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We apply an algebraic double copy construction of gravity from gauge theory to three-dimensional (3D)
Chern-Simons theory. The kinematic algebraK is the 3D de Rham complex of forms equipped, for a choice
of metric, with a graded Lie algebra that is equivalent to the Schouten-Nijenhuis bracket on polyvector fields.
The double copied gravity is defined on a subspace ofK ⊗ K̄ and yields a topological double field theory for
a generalized metric perturbation and two 2-forms. This local and gauge invariant theory is non-Lagrangian
but can be rendered Lagrangian by abandoning locality. Upon fixing a gauge this reduces to the double copy
of Chern-Simons theory previously proposed by Ben-Shahar and Johansson. Furthermore, using complex
coordinates inC3 this theory is related to six-dimensional (6D)Kodaira-Spencer gravity in that truncating the
two 2-forms and one equation yields the Kodaira-Spencer equations on a 3D real slice of C3. The full 6D
Kodaira-Spencer theory can instead be obtained as a consistent truncation of a chiral double copy.
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I. INTRODUCTION

The double copy denotes modern amplitude techniques
that relate the scattering amplitudes of gauge theory to those
of gravity. The prime example is the double copy of pure
Yang-Mills theory which yields at least at tree-level Einstein
gravity coupled to a B-field (2-form) and a scalar (dilaton), a
theory also known as “N ¼ 0 supergravity” [1,2]. The
double copy was originally defined at the level of scattering
amplitudes and hence is a priori only meaningful for on-
shell and gauge-fixed fields, but there are several reasons
why one would like to go beyond this. For instance, one
would like to double copy classical solutions of Yang-Mills
theory to obtain classical gravity solutions, see [3–9], or one
would like to have better control over double copy at loop
level [10–17].
In recent years there has been significant progress in this

direction using the framework of homotopy algebras, based
on the general dictionary between (classical) field theories
and homotopy Lie or L∞ algebras [18–24]. These are
generalizations of differential graded Lie algebras, i.e.,
superalgebras equipped with a nilpotent operator, in which
the Jacobi identity may only hold “up to homotopy”
controlled by higher brackets. L∞ algebras naturally

encode the data of a gauge field theory, including Yang-
Mills theory and gravity, the latter written perturbatively as
an expansion about a background metric.
Homotopy algebras are a powerful framework for

double copy since, among other reasons, they allow
one to give meaning to the notion of “stripping off” the
color factors associated with the gauge group. Specifically,
the L∞ algebra of Yang-Mills theory factorizes into the
tensor product XYM ¼ K ⊗ g, where g is the Lie algebra
of the gauge group and K the “kinematic” algebra, which
is a homotopy generalization of a differential graded
commutative associative algebra or C∞ algebra [20].
Importantly for double copy, the kinematic space K
also carries hidden structures that define what has been
termed a BV□

∞ algebra [25–27], a generalization of a
Batalin-Vilkovisky algebra [28,29], where □ denotes the
wave operator. Upon taking the tensor product of two
copies K and K̄ of the kinematic BV□

∞ algebra, one can
construct the L∞ algebra of N ¼ 0 supergravity, formu-
lated as a double field theory [30–32], on a suitable
subspace of K ⊗ K̄. More precisely, so far this has been
established to the order corresponding to quartic couplings
in an action [27,33,34].
In this paper we apply the general algebraic double copy

construction of [27] to the toy model of three-dimensional
(3D) Chern-Simons theory. This theory is topological, and
hence all of its scattering amplitudes vanish, but it is still a
fruitful toy model for color-kinematics duality (a necessary
prerequisite for the double copy), which can be studied at
the level of off-shell correlation functions [35]. Here the
“kinematic Lie algebra” underlying color-kinematics dual-
ity has been identified recently and just lives on the familiar
de Rham complex of differential forms in 3D. This algebra
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is part of a BV□ algebra, which is “strict,” meaning that no
higher maps actually appear. One can thus straightforwardly
apply the double copy construction of [27] to 3D Chern-
Simons theory and obtain a double copied 3D gravity theory
in a formulation that is by construction local and gauge
invariant. Here we spell out this 3D gravity theory. To the
best of our knowledge this is the first complete first-principle
double copy construction of a diffeomorphism invariant
gravity theory fromagauge theory.While the double copyof
Chern-Simons theory has been explored previously by Ben-
Shahar and Johansson, their gravity action is gauge fixed and
nonlocal [35], see also [36,37]. The double copied gravity
theory constructed in this paper is gauge invariant and local
but non-Lagrangian. One can write down a gauge invariant
action, however, upon partial gauge fixing and abandoning
locality, which then reduces upon further gauge fixing and
truncation to the action given in [35].
Concretely, the 3D gravity theory obtained as the double

copy of 3D Chern-Simons theory can be written in a form
that exhibits a formal six-dimensional (6D) covariance as
follows. The gauge field is a 6D 2-form Ψ ¼ 1

2
ΨMNθ

MθN ,
where we view all differential forms as functions of even
coordinates xM ¼ ðxμ; x̄μ̄Þ and odd coordinates θM ≃ dxM.
The field equations read

dΨþ 1

2
½Ψ;Ψ� ¼ 0; ð1:1Þ

which are invariant under gauge transformations with 1-
form parameters Λ ¼ ΛMθ

M,

δΨ ¼ dΛþ ½Ψ;Λ�; ð1:2Þ

where the graded symmetric bracket on general 6D forms is
given by

½F1;F2�≔ηMN ∂F1

∂θM
∂F2

∂xN
�ð1↔2Þ; ηMN ¼

�
δμν 0

0 −δμ̄ν̄

�
;

ð1:3Þ

with the Oð3; 3Þ invariant metric ηMN built from two
copies of a fiducial 3D metric indicated here by Kronecker
δ’s. More precisely, this theory is only gauge invariant and
hence consistent when the fields are subject to the “strong
constraint” making them effectively 3D. The reason is
that, while the bracket (1.3) defines a genuine graded Lie
algebra in 6D (that written in terms of polyvector fields is
known as the Schouten-Nijenhuis bracket), the 6D de
Rham differential d ¼ θM∂M does not act via the Leibniz
rule on the bracket. The failure of d to act via the Leibniz
rule involves terms of the structural form ηMN

∂MF1∂NF2

and is due to Δ ≔ ηMN
∂M∂N ¼ □ −□ being a second-

order differential operator. This failure is cured by
imposing the so-called strong constraint Δ ¼ 0 in the

sense of double field theory [30–32], i.e., Δ annihilates all
fields and all their products. An obvious solution to this
constraint is to identify x ¼ x̄. (One may also attempt to
define a “weakly constrained” version following the recent
progress in [38,39], but we will not do so here.)
Decomposing the 2-form ΨMN into 3D objects one

obtains eμν̄, the generalized metric fluctuation of double
field theory [32], and two 2-forms. While to the best of our
knowledge this (topological) 3D gravity model has not been
explored independently, we will point out a curious relation
to Kodaira-Spencer gravity, a topological gravity theory in
6D with the complex structure deformation of a Hermitian
manifold as fundamental field [40,41]. The relation of the
field equations (1.1) to the Kodaira-Spencer equations is as
follows: Truncating the two 2-forms, which is a consistent
truncation in the technical sense that all solutions of the
truncated theory uplift to solutions of the full theory, one is
left with two equations for eμν̄, reflecting the fact that the
theory is non-Lagrangian. Picking one of the two equations
only (which of course is no longer a consistent truncation)
and rewriting it in terms of complex coordinates of C3 one
obtains the Kodaira-Spencer equations on a 3D real slice of
C3. Once we restrict to one of the equations one may relax
the strong constraint as the Kodaira-Spencer theory is
consistent in 6D thanks to its invariance under only
“holomorphic” 3D diffeomorphisms. We will show that
the full 6D Kodaira-Spencer gravity can instead be obtained
as a consistent truncation of a certain “chiral” double copy.
The remainder of this paper is organized as follows. In

Sec. II we review the kinematic BV□ algebra of Chern-
Simons theory. We then work out the double copied gravity
theory and give the double field theory formulation with 6D
covariance, which is diffeomorphism invariant and local
but non-Lagrangian. In Sec. III we show that a gauge
invariant action can be written at the cost of abandoning
locality. In Sec. IV we rewrite the theory in terms of
complex coordinates of C3 and describe the relation to
Kodaira-Spencer gravity, which is a consistent truncation of
a chiral double copy. We close with a summary and outlook
in Sec. V.

II. DOUBLE COPY OF CHERN-SIMONS THEORY

A. Kinematic algebra of Chern-Simons theory

We begin by recalling the kinematic algebra of Chern-
Simons theory. The kinematic algebra is defined on the de
Rham complex of an arbitrary 3-manifold. This chain
complex is the graded vector space K ¼ ⨁3

p¼0Kp, with
Kp the space of p-forms and the differential given by the de
Rham differential d satisfying d2 ¼ 0,

ð2:1Þ
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Here we also indicated the field theory interpretations in the
second line (that will emerge after taking the tensor product
with the color Lie algebra g). Specifically, the gauge
parameter λ is a 0-form, the field A is a 1-form, the
“equation of motion” is a 2-form, and the “Noether
identity” N is a 3-form.
This chain complex carries a graded commutative and

associative algebra structure, given by the familiar wedge
product of differential forms. We use the standard
normalization

ωp ¼ 1

p!
ωμ1���μpðxÞθμ1 � � � θμp ; ð2:2Þ

where we identified the basis 1-forms with odd variables
θμ of degree þ1: dxμ ≃ θμ. Thus, we can think of
differential forms as functions ωðx; θÞ, ηðx; θÞ, etc., of
even coordinates xμ and odd coordinates θμ. The wedge
product is then encoded in the ordinary pointwise product
of functions, which is graded commutative and associa-
tive. Specifically, this defines a differential graded com-
mutative associative algebra (DGCA) (the strict case of a
C∞ algebra) with differential m1 of degree þ1 and a
product m2 of degree 0, given by

m1 ≡ d≡ θμ∂μ; m2ðω; ηÞ≡ ω · η: ð2:3Þ

This form makes it clear that m1 ¼ d is a first-order
differential operator and hence obeys the Leibniz rule
with respect to m2.
While the above kinematic DGCA exists for any

topological 3-manifold, the full kinematic algebra, denoted
BV□, requires more structure, as given by a choice of
metric. Given such a choice of metric, which for simplicity
we take to be flat and Euclidean, we have the Hodge star
operation defined by

⋆ωp ¼
1

p!ð3−pÞ!ϵμ1���μ3−pν1���νpω
ν1���νpθμ1 � � �θμ3−p ; ð2:4Þ

satisfying ⋆2 ¼ 1, where the metric is used to raise and
lower indices. Furthermore, we have the adjoint or diver-
gence operator d† acting on a p-form as

d† ≔ ð−1Þpþ1⋆d⋆≡ ∂
2

∂xμ∂θμ
; ð2:5Þ

where again the metric is used to lower the index on
xμ. Note that d† defines a second differential, satisfying
ðd†Þ2 ¼ 0, that is of opposite degree to d. Moreover, d and
d† satisfy the familiar relation

dd† þ d†d ¼ □≡ ∂
μ
∂μ: ð2:6Þ

Notice that the second form of d† in (2.5) makes it clear that
it is a second-order operator on the associative product of

graded functions (also known as the wedge product
of forms).
In line with the general literature we also denote b≡ d†,

so that (2.5) reads

b ¼ ∂
μDμ; where Dμ ≔

∂

∂θμ
; ð2:7Þ

and (2.6) becomes the graded commutator relation
½m1; b� ¼ □. In addition to the graded commutative asso-
ciative product m2 there is a derived (kinematic) Lie
bracket, defined by the “failure of b to act as a derivation
on m2.” This so-called antibracket can be written as the
graded commutator b2 ≔ ½b;m2�, for which a brief com-
putation with (2.7) gives

b2ðω1;ω2Þ ¼ Dμω1∂
μω2 þ ð−1Þω1ω2Dμω2∂

μω1: ð2:8Þ

This is a graded Lie bracket, which generalizes the familiar
Poisson bracket to the graded setting and is equivalent to
the Schouten-Nijenhuis bracket on polyvector fields [42]
(see also [26] and Sec. II of [27]). Specifically, given two
polyvector fields Π1 ¼ 1

p!Π
μ1…μp
1 ∂μ1 ∧ … ∧ ∂μp and Π2 ¼

1
q!Π

μ1…μq
2 ∂μ1 ∧ … ∧ ∂μq the Schouten-Nijenhuis bracket

acts as

½Π1;Π2�SN ¼ ∇ · ðΠ1 ∧ Π2Þ −∇ · Π1 ∧ Π2

− ð−1ÞpΠ1 ∧ ∇ · Π2; ð2:9Þ

where ∇· is the covariant divergence of polyvector fields.
Since we are working on flat space, the covariant diver-
gence is simply

ð∇ · ΠÞμ1…μp−1 ¼ ∂νΠνμ1…μp−1 : ð2:10Þ

One can straightforwardly identify polyvector fields and
differential forms, for which the Schouten-Nijenhuis
bracket and the bracket b2 in (2.8) are equivalent.
There is also a Poisson compatibility relation between b2

and m2. While b2 is a graded Lie bracket, ðm1; b2Þ fail to
define a differential graded Lie algebra (DGLA or a strict
L∞ algebra) due to the box obstruction for the Leibniz
relation following from ½m1; b� ¼ □,

½m1; b2� ¼ ½□; m2�: ð2:11Þ

In contrast, ðb; b2Þ define a DGLA since b acts via the
Leibniz rule on b2, as one may quickly verify. With these
relations, the data ðm1; b; m2; b2Þ together define a BV□

algebra [25].
We finally point out that the integration of differential

forms equips K with an inner product. Specifically,
integration of top forms coincides with the integration of
graded functions,
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Z
ω3¼

Z
d3θd3xω3ðx;θÞ;

Z
d3θθμθνθρ≔ ϵμνρ; ð2:12Þ

which provides a degree −3 inner product on K,

hω; ηi ≔
Z

d3θd3xωðx; θÞηðx; θÞ≡
Z

ω ∧ η: ð2:13Þ

The pairing is nonvanishing only between K1 and K2 and
between K0 and K3. This encodes the usual pairings
between fields and equations and between gauge param-
eters and Noether identities. The operator ⋆ realizes the
inner product isomorphisms K1 ≃ K2 and K0 ≃ K3.

B. The double copy complex

We will now realize an exact double copy of Chern-
Simons theory. This is possible since the product m2

(pointwise product of graded functions) and the bracket
b2 (Schouten-Nijenhuis bracket) are part of a strict BV□

algebra on K. The double copy is then defined on K ⊗ K̄,
which carries a BVΔ algebra, where Δ ¼ □ −□ [39]. In
order to define a consistent field theory on the tensor

product K ⊗ K̄, we impose the strong constraint Δ ¼ 0 or
□ ¼ □ on all elements Ψ∈K ⊗ K̄ and their products,
which leads to a (strict) L∞ algebra underlying a non-
Lagrangian gravity theory.
First of all, the double copy space is given by

X ¼ K ⊗ K̄. All elements of X are ðp; qÞ-forms on the
doubled space R3 ×R3, in the sense that

Ωp;q ¼
1

p!q!
Ωμ1���μp ν̄1���ν̄qðx; x̄Þθμ1 � � �θμp θ̄ν̄1 � � � θ̄νq ; ð2:14Þ

with the degree in X given by total form degree:
jΩp;qj ¼ pþ q. Integration of top forms extends naturally
to the doubled space,

Z
Ω3;3¼

Z
d3θ̄d3θd3xd3x̄Ω3;3ðx; x̄;θ; θ̄Þ;Z

d3θ̄d3θθμθνθρθ̄μ̄θ̄ν̄θ̄ρ̄ ≔ ϵμνρϵμ̄ν̄ ρ̄: ð2:15Þ

The total space X decomposes as follows:

ð2:16Þ

where the differential is d ¼ dþ d̄. Above we denoted the
ðp; qÞ-form degrees by subscripts and aligned vertically
the elements according to the twist p − q. The integration
(2.15) induces a pairing on X given by

hΩ;Hi≔
Z

d3θ̄d3θd3xd3x̄Ωðx;x̄;θ; θ̄ÞHðx;x̄;θ; θ̄Þ; ð2:17Þ

which, for biforms Ωp;q and Hr;s, is nonvanishing only if
pþ r ¼ qþ s ¼ 3. We give a field theory interpretation to
the chain complex (2.16) by identifying fields as elements
of X2. This choice is due to the fact that the metric
fluctuation is expected to arise from the “tensor product
of two gauge fields.” More precisely, given the Chern-
Simons complex (2.1) the spin two fluctuation resides in
K1 ⊗ K̄1. Following this interpretation gauge parameters
are elements of X1 and field equations live in X3, while
elements in higher degree correspond to a cascade of
Noether and Noether-for-Noether identities. The degree
convention differs from the standard L∞ one (where fields
are in degree 0), but for differential forms the form degree is

more natural. From the explicit form (2.16) of the complex,
it is clear that the field theory described by the L∞ algebra
on X is non-Lagrangian, at least if one insists in identifying
fields in X2 and field equations in X3, for then there are
more field equations than fields.
Keeping this standard interpretation, we begin by work-

ing out the linear theory. The fields living in X2 can be
parametrized as

Ψ¼eþCþ C̄¼eμν̄θμθ̄ν̄−
1

2
Cμνθ

μθνþ1

2
C̄μ̄ ν̄θ̄

μ̄θ̄ν̄; ð2:18Þ

while the gauge parameters living in X1 can be written as

Λ ¼ λþ λ̄ ¼ −λμθμ þ λ̄μ̄θ̄
μ̄: ð2:19Þ

The linear gauge transformations δΨ ¼ dΛ then read

δe ¼ dλ̄þ d̄λ ⟶ δeμν̄ ¼ ∂μλ̄ν̄ þ ∂ν̄λμ; ð2:20Þ

δC ¼ dλ ⟶ δCμν ¼ ∂μλν − ∂νλμ; ð2:21Þ
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δC̄ ¼ d̄ λ̄ ⟶ δC̄μ̄ ν̄ ¼ ∂μ̄λ̄ν̄ − ∂ν̄λ̄μ̄: ð2:22Þ

The above gauge transformations are reducible, with
trivial parameters given by λtrivμ ¼ −∂μχ and λ̄trivμ̄ ¼ ∂μ̄χ.
The reducibility parameter χ is the single element of X0.
The gauge invariant field equations dΨ ¼ 0 split similarly
into (3, 0), (2, 1), (1, 2), and (0, 3) components,

dC ¼ 0 ⟶ ∂μCνρ þ ∂νCρμ þ ∂ρCμν ¼ 0;

deþ d̄C ¼ 0 ⟶ ∂μeνρ̄ − ∂νeμρ̄ − ∂ρ̄Cμν ¼ 0;

d̄eþ dC̄ ¼ 0 ⟶ ∂μ̄eρν̄ − ∂ν̄eρμ̄ − ∂ρC̄μ̄ ν̄ ¼ 0;

d̄ C̄ ¼ 0 ⟶ ∂μ̄C̄ν̄ ρ̄ þ ∂ν̄C̄ρ̄ μ̄ þ ∂ρ̄C̄μ̄ ν̄ ¼ 0: ð2:23Þ

In previous works on the double copy of Yang-Mills
theory [27,33], the gravity theory is defined on a subspace
of K ⊗ K̄. This subspace, besides imposing the “weak
constraint” □ ¼ □, is defined to be ker b−, where
b− ≔ b − b̄, and in the present context is given by

b−¼ d†− d̄†; ðb−Þ2¼ 0; db−þb−d¼□− □̄¼ 0:

ð2:24Þ

For now Eq. (2.23) are totally unconstrained. We have
neither imposed b− ¼ 0 nor□ − □̄ ¼ 0 on the elements of
X , but let us next explore what consequences these
constraints would have. For gauge parameters and fields,
the b− constraint would result in

∂ · λþ ∂̄ · λ̄ ¼ 0;

∂
ρeρμ̄ − ∂̄

ρ̄C̄ρ̄ μ̄ ¼ 0;

∂
ρ̄eμρ̄ − ∂

ρCρμ ¼ 0; ð2:25Þ

yielding a constrained gauge symmetry. Upon imposing
these constraints the field equations (2.23) imply as
integrability condition a gauge-fixed version of the double
field theory (DFT) equations in 3D. To see this we take the
divergence of (2.23), use (2.25) and the weak constraint
□ ¼ □̄ to obtain

□eμν̄ − ∂μ∂ · eν̄ − ∂̄ν̄∂̄ · eμ ¼ 0;

□Cμν − 2∂½μ∂ · C·ν� ¼ 0;

□C̄μ̄ ν̄ − 2∂̄½μ̄∂̄ · C̄·ν̄� ¼ 0: ð2:26Þ

Notice that ∂ · ∂ · e ¼ 0 is implied by taking a divergence of
the constraint (2.25). The eμν̄ equation in (2.26) coincides
with a gauge-fixed form of the DFT equation in 3D, where
the DFT dilaton is set to zero [30], which indeed leaves
residual gauge transformations with ∂ · λþ ∂ · λ̄ ¼ 0.
Let us remark that the b− constraint is not needed in

order to have a consistent double copy. Imposing b− ¼ 0 is

equivalent to a partial gauge fixing and subsequent solution
of some components of the unconstrained field equa-
tions (2.23). We thus conclude that the first-order equa-
tions (2.23) imply the standard equations for a topological
graviton and three 2-forms (C, C̄, and the B-field). We have
also performed a light cone analysis to show that the first-
order system has no propagating degrees of freedom.

C. Nonlinear double copy

We now turn to the nonlinear structure on the double
copied spaceK ⊗ K̄. The general double copy prescription
defines the differential d and bracket B2 by [27]

d ¼ m1 ⊗ 1þ 1 ⊗ m̄1;

B2 ¼ b2 ⊗ m̄2 −m2 ⊗ b̄2; ð2:27Þ

where the bar denotes the BV□ maps associated with
K̄. The space K ⊗ K̄ is also endowed with the b−

operator discussed above and an associative product
M2 ¼ m2 ⊗ m̄2. The latter allows one to rewrite the
bracket in (2.27) as B2 ¼ ½b−;M2�, showing that it also
has the form of a BVantibracket. Using the BV□ relations,
including ½m1; b2� ¼ ½□; m2�, it is straightforward to
verify that ðd; b−;M2; B2Þ define a BVΔ algebra, where
Δ ¼ □ −□. Since we need a genuine L∞ algebra to define
a field theory on K ⊗ K̄, we restrict to a subspace by
imposing the strong constraint that Δ ¼ 0 or □ ¼ □, for
instance, by identifying x coordinates with x̄ coordinates.
Imposing the strong constraint, the space K ⊗ K̄ equipped
with ðd; B2Þ defines a strict L∞ algebra (DGLA) that
describes a gravity theory.
In the following we give a more explicit form of the

DGLA given by ðd; B2Þ. To this end it is convenient to
introduce a covariant notation for the doubled space: We
define coordinates inR6 as xM ≔ ðxμ; x̄μ̄Þ, together with the
odd elements θM ¼ ðθμ; θ̄μ̄Þ. Arbitrary elements of X are
differential forms in R6, which we do not need to split into
3D components. The differential d is of course the de Rham
differential in 6D,

d ¼ θM∂M; ð2:28Þ

while the gauge parameter and the field are generic 1- and
2-forms, respectively,

Λ¼ΛMθ
M; Ψ¼ 1

2
ΨMNθ

MθN: ð2:29Þ

The free theory describes elements of the de Rham
cohomology in form degree 2,

dΨ¼ 0; δΨ¼dΛ: ð2:30Þ
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In order to describe the nonlinear theory, we shall introduce
the Oð3; 3Þ metric

ηMN ¼
�
δμν 0

0 −δμ̄ ν̄

�
; ð2:31Þ

and its inverse ηMN . In this section we will raise indices,
when convenient, with ηMN .
Denoting DM ¼ ∂

∂θM
, the b− operator is given by

b− ¼ ∂
MDM. The two-bracket of general forms F and G

(viewed as graded functions of xM and θM) is thus given by
the failure of ∂

MDM to act via the Leibniz rule on the
pointwise product (the 6D wedge product) and is hence the
6D version of the bracket (2.8),

B2ðF;GÞ ¼ ηMN
�
DMF∂NGþ ð−1ÞFGDMG∂NF

�
: ð2:32Þ

This defines the nonlinear field equations in the Maurer-
Cartan form,

E ≔ dΨþ 1

2
B2ðΨ;ΨÞ ¼ 0: ð2:33Þ

This equation is gauge covariant under

δΨ ¼ DΛ ≔ dΛþ B2ðΨ;ΛÞ; ð2:34Þ

using the strong constraint in the form ∂
MA∂MB ¼ 0 for

arbitrary A, B,

δΛE¼D2Λ¼B2ðΛ;EÞþ2∂MΨ∂MΛ¼B2ðΛ;EÞ: ð2:35Þ

Note that, while (2.32) defines a genuine graded Lie
bracket on unconstrained forms in 6D, the differential acts
only via the Leibniz rule after imposing the strong
constraint.

III. NONLOCAL LAGRANGIAN DOUBLE COPY

The nonlinear theory presented in the previous section is
non-Lagrangian, as the number of equations of motion
differs from the number of field components. In this section
we are first going to impose the b− constraint (which, as we
have discussed, entails a partial gauge fixing and solving
field equations). We will then show that it is possible to
construct a nonlocal inner product, and thus an action, if
one assumes that the R3 Laplacian □ can be inverted.

A. Imposing the b− constraint

In the 6D covariant formulation, elements of the chain
complex X are differential forms of arbitrary rank in R6

subject to the constraint □ −□ ¼ ηMN
∂M∂N ¼ 0, written

in terms of the Oð3; 3Þ invariant metric ηMN . We also recall
that the b− operator takes the form

b− ¼ d† − d̄† ¼ ηMN
∂M

∂

∂θN
≡ ∂

MDM; ð3:1Þ

which is the 6D divergence operator constructed from ηMN .
We now subject all elements of X to the b− constraint, i.e.,
we consider only forms F obeying ∂

MDMF ¼ 0, meaning
that they are transverse with respect to the Oð3; 3Þ metric.
For the gauge parameter 1-form Λ and the 2-form field Ψ
this results in the constraints (2.25) discussed previously.
On this subspace the bracket B2 reduces to

B2ðF;GÞ ¼ b−ðFGÞ; ∀ F;G∈ ker b−; ð3:2Þ
where FG is the pointwise product of graded functions
encoding the 6D wedge product of forms. For fields
Ψ∈ ker b− the Maurer-Cartan equation reduces to

E ¼ dΨþ 1

2
b−ðΨ2Þ; ð3:3Þ

and obeys b−E ¼ 0 thanks to (2.24). Similarly, the gauge
transformation with constrained parameter satisfying
b−Λ ¼ 0 takes the form δΨ ¼ dΛþ b−ðΨΛÞ.

B. Nonlocal c − operator and Lagrangian

In certain cases, such as in the local double copy of
Yang-Mills theory of [27,33], it is possible to define an
operator c− obeying ðc−Þ2 ¼ 0 and b−c− þ c−b− ¼ 1. The
chain complex X of the double copy then splits into
ker b− ⊕ imc−, using that b−c− and c−b− are projectors.
One can then define an inner product on ker b− ⊂ X , via a
c− insertion1 in the natural pairing inherited from K ⊗ K̄
[cf. (2.15)]. Given such an inner product, the known
examples suggest that the corresponding double copy
ought to be Lagrangian [33,37].
In the present case of Chern-Simons theory there seems

to be no local candidate for such a c− operator. However, if
one assumes □ to be invertible, a nonlocal c− can be
defined by c− ¼ m1

□
− m̄1

□
. Let us then assume that the 3D

Laplacian □ can be inverted and set

c− ≔
1

2

�
d
□

−
d̄

□

�
¼ 1

2□
ðd − d̄Þ; ð3:4Þ

where d and d̄ are the two copies of the 3D de Rham
differential, and we used the strong constraint□ ¼ □. This
operator indeed obeys

ðc−Þ2¼ 0; dc−þc−d¼ 0; b−c−þc−b−¼ 1; ð3:5Þ

which can be easily seen upon using d ¼ dþ d̄ and
b− ¼ d† − d̄†. The graded commutator ½b−; c−� ¼ 1

1This is analogous to the c−0 insertion used to define the inner
product in closed string field theory.
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ensures that any element in ker b− is b− exact, since for any
F obeying b−F ¼ 0 one has

F ¼ ðb−c− þ c−b−ÞF ¼ b−c−F: ð3:6Þ

We now use this to prove that the Maurer-Cartan equation
E ¼ 0 is equivalent to the nonlocal equation c−E ¼ 0. The
implication E ¼ 0 ⇒ c−E ¼ 0 is obvious. In the other
direction we apply b− to c−E,

c−E ¼ 0 ⇒ 0 ¼ b−c−E ¼ E; ð3:7Þ

where we used that E ¼ b−c−E, since E ∈ ker b−.
The next step is to show that c−E ¼ 0 is a Lagrangian

equation. To this end we recall the pairing (2.17), written
here in 6D form,

hF;Gi ¼
Z

d6xd6θFðx; θÞGðx; θÞ;

hF;Gi ¼ ð−1ÞFGhG;Fi; ð3:8Þ

which picks the (3, 3)-form component of FG, thanks
to (2.15). We claim that the equation c−E ¼ c−dΨþ
1
2
c−b−ðΨ2Þ ¼ 0 results from varying the action2

S ¼ 1

2
hΨ; c−dΨi þ 1

3!
hΨ;Ψ2i: ð3:9Þ

To prove this we need the integration by parts relations

hdF;Gi ¼ ð−1ÞFþ1hF;dGi;
hc−F;Gi ¼ ð−1ÞFþ1hF; c−Gi;
hb−F;Gi ¼ ð−1ÞFhF; b−Gi; ð3:10Þ

which are derived by expressing d and c− in terms of d and
d̄, together with b− ¼ ∂

M ∂

∂θM
. We now compute the

variation of (3.9),

δS¼ 1

2
hδΨ;c−dΨiþ1

2
hΨ;c−dδΨiþ1

2
hδΨ;Ψ2i; ð3:11Þ

where for the last term we used that hΨ;Ψ2i ¼ R
d6xd6θΨ3

is manifestly symmetric. The second term can be rewritten
using (3.10) and graded symmetry of the pairing as

hΨ; c−dδΨi ¼ hc−dδΨ;Ψi ¼ hdδΨ; c−Ψi
¼ −hδΨ;dc−Ψi ¼ hδΨ; c−dΨi; ð3:12Þ

thus yielding δS ¼ hδΨ; c−dΨþ 1
2
Ψ2i. One has to be

careful in reading off the equation of motion from the

variation, since Ψ is constrained to obey b−Ψ ¼ 0. Using
(3.6), one has Ψ ¼ b−c−Ψ. Taking the variation with the
explicit projector on ker b− we find

δS ¼
�
b−c−δΨ; c−dΨþ 1

2
Ψ2

�

¼ −
�
c−δΨ; b−c−dΨþ 1

2
b−ðΨ2Þ

�

¼
�
δΨ; c−b−c−dΨþ 1

2
c−b−ðΨ2Þ

�

¼
�
δΨ; c−dΨþ 1

2
c−b−ðΨ2Þ

�
; ð3:13Þ

where in the last equality we used b−c−dΨ ¼
db−c−Ψ ¼ dΨ. This proves that the action (3.9) yields
c−E ¼ 0 as field equations which are, in turn, equivalent
to the local first-order equations E ¼ 0. Using the above
formula for the general variation one proves that the action
(3.9) is gauge invariant under δΨ ¼ dΛþ b−ðΨΛÞ, with
b−Λ ¼ 0.
We conclude this section by writing explicitly the

action (3.9) in terms of the component fields eμν̄, Cμν,
and C̄μ̄ ν̄. Using the decomposition (2.18) of Ψ and the
explicit form (2.15) for the pairing we find

S¼
Z

d3xd3x̄ϵμνρϵμ̄ν̄ ρ̄
�
−
1

2
∂μeνρ̄

1

□
∂μ̄eρν̄

þ1

4
∂μCνρ

1

□
∂μ̄C̄ν̄ ρ̄−

1

6
eμμ̄eνν̄eρρ̄−

1

4
eμμ̄CνρC̄ν̄ ρ̄

	
: ð3:14Þ

This action makes contact with the ones constructed
in [35–37] as double copies of Chern-Simons theory. In
particular, the superfield formulation of the action in [35]
should also feature the 2-form fields Cμν and C̄μ̄ ν̄, although
it is not stated explicitly. Let us emphasize that the
action (3.14) is gauge invariant, and it yields field equations
that are equivalent to local ones. Similar nonlocal actions
have also appeared in topological string theory [43,44].

IV. RELATIONTOKODAIRA-SPENCERGRAVITY

In this section we point out a relation between the local
double copy theory constructed in Sec. II C and the
topological theory given by Kodaira-Spencer gravity,
which describes a complex structure deformation of a
Hermitian manifold. To that end, we first rewrite the theory
in complex coordinates and discuss how a truncation of that
theory yields Kodaira-Spencer gravity on a 3D subspace.
Finally, we show how to obtain Kodaira-Spencer gravity
directly by means of a chiral double copy.

2In L∞ terms this is the standard action obtained from an L∞
inner product defined by hF;GiL ≔ hF; c−Gi.
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A. Complex coordinates

As mentioned above, the chain complex K ⊗ K̄ is
identical to the de Rham complex on R6. The two copies
of the Euclidean metric on R3 can be combined into a
background “generalized metric” HMN , which is just the
flat Euclidean metric of R6, and the Oð3; 3Þ metric ηMN ,

HMN ¼
�
δμν 0

0 δμ̄ν̄

�
; ηMN ¼

�
δμν 0

0 −δμ̄ ν̄

�
: ð4:1Þ

The metric HMN does not look like the one of a Hermitian
manifold, which has only mixed components in holomor-
phic coordinates. On top of that, the coordinates xμ and x̄μ̄

are real. To remedy this we define a set of complex
coordinates given by

z1≔
1ffiffiffi
2

p ðxþ ix̄Þ; z2≔
1ffiffiffi
2

p ðyþ iȳÞ; z3 ≔
1ffiffiffi
2

p ðzþ iz̄Þ;

z̄1̄≔
1ffiffiffi
2

p ðx− ix̄Þ; z̄2̄ ≔
1ffiffiffi
2

p ðy− iȳÞ; z̄3̄≔
1ffiffiffi
2

p ðz− iz̄Þ;

ð4:2Þ
which we collectively denote as ðza; z̄āÞ. In these coor-
dinates, the metric HMN becomes

ds2H ¼ dx2þdy2þdz2þdx̄2þdȳ2þdz̄2 ¼ 2δab̄dz
adz̄b̄;

ð4:3Þ

which is the expected form of a Hermitian flat metric in C3.
On the other hand, the Oð3; 3Þ metric becomes

ds2η ¼ dx2 þ dy2 þ dz2 − dx̄2 − dȳ2 − dz̄2

¼ δabdzadzb þ δā b̄dz̄
ādz̄b̄; ð4:4Þ

so that we have

HAB ¼
�

0 δab̄
δāb 0

�
; ηAB ¼

�
δab 0

0 δā b̄

�
; ð4:5Þ

in coordinates zA ≔ ðza; z̄āÞ. We similarly redefine the
1-form basis by introducing ðθa; θ̄āÞ in the same fashion:
θ1 ≔ 1ffiffi

2
p ðθx þ iθ̄x̄Þ and so on. The 6D volume form can

also be factorized into its (anti)holomorphic compo-
nents: ϵabcϵā b̄ c̄.
With these redefinitions, the elements of K ⊗ K̄ are

given by all differential forms in C3,

K ⊗ K̄ ¼ ⨁
3

p;q¼0

Ωp;qðC3Þ; ð4:6Þ

where now we split degrees according to the number of
ðθa; θ̄āÞ. The differential is the de Rham differential in six

dimensions, which splits into its Dolbeault components,

d ¼ θa∂a þ θ̄ā∂ā ¼ ∂þ ∂: ð4:7Þ

Redefining the fields according to the new holomorphic
degree we write

Ψ ¼ h1;1 þ B2;0 þ B̄0;2: ð4:8Þ

Their linearized Maurer-Cartan equations read

∂B ¼ 0; ∂ B̄ ¼ 0;

∂hþ ∂B ¼ 0; ∂hþ ∂B̄ ¼ 0; ð4:9Þ

which are invariant under the gauge transformations

δh¼ ∂λ̄þ∂λ; δB¼ ∂λ; δB̄¼ ∂ λ̄ : ð4:10Þ

If we want to continue with the exact quadratic Maurer-
Cartan equation, we have to make sense of the b operators
and the strong constraint. Let us start with the b operators.
Using the redefinitions we have

bþ ¼HAB
∂A

∂

∂θB
¼ ∂

†þ∂
†; b−¼ ηAB∂A

∂

∂θB
¼ δþ δ̄;

ð4:11Þ

where we have the adjoints of the Dolbeault operators,

∂
† ¼ δab̄∂b̄

∂

∂θa
; ∂

†¼ δab̄∂a
∂

∂θ̄b̄
; ð4:12Þ

which obey

∂∂
† þ ∂

†
∂ ¼ 1

2
□ ¼ δab̄∂a∂b̄; ð4:13Þ

with the same commutator for the barred ones, and

δ ≔ δab∂a
∂

∂θb
; δ̄ ≔ δā b̄∂ā

∂

∂θ̄b̄
; ð4:14Þ

which employ the chiral Kronecker δ’s. Note that here we
encounter an unusual feature: the b− operator involves new
structures, which are the Kronecker δ’s that, although
present in C3, do not exist for generic Hermitian manifolds.
We should think of this structure associated with C3 as an
auxiliary structure, on par with the auxiliary metric intro-
duced in 3D Chern-Simons theory. Using this structure, the
(weak or strong) constraint reads

Δ ≔ ηAB∂A∂B ¼ δab∂a∂b þ δā b̄∂ā∂b̄ ¼ 0: ð4:15Þ
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1. The interacting theory

Let us compute explicitly what the above field equations
and gauge symmetries look like. The Lie bracket B2 ≡ ½·; ·�
has the same six-dimensional form as before,

½F;G� ¼ ηAB
�
DAF∂BGþ ð−1ÞFGDAG∂BF

�
: ð4:16Þ

The Maurer-Cartan equation for the 2-formΨ ¼ 1
2
θAθBψAB

reads

∂½AψBC� − ψ ½AD∂jDjψBC� ¼ 0; ð4:17Þ

where the indices are raised with ηAB. The above equation is

covariant under the gauge transformations

δψAB ¼ 2∂½AλB� − 2ψ ½AC∂jCjλB� þ λC∂CψAB; ð4:18Þ

provided the strong constraint is obeyed, since the variation
of the field equation reads

δλEABC ¼ ½Λ; E�ABC þ 6∂Dψ ½AB∂jDjλC�: ð4:19Þ

Splitting into holomorphic and antiholomorphic compo-
nents, we have four field equations,

2∂½ahb�c̄ − 2h½ad̄∂jd̄jhb�c̄ þ ∂c̄Bab − 2B½ad∂jdjhb�c̄ þ hdc̄∂dBab − B̄c̄
d̄
∂d̄Bab ¼ 0;

−2∂½āhjcjb̄� − 2hd½ā∂jdjhjcjb̄� þ ∂cB̄ā b̄ þ 2B̄½ād̄∂jd̄jhjcjb̄� − hcd̄∂d̄B̄ā b̄ − Bc
d
∂dB̄ā b̄ ¼ 0;

3∂½aBbc� − 3h½ad̄∂jd̄jBbc� − 3B½ad∂jdjBbc� ¼ 0;

3∂½āB̄b̄ c̄� þ 3hd½ā∂jdjB̄b̄ c̄� − 3B̄½ād̄∂jd̄jB̄b̄ c̄� ¼ 0; ð4:20Þ

where we used the definition hb̄a ≔ −hab̄. Splitting the
gauge transformations we obtain

δhab̄ ¼ ∂aλ̄b̄ − ∂b̄λa − hac̄∂c̄λ̄b̄ − hcb̄∂cλa þ B̄b̄
c̄
∂c̄λa

− Ba
c
∂cλ̄b̄ þ λ̄c̄∂c̄hab̄ þ λc∂chab̄;

δBab ¼ 2∂½aλb� − 2h½ac̄∂c̄λb� − 2B½ac∂cλb� þ λc∂cBab

þ λ̄c̄∂c̄Bab;

δB̄ā b̄ ¼ 2∂½āλ̄b̄� þ 2hc½ā∂cλ̄b̄� − 2B̄½āc̄∂c̄λ̄b̄�

þ λc∂cB̄ā b̄ þ λ̄c̄∂c̄B̄ā b̄: ð4:21Þ

Let us first try to interpret the standard solution to the
strong constraint, which in holomorphic coordinates reads

δab∂aF∂bGþ δā b̄∂āF∂b̄G ¼ 0: ð4:22Þ

The supergravity solution in the ðxμ; x̄μ̄Þ coordinates is
xμ ¼ x̄μ̄, thus also identifying the corresponding deriva-
tives. Looking at the definition (4.2) of the complex
coordinates, this amounts to setting za ¼ iz̄ā. This is a
three-dimensional real slice of C3 given by a diagonal
hyperplane.
Since the strong constraint is required to get rid of the

obstruction (4.19) in the gauge variation of the Maurer-
Cartan equation, let us see in more detail which component
fields and gauge parameters are involved. Splitting (4.19) in
(anti)holomorphic components we have

δλEabc¼ ½Λ;E�abcþ6∂DB½ab∂jDjλc�;

δλEabc̄ ¼ ½Λ;E�abc̄þ2∂DBab∂Dλ̄c̄−4∂Dh½ajc̄∂Djλb�; ð4:23Þ

with the other two components obtained by swapping
barred and unbarred indices and fields. From the above
expression one can see that the strong constraint would not
be required if we truncated Bab ¼ 0 and λa ¼ 0, which can
also be checked by inspection of (4.20) and (4.21). The
reason this is not consistent in our model is of course that
we have two more equations, obtained from (4.23) by (un)
barring the indices. Demanding consistency of the other
equations without the strong constraint would require
B̄ā b̄ ¼ 0 and λ̄ā ¼ 0, thus leaving no gauge symmetry
whatsoever.
Nevertheless, it is still interesting to see what happens

if we do forget the other two equations, and set Bab ¼ 0
and λa ¼ 0. The system (4.20) with gauge transforma-
tions (4.21) then reduces to

∂ahbc̄ − ∂bhac̄ − had̄∂d̄hb
c̄ þ hbd̄∂d̄ha

c̄ ¼ 0;

δhab̄ ¼ ∂aλ̄
b̄ − hac̄∂c̄λ̄b̄ þ λ̄c̄∂c̄hab̄; ð4:24Þ

where we raised the antiholomorphic index with δā b̄. The
equations in (4.24) are the Kodaira-Spencer equation and
gauge transformation for h, upon interpreting hab̄ and λ̄ā

as holomorphic 1- and 0-forms, respectively, taking
values in antiholomorphic vector fields,

h ≔ dzahab̄∂b̄; λ ≔ λ̄ā∂ā: ð4:25Þ
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Of course, as derived the theory is still subject to the
strong constraint and hence three dimensional, but in this
form the theory is actually gauge invariant without the
constraint and can hence be lifted to 6D.

B. Kodaira-Spencer gravity as a chiral double copy

We now turn to a chiral double copy construction which
yields a genuine six-dimensional field theory containing
the Kodaira-Spencer equation [40,41]. To this end we recall
that, in the standard prescription used in the previous
sections, the differential d and bracket B2 on K ⊗ K̄ are
given by

d ¼ m1 ⊗ 1þ 1 ⊗ m̄1;

B2 ¼ b2 ⊗ m̄2 −m2 ⊗ b̄2; ð4:26Þ

where ðm1; m2; b2Þ and their barred counterparts are the
BV□ maps in K and K̄, respectively. The need for the
strong constraint originates from the failure of m1 to be a
derivation of the bracket b2, since it implies that d fails to
be a derivation of B2 unless □ ¼ □.
For the following construction we will treat K and K̄

differently: we still view K as the space of forms in R3

carrying the DGCA ðm1 ¼ d;m2 ¼∧Þ. On the other hand,
we treat K̄ as the space of polyvectors in R3, forming a
graded Lie algebra with bracket b̄2, the Schouten-Nijenhuis
bracket. On X ¼ K ⊗ K̄ one then has a differential graded
Lie algebra given by

d ¼ m1 ⊗ 1; B2 ¼ m2 ⊗ b̄2; ð4:27Þ

which is defined onR6, with coordinates zA ¼ ðza; z̄āÞ. The
elements ofX are polyvector-valued forms of the following
type:

ωq
p ¼ 1

p!q!
ωa1…ap

b̄1…b̄qðz; z̄Þθa1 � � �θap θ̄b̄1 � � � θ̄b̄q : ð4:28Þ

The degree on X is the sum of the form and polyvector
degrees, so that jωq

pj ¼ pþ q. On R6 we can choose the
following complex structure:

JAB ¼ i

�
δab 0

0 −δāb̄

�
: ð4:29Þ

In the coordinates zA ¼ ðza; z̄āÞ this identifies θa as the
basis of holomorphic 1-forms and θ̄ā as the basis of
antiholomorphic vector fields on C3. With this complex
structure at hand, the differential d≡ ∂ ¼ θa∂a is the
holomorphic Dolbeault differential, while the two-bracket
B2 acts as

B2ðω1;ω2Þ ¼
∂ω1

∂θ̄ā
∂āω2 þ ð−1Þω1ω2

∂ω2

∂θ̄ā
∂āω1; ð4:30Þ

where the degree in the exponent is the sum of the form
degree and the polyvector field degree.
The gauge parameters Λ and fields Ψ split as

Λ ¼ λaθ
a þ ξ̄āθ̄ā;

Ψ ¼ hab̄θaθ̄b̄ þ
1

2
Babθ

aθb þ 1

2
Πā b̄θ̄āθ̄b̄: ð4:31Þ

Gauge parameters thus consist of a holomorphic 1-form λa
and an antiholomorphic vector field ξ̄ā. Fields contain a
vector-valued 1-form hab̄, a 2-form Bab, and a bivector
Πā b̄.3 In order to interpret this set of parameters and fields
we compute the gauge algebra, which is given by the
bracket B2ðΛ1;Λ2Þ. Its 1-form and vector components read

B2ðΛ1;Λ2Þa ¼ ξ̄b̄1∂b̄λ2a − ξ̄b̄2∂b̄λ1a ¼ Lξ̄1
λ2a − Lξ̄2

λ1a;

B2ðΛ1;Λ2Þā ¼ ξ̄b̄1∂b̄ξ̄
ā
2 − ξ̄b̄2∂b̄ξ̄

ā
1 ¼ Lξ̄1

ξ̄ā2; ð4:32Þ

with L denoting the Lie derivative. This shows that the
gauge transformations are the semidirect sum of Abelian
holomorphic 1-form transformations and antiholomorphic
diffeomorphisms. The transformations of the fields them-
selves are given by δΨ ¼ ∂Ψþ B2ðΨ;ΛÞ, yielding

δhab̄ ¼ ∂aξ̄
b̄þ ξ̄c̄∂c̄hab̄−∂c̄ξ̄

b̄hac̄þΠb̄ c̄
∂c̄λa

¼ ∂aξ̄
b̄þLξ̄ha

b̄þΠb̄ c̄
∂c̄λa;

δBab ¼ 2ð∂½a−h½ac̄∂c̄Þλb� þ ξ̄c̄∂c̄Bab¼ 2∂h½aλb� þLξ̄Bab;

δΠā b̄ ¼ ξ̄c̄∂c̄Πā b̄−∂c̄ξ̄
āΠc̄ b̄−∂c̄ξ̄

b̄Πā c̄ ¼Lξ̄Πā b̄; ð4:33Þ

where we defined the twisted derivative ∂ha ≔ ∂a − hab̄∂b̄. If
one interprets θa∂ha as a deformed Dolbeault operator, the
field hab̄ is a deformation of the complex structure. The
gauge transformation of hab̄ under diffeomorphisms is the
expected one, but the additional contribution from
the 1-form λa is exotic. The field equations ∂Ψþ
1
2
B2ðΨ;ΨÞ¼ 0 decompose as

2∂½ahb�c̄ − 2h½ad̄∂jd̄jhb�c̄ − Πc̄ d̄
∂d̄Bab ¼ 0;

3ð∂½a − h½ac̄∂jc̄jÞBbc� ¼ 0;

∂aΠb̄ c̄ − had̄∂d̄Πb̄ c̄ − 2Πd̄½b̄
∂d̄ha

c̄� ¼ 0;

3Πd̄½ā
∂d̄Πb̄ c̄� ¼ 0: ð4:34Þ

Interestingly, the field equation for Πā b̄ is the condition for
it to be a Poisson bivector compatible, in a suitable sense,

3This field content coincides with the one alluded to by Witten
in the context of topological string theory [43].
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with the deformation hab̄. In addition, the deformed
Dolbeault operator

∂h ≔ dzað∂a − hab̄∂b̄Þ ð4:35Þ

is not nilpotent, with the 2-form Bab sourcing the curvature
for ∂

2
h. The 2-form itself has vanishing (twisted) field

strength on shell.
The above is a gauge invariant dynamical system, which

is novel to the best of our knowledge, that generalizes the
Kodaira-Spencer equation and its gauge symmetries. The
Kodaira-Spencer equation is contained as a consistent
truncation, setting Πā b̄ ¼ 0 and then removing the 2-form
by means of the λ gauge symmetry. The resulting theory is
defined by

∂ahbc̄ − ∂bhac̄ − had̄∂d̄hb
c̄ þ hbd̄∂d̄ha

c̄ ¼ 0;

δhab̄ ¼ ∂aλ̄
b̄ − hac̄∂c̄λ̄b̄ þ λ̄c̄∂c̄hab̄; ð4:36Þ

which is Kodaira-Spencer gravity.4

V. SUMMARY AND OUTLOOK

In this paper we have constructed the double copy of 3D
Chern-Simons theory, employing the same algebraic dou-
ble copy recipe previously applied to pure Yang-Mills
theory to obtain N ¼ 0 supergravity in a double field
theory formulation. In this we believe to have given the
first example of an explicit, local, and gauge invariant
double copy construction that is exact, albeit being

non-Lagrangian. An action can, however, be constructed
upon partial gauge fixing and giving up locality. This result
is hence an important ingredient of the larger research
program of double copying general field theories.
Chern-Simons theory may also turn out to be an

interesting toy model due to some similarities with the
self-dual sector of Yang-Mills theory [47]: in both the
double copied gravity theory features a generalized metric
fluctuation and two 2-forms. The question arises whether
the nonlinear field equations of self-dual gravity or even
full gravity may be recovered as integrability conditions,
which likely would require a novel procedure to eliminate
the extra 2-form fields. Another important question is
whether there might be a novel perspective to eventually
obtain a local and gauge invariant action.
Finally, one of the core motivations for this program has

always been to establish a precise correspondence between
classical solutions of gauge theory and gravity. Since here
the double copied 3D gravity theory can be written down
explicitly in terms of the kinematic ingredients of 3D
Chern-Simons theory, this example may be a promising
starting point to attempt the double copy of solutions.
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