields (3.4) with the fast scalar decuplet fields.
Let us first concentrate on the zero Fourier modes of the decuplet. The kinetic term of the fast Hamiltonian reads

Ĥkin ¼ jπ̂111j2 þ jπ̂222j2 þ jπ̂333j2
þ 3ðjπ̂112j2 þ jπ̂122j2 þ jπ̂113j2 þ jπ̂133j2 þ jπ̂223j2 þ jπ̂233j2Þ þ 6jπ̂123j2; ðA6Þ

where π̂111 ¼ −i∂=∂ϕ111, etc. After some calculation, we derive also the potential part:

V ¼ 9

4
½a2jϕ111j2 þ ða − bÞ2jϕ222j2 þ b2jϕ333j2� þ 3

4
ðaþ bÞ2½jϕ112j2 þ jϕ332j2�

þ 3

4
ð2a − bÞ2½jϕ113j2 þ jϕ223j2� þ 3

4
ð2b − aÞ2½jϕ221j2 þ jϕ331j2�: ðA7Þ

The same can be done for the Hamiltonian describing the interaction with nonzero Fourier modes. In the same way as in the
sextet case, this Hamiltonian involves the mixed components like ϕ112ðxÞ making one turn to compensate the gauge shift
ax → ax þ 4π, etc. and also the components ϕ111ðxÞ, ϕ222ðxÞ, ϕ333ðxÞ making three turns. As we see, no potential is
generated along the direction ϕ123. (The existence of such direction is a specific of the decuplet problem.) In nine other
directions (for each n), the Hamiltonian Ĥkin þ V has an oscillator form. From that one can determine the vacuum averages:

hjϕ111
n j2i ¼ 1

3ja − 4π
3
nj ; hjϕ222

n j2i ¼ 1

3ja − b − 4π
3
nj ; hjϕ333

n j2i ¼ 1

3jb − 4π
3
nj ;

hjϕ112
n j2i ¼ hjϕ332

n j2i ¼ 1

jaþ b − 4πnj ; hjϕ113
n j2i ¼ hjϕ223

n j2i ¼ 1

j2a − b − 4πnj ;

hjϕ221
n j2i ¼ hjϕ331

n j2i ¼ 1

j2b − a − 4πnj : ðA8Þ

The effective supercharges can be derived by averaging the full supercharges Q̂α;
ˆ̄Qα over the fast vacuum. We have
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Q̂α ¼ i
Z

dx

�
η3γ

�
−ðσkÞαγ

∂

∂A3
k

þ δγαðs�ft3sf − ϕ�T3ϕÞ
�
þ η8γ

�
−ðσkÞαγ

∂

∂A8
k

þ δγαðs�ft8sf − ϕ�T8ϕÞ
��

þ Q̂fast
α : ðA9Þ

Here Q̂fast
α is the fast supercharge. It gives zero acting on the ground state of Ĥfast. Now, sf¼1;…;27 are triplet scalar fields, ϕjkl

are the decuplet fields, and the generators T3;8 were written in Eq. (3.29). Plugging in (A9) the decuplet scalar averages
(A8), the scalar averages of seven triplets,

hjsf1 j2i ¼
1

ja − 4πnj ; hjsf2 j2i ¼
1

ja − b − 4πnj ; hjsf3 j2i ¼
1

jb − 4πnj ; ðA10Þ

and adding the contributions from the averages of ∂=∂A3
k and ∂=∂A

8
k over the full fast ground state wave function,

11 we arrive
at (3.7) with DðaÞ;ðbÞ given in (3.31).

Note that the effective supercharge does not acquire a contribution from the average jϕ123j2, which we could not
determine in the above analysis. Note also that, in contrast to what we had for the sextet, the contributions of the mixed
components of ϕjkl with the same periodicity pattern as the triplet fields cancel so that the first sums in (3.31) are due solely
to the triplets while the second sums are due solely to the decuplet.

2. SUð4Þ with eight quartets and a symmetric antidecuplet

This theory was not treated before, and we give here a little more calculational details.
Consider first the contribution of a quartet. The fast Hamiltonian describing the interaction of the slow background (4.2)

with the zero Fourier modes of the scalar quartet components reads

Ĥfast
quart ¼ π̂†j π̂j þ s�ðAataÞ2s

¼ −
∂
2

∂sj�∂sj
þ 1

4
½a2js1j2 þ ða − bÞ2js2j2 þ ðb − cÞ2js3j2 þ c2js4j2: ðA11Þ

This gives the averages

hjs1j2i ¼
1

jaj ; hjs2j2i ¼
1

ja − bj ; hjs3j2i ¼
1

jb − cj ; hjs4j2i ¼
1

jcj : ðA12Þ

The averages of the other Fourier modes are given by the similar expressions with a → a − 4πn etc.
The contribution of a quartet to the effective supercharge Q̂eff

α is

iη3αs�t3sþ iη8αs�t8sþ iη15α s�t15s ¼ iðηðaÞα Dquart
ðaÞ þ ηðbÞα Dquart

ðbÞ þ ηðcÞα Dquart
ðcÞ Þ ðA13Þ

with

Dquart
ðaÞ ¼ 1

2

X
n

�
1

ja − 4πnj −
1

ja − b − 4πnj
�
;

Dquart
ðbÞ ¼ 1

2

�
1

ja − b − 4πnj −
1

jb − c − 4πnj
�
;

Dquart
ðcÞ ¼ 1

2

�
1

jb − c − 4πnj −
1

jc − 4πnj
�
: ðA14Þ

11These contributions bring about the “vector potentials” AðaÞ
k and AðbÞ

k .
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The fast Hamiltonian for the scalar antidecuplet (its zero Fourier mode) interacting with the Cartan background is

Ĥfast
dec ¼ π̂†ijπ

†
ij þ a2jϕ11j2 þ ða − bÞ2jϕ22j2 þ ðb − cÞ2jϕ33j2 þ c2jϕ44j2

þ 1

2
½b2ðjϕ12j2 þ jϕ34j2Þ þ ðaþ c − bÞ2ðjϕ13j2 þ jϕ24j2Þ þ ða − cÞ2jϕ14j2 þ jϕ23j2Þ�; ðA15Þ

giving the averages

jϕ11j2 ¼
1

2jaj ; jϕ22j2 ¼
1

2ja − bj ; jϕ33j2 ¼
1

2jb − cj ; jϕ44j2 ¼
1

2jcj ;

jϕ12j2 ¼ jϕ34j2 ¼
1

jbj ; jϕ23j2 ¼ jϕ14j2 ¼
1

ja − cj ; jϕ13j2 ¼ jϕ24j2 ¼
1

jb − a − cj : ðA16Þ

The induced Dða;b;cÞ are

Dzero antidecuplet modes
ðaÞ ¼ jϕ22j2 − jϕ11j2 ¼

1

2

�
1

ja − bj −
1

jaj
�
;

Dzero antidecuplet modes
ðbÞ ¼ jϕ33j2 − jϕ22j2 ¼

1

2

�
1

jb − cj −
1

ja − bj
�
;

Dzero antidecuplet modes
ðcÞ ¼ jϕ44j2 − jϕ33j2 ¼

1

2

�
1

jcj −
1

jb − cj
�
; ðA17Þ

while the contributions of the mixed components exactly cancel.
The contributions of the other Fourier modes have the same form with a → a − 2πn etc. [the components like ϕ11ðxÞ

rotate two times faster than the quartet components].
Adding the antidecuplet contribution to (A14) taken with the factor 8, we arrive at (4.6).
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