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The effective Hamiltonians for chiral supersymmetric gauge theories at small spatial volume are
generalizations of the Hamiltonians describing the motion of a scalar or a spinor particle in a field of Dirac
monopoles (we are dealing in fact with a certain lattice of monopoles supplemented with a periodic singular
potential). The gauge fields in such Hamiltonians belong to the Cartan subalgebras of the corresponding
gauge algebras. Such a construction exists for all groups admitting complex representations, i.e., for
SU(N > 3), Spin(4n +2) with n > 1 and Es. We give explicit expressions for these Hamiltonians for
SU(3), SU(4) ~ Spin(6) and for SU(5). The simplified version of such a Hamiltonian, deprived of
fermion terms, of the extra scalar potential and when only one node of the lattice is taken into consideration,
describe a 3r-dimensional motion (r being the rank of the group) in the field what we call a “Cartan
monopole.” As is the case for the ordinary monopole, the Lagrangian of this system enjoys gauge
symmetry, rotational symmetry, and the parameter, generalizing the notion of magnetic charge for Cartan

monopoles, is quantized.

DOI: 10.1103/PhysRevD.110.045026

I. DIRAC MONOPOLE AND ASSOCIATED
HAMILTONIANS

We start with recalling some basic facts concerning the
dynamics of Dirac monopole [1]. The magnetic field has a
Coulomb form:

M, =21 (1.1)

where ¢ is the magnetic charge.
The corresponding gauge potentials may be chosen in
the form

qy qx
A, =— A, = . A.=0.
* r(r+z)’ Y or(r+2) ¢

(1.2)

The field (1.2) is singular on the Dirac string,
x =nr = (0,0,—r). Any other direction n of the string
can be chosen. In particular, one can choose n = (0,0, 1),
in which case the vector potentials

have the same curl (1.1).
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The potentials (1.2) and (1.3) are related by a gauge
transformation

A= A; -y, (1.4)

with

x(x,y,2) =2¢q arctan> — 2q¢, (1.5)
X

where ¢ is the azimuthal angle.

By considering the interaction of the monopole with a
particle carrying an electric charge e, one derives the
quantization condition,

qe = (1.6)

n
5
with integer n.' There are two physical ways and a more
mathematical way to derive (1.6):
(1) One can calculate the angular momentum of the
electromagnetic field created by the monopole and
the electric charge,

e _ %/ defx x [ExH]),  (1.7)

and require for it to be equal to n/2 with integer n.

"It is written in the unit system # = ¢ = 1. In the following, we
will always set e = 1 (with the positive sign, not the negative one
as it would be for a physical electron) so that g = n/2.
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(2) One can consider the Schrodinger equation describ-
ing the motion of the charged particle in the
monopole field,

A

AY = (P; + A;))*Y = EY, (1.8)

N[ —

with P ; = —id/ox;. The gauge transformation (1.4)
induces the corresponding transformation of the
eigenfunctions of (1.8): ¥ = e%¥. The requirement
for % and hence for the wave function to be
uniquely defined brings about the condition (1.6).2
(3) A more mathematical derivation was suggested in
Ref. [3]. Separating in (1.2) the radial dependence,
we arrive at an Abelian gauge field on S? that is
singular at its south pole. Likewise, the field (1.3) is
singular at its north pole.
One now can construct a fiber bundle subdividing
$? into two charts: the north hemisphere where the
gauge field has the form

_gsin Osing
r(1+4cos@)’
A, =0

gsin 6 cos ¢
A =———+,
" r(l +cos0)

(1.9)

A, =

and the south hemisphere where

g sinfcos ¢
r(1—cos®)’
(1.10)

i __gsin@ sing <
Y r(l =cos@)’ v

A, =0.

Two charts overlap on the equator, and if we require
for jlj and A; to be related there by a uniquely
defined gauge transformation, the quantization con-
dition (1.6) follows.
The Lagrangian, corresponding to the classical version
of the quantum Hamiltonian in (1.8), reads

) (1.11)

Proposition 1. The action S of the system (1.11) with
H =V x A given in Eq. (1.1) is invariant under rotations.
The conserved angular momentum is

T

X
Jm = gmnkxnxk + qu = lc;mnkxn(P + A)k + (]12)

*Well, one can abandon the idea of gauge invariance, pick up a
particular direction of the Dirac string, in which case the spectral
problem for the Hamiltonian (1.8) can in principle be formulated
even for fractional magnetic charges. This means, however,
that the Dirac string becomes observable, which is not what
we want [2].

Proof. It is quite explicit. The variation of the Lagrangian
under 0X; = &, A X, 18

) . 0A;
SL = —a,, <€jm”x”.,4j + &= spm,,x,,>. (1.13)

ox »

After some massaging—flipping the time derivative in the
first term and renaming the indices in the second term—this
can be represented as

d
oL = —qy E (gjmnanj> +ay, (pom - 5mpann)xp

—am% <s A+ q%") , (1.14)
so that [ Ldt is invariant.

The conserved angular momentum can be derived by a
standard Noether method.” [

The term gx,,/r in J,, is nothing but the angular
momentum (1.7) of the electromagnetic field.

Remark. The fact that the Lagrangian (1.11) enjoys
rotational invariance is not completely trivial. It would be if
the potential

A gx X n
r(r—x-n)

transformed as a vector under rotations of coordinates. But
it does not. A; transform as vector components only if one
simultaneously rotates the direction n of the Dirac string.
But such a transformation acting not only on the dynamic
variables x; but also on the parameters n; does not have
Noether nature and the invariance under such transforma-
tion does not directly entail the existence of an integral of
motion.

The Schrodinger equation (1.8) with the monopole vector
potentials was solved by Tamm [4]. The wave functions are
expressed via Jacobi polynomials. The allowed eigenvalues
of J? are j(j + 1) with j = |g], |g| + 1, .... The spectrum is

Ep_o1. =jj+1)—¢ (1.15)

with 2j 4+ 1 degenerate states on each level.

For a spin % particle, the quantum Hamiltonian acquires a
matrix form. We have to add to (1.8) the term % 'H,0;, where
y is the gyromagnetic ratio of the particle. This Schrodinger
problem was also solved [5].

3The simplest way to proceed is first to find J5 by evaluating
the variation of the Lagrangian with the vector potentials (1.9)
under time-dependent rotations around the third axis. From this,
the covariant expression (1.12) can be easily restored.
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II. EFFECTIVE HAMILTONIAN FOR THE CHIRAL
SUPERSYMMETRIC QED

We will show here how the Hamiltonian describing the
interaction of charged particles with magnetic monopole
appears naturally as an effective Hamiltonian for a chiral
Abelian supersymmetric gauge theory placed in a small
spatial box [6] (see also the review [7] and chapter 8 of [8]).

The simplest such theory includes a vector multiplet V,
eight left-handed chiral matter superfields carrying charge4
e and a right-handed superfield with charge 2e. In this case,
in contrast to the ordinary QED or supersymmetric QED
(SQED), the theory has no chiral left-right symmetry, but it

|

is still anomaly free and renormalizable due to the fact that
the sums of the cubes of the charges for the left-handed and
right-handed fermions are the same.

It is convenient to describe it only in terms of left chiral
multiplets with eight multiplets S/ carrying a unit charge e
and a multiplet 7 carrying the charge —2e. Then

> g =0.
k

(2.1)

where the sum runs over all the multiplets. The Lagrangian
of the model reads

1 _ o 1
L= i / d*0(8/eVS! + Te™VT) + (g / d>OWW , + c.c.).

(2.2)

We put this theory in a finite spatial box of length L and
impose periodic boundary conditions. If ¢ <« 1, which we
assume, then one can proceed in the spirit of [9] and

subdivide all the dynamical variables in two classes:
(1) slow variables, which are the zero Fourier harmonics
of the gauge field ¢; = A;O) and their superpartners

Ny = ,12,") and

(2) fast variables—all the rest.
The theory is invariant under gauge transformations, which
include also large (topologically nontrivial) gauge trans-
formations’

2zn;
A=A

(Sf,wf) N (Sf,l//f)e_z”i”'x/l‘, (Z,f) N (t’g)eétm'rbx/L‘ (23)

Then the zero modes of A;(x) lie on a dual torus,
c;€[0,2n/(eL)].

Bearing this in mind, the characteristic excitation energy
of slow degrees of freedom is Ey,,, ~ €>/L, which is much
less than the characteristic excitation energy of fast vari-
ables, Epq ~ 1/L. The latter can be integrated over to
derive the effective Hamiltonian including only slow
variables.

“Itis a physical electric charge that we assume to be positive
(as far as the fields in a hypothetical supersymmetric theory may
be called physical), not the charge e that entered Eq. (1.6) and that
we set to 1. The monopoles that we are interested in in this paper
enter the effective Hamiltonians living in unphysical field spaces.

°In principle, one could relax the invariance requirement and
impose a generic superselection rule such that all the wave
functionals W[A, s/, y/,i, & are multiplied by a phase factor
exp{if;n;} with some particular »; after the transformation (2.3).
But to keep supersymmetry, we have to stay in the sector with
zero angle @ = 0.

In the lowest Born-Oppenheimer approximation [10],
the effective supercharges and the Hamiltonian read [6]

0" = [(00) " (P + Ay) + iéﬁD]n/;,

2 o eff

0" = l(04)5"(Pr + Ay) — i53D), (2.4)
A = %(13,{ + A ) + %Dz + H - fjon, (2.5)
where
D(c) = 42% ! > lm (2.6)
e =22 2497 e -2
and A(c) is related to D(c) according to
H=VxA=VD. (2.7)
The algebra
{ngf’ éﬂeff} — 280 et (2.8)

holds. The system belongs to a class of N =2 super-
symmetric quantum mechanical systems constructed
in [11].

The function (2.6) is periodic in ¢ with the period
27/(eL). We see a kind of crystal shown in Fig. 1. In
each node of this crystal, sits a monopole. The blue blob
marks the site with the monopole of charge —7/2. The red
blobs mark the sites with the monopoles of charge 1/2.
Note that the net magnetic charge of the elementary cell is
zero—which is a consequence of the condition (2.1).
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FIG. 1. A unit cubic cell of the monopole crystal in field space.
The edge of the cube is 27/ (eL).

Consider the Hamiltonian (2.5) in the vicinity of one of
the red nodes. It acts on the wave functions with fermion
charges F' = 0, 1, 2. In the bosonic sectors, the Hamiltonian
includes a monopole term like in (1.8) and an extra singular
scalar potential. In the sector F = 1, also the last term in
(2.5) works. One may represent the wave function
¥r=(c,n,) = ¥,(c)n, as a spinor, so that the term H -
non acquires the form H - ¢ and describes the interaction
with the magnetic moment of the spin % particle with the
gyromagnetic ratio y = 4 (twice as large as for an electron).

The equation for the radial wave function y(r) in the
vicinity of the red node is

Lo : E 29
—Ew(w)—ﬁl— X (2.9)
where r is the distance from the node. This equation has a
zero energy solution, y(r)~1/y/r. The normalization
integral [ r’y(r)dr for this solution diverges, but one
can deform the Hamiltonian (2.5) adding a positive
|

constant C to D(c), so that the condition (2.7) and the
algebra (2.8) still hold. Then the zero energy solution of the
corresponding radial equation would include an exponen-
tial factor e=¢" and the wave function becomes normal-
izable. Moreover, for large enough C, the zero mode that
we found will be concentrated in the region around the
chosen red node and will not sense the presence of other
nodes. As the elementary cell involves seven red monop-
oles with a positive magnetic charge and as, for positive C,
there is no zero-energy solution around a blue negatively
charged monopole, we can derive the existence of seven
zero energy solutions—not only for the deformed, but also
for the undeformed effective Hamiltonian and hence [9]
also for the complicated field Hamiltonian of the original
theory (2.2). All these states are fermionic and hence the
Witten index Iy, of chiral SQED in (2.2) is equal to [6,8]

Iy = -7. (2.10)

One can also invent more complicated anomaly-free chiral
SQED theories. Take for example the theory involving 27
left multiplets with charge e and a left multiplet of charge
—3e. In that case, the Witten index is equal to —26.

IIL. SU(3) THEORY

These constructions can be generalized to non-Abelian
theories. The group SU(2) has only self-conjugate repre-
sentations, and the corresponding theories are not chiral.
The simplest chiral non-Abelian supersymmetric gauge
theory is based on SU(3). It includes, besides the vector
multiplet, seven matter chiral multiplets in the fundamental
group representation 3 and a multiplet in the representation

6. In terms of superfields, the Lagrangian of the model is

1 - 1 NS N
L= (ZTr / dZHW“Wa—i-c.c.) +2 / d‘%)(z iVt +q>/ke—qu>,k),

(3.1)
/=1

with j, k =1, 2, 3 and ®/* = P~/
The generators of the group in the sextet representation
read

(795 = 5 ()i + (138 + (18 + (14);67]. (3.2)

N =

where 1 are the generators in the fundamental representa-
tion and the factor 1/2 stems from the requirement that 7¢
satisfy the same commutation relations, [T¢, T?] = ifeb°T¢,
as t*. Then

7
Te{TT T} = TTr{t9t"19)} = ZdabC. (3.3)

The contribution of each matter multiplet to the chiral
anomaly is proportional to Tr{T<“ T TC>} for the generators
in the corresponding representation. For the theory (3.1), the
anomaly cancels and the theory is gauge invariant and
renormalizable.

The effective Hamiltonian at small finite box can be
found along the same lines as for the Abelian theory. We
have six bosonic slow variables—zero Fourier modes of the
gauge fields belonging to the Cartan subalgebra of SU(3),

045026-4
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which can be represented as

1
A" = Ediag(a,b —a,-b), (3.4)

with a;, b; €[0,F) [the shifts of a;, b; by 4z/(gL) boil

J» 2
down to topologically trivial gauge transformations]. The
Hamiltonian also includes their fermion superpartners

{ﬁ( ’ ’1(1 } {’7 } 5{117

(7@ gDy = {508 gy = 35§

NUJI-P

(3.6)

In contrast to the pure SYM theory where the effective
Hamiltonian to the lowest Born-Oppenheimer order
describes free motion in a, b space [9], in the chiral case,
the effective supercharges and Hamlltoman have a rather
nontrivial form. One can derive [12]

y g M i = (00 (P + A + 0D
’ CVE b (b b
8 + 1, (00 (B + AL) + iéh D).
a =2 (35) Al _ s@piy ) a(pl@ | 4@ _ isa
NG 0" =0 Pllow)," (P + A) = i63Da)]
z a( plb b N
+ i o)y (B + A”) = i) (37)
and their conjugates. They have the following anticommu-
tators: and
a 2 Hla a
BT = 2P+ A+ (B + AP+ (P + AT P+ AL
3.8
+D§)+Df)+D()D<>] (3.8)
+ H D Den@ + HO[EIent) + H@) (G @en) + jben@).
Here P\*) = —id/da* and P\") = —id/ob*. The functions Dy, and Dy, represent the following infinite sums:
9 1 1 1 1 1
D,y == - - —
(@) 2;[|a—47m| |a—b—47m|} ZZn:[|a—2zm| |a—b—27m|]’
9 1 1 1 1 1
D _ ! - 3.9
®) 22,,:[|a—b—47m| b — 47n| 22,;[|a—b—2zm |b—27m|] (39)

(we have set g=L =1). We see a nontrivial crystal
structure in six-dimensional configuration space.
The vector potentials LA (%) are related to D4 so that

H =epoi A = 0D,

b

HE )= jklabAZ

g.iszﬁ‘ab EaZA/ —a?Al(ca):gjkla?D(b): jkla?D(u)'
(3.10)

=9Dyp).

In Ref. [12], we performed an attempt to calculate the Witten
index for this Hamiltonian and hence for the original theory.
Unfortunately, we could not do that: the system is rather

[
complicated, and it is difficult to solve the Schrodinger

equation or the equations Q<TW = Qaeff‘l‘ = 0. analyti-
cally. An attempt to calculate the index via the functional
integral in the approximation where only the zero Fourier
modes in Euclidean time are taken into account [13] also
failed: such a calculation gave a fractional result for the
index. The reason is that the Hamiltonian (3.8) involves
strong singularities at @, = 0. These singularities invalidate
the Cecotti-Girardello approximation: an estimate shows

SThis derivation for SU (3) is spelled out in detail in the book

[8]. In the Appendix, we will describe a similar derivation for
SU(4)

045026-5
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that the contributions of zero and nonzero Fourier modes in
the functional integral are of the same order.”

In this paper, we will concentrate on studying the
properties of the bosonic part of the Hamiltonian (3.8)
for SU(3) and other groups. We will keep there only the
kinetic part,

NN A
A=31(B + AD) + (B + A
+ (B + A (P + AT, (3.11)

and consider it only in the vicinity of the “corner” a, =
by = 0 so that®

1 1 1 1
D, :q[p———], D :q[p———] 3.12
(@) ab  Pa (®) b Pab ( )

with p, = |a|, p, = |b|, pu»y = @ — b|, while the general-
ized vector potentials and magnetic fields are still related to
D(4),») by (3.10). The magnetic fields have the form

)
q 2 T T a3 b
3 ch

HO) — ( b +’ﬂ>,

H@) =

_p_i Pab
Hlab) — ‘J(“;m (3.13)
Pab
The vector potentials may be chosen in the gauge
A/(\Ca) _ q(_ ay (a - b)v )
pa(pa + az) pabwab + (Cl - b)z]
— b)
A(?) — q< Ay _ (a X >’
’ pa(pa + az) pabLoab + (a - b)z]
b, b—a),
AV = ¢ (— 4+ (b-a), )
pb(pb - bz) pab[pab - (b - a)z]
b (b—a)
A<b) - q< - - = >1
! pb(pb_bz) pabLoab_ (b_a)z]
ALY =AY = (3.14)

7However, in spite of the fact that the Cecotti-Girardello
approximation is not justified also in the Abelian case, such a
calculation gave a correct answer (2.10) for the Abelian theory
[6]. The reason by which it works for the Hamiltonian (2.5), but
does not work for the Hamiltonian (3.8) is presently not clear.

We have introduced here a factor g—the “charge” of the
Cartan monopole. We will see soon that this charge can acquire
any integer or half-integer value, as it was the case for the
ordinary monopole. The actual value of the charge for the
effective monopole of the chiral SU(3) theory sitting in
the corner is ¢ = —4.

The symmetry relations

AW (=b,—a)=—-A"(a,b),
HW (=b,—a) =H") (a,b), H)(-b,—a)=H'"")(a,b)

(3.15)

hold. Note that the directions of the Dirac strings for A
and A® are correlated or, better to say, anticorrelated.
Otherwise the symmetry (3.15) would not be there and the
relations (3.10) would not be satisfied.

This is what we will call a Cartan monopole.

A. Dynamics of the system (3.11)
The Lagrangian that corresponds to (3.11) reads

1 . . .
L= E(a;2 +b*—a-b)-aA*-bA". (3.16)
Proposition 2. The action f Ldt for the Lagrangian

(3.16) is invariant under rotations

8a; = €jypQtydy, Ob; = €jyptyb,. (3.17)
The corresponding integral of motion reads
Jm = Emnk [an (P(a) + A(a))k + bn (P(b) + A<b))k]
- ClmD<a> — me(b) (318)

Proof. It goes along the similar lines as in the
Abelian case.”

Consider the variation of the Lagrangian (3.16) under
(3.17). We have

5L = —6(a; AL + b;AY)

= _amgjmn(anA§a> + bnAjm)

(oA Al
- amgpmn aj ay =+ ob bn
P

da

p
+b 24, +M§'h>b 3.19
b Wan W nl|- ( . )

Flipping the derivatives in the first term, we derive

*Well, the Hamiltonian (3.11) is defined on the Cartan
subalgebra of SU(3), which is also Abelian, but it came from
non-Abelian studies.

045026-6
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d

oL = _amgjmn E (anAﬁa) + bnAEb)) + amgllmn |:a”aj<

(a) (b)
. /0 0A;
+ amgpmn |:Clnbj < AP - —J> + bnaj (

ob;

j da

P

Use now the relations (3.10). The second and the third line
in Eq. (3.20) acquire the form

€ pn€ jps [ananga) —+ bnijEa) + (a,,bj + b,,aj)Hi“b)]
(3.21)

Bearing in mind (3.13), the magnetic fields Hﬁa) and Hgb)
can be represented as

@ _ 99% o ap b _ _4bs .
Hy = —H H ——p—3—Hs.

Take the term ga,/p; in Hg“) and substitute it in (3.21). We
may observe that this contribution in 6L has the same
structure as in the Abelian case [see Eq. (1.14)] and boils
down to a total derivative « d(a,,/p,)/dt. By the same

token, the contribution due to the term —gb,/p; in H
boils down to a total derivative « d(b,,/p,)/dt. We are left
with the contribution

€ pn€ jps|— A1 — b,,bj + a,,bj + b,a|H®
= qam(émjﬁns - 6ms5nj)(aj - bj)(a - b)n(a - b)s/pzb’
(3.22)

which also gives a total derivative « d[(a — b),,/pas)/dt.
The integral of motion (3.18) can be derived by the
standard Noether procedure. L]
In addition, the action is invariant under the trans-
formations (the remnant of gauge transformations of the
original field theory)

A;a) = Aﬁ“) _ O?F(a,b), A(.b) - A;b) - aj?F(a,b).

(3.23)

The curls H@, H’, and H() keep their form
under (3.23).

As is the case for the ordinary Dirac monopole, the
Cartan monopole charge ¢ is quantized to be integer or
half-integer. To see this, consider the gauge transformation
(3.23) with

(a_b)y
(a_b)x '

ay by
F(a,b) = 2q|arctan— + arctanb— — arctan

X X

a (a) b (b)
OA OAT L, (04 oA
da;  oa, "2i\"ob; ~ ob,

(b) (a)
0 0A;
o )] (3.20)
a(lj Gbp
|
After this transformation, the vector potentials (3.14)
acquire the form
le/(ra) _ 6]( ay _ (a - b)‘ )
a(pa - az) Pab [pab - (Cl - b)z]
~(a a, a—>b),
A
pa(pa - az) Pab [pab - (a - b)z]
1) — q< by _ (b - a)y )
) Pu(Po +b2)  paplpar + (b —a)])’
~ b (b—a)
AV = ¢ <— T TLE x )
’ PPy +b2)  palpar + (b —a),]
AW =AY <o, (3.25)

which corresponds to the opposite direction of the Dirac
strings, compared to (3.14).

The eigenfunctions of (3.11) with the vector potentials in
(3.25) and in (3.14) are related as

Y(a,b) =exp{iF(a,b)}¥(a,b). (3.26)

For the wave function to be uniquely defined, we must
require for exp{iF(a,b)} to be uniquely defined. And this
is so if and only if ¢ is an integer or half-integer.

Note that one also can consider a generalized asymmetric
Cartan monopole with the gauge potentials

a, (a—b)
.Afra) = —{q x + a ? )
i pa(pu + az) 7 bpab[Pab + (a - b)z]
— b)
T (a=b),
Y 1 pu(pa+az) 1 bpuhmah+(a_b)z]
b (b-a)
A = —¢ =+ q, .
bﬂb(/)b -b.) bpab[pab —(b—a)]
bx (b - a)x

A§h> =4

pb(pb - bz) - qabpabLoab - (b - a)z] ’
(3.27)

or the potential related to (3.27) by (3.23). In particular, the
gauge transformations with

045026-7
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a,
F,(a,b) = 2q, arctan—,

X

Fy(a,b) =2gq, arctan%,

F.(a,b) =2 arctan(a )y (3.28)
ab\*%» 9ab (a — b)x .

reverse the direction of one of the Dirac strings in (3.27).
The condition for exp{iF(a,b)} to be uniquely defined
leads to the requirement for ¢,, g, and g, to be integer or
half-integer.

B. Theory including a decuplet

As was mentioned above, there are many different chiral
anomaly-free theories. For example, the sextet ®U%) in (3.1)
may be replaced by a decuplet ®U). The generators T¢ in
this representation are normalized so that [T¢,T"] =
ifebeTe read

Ty =

jkl ()7 (8767 4 8767) + 8 similar terms].

AN =

(3.29)
|

27 1 1
D,y =— -
@ =7 Z{|a—47m| la —b — 4zn|

n

]_

27 { 1 1
2
n

IV. OTHER GROUPS AND OTHER MONOPOLES
A. SU(4)

Consider a chiral supersymmetric theory based on SU(4)
gauge group, which involves eight matter multiplets in
fundamental representation [the quartets with the Dynkin
labels (1,0,0)] and also an antidecuplet V%) with the Dynkin
labels (0,0,2). This is a direct SU(4) analog of the theory (3.1).

We need eight quartets for one antidecuplet to cancel the
anomaly. Indeed, a generalization of the relation (3.3) to
higher SU(N) groups is

Te{TUT T} = (N 4+ 4)Tr{t@*1)}.  (4.1)
Take a Cartan background
I .
At = Edlag(a,b —a,c—b,—c). (4.2)

The calculation of the effective supercharges and
Hamiltonian goes along the same lines as for SU(3).
Some details of this calculation are given in the
Appendix. We derive

1

2

1 1 1
]_Ez[la—b—“”"l_lb—“;"'l]'

la —b —4zn|  |b—4mn|

One can derive (see Appendix) that

Te{T@T?T)} = 27Tr{1**19)}, (3.30)

and one needs 27 triplets to compensate the anomaly of an
antidecuplet.

The effective Hamiltonian in this theory may be calcu-
lated in the same way as in the theory (3.1). We will not
describe here the details of this calculation, referring the
reader to Refs. [8,12] and to the Appendix, and will just
quote the result. To assure the algebra (2.8), the effective
supercharges and the Hamiltonian must have the same
structure (3.7), (3.8) as for the theory (3.1), and they do.

Remarkably, also the functions D, ) have a quite
similar structure:

Z[ o 1 ]
=% " Ja-b -]’

(3.31)
n 3
[
o= (00 (P + AL) + 0Dy
+ 1 (o0 (B + AP + idhDy)
+0y 0 B+ AD) + kD) (43)

8 15
(a) 3 Na Mo
a — Hg +—+—F,
n n /3 6
NO (_§+ﬁ
a \/§ 6 ’

15

(¢) 37]0: 4.4

Note that

- a =(c C 3 -
{7 P iy = {7 ¥ i} 2555, (7®¥ 0y =260,
(7@ gy = (708 gl = (7O i) = {78 Py =,

_ N () @y ]
@y =Py =50 (4.5)
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The functions D(,), D), and D, represent the following sums:

1 1
D, . —4 _ _!
(a) Zn:(|a —4zn| la-b —47rn|>

1 1
Dy = 4 -
(®) ;(|a—b—47m| |b —c —4znn|

1 1
D=4 — S
(©) zn:(|b —c—4mn| |c- 47m|)

The curls of .A,((a>, .A,iw, A,(f) are related to the gradients of
D(4), D), Dy, in the same way as in (3.10):

H = €0t A = 9D,

ab a a
Ejle(- )EakA _a?'Ak :8jklajD(b) = jklaﬁ?D(ﬂ)’

be) c 1(b) o c
gjle§ abA al A](< ) = ejkIO?D(C) = sjklajD(b),
SJlelE-aC _()”Al —OCAE:I) :s],da D( )—s]k[() D( ) 0

(4.7)

f

Calculating the anticommutator {Qae Q1. one can

derive an expression for the effective Hamiltonian. It

represents a rather obvious generalization of (3.8). For

example, bearing in mind (4.5), one can write a contribu-
tion

e — +D},) + Dfyy + DDy + D) Doy

(4.8)

Another contribution represents an analogous quadratic
form of P,((a be) 4 A,({a’b’c):

fre 3 Da a e c £ b
A = (P A7 (P A+ (P ALY

8a a ~ b 2 b pe ¢
+ (P ALY P+ A + (P + AL (P o+ AL
1 - a De c
5 (P A (PE+ A, (4.9)
And there are six bifermion terms including

H@ HE) | etc.

The Cartan monopole for the su(4) algebra may be
defined as a system with the Hamiltonian (4.9) where
the vector potentials are related to D), D), and D),

given by

Z 1 B 1
—\|a —2zn| |a—b—2zn|)
1 1 1
> _§En:<|a—b—27m|_|b—c—27m|>’

1 1
- . 4.6
zn:(|b—c—2ﬂn| |c—27m|) (4.6)
1 1
Dy = -
“ ‘1<|a—h| |a)’
1 1
Dy = ,
®) "<|b—c| |a—b|>
1 1
Dy = — s 4.10
o=o{g-5=a) (10

as in (4.7). One can choose

AH_q( Pal pj{ka) pah[pfj;(bcjy—b)z])’
:q< pa-l-d pabLoa(:J:(a)—b) ])’
< (b —a)y

o + (a- b>z1>’

\ |
Q

Pbc phc b)z)

| |
Q

<pr pbc EORR U»(b + <) - bm)’

( o)
Pbc phc b)z) pc[pc + cZ]

=q
Cy )
= q — N
Pbc pbc b)z) Pab [pc + CZ]
z -Ab)— z :O~ (411)
The corresponding Lagrangian reads
1 . .
L=3 [@>+é+b°—b-(a+é)
—a- A9 —bh- A —¢. A (4.12)

It has the properties similar to the Lagrangian (3.16): it is
invariant under the gauge transformations,

A A L oiF@b.e), AV A+ F@b.c).
A > A9 Lo Fab.c), (4.13)

and under the rotations,10

""This can be proven in exactly the same way as in the su(3)
case.
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84, =Ejpn@pQy, b} =Ejpy@ub,.  6C;=€ppQuCp. anomaly cancels for this theory. The effective Hamiltonians
(4.14) and the related Cartan monopoles have the form similar to
) that in the cases N = 3, 4 treated above.
. But there is another interesting (especially, for possible
The conserved angular momentum reads: phenomenological applications) anomaly-free chiral theory,
_ (a) (a) (b) which involves a quintet with the Dynkin labels (1, 0, 0, 0) and
Im = Emn [a” (P + Ay + by (P an antisymmetric decuplet with the Dynkin labels (0, 0, 1, 0).
+ A®)), + ¢, (P + A€),] The effective supercharges and Hamiltonian were determined
— 4, D) — b D) — cnDie- (4.15) in [12]. Here we only quote the results. The slow bosonic

variables have the form

The charge ¢ is quantized to be integer or half-integer, as it
was the case for the ordinary monopole and for the su(3)

1.
Cartan monopole. A%t = Edlag(a,b —a,c—b,d—-c,—d). (4.16)
B. SU(5)
For any SU(N) group, one can consider the chiral The effective supercharge looks similar to (4.3), but it now
supersymmetric gauge theory with N + 4 fundamental includes an extra term ;15,‘”.
multiplets carrying the Dynkin labels (1,0,...,0) and a The functions D), D), D), D(g) are given by the

symmetric multiplet with the labels (0, ...,0,2). The chiral ~ following sums
|

1 1 1 1 1
Da =5 —+ + +
“ 22,,:{Ianl @—c)y |b—a+d—c),| |b-a-d),|
1 1 1 1 ]

(@=b),| [(a+c=b),| |l@a+d=c),| |[(a=d),l

Dy =

n

11 1 ~ 1 ]
bul (b =€)yl [(b—a—d),| [b-a+d=c),|]

1 1 1 1 1
EZLM =0), Tb—a), atc=b), [b-ctd),

1 1 1 1 1
Dc =5 — 4+ + +
() 2;|:|cn| ‘(b_c)nl |(a_c+d>n‘ |(b_a+d_c)n|
1 1 1 1 }

Cd=c),l la=c),| lla+ec=b),] lc-b-d),

1 1 1 1 1
Pra ‘2;L<d—c>,,| Ta=a), e=b-d),] [b-a-a),

IR S S 1 ~ 1 ]
d,| |(b-d),] |@a+d-c),| |b-a+d-c),|]

(4.17)

where a, = a —4zn. In this case, the elementary cell of our 12-dimensional crystal includes only one node: the
antisymmetric decuplet has only mixed components, which have the same periodicity pattern as the quintet components.
The anticommutator of the supercharges gives the Hamiltonian, which has a structure analogous to the structure of SU(3)
and SU(4) effective Hamiltonians, but has more terms. For example, the scalar potential is now given by the following
quadratic form:

. 1
eff
Hp =< [4(D},, + DY) + 6(DY, + DYy) + 6(D iy Dy + Do) Day)

+4(D(Q)D(C) + D(b)D(d)> + ZD(a)D<d) + SD(b)D(C)] . (418)

It would be interesting to study the dynamics of the corresponding Cartan monopole.
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C. Spin(4n+2) and E,

Similar constructions exist for all groups admitting com-
plex representations: for all higher unitary groups, for
Spin(4n +2) and for Es The specific of Spin(4n+2)
and E¢ theories is that they are free from anomalies for any
matter content, and we can consider only the theories
including a single matter supermultiplet. For example, a
fundamental spinor 16-plet in SO(10) [14] or a fundamental
27-plet in Eq [15]. The reason is that, though these repre-
sentations are complex, the tensor d?*¢ = Tr{T@T’T¢)}
vanishes for these groups.

The simplest way to see this is to inspect Tables 44, 48 in
the review [16]. The symmetrized tensor products of the
adjoint representations in SO(10) and E4 are

SO(10): (45 x 45), = 1 + 54 + 210 + 770,

Es: (78 x78), = 1 + 650 + 2430. (4.19)
Adjoint representations are absent in these expansions,
which means that 7(“T?T¢) is not a singlet and has a
zero trace.

For orthogonal groups, one can give a simple math-
ematical reason for this fact [17].

Consider the form F = Tr{X?} defined on a Lie algebra
g. It is invariant under the action of the group. Expanding
X = X,t%, one can represent it as

1
F = Zdafwxaxbxc.

Now we can restrict this form to X = X1, d =1, ...,r,
belonging to the Cartan subalgebra of ¢. Then
F=Tr{(X;t7)3} «x d"°X;X;X is invariant under the
action of the Weyl group. For example, for the Cartan
subalgebra element X = diag(a, 5,y = —a — f§) of su(3),
F = o + 3 + ¢, which is invariant under the permuta-
tion of a, 5, y. Similarly, for higher unitary groups.

The existence of a Weyl-invariant homogeneous cubic
polynomial defined on the Cartan subalgebra is a necessary
and sufficient condition for the trace Tr{T“T*T)} to be
nonzero.

Consider now the algebra so(10) and its Cartan sub-
algebra. An element of the latter is a five-dimensional
vector x;. The Weyl group includes the permutations of x;
and also the reflections when a couple of components of x;
changes simultaneously the sign. But a nonzero cubic
polynomial of x; invariant under all the Weyl transforma-
tions does not exist. Indeed, to be invariant under the
reflections that change the sign of any pair of x,, x3, x4, X5,
but not of x;, such a polynomial should have the form
P3(x;) = x; Y}, a;x;. But such a polynomial is not
invariant under permutations.

A more heuristic argument in favor of the absence of the
chiral anomaly in SO(10) and E4 comes from the branch-
ing rules for their multiplets under embeddings Eg D
SO(10) x U(1) and SO(10) D SU(5) x U(1). The funda-
mental 27-plet of E is split into a spinor, vector, and singlet
of SO(10), 27 — 16 + 10 + 1, and the 16-plet of SO(10)
is further split into a quintet, antidecuplet, and singlet of
SU(5). And we have already learned that the SU(5) theory
with such a matter content is anomaly free.

The absence of anomalies in the theories based on
SO(10) and Eg led people to consider these theories
including each a single fundamental matter multiplet as
candidates for the theories of grand unification [14,15]. It
would be interesting to evaluate the effective Hamiltonians
for the supersymmetric version of these theories in the same
spirit as we did it for the unitary groups, to study them and
find out in the end of the day whether supersymmetry is
spontaneously broken there or not.
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APPENDIX: EVALUATION OF EFFECTIVE
HAMILTONIANS

1. Decuplet contribution in SU(3) theory

Let us first derive (3.30). One can do it quite directly,
using the representation (3.29), but there exists a simpler
and nicer way [18]. To find the coefficient in (3.24), it
suffices to calculate Tr{(7®)*} and compare it with
Tr{(#%)3}. It is convenient to choose the normalization 3 =
diag(1, 1,—2) and the corresponding normalization for 7%
in the higher representations. Consider the embedding
SU(2) x U(1) € SU(3) such that T® is projected on the
generator of the U(1) subgroup. The branching rules for the
triplet, sextet, and decuplet are

3 2(1) + 1(=2),
6 — 3(2) +2(=1) +1(~4).

10 — 4(3) +3(0) + 2(=3) + 1(=6),  (Al)

where 2, 3,4 are the SU(2) multiplets and the numbers in
the parentheses are the U(1) charges. Then Tr{(s%)*} =

2-13+1-(=2)® = —6. For the sextet and decuplet we
have

Tre{(T8)3} =323 +2- (=1)* + 1. (-4)}
= —42 = 7Tr{ ()%},
Trp{(T?)*} =4-3>+2- (=33 +1-(-6)
= —162 = 27Tr{()3}. (A2)
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For an arbitrary symmetric representation (p,0), triplet, it was

p(p+1)(p+2)(p+3)(2p+3)

Tr, {(T%)*} = Tr{(#%)%}. 1 1 1
120 (A3) Do (tipl) = 2 zn: [|a —4zn| |la-b- 47m|} '

. 1 1 1

As was mentioned, the effective supercharges and Dyy)(tripl) = 2 Z [|a —b—4an| |b—4zn } ’ (A4)
Hamiltonian have the form (3.7), (3.8), and the only "
problem is to evaluate the contribution of the matter
multiplets in Dy, and D(,). The contribution of a triplet where the individual terms in these sums came from the
and a sextet was found in [12], and these calculations were matter Fourier modes « e2#"*/L_The antisextet contribu-
spelled out in detail in [8], where we refer the reader. For a tion was
|

1 1 1 1 1
D t) = - - _ ,
(@) (sex) zn: [|a —4zn| |la-b- 47m|} 22,[: La —2zn| |la-b- 27m|]

1 1 1 1 1
D t) = — - = — . A
() (sext) z":[|a—b—47m| |b—47md 2;{|a—2;m| |a—b—27m|] (A3)

Here the terms in the first sums come from the mixed sextet component ¢'2, '3, ¢** while the terms in the second sums
come from the components ¢'! (x), $?*(x), >} (x), which, in contrast to the mixed components and the triplet fields, make
“two turns,” being multiplied by e**** rather than by e*>"™* to compensate the gauge shifts a, — a, + 4z or b, — b, + 4.
Multiplying (A4) by 7 and adding (AS), we arrive at (3.9).

To determine the contribution of the decuplet, we first find the part of the Hamiltonian describing the interaction of the
slow Abelian gauge fields (3.4) with the fast scalar decuplet fields.

Let us first concentrate on the zero Fourier modes of the decuplet. The kinetic term of the fast Hamiltonian reads

I:Ikin — |ﬁ,lll|2 + |7A1.222|2 4 |fz’333|2

_|_3(|ﬁ.112|2_|_|ﬁ122|2+|;[113|2+|ﬁ133|2_|_|ﬁ.223|2+|ﬁ.233|2)_|_6|ﬁ123|2, (A6)

1 _

where 7 —id/ o', etc. After some calculation, we derive also the potential part:

Vzg[a2|¢“1|2+(a—b)2|¢222|2 +b2|¢333|2]+1< +b)2[|¢112|2+|¢332|2]

£2 00— BRIIF + 4R+ (2b - aP 42+ ) (A7)

The same can be done for the Hamiltonian describing the interaction with nonzero Fourier modes. In the same way as in the
sextet case, this Hamiltonian involves the mixed components like ¢''?(x) making one turn to compensate the gauge shift
a, — a, + 4, etc. and also the components ¢''!(x), $***(x), ¢*3*(x) making three turns. As we see, no potential is
generated along the direction ¢,3. (The existence of such direction is a specific of the decuplet problem.) In nine other
directions (for each r), the Hamiltonian A*™ + V has an oscillator form. From that one can determine the vacuum averages:

1 1 222 ! 333 1
(lpa''?) = 3la = %n| (lp2?) = Sla—b—%n| (lga717) = 3=
1 1
(ln'??) = () = et b=z’ (6 P) = (Iga>]?) = a—b—dm|
1
(' 17) = (2’ [*) = b —a—4zn|’ (A8)

2

The effective supercharges can be derived by averaging the full supercharges Qa, Q" over the fast vacuum. We have
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0. =i / {7 ~(e0d 55+ i, —¢*T3¢>} 1|~ 8A8+57<sfr8s —¢*T8¢)H+Qﬁf‘“. (A9)

are the decuplet fields, and the generators 738 were written in Eq. (3.29). Plugglng in (A9) the decuplet scalar averages
(A8), the scalar averages of seven triplets,

# U #

(Is2]?) = (Is4?) = (A10)

(Is?) =

and adding the contributions from the averages of 9/ (3A?< and 9/ OAE over the full fast ground state wave function,'' we arrive
at (3.7) with D, () given in (3.31).

Note that the effective supercharge does not acquire a contribution from the average |¢'?*|?, which we could not
determine in the above analysis. Note also that, in contrast to what we had for the sextet, the contributions of the mixed
components of ¢/ with the same periodicity pattern as the triplet fields cancel so that the first sums in (3.31) are due solely
to the triplets while the second sums are due solely to the decuplet.

2. SU(4) with eight quartets and a symmetric antidecuplet

This theory was not treated before, and we give here a little more calculational details.
Consider first the contribution of a quartet. The fast Hamiltonian describing the interaction of the slow background (4.2)
with the zero Fourier modes of the scalar quartet components reads

fyfast AT *(Aasa)2
Hguan = 7,70 + 57 (A1")"s

& 1
=gy, a@IP @ BPlaP + B =Pl + P (A1)
This gives the averages
1 1 1 1
IsiPY=r7 AP =—p  (sP)=g—— ()= (A12)
] a| ja b b —c| ]

The averages of the other Fourier modes are given by the similar expressions with a — a — 4zn etc.
The contribution of a quartet to the effective supercharge Qerf

iﬂas I3S + ”1(1s ZSS + lniSS*tlss = l(nf(la)D?u;m + 115, )D((lu)an + rlg‘C)D((l;l)an) (A13)

with

1 1 1
unart _ - _ ,
(a) 2Z;<a—4zm| |a—b—47m|>

1 1 1
la—b—4mn| |b—c—4mn|)

"2
1 1 1
DI =~ : Al4

@ 2 <|b—c—47m| |c—47m|> (A14)

""These contributions bring about the “vector potentials” .A,(f) and A,@.
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The fast Hamiltonian for the scalar antidecuplet (its zero Fourier mode) interacting with the Cartan background is

A = 7lnl + | P + (@ —b) o> + (b — ¢)?|h33]* + 2| paal?

oty

1
+5 0290l +1¢34) + (@ + ¢ =0)(1913] + [2al) + (a = €)?|h1a + [$3])], (A15)
giving the averages
1 1 1 1
|¢11|2=%, |¢22|2:42|a—b , |¢33|2:72|b—c , |¢44|2=$,
1 1 1
12> = |¢aal* = B 23> = |pal* = la—c 13> = lopo|* = B—a—e (Al6)
The induced D, ) are
. 1 1 1
Dzero antidecuplet modes _ 2 _ 2 _ — ——,
(a) |¢22| |¢ll| 2 |a—b| |a|
. 1 1 1
Dzero antidecuplet modes _ 2 _ 2 _ — ,
(b) |¢33| |¢22| 2 |b—C| |a_b‘
prEre antidecuplet modes _ |¢ ‘2 _ |¢ |2 _ l i _ 1 (A17)
© 44 B2 \el p-cl)

while the contributions of the mixed components exactly cancel.
The contributions of the other Fourier modes have the same form with a — a — 2zn etc. [the components like ¢'! (x)

rotate two times faster than the quartet components].

Adding the antidecuplet contribution to (A14) taken with the factor 8, we arrive at (4.6).
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