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We work toward the general solution of the two-body problem in 2þ 1-dimensional general relativity
with a negative cosmological constant. The Bañados-Teitelboim-Zanelli (BTZ) solutions corresponding to
black holes, point particles and overspinning particles can be considered either as objects in their own right,
or as the exterior solution of compact objects with a given mass M and spin J, such as rotating fluid stars.
We compare and contrast the metric approach to the group-theoretical one of characterizing the BTZ
solutions as identifications of 2þ 1-dimensional anti–de Sitter spacetime under an isometry. We then move
on to the two-body problem. In this paper, we restrict the two objects to the point particle range
jJj − 1 ≤ M < −jJj, or their massless equivalents, obtained by an infinite boost. (Both anti–de Sitter space
and massless particles have M ¼ −1, J ¼ 0). We derive analytic expressions for the total mass Mtot and
spin Jtot of the system in terms of the six gauge-invariant parameters of the two-particle system: the rest
mass and spin of each object, and the impact parameter and energy of the orbit. Based on work of Holst and
Matschull on the case of two massless, nonspinning particles, we conjecture that the black hole formation
threshold is Mtot ¼ jJtotj. The threshold solutions are then extremal black holes. We determine when the
global geometry is a black hole, an eternal binary system, or a closed universe.
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I. INTRODUCTION

General relativity in 2þ 1 spacetime dimensions appears
dynamically trivial because in 2þ 1 dimensions the Weyl
tensor is identically zero. This means that the full Riemann
tensor is determined by the Ricci tensor, and so by the
stress-energy tensor of the matter. Hence there are no
gravitational waves, and the vacuum solution is locally
unique: Minkowski in the absence of a cosmological
constant Λ, de Sitter for Λ > 0 and anti–de Sitter (from
now on, adS3) for Λ < 0.
However, it was noted by Deser, Jackiw and t’Hooft in

1984 [1] that even the general vacuum solution with Λ ¼ 0
is nontrivial if one allows for singularities representing
point particles, which may be spinning. The global solution
is then obtained by identifying Minkowski spacetime with
itself under a nontrivial isometry for each particle. In the
simplest case, this is a rotation by 2π − 2ν, where the
resulting spacetime can be thought of as Minkowski with a
wedge of opening angle 2ν removed and the two faces of
the wedge identified. The dynamics of two or more
interacting particles can then be dealt with in closed form
using the algebra of such isometries.
In 1992, Bañados, Teitelboim and Zanelli [2] (from now

on, BTZ) noticed that 2þ 1 dimensional vacuum Einstein
gravity with Λ < 0 admits rotating black hole solutions
parametrized by a mass M and spin J that share many
features with the family of Kerr solutions in 3þ 1

dimensions. These can be found easily by solving an
axistationary ansatz for the metric, but their existence
had been overlooked because the metric has to be locally
adS3. In fact, these metrics can be derived as nontrivial
identifications of adS3 with itself [3] under the action of an
isometry.
A key difference to black holes in 3þ 1 dimensions is

the existence of a mass gap: while adS3 is given by the BTZ
solution with parametersM ¼ −1 and J ¼ 0, only the BTZ
solutions with M ≥ 0 and jJj ≤ M represent black holes.
(These parameters are defined below). Solutions with all
other real values of M and J have naked singularities
and represent point particles (jJj < −M), similar to those
for Λ ¼ 0 described in [1], and overspinning particles
(jJj > jMj).
Combining these two ideas suggests a research pro-

gramme of completely solving the two-body problem in
2þ 1-dimensional gravity with Λ < 0. A key insight is that
the BTZ solutions are not only building blocks in their own
right, but are also the exterior solutions of any compact
object. By contrast, in 3þ 1 dimensions, the vacuum
exterior spacetime of any spherical compact object is
Schwarzschild, but the exterior of a nonspherical or rotating
compact object is not in general Kerr, even the if the object
is itself axistationary.
Because any vacuum spacetime with Λ < 0 is locally

isometric to adS3, the exterior spacetime of any compact
object, like the vacuum BTZ solutions, must be an
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identification of adS3 with itself under an element of its
isometry group. The basic idea is the following. Cover up
the compact object with a world tube, remove the interior of
the world tube, and make the resulting spacetime simply
connected by making a suitable cut from the world tube to
infinity. On this simply connected domain, the spacetime
must now locally be adS3. To undo the cutting-open, we
need to identify the two sides of the cut, and regularity then
requires that the identification is via an isometry of adS3. It
was shown in [3] that the gauge-invariant content of such an
identification is a mass M and spin J, characterizing the
BTZ spacetimes.
The isometry group of adS3 is usually obtained [4] by

first characterizing adS3 as a hyperboloid embedded in
Rð2;2Þ endowed with a flat metric. Its symmetry group is
then the subgroup of the isometry group of the embedding
space that leaves the hyperboloid invariant, namely
SOð2; 2Þ. This approach gives us only the BTZ solutions
for M > jJj − 1. This includes all black hole solutions, but
only a region of point particles and overspinning particles.
More explicitly, one can write the adS3 metric locally in

terms of “cut and paste” coordinates ðt̂; χ; ϕ̂Þ in which the
metric coefficients depend only on χ. The BTZ metrics are
then obtained by identifying ϕ̂ with a period smaller or
larger than 2π, and identifying t̂ with a jump across the cut.
The identifications not parametrized by an element of the
isometry group are those in which the period is larger than
2π (rather than smaller), or the time jump larger than 2π.
Spinning massless particles are obtained from point

particles by applying an infinite boost and sending the
mass to infinity simultaneously. They correspond to a
nontrivial identification of adS3 across a null plane but
have M ¼ −1 and J ¼ 0 like adS3 itself.
Restricting ourselves to point particles with jJj − 1 ≤

M < −jJj, or the vacuum exterior of compact objects in
that parameter range, or the massless equivalents of point
particles, we take an algebraic approach to the two-body
problem in 2þ 1 dimensions with Λ < 0 in which each
object is obtained by an identification under isometry, and
the resulting combined object is obtained by multiplying
the two elements of the isometry group. We now summarise
previous work using this approach.
Time-symmetric initial data for two massive point

particles, two black holes, or one black hole and one
massive point particle were constructed in [5]. Complete
solutions describing two massless nonspinning particles
without and with impact parameter were constructed
in [6,7], and two or more massive nonspinning particles
colliding at one point in [8,9]. With nonzero impact
parameter, above a certain energy threshold the spacetime
contains closed timelike curves (from now on, CTCs), in
analogy with the Gott time machine [10]. However, if
the boundary of the region of CTCs is considered as the
physical singularity, this spacetime instead represents the
creation of a rotating black hole from two particles [7].

In this paper, we generalise the algebraic approach
of [5–9] to computing the total mass and spin of the most
general two-point-particle setup, allowing for arbitrary rest
masses (including zero) and spins, and arbitrary center-of
mass relative momentum and impact parameter. We do not,
however, generalise the explicit spacetime constructions
of [6,7]. Rather, we rely on the beautiful constructions
in [7] as providing a sufficiently general example to argue
that a black hole forms from two point particles if and only
if the total mass M and spin J obey the inequalities M ≥ 0
and jJj ≤ M that characterise black holes.
We begin with parameter counting. Each compact object

surrounded by vacuum has a rest mass (which can be zero),
a spin (which can be zero), an initial position and an initial
momentum. Hence the two-body initial data have 12
parameters. Six of these correspond to rotating, boosting
and translating the two-body combined object, and so in the
absence of any further objects in the universe they are pure
gauge. The other six parameters of the initial data are
gauge-invariant. One can take them to be the two rest
masses, the two spins, the impact parameter measured in
the rest frame, plus one more. For two massless non-
spinning particles, we take this last parameter to be their
energies in the rest frame (where they are equal). For two
massive particles, we take it to be their total relative
rapidity. For one massless and one massive particle we
use the rapidity of the massive particle and the energy of the
massless particle, both with respect to the rest frame.
In Sec. II, based on [1–3,11,12], we review in explicit

coordinates how metrics describing black holes, point
particles and overspinning particles can be characterized
as identifications of adS3. We discuss their spacetime
structure and the role of closed timelike curves (CTCs).
In Sec. III, based on [3,6,7,11,12], we review a group

theoretical approach complementary to the metric approach
of Sec. II, where adS3 is identified with the group manifold
SLð2;RÞ and the isometry group of adS3 is represented by
SLð2;RÞ × SLð2;RÞ=Z2 acting by conjugation, rather than
by SOð2; 2Þ acting on Rð2;2Þ. The two groups are related in
Appendix A. We also point out that either group theory
approach gives only BTZ solutions with jJj < M þ 1.
Appendix B relates the coordinate and isometry group
treatments of overspinning particles.
Appendix C considers the limit Λ ¼ 0 from both the

coordinate and isometry group approach. We point out that
spinning point particles can be defined in two ways, and
have in fact been defined differently for Λ ¼ 0 and Λ < 0
in the literature. We give a BTZ-like metric for point
particles. We also give an exact expression for the total
angular momentum of a pair of particles in the Λ ¼ 0 case
that is missing from [1].
In Sec. IV we review, based on [6–9], how the isometries

corresponding to massive nonspinning point particles (the
“particle generators”) can be obtained from their geodesics.
Massless particles are obtained in the limit of infinite boost
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and vanishing rest mass. In an alternative and more general
approach, we obtain the generators for spinning massive
point particles on arbitrary trajectories (for a single object
in the universe, the trajectory is still pure gauge) by
boosting and translating the generators of a single massive
point particle sitting at the center of the coordinate system.
Again massless particles are obtained as a limit. The
nonspinning massive particle case serves as check on this
calculation.
In Sec. V we create systems of two objects by multi-

plying their generators. We explain in detail how the two
different product orders correspond to different gauges, and
how to define gauge-invariant physical quantities, such as
the relative rapidity and the impact parameter of the
particles in the rest frame of the collision. Appendix D
gives a simple example of how the product generators
define an effective particle and how the order of multipli-
cation corresponds to a gauge choice.
In Sec. VI we obtain the total massMtot and spin Jtot of the

two-particle system, based on the product generators.
Motivated by the work of Holst and Matschull [7], we
conjecture that a black hole (with mass Mtot and spin Jtot)
forms if and only jJtotj < Mtot. Otherwise, they define an
effective point particle or overspinning particle characteriz-
ing the metric outside of both objects. If the two particles
collide they could also forma single real particle.AppendixE
summarises thework of Steif [5] on the time-symmetric case,
which serves as a check on our results.
The algebraic shortcut approach for calculating Mtot and

spin Jtot of a two-body system has previously been used
in [13]. There, they are expressed as functions of three
parameters, but it remains unclear which three-dimensional
subspace of the six-dimensional parameter space of the
general two-body system is being examined.
Section VII contains our conclusions and a list of open

questions.

II. METRIC DESCRIPTION OF ADS3
AND ITS IDENTIFICATIONS

A. AdS3

We consider the three-dimensional Einstein equations

Gab þ Λgab ¼ 8πTab: ð1Þ

We use units where c ¼ G ¼ 1. Note that in 2þ 1
Newton’s constant G has units of 1/mass, so in such units
mass is dimensionless and angular momentum has dimen-
sion of length.
We write the negative cosmological constant as

Λ≕ −
1

l2
< 0: ð2Þ

From now on and unless otherwise stated, we measure
length and time in units of l, so that we can set l ¼ 1, and

all quantities become dimensionless. l can be reinstated
from dimensional analysis, assuming that, still with
c ¼ G ¼ 1, l itself and our coordinates t, r, ρ, χ, xi and
spin J have dimension length, while the angle ϕ and mass
M are dimensionless.
Any solution of the Einstein equations (1) with Tab ¼ 0

is locally isometric to adS3. This can be characterized as the
hyperboloidal hypersurface

−x23 − x20 þ x21 þ x22 ¼ −1; ð3Þ

embedded in Rð2;2Þ and endowed with the metric induced
by the flat metric

ds2 ¼ −dx23 − dx20 þ dx21 þ dx22 ð4Þ

on Rð2;2Þ [4]. The entire hypersurface (3) can be para-
metrized as

x3 ¼ cosh χ cos t; ð5aÞ

x0 ¼ cosh χ sin t; ð5bÞ

x1 ¼ sinh χ cosϕ; ð5cÞ

x2 ¼ sinh χ sinϕ; ð5dÞ

where the coordinate ranges are

0 ≤ χ < ∞; 0 ≤ t < 2π; 0 ≤ ϕ < 2π: ð6Þ

In these coordinates the induced metric becomes

ds2 ¼ −cosh2 χdt2 þ dχ2 þ sinh2 χdϕ2: ð7Þ

The maximal analytic extension of adS3 is obtained by
dropping the periodicity of t, thus taking the universal
cover of the original, periodic, version. Each slice of
constant t is the hyperpolic 2-plane (from now on H2),
which has constant negative curvature. For clarity, we will
from now on refer to the periodic version as padS3 and the
extended version as eadS3.
With the new radial coordinate

r ≔ sinh χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
; ð8Þ

the metric of eadS3 can be written in the alternative
form

ds2 ¼ −ð1þ r2Þdt2 þ ð1þ r2Þ−1dr2 þ r2dϕ2; ð9Þ
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with coordinate ranges

0 ≤ r < ∞; −∞ < t < ∞; 0 ≤ ϕ < 2π: ð10Þ

A third useful form of the eadS3 metric is obtained by
defining the radial coordinate

ρ ≔ tanh
χ

2
0 ≤ ρ < 1; ð11Þ

which implies

r ¼ 2ρ

1 − ρ2
: ð12Þ

The inverse can be written as

ρ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 1

p
þ 1

: ð13Þ

The metric becomes

ds2 ¼ 4

ð1 − ρ2Þ2
�
−
ð1þ ρ2Þ2

4
dt2 þ dρ2 þ ρ2dϕ2

�
: ð14Þ

In these coordinates, each H2 slice of constant t is
represented in conformally flat form, that is as the
Poincaré disk. Timelike null infinity r ¼ ∞ is now repre-
sented by the boundary ρ ¼ 1. The conformal diagram of
eadS3 is a cylinder. In the resulting spacetime picture in
coordinates ðt; ρ;ϕÞ, lightcones are isotropic in ϕ but twice
as wide at the center ρ ¼ 0 as at the boundary ρ ¼ 1.
In a fourth coordinate system on eadS3, we introduce the

tortoise radius

r� ≔
Z

dr
1þ r2

¼ tan−1 r; ð15Þ

with range

0 ≤ r� <
π

2
; ð16Þ

or equivalently

sinh χ ¼ tan r� ⇔ cosh χ ¼ 1

cos r�
; ð17Þ

to write the metric (7) as

ds2 ¼ 1

cos2r�
ð−dt2 þ dr2� þ sin2 r�dϕ2Þ: ð18Þ

The conformal spatial metric is now that of one half of a
2-sphere, representing the hyperbolic plane as the Klein
disk. The light cones are at 45 degrees in the radial
direction, but are no longer isotropic.

Rotating the coordinates on the 2-sphere via

sin r� cosϕ ¼ cos θ; ð19Þ

sin r� sinϕ ¼ sin θ cosφ; ð20Þ

cos r� ¼ sin θ sinφ; ð21Þ

(any two of these three equations are independent) gives

ds2 ¼ 1

sin2 θsin2 φ
ð−dt2 þ dθ2 þ sin2 θdφ2Þ: ð22Þ

Whereas the obvious family of null geodesics of (18),
r� ¼ t at constant ϕ, form a null cone, all intersecting at
the point r� ¼ t ¼ 0, the equally obvious family of null
geodesics of (22), θ ¼ t at constant φ, are parallel and meet
only at the points θ ¼ t ¼ 0 and θ ¼ t ¼ π on the conformal
boundary: they form the adS3 equivalent of a null plane [7].

B. BTZ black holes

The BTZ metric can be obtained by making an axista-
tionary ansatz for the Einstein equations (1) in vacuum.
It is [2]

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdϕþ βdtÞ2; ð23Þ

where

f ≔ −M þ r2 þ J2

4r2
; β ≔ −

J
2r2

: ð24Þ

M is dimensionless but J has dimension length if we do not
use units where l ¼ 1. Clearly the caseM ¼ −1 and J ¼ 0
is the eadS3 metric in the form (9). For any M and J, the
surfaces of constant t are spacelike at sufficiently large r.
The coordinates have the ranges (10). As a matter of
convention, throughout this paper spacetime points with
coordinates ðt; r;ϕÞ and ðt; r;ϕþ 2πÞ are always identi-
fied. We write such identifications as

ðt; r;ϕÞ ∼ ðt; r;ϕþ 2πÞ: ð25Þ

We note already that the same identification will look
different in the coordinates ϕ̂ and t̂ introduced later.
We focus first on the parameter range M > 0 with

0 ≤ jJj ≤ M, for which the BTZ metric represents a black
hole [2,3,11]. We define the dimensionless parameters

λþ� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M � J

p
ð26Þ

and their linear combinations

s� ≔
1

2
ðλþþ � λþ−Þ: ð27Þ
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We note for later the identities

M ¼ s2þ þ s2−; ð28Þ

J ¼ 2sþs−; ð29Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − J2

p
¼ s2þ − s2−: ð30Þ

s− has the same sign as J, while sþ > 0. The metric
coefficient f has zeros at r2 ¼ s2�. We define rþ ≔ sþ and
r− ≔ js−j. They obey 0 ≤ r− ≤ rþ. The Killing vector ∂=∂t
is timelike in the outer region r > rþ, spacelike in the
middle region r− < r < rþ and again timelike in the inner
region r < r−.
As in the Kerr solution in 3þ 1 spacetime dimensions,

Kruskal coordinates can be constructed to show that r ¼ rþ
is an event horizon separating the outer and middle regions,
and r ¼ r− a Cauchy horizon separating the middle and
inner regions [3].
In the nonspinning case J ¼ 0, we have rþ ¼ ffiffiffiffiffi

M
p

and
r− ¼ 0, so the inner region does not exist. In the extremal
case M ¼ jJj > 0, we have rþ ¼ r− ¼ ffiffiffiffiffiffiffiffiffiffi

M=2
p

and the
middle region does not exist. We have referred here to “the”
inner, middle and outer region, event horizon and Cauchy
horizon, but in the maximally extended nonrotating black
hole solutions there is a “left” as well as a “right” outer
region, and in the spinning ones all these are repeated to the
past and future, see [2] or [11] for conformal diagrams.
In the subextremal case jJj < M, the BTZ black hole

solution (23) can be locally identified with the hyperboloid
(3), where formulas for the xμ are given in the first three
columns of Table I in terms of intermediate coordinates
ðt̂; χ; ϕ̂Þ. Those in turn are given in terms of the BTZ
coordinates ðt; r;ϕÞ by

χ ¼
8<
:

cosh−1
ffiffiffi
α

p
; outer region

sin−1
ffiffiffi
α

p
; middle region

−sinh−1
ffiffiffiffiffiffi
−α

p
; inner region

; ð31aÞ

t̂ ¼ sþt − s−ϕ; ð31bÞ

ϕ̂ ¼ sþϕ − s−t; ð31cÞ

where we have introduced shorthand [11]

α ≔
r2 − r2−
r2þ − r2−

¼ r2 − s2−
s2þ − s2−

: ð32Þ

It is straightforward to verify that in each of the three
regions the metric in ðt; r;ϕÞ induced by (4) is indeed the
BTZ metric (23). Note that the embeddings for the three
regions of a black hole given in Table I differ from those
given in [3,11] by a gauge transformation. The gauge here
has been chosen so that for nonspinning black holes the
intersection of the plane x3 ¼ 0 with the hyperboloid is a
moment of time symmetry, parametrized as t̂ ¼ 0, and that
their generators (see below) then obey u ¼ v. An explicit
transformation from the BTZ metric to the adS3 metric (in
the Poincaré coordinates) in the extremal case jJj ¼ M > 0
is given in [3].
The induced metric in ðt̂; χ; ϕ̂Þ is

ds2 ¼ −sinh2 χdt̂2 þ dχ2 þ cosh2 χdϕ̂2; ð33aÞ

ds2 ¼ cos2 χdt̂2 − dχ2 þ sin2 χdϕ̂2; ð33bÞ

ds2 ¼ cosh2 χdt̂2 þ dχ2 − sinh2 χdϕ̂2 ð33cÞ

for the outer, middle and inner regions, respectively. These
metrics are therefore alternative local forms of the adS3
metric. They are the only forms of the adS3 metric that are
diagonal and depend on only one coordinate χ, made
unique by the choice jgχχ j ¼ 1.
We see that ∂=∂t̂ is the Killing generator of the event

horizon, while ∂=∂ϕ̂ is the Killing generator of the Cauchy
horizon. In BTZ coordinates, the event horizon and
Cauchy horizon generators are ∂=∂tþΩ�∂=∂ϕ where
Ω� ¼ J=ð2r2�Þ, respectively.
The range of χ in each of the three regions is given in the

second row of Table I, with

χbh ≔ − sinh−1
js−j

ðM2 − J2Þ1=4 : ð34Þ

χ ¼ χbh corresponds to r ¼ 0 in the inner patch.

TABLE I. Embedding of the BTZ solution into eadS3, in terms of xμ. The constants χbh, χpp and χos are defined in (34), (44), and (50).

Outer region Middle region Inner region Point particle Overspinning particle

rþ < r < ∞ r− < r < rþ 0 < r < r− 0 < r < ∞ 0 < r < ∞
0 < χ < ∞ 0 < χ < π

2
χbh < χ < 0 χpp < χ < ∞ χos < χ < ∞

x3 − sinh χ sinh t̂ − cos χ cosh t̂ − cosh χ cosh t̂ cosh χ cos t̂ − cosh χ cosh ϕ̃ sin t̃þ sinh χ sinh ϕ̃ cos t̃
x0 − cosh χ cosh ϕ̂ − sin χ cosh ϕ̂ sinh χ sinh ϕ̂ cosh χ sin t̂ cosh χ cosh ϕ̃ cos t̃þ sinh χ sinh ϕ̃ sin t̃
x1 cosh χ sinh ϕ̂ sin χ sinh ϕ̂ − sinh χ cosh ϕ̂ sinh χ cos ϕ̂ − cosh χ sinh ϕ̃ cos t̃ − sinh χ cosh ϕ̃ sin t̃
x2 sinh χ cosh t̂ cos χ sinh t̂ cosh χ sinh t̂ sinh χ sin ϕ̂ − cosh χ sinh ϕ̃ sin t̃þ sinh χ cosh ϕ̃ cos t̃

TWO-BODY PROBLEM IN 2þ 1 SPACETIME DIMENSIONS WITH … PHYS. REV. D 110, 045023 (2024)

045023-5



From (31b), (31c), the identification (25) in BTZ
coordinates is equivalent to

ðt̂; χ; ϕ̂Þ ∼ ðt̂ − 2πs−; χ; ϕ̂þ 2πsþÞ: ð35Þ

In particular, the angle ϕ̂ has period 2πsþ (with no
particular significance of sþ ¼ 1), and the time coordinate
t̂ is identified with a jump

Δt̂bh ≔ −2πs−; ð36Þ
which vanishes when J ¼ 0 and has the opposite sign
from J. We shall refer to the intermediate coordinates
ðt̂; χϕ̂Þ also as the cut-and-paste coordinates, in contrast to
the BTZ coordinates ðt; r;ϕÞ.
With the identification (35), the surfaces of constant t̂ in

the outer metric are wormholes, with a throat of circum-
ference 2πrþ located at χ ¼ 0. They can be interpreted as
the Killing slicing of the two exterior regions of the Kruskal
metric, with time going forward in the right outer region,
backward in the left outer region, and each time slice going
through the 2-surface χ ¼ 0, equivalent to x0 ¼ x1 ¼ 0,
where the Killing horizon bifurcates.

C. Point particles

We next focus on the parameter rangeM < 0, jJj < −M.
Then the BTZ metric (23) has no horizons (zeros of f for
real r). Instead the BTZ solution for M < 0 but M ≠ −1
represents what one could either call a naked singularity [2]
or a point particle [14]. We define the two dimensionless
parameters

λ−� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M � J

p
; ð37Þ

and their linear combinations

a� ≔
1

2
ðλ−þ � λ−−Þ ð38Þ

as the equivalent of the BTZ black hole parameters s�.
They obey

−M ¼ a2þ þ a2−; ð39Þ

J ¼ 2aþa−; ð40Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − J2

p
¼ a2þ − a2−: ð41Þ

a− has the same sign as J, while aþ > 0.
The identification of the point particle BTZ solution with

padS3 written as the hyperboloid (3) in Rð2;2Þ was found
in [12]. (However, [12] restrict to jJj ≤ −M for −1≤M< 0
only. We do not see why this would be necessary.) This
identification is given here in the second-last column of
Table I, with the intermediate coordinates now given in
terms of the BTZ coordinates by

χ ¼ cosh−1
ffiffiffi
α

p ð42aÞ

t̂ ¼ aþtþ a−ϕ; ð42bÞ

ϕ̂ ¼ aþϕþ a−t: ð42cÞ

Here α is defined by

α ¼ r2 þ a2þ
a2þ − a2−

: ð43Þ

[This is the same expression as (32) if we take into account
that s2� ¼ −a2∓.] The range of χ is given in Table I, with

χpp ≔ cosh−1
aþ

ðM2 − J2Þ1=4 : ð44Þ

χ ¼ χpp corresponds to r ¼ 0. The expressions for the xμ
given in Table I in the point particle case are simply (5) with
hats on, and so the induced metric in ðt̂; χ; ϕ̂Þ is

ds2 ¼ −cosh2 χdt̂2 þ dχ2 þ sinh2 χdϕ̂2; ð45Þ

The induced metric in ðt; r;ϕÞ is once again the BTZ
metric (23).
The identification(25) is now equivalent to

ðt̂; χ; ϕ̂Þ ∼ ðt̂þ 2πa−; χ; ϕ̂þ 2πaþÞ: ð46Þ

We can think of this as a wedge cut out with defect angle
2ν > 0, or a wedge inserted with excess angle 2ν < 0,
where

ν ≔ πð1 − aþÞ; ð47Þ

and a time jump

Δt̂pp ≔ 2πa−; ð48Þ

which has the same sign as J, applied when identifying
across the sides of the wedge. Hence we can think of the
point particle geometry as eadS3 with a timelike conical
singularity and time jump. The exception is M ¼ −1 and
J ¼ 0, which gives aþ ¼ 1 and a− ¼ 0.

D. Overspinning particles

The ðJ;MÞ-plane is completed by two disjoint over-
spinning regions jJj > jMj. There are no horizons, and, as
we will see below, if we restrict to r ≥ 0 there are no closed
timelike curves either. Hence we can consider the restric-
tion most usefully as a kind of particle.
For clarity, in this paper we will call BTZ solutions with

M < 0, jJj < −M “point particles,” and BTZ solutions
with jJj > jMj “overspinning particles.” Only the non-
spinning particle solutions are unambiguously “point
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particles,” with a singular worldline at r ¼ χ ¼ 0, whereas
in both spinning point particle and overspinning particle
solutions a singular worldline at χ ¼ 0 is surrounded by a
world tube containing closed timelike curves whose outer
boundary is at r ¼ 0, see the following Sec. II E for details.
Therefore either all (spinning) point particle and over-
spinning particle solutions should be considered as “par-
ticles” or none. We have opted here for the former as the
one more consistent with the established terminology in the
literature.
To simplify notation, we now restrict to the case

J > jMj. The case J < −jMj can be obtained by flipping
the signs of ϕ̂ and J, thus also replacing λ�þ with λ�−.
An identification of this class of solutions with padS3 in

the form of (3) is given in the last column of Table I, with

χ ¼ 1

2
sinh−1

�
2r2 −Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 −M2

p
�
; ð49aÞ

t̃ ¼ λ−þ
2

ðtþ ϕÞ; ð49bÞ

ϕ̃ ¼ λþþ
2

ðϕ − tÞ: ð49cÞ

This is derived in Appendix B (using the methods of
Sec. III below and Appendix A.) The value of χ corre-
sponding to r ¼ 0 is

χos ≔
1

2
sinh−1

�
−Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 −M2

p
�
: ð50Þ

The metric in ðt; r;ϕÞ is again the BTZ metric (23). The
induced metric in intermediate coordinates ðt̃; χ; ϕ̃Þ is

ds2 ¼ −dt̃2 þ dχ2 þ dϕ̃2 þ 2 sinh 2χ dϕ̃dt̃ ð51aÞ

¼ −cosh2 2χdt̃2 þ dχ2 þ ðdϕ̃þ sinh 2χ dt̃Þ2: ð51bÞ

As a byproduct we have found yet another form of writing
the metric of eadS3, see also [15]. Any parametrization of
the overspinning BTZ metric that represents it as an
identification of adS3 with a shift in t̃ and a shift in ϕ̃,
where ∂=∂t̃ and ∂=∂ϕ̃ are commuting Killing vectors of
adS3, both before and after the identification, must be
related to this one by a linear recombination of the
coordinates t̃ and ϕ̃ and a reparametrization of the coor-
dinate χ. It is clear that no such reparametrization can make
the metric diagonal at the same time.
The identification (25) is equivalent to

ðt̃; χ; ϕ̃Þ ∼ ðt̃þ πλ−þ; χ; ϕ̃þ πλþþÞ ð52Þ

Tomake this lookmore like the point particle and black hole
cases, we define the alternative cut-and-paste coordinates

t̂ ≔ t̃ − ϕ̃ ¼ bþtþ b−ϕ; ð53Þ

ϕ̂ ≔ t̃þ ϕ̃ ¼ bþϕþ b−t; ð54Þ

where we have defined the shorthand parameters

b� ≔
1

2
ðλ−þ � λþþÞ: ð55Þ

The metric becomes

ds2 ¼ 1

2
sinh 2χð−dt̂2 þ dϕ̂2Þ þ dχ2 − dt̂dϕ̂ ð56Þ

(yet another local coordinate system on adS3), and the
identification is

ðt̂; χ; ϕ̂Þ ∼ ðt̂þ 2πb−; χ; ϕ̂þ 2πbþÞ: ð57Þ

For the prototype overspinning particle J ¼ 1, M ¼ 0, this
reduces ðt̂; χ; ϕ̂Þ ∼ ðt̂; χ; ϕ̂þ 2πÞ just as for adS3 spacetime
M ¼ −1, J ¼ 0 and the prototype black hole M ¼ 1
and J ¼ 0.

E. Closed timelike curves

By replacing the coordinate r with R ≔ r2 in (23) we
obtain

ds2 ¼ ðM − RÞdt2 þ dR2

F
þ Rdϕ2 − J dϕ dt; ð58Þ

where

F ≔ 4R2 − 4MRþ J2 ¼ r2fðrÞ: ð59Þ

Hence we have an analytic continuation beyond r ¼ 0 to
negative R. The metric (58) is regular, with regular inverse,
except where F ¼ 0. These roots occur at

R� ≔
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − J2

p

2
: ð60Þ

For point particles, R ¼ Rþ ¼ −a2− < 0 corresponds to
the particle location χ ¼ 0, which is a conical singularity.
Therefore, the maximal analytic extension of the space-
time corresponds to Rþ < R < ∞. The root R ¼ R− of F is
not physical. For black holes or overspinning particles,
the maximal analytic continuation of the spacetime corre-
sponds to the range −∞ < R < ∞. For black holes, R ¼
−∞ is a segment of timelike infinity deep inside the black
hole, see the Penrose diagram in [3].
It is clear from the form (58) of the metric that there is a

smooth closed timelike curve (CTC) through every point of
the spacetime with R < 0, namely the curve given by
constant t and R. Conversely, it was shown in [3] that if
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spacetime is restricted to R > 0 there are no closed
differentiable causal curves at all. We give this argument
here for completeness. A differentiable curve ðt; r;ϕÞðτÞ is
causal if

−fṫ2 þ f−1ṙ2 þ r2
�
ϕ̇þ J

2r2
ṫ

�
2

≤ 0; ð61Þ

where a dot denotes d=dτ. Causal curves that cross an event
horizon or Cauchy horizon cannot cross it again and so
cannot be closed. Hence it is sufficient to consider curves
that remain in f > 0 and curves that remain in f < 0. In a
spacetime region where f > 0, we note that a closed
differentiable curve must have one point where ṫ ¼ 0.
But then there is a contradiction with (61) as long as r2 > 0.
Similarly, in a spacetime region where f < 0, we note that a
closed differentiable curve must have a point where ṙ ¼ 0
to obtain the same contradiction.
It was conjectured in [3] that any field theory matter

falling into a BTZ black hole has divergent stress-energy at
r ¼ 0 and so turns it into a genuine curvature singularity.
Therefore it was proposed to exclude r < 0 and consider
r ¼ 0 as the true singularity, by extension even in the
vacuum black hole case. Excluding the CTC region for
point particles or overspinning particles can be justfied in
the same way. However, if we think of the particle as
corresponding to a singular stress-energy tensor with
support on a worldline, the point of view taken (for
Λ ¼ 0) in [1], that particle is at χ ¼ 0 for point particles
and at χ ¼ −∞ for overspinning particles, not at r ¼ 0. A
spinning “particle” at r ¼ 0 is really a brane, the point of
view taken (for Λ < 0) in [12]. For the purpose of our
calculations, it will not be necessary to take a view on this
as long as the r > 0 regions of the two particles never
overlap (or at least not before they have fallen into a black
hole). It is worth stressing that the existence of CTCs is
independent of the value of Λ, see also Appendix C.

III. SLð2;RÞ DESCRIPTION OF THE ISOMETRIES
OF PADS3, AND OF THE BTZ SOLUTIONS

A. padS3 as a Lie group manifold

The hyperboloid (3) corresponding to the time-periodic
spacetime padS3 can be mapped to the Lie group SLð2;RÞ
via the identification

x ¼ x3I þ x0γ0 þ x1γ1 þ x2γ2; ð62Þ

where I is the identity matrix and the γ-matrices are

γ0¼
�

0 1

−1 0

�
; γ1 ¼

�
0 1

1 0

�
; γ2 ¼

�
1 0

0 −1

�
: ð63Þ

Together these form a basis of real 2 × 2 matrices. The
condition (3) is precisely the condition detx ¼ 1 for

the matrix x to be an element of the group. The inverse
of (62) is

x0 ¼ −
1

2
trðγ0xÞ; x1 ¼

1

2
trðγ1xÞ;

x2 ¼
1

2
trðγ2xÞ; x3 ¼

1

2
trðxÞ: ð64Þ

We can parametrize the general element of SLð2; RÞ as

ggenðζ;ψ ;φÞ ≔ cosh ζðcosψI þ sinψγ0Þ
þ sinh ζðcosφγ1 þ sinφγ2Þ: ð65Þ

Taking the inverse of g corresponds to changing the signs of
the coefficients of γ0, γ1 and γ2. Hence

ggenðζ;ψ ;φÞ−1 ¼ ggenð−ζ;−ψ ;φÞ: ð66Þ

Note also that for g; h∈ SLð2;RÞ, trðg−1Þ ¼ trg and
trgh ¼ trhg.

B. Isometries

In the representation of padS3 as SLð2;RÞ, any isometry
ϕ can be represented as

ϕ∶x ↦ x̃ ≔ g−1xh; ð67Þ

where g and h are two elements of SLð2;RÞ, called the left
and right generators of the isometry. ðg; hÞ and ð−g;−hÞ
(and only those two pairs) represent the same isometry. We
follow the convention of [7]. (By contrast, [11] uses the
convention gxh.) The composition of isometries is then
given by right matrix multiplication of the generators ðg; hÞ,
that is ϕ1 ∘ ϕ2 has generators ðg1g2; h1h2Þ.
The isometry admits fixed points x ¼ g−1xh if and only

if the generators are in the same conjugacy class, that is,
there exists an x such that

g ¼ xhx−1: ð68Þ

In particular, if either h ¼ I or g ¼ I (but not both), ϕ is the
left or right action and so acts freely (admits no fixed
points). However, if any fixed points exist, the set of fixed
points is precisely a geodesic [7], which can be interpreted
as a generalized axis of rotation.
The isometry group of padS3 can also be represented as

SOð2; 2Þ acting on x∈Rð2;2Þ by matrix multiplication. See
Appendix A for details.

C. Point particles, overspinning particles
and black holes as isometries

As we have already seen, particles and black holes in
adS3 can be represented by identifying the padS3 space-
time under a nontrivial isometry, that is
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ψ∶x ∼ u−1xv: ð69Þ

We can also look at the identification ψ (considered as a
physical particle or black hole) under the isometry ϕ
(considered as a mere change of coordinate system that
leaves the form of the metric invariant), that is ψ̃ ≔ ϕ−1ψϕ.
In terms of the SLð2;RÞ generators we have

g−1xh ∼ g−1u−1xvh ¼ ðg−1ugÞ−1ðg−1xhÞðh−1vhÞ ð70Þ

or equivalently

x̃ ∼ ũ−1x̃ ṽ ð71Þ

where the generators of the same isometry ψ, expressed in
the new “coordinate system” x̃ are

ũ ≔ g−1ug; ṽ ≔ h−1vh: ð72Þ

This specifies how the generators u and v of the identi-
fication ψ representing a physical particle transform under
an independent isometry ϕ with generators g and h
representing a coordinate change.
The identification of the spacetime with itself under the

isometry ψ is transitive. Hence with two objects (particle or
black hole) we also have the identifications

ψ2 ∘ ψ1∶ x ∼ u−12 ðu−11 xv1Þv2 ¼ ðu1u2Þ−1xðv1v2Þ ð73Þ

and

ψ1 ∘ ψ2∶x ∼ u−11 ðu−12 xv2Þv1 ¼ ðu2u1Þ−1xðv2v1Þ ð74Þ

We can think of these as the representation of an “effective
particle.” We note that we can write

u1u2 ¼ u−12 ðu2u1Þu2; v1v2 ¼ v−12 ðv2v1Þv2: ð75Þ

Comparing (75) with (72), we see that the product
particle generators taken in the two orders are related
by the “coordinate transformation” (67) generated by
ðg; hÞ ¼ ðu2; v2Þ. Hence taking the product isometry in
the two orders corresponds to the same effective particle in
two different coordinate patches. See Appendix D for the
visualization of an example with Λ ¼ 0 that illustrates the
effective particle in the two different gauges.
Throughout this paper, we use x, y, z for points in padS3,

u, v for left and right particle generators, and g, h for left
and right generators of a “coordinate change,” even though
they are all elements of SLð2;RÞ.
What is the gauge-invariant information in a pair ðu; vÞ

of generators? The eigenvalues of any matrix are invariant
under conjugation, but since in SLð2;RÞ the determinant
(product of the eigenvalues) is always 1 and there are only
two such eigenvalues, two elements of SLð2;RÞ are

conjugate if and only if they have the same trace (sum
of the eigenvalues). The product trace trðu1u2Þ is also
gauge-invariant, and independent of the product order. We
will see that the traces of particle generators encode the rest
mass and spin of the particle, and so the traces of the
product generators (in either order) encode the rest mass
and spin of the effective particle. No other gauge-invariant
quantities can be constructed from ðu; vÞ.
For two spacetime points x and y in adS3 linked by a

geodesic, the geodesic distance dðx; yÞ between them is
given by

1

2
trðx−1yÞ ¼

8<
:

cos dðx; yÞ spacelike;

cosh dðx; yÞ timelike;

1 null separated:

ð76Þ

This is easily verified by considering simple cases and
noting that both the left-hand side and the right-hand side of
this equation are gauge-invariant.

D. BTZ generators

The isometry ψ of the BTZ black hole solutions is of the
form (69) with generators

ubh
vbh

�
¼ − cosh β∓I − sinh β∓γ2

¼ − cosh ðπ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M ∓ J

p ÞI − sinhð…Þγ2 ð77Þ

for M ≥ 0, jJj ≤ M. We have made an arbitrary choice of
overall sign, such that the generators of padS3 are I [compare
the limit M ¼ −1, J ¼ 0 of (79) below.] To avoid writing
factors of π, we have introduced the shorthands

β� ≔ πλþ�: ð78Þ

From Table I and (31b)–(31c) we can verify explicitly that
(69)with (77) acts on theouter,middle and inner regionof the
BTZblack hole spacetime in the sameway asϕ → ϕþ 2π in
the BTZ coordinates ðt; r;ϕÞ. However, the SLð2;RÞ picture
covers the identifications in all three regions at once.
The isometry ψ of the BTZ spinning point particle

solutions is of the form (69) with generators

upp
vpp

�
¼ cos ν∓I þ sin ν∓γ0

¼ − cos ðπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M � J

p
ÞI þ sinð…Þγ0: ð79Þ

To avoid writing factors of π, we have introduced the
shorthand

ν� ≔ πð1 − λ−∓Þ ¼ ν� Δt̂pp
2

ð80Þ
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We can again verify explicitly that this acts on the BTZ
black hole spacetime in the same way as ϕ → ϕþ 2π in the
BTZ coordinates.
The BTZ generators for overspinning particles with

J > jMj are

uJ>jMj ¼ upp; vJ>jMj ¼ vbh; ð81Þ

and for J < jMj they are

uJ>jMj ¼ ubh; vJ>jMj ¼ vpp: ð82Þ

The coordinate formulas in Sec. II D were actually found
by the methods of Appendix B from the generators
(81), (82).
Put differently, in all parts of the ðJ;MÞ-plane, we choose

u ¼ ubh if M − J > 0 and u ¼ upp if M − J < 0, and we
choose v ¼ vbh if M þ J > 0 and v ¼ vpp if M þ J < 0.
The generators of theM ¼ J ¼ 0 spacetime appear to be

u ¼ v ¼ −I, but this is not the correct limit. From (35), we
see that as sþ → 0, the fundamental domain between the
two surfaces ϕ̂ ¼ 0 and ϕ̂ ¼ 2πsþ disappears. The correct
way of taking the limit is to apply a boost at the same
time [3]. The two identification surfaces then do not
approach each other uniformly as the limit is taken, but
touch only at one end (infinity) while staying apart at the
other end.

E. M and J from the traces of the
isometry generators

The traces of the generators are related to each other in
the four segments of the ðJ;MÞ-plane by analytic continu-
ation. We have

Tu ¼ − cosh π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − J

p
¼ − cos π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M þ J

p
; ð83aÞ

Tv ¼ − cosh π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ J

p ¼ − cos π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M − J

p
ð83bÞ

for the BTZ generators everywhere in the ðJ;MÞ plane. By
contrast, there is no direct analytic continuation of the
entire generators. To obtain one, one would have to apply a
gauge transformation to the generators in order to transform
a curve in SLð2;RÞ × SLð2;RÞ of generators that turns a
corner at J ¼ �M, with either u ¼ −I or v ¼ −I, into a
smooth one.
We define the function

T ðQÞ ≔ − cosh π
ffiffiffiffi
Q

p
¼ − cos π

ffiffiffiffiffiffiffi
−Q

p
ð84Þ

which is complex-analytic in the entire Q plane, and in
particular is real-valued and real-analytic on the real line
−∞ < Q < ∞. For −∞ < T ≤ 1, T ðQÞ has the real
analytic inverse

QðTÞ ≔ ½cosh−1ð−TÞ�2
π2

¼ −
½cos−1ð−TÞ�2

π2
: ð85Þ

The function QðTÞ is shown in Fig. 1. We can then write

Tu ¼ T ðM − JÞ; ð86aÞ

Tv ¼ T ðM þ JÞ ð86bÞ

for all real values of M and J, or equivalently

M − J ¼ QðTuÞ; ð87aÞ

M þ J ¼ QðTvÞ: ð87bÞ

This bijection between ðu; vÞ and ðJ;MÞ is defined only for
Tu; Tv ≤ 1, and jJj ≤ M þ 1. Figure 2 shows the regions
in the ðJ;MÞ plane representing black holes, point particles
and overspinning particles, and where these can be repre-
sented using the group theory approach.

F. Applicability of the isometry group approach

We have seen that the approach of identifying padS3 or
eadS3 under an isometry of padS3 covers all the BTZ black
hole solutions, but point particles and overspinning par-
ticles only for jJj < M þ 1. In other words, we can only
represent point particles in parameter region

−1þ jJj < M < −jJj ð88Þ

(the dark green region in Fig. 2), and overspinning particles
in the parameter region

−jMj < jJj < −1þM ð89Þ

consisting of two disjoint parts J > 0 and J < 0 (the dark
blue region in Fig. 2). The BTZ solutions we miss are those
that require identifications

ðt̂; χ; ϕ̂Þ ∼ ðt̂þ Δt̂; χ; ϕ̂þ Δϕ̂Þ ð90Þ

FIG. 1. A plot of QðTÞ. It is defined for T ≤ 1. Note
Qð−1Þ ¼ 0, Qð0Þ ¼ −1=4 and Qð1Þ ¼ −1.
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with jΔt̂j > 2π or Δϕ̂ > 2π or both, whereas both have
period 2π in the metric (45) of padS3. Unwinding t̂ gives
rise to the eadS3 solution, but already we are not aware of a
parametrization of the isometry group of eadS3 that allows
easy multiplication. Further unwinding ϕ̂ produces a
spacetime that we may call uadS3, with a branch point
at χ ¼ 0. Its isometry group is presumably the universal
cover of SLð2;RÞ × SLð2;RÞ, but this is not a matrix
group and so does not allow for easy multiplication.
At this point, we seem to be facing a technical obstacle

that we have not managed to overcome. However, one may
wonder if the BTZ solutions we are missing actually arise
as exteriors of physical compact objects.
This question is suggested by the example of fluid stars.

All rigidly rotating perfect fluid stars, for arbitrary equation
of state, have been constructed explicitly in [16], building on
the earlier work [17]. (The construction is formally for
barotropic equations of state, but in an axistationary solution,
where everything depends only on r, a stratified equation of
state cannot be distinguished from a barotropic one). For any
barotropic equation of state that has sound speed no greater
than the speed of light and admits solutions with finite mass,
stars with exterior metrics of all three types (point particle,
black hole and overspinning particle) exist. These precisely
fill the region jJj < M þ 1 withM > −1 of BTZ parameter
space that is characterized by isometries of padS3.

IV. A SPINNING POINT PARTICLE
ON AN ARBITRARY TRAJECTORY

A. Timelike geodesics

The worldline r ¼ 0 of a point particle given by the BTZ
metric corresponds to the world tube χ ¼ χpp surrounding

the geodesic χ ¼ 0 in the metric (45). More generally, the
worldline of any freely falling compact object corresponds
to a world tube surrounding a geodesic of eads3. Hence we
begin by calculating the timelike geodesics of eadS3.
Since the metric (7) is independent of both ϕ and t, both

∂t and ∂ϕ are Killing vectors, giving rise to the conserved
energy (per rest mass)

E ≔ −uað∂=∂tÞa ¼ cosh2 χ ṫ ð91Þ

and angular momentum (per rest mass)

L ≔ uað∂=∂ϕÞa ¼ sinh2 χϕ̇: ð92Þ

Here a dot denotes d=dτ and τ is the proper time. The
normalization condition uaua ¼ −1 becomes a nonlinear
first-order differential equation for χðτÞ, namely

χ̇2 þ L2

sinh2 χ
−

E2

cosh2 χ
¼ −1: ð93Þ

In the coordinate r defined in Eq. (8) this becomes

ṙ2 ¼ E2 −
�
1þ 1

r2

�
L2 − ð1þ r2Þ: ð94Þ

Taking the square root, we obtain a separable ODE that can
be integrated in closed form to obtain

χðτÞ ¼ sinh−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C −D cos 2τ

p
Þ; ð95Þ

where we have defined the temporary shorthands

C ≔
E2 − L2 − 1

2
; D ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − L2

p
: ð96Þ

Without loss of generality, we have fixed the origin of τ so
that the closest approach to the “central” worldline χ ¼ 0 is
at τ ¼ nπ for integer n. The proper distance at these
moments, measured along surfaces of constant t (and in
units of l) is

δ ≔ sinh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C −D

p
: ð97Þ

By integrating the definitions of E and L we then obtain
tðτÞ and ϕðτÞ.
We define the Lorentz factor Γ, rapidity γ and 2-velocity

v of the geodesic with tangent vector ua, with respect to the
observers na normal to the slices of constant t, by

Γ ≔ cosh γ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ≔ −uana; ð98Þ

where uaua ¼ nana ¼ −1. We note for later use that
v ¼ tanh γ. With na ¼ − cosh χðdtÞa, we find

FIG. 2. A plot of the ðJ;MÞ plane, showing the black hole
region (black), region of point particles that can be represented
using the SLð2;RÞ approach (dark green) and cannot (light
green), and regions of overspinning particles that can be
represented using the SLð2;RÞ approach (dark blue) and cannot
(light blue). The two objects considered in this paper take
parameters in the dark green region.
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ΓðτÞ ¼ E
cosh χðτÞ : ð99Þ

We now define the constant parameter

z ≔ γð0Þ ¼ cosh−1
�

E
cosh δ

�
: ð100Þ

In terms of the parameters δ and z, we then have

E ¼ cosh z cosh δ; L ¼ sinh z sinh δ; ð101Þ

and the geodesics are given by

χðτÞ ¼ sinh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2τsinh2 zþ cos2 τsinh2 δ

p
; ð102aÞ

tðτÞ ¼ tan−1
�
cosh z tan τ
cosh δ

�
þ t0; ð102bÞ

ϕðτÞ ¼ tan−1
�
sinh z tan τ
sinh δ

�
þ ϕ0; ð102cÞ

where t0 and ϕ0 are arbitrary integration constants. We can
now allow both z and δ to have either sign. If we think
about geodesics in terms of initial data at, say, t ¼ 0, the
free data are the initial position and 2-velocity, requiring 4
parameters. These can be mapped to our parameters t0, ϕ0,
δ and z, up to t0 → t0 þ 2nπ.
χðτÞ is periodic with period π, and take values between

jδj and jzj, either of which could be the larger one of the
two. We interpret the inverse tan−1 so that tðτÞ always
increases monotonically, and ϕðτÞ increases (decreases)
monotonically if δ and z have the same (opposite) sign.
When τ has increased by 2π, t has increased by 2π, ϕ
has changed by 2π or −2π, and χ has gone through two
periods.
Looking back, we see that (94) is formally identical to

the effective radial equation of motion of a Newtonian
particle with energy per mass C, angular momentum per
mass L, and an attractive central force per mass equal to the
radius r (like the force of a spring). Hence it is not
surprising that in terms of x1 and x2 the timelike geodesics
are the ellipses

�
x1

sinh z

�
2

þ
�

x2
sinh δ

�
2

¼ 1: ð103Þ

The relative sign of z and δ determines the direction of
the orbit. In the special cases δ ¼ �z the orbits become
circular. The timelike geodesic χ ¼ 0 that appears to be at
the center of each of these ellipses is not privileged
physically. Rather, as the background spacetime is max-
imally symmetric, any one timelike geodesic can be
transformed into χ ¼ 0 by an isometry, and this will

transform all other timelike geodesics into ellipses about
this new center.
Because all geodesics have the same period 2π in t (and

in τ), any two timelike geodesics that intersect once do so
an infinite number of times at coordinate time intervals
Δt ¼ π and proper time intervals Δτ ¼ π, irrespective of
their relative boost at the points of intersection. This
periodicity also relates the timelike geodesics of padS3
and eadS3.

B. Null geodesics

To find null geodesics as a limit of our timelike geo-
desics, we take the boost z to infinity while also rescaling
the proper time τ by an infinite factor. Reparametrizing τ as

λ ≔ τ cosh z ð104Þ

and taking the limit z → ∞, we obtain

χðλÞ ¼ sinh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ sinh2 δ

p
; ð105aÞ

tðλÞ ¼ tan−1
�

λ

cosh δ

�
þ t0; ð105bÞ

ϕðλÞ ¼ tan−1
�

λ

sinh δ

�
þ ϕ0: ð105cÞ

Null geodesics can of course also be found directly from
(93) with the right-hand side set to 0 instead of −1. The
affine parameter λ is defined only up to an affine trans-
formation. With (104) we have normalized λ so that
dt=dλ ¼ 1= cosh δ at λ ¼ 0, which is the moment of closest
approach to χ ¼ 0. In contrast to the timelike case, for
−∞ < λ < ∞, each null geodesic crosses eadS3 exactly
once, entering and leaving through the timelike infinity at
t ¼ t0 ∓ π=2, χ ¼ ∞, ϕ ¼ ϕ0 ∓ π=2.

C. Massive nonspinning particles

An elegant way of computing isometry generators that
leave a given geodesic invariant was given in [7]. This can
be used to find the generators of any nonspinning point
particle. It is easily verified that if we take any two points y
and z and define u ¼ zy−1 and v ¼ y−1z, then x ¼ u−1xv
is obeyed both for x ¼ y and for x ¼ z. But locally any two
points y and z define a unique geodesic xðτÞ through them.
Finally, it can be shown that the fixed points of an isometry
of padS3, if there are any, must form a geodesic [7].
Combining these two facts, we must have that xðτÞ ¼
u−1xðτÞv for all points on the geodesic. Hence u and v
obtained from any two points y ¼ xðτyÞ and z ¼ xðτzÞ on a
geodesic are the generators of an isometry that leaves
precisely this geodesic invariant. It is clear that the
generator can depend only on ν ≔ τz − τy .
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The general timelike geodesic (102a)–(102c) in
SLð2;RÞ notation, using (62) and (5), is

xðτÞ¼ ðcos t0 coshδcosτ− sin t0 coshzsinτÞI
þðcos t0 coshzsinτþ sin t0 coshδcosτÞγ0
þðcosϕ0 sinhδcosτþ sinϕ0 sinhzsinτÞγ1
þðcosϕ0 sinhzsinτ− sinϕ0 sinhδcosτÞγ2; ð106Þ

where τ is proper time. The generators in terms of ν, δ, z, t0
and ϕ0 become

u

v

�
¼ cos νI þ sin νfcosh z�γ0
þ sinh z�½− sinϕ�γ1 þ cosϕ�γ2�g; ð107Þ

where we have defined the shorthands

z� ≔ z� δ; ϕ� ≔ ϕ0 � t0: ð108Þ

They obey the identities

uðt0;ϕ0; z; δ; νÞ ¼ vð−t0;ϕ0; z;−δ; νÞ ð109Þ

relating the left and right generator, and the rotation
symmetry

uðt0;ϕ0 þ π; z; δ; νÞ ¼ uðt0;ϕ0;−z;−δ; νÞ ð110Þ

and similarly for v. The latter symmetry is intuitive: reversing
both boost and impact parameter is equivalent to a rotation by
π. Note also that the geodesic in SLð2;RÞ notation and the
particle generators are regular as δ → 0, whereas the expres-
sions for t, χ andϕ are not, due to the coordinate singularity of
the polar coordinates ðχ;ϕÞ at χ ¼ 0.
The generators for a particle sitting still at χ ¼ 0, with

δ ¼ z ¼ 0, are simply

u ¼ v ¼ cos νI þ sin νγ0; ð111Þ

which agrees with the BTZ generators (79) for zero spin.
We read off

Tu ¼ Tv ¼ cos ν; ð112Þ

and as the trace is invariant under conjugation, this
expression is invariant under the isometries that map one
timelike geodesic to another, and so it must be related to the
rest mass of any nonspinning particle, independently of
location and velocity. If we combine two massive non-
spinning particles on the same geodesic (characterized by δ,
z, and ϕ0) by multiplying their generators, we find that
ðu1u2; v1v2Þ describe another particle on this geodesic,
with mass ν1 þ ν2. So ν is proportional to the locally

measured particle mass. The factor of proportionality is
obtained by directly solving the Einstein equations with the
distributional stress-energy tensor

Tab ¼ muaubδðxÞ; ð113Þ

which makes sense in 2þ 1 dimensions (only). The result
is ν ¼ 4πm [1], see also Appendix C. Because the source is
infinitesimally small, this is independent of Λ.

D. Massless nonspinning particles

To obtain the massless limit of the massive particle
generators, we let z → ∞ at the same time as ν → 0 such
that

lim
ν→0

ν cosh z≕W ð114Þ

is finite. We obtain

u

v

�
¼ I þWe∓δ½γ0 − sinϕ�γ1 þ cosϕ�γ2�: ð115Þ

Equivalently, we can repeat the construction of the
particle generators from the geodesic it is on. The null
geodesics (105a)–(105c) in SLð2;RÞ notation are

xðλÞ ¼ ðcos t0 cosh δþ λ sin t0ÞI
þ ðsin t0 cosh δþ λ cos t0Þγ0
þ ðcosϕ0 sinh δ − λ sinϕ0Þγ1
þ ðsinϕ0 sinh δþ λ cosϕ0Þγ2: ð116Þ

Wefind (115) again,withW ≔ λz − λy . Putting twomassless
particles with energiesW1 andW2 on the same geodesic, the
product of their generators has W ¼ W1 þW2, so W is
proportional to the particle energy, see also the end of Sec.VI
C below for the relation between W and energy.

E. Massive spinning particle

The approach starting from a geodesic cannot be
extended to spinning particles, as their symmetry identifies
any point on the particle worldline with another one, shifted
in time. However, we can obtain the generators for a
massive spinning particle by boosting and displacing the
BTZ solution. The 5-parameter family of isometries (67)
with generators

g

h

�
≔ ggen

�
z∓
2
;ψ ;ϕ� þ ψ

�
; ð117Þ

where ggen was defined in (65) and ϕ� was defined in (108),
is the most general one (out of the 6-dimensional group of
all isometries) which maps the timelike “central” geodesic
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χ ¼ 0 of the padS3 metric (7), represented in SLð2;RÞ
notation as

xc ¼ cosðt0 þ τÞI þ sinðt0 þ τÞγ0; ð118Þ

to the geodesic (102a)–(102c), represented as (106). We
have already parametrized it so that it maps the generators
(79) of the nonspinning BTZ point particle to (107) via the
action (72).
This 5-parameter family is periodic with period 2π in ϕ�

and ψ . Moreover, shifting ψ by π changes only the overall
sign of g and h, and so corresponds to the same isometry.
Changing the signs of both z and δ is equivalent to shifting
either t0 or ϕ0 by π, as was the case for nonspinning
particles. Both g and h have a left factor cosψI þ sinψγ0
that corresponds to a rotation by 2ψ in the x1x2 plane
(which leaves the particle trajectory unchanged), applied
before any boost and displacement.
Hence we define the generators of a boosted and

displaced spinning point particle by (72) with (117),
obtaining

u

v

�
¼ cos ν∓I þ sin ν∓fcosh z∓γ0
þ sinh z∓½− sinϕ�γ1 þ cosϕ�γ2�g: ð119Þ

The value of ψ does not affect the generators. As expected,
these generators map the geodesic (106) to itself but with a
time jump τ → τ þ 2πa−, compare (48). In the nonspinning
case, we have νþ ¼ ν− ¼ ν, and (119) reduces to (107).

F. Massless spinning particle

We reparametrize

M ¼ −1þ 2W
π cosh z

; J ¼ 2U
π cosh z

ð120Þ

The condition jJj < M þ 1 for the particle to be repre-
sentable as an isometry of padS3 is equivalent to 0 < W <
jUj (energy dominates spin).
We now define the massless limit of (119) by letting

z → ∞ while keeping W, U and δ fixed. The resulting
generators are

u

v

�
¼ I þ e∓δðW ∓ UÞ½γ0
− sinϕ�γ1 þ cosϕ�γ2�: ð121Þ

We recover the nonspinning case (115) by setting U ¼ 0.
Both W and U are additive if we place two massless
particles on the same orbit, so are proportional to the
particle energy and spin.
The generator traces for a massless spinning particle are

Tu ¼ Tv ¼ 1, as for the adS3 solution itself, so in contrast

to the massive spinning particles these are not BTZ
solutions. It is clear that they cannot be, as the BTZ
solutions are by ansatz axisymmetric and stationary, while
the massless particle solutions are neither: the particle
crosses eadS3 at a specific time and in a specific direction,
which breaks these symmetries.
The fact that only the generator traces are gauge-

invariant, but they are both 1, also suggests a single
massless particle cannot be distinguished from vacuum
adS3 in a gauge-independent way. We can make a gauge
transformation from (121) to

ũ

ṽ

�
¼ I þ eα∓ðW ∓ UÞðγ0 þ γ2Þ; ð122Þ

for two arbitrary (real and finite) gauge parameters α∓.
Hence not only the orbital parameters δ, ϕ0 and t0 are pure
gauge, as one would expect, but so are W �U, up to the
fact they do not vanish and their sign.
What is the identification isometry parametrized by

(121)? The 1-parameter family of null geodesics (116),
with ϕ0 and t0 fixed, −∞ < δ < ∞ labeling the geodesics,
and λ the affine parameter along them, form a null plane.
This is most easily seen inRð2;2Þ, where the family with, for
simplicity, ϕ0 ¼ t0 ¼ 0 is given by

xμ ¼ ðcosh δ; λ; sinh δ; λÞ: ð123Þ

One can show that the isometry (121) acts on the null plane
parametrized by t0, ϕ0, −∞ < δ < ∞ and −∞ < λ < ∞,
where δ ¼ δ0 is the particle worldline, as the identification

λ ∼ λþ 2W coshðδ − δ0Þ þ 2U sinhðδ − δ0Þ; ð124Þ

On the particle worldline itself, the shift in λ is simply
Δλ ¼ 2W. Note it is neither an even nor an odd function of
δ − δ0, and depends on both W and U.

V. TWO SPINNING POINT PARTICLES

A. Interpretation of product order in the rest frame

We now calculate the products of the generators of two
point particles. Interpreting this product physically requires
some care. Consider first two nonspinning massive par-
ticles with the same mass ν0 and equal and opposite boosts
z0, colliding head-on. Without loss of generality, we can
make the particles collide at χ ¼ 0 at t ¼ 0, coming from
the y and −y directions. Hence it is sufficient to consider

δi¼ t0i¼ϕ01¼0; ϕ02¼π; νi¼ν0; zi¼z0≥0: ð125Þ

The product generators in this special case are
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v1v2 ¼ u1u2

¼ ðcos 2νcosh2 z0 − sinh2 z0ÞI
þ sin 2ν0 cosh z0γ0 þ sin2 ν0 sinh 2z0γ1: ð126Þ

They can be written as

v1v2 ¼ u1u2

¼ cos νtotI þ sin νtotðcosh ztotγ0 þ sinh ztotγ1Þ ð127Þ

with parameters

νtot ¼ 2 sin−1ðsin ν0 cosh z0Þ; ð128aÞ

ztot ¼ − tanh−1ðtan ν0 sinh z0Þ: ð128bÞ

These are the generators of a single particle with rest mass
νtot, going through χ ¼ 0 at t ¼ 0 but not sitting still there:
rather, the particle moves in the x-direction ϕ0 ¼ π=2 with
a rapidity ztot. The appearance of this sideways boost is
initially surprising, but see Appendix D for the visualiza-
tion of an example with Λ ¼ 0. As explained there, the
boost is reversed when the product order is reversed, that is

u1u2 ↔ u2u1 ⇔ ztot ↔ −ztot ð129Þ

and similarly for v2v1. This corresponds to two equally
natural ways of defining a coordinate system on the
effective particle spacetime.
To put the joint particle at rest as seen from either one of

the two sides, we could apply a boost transformation to
u1u2 with generators

g ¼ h ¼ ggen

�
−
ztot
2

; 0;
π

2

�
; ð130Þ

where ggen was defined in (65). The result is

g−1u1u2g ¼ h−1v1v2h ¼ cos νtotI þ sin νtotγ0; ð131Þ

as intended. Alternatively, we could apply the opposite
boost to the product generators taken in the opposite order.

B. Rest frame and center of mass conditions

If there are only two massive, nonspinning particles in
the universe, the only physical parameters of the initial data
are the rest masses νi of the two particles and their relative
rapidity Z and impact parameter D, measured in the “rest
frame” of the system.
However, it is not obvious how to define the 3-momentum

of a self-gravitating test particle locally, as it is sitting at a
singularity of the metric. With Λ < 0, the addition of the
3-momenta of two particles at different points also becomes
ambiguous as there is no parallelism at a distance. To give a

precise definition of the rest frame we need to define the
center of mass of the system at the same time.
We define a “frame” to be a patch of eadS3 that touches

the trajectories of both particles, together with a time slicing
t in which each slice has the geometry dχ2 þ sinh2 χdϕ2 of
H2. We define the distance dðtÞ of the particles in that frame
as the length of the spatial geodesic linking them. We
assume this geodesic lies inside the patch and the wedges
representing the particles do not intersect it. Without loss of
generality, let the closest approach happen at t ¼ 0, with
D ≔ dð0Þ.
We define as a necessary condition for the frame to be

the rest frame that the 2-velocities of two nonspinning
particles are antiparallel at t ¼ 0, where we compare them
by parallel transport along the spatial geodesic linking
them. A sufficiently general family of particles data is

t0i ¼ 0; ϕ01 ¼ 0; ϕ02 ¼ π; zi > 0: ð132Þ

Clearly one of the periodic moments of closest approach,
with respect to the t-frame, is at t ¼ 0, and at that moment
the particles move in the y and−y directions, antiparallel by
our operational definition. We define the relative rapidity
and impact parameter (assumed to be measured in the rest
frame) as

Z ≔ z1 þ z2; D ≔ δ1 þ δ2: ð133Þ

(Recall that rapidities γ, but not velocities v, are additive in
special relativity, and that the two are related by v ¼ tanh γ.)
If we further define the center of mass to be at χ ¼ 0, both δi
must have the same sign, but they, and hence D, can have
either sign. Reversing the sign ofD corresponds to themirror
image of the initial data, and so reverses the orbital angular
momentum. In the rest frame, both zi must have the same
sign. Reversing the signs of zi, δi corresponds to a rotation of
the whole system by π, which is pure gauge.
Assume initially that the two particles (132) have the

same rest mass, offset and rapidity,

νi ¼ ν; δi ¼ δ; zi ¼ z: ð134Þ

By symmetry, the effective particle, a spinning one, should
be at rest in the t-frame at the point χ ¼ 0. The product
generators under the assumptions (132) and (134) are

u1u2
v1v2

�
¼ ðcos 2νcosh2 z∓ − sinh2 z∓ÞI

þ sin 2ν cosh z∓γ0
þ sin2 ν sinh 2z∓γ1: ð135Þ

Reversing the product order in these expressions corresponds
to reversing the signs of both δ and z, which also reverses the
sign of the sideways boost of the effective particle (here, the
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sign of the coefficient of γ1). Geometrically, this represents a
rotation by π of the original two-particle system.
Intuitively, this rotation symmetry should hold also for

any nonsymmetric collision where the zi are measured in
the rest frame and the δi are measured relative to the center
of mass. Returning to the case where we assume only (132),
but leave the νi, δi and zi arbitrary, we therefore define the
center of mass and the rest frame by its symmetry

ðu1u2↔u2u1;v1v2↔v2v1Þ⇔ðδi↔−δi;zi↔−ziÞ: ð136Þ

The ui and vi are given by (119). Explicit but tedious
calculation shows that (136) holds if and only if the two
constraints

sinh z�1 tan ν1 ¼ ð1 ↔ 2Þ ð137Þ

on the initial data parameters hold, or equivalently

cosh δ1 sinh z1 tan ν1 ¼ ð1 ↔ 2Þ; ð138aÞ

sinh δ1 cosh z1 tan ν1 ¼ ð1 ↔ 2Þ: ð138bÞ

In the limit νi ≪ 1, zi ≪ 1 and δi ≪ 1 of a small, slow orbit
and small masses, where Λ, special-relativistic effects and
self-gravity can be neglected, these conditions become

ν1z1 ¼ ν2z2; ð139aÞ

ν1δ1 ¼ ν2δ2: ð139bÞ

This limit identifies (138a) as the condition that the t-frame
is the rest frame and (138) as the condition that χ ¼ 0 is the
center of mass. For head-on collisions, with δi ¼ 0, the
center of mass condition duly becomes trivial, and the rest
frame condition becomes

sinh z1 tan ν1 ¼ ð1 ↔ 2Þ; ð140Þ

in agreement with Eq. (5.1) of [9].
For spinning particles, the rest frame and center of mass

conditions (137) generalise to

sin z�1 tan ν�1 ¼ ð1 ↔ 2Þ; ð141Þ

which must hold separately for the upper and lower signs.
They do not separate into center of mass and rest frame
conditions of the form (138).
With (132), (138a), (138b) imposed, the products of two

generators (119) are

u1u2
v1v2

�
¼ ½cos ν∓1 cos ν∓2 − sin ν∓1 sinν∓2 coshðZ ∓ DÞ�I

þ
�
1

2
½1− cos2ν∓1 cos2ν∓2

þ sin2ν∓1 sin2ν∓2 coshðZ ∓ DÞ�
�1

2

γ0

þ sin ν∓1 sin ν∓2 sinhðZ ∓ DÞγ1: ð142Þ

By construction, the reverse product order is obtained by
reversing the signs of Z and D. The trace of this expression
takes this form already in general gauge.

C. Orbital parameters

Solving tðτ1Þ ¼ tðτ2Þ for τ2 in terms of τ1 [with tðτiÞ
given in (102b)], and using the rest frame and center of
mass conditions (138), we find that ϕ2ðtÞ ¼ ϕ1ðtÞ þ π for
all t. In other words, in the center of mass frame the two
particles are always linked by a spatial geodesic throughout
the point χ ¼ 0, and so they appear to be circling this point
as one would intuitively expect for a common center of
mass in the rest frame. Of course, each particle actually
moves independently on an elliptic orbit. The center of
mass and rest frame conditions simply make these inde-
pendent movements appear like the effect of a mutual
attraction, with force proportional to the distance r.
We see from (102a) and (102c) that between τ ¼ 0 and

τ ¼ π=2 the parameters zi and δi exchange roles, and hence
the same is true for their sumsD and Z. In scattering theory
language, D is the impact parameter and Z the relativity
rapidity. For periodic orbits, and with our convention that
jDj ≤ Z, D is also the apogee distance, signed with the
handedness of the orbit, and Z the perigee distance.

VI. THE PRODUCT STATE AND ITS
GEOMETRIC INTERPRETATION

A. Total mass and angular momentum
of the two-body system

We now come to the application of (87). As the two-body
systems we consider here cannot radiate or divide their
energy and angular momentum, and as the generator traces
are invariant under isometries, M and J computed from a
suitable product of the generators of the two individual
objects by using must be the total mass and angular
momentum. Applying (87)to the product generators we
have

Mtot − Jtot ¼ QðTu1u2Þ; ð143aÞ

Mtot þ Jtot ¼ QðTv1v2Þ; ð143bÞ

where the function QðTÞ was defined in (85). We identify
the final state as a black hole if M > jJj. This does not say
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anything about the process of black hole formation, which
we do not examine here.
However, Holst and Matschull [7] have constructed the

full spacetime for two massless nonspinning point particles,
which enter through the conformal boundary. They show
that if and only if the effective state is a black hole, a black
hole is formed and the two particles fall through its event
horizon. Based on this work, we conjecture that when the
effective state for any two point particles (massive or
massless, spinning or nonspinning) is a black hole all
particles fall into a black-hole horizon. When one or both of
the particles are massive, they emerge from a white-hole
horizon. When both particles are massless and enter
through the conformal boundary, the white hole is absent.
To avoid the white hole we could create one or both of the
massive particles in a collision of massless particles that
themselves have entered through the conformal boundary
of adS3.
Wewill show for two massive point particles that a point-

particle total state corresponds to a binary that orbits forever
if ν1 þ ν2 < π, but a closed universe if ν1 þ ν2 > π, always
with 0 < νi < π. To complement this, we also conjecture
that an overspinning particle effective state corresponds to a
binary system that orbits forever, again based on the result
of [7] for two massless nonspinning particles.

B. Two massive spinning particles

Recall from (142) that the traces of the product gen-
erators in the massive spinning case are

Tu1u2
Tv1v2

�
¼ cos ν∓1 cos ν∓2

− sin ν∓1 sin ν∓2 coshðZ ∓ DÞ: ð144Þ

Both are ≤ 1, so Mtot and Jtot are defined from (143), and
obey jJtotj < −1þMtot.
From our convention that Z ≥ jDj we find that

jZ �Dj ¼ Z �D. Then from (144) and (143) we have

Mtot − Jtot > 0 ⇔ Z −D > C−; ð145aÞ

Mtot þ Jtot > 0 ⇔ Z þD > Cþ; ð145bÞ

where we have defined the shorthands

C� ≔ cosh−1
�
1þ cos ν�1 cos ν�2

sin ν�1 sin ν�2

�
; ð146Þ

By the assumption that both individual objects are
point particles, with jJij < −Mi, the argument of cosh−1

in (146) is ≥ 1, and so C� defined in (146) are real.
We choose the positive branch of cosh−1, so that C� ≥ 0,
with equality at ν�1 þ ν�2 ¼ π. In the nonspinning case
we have

Cþ ¼ C− ¼ C ≔ cosh−1
�
1þ cos ν1 cos ν2

sin ν1 sin ν2

�
: ð147Þ

The graph of the function Cðν1; ν2Þ is the green surface
in Fig. 3.
Figure 4 shows the total state by color-coding in the

ðD;ZÞ-plane, for particle masses and spins ν�i that give rise
to values C− ¼ 2 and Cþ ¼ 3, chosen arbitrarily for this
plot. The color-coding is the same as in Fig. 2, and we see
that regions of parameter space representing black holes,
point particles and overspinning particles are laid out in
qualitatively the same way in the ðZ;DÞ-plane of orbital
parameters as in the ðJ;MÞ plane of BTZ states. The
boundary Z ¼ jDj of the plot is just our convention that
Z ≥ jDj. The lines Z ¼ C∓ �D that separate black hole,
point particle and overspinning particle outcome regions
depend on the particle masses and spins ν�i through the
two combinations C�.
The 3-dimensional subcase of our 6-dimensional space

of initial data where two nonspinning massive particles
collide head-on, and so the spacetime admits a moment of
time symmetry has previously been investigated by
Steif [5]. We have chosen a gauge where u ¼ v if and

FIG. 3. A plot of the possible effective states in the 3-dimen-
sional parameter space of two nonspinning point particles that
collide head-on, such that the solution has a moment of time
symmetry: the parameters are 0 ≤ ν1; ν2 < π and Z ≥ 0, which is
equal both to the relative rapidity at impact, and the distance when
the particles are momentarily at rest. (The particle spins and the
impact parameter D are assumed to be zero.) The boat-shaped
green surface is Z ¼ Cðν1; ν2Þ. Below and to the left of this
surface (small νi, small Z) the effective state is a virtual effective
particle. Below and to the right (large νi, small Z) the effective
state is real third particle, which closes space. Above the surface
(large Z), the effective state is a black hole. Within this black-hole
region, for data to the right of the blue surface (large νi) the
moment of time symmetry (when the two particles are at
maximum separation) already contains an apparent horizon.
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only if there is a time-symmetry, and this single element
of SLð2;RÞ then parametrizes the isometries of the
2-geometry of the moment of time-symmetry. (See
Appendix E for a summary.) This special case already
illustrates a subtlety: A point-particle effective state can
represent either a (fictitious) effective point particle, and
hence again a binary system that orbits forever, or a genuine
third particle that closes space. In this latter case we have
three particles on an equal footing, two of which we
specified arbitrarily and a third that is determined by the
first two. All three particles emerge from a big-bang
singularity and end in a big-crunch singularity.
We now show that a point-particle effective state means

an effective particle, and so a binary system orbiting
forever, if and only if ν1 þ ν2 < π, and a real third particle
and closed space if and only if ν1 þ ν2 > π, independently
of the orbital parameters and particle spins.
To see this, consider first the limit where Z and D are

much smaller than one. The two-particle orbit is then much
smaller than the cosmological length scale l and so
spacetime outside the particles can be approximated as
locally flat, and the particles are moving slowly, so special-
relativistic effects can also be neglected. In this limit, the
generator traces (144) are approximately

Tu1u2
Tv1v2

�
≃ cosðν∓1 þ ν∓2Þ

¼ cos

�
ν1 þ ν2 ∓ Δt̂1 þ Δt̂2

2

�

≕ cos

�
νtot ∓ Δt̂tot

2

�
: ð148Þ

Because of the periodicity of the cosine, this has multiple
inverses for νtot and ðΔt̂Þtot, and we now need to consider
which choice of inverse is physical.
If 0 ≤ ν1 þ ν2 ≤ π, the total defect angle is less than 2π,

and the excision wedges of the two particles (which in the
Λ ¼ 0 approximation are straight lines) can be rotated so
that they do not overlap. (Where one locates the wedges is
otherwise pure gauge.) One then has a picture of time slices
similar to that of Fig. 5 (in Appendix E): space is open, and
outside both particles the spatial geometry is that of a cone,
while seen from infinity the spatial slice is also a cone with
vertex at a fictitious effective particle. From elementary
Euclidean geometry, the defect angles add up to the total
defect angles. Similarly, the time jumps add up when we go
around both particle worldlines. Hence the correct solution
of (148) is

νtot ≃ ν1 þ ν2; Δt̂tot ≃ Δt̂1 þ Δt̂2: ð149Þ

(We have written ≃ as a reminder that this is only an
approximation for small, slow orbits.)
For ν1 þ ν2 > π, the excision wedges have to overlap.

Only a four-sided compact region of each time slice is now
physical. If the particles are at A and B, and their excision
wedges intersect at C and C’, for consistency we now must
rotate the wedges so that C is mapped to C’ by the
identification associated with either particle, in other
words AC has the same length as AC’, and BC has the
same length as BC’. The wedges now face each other
symmetrically, and the triangles ABC and ABC’ are equal
up to a reflection.
The vertices C and C’ now both represent a third particle

that closes space: AC is glued to AC’, and BC to BC’, so
that C and C’ coincide. Thus glued together, all three
particles are on an equal footing. However, in the opened-
up form, the entire physical angle around particle A is the
angle CAC’, and similarly the entire physical angle around
particle B is the angle CBC’, but the physical angle around
particle C is split equally into the two sectors ACB
and AC’B.
It is easy to see that for small orbits, where the curvature

of spacetime can be neglected, the sum of physical angles
around particles A, B and C is 2π, namely the sum of
interior angles of the two triangles ABC and ABC’. This
means that the sum of the defect angles at the three particles
is 3 × 2π − 2π ¼ 4π. This is the solid angle of S2: each
time slice has topology S2, but the entire solid angle is
concentrated at the three particles, with space flat in
between. Beyond the small-orbit approximation, the cur-
vature of space due to the cosmological constant also
becomes significant. As this is negative for Λ < 0, the sum
of defect angles must be larger than 4π.
With space closed, the total time jump going around all

particles must be zero, as any loop going round all three
particle worldlines is contractible, that is, going around

FIG. 4. A plot of the different effective states for two massive
spinning particles, plotted in the ðD; ZÞ-plane, for arbitrarily
fixed values Cþ ¼ 3 and C− ¼ 2. The plot continues to larger Z
and jDj. By definition Z ≥ jDj, for D to be interpreted as the
(signed) impact parameter and Z the relativity rapidity of the two
particles at the moment of closest approach, or jZj as the apogee
and D as the perigee. In the green region, for 0 ≤ ν1 þ ν2 < π
spacetime at infinity is that of an effective spinning particle and
the binary is eternal, while for ν1 þ ν2 > π space is closed by a
real third particle and collapses. Blue corresponds to an over-
spinning particle, and gray to a spinning black hole. The regions
and diagonal lines in the ðD; ZÞ plane here correspond to the
regions and lines of the same color in Fig. 2.
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none. The correct solution of (148) for π < ν1 þ ν2 < 2π is
therefore

ν1 þ ν2 þ ν3 ≃ 2π; Δt̂1 þ Δt̂2 þ Δt̂3 ≃ 0: ð150Þ

Note that in this entire argument the wedge surfaces are
independent of the particle spins, which only affect the time
shift made in the identification, and so an effective particle
is real if and only if ν1 þ ν2 > π, independently of the
particle spins. We now show that in the generic case, where
Z and D are not small, this simple algebraic criterion still
holds exactly.
As we have seen, the particle is real if the forward

excision wedges overlap, and virtual if the backward
excision wedges overlap. Suppose we start from a situation
where the effective particle is real, and then reduce the
defect angles of the two particles, while keeping their orbits
and time jumps fixed. The real particle will move to the
boundary of the adS3 cylinder, and return as a virtual
particle. Hence the transition occurs when the effective
particle is at infinity. This occurs when either z or δ of the
effective particle become infinite (an elliptic orbit reaching
infinity), or both (a circular orbit at infinity). Hence, one or
both of cosh z� of the effective particle become infinite at
the transition from real to effective particle.
Note now that when the matrices ui and vi are bounded,

then so are u1u2 and v1v2. From (119) we can write

u1u2
v1v2

�
¼ cos νtot∓I þ sin νtot∓ðcosh ztot∓γ0 þ…Þ; ð151Þ

and this must remain bounded as the effective particle
reaches infinity. Given that the coefficients of γ0 in (151)
must remain finite but one or both of cosh ztot∓ become
infinite, we must have that the corresponding sin νtot∓ ¼ 0

and so the corresponding cos νtot∓ ¼ 1 or −1. In other
words, an effective particle can be on an orbit reaching
infinity only if either one of Tu1u2 or Tv1v2 is equal to
either 1 or −1, or both are.
Looking at the product traces now as the functions (144)

of the initial parameters we see that, for fixed νi�, T ¼ �1
occurs at the boundaries of the point-particle region in the
ðD;ZÞ plane, so the effective particle cannot change nature
within that region. But then we can choose to evaluate its
nature in the small, slow orbit approximation jDj; Z ≪ 1 as
above. In other words, the effective particle is virtual for
ν1 þ ν2 < π and real for ν1 þ ν2 > π, independently of the
Δt̂i, D and Z.

C. Two massless spinning particles

We now consider the case of two massless spinning
particles. The special case of two nonspinning massless
particles was treated in [7]. The traces of the product
generators are

Tu1u2
Tv1v2

�
¼ 1 − 2e∓DðW1 ∓ U1ÞðW2 ∓ U2Þ: ð152Þ

In the massless limit, the rest frame and center of mass
conditions (141) become

e�δ1ðW1 � U1Þ ¼ ð1 ↔ 2Þ: ð153Þ
These two equations can be rearranged as

eδ1−δ2 ¼ W2 þU2

W1 þU1

¼ W1 −U1

W2 −U2

: ð154Þ

and soW1,W2, U1 and U2 measured in the rest frame must
obey the one constraint

W2
1 −U2

1 ¼ W2
2 − U2

2: ð155Þ
As we haveWi> jUij, we can parametrize this constraint as

Wi ¼ W0 cosh σi; Ui ¼ W0 sinh σi ð156Þ

where W0 > 0 and −∞ < σi < ∞ can now be chosen
freely. The two constraints (153) then both reduce to

δ1 þ σ1 ¼ δ2 þ σ2: ð157Þ
Given the gauge-invariant parametersD, σ1 and σ2, this can
be solved for

δ1

δ2

�
¼ D� ðσ2 − σ1Þ

2
: ð158Þ

We then find

Tu1u2
Tv1v2

�
¼ 1 − 2W2

0e
∓ðDþΣÞ; ð159Þ

where

Σ ≔ σ1 þ σ2; ð160Þ
and the four gauge-invariant parameters W0, σ1, σ2 and D
can be chosen freely. Substituting (158) into (143) gives

M � J ¼ Qð1 − 2W2
0e

�ðDþΣÞÞ; ð161Þ

and so J is an odd analytic function of Dþ Σ while M
is even.
The inequalities for classifying the effective state are

Mtot − Jtot > 0 ⇔ Dþ Σ < 2 lnW0; ð162aÞ

Mtot þ Jtot > 0 ⇔ Dþ Σ > −2 lnW0: ð162bÞ

We see that it is a black hole state if and only if

jDþ Σj < 2 lnW0; ð163Þ
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which obviously requires W0 > 1, a point particle if and
only

jDþ Σj < −2 lnW0; ð164Þ

which requires W0 < 1, and otherwise an overspinning
particle state. We have the intuitive result that it is,
qualitatively, the sum of orbital angular momentum and
particle spins that impedes collapse. The nonspinning case
is recovered simply by setting Σ ¼ 0, and for this case [7]
have shown that the black hole effective state corresponds
to dynamical black hole formation, while for both the
point particle and overspinning particle effective state the
two particles leave through the conformal boundary. We
conjecture that this holds also in the spinning case.
In the special case where two counterspinning particles

of the same energy collide headon and merge into a single
nonspinning massive point particle, or nonspinning black
hole, we have D ¼ Σ ¼ 0, and ν orM are related to W0 by
1 − 2W2

0 ¼ cos ν for W0 < 1 or 2W2
0 − 1 ¼ cosh

ffiffiffiffiffi
M

p
for

W0 ≥ 1.

D. One massive and one massless spinning particle

In the mixed case where particle 1 is massive and
particle 2 is massless, and reparametrizing

W2≕W02 cosh σ2; U2≕W02 sinh σ2; ð165Þ

the traces of the product generators are

Tu1u2
Tv1v2

�
¼ cos ν∓1 − sin ν∓1W20ez1∓ðDþσ2Þ: ð166Þ

The rest frame and center of mass conditions (141)
become

sinðz1 � δ1Þ tan ν�1 ¼ W20e∓ðδ2þσ2Þ: ð167Þ

Writing δ2 ¼ D − δ1 and eliminating δ1, we obtain

K2 þ 2K cosh D̃þ 1 ¼ e4z1 ð168Þ

where we have defined the shorthands

K ≔
2ez1W20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan νþ1 tan ν−1
p ; ð169aÞ

α1 ≔
1

2
ln
tan ν−1
tan νþ1

; ð169bÞ

D̃ ≔ Dþ σ2 þ α1: ð169cÞ

D̃ is an impact parameter corrected for the spin of the
massive particle (through α1) and the massless particle
(through σ2). We solve (168) as a quadratic equation for K,
obtaining

K ¼ − cosh D̃þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4z1 þ sinh2 D̃

p
: ð170Þ

Hence the product generator traces in their final form are

Tu1u2
Tv1v2

�
¼ cos ν∓1 −

sin ν∓1 tan ν∓1

2
e∓D̃K; ð171Þ

where the five gauge-invariant parameters ν�1, z1,D and σ2
can now be specified freely, and K is given by (170). In the
nonspinning case J1 ¼ U2 ¼ 0 we have α1 ¼ σ2 ¼ 0

and D̃ ¼ D.
The inequalities for classifying the product isometry are

Mtot − Jtot > 0 ⇔ D̃ > C̃−; ð172aÞ

Mtot þ Jtot > 0 ⇔ D̃ < C̃þ; ð172bÞ

where we have defined the shorthands

C̃� ≔ � 1

2
ln
e4z1 − 1 − Ĉ∓
Ĉ∓ðĈ∓ þ 1Þ ; ð173Þ

Ĉ� ≔ 2
1þ cos ν�1

sin ν�1 tan ν∓1

: ð174Þ

In particular, we the effective state is a black hole for

C̃− < D̃ < C̃þ ð175Þ

(which implies C̃− < C̃þ), an effective point particle for

C̃− > D̃ > C̃þ ð176Þ

(which implies C̃− > C̃þ), and an effective overspinning
particle otherwise. We conjecture that a black hole forms
dynamically if and only if the effective state is a black hole,
and otherwise the massless particle leaves the spacetime
through the conformal boundary.

VII. CONCLUSIONS

We have taken the first steps in a research program of
classifying all solutions of 2þ 1-dimensional general
relativity with negative cosmological constant that contain
two compact objects surrounded by vacuum.
The program has three key ingredients: First, the exterior

of any compact object must be an identification of adS3
under an isometry. Second, the same must be true for the
exterior of the composite object. Third, we can obtain the
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composite isometry as a product of the component iso-
metries representing two objects and their relative motion,
as was first done in the Λ ¼ 0 case by Deser, Jackiw and
t’Hooft [1].
The possible exterior solutions for massive compact

objects are precisely the BTZ axistationary vacuum
solutions [2], which are parametrized by any real values
of mass M and spin J. These can be black holes M ≥ jJj,
point particles M < −jJj and overspinning particles
jJj > jMj. The black-hole solutions are very well studied,
the particle solutions less so. In assembling our building
blocks, we have filled a few small gaps in the literature,
such as the maximal analytic extensions of the particle
solutions and the nature of their singularities, and the
construction of the overspinning particle solutions as
identifications of adS3.
We can also admit the point particle and overspinning

particle solutions on the entire domain 0 < r < ∞ as
particle-like solutions. r ¼ 0 is a singular worldline only
for nonspinning point particles, but otherwise is the boun-
dary of a region of closed timelike curves that must be
excised. (The singular worldline χ ¼ 0 is inside this region.)
Finally, we can boost point particles while reducing their

rest mass in order to create perfectly sensible massless
(spinning particles) [7], and so these should be considered
as well. (This probably makes no sense for extended
objects with point particle exterior). This completes our
list candidates for the two objects.
We have encountered two major difficulties in this

programme. The first one is that while all real values of
ðJ;MÞ correspond to distinct BTZ solutions, the algebraic
representation of the isometries of adS3 as the group
SLð2;RÞ × SLð2;RÞ × =Z [3] covers only the segment
M > −1þ jJj of the ðJ;MÞ plane, comprising all black
hole solutions but not all point particle or overspinning
particle solutions.
The solutions we miss either have a time shift in their

identification that is larger than 2π, and/or an excess, rather
than deficit, angle. There seems to be no reason for
excluding these, and it is possible that the wider isometry
group that generates them can be represented in a useful
way. On the other hand, the space of rigidly rotating perfect
fluid stars with causal barotropic equations of state con-
structed in [16] fill precisely the region M > −1þ jJj of
the ðJ;MÞ plane, so it seems also possible that the exteriors
of physically reasonable compact objects all fall into this
region, which can be represented by the isometry group
of padS3.
We can set aside this first difficulty by restricting

ourselves to objects with Mi > −1þ jJij for i ¼ 1, 2.
Within this category, we have further restricted the two
bodies to be to massive point particles or compact
objects with massive point particle exterior, which have
−1þ jJij < Mi < −jJij (the dark green region in Fig. 2),
or massless point particles, which have Mi ¼ −1, Ji ¼ 0

(but nontrivial isometry generators). We have computed
Mtot and Jtot of the composite object as explicit analytic
functions of six gauge-invariant parameters: the two rest
masses and spins, and the impact parameter and energy in
the center of mass frame.
The second major difficulty is how to draw conclusions

about the global spacetime from the algebraic calculation.
We have not attempted this, but rely on Holst and
Matschull’s beautiful explicit construction of the global
spacetimewith twomassless nonspinningpoint particles [7].
Based on their work, we conjecture the following: if the
product isometry corresponds to a black hole, a black hole is
actually created dynamically. When the composite state of
two massive particles is an overspinning particle, the binary
is eternal. When it corresponds to a massive point particle,
the binary is either eternal, or the effective particle is real and
closes space, which then recollapses. We have found a
simple criterion for which of the last two possibilities is
realized. Finally, when either one or both of the two bodies is
a massless particle and no black hole is formed the massless
particle(s) leave the spacetime through the conformal
boundary.
Our expressions for Mtot and Jtot remain finite and

analytic at the black hole threshold. In this sense, there
is no Choptuik-style critical scaling [18,19]. The same is
true also for toy models in 2þ 1 dimensions, such as dust
balls [20,21], thin dust shells [22], or shells with tangential
pressure [23] and rotation [24]. All these systems cannot
shed mass or spin so if a black hole is formed it contains all
the mass and spin, and so the threshold of black hole
formation is jJtotj ¼ Mtot. (By contrast, for 3þ 1 spacetime
dimensions Kehle and Unger [25] have made the exciting
conjecture that there are regions of solution space where the
threshold solutions are extremal black holes also for more
physical matter models or even vacuum.)
However, a system that can shed mass and spin during

collapse will show genuinely nontrivial critical phenoma
even in 2þ 1 spacetime dimensions. This has been
demonstrated for an axisymmetric massless scalar field
without and with angular momentum in [26,27], and for an
axisymmetric perfect fluid without and with angular
momentum in [28,29].
What remains to be done to complete the solution of the

two-body problem is to investigate the spacetimes where
the two bodies include overspinning particles and black
holes, or compact objects with such exteriors. We have not
attempted this as we are not sure about the geometric
meaning of the traces of the generator products. However,
given that there are no periodic test particle orbits on black
hole spacetimes, it is unlikely that eternal black hole
binaries exist. Rather, it is likely that an effective point
particle or overspinning particle is real and closes space, as
in the solutions found in [30].
It would also be interesting to see if BTZ solutions with

M > −1þ jJj can be realized as identifications under an
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isometry of a spacetime we have called uadS3, with these
isometries parametrized in form that allows them to be
composed explicitly.
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APPENDIX A: SOð2;2Þ AND SLð2;RÞ × SLð2;RÞ=Z2

It is helpful to translate the pair of SLð2;RÞ generators
into a single SOð2; 2Þ generator to see how the isometry
acts on the hyperboloid (3) embedded in Rð2;2Þ. We
define the matrix R∈ SOð2; 2Þ equivalent to the pair
ðu; vÞ∈ SLð2;RÞ × SLð2;RÞ=Z1 by

ðRXÞ · γ ≔ u−1ðX · γÞv; ðA1Þ

for all X∈Rð2;2Þ, where X · γ is shorthand for (62). Recall
that we use the coordinates X ¼ ðx3; x0; x1; x2Þ, where we
denote the two timelike directions by ðx3; x0Þ. This defi-
nition gives the explicit formula

Rμν ¼
1

2
ð−1Þδμ0 trðγμu−1γνvÞ ðA2Þ

for the components of the matrix R. If we write u ¼P
uμγμ, where u20 þ u23 − u21 − u22 ¼ 1, and similarly for v,

then each matrix element Rμν of R is a sum of four terms of
the form uαvβ.
Consider now the SOð2; 2Þ matrix S equivalent to the

pair of SLð2;RÞ matrices ðu; IÞ, and T equivalent to the
pair ðI; vÞ. The generators of the product of these iso-
metries, in either order, are ðu; vÞ and so we must have
R ¼ ST ¼ TS. Moreover, for a given isometry u and v are
unique up to an overall sign. This implies any SOð2; 2Þ
matrix R can be written as the product of two commuting
SOð2; 2Þ factors S and T. However, the isometries ðup; vqÞ
and ðu1−p; v1−qÞ, whose product is ðu; vÞ, also commute,
and so the split is not unique.
We define the 6 one-parameter subgroups R½μν�ðαÞ of

SOð2; 2Þ, with μ > ν; μ; ν ¼ 3; 0; 1; 2, as the group of
rotations or boosts in the ðxμ; xνÞ-plane. The subgroups
Rμν and Rκλ commute if and only if μ, ν, κ, λ are all distinct,
and so the 6 one-parameter subgroups form three pairs of
one-parameter commuting subgroups. We can trivially
combine these pairs into the 3 two-parameter subgroups

R½30�½12�ðα; βÞ ≔ R½30�ðαÞR½12�ðβÞ; ðA3Þ

R½31�½02�ðα; βÞ ≔ R½31�ðαÞR½02�ðβÞ; ðA4Þ

R½32�½01�ðα; βÞ ≔ R½32�ðαÞR½01�ðβÞ: ðA5Þ

Less obviously, we can restrict these two obtain six more
pairs of two commuting one-parameter subgroups, namely

½R½30�½12�ðα; αÞ; R½31�½02�ðβ; βÞ� ¼ 0; ðA6Þ

½R½30�½12�ð−α; αÞ; R½31�½02�ð−β; βÞ� ¼ 0; ðA7Þ

½R½30�½12�ð−α; αÞ; R½32�½01�ðβ; βÞ� ¼ 0; ðA8Þ

½R½30�½12�ðα; αÞ; R½32�½01�ð−β; βÞ� ¼ 0; ðA9Þ

½R½32�½01�ðα; αÞ; R½31�½02�ðβ; βÞ� ¼ 0; ðA10Þ

½R½32�½01�ð−α; αÞ; R½31�½02�ð−β; βÞ� ¼ 0: ðA11Þ

APPENDIX B: SOð2;2Þ DERIVATION OF THE
OVERSPINNING PARTICLE CUT-AND-PASTE

COORDINATES

We now use the formulas of Appendix A to derive a
parametrization of (3) for the overspinning case jJj > jMj.
In the context of this paper we need it to prove that (81),
(82) really are the generators for J > jMj and J < jMj,
respectively.
The SOð2; 2Þ equivalent of the black hole generators

(77) is

Rbh ≔ R½32�½01�ð2πs−;−2πsþÞ: ðB1Þ

The two commuting factors corresponding to ðu; IÞ and
ðI; vÞ are

Tbh ≔ R½32�½01�ð−πλþ−;−πλþ−Þ; ðB2Þ

Sbh ≔ R½32�½01�ðπλþþ;−πλþþÞ: ðB3Þ

The three parametrizations Xðt̂; χ; ϕ̂Þ of (3) for black holes
can be written as

Xouter ¼ R½32�½01�ð−t̂;−ϕ̂ÞR½02�ð−χÞð0;−1; 0; 0Þ; ðB4aÞ

Xmiddle ¼ R½32�½01�ð−t̂;−ϕ̂ÞR½30�ð−χÞð−1; 0; 0; 0Þ; ðB4bÞ

Xinner ¼ R½32�½01�ð−t̂;−ϕ̂Þ; R½31�ð−χÞð−1; 0; 0; 0Þ: ðB4cÞ

This notation makes it easy to verify that all three
parametrizations X obey
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RbhXðt̂; χ; ϕ̂Þ ¼ Xðt̂ − 2πs−; χ; ϕ̂þ 2πsþÞ; ðB5Þ

using that R32 and R01 commute, and the defining property
of 1-parameter subgroups that RðαÞRðβÞ ¼ Rðαþ βÞ.
Similarly, the equivalent of the point particle generators

(79) is

Rpp ≔ R½30�½12�ð−2πa−;−2πaþÞ; ðB6Þ

with commuting factors

Tpp ≔ R½30�½12�ð−πλ−þ;−πλ−þÞ; ðB7Þ

Spp ≔ R½30�½12�ðπλ−−;−πλ−−Þ; ðB8Þ

and the parametrization is

Xpp ¼ R½30�½12�ð−t̂;−ϕ̂ÞR31ðχÞð1; 0; 0; 0Þ; ðB9Þ

and the pair obeys

RppXppðt̂; χ; ϕ̂Þ ¼ Xðt̂þ 2πa−; χ; ϕ̂þ 2πaþÞ: ðB10Þ

Based on these examples, we now see what to do in the
overspinning particle case. We only deal with the case
J > jMj, as the case J < −jMj is similar. The SOð2; 2Þ
generator is

RJ>jMj ≔ TppSbh: ðB11Þ

The crucial observation is that the Tpp and Sbh still
commute because of (A9). This allows us to write

XJ>jMj ¼ R½32�½01�ðϕ̂;−ϕ̂ÞR½30�½12�ð−t̂;−t̂Þ
× R02ðχÞð0; 1; 0; 0Þ; ðB12Þ

and to verify that RJ>jMjXJ>jMj ∼ XJ>jMj is equivalent to
(52). The parametrization (B12) is written out in full in the
last column of Table I. Instead of the last factor in (B12) we
could have used R31ð−χÞð1; 0; 0; 0Þ to obtain the same
induced metric.

APPENDIX C: THE LIMIT Λ= 0

To take the limit Λ → 0, or equivalently l → ∞, we use
dimensional analysis to reinstate l in the relevant formulas,
using that J and our radial and time coordinates have
dimension length, while M and angles are dimensionless.
The metric of a spinning point particle solution of (1)

with Λ ¼ 0, with mass m and spin (angular momentum) j
at rest at the origin of the coordinate system can be written
as the flat metric

ds2 ¼ −dt̂2 þ dχ2 þ χ2dϕ̂2 ðC1Þ

but with the nontrivial identifications

ðt̂; χ; ϕ̂Þ ∼ ðt̂þ Δt̂pp; χ; ϕ̂þ ð2π − 2νÞÞ; ðC2Þ

where the defect angle 2ν and time jump Δt̂p are given by

ν ¼ 4πm; ðC3Þ

Δt̂pp ¼ ð1 − 4mÞ8πj; ðC4Þ

in units c ¼ G ¼ 1, compare Eqs. (2.8b–c) and (4.21)–(22)
of [1] and Eq. (1) of [14]. Here m and j are defined as area
integrals over a distributional stress-energy tensor Tab in
Eq. (1), following [1]. In the limit l → ∞, ν defined in (47)
and ν� defined in (80) all become equal to ν defined
in (C3).
On small spacetime scales the cosmological constant

becomes irrelevant, and so has no influence on the
conical singularity itself. Indeed, in the limit l → ∞, the
point particle metric (7) in cut-and-paste coordinates
becomes (C1).
Using aþ →

ffiffiffiffiffiffiffiffi
−M

p
and a−l → J=ð2 ffiffiffiffiffiffiffiffi

−M
p Þ (and hence

a− → 0 and a−=l → 0) as l → ∞ we find that in this limit
the definitions (42) become

χ ¼ 1ffiffiffiffiffiffiffiffi
−M

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ J2

4ð−MÞ

s
; ðC5Þ

t̂ ¼
ffiffiffiffiffiffiffiffi
−M

p
tþ J

2
ffiffiffiffiffiffiffiffi
−M

p ϕ; ðC6Þ

ϕ̂ ¼
ffiffiffiffiffiffiffiffi
−M

p
ϕ: ðC7Þ

The resulting metric is again the BTZ metric (23), with the
only difference that now

f ¼ −M þ J2

4r2
: ðC8Þ

This is agrees with taking the limit l → ∞ directly in (23),
(24) while keeping M and J fixed.
We note that f ¼ 0 corresponds to χ ¼ 0, whereas r ¼ 0

corresponds to χ ¼ jJj=ð−2MÞ. From the argument given
above in Sec. II E, we see that by restricting to r > 0 we
eliminate CTCs.
This important fact is not explicitly noted in [1], perhaps

because the significance of χ ¼ jJj=ð−2MÞ is less obvious
in the cut-and-paste metric (C1) than that of r ¼ 0 in the
BTZ-like metric (23) with (C8). Conversely, in [12] the
point-particle BTZ metric is interpreted as having a brane
source at r ¼ 0, rather than a point particle at χ ¼ 0, and the
possible extension beyond r ¼ 0 is not explicitly noted.
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The identification ðt; r;ϕÞ ∼ ðt; r;ϕþ 2πÞ corresponds

ðt̂; χ; ϕ̂Þ ∼
�
t̂þ J

2
ffiffiffiffiffiffiffiffi
−M

p 2π; χ; ϕ̂þ
ffiffiffiffiffiffiffiffi
−M

p
2π

�
; ðC9Þ

and so in the limit Λ → 0 the point particle defect angle and
time jump are related to the BTZ quantities as

ν ¼ πð1 −
ffiffiffiffiffiffiffiffi
−M

p
Þ; ðC10Þ

Δt̂pp ¼
πJffiffiffiffiffiffiffiffi
−M

p : ðC11Þ

These expressions are equal to the leading orders in Λ ¼
−l−2 in the corresponding expressions (47) and (48).
However, in interpreting them one should keep in mind
that ν and Δt̂pp can be measured in an arbitrarily small
neighborhood of the particle worldline, and so should be
interpreted as fundamental properties of the particle,
independently of Λ, while M and J should be considered
as depending on both the particle and Λ.
As a by-product of our calculations for Λ < 0, we can

also obtain the expressions for the total mass and angular
momentum of the effective final particle in the case Λ ¼ 0,
when black holes cannot form. For this purpose, we simply
note that the only dimensionful parameter of the initial data
is D, which has units of length and so is measured in units
of l. Among the parameters of the final state, the same
holds for the time jump Δt̂. Equating (144) with (79),
taking the sum and difference of the equations with the two
signs, and expanding to leading order in 1=l, we find

cos νtot ¼ cos ν1 cos ν2 − sin ν1 sin ν2 coshZ; ðC12Þ

Δt̂tot sinνtot ¼Δt̂1ðsinν1 cosν2þ cosν1 sinν2 coshZÞ
þ ð1↔ 2Þþ 2Dsinν1 sinν2 sinhZ: ðC13Þ

Note that the first equation is valid also for spinning point
particles, even though the time jumps representing the spin
do not appear.
Equation (C12) is the same as Eq. (5.12) of [1], whereas

the angular momentum j of the effective point particle was
computed there only in a Newtonian approximation. To
check agreement with that result, we expand in νi ≪ 1 and
Z ≪ 1. Noting that Z ≃ v1 þ v2 for small Z, we find

ν ≃ ν1 þ ν2; ðC14Þ

Δt̂pp ≃ 2
ν1ν2

ν1 þ ν2
Dðv1 þ v2Þ: ðC15Þ

For ν1 ¼ ν2 and hence v1 ¼ v2, this last equation reduces
to Δt̂pp ≃ 2ν1Dv1, which agrees with Eq. (5.20) of [1] if we

also approximate the right-hand side of (C4) by 8j. (Note
that in units c ¼ G ¼ 1, J of [1] is our j.)
We note that the authors of [1] impose as the rest frame

condition that the effective particle is at rest in one of the
two product orders (but therefore not the other), whereas
our rest frame condition is that the effective particle moves
with equal and opposite velocities in the two product
orders. We believe our condition, which is based on the
clear physical argument set out in Sec. V B, is better
motivated.

APPENDIX D: A GEOMETRIC CONSTRUCTION
OF AN EFFECTIVE PARTICLE WITH Λ= 0

Figure 5 illustrates a time slice with Λ ¼ 0 and two point
particles with masses (half of defect angles) ν1 and ν2 at rest
at positions (0,0) and ð0; dÞ. The following statements can
be verified by inspection of this figure:
(1) A time slice is obtained by gluing together the entire

shaded region (that is, counting the overlap only
once) together along the two wedges. The resulting
geometry, when embedded like a piece of paper into
3-dimensional Euclidean space, looks like a coffee
filter paper. Let us call this manifold 1.

(2) By contrast, the effective geometry seen from a
distance is obtained by moving the upper (blue) and
lower (red) shaded patches apart until their vertices
(represented by the two larger dots, with the corre-
sponding colors) coincide before gluing them to-
gether. The total defect angle at the new vertex
(where the two larger dots are now identified) is
2ν1 þ 2ν2. Note that the doubly-shaded region of
space has to be duplicated for this construction. Let
us call the result manifold 2.

(3) The new vertex has a unique position on manifold 2
(which is larger), but not on manifold 1. If on each of
the two patches on manifold 1 we keep the Cartesian
coordinate system ðx; yÞ defined by the horizontal
and vertical axes before the patches are moved then
the location of the effective particle is

ðx0; y0Þ ≔ d
sin ν2

sinðν1 þ ν2Þ
ðcos ν1; sin ν1Þ ðD1Þ

when seen from the lower (red) patch, but ðx0;−y0Þ
when seen from the upper (blue) patch.

(4) Seen from the upper (blue) patch, going anticlock-
wise around the effective particle is equivalent to
going anticlockwise around particle 1 then particle
2. Seen from the lower (red) patch, this order is
reversed. Hence the two product orders correspond
to different coordinate choices on the two-particle
spacetime.

By making d slowly time-dependent, we can also infer
the geometry of two moving particles in the limit of
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nonrelativistic motion: If the particles approach each other
horizontally at a combined speed 2v, then the two fictitious
locations of the effective particle approach each other
vertically, each at speed of vtot¼2vsinν1ν2=sinðν1þν2Þ.
For ν1 ¼ ν2 ¼ ν and v1 ¼ v2 ¼ v, we have vtot ¼ v tan ν.
This agrees with the nonrelativistic limit jvj ≪ 1 of (128b),
and νtot ¼ ν1 þ ν2 agrees with (128a). (At higher velocity,
special-relativistic velocity addition and mass increase
would have to be taken into account).

APPENDIX E: THE HEAD-ON COLLISION OF
TWO NONSPINNING MASSIVE PARTICLES

Steif [5] has classified all time-symmetric initial data for
the two-body problem. The two bodies can then be non-
spinning black holes or nonspinning massive point particles.
For the case of two point particles, we have the

3-dimensional subcase of our 6-dimensional space of initial
data where two nonspinning massive particles collide head-
on. This requires that the particle spins and the impact
parameter D all vanish. In our units where Λ ¼ −1 and
G ¼ c ¼ 1, our parameter M is 8M of Steif, our ν1 and ν2
are 4πm and 4πm̃ of Steif, and our Z is d of Steif. Recall
that Z is both the rapidity at closest approach (here, at
impact), and the distance at largest separation (here, at the
moment of time symmetry). Rather than the full spacetime,
Steif constructs the initial data at the moment of time
symmetry, where the extrinsic curvature vanishes. The
spatial geometry at that moment is constructed by isometric
identifications of the Poincaré disk, corresponding to our
identifications of the entire spacetime. Note that for easier
comparison with Steif’s work we have adapted a conven-
tion throughout this paper where u ¼ v if and only if the
spacetime admits a moment of time symmetry, and this
single element of SLð2;RÞ then parametrizes an isometry
of H2.
Our results agree with Steif’s with the following clar-

ifications: his “open, no horizon” can denote both our virtual
effective particle outcome, or our black hole outcome. In the
latter case, a black hole forms eventually as the particles fall
toward each other from a large separation, but there is no
apparent horizon at the moment of time symmetry (moment
of largest separation). “Closed space” corresponds to our
real effective particle outcome. In otherwords, this is really a
three-particle closed universe that recollapses. “Black hole”
corresponds to our black hole outcome and where an
apparent horizon is already present at the moment of time

symmetry. Our black hole criterion Z > C corresponds to
cosh d > fc of Steif. Our and Steif’s results are shown in
Fig. 3. For completeness, we have included in this figure,
without derivation, Steif’s criterion for the existence of
an AH at the moment of time symmetry. This is d <
tan ν1=ð− tan ν2Þ for 0 ≤ ν1 ≤ π=2 and π=2 < ν2 < π, and
equivalently for ν1 and ν2 interchanged. The derivation, not
given in [5], has been recreated by Louko [31].
When the two original particles are equivalent to an

effective particle and collide head-on but a black hole does
not form, one can take them to collide elastically, bouncing
back from the collision event, or to collide inelastically,
continuing as a single particle with mass νtotπ.
In the elastic collision, one basically wants to glue one

spacetime picture, including the wedges, to its mirror image
under a time reflection through t ¼ 0. This is possible only
if the restrictions of the two sides of each wedge to t ¼ 0
are mapped to each other, and this in turn requires the
wedges to be centered on the plane through the two particle
trajectories, and facing away from each other.
For the inelastic collision, one could arrange one side of

each excision wedge to touch at the moment of collision,
and for the other two sides to become, at that moment, the
two sides of the excision wedge of the new particle.

FIG. 5. Construction of the spatial geometry with Λ ¼ 0 and
two point particles with masses (half of defect angles) ν1 and ν2 at
positions (0,0) and ð0; dÞ, represented by the two smaller (black)
dots. The area of each dot is proportional to the mass (defect
angle) of the particle it represents. For plotting we have chosen
the specific values ν1 ¼ 0.4, ν2 ¼ 0.7, and d ¼ 1.0.
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