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Near horizons, quantum fields of low spin exhibit densities of states that behave asymptotically like
1þ 1 dimensional conformal field theories. In effective field theory, imposing some short-distance cutoff,
one can compute thermodynamic quantities associated with the horizon, and the leading cutoff sensitivity
of the heat capacity is found to equal to the leading cutoff sensitivity of the entropy. One can also compute
contributions to the thermodynamic quantities from the gravitational path integral. For the cosmological
horizon of the static patch of de Sitter space, a natural conjecture for the relevant heat capacity is shown to
equal the Bekenstein-Hawking entropy. These observations allow us to extend the well-known notion of the
generalized entropy to a generalized heat capacity for the static patch of de Sitter (dS). The finiteness of the
entropy and the nonvanishing of the generalized heat capacity suggest it is useful to think about dS as a state
in a finite dimensional quantum gravity model that is not maximally uncertain.
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I. INTRODUCTION

The quantum theory of de Sitter (dS) space remains
obscure. We do not know the nature or even the quantity of
the microscopic degrees of freedom, or their interactions.
In [1,2] itwas proposed that theGibbons-Hawking entropy

of dS space could be interpreted as the logarithm of the
dimension of a finite-dimensional quantum system describ-
ing a static patch of the spacetime. This hypothesis implies
that empty dS space corresponds to the maximally uncertain
density matrix of the quantum system. Within semiclassical
physics, it is supported by the Schwarzschild-de Sitter (SdS)
entropy formula, which shows that objects localized near a
geodesic reduce the entropy, and by the fact that generic
localized excitations melt into the near-horizon region of any
given static patch in a time of order RdS. Furthermore,
attempts to introduce higher-entropy initial states in the
remote past of the global dS manifold lead to singular
space-times1 rather than future asymptotically dS space.
The “maximum entropy” proposal is simple and com-

pelling, and it has received support of a kind from recent

progress in the theory of operator algebras. It would
be interesting to establish whether it is strictly true, or
only holds in some approximation. A natural quantity
to examine is the second cumulant of the modular
Hamiltonian K, where ρ ¼ e−K is the normalized density
matrix of the microscopic state corresponding to empty dS.
The entropy satisfies S ¼ hKi. For a state of maximum
entropy, ρ ¼ I= dimH, and the second cumulant (also
referred to as the “capacity of entanglement” [4–7])
vanishes, hðK − hKiÞ2i ¼ 0. Thus the magnitude of the
modular fluctuation can discriminate the maximum entropy
state from other possibilities.
This paper is a follow-up to previous work [8], in

which it was argued that the semiclassical state of empty
de Sitter space need not correspond to a microscopic
maximum entropy state. Random projections also repro-
duce the entropy deficit properties of the SdS geometry,
for a general class of density matrices, not just the
maximally uncertain one. Furthermore there exist density
matrices with the properties that hKi ¼ log dimH þOð1Þ
and hðK − hKiÞ2i ∼ hKi.
Here we consider two other probes of the modular

fluctuation in the dS static patch. The first is the behavior
of effective quantum field theory (EFT) on the static patch
background (Sec. II). EFTs are presumed to have a physical
short-distance cutoff. Without knowing the UV completion,
one can estimate the sensitivity of quantities like the entropy
and capacity of entanglement to the physical UV scales by
putting general, unphysical cutoffs on the EFT.
The second approach we consider is the semiclassical

Euclidean functional integral for gravity, where we make a
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1This was originally a conjecture made by T. B. and was later
proven in [3].
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conjecture in Sec. III about how one should identify and
vary the replica index. A modular fluctuation analog to the
classical Bekenstein-Hawking entropy can be computed
from a derivative with respect to the replica index. This
kind of semiclassical replica trick has been successful in a
wide variety of contexts in the AdS/CFT correspondence.
Our proposal remains consistent with the idea that states
with localized matter in the bulk correspond to constrained
states, essentially because thermal states may either be
viewed as minimizing the free energy at fixed temperature,
or maximizing the entropy with a constraint on the expect-
ation value of the energy.
Both EFT and semiclassical gravity are consistent with a

proportionality of the form hðK − hKiÞ2i ¼ ahKi, with
coefficient a of order 1 (and in fact equal to 1 in the cases
considered here.) It is straightforward to explain why the
SdS argument described above did not “see” the large
modular fluctuation, which we also discuss in Sec. II. We
may define a “generalized capacity of entanglement” Cgen

as the sum of the EFT and leading-order semiclassical
gravity contributions, and in cases where the value of a is
the same in both terms, Cgen is proportional to the
generalized entropy.
In Sec. IV we discuss the question in the context of

operator algebras and the kinds of modifications to the
crossed product construction needed to produce a large
nonzero hðK − hKiÞ2i. In Sec. V we conclude with a
discussion of the relation between the modular fluctuation
and other ideas in static patch holography.

II. EFFECTIVE FIELD THEORY

Effective quantum field theory on a static patch of rigid
dS, or any space-time with a horizon, contains a density of
near-horizon states that is sensitive to the ultraviolet cutoff.
For free theories the sensitivity can be easily calculated
with a brick wall regulator [9], or covariant regulators like
Pauli-Villars [10] or character expansions [11]. For exam-
ple, for N free bosons in D space-time dimensions on a
space-time ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩD−2 one finds a
density of near-horizon single-particle modes of the form

gðωÞ ¼ N
�
rH
ρc

�
D−2

XðrHTHÞ þ…: ð1Þ

Here rH is a horizon radius, fðrHÞ ¼ 0; TH is the surface
gravity temperature with respect to the timelike Killing
vector ∂t, TH ¼ jf0ðrHÞj=4π; X is a function; ρc is a short-
distance cutoff; and … denotes terms that are subleading
for small ρc. The key point is that the single-particle density
of near-horizon states is independent of energy ω. This
sector of the theory behaves like a 1þ 1-dimensional
conformal field theory (CFT) of NðrHρcÞD−2 free bosons.

The factor ðrHρcÞD−2 counts angular modes. In the Hartle-
Hawking (HH) or Bunch-Davies (BD) state, these modes

are thermally excited at a temperature TH and make a large
contribution to the thermal entropy of order THgðTHÞ∼
A=ρD−2

c . However, they are also strongly coupled to gravity,
in the sense that one cannot excite very many of them
away from the HH/BD state at once before gravitational
backreaction becomes large [12]. One is left with the
unsatisfactory conclusion that there is a large collection
of near-horizon modes, some but not all of which are
perhaps well modeled by effective quantum field theory on
a rigid background.
In any case, we cannot really say that just because low-

entropy bulk excitations lower the cosmological horizon
area, the state describing empty de Sitter in the relevant
microscopic theory of quantum gravity is of maximum
entropy. The near-horizon degrees of freedom do not have
to be in this state.
Suppose, for example, that we could neglect the back-

reaction argument of [12] and take effective quantum field
theory (QFT) seriously up to a cutoff scale of order the
Planck length, ρc ∼ lp. At inverse temperature β, because
the density of states is independent of energy, the near-
horizon states contribute to the partition function

ΔðβFÞ ∝
Z

log ð1 − e−βωÞdω; ð2Þ

which on dimensional grounds scales as 1=β. (β must be
kept independent of TH in the density of states until we are
done taking β derivatives.) So the thermal entropy

S ¼ β2∂F=∂β ð3Þ

and the heat capacity

C ¼ β2∂2ð−βFÞ=∂β2 ð4Þ

are equal to each other and proportional to A=GN . In a
thermal state,

C ¼ hðK − hKiÞ2i; ð5Þ

so the large heat capacity indicates that the state is far from
the maximally uncertain density matrix.
Furthermore, since hKi ¼ S, C ¼ S implies

hðK − hKiÞ2 ¼ ahKi; a ¼ 1: ð6Þ

The conclusion that a ¼ 1 actually holds whenever the
near-horizon physics is approximately that of a 1þ 1-
dimensional CFT with a cutoff, which is the case for free
massless scalars and spin-1=2 fields, among others.C and S
are both sensitive to the UV cutoff, but the ratio, a, is finite.
In general the value of a may depend on the details of
the QFT.
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One way of understanding the apparent 1þ 1 dimen-
sional nature of the near-horizon density of states is the
observation of [13] and [14] that the near-horizon geometry
of dS space, similarly to nonextremal causal diamonds, has
an approximate Virasoro symmetry. Any regularization
procedure that respects this symmetry will appear to have
the density of states of a 1þ 1 CFT. Of course, this might
be misleading since any higher dimensional field theory
will produce an infinite number of two-dimensional free
fields. This of course reflects the fact that the entanglement
entropy has a power law UV divergence, with a power that
depends on the dimension of space-time. Our point how-
ever is that the same divergence shows up in both the
entanglement entropy and the capacity of entanglement,
and that the ratio is finite, with a ¼ 1.
An alternative regulator for the entanglement entropy of

QFT has been proposed by [15]. This elegant method
preserves the entire conformal group of the higher dimen-
sional field theory, but explicitly breaks the near-horizon
Virasoro symmetry. It converts the UV divergence of the
entanglement entropy into the volume divergence of the
thermal entropy on a hyperbolic space. Again the ratio
between the entanglement entropy and the capacity of
entanglement is finite, but now it depends on the particular
higher dimensional CFTone is studying. Curiously,whenever
that CFT has an Einstein-Hilbert dual in the AdS/CFT
correspondence, the Casini-Huerta-Myers (CHM) procedure
predicts a ¼ 1, confirming the calculation of [16] for boun-
dary anchoredRyu-Takayanagi diamonds in quantumgravity.

III. EUCLIDEAN GRAVITY
AND THE REPLICA TRICK

The contribution to the entropy from near-horizon QFT
modes, SQFT, has a gravitational analog A=4GN . The
leading UV-cutoff sensitivity of SQFT generally coincides
with the perturbative renormalization ofGN , so that the sum
of the two contributions, at leading order, is just A=4GN
with the renormalized Newton constant. We would like to
know if a similar picture holds for the modular fluctuation/
heat capacity, for which we need a computation of this
quantity in pure Euclidean gravity.
One approach is to use replica methods. Let the micro-

scopic density matrix of empty dS space be ρ ¼ e−K, with
TrðρÞ ¼ 1, and define ρn ¼ e−nK=Trðe−nKÞ. Then

Sn ≡ −Trðρn log ρnÞ: ð7Þ

The modular fluctuation can be shown to satisfy

hðK − hKiÞ2i ¼ −S01: ð8Þ

The angle brackets on the left-hand side denote expectation
values with respect to ρ.
Most applications of replica methods to quantum gravity

begin with a boundary in Euclidean signature. First one

constructs n copies of the boundary, and the boundary data,
glued together in a chain. Then, for each n, one looks for
smooth interior solutions to the semiclassical gravitational
field equations [17]. The solution MðnÞ of the lowest
action IðnÞ provides an approximation to the n-fold
partition function of the microscopic quantum gravity
theory, − logZðnÞ ≈ IðnÞ. This is because the boundary
is where a nongravitational holographic dual theory lives,
and replicating the boundary geometry n times corresponds
to constructing ZðnÞ in the dual theory [17].
It is not immediately obvious how to apply similar

techniques to learn about quantum gravity “in de Sitter
space.” First, the Euclidean continuation of de Sitter is a
sphere, which has no boundary. Second, if a holographic
dual description lives anywhere, it probably lives at the
horizon of the static patch, and the Euclidean continuation
of a null surface is of codimension two. One might attempt
to place some boundary data on a “stretched horizon” a
small fixed distance above the horizon. There is a problem
with the most naïve application of this idea, however,
which will be discussed below.
Nonetheless it is widely believed that there is some

microscopic theory of quantum gravity with a density
matrix ρ, for which various properties of ρ—like the von
Neumann entropy—are computed in some approximation
by the Euclidean de Sitter saddle point of the gravitational
path integral. One would like to know whether other
suitable saddle points compute ρn. Here we make a
conjecture based on the SdS geometries.
The SdS metric in D space-time dimensions is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2; ð9Þ

fðrÞ ¼ 1 −
�
rs
r

�
D−3

−
r2

L2
: ð10Þ

fðrÞ has two positive zeros, and for rs ≪ L one is

approximately at rb ≈ rs and the other at rc ≈ L − rD−3
s

2LD−4.
As a consequence, the effect of inserting a localized mass
distribution near the geodesic, whether a black hole or a
“star,” is to shrink the area of the cosmological horizon.
Thus, according to the Bekenstein-Hawking-Gibbons law,
the entropy of empty dS space is also reduced. This was
interpreted [1,2,18] as an explanation of the Gibbons-
Hawking temperature of dS space as a purely entropic
effect, arising from a constraint on the holographic degrees
of freedom on the horizon. Semiclassically, the constraint
takes the form of a projection onto fields of fixed quasilocal
energy [19–21]. This is one bit of an enormous amount of
evidence that most of the quantum states of dS space are
localized near the horizon, relatively inaccessible to exper-
imental probes, and have static energies of order 1=L, as
indicated by the redshift in static coordinates.
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As described above, the conventional idea of the gravi-
tational replica trick in anti–de Sitter (AdS) space is to find
a Euclidean manifold, which is a smooth solution of
Einstein’s equations and has periodicity around a thermal
cycle on the boundary that is n times as large as the original
manifold on which the boundary field theory lives. Our
proposal for dS space is motivated by the fact that the
Euclidean SdS manifold changes the periodicity of the
Euclidean static time coordinate as it changes the entropy.
We thus define the replica index as the ratio of cosmo-
logical horizon surface gravity temperatures (for rs ≪ L),

n≡ 1þD − 2

2

�
rs
L

�
D−3

: ð11Þ

The entropy of the cosmological horizon of SdS is

S ¼ SdS

�
1 −

D − 2

2

�
rs
L

�
D−3

�
: ð12Þ

Thus, with the identification of rs=L and the replica index
in Eq. (11), and identifying the SdS entropy in Eq. (12) with
Sn in Eq. (7), we find

Sn ¼ SdS½1 − ðn − 1Þ�;
− S01 ¼ SdS: ð13Þ

Thus we find a ¼ 1, independent of D. This extends the
semiclassical approach of [16] for RT diamonds in AdS to
dS, and is in agreement with the results of [22] (arrived at
by other means, extrapolating the ideas of [13,14]). Note
that we could have multiplied our definition of n by any
function hðrs=LÞ such that hð1Þ ¼ 1 and h0ð1Þ ¼ 0 without
changing the result. This is in keeping with expectations
from AdS/CFT that higher order fluctuations do not
necessarily take on a universal form.
Let us address some technical points. The Euclidean SdS

manifold is singular on the continued black hole horizon. If
we add any sort of matter fields that produce a spherically
symmetric “star” solution, the singularity disappears. We
can deal with it simply by cutting out an artificial boundary
around the singularity and imposing Brown-York micro-
canonical boundary conditions [23–25], so that nothing
depends on the details of what is going on near the
geodesic, and the on shell action simply computes the
cosmological horizon entropy. Of course, since we take
rs → 0 at the end of the calculation, this is not a serious
issue in any event.
A more subtle point is the normalization of the Killing

vector ∂t in a uniform, rs independent way. The traditional
way to do this [26] extrapolates the static coordinates to an
asymptotic region far outside the static patch, where it is
“naturally” normalized to 1. We prefer to think about the
L → ∞ limit, where rs is naturally defined in terms of the
asymptotic geometry, and the derivative of the entropy with

respect to rs has a well-defined normalization. Another
point of view is to regard the mass parameter M as
distinguished by the fact that it is the asymptotic energy
in the L → ∞ limit, and the surface gravity temperature of
the cosmological horizon with the usual normalization is
distinguished by the SdS first law dSc=dM ¼ −1=Tc.
Let us briefly explore other possible replica tricks using

the SdS geometry. We could introduce a boundary at some
radius r0 and try to define

n¼? βSdS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSdSðr0Þ

p
βdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fdSðr0Þ

p ; ð14Þ

where the β’s are the inverse cosmological horizon temper-
atures. This is essentially taking the ratio of the local
(Tolman) temperatures of the artificial boundary at r0, as
one might imagine one should do if “the quantum system
was sitting at this boundary.” It is easy to see that this
proposal is not sensible, because the putative modular
fluctuation computed in this manner is negative for
all 0 < r0 < L.
Similarly, motivated by the idea that “the hologram lives

on the stretched horizon,” we might try to perform a replica
trick around a circle a Planck distance from the horizon,

n¼? βSdS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fSdSðlpÞ

p
βdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fdSðlpÞ

p : ð15Þ

This is similar to the previous case, except we hold
the stretched horizon at a fixed proper radius as we vary
the replica index. Because the local temperature close to the
horizon is nearly infinite, the heat capacity is small;
however, it is still negative. One finds −S01 ≈ −2πl2

p,
and again the hypothesized map from rs to the replica
index is inconsistent.
We are encountering the familiar fact that if we think of

any of these temperatures in the conventional way, then
lowering the temperature increases the entropy, so that the
specific heat is negative. The interpretation of energy in
terms of constraints on a large number of degrees of
freedom in a high entropy system explains this apparent
paradox.2 The relevant constraint fixes the expectation
value of the energy. With a fixed hEi constraint, the
maximum entropy density matrix is the canonical ensemble
at finite temperature T ¼ dS=dhEi. Our identification of
the replica index corresponds to the ansatz that the energy
of the microscopic theory describing the horizon is propor-
tional to −M. In this way the constraint varies the surface
gravity temperature, or equivalently the replica index.
Then − S01 is equivalent to TcdSc=dTc ¼ −dM=dTc, and

2Parenthetically, the same mechanism can also be applied to
the negative specific heat of black holes for non-negative c.c.
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the −M can be thought of as removing energy from the
cosmological horizon degrees of freedom.
We may define a generalized heat capacity which is the

sum of the heat capacity of quantum fields and the
contribution from gravity,

Cgen ¼ CQFT − S01: ð16Þ

When the value of a obtained in effective field theory
matches the value of a obtained from semiclassical gravity,
the generalized heat capacity so defined is proportional to
the generalized entropy, Cgen ¼ aSgen. Thus it shares the
properties of the generalized entropy; for example, in many
cases the cutoff dependence of the quantum field contri-
bution may be absorbed into the renormalized Newton
constant. This can be anticipated from the renormalization
of the Euclidean gravitational effective action on smooth
manifolds.

IV. COMMENTS ON OPERATOR ALGEBRAS

The construction of type II crossed product algebras
from the type III1 algebras of local quantum field theory
and their modular automorphism groups has no a priori
connection to gravitational physics. To more easily appre-
ciate this fact, imagine that relativistic quantum field theory
had been discovered long before general relativity and no
one had proposed a connection between gravitation and the
geometry of space-time. Nonetheless, the Euclidean con-
tinuation of QFT would be well known, and physical
mathematicians would have appreciated the possibility
and utility of putting QFTs on a variety of Riemannian
manifolds. One can put a QFTon Euclidean Schwarzschild
and observe that the Lorentzian continuation leads to the
Hartle-Hawking state on the Kruskal manifold. Noting that
observables on the right causal patch have thermal expect-
ation values, as expected from the Euclidean periodicity,
naive field theorists will interpret this as a geometric
realization of the thermo-field double construction. More
sophisticated theorists will note that the algebra of the right
asymptotic region is type III1 and has no density matrices.
The crossed product construction can be viewed as a way of
justifying this purely field theoretic conundrum of an
apparent geometric picture of the Thermofield double
(TFD). It leads to a way of calculating thermal traces,
but not the total entropy, because the trace in type II
algebras has a multiplicative ambiguity. The same con-
struction is applicable to QFTon any Riemannian manifold
whose Lorentzian continuation has two causally discon-
nected diamonds that meet in a surface of codimension 2.
The point that the modular crossed product is not intrinsi-
cally gravitational, and that the crossed product should be
interpreted as a generic tool for regulating the entanglement
entropy in arbitrary QFTs, was emphasized in [27,28].
Indeed, when one tries to calculate the entropy in any of

these situations, one finds a divergence [29] coming from

short wavelength states with very small eigenvalues of the
would-bemodularHamiltonian of the type III algebra.Going
back to the Riemannian calculation, this divergence can be
canceled by local counterterms involving the background
geometry. The most important of these [30] is proportional
to

R ffiffiffi
g

p
R and associated boundary terms [31,32]. If one

interprets theEuclidean path integral as a free energy,with the
time periodicity interpreted as a temperature, thenvarying the
temperature to compute the entropy introduces singularities
on the fixed surface of the time translation generator. Oneway
to regulate it is to introduce a new boundary near that surface
with an associated Gibbons-Hawking-York (GHY) term.
Thus this counterterm tells us that both the entropy and the
specific heat are cutoff dependent and proportional to each
other. As reviewed above, direct Hilbert space calculations
lead to the same conclusion.
In nongravitational QFT, the crossed product construc-

tion leads to type II∞ algebras. In general [33] the entropies
assigned to the naive density matrix induced on a causal
diamond by a global field theory state will have infinite
entropy in this algebra, but regulated, finite entropy, density
matrices can be defined, which allow one to make rigorous
constructions of relative entropies and prove a number of
folk theorems in the QFT literature. The finite entropies
have a finite ambiguity stemming from the multiplicative
ambiguity of the trace in type II algebras. Using the
regulator in [33] the entropy of QFT density matrices
for local regions diverges like ln ϵ, while the modular
fluctuation diverges like ϵ−2, so the ratio we have denoted
by “a” diverges. This disagrees with all standard cutoff
field theory calculations and with the CHM/Perlmutter
prescription for CFT. We are not sure whether this is
generic or a feature of the particular regularization scheme
introduced in [33], or whether one should use the ambiguity
in the entropy to add a term of order ϵ−2 to it.
The reinterpretation of the cross-product construction as a

partial solution to the gravitational constraint equations in the
bulk [34–38] does not change any of these facts about the
relation of cross products to renormalization of Euclidean
path integrals for nongravitational QFT in background
geometries.3 The observations of [40] show that within the
AdS/CFT correspondence, the TFD interpretation of theAdS
black hole geometries is rigorously correct. In that context,
for large AdSd black holes we know that the modular
fluctuation is proportional to the expectation value of the
entropy, with a ¼ d − 2. In [22] the authors explained, using
the tensor network model of AdS, how this was consistent
with a ¼ 1 on scales small compared to the AdS radius.
We conclude that the crossed product construction

applied to QFT in curved space-time eliminates the largest

3We also note that it is important to distinguish the role of
the crossed product in systems with genuine symmetries, e.g.,
in the presence of boundaries, from its role in enforcing
constraints [39].
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contribution to the entropy and on geometries that have a
naive TFD interpretation, but does not regulate the modular
fluctuation. It does not lead to an automatic prescription for
calculating gravitational entropies and modular fluctua-
tions, and any such prescription is put in by hand based on
other assumptions. In particular, it appears that [35] made
essentially the same assumptions about the density matrix
of dS space as [1,2,18], except that the latter authors made
the stronger assumption that the full Hilbert space has
finite dimension. The QFT and gravitational heat capacity
arguments described in the current paper add to the
evidence [8,16,22] that the maximal entropy assumption
about the form of the density matrix may have been too
strong.
There is an enormous amount of evidence that black

holes in Minkowski space are finite entropy metastable
equilibria with extremely long lifetimes and universal
properties. The energy levels of these systems cannot have
finer spacing than their inverse lifetime, which is a power
law in 1=S. Yet in order to account for the entropy, the level
spacing of the modular Hamiltonian must be of order
e−S ≪ 1=S. The specific heat is obviously not the modular
fluctuation in this case, but it is reasonable to conjecture
that there is some universal formula for it. The Carlip-
Solodukhin ansatz provides such a universal formula.
Thus, within the crossed product construction, as in the

earlier conjecture [1,2] of a finite dimensional Hilbert space
for quantum theory in dS space, one must search for other
principles to determine the density matrix of empty dS
space. We have shown in [8] that one can retain the idea of a
purely entropic definition of static energy for objects near
the geodesic with essentially any finite value for the
modular fluctuation coefficient a. The Carlip-Solodukhin
ansatz a ¼ 1 has a clear but conjectural derivation from the
Einstein equations near a generic causal diamond boundary,
and we have provided a derivation of it from a version of
the replica trick in this paper. Quantum field theory in
curved space-time gives regulator dependent answers for a.
All are independent of the state of the QFT. An elegant
form of regulator for CFTs gives model dependent answers,
which all converge [4] to a ¼ 1 for models with Einstein-
Hilbert AdS duals, in agreement with [16]. Pauli-Villars
regulators for free fields of low spin always reduce to 1þ 1

dimensional CFTs near the boundary, again giving a ¼ 1.
No field theory calculation gives a ¼ 0.
We conclude these comments with an observation about

the crossed product as an approximation to quantum
gravity in finite space-time regions.
Much of the recent work on crossed product construc-

tions began [34] as a method of finding systematic 1=N
corrections to the N ¼ ∞ description of “finite regions of
AdS space-time” in terms of a type III1 algebra of local
quantum fields [41]. As such, one would expect the crossed
product to incorporate some of the well-known intuitive
restrictions that gravity imposes on local quantum field

theory in finite regions. There is, as far as we can see, a
fundamental problem with that idea. The standard descrip-
tion of the crossed product algebra is that it consists of all
linear combinations of elements of the form

fiðqÞeipHaie−ipH; ð17Þ

where H is the generator of the outer automorphism group
of the type III algebra, ai is an element of the algebra, and
fiðqÞ is a bounded function that maps square integrable
functions of q into themselves. p is the canonical conjugate
of q. It is clear that the type III algebra is a proper subspace
of the crossed product algebra. The type II1 algebra that has
been suggested for dS space simply projects this algebra
onto the positive spectrum of q and still contains the QFT
algebra as a proper subspace. It is not a subalgebra because
the projection operator distorts the operator product.
It has long been argued that the gravitational back-

reaction produced by the expectation value of the stress
tensor

h0ja†TmnðxÞaj0i; ð18Þ

for most of the operators a in the algebra of a finite region
in Minkowski space, would distort that geometry and create
large black holes. Such states, however, can be excised
from the theory without causing any conflict with experi-
ment [42–44]. This suggests that the correct quantum
gravity algebra of a finite space-time region is smaller,
rather than larger, than the type III algebra assigned to the
region by QFT.

V. DISCUSSION

We have argued that a reasonable interpretation of
semiclassical evidence is that empty de Sitter space is
described by a finite dimensional quantum theory in a state
with a large but not maximal entropy. Deviations from
maximal uncertainty are associated with a nonzero modular
fluctuation, or a heat capacity in thermal states, which in
cutoff quantum field theory is of the same order as the
entropy. In semiclassical gravity a natural conjecture for the
relevant heat capacity provides the same result.
Of course, this is only an observation, not a proof. Even

if each term in the generalized heat capacity accurately
computes an energy fluctuation in the corresponding
subsystem, the sum may not share this interpretation for
the whole system. An elementary example is an isolated
box of gas in the microcanonical state, divided into two
subsystems by a heat-conducting membrane.
The apparent tension with crossed product proposals is

not fully resolved. Of course, it may be that they are simply
computing approximations to different quantities.
Let us conclude by describing connections to related

ideas in holography. The covariant entropy bound (CEB)
for causal diamonds suggests a conjecture that physics
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inside diamonds can be described by models with finite
dimensional Hilbert spaces obeying an area law [45]. A
“natural” state is the maximal entropy density matrix on
that Hilbert space, and other guiding principles are not
immediately apparent in the absence of space-time iso-
metries. Indeed, various prior works by Banks and Fischler
viewed the maximal entropy conjecture for de Sitter space
as a special case of this reasoning for general causal
diamonds. However, such a principle had already been
found [13,14] although its validity for general causal
diamonds was not recognized until much later [22].
According to this principle, the modular Hamiltonian of
a causal diamond is the Virasoro generator L0 of a cutoff
1þ 1 dimensional CFT living on an interval. The CFT has
a central charge proportional to the area of the diamond’s
holographic screen, and Cardy’s formula reproduces the
Bekenstein-Hawking area law for entropy of black holes
and causal diamonds. Reference [22] interpreted [13,14] as
a principle about the microscopic theory and argued that it
implies a ¼ 1. The present work establishes a level of
semiclassical compatibility.
The Carlip-Solodukhin ansatz also arose in an entirely

different context [46], in an attempt to model the dynamics
of an Friedmann-Robertson-Walker (FRW) cosmology that
saturated the CEB at all times. This is a flat FRW model
with equation of state that is a mixture of p ¼ �ρ. It
asymptotes to dS space and predicts that the dS modular
Hamiltonian is not a c number. In this context, the fact that

the modular fluctuations are proportional to the entropy is
important for explaining the cosmic microwave back-
ground fluctuations [47,48].
An additional choice needs to be made in order to

extend the semiclassical heat capacity of de Sitter space
studied here to smaller causal diamonds. This is because
the first law of causal diamonds contains a term propor-
tional to kdV [49], where V is a spatial volume and k is a
codimension-2 extrinsic curvature trace. k vanishes for
maximal diamonds like the static patch of de Sitter, but
not for more general diamonds. When we compute
TdS=dT for de Sitter, we are effectively defining the
diamond for different T by fixing the c.c. and fixing
k ¼ 0. Thus a natural extension to nonmaximal diamonds
seems to be holding k (the Brown-York surface energy
density) fixed but nonzero. This question will be explored
elsewhere.
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