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We study exact Wentzel-Kramers—Brillouin analysis (EWKB) for a P7 symmetric quantum mechanics
(QM) defined by the potential Vipr(x) = w?x? + gx*K (ix)¢ with w € Ry, g€ R, and K, ¢ €N to clarify
its perturbative/nonperturbative structure. In our analysis, we mainly consider the massless cases, i.e.,
® = 0, and derive the exact quantization conditions (QCs) for arbitrary (K, €) including all perturbative/
nonperturbative corrections. From the exact QCs, we clarify full transseries structure of the energy spectra
with respect to the inverse energy level expansion, and then formulate the Gutzwiller trace formula, the
spectral summation form, and the Euclidean path integral. For the massive cases, i.e., @ > 0, we show the
fact that, by requiring the existence of the solution of the exact QCs, the path of analytic continuation in
EWKB is uniquely determined for a given N = 2K + ¢, and in consequence the exact QCs, the energy
spectra, and the three formulas are all perturbative. Similarities to Hermitian QMs and resurgence are also

discussed as additional remarks.
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I. INTRODUCTION

Non-Hermitian quantum theories have important roles in a
wide area of physics and provide rich physically interesting
phenomena. Those theories are also interesting topics from
the viewpoints of mathematical and computational physics,
and those have been actively studied in recent years. A P7
symmetric theory is a particular class of non-Hermitian
theories. P7 symmetric quantum mechanics (QM) was
proposed in Refs. [1,2], and its field theoretical generaliza-
tion was also considered in Ref. [3]. In high energy physics,
study of the P7 symmetric theories is currently one of
the interesting subjects from various aspects, such as
field theoretical understanding [4,5], beyond the standard
model [6—12], and mathematical understanding [13,14]. See
also Refs. [15,16].

Owing to broken Hermiticity, P7 symmetric potentials
can contain negative coupling, such as V(x) = —gx* with
g€ R.(, and be unstable at x = +o0. For this reason, the
variable, x, is usually considered to be a complex value and
defined as a (real) one-dimensional orbit on the complex x
plane to be consistent with P7 invariance and to gain
convergence of the wave functions. The remarkable prop-
erty of P7 symmetric QMs is that, despite the lack of
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Hermiticity in a Hamiltonian, energy spectra are real and
bounded [1,17-19]. Then, a naive question arises: in the
theoretical viewpoint, how much and in what sense are PT
symmetric QMs similar to/different from Hermitian QMs?
There are several approaches to partially answer to this
question, such as pseudo-Hermiticity [20-22], P7 /CPT
duality [18,19], and the Ai-Bender-Sarkar conjecture
[23-25]. Each of them addressed quite important subjects
for their theoretical and mathematical structures as well-
defined quantum theories, i.e., Hilbert space and inner-
product, energy spectra, and correspondence to analytic
continuation of Hermitian QMs and their nonperturbative
contributions. They are also crucial for generalizations to
PT symmetric field theories.

In this paper, we study exact Wentzel-Kramers—
Brillouin analysis (EWKB) for the P7 symmetric potential
defined by the following Schrodinger equation, Ly = O:

L=-h®+V(x)—E, hEER.yx€C,

Vpr(x) = w*x? + gx*K(ix)¢, w€Rsp,g€R.(, K, eEN,

(1)

to clarify its perturbative/nonperturbative structure. EWKB
is formulated based on Borel resummation theory, and it is
quite powerful to analyze nonperturbative physics in QMs.
We mainly consider the massless cases, i.e., ® = 0, and
address the following issues:
(i) derivation of the exact quantization conditions
for arbitrary (K,e) including all perturbative/
nonperturbative corrections,
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FIG. 1.

(i1) clarification of full transseries structure of the energy
spectra and their (K, ¢) dependence,

(iii) formulating the Gutzwiller trace formula, the spec-
tral summation form, and the Euclidean path integral
from the exact quantization condition.

We firstly try to derive the exact quantization conditions
(QCs) which correspond to a generalization of the Bohr-
Sommerfeld condition by using EWKB. For application of
EWKB to the massless monomial potentials, it is conven-
ient to rescale x as x — (%) /Nx with N := 2K 4 ein Eq. (1)

and redefine the Schrodinger operator, L, as'

lRescaling not only x but also the time and the momentum
as (t,p) = ((ggWN-2/2)=1Ny E'2p) gives the same time-
dependent Schrodinger equation and uncertainty relation, i.e.,
n o= =H  [opl=ih=lopl=in ()
ih—=H—-in—==H, x,p| =ih — |x,p| =in,
ot n ot P P n

where H := H/E, and Hy = y.

Flowchart of various formulas from an exact quantization condition in EWKB. This figure was originally shown in Ref. [28].

S L=-pR+0, Q=2 -1 (3

£
E
l/Nh
_ 9
= N (4)

Thus, the wave function can be expanded by 7, and all the
parameters (7, g, E) appear in 5 only. ¢ in the potential is a
crucial parameter through this paper and is introduced as a
deformation parameter of a domain of x on the complex
plane from the real axis. In this sense, the potential has to be
complexified, and nontrivial nonperturbative structures
depending on (N, K) are expected. Since energy spectra
including all perturbative/nonperturbative corrections can
be obtained by solving the exact QCs, we then clarify the
full transseries structure of the energy spectra from the
exact QCs. Finally, we try to obtain the picture of Fig. 1 for
arbitrary (N, K). Once constructing the exact QCs, one can
construct various formulas, such as the Gutzwiller trace
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formula (GTF) [26], the spectral summation form (SSF),
and the Euclidean path-integral (EPI) from only the exact
QCs [27]. It would be helpful to see nonperturbative effects
from the viewpoint of each formula.

We will also briefly discuss the massive case, i.e., @ > 0.
In the massive cases, the standard 7 expansion works for
the energy spectra, and their transseries structures become
much simpler than those of the massless cases. It is
because, in contrast to the massless cases, a suitable
complex domain of x is uniquely determined for a given
N by requiring the existence of the solution of the exact
QCs. As aresult, the exact QCs, the energy spectra, and the
formulas in Fig. 1 are all purely perturbative. We show
these facts.

This paper is organized as follows: In Sec. II, we review
EWKB. In Sec. III, we construct exact QCs for the massless
case with arbitrary (N, K) using EWKB based on the 7
expansion. In Sec. IV, by using the exact QCs, we consider
the transseries structure of the energy spectra with respect
to the inverse energy level expansion. In Sec. V, we
construct the three formulas, such as the Gutzwiller trace
formula, the spectral summation form, and the Euclidean
path integral, using the exact QCs. In Sec. VI, we discuss
the massive cases. In Sec. VII, we make some comments on
similarities to Hermitian QMs and resurgence. Section VIII
is devoted to summary and conclusion. Technical compu-
tations, such as construction of the CP7 inner product,
derivation of Fact in Sec. VI, and the alien calculus in
Sec. VIIB are summarized in Appendixes. A, B, and C,
respectively.

This study is a generalization of earlier works analyzed by
the (standard) WKB analysis, e.g., Refs. [1,2,15,23,29,30],
in e € N. Many parts of our analyses in this paper are based on
Refs. [25,27,28,31].

II. EXACT WKB ANALYSIS

In this section, we review EWKB in our setup in Sec. IT A,
and then explain Voros symbols and the Delabaere-Dillinger-
Pham formula (DDP) formula which have a key role for
Borel resummation in EWKB in Sec. II B. There are many
nice reviews for Borel resummation theory and EWKB. See,
for example, Refs. [32-39] and Refs. [40—49], respectively.

A. EWKB ansatz and connection formula

Through this paper, we perform EWKB to the P7T
symmetric QM in Eq. (1). In the P7 symmetric QM, the
variable, x, is extended to a complex value and can be
taken to be a (real) one-dimensional orbit to converge the
wave function at | x| = oo on the complex x plane. Parity and
time-reversal transformations are defined as P:x — —x
and 7 :(i,x) — (—i,x), where ¥ is the complex conjuga-
tion of x, respectively, so that P7 symmetry, i.e.,
PT :(i,x) > (—i,—x), gives a constraint to the domain of
x. Despite the constraint from P7 symmetry, in general the

domain is not uniquely determined because there are a
number of asymptotic domains to converge the wave
function. The asymptotic domains can be classified by a
pair, (N,K) (or (K,¢)) with N := 2K + ¢, by being con-
tinuously deformed by the change of ¢ with a fixed K. By this
manner, we take the following subspace on the complex x
plane as the domain of x:

YPT gy = O(—s)setPN-K)g 1 @(s)se VK (5 eR)

_n(N-2K)
O(N.K) := T - (5)

TE
2(N+2)°

where O(s) is the step function. Notice that the domain can
be continuously deformed to not change the result when
performing the analytic continuation in EWKB.

In order to find the picture in Fig. 1, we firstly have
to obtain a generalized QC denoted by D by taking the
following procedure in EWKB:

(1) drawing a Stokes graph by preparing an ansatz to the

wave function,

(2) performing analytic continuation along the path,

ypr, in Eq. (5) to obtain a monodromy matrix.

One of the components corresponds to the QC by

imposing normalizability to the wave function.
The above process is the same for any values of (N, K). In
the below, we would explain the procedure for the massless
cases, i.e., @ = 0 in Eq. (1), but for the massive cases the
similar analysis works by replacing # with A as an
expansion parameter.

In our analysis, we use 7 for the expansion parameter by
beginning with Eq. (3) and assume the following EWKB
ansatz:

a

S(em) ~ > Se(x)n” asn -0,

zeNy—1

valwen) = alyexs | [ arstrn)|
(©)

where o () is the integration constant generally depending
on 7, and a€C is a normalization point for the wave
function on the complex x plane. The coefficients, S,(x),
are determined order by order from the Riccati equation
given by Eq. (3) as

S(x,n)* +0.S(x,n) = n~2Q(x), (7)
where Q(x) is defined in Eq. (3). Explicitly, it can be
written down as

S (x) = £/01),  So(x) = _M#Q(x{
_ 1 (0, log O (x))?
Si1(x) —im (ﬁlogQ(x)_f ’

(8)
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The formal expansion, S(x,77), can be decomposed into two
parts as the odd- and even-power expansions as

Soa(x.1) ZSM (0P S=v0(kx), (9)
zeNy
1
Sev(t.m) = D Sap(x)* = =50 log Soa(. ). (10)
reNy

and S, (x,7) can be expressed by Syq(x, 7). As a result, the
wave function (6) can be expressed as

n) = Lﬂ))em {i / dy Soa(y. n)}

Sod(x’ n

— o () exp [j:% / " Ao (x’)}

XY War N, (11)

neN,

Vatr (x’

where £ corresponds to the two independent transseries
solutions of the Schrodinger equation. Borel resummation
is a composite operation of Borel transform 3 and Laplace
integral Ly, i.e., Sy := Ly o B. These operations to the wave
function are defined as

Bl ).) = Fe 2 (4 60 = s (5.,
&) = V2, (12

i0

mmmwm:f“%ﬁwﬁma (13)
F

o

Below, we take a vectorial form for the wave function,
as Yy, = (Wa—}—? l//a—)T'

A Stokes graph holds all information of Borel summ-
ability of the wave function and can be drawn by a specific
form of 57! [dxS,g_i(x), ie., the leading order of
J dx Soq(x.n). Turning points are defined from a potential
as TP := {x € C|Q(x) = 0}, and in our case it is given by

An— N+2K

TP = {e™ eClne{l,....N}}. (14)
We attach labels to each turning point as ay, ..., ay in such
a way that
Re[a;] <--- <Relay], and Imla,] <Im[a, ]
if Re[a,] = Re[a, ). (15)

By this manner, all the labels are uniquely determined.
These turning points are also used for the normalization
point in the wave function. After obtaining turning points,
we find Stokes lines which emerge from each turning point.

Those are defined as

Im[n‘l/xdyS_l(y)] =0 with neC, a€TP. (16)

If Re[y™! [*dyS_;(y)] is monotonically increasing
(respectlvely decreasing) as going far away from the
turning point along the Stokes line, we attach a label,
“+” (respectively “—"), to the line.

When performing analytic continuation along a certain
path on the complex x plane, one has to glue wave
functions on each domain separated by Stokes lines. In
EWKB, it is carried out by introducing connection matri-
ces. One has to be careful that an infinitesimally small
phase has to be introduced to # before performing the
analytic continuation if a Stokes phenomenon occurs at
arg(n) = 0. Otherwise, the wave function is Borel non-
summable on the entire complex domain. A specific form
of the connection matrices generally depends on a type of
the turning point, e.g., how many Stokes lines emerge from
it. When it is a simple turning point called as Airy-type
Stokes graph, the connection matrix for crossing the Stokes
line anticlockwise is given by

ooy )we( D)

where M, or M _ is chosen by the label of the Stokes line
determined by the behavior of Re[y~! [*dyS_,(y)], and
their inverse corresponds to crossing them clockwise.
Notice that the connection matrix is determined in such
a way that the Borel resummed wave function is continuous
at a point on the Stokes line, i.e.,

Solwhx, +02)] = Sylyh(x. +0,)].
Wh(x. +0.) = Mayl(x. +0.). (18)

where w"I are wave functions defined on certain domains,
I and II, separated by the Stokes line, and x, is a point on
the Stokes line that we are crossing. In addition, we
assumed that x, +0_ and x, 4+ 0, belong to the I and II
domains, respectively. When there exists a number of
turning points, one has to change the normalization point
to an appropriate turning point for crossing the Stokes
line next. This is performed by operating the normalization
matrix as

l//anl = Nanl 112 l//anz anl ’ a”@ € TP’
2 dx Soq (x,
e”/;”l X ud(x 77) 0
Ne, a,, = - (19)
! 2 - 2 dXSDd(XJ’])
O e dany

In addition, the Airy-type Stokes graph has a branch cut.
When the wave function goes through the branch cut, the
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effect on the wave function can be expressed by a branch-
cut matrix 7 defined as

0 —i
= <_l 0 > ' MiT - TM$’ Na”l ) r= TN;"ll 2Any?
(20)

which swaps the components of the wave function. One can
compute a monodromy matrix, denoted by M, by taking
the path in Eq. (5) from s = —o0 to 400 and appropriately
taking the connection matrices, normalization matrices, and
branch-cut matrices:

Solws ™) (e WK s, h) = SplM] - Splyr =]

x (e7ONKlg n),  (s>1)

(21)

where Sy *=+*)] is the (Borel resummed) solution of the
Schrodinger equation in the domain corresponding to
s> 1, and M consists of M, Nanl Ay and T. As a result,

the Borel resummed wave function, Syl '], is ana-
lytic continued from s = —o0 to +o0. Imposing normal-
izability to the wave function requires vanishing one of the
components in M, which corresponds to the QC, D = 0.
Since D is a function of E, solving ® = 0 in terms of E
gives an energy spectrum.

It is worthwhile to see Stokes graphs that we will
consider in this paper. Shapes of the Stokes graphs can
be also classified by (N, K) (or (K, ¢)) as follows:

(1) Even N

(E-1) K€2N and e€4Ny + 2 (N €4N + 2): There
exists a pair of turning points (ay,ay, ) such
that Relay] = Relay, ;] =0 and Imlay] =
—Im[a%Jr]] < 0.

(E-2) K€2Ny + 1 and e €4N (N €4N + 2): There
exists a pair of turning points (a;,ay) such
that Re[a;] = —Relay] <0 and Im[a] =
Im[ay] = 0.

(E-3) K €2N and € €4N (N €4N): There exist pairs
of turning points (a;,ay) and (ay, ay,,) such

that Re[a;] = —Relay] <0 and Im|a\] =
Im[ay] = 0, and Re[ay] = Re[ay,,] =0 and
Im[ay] = —Im[ay ] < O, respectively.

(E-4) K€2Ny + 1 and e €4Nj + 2 (N €4N): Such
a pair on the real and the imaginary axes does
not exist.

(2) Odd N

(O-1) K €2N: There exists a turning point ay+1 such
that Refaxa] = 0 and Im[axa] < 0. ’

(O-2) K €2N + 1: There exists a turning point a1
such that Re[aNTH] = 0 and Im[ayu] > 0. ’

The schematic figures for the even and odd N cases are
shown in Figs. 2 and 3, respectively. Owing to the Zy
symmetry given by

Zy: x — e¥ix with ne{0,..,.N—-1} (22)
in the potential (3), the turning points distribute as a regular
polygon. In our convention, we choose branch cuts in such
a way that the labels of Stokes lines are all “—" (respec-
tively “47) if the associated asymptotic domains are above
(respectively below) the path of analytic continuation in
Eq. (5). By this manner, the lower component of the wave
function, y,_, needs to be zero in the limit that s — +o0,
and thus, one can find the QC from the resulting mono-
dromy matrix M obtained by analytic continuation along
ypr as D: «x M, =0. For even N, the Z, symmetry
defined by

Z,: x> —x CZy if Nis even, (23)

remains in the potential as a subgroup of the Z, symmetry
in Eq. (22).% As we can see later, this Z, symmetry has a
crucial role for nonperturbative structure in the QCs.

B. Voros symbol and Delabaere-Dillinger-Pham
formula

In EWKB, the QCs are generally expressed by Voros
symbols (periodic cycles) [50], and one has to take care of
their perturbative/nonperturbative relations when a Stokes
phenomenon happens at arg() = 0. The situation always
arises for any even N.

A cycle, Cy, ,), is defined as a contour integration of

Sod(x,n) going around two turning points as

Cmmw:wﬂf%M%wﬂ. (4 .y, €TP)

ol

(24)
These cycles generally satisfy

—1
(ny.ny)?

C("h"Z) = C(”l-"z) = C(nlﬂs) ’ C(n3,n2)' (25)
We show an example of the cycles in Fig. 4. In our case,
thanks to the Z, symmetry (22), all cycles with fixed
(N,K) can be written by the same formal expansion
¢(e'®n) with a complex phase 9 depending on a turning
point which Cy, ,,) goes around. Explicitly, it can be

written as

*To avoid confusion, we distinguish this Z, symmetry from
the P symmetry. It is because the domain of x on the complex
plane has been determined by the constraint from the P7
symmetry and is not invariant under the P symmetry.
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o . . L] a2
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- "I’/PT(N I —_— gT(N N2 a
asa%72 “%fév_s o
+ /é\ ay + ay 4 aN 4
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oy XS+ + + 4+
(E-1) K € 2N and € € 4Ny + 2 (E-2) K € 2Ng+ 1 and € € 4N
- ”’%\lg/ axt \g/ - ag \g{gu -
a5 ay an—2
—_ as
(:‘?E - a2 e o o e o o aN -
B ilas | .. <o
— — —| — — — — — a s — — | — | —
—_—, IPT (n I I —_— VPT N5 4y
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-2
+ ay é\ + ay_y
+ + +/§\+ + + + +  +  + +
(E-3) K € 2N and ¢ € 4N (E-4) K € 2Ng+ 1 and € € 4Ny + 2

FIG. 2. Stokes graphs given by even N for arg(n7) = 0. The gray arrows are the real and imaginary axes. The blue dots, black lines, and
red waves denote turning points, Stokes lines, and branch cuts, respectively. The green lines denote the path of analytic continuation in
Eq. (5) which is the nearest to the real axis under the condition of (K, ¢).

Clanyy) (1) = exp [ D) — (i olen) 5y, o, Bl 4y _APNTR-g)
-1 — 7T 572 1N 1 — = TA—=/1 1~ >
(26) IG+3) 12I G- 3)
_ #ANQN*+N-3)r(2-3)
. e 14400 (-1 = 3) o &)
where ¢(e¥n) is given by 27N
9N 9 \n When a Stokes phenomenon occurs at a certain
$(en) = ne%—lv”(e ) 0 := arg(n), in particular = 0, on the Stokes graph, the
0 ) effect has to be taken into account to write down the
= Z vy cos(nd)n" + i Z vy sin(nd)n", energy spectrum from the QCs obtained by taking
nE€2Nop—1 nE€2Nop-1 arg(n) = 6 +0.. The DDP formula gives perturbative/
(27) nonperturbative relations among the cycles, which enable
us to achieve the purpose [51,52]. Here, we define a set of
cycles, denoted by Cyp,, having a degeneracy of Stokes
with the real coefficients v, con,—; for all n given by lines from two turning points at 6. Schematically,
Cnpo = {C(n, ny#n,)|@n, < a,, connected by degenerated Stokes lines, a,,,a,, € TP}. (29)
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aN2-1 aNg-s as aN;—l anN-—2
as ) N - ~ -
m\ /Nor 1
v Y / a
T GRS e S A N A o T
as @ N+ aN-—2 anN-1 O N+3
+ 2 + 2 2
@\ + / /& &\
+ + ¥ + + + +
(O-1) K € 2N (0-2) K € 2No+ 1

FIG. 3. Stokes graphs given by odd N for arg(s7) = 0. The gray arrows are the real and imaginary axes. The blue dots, black lines, and
red waves denote turning points, Stokes lines, and branch cuts, respectively. The green lines denote the path of analytic continuation in
Eq. (5) which is the nearest to the real axis under the condition of K.

Notice that Cypy = @ if no Stokes phenomenon happens When one computes a QC (or monodromy matrix) at 6

at 0. For arbitrary cycles given by C(, ,,) & Cxpp and  with a Stokes phenomenon, a transseries of the QC depends

é(nl,nz) € Cnpy. the DDP formula can be expressed as a ~ on 6 +0., ie., DIH0+ % D0~ In order to eliminate the

discontinuity at 8, we formulate median resummation using

the Stokes automorphism. The Stokes automorphism tak-

&[Cin ] = Cln s 1 4 C)¥Conm) ), 30 ing v = 1 compensates for a discontinuity caused by the
o1C ) (r1.72) H ( ) (30) Stokes phenomenon at @ as

one-parameter group Stokes automorphism &4<® as

CeCypy
&4(C ) = Claymr)- (31) Sor0, = S0 0 @57, (33)

and the median resummation Sy.q9 gives a Borel

where (A, B) is the intersection number between two ) X med,
resummed form without the discontinuity as

cycles, A and B, which is defined as
(=) =(=)=+1 («.NH=(.1)=-1. (32 Smeao = So0. 0@l P =Spo 0@ (34)

The transseries eliminated the discontinuity, ®Y, can be
uniquely determined by the Stokes automorphism as

Q0 — @Z:+l/2[®a+o+] — @Z:—I/Z[@wo_]’ (35)
which is derived by
So10. [DT] = Sgio_ 0@ D] = Spio D]
N @Z:H/Z[@wm] - @;:—1/2[9(#0_]‘
(36)
Thus, one finds that

Smea D) = Sgr0, [DO0] = Sy [D0+0-]"2 020,
(37)

Notice that the Stokes automorphism acts to a function of

FIG. 4. Example of cycles defined in Eq. (24). In this graph, the the cycles, F(C(,, n)s C(n n)e )), as a homomorphism:
set of nonperturbative cycles defined by Eq. (29) is Cnpy = e o

{C(zs)}, where C<2,3) = C(_112> . C(1,3> = C(2,4> . C(_%IA) The inter- @Z[F(C(nl»nz)’ C(n3,n4)7 .. )]

section numbers defined in Eq. (32) are (C(,),B)= B B )
<C(1‘3),B> = <C<2,4),B> = <C(3.4),B> = +1, where B := C(2,3). o F(@G[C(”IWZ)]’ @H[C(nam)]’ o ) (38)
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Cycles in Cyp ¢ defined in Eq. (29) do not all affect a QC
through the DDP formula (or Stokes automorphism), and
only elements having nonzero intersections with cycles
consisting of the QC are important. In the discussions
below, we suppose that only cycles relevant to the QC
would be given when we provide Cyp .

In this paper, we call an exact QC the object D’ to
satisfy Eq. (39).

III. EXACT QUANTIZATION CONDITIONS

In this section, we construct exact QCs for a given
(N,K) using EWKB. We firstly demonstrate the K = 1
cases in Sec. III A, and then show the generalization to
K > 1 in Sec. III B.

A. The K =1 cases

We consider the K = 1 cases. The Stokes graphs and the
paths of analytic continuation are in Fig. 5. Since the
structure of the Stokes graphs depends on even or odd N
(or €), we individually consider the two cases.

1. Even N

We consider the even N cases. In this case, a Stokes
phenomenon occurs at arg(n) = 0, so that one has to take
care of a discontinuity in QCs by using the DDP formula.
As we can see later, the resulting exact QC contains only a
perturbative cycle.

In order to see this fact, we firstly identify a perturbative
cycle. For finding the QC, we perform analytic continu-
ation along a certain path given by Eq. (5) with K = 1.
From the path, ypr . and the location of turning points
(14) in (E-2) and (E-4) of Fig. 2, one can see that the
perturbative cycle is given as C(; 57 consisting of the two
turning points located at

(a) Even N

FIG. 5.

ay = —ie™V, app = —ie™N. (39)
The specific form of C; 5,2) 1s given by Eq. (26) as
Cippr2) = exp [(e™Fn) — (e ™))
zn
= 2i in—-n"|, 40
exp{z Z v, Sin n] (40)

ne2Ny—-1

where the coefficients v,con -1 are given in Eq. (28).
Indeed, this cycle is a pure oscillation without an expo-
nential damping factor.

Since the Stokes graph has a Stokes phenomenon at
arg(n) = 0, we introduce an infinitesimally small phase
to n before finding monodromy matrices. The Stokes
graphs for arg(n) = 0. are drawn in Fig. 6. Then, by
taking the path of analytic continuation, YPT y)> ONC finds

the following monodromy matrices
arg(i7) = O

depending on

MO =M N55 M Npyy50M Nppap,  (41)
MO = M N5 sM Npis500M Ny 5. (42)
Here, we used the shortened notation for the normalization

matrices as Na,,] an, = Ny, »,- The QCs are extracted from

D% M% = 0 by normalizability of the wave function,
and those can be expressed by the cycles as

Cippi2)
14+ Cp 1)

D 1+ Cippr2)(1+ Cipiapi3))- (43)

D x 1+

A set of nonperturbative cycles can be found from the
Stokes graph, and its subset relevant to the above QCs is
given by

(b) Odd N

Stokes graphs given by K = 1 for arg() = 0. The green lines denote the path of analytic continuation.
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- /'77’7—(‘\7,1)

(a) arg(h) = 0

7
=" YPT(~n.1

(b) arg(h) = 0_

FIG. 6. Stokes graphs given by even N with K = 1 for arg() = 0. The green lines denote the path of analytic continuation.

Crpo—0 = {Cp.p+1)> Clpr2.p43) ) (44)

Notice that C; 511) = C(p42,5+3) because of the Z, sym-
metry in Eq. (23). Owing to the Stokes phenomenon, the
DDP formula is nontrivial and obtained by counting
intersection numbers among the cycles as

1

S5(Cip.512)) = Clppi2) H(l + Clpianprantn))’s
n=0

@S[C(ﬁ+2n,ﬁ+2n+l)] = C(ﬁ+2n,ﬁ+2n+l) forn=0,1. (45)
After removing the discontinuity by using Eq. (36), the
exact QC is given by

1+ Cipiap43)

D x 1+ C(—7—+2>
" I+ Cppan

Here, we used C; 5.1) = C(ps2,5+3)- The contributions
from the two cycles, C; 511y and C;1 543, are canceled
to each other by the Z, symmetry, and the remaining cycle,
C(p.p+2), 18 a pure oscillation, as is shown in Eq. (40).
Therefore, the exact QC includes only the perturbative
contribution.

2. Odd N

Then, we consider the odd N cases. The procedure to
derive the exact QCs is the same as in Sec. III A 1, but the
main difference from the even N cases is that Stokes
phenomena do not happen at & = 0, and thus Cyp gy = @.
Hence, one does not have to take care of discontinuities on
the Borel plane.

The monodromy matrix is obtained by taking the path
of analytic continuation in Eq. (5) with K = 1, which is
given by

M=M,Ns s M. Nyoy 5 oM. Npis 5. (47)

where the turning points, a; and a5, , are given by Eq. (39).
Imposing normalizability to the wave function yields the
exact QC, D «x M, = 0, which takes the form of

Dol +Cippi2) + Cippny- (48)

The exact QC contains two cycles, C(ﬁ,,3 +2) and C(ﬁ,ﬁ 1)
and the former and the latter correspond to perturbative and
nonperturbative contributions, respectively. C(s 547) has
the same form as Eq. (40), and C(; ;) is expressed as

Cipp+1) = explop(—1n) — P(e™vn)]

zn
:exp{— Z vn(cosﬁ—i—l)-n"
n€2Ny-1
zn
. L 4
+i Z v, Sin— 17}, (49)
n€2Ng—1

where the coefficients v, ¢on,—1 are given by Eq. (28). In
order to specify the perturbative/nonperturbative structure
of the exact QC, it is helpful to replace the cycles with P
and B which are purely oscillating and exponentially
damping, respectively. By these symbols, Eq. (48) can
be expressed by

1
Do~ 1+ Cppr2) + Cpprn)]
(p.p+2)
= P72 PH2 4B, (50)
an
Pi=exp |2i in=_ . 1
exp |2i Z v, sin ;7], (51)
n€2Ng-1
nn

B = — - )

exp l Z vn(cos N + 1) n ], (52)
n€2N,-1
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where C(; 512) = P, and C(; ;1) = BP'/?. Since K[P] =
P~! and K[B] = B, where K is the complex conjugate
operator, the exact QC can take the form invariant under
complex conjugation, and thus the energy spectrum is also
expected to be real.

B. Generalization to K > 1

We consider the generalization to K > 1. Once fixing the
values of (N, K), one can count the number of cycles in the
QC because the number of cycles roughly corresponds to
that of the normalization matrices, N, ,, in the QC. In
other words, one has to deal only with cycles intersecting
with the path of analytic continuation, yp7. Notice that
Eq. (5) implies that taking a larger K with a fixed N makes a
path closer to the real axis. This fact implies that the
number of relevant cycles in the QC more increases by
taking larger K, and as a result a specific form of the QC
and its transseries structure become more complicated.

By looking to the number of the normalization matrices,
N, »,, intersecting with the path of analytic continuation
(5) in the Stokes graphs in Figs. 2 and 3, one can identify
the number of relevant turning points to the QCs for a given
(N,K) as

2K +2 for even N
2K+1 forodd N’
(53)

no.of relevant turning points = {

and cycles in the QCs consist of these turning points. In
addition, turning points corresponding to a perturbative
cycle, (az,a,), can be found as

. ik
a; = —ie "',

. iK
5 ap — —le+’”N,

p=p+2K. (54)
Notice that Re[a,] = —Re[az] >0 and Ima;] =
Im[a,] <0, and it is a consequence of P7 symmetry,
|

R €2 K=11)0s (&%

PT :x — —x. From Eq. (54), the perturbative cycle is
given by

P = Cppprax) = exp [p(e V) = p(e™Vin)]

K
= exp {21’ Z Unsin%-r]”], (55)

ne2Ny—1

where the coefficients v, ¢ on,-1 are the same as Eq. (28). In
contrast, nonperturbative parts in the QCs are quite non-
trivial. Those nonperturbative cycles indeed depend on the
values of (N, K), and their structure on the Borel plane has
a difference between even and odd N, as we considered for
K = 1. Below, we find cycle representations of the exact
QCs for arbitrary (N, K). Details of their perturbative/
nonperturbative structure would be discussed in Sec. IV.

For even N, a Stokes phenomenon occurs at arg(n) = 0,
so that one has to take care of discontinuities in the QCs,
D% obtained from the monodromy matrices, MO% . These
can be found by taking the path in Eq. (5) as

K-1
MO =M N, , lH M.N MZ'N

Apyop-1:p420" " — Api27,Ap120+1
‘=1

X M_N M_.N, (56

ApioKk-1-Aj+2K AapioK,ap°

K—1
0. __ -1
M= M“"Na,awﬂ,us lH M+Naﬁ+2t’+lvaf)+2fM_ Naﬁ+2f~aﬁ+2t’+3‘|
=1

X M_N (57

Ap ok +1-Appok " " T Appog.dp”

Imposing normalizability to the wave function requires
./\/l% = 0, and one can find the QCs as

L& (£)0 (K)0
H QDVl/~,”ti‘+l‘| 9”K i’ (58)

D+ [
(ny,....ng) €{0,1}K [£=1

n p—1
)) f(‘snm-O + B(ﬁ+2f+1ﬁ+2f) ’ 5%1,1)"”7

Ngslgiy (p+2¢-2,p+2¢+1
(K)0y . /70 ng
QD”K - (C(;+2K—2,ﬁ+2K)) ’ (59)
where p is the label associated with aj; in Eq. (54), and
C’Oi — C(ﬁ+2f—2. p+26+1) ( 6 0)
(p+26-2.5+2641) neo(1+B (ﬁ+2f+2n—z.ﬁ+2f+zn—1))(lﬂ)/ g
0. = (1+ B(paok proksr) 1 FV/2 (61)
F+2K—2.5 = C(p2K-2,5+2K )
e
- 1+ Bis50r 5
B_J — (p+2¢,p+20+1) c R>07 (62)

(p+26+1,p42¢)

Bpiae p12e11)
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with #€{1,2,...,K —1}. Here, we defined symbols, B (pioz.p12¢41) = C(prar,prae+1), 0 emphasize nonperturbative
cycles with degeneracies of the Stokes lines at arg() = 0. From them, the set of nonperturbative cycles relevant to the DDP
formula is given by

Cnpo—0 = {B(p.p+1)> B(p2.5+3)> - Bp=2.p-1)s Bip.p+1) }» p=p+2K. (63)

One can easily construct the DDP formula by counting the intersection number of the other cycles with the B cycles, and it
is given by

1

@6 [C(p+2f—2,p+2f+l)] = C(ﬁ+2f—2.ﬁ+2f+1) H(l + B(ﬁ+2f+2n—2,ﬁ+2f+2n—l))y7
n=0

CH [B(ﬁ+2;f’+2n—2,ﬁ+2f+2n—l)] = B(p12012n-2. 5120 42n-1) forn=0,1, (64)

with # € {1,2, ..., K}. Eliminating the discontinuity by the DDP formula as ®° « & 1/2[90<] leads to the exact QC as

1 K-1 . <
Vo D [H @”] o),

(ny....ng) €{0,1}K Le=1
D = (Coiaraprarsty)" G0+ B prary  Onp )
D = (C((]ﬁ+21<-2,15+21<))nkv (65)
where 6, ,, is the Kronecker delta, and C‘?ﬁ +26-2,542641) and C’(()p 12K—2,j+2K) ATe defined as

= o aE1/20 20
C(()ﬁ+2f—2,13+2f+1) =8, [C(g+2f—2.ﬁ+2f+l)]

Clprae-2.5+20+1)

= , (66)
111:0 \/1 + B(ﬁ+2f+2n—2ﬁ+2f+2n—l)
~0 = EL 21 A
C(p+2K-2,p+2k) =8, [C(();+2K—2,ﬁ+2K)]
L+ B2k pr2k+1)
= C(512k-2.5 : . 67
(p+2K-2,p+2K) \/1 +B(ﬁ+2k—2,p+2k—1) ( )

In Eq. (65), we multiplied P~/ to make ®° invariant under complex conjugation, i.e., X[®°] = D°. It is notable that,
owing to the Zy symmetry in Eq. (22), the cycles in the QC are not all independent of each other and have relations that

Relog C (51012 prant1)] = 2 (log B(p121-2,p+2n-1) + 102 B(p120 ps2nt1))

= Re[log C(12k-2n5+2k-2043)]» (68)
Im[log C(ﬁ+2n—2,ﬁ+2n+1)} = Im[log C (ﬁ+2K—2n,[3+2K—2n+3)]’ (69)
10g B (1202, p12n-1) = 108 B(p12k-2n12.p12k-20+3) € Roo, (70)

forne{l,2---,|K/2| + 1}.

The generalization for odd N is simpler than even N because of a lack of the Z, symmetry in Eq. (23), i.e., no Stokes
phenomenon at arg(n) = 0. Hence, one does not need to take care of the DDP formula. Performing analytic continuation
along the path, yp7, in Eq. (5) yields the exact QC as

1 LSy ()
D x m Z |:H Q)nf,nf+|:| $nk ’

(ny,....ng) €{0,1}K L=1
re{l2... K-1 n )
DL V= Ciriae-aprae—1y(1 + Clpre—t prae) - Oy 1)
K ng n
sz,() = C(ﬁ+2K—2,ﬁ+2K—1)(1 + Cprak—1,p+2k))" - (71)
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Owing to the Zy symmetry in Eq. (22), those cycles have dependencies on each other such that

Re(log Cpn-1,51m] = —Rellog Cpiak—n piak-ni1))s (72)

Im(log C(ﬁ+n—l,f)+n)] = Iml[log C(ﬁ+2K—n,ﬁ+2K—n+l)]’ (73)

forne{l,2,...,K}.

IV. ENERGY SPECTRA AND THEIR
TRANSSERIES STRUCTURE

In this section, we find the transseries structure of
the energy spectra from the exact QCs constructed in
Sec. III. A slightly nontrivial issue is that, according to
Eq. (3), the energy solution should take the form of

Ep = e(k)(g/VrN N (keNy)  (74)
where k is an energy level, and e(k) is a dimensionless
function depending only on k. This means that # has no
dependence of 7 in total, and thus, our main task is to find
the functional form of e(k). Although it is quite tough to
obtain the exact analytic function, finding its transseries
solution is in principle possible by using the (inverse)
energy level, k, as an expansion parameter [41,53].

Before looking to the structure, we briefly explain
the relation between the # and k expansions in (Exact)
Wentzel-Kramers—Brillouin ((E)WKB) analyses. Although
the 7 expansion seems not to work, expanding k around
k = 400 is compatible with (E)WKB analyses. As we will
describe precisely later, we employ an ansatz for # which is
an expansion in terms of k' as x - 400, where k=
m(k+1/2) with k€N, By taking the ansatz as
n7t~ Y s eang-1 €k, we recursively determine the coef-
ficients, cseon, -1, by solving the QCs. Since the 5
expansion is nothing but an expansion of c(k)~! =
e(k)~(N+2/CN) a5 ¢(k) — +oo, the result of ¢, can be
converted to a transseries of e(k) by Eq. (4). In addition,
topology of the Stokes graphs generated by 7 and ™! is the
same if ¢_; is a nonzero real value. The relation between
the two graphs can be seen from Eqs. (3) and (4) by
multiplying 72 to £ and substituting 7' ~ c_jx™" +
cik' 4 - - - into it; one finds

n2L ~ = + K20,
0:=n2k7Q~ [ +2c ek + 0(xH)]Q. (75)

By assuming c_; # 0, the leading and the higher orders of
x~!in Q can be regarded as a some sort of classical part and
quantum deformations, respectively, in the sense of 7
expansion. Therefore, from the viewpoint of the x~!
expansion, solving the QC is identical to determining
the specific potential form of Q, which is a kind of inverse

|
problem to the standard (E)WKB method to determine
energy spectra using the 7 expansion.

Below, we clarify the transseries structure of the energy
spectra for arbitrary (N, K). Since the dependence of K in
the energy solutions is in general quite complicated,
we explicitly write down the solutions only for K =1 in
Sec. IVA and derive the transseries ansatz of the energy
spectra only in Sec. IV B. By using the ansatz, the same
procedure in Sec. IV A works to find the energy solutions for
arbitrary (N, K). This study is a direct generalization of the
results found by the standard WKB analysis, e.g., in
Refs. [1,25,46,54,55].

A. The K=1 cases

1. Even N

We consider the energy solution for even N and write
down it as a transseries by solving the exact QC in Eq. (46).
Taking ®° = 0 gives

. n 1
1+C(17»ﬁ+2):0:> Z U”Slnﬁ~nn_ﬂ(k+§>’

ne2Ny—1

(keZ) (76)

where the coefficients, v, ¢on,-1, are defined in Eq. (28).
When choosing a suitable ansatz for #, one has to be careful
that it should be consistent with asymptotics of the EWKB
ansatz which is the n expansion as n — 0,. Since the
leading term in Eq. (76) is O(5~"), the ansatz of #~! has to
be the large k expansion. For this reason, we prepare ansatz
for n as®

E(N+2)/(2N)
gl = - Cg)) «t

as k > oo, (78)
/N
9'"Nn £ EMNy—1

x = k(k) = ﬂ<k +%> (keNy)  (79)

3The transseries of ; is available from that of !, which begins
with O(k™!) and can be written as

0) _
- 3
£ €Ny +1

as Kk = +oo. (77)

The coefficients d;o) are uniquely determined from c;o) in

Eq. (78).
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(_01) > 0 to make the energy spectrum positive when taking a

non-negative k. Substituting Eq. (78) into Eq. (76) determines the coefficients, el(/,o‘)EZNO_I, recursively, and the solution is

where k is the energy level, and we assume that e

given by

o_  TG+y)
Pr(1 + +)sinZ’

0 _ m'2NT(2 - &) sin %

N
‘1 ri-Ly
L0 _ 2NL(1 +g)sin® £ [(2N* + N =3)L(2 = )1 +5)siny  10NC(2 - 5)’I(5 + ) sing
ST srg -1 re-br )
(80)
From Eq. (78), one can find the transseries energy solution as
% ~B ST Ot 0, ER, (81)
(g / h)va £€2Ny—1
where the coefficients e;o) can be found from C;O) as
& —
-1 — 7
0 _ 7(N —1)N cot%sin? %
‘ 3NT2?
0 (N=DNsin®> Z /(N +2)*2N +3)L(2 =31 + ) TG)C (=1 = 4)*cos? Zsin3Z
ey, = .
} 720(N +2)* TG+ hHr-1-3)
—207%(N = 1)(N + 6)cot? %sin%),
(82)

©),_ ,0),,0

where ¢é," :==e, /e ] ©

. N
normalized by el| = a %2 X

FG+y) \we : -
(W . The energy solution does not contain

nonperturbative sectors because the exact QC only contains
the perturbative cycle. Notice that the resulting energy
spectrum is positive real.

2. Odd N

Next, we find the energy solutions for odd N. As
different from the even N cases in Eq. (46), the exact
QCs for odd N contain the nonperturbative contribu-
tions, denoted by B in Eq. (50). The same ansatz in
Eq. (78) works for the perturbative sector, but we
need to identify higher transmonomials corresponding

I
to the nonperturbative sectors and add them to the
ansatz of 7.

The higher transmonomial can be easily found using the
leading order of x~! in #. Since the perturbative sector is
derived from P as

1+P~0= cos {1}_1 sin% . n‘l] ~0, (83)

one can find the leading order of 7! as

i k TG+
T sinE T ZPr(1 +

)
) sin

[SS1[OV]

Z|=[=|—

2K (84)
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where « is defined in Eq. (79) with the energy level, k. From E(N+2)/(2N)
Eq. (52), the exponential damping factor, i.e., higher — »~1 = — Z c(fO)K—f + Z Z c;”>g";<—f
transmonomial, is obtained from the leading order of B as g/mh £ €2Ny-1 neNzenN,
x as kK — +00, (87)
B ~exp {—v_l <cosN + 1> ~n‘1] ~exp[-Sik], (85)
o= sink- e 5% = (=1)ke=5ix, (88)
= COS_%;'; ! ER.,. (86) Substituting the ansatz into Eq. (50) and solving ® = 0
Siny recursively determines the coefficients, ¢’ € R. The per-

) . . turbative coefficients, c<0) , are the same as in Eq. (80),
Hence, in order to obtain a closed form for all algebraic 7 E€Mo-1 (n=12) a- (80)

operations in the exact QC, the transseries ansatz for 7 has ~ and the first two nonperturbative sectors, ¢,y ", can be

to take the following form: written down as
L TGy
O 2420(1 + ) sinZ
V2NT(2 -4
m__” 1( IN) Cosg+1>’
12I°(5 — %) N
12NT(2 = L) sin Z 1 1 11 31
ANl Lk [Mvr(z ——)r(l +—>cos4l _ 3r<_ __)r<—+—>] ,
720G - %)TG + ) N N)"7 2N 2 N) 27N
(89)
o TGy
’ 8x!2T(1 4 §)sin’ 5
() ®'/2NT(2 = )cos®
a- 6I'(3 — ) sin 7%
L0 _ 7'2NL(2 = $)cos? & O +2) 87(N — 1)cos’ 5 cos &
2 72(N +2)T(L - 1) sin Z; ’
(90)

The higher nonperturbative sectors, c;"g él , can be also determined in a similar way. The energy spectrum is obtained from

the above results from Eq. (87) and holds a similar nonperturbative structure to that of #, which is expressed by

E N2 0) _ n (n) — n
7(g1/Nh)»?—i’zNKN+{ Z e;)lc 7+ Z Z c €;)K f], e(/elR. (91)

¢ €2Ng—1 neNZeN,

The perturbative coefficients, denoted by e;o), are the same as in Eq. (82), and the first two nonperturbative sectors, e;":l’z)

can be written down as

’

s _ N
O TN+’
N —1)NcosZ
éﬁl)Iw cos—+1),
3(N+2) N
27n(N — 1)N sinZ cos &
égl)z— 7 ) F—HN{3—x(N - 1)cos* Z cotZ),
9(N +2) 2N N

(92)
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o 1 (ﬂ—l/zr(%qﬁ) 2Nco%>

s® -
¢ 4\I(I+y)sing  N+2

1 3 1
<87z"/2N2F<2 —N>F<§+—> cos = cos? —— — 3(N-2)—16a(N— l)cos“icotE),

2N N

e? — N
! 12(N +2)3 N N 2N
o Nsinf 127PN’T(2—3) (3(N+6) #(N—1sin® §
144N 428 T(-1-D) cosZ sin* Z

T
— (N = 1) 12(N = 2) cot =
”( )< (N =) cot s &

(n)

where ¢, = e,(fn) / e(_ol) are normalized coefficients divided
by € = 2772 TG ¥ Notice that, the same as in
ye = T(i+5)sinZ ) )

the even N cases, the resulting energy spectrum is positive
real.

B. Generalization to K > 1

We consider the generalization to K > 1 from Egs. (65)
and (71). Since the analysis for the perturbative part is
almost the same as in the K =1 cases, one can straight-
forwardly find the perturbative coefficients of #~! and the
energy spectrum, i.e., cl(/,o) and egﬁo). These can be expressed
from the results of K = 1, Egs. (80) and (82), by replacing

ZE2 (but not for cosZ! and cotZ?).

- o

sinf7 as sinfF — sin 5t

Therefore, the perturbative sector has been already solved.
|

z(N = 1)sin’ %sin%’f)]

(93)

Below, we investigate the nonperturbative structure in
their transseries. Since transseries structures of the energy
spectra are essentially the same as that of #, we mainly
address the derivation of a transseries ansatz of 1. We
would not write down specific forms of the nonpertur-
bative coefficients for K > 1 because they highly depend
on the value of (N, K), but construction of the ansatz is
indeed sufficient to see properties of the energy solutions,
such as the nonperturbative structure and the spectral
reality.

Firstly, we see the even N cases. The number of
independent nonperturbative sectors in the energy spectra
can be found by counting that of independent exponential
damping factors of the cycles contained in the exact QCs
(65) using Eqgs. (68) and (70). It is determined as

0 for K =1
(94)

no. of independent NP sectors = L
otherwise

|K/2] + 1
We should recall that the case of K = 1 is special because, as we saw in Sec. III A 1, their contributions are canceled to each
other. It is notable that the number is determined only by K and irrelevant to N. Such a nonperturbative sector can be
classified by its damping ratio such as §; for K =1 in Eq. (86). For K > 1 in even N, the damping ratios are defined as

sinarg(a,,o,) — sinarg(a,)  cos™5 2 _ cog K
S, = — P — LEQES N — N (ne{l,2,...,|K/2]})
SIHW SIHW
sinarg(a,,,) — sinarg(a,) 2cosZk
S = = . 95
LK/2]+1 sin ZK sin 2K ©5)
By these ratios, the leading orders of the cycles in the exact QCs (65) can be identified as
— (81 4 Six/2y+1 )k + O(k™") forn =1
Re[l0g Cipion-2p12n1)) ~ § —(Suot + 8w + Sixpojs1)k + O™") for ne{2,....[K/2]} . (96)
_(ZSLK/ZJ + SLK/ZJ-H)K_" O(K_1> for n = LK/ZJ + 1if Ke2Ny + 1
Re[log C512k-2 542k)) ~ =S1k + o(x™), (97)
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10gB(ﬁ+2n—2,ﬁ+2n—1) ~ {

Hence, one can construct the ansatz of ! as
E(N+2)/(2N)

- ) _
n= /N ~ Z Ce K
9'"n £€MNy-1

|K/2]+1

o= ] o) oy
=1

=S|k/2)1K + O(k71)

‘4

forn =1 (9%8)
—(28,-1 + Sixja 1)k + O™ for ne{2,....[K/2] +1}
Z Z 6"c M as k > +oo, (99)
nenlK21+16 €Ny
[n|>0
= sink - 75K = (—1)ke™Sik, (100)

Notice that, from Egs. (65), (68), and (70), one can find that C;O """ 01— 0 for any £ €Ny and n€N.
Then, we consider the odd N cases. In a similar way to the even N cases, counting the number of independent
nonperturbative sectors in the exact QCs (71) using Eq. (72) gives

no. of independent NP sectors = K. (101)
Similar to the situation for even N, the number is determined only by K. By defining the damping ratios as
. . z(K—n) n zK
sinarg(a;.,) — sinarg(a; cos —=——— (—1)" cosZ>
S, = (=1)"! 8ldp1n) _ glap) _ N (”K )" cosi (nefl,...K}) (102)
sin % sin 7
the leading orders of the cycles can be written as
=Sk + O0(x™") forn =1
Rellog Cpynt prm)] ~ { " i . (103)
(=D)™"(S,_1 + Sk +0(™") forne{2,3,...,K}
In consequence, one can find the following transseries ansatz for 77!
EWN+2)/(2N)
N = —w, Z cl(/,,o)lc‘f + Z Za“c;n)lc‘f as k — +o0, (104)
Y £E€My—1 nenk/ ENg
|n|>0
o" = HGZ’;), o(j) = sink - e75% = (=1)ke=Si¥, (105)

Jj=1

It is remarkable that the number of the nonpertur-
bative sectors is roughly twice as the even cases
with the same K due to lack of the Z, symmetry
in Eq. (23).

We show below some examples of the exact QCs
obtained by Eqgs. (65) and (71) and their re-expressions.
In these examples, we use the symbols, B, <y, to denote
nonperturbative cycles such that B, « e 5% with the
damping ratios S,, given by Egs. (95) and (102) for even
J

B o 1 1+ B<5,6>

Cua

and odd N, respectively. From the re-expressions, one can
see consistency with the ansatz in Egs. (99) and (104) and
the spectral reality. The corresponding Stokes graphs are
shown in Fig. 7.

1. Example 1: (N,K)=(6,2)

We show the case of (N,K) = (6,2). Equation (65)
leads to

Cis) + Cae

a2 |11 Cas)

n .
L+ By /1+Bua/1+Bia) /1+Bza/1+Bsg

(106)
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FIG. 7. Stokes graphs with arg(s) = 0 for some (N, K) shown in Example 1-4. The green lines denote the path of analytic
continuation. For even N, (a) and (b), degeneracies of the Stokes lines occur between the turning points in complex conjugated pairs.
The length labeled by B,, corresponds to half of the integration contour in the exponent of the associated B cycles in Egs. (107), (109),
(111), and (113).

Redefining the cycles by splitting into the damping and oscillation parts, it can be reexpressed by

B, +2B,B,

D P24 pr/2 4 )
VI+B,\/1+ BB,

(107)

In Eq. (106), the perturbative cycle corresponds to P = C; 5), and 113?2 =1

2. Example 2: (N.K)=(8,3)
Then, we consider the case of (N, K) = (8,3). Equation (65) leads to

1+ B73 n Caa n Cie) n Cian +Cpy
UONT+Bas T+ Bua/T+Boa /T+Bua/T+Bss T+ Baa/T+ Bag)
Cisa) + Cisg) n Cie) n Ca4Cisa/1+ Bayg)
\/1 +B(56)\/1 +B(7,8) \/1 +B(3’4)\/1 +B(56) \/1 +B(12)\/1 +B(34)\/1 +B(5,6)

1
0
D °<P1/2

1+C

(108)

It can be re-expressed by
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_ B, + 2B B, 12, 4412 BiB, _ _
D0 P12 4 pt1/2 4 1 A / +A + 1 p-1/24 4 ptl2p-] i 109
m 1 _'_B%Bz( (3,5) (3,5)) 1+ B%Bz( (3.3) (3,5)) ( )
where A(35) = C(35) is a cycle with a pure oscillation. In Eq. (108), the perturbative cycle corresponds to P = C(y 7),
and ,/Bos _
1+B(1.2)
3. Example 3: (N,K)=(5,2)
We show the case of (N, K) = (5,2). Equation (71) gives

1
D x I 1+ Cuz +Chua + Cusy+Cua + Casy+ CunCia) + Cu2Cas)l (110)

which can be expressed by
Do P72+ PH2 4 B(ALy) +Ans) + By + BiBy(Af,) +Ana)) + BiBa, (111)

where A, ,.) = exp [i - Im[log C(,, ,,,)]]. In Eq. (110), the perturbative cycle corresponds to P = C; 5.

4. Example 4: (N,K)=(7,3)
Then, we consider the case of (N, K) = (7,3). Equation (71) leads to

1
Dox =71+ Cuo+ Cuay+ Cue) +Cuz +Caay+ Cae) +Car)+ Cis6 + Cis7)+ Ci2)Ciza) + Ci1.2)Ciap)

P1/2

+Cu2Cia) + Cu2)Cise) + Cu2)Cis7) + CuaCise) + Ca4)Cisn) + C34Cis6) + C3a)Cis

+ C12)C34Cis.6) + C12C3.4Cis.1)],

and it can be written as

(112)

Do P72+ P2 4 B (A ) + Apay) + Ba(AG) +Apa)) + By + BiBy(Af ) +An2)(AG, +Apa)
+ ByB3(A(y) + Aqz) + BiBaB3 (A + Aws)) + BIBy(AG ) + Apay) + B3Bs + BiB3B3(A() + A1)

+ BIB3B;,

where A, ) =exp[i-Im[log C,, ,,]]. Notice that
A(nyny) * Anyny) = Anyny)- In Eq. (112), the perturbative
cycle corresponds to P = C(y 7).

V. FORMULAS FROM THE EXACT
QUANTIZATION CONDITIONS

In this section, we derive formulas in Fig. | using
the exact QCs constructed in Sec. III. In Sec. VA, we
consider the Gutzwiller trace formula. In Secs. VB and
V C, we derive the spectral summation form and the
Euclidean path integral, respectively. We would like to
notice that, in the discussions below, we use cycles and
energy spectra expressed by transseries, but those can be
formally replaced with their Borel resummed forms,
which are analytic functions, by operating the median
resummation, Syeq0-

(113)

A. Gutzwiller trace formula

We derive the GTF using the resolvent method [26].
Roughly speaking, the GTF describes a particle’s periodic
orbits on a constant energy plane in a given potential.
The GTF is usually formulated in the semiclassical level
(subleading of the stationary phase approximation) and has
the form of

525 -1/2
det——
OxOx

G(E) = 3" S ir(E)(=1)e" dore P

neNp.p.o.

s

(114)

where “p.p.0.” denotes primal periodic orbits, and 7(E) is a
period with a fixed energy, E. Especially, the sign (—1)"
known as the Maslov index plays a key role of this formula,
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and this originates from the number of negative eigenvalues

of the Hessian matrix, (;f—(si, expanded around the correspond-
ing classical solutions. See, for example, Refs. [56-67] for
applications of the GTF and the Maslov index.

One of the ways to construct the GTF is to use the
partition function Z(f). By denoting a (Hermitian)
Hamiltonian operator as H, (trace of) the resolvent,

G(E), is defined as [47]

o 1
G(E) = /0+ 2P =Tr——.  (115)
Z(p) = 2%” A jﬂw G(E)ePEdE, (116)

where Z(f3) is the partition function, Tr denotes trace over
the (Hermitian) Hilbert space, and 0 < 6 < 1 is a regu-
larization parameter to avoid E = 0. The resolvent G(E)
can be also expressed by the Fredholm determinant,
Dp(E), as

Dpy(E) = det (H - E) = 0, (117)

The important point is that Eq. (117) is essentially the
same as our exact QCs, D(E), and can be generalized by
replacing Dpy(E) with D(E) [27]. Furthermore, as the
greatest benefit, translating from the exact QCs into
the GTF is technically and intuitively simple thanks to
the cycle representations of the exact QCs.

The GTF for (N, K) with K = 1 for even N is almost
trivial because of vanishing nonperturbative effects in the
exact QC so that, we firstly show a slightly nontrivial
example, K = 1 for odd N, by using Eq. (48). In order to
see the nonperturbative effects more clearly, we factorize
the QC into the perturbative and the nonperturbative parts,
denoted by Dp and Dyp, as

(a) P =Cppi2)

FIG. 8.

@ X 1 +P+ C(ﬁ,ﬁ+1) = @P . @NP,

Cippt1)

D, =1+ P, ,
=l 1+P

where P :=C;;,2) is the perturbative cycle. From

Eq. (118), the resolvent G(E) is written by the cycles as

G(E) = Gp(E) + Gnp(E). (120)
opP
Gp =1 j—P =—0gP Y _ (-1)"P"
neNy
= To(E)PY (-1)"P", (121)
h neN,
oL
GNP - =0 = —OEL (_l)nLn
ETA Y
= ST(E)LY (-1)Ln, (122)
neNy
L= Sern_ oo —1yPr, (123
- = “(p.p+1) Z ( ) ) ( )

1+P

neNy

where Gp and Gyp are the perturbative and nonperturbative
parts, respectively, and L corresponds to the nonperturba-
tive p.p.o. in Gyp. The Maslov index, (—1)", naturally
arises from the P and the L cycles in Eqgs. (121) and (122),
and the same index also appears from P in the L cycle in
Eq. (123). The schematic figure of the p.p.o.s is shown
in Fig. 8. Moreover, by identification with Eq. (114),
the quantum periods including all 7 orders in Gp/np
are identified from the derivative parts as, Tp(E) :=
ihdglog P and T, (E) := ihdglog L, respectively. Speci-
fically (cf. Ref. [1]),

(b) L =Cp+1) 2onen, (1" P

Schematic figure of p.p.o.s for (N, 1) with odd N.
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Tp(E) _ (N +2)g"™ z 1w, sin— - " (124)
h NE &N N
Tc(E) _i(N +2)g'/V _m
= nv, (e~ +1)-5", (125)
h INE SR
P
TL(E) = Te(B) - s To(E). (126)
where T¢(E) = ihdglog C;5 541y, and the coefficients,

Vpeon,-1» are defined in Eq. (28). Notice that n < 7 as
is shown in Eq. (4). One can easily see that Tp(E) is real,
but T/ (E) are complex values. It is because the period
is defined to be real if the associated cycle is a pure
oscillation. Hence, the nonperturbative cycle with a damp-
ing factor generates a complex period [27].

It is notable that Eqgs. (121) and (122) do not contain
cycles with negative oscillations, i.e., Im[log P] > 0 and
Im[log C( 5,1)] > 0, but the GTF including negative oscil-
lations is available by using complex conjugation of the
exact QC, D = K[D]. Since D x D, replacing D with
(DD)!/2 in Eq. (118) can generate all p.p.o.s with positive
and negative oscillations.

One can also formulate the generalization of the GTF for
K > 1 in a similar way. Since the exact QCs can be
generally expressed as

Dx1+P+6D, (127)
where 09 is the nonperturbative part, substituting Eq. (127)
into Eq. (118) leads to the GTF for K > 1. As a result, one

can find the same forms for Egs. (121) and (122), but the
nonperturbative p.p.o. in Eq. (123) is modified as

(a) (N, K) =

(6,2)

FIG.9. Schematic figure of nonperturbative p.p.o.s for (N, K) =

constructed by certain combinations of cycles in its QC.

(6,2)and (N,K) =

0D

= 12
1+P (128)

For example, from Egs. (106) and (110), the specific forms
of L for (N,K) = (6,2) and (5,2) can be expressed as

Loy = ) {H(zmjm!]

n.my,my €Ny Lj=1

. [C(1.4) (_1 )n+m1+sz’("1|.2)Bgz,4)Pn

+ (C(3,5) + C(3,6))(—1)”+m1+m23m1 B™ P”],

(3.4)7(5.6)
(129)
Lispy = Z [Cii2) + Cuay+Ciay + Ciss)
neN,
+C2Cia) + CpCps(=1)"P".  (130)

The schematic figure of their nonperturbative p.p.o.s is
shown in Fig. 9.

It is notable that the main difference between the cases of
odd and even N is nonperturbative contributions from B
cycles constituting Cyp g—g, Which is a consequence of the
Z, symmetry in Eq. (23).

B. Spectral summation form

The SSF can be easily derived by replacing the Fredholm
determinant in Eqs. (116) and (118) with the exact QC.
For construction of non-Hermitian QMs, there generally
exist some issues in Hilbert spaces, such as the inner
product and the unitarity condition. In P7 symmetric
QMs, while the unitarity condition holds, the P7 sym-
metric inner product is nevertheless indefinite. There
is, however, another inner product compatible with a
P7 symmetric Hamiltonian and holding both positive

(5,2). A nonperturbative p.p.o. can be generally
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definiteness and the unitarity condition. This is called the
CPT inner product. We summarize the construction in
Appendix A. See Refs. [20-22,68-70] and references
therein in more detail.

We denote the CP7 inner product as << y|¢>>, which
is defined in Eq. (A15). The P7 symmetric Hamiltonian,
Hpr, satisfies

<< Ek| |I:I73T|Ek2>> =<< Ek] |FITPT|E]€Z>> = Eklékl-kz'
(k1. ky €Ny) (131)

We also define trace over the Hilbert space using the CP7
inner product as TroPT[A] := D oken, << EA|E >,
where A is a P (and y) pseudo-Hermitian operator
satisfying A = PA™P = yATy~! with y:=PC. By the
CPT inner product, Eqs. (115) and (116) are modified as

1
G(E) = Trepr o —E’
PT —

Z(p) = Treprle ] = Z e PEx,
KEN,

(132)

and thus, the resulting forms are essentially the same as the
Hermitian cases.

Let us reproduce the SSF in Eq. (132) from Egs. (115)
and (116) using our exact QCs. For simplicity, we firstly
suppose that the QCs include only the perturbative
cycle, ie., D x 1+ P. By taking P(E) = ') with
ap(E) €R., Egs. (116) and (118) lead to

1 O+ico
Z(B) = —=— oplog(1 + P)ePEdE
271 J5-ico
_ i co+i0, PaEaP e—/}EdE
27T co+0_ 1 + P
1 co+i0, —PE(ap)
- T day, (133)

2r co+i0_ 1_|_e—iap

where f‘:ﬁg)_* dE is the Hankel contour going around £ =

0 with 0 < 6 < 1. This has simple poles at ap = 2k =
7n(2k+1) with keN,, that is the same condition as
Eq. (76). Therefore, it can be evaluated by the residue
integration, and E(ap) has to be the energy solution of the
exact QC. This means that Eq. (133) is identical to the
perturbative part of the SSF in Eq. (132).

One can also obtain the generalization including non-
perturbative sectors by replacing P with P 469D in
Eq. (127), where 6D denotes all nonperturbative parts in
the exact QC. By defining
R(E) = '9(E),

a(E) = —ilog(P(E) + 6D(E)). (134)

Eq. (133) is generalized by replacing ap with 4, i.e.,

1 S+ico
Z(f) = —=— oplog(1 + R)ePEdE
271 J5-ico
1 [oo+i0. Roga

- RO g
27T 00+0_ 1 + R ¢

1 [ooti0, =PE@)

__L < 135
27 Joorio, 1+e " (135)

where E(a) is the energy solution of the exact QC
depending on the energy level, d =2k =n(2k+1)
with keN,,.

C. Euclidean path integral

We formulate the EPI under the periodic boundary

condition that x(0) = x(z)=:x, using the exact QCs.!

In a similar way to the Hermitian cases, the EPI is defined

by introducing the complete set, I = f?w dx.|x;) (x| with
(x| = |x,)1, as’

dx (xcle P x,).

Z(p=1/h) = / (138)

YT

where yps is the domain of x given by Eq. (5). Thanks
to the CP7 inner product, one can construct its familiar
form expressed by the Euclidean action, Spr = [§ df Lpr,
with the Lagrangian, Lp7 in the standard way. Defining
the complete set of momentum, I = ;jr—ph Ip)(p| with

(p|x) = P/ and using the Legendre transform, one
can obtain

Z(ﬁ) = / dxr<xr|e_ﬁﬂPT|xr>
rPT

:/ Dx/ppefoﬁdf[’%%—liw]

14208

IN/ Daxe 1577, Dx :=
rPr

d
I %

where N is a normalization factor.

(139)

“The Minkowskian path integral can be also formulated in a
similar way.

>The states |x) and (x| are consistent with the inner product
with the CP7 states, |E;>> and << E;|, as

(X|Ep=> = (x|Ex) = ¢ (x), (136)
<< Ei|x) = (Ei[PClx) = (x|CP|E\) = CPT [¢i(x)]
= (i (—x), &G=1 (137)

where ¢ (x) = ¢ (—x) is the P7 symmetric energy eigenfunc-
tion with [ dxepy, (x)¢pe, (x) = Ci, 6, -
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As 1s well known in the Hermitian cases, the EPI is
identical to the SSF in Eq. (132), i.e., Z(f) = Z(f3). The
same argument works for the P7 symmetric Hamiltonian,
due to the CP7 inner product. Hence, the simplest way to
find a transseries of the EPI is expanding the energy
solution in the SSF. Since the energy for the massless
cases is a monomial of th—fz’ one can write down its explicit
form as

Z(p) = Z e PE = Z Z M[szw—z}ﬁ’

n!
keNy keNyneN,

(140)

where the energy is given by Eq. (74) with a transseries
e(k) of the energy level, k. Notice that e(k) in Eq. (140) is a
divergent series of k' or k! = [z(k + })]~". Using the
property of the Stokes automorphism which is a homo-
morphism, the Borel resummed form is formally obtained
by replacing e(k) in E, with é(k), where f = Speqolf]-

As is shown in Fig. 1, the same result can be derived by
the integration by part as

O+ioco
A log® - e PEdE

a(E
log [2 cos @} e PEAE

Z(p) =

2mi 6—ico
ﬂ 6+ico

2mi 6—ioco

S L [r (l - %?)} ePEAE, (141

N 2ri S—ioco 2

where d(E) is defined in Eq. (134). Singularities appear
from the gamma function at a(E) = 2k = n(2k + 1) with
k €N, and consequently lead to the same form as the SSF
in Eq. (135).

VI. THE MASSIVE CASES

We briefly describe the massive cases defined by
the potential in Eq. (1) with @ > 0. In contrast to the
massless cases, the perturbative expansion using 7 naively
works, and the dependence of the energy level appears as a
polynomial in each of the coefficients. Application of
EWKB to the (N,K) = (4,1) case was investigated in
Ref. [25], and its exact QC has the form of

1+ B,
1+%93,

@OO(I—FQI :1+2[, %1:%2, (142)

where 2 is a perturbative cycle and is given by a residue
integration of S,4 around x = 0. The double turning point at
x = 0 is connected to two single turning points by Stokes
lines which corresponds to B, ,, but those contributions
canceled each other due to the Z, symmetry in Eq. (23).
Hence, the energy spectrum contains the perturbative sector

only. When considering the potential in Eq. (1) with @ > 0
for an arbitrary N, the above situation is unchanged due to
the following fact:

Fact (Uniqueness of yp7 and Borel summability
of energy spectra). Consider the potential in
Eq. (1) with @ > 0, and suppose that the path
of analytic continuation yp7 is defined by Eq. (5).
Then, for any N €N+ 2, the path providing a
solution of the exact QC is uniquely determined
as the nearest path to the real axis, i.e., K =
|[(N—1)/2] (¢ =1 and 2 for odd and even N,
respectively). The resulting exact QC contains
only the perturbative cycle around x = 0, 2, as
D =1+ A. The A-cycle is Borel nonsummable
and summable for even and odd N, respectively.
Borel summability of the energy spectrum is also
the same.

The derivation is summarized in Appendix B. As a
result, the resulting energy spectrum, the GTF, the SSF, and
the EPI are all purely perturbative.

We would emphasize that the same statement as the
above Fact holds for a wide class of classical P7
symmetric polynomial potentials with a single quadratic
vacuum. Here, let us remove the choice of the real axis for a
path of analytic continuation even when the wave function
is normalizable at x = +o0, such as (E-2) and (E-3) of
Fig. 2, because it is a Hermitian QM. In such a case, once a
Stokes graph is drawn, a suitable path of analytic continu-
ation is automatically determined to give a quantized
energy by # without introducing ¢ as a deformation
parameter from the real axis. The uniqueness of ypr is
broken when the set of turning points is invariant under
complex conjugation, which arises from the Z, symmetry
(23) in the potential. However, the reasonable paths are
given as a complex conjugate pair, and either choice from
the pair gives the same result.® Examples of the Stokes
graphs given by polynomial potentials with a mass term are
depicted in Fig. 10. The energy spectrum is Borel non-
summable only if a Stokes phenomenon occurs by degen-
eracies of Stokes lines, which are flowing parallel to the
real axis, from the double turning point to simple turning
points. See discussions in Appendix B.

In summary, this Fact tells us a nice observation;
even for more generic polynomial potentials, exact QCs
for the massive P7 symmetric QMs with a single quad-
ratic vacuum have the same form as Eq. (142) and can be
calculated by performing only the residue integration of
S,a(x, E; #) around the vacuum in Eq. (B19). These results

°In this sense, the uniqueness of ypr in Fact for even N is
guaranteed by positivity of e. When ¢ € Z for N € 2N + 2, those
paths of analytic continuation are given by (N,K) = (N5 —1)
and (N,K)= (N,5+1) which correspond to &= +2 and
e = =2, respectively, and these give the same exact QC.
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+

(a) 8Vpr = gax?(iz) 4 gax®(iz)?

(b) 0Vpr = g3(ix)® + gaa®(iz)? + gox’ (ix)*

+

(c) 6Vpr = gaz?(ix)? + gez® + gz’ (iz)?

FIG. 10. Examples of the Stokes graph for the massive cases with a polynomial potential, Vp; = w?x> + 6V ps for @, g; € R, and
the zero-classical energy, E, = 0, with arg(%) = 0. The green dot at the origin and the blue ones denote the double and the simple
turning points, respectively. In order to find a quantized energy spectrum by #, the path of analytic continuation, yp7, has to be taken as
the green dashed line. In (c), there exist two suitable paths as a complex conjugation pair giving the same result because of the Z,

symmetry (23) in Vp7.

lead to the energy spectra and the three formulas in Fig. 1 as
simple forms without nonperturbative sectors.

VII. ADDITIONAL REMARKS

In this section, we make some additional remarks related
to our analysis. We briefly discuss similarities to the
Hermitian cases in Sec. VII A, and then comment on
resurgence in Sec. VIIB.

A. Similarities to Hermitian QMs

We discuss similarities of transseries structure to
Hermitian QMs. Here, we consider the Hermitian potential
defined by

Vi (x) = @0*x* + AxV,

AER., N e2N + 2,

COGRZ(),
(143)

and take @ = 0 for a while. Stokes graphs of the Hermitian
potential for N €4N + 2 and N € 4N are the same as (E-2)
or (E-3) in Fig. 2, respectively, and a path of analytic
continuation is taken along a line slightly below the real
axis. As we can see below, the transseries structure of the
Hermitian QM is quite similar to the P7 symmetric QM.

In this part, we only consider exact QCs of the Hermitian
QM because the procedure for each formula is parallel to
analyses in the above sections. In the Hermitian cases,
turning points consisting of a perturbative cycle are a; and
ay, and the cycle P can be evaluated as

P =exp |2i Z (-1)T v, -],

ne2Ny—-1

where the coefficients, v, con,-1, are given in Eq. (28).
Since the Stokes graphs (E-2) and (E-3) in Fig. 2 have a
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Stokes phenomenon at arg(n) = 0, one has to treat dis-
continuities in the QCs. In a similar way to Sec. III, the
exact QCs take the forms of

N/2—1
l H @(f) ]@(N/z)

gy nyp
(n1..onypp) €{0.13V2 L =1

1 a4 n— n
ggl]?"z = C(1_3)(6n2,0 + B(31,2) ’ 5712,1) '
g(fe{z.&“.,N/Z—l})

gy

— O B—1 :
= Cgf—2,2f+1) (5nm,0 +B (20+12¢) " 5nf+1.,1)nf’

N/2) _ mn

S = (145
where
e e Cu3

() T+ Bps)
& . Cor220+1)

(o220l 1o V1 + Bosian-aseion-) ’

(¢€{2.3.....N/2})
~ Cin-2.n)
Cin_ = . ,

(N-2.N) TT Byoons,
~ L+ Bororsi
Byinn = G D B N (146)

Borarin

For N = 4 and 6, those can be explicitly written down as

1
5)?\,40<—{1+P+

Cujz) +Cpy
7 “UD TR (47

1+ B(2’3)

1

Cuz +Cpe  Cus+C
@ONzﬁ x iz [1 + P+ (L3) (2.6) (1.5) (4.6)

VI+Bey T+ Bus
Cs) + Cu3)Cuas) ]
VT+Ba3)y/T+Bus) '

1/2

(148)

As one can see from Eq. (65), the Hermitian QCs have a
similar feature to the P7 symmetric QCs for even N.
Although details of the energy spectra of the Hermitian
QM such as the specific values and the number of non-
perturbative sectors differ from the P7 symmetric QM
with the same N, the fundamental feature is almost the
same because the difference comes only from the paths
of analytic continuation on the same Stokes graphs. In
addition, the P7 symmetry, P7 :x — —X, constrains
locations of turning points, and the real part of both turning
points and paths of analytic continuation are always Z,
symmetric. This is also the same in the Hermitian cases
and the crucial reason to give the similar feature in the
transseries.

As we discussed in Sec. VI, the similarity also holds in
the massive cases, i.e., @ > 0, but there is generally a
difference in Borel summability from the Hermitian QM.
In other words, although both the exact QCs are purely
perturbative, the exact QCs of the Hermitian QM defined
by Eq. (143) are always Borel summable, but it is not
always true for the P7 symmetric QM defined
by Eq. (1).

B. Resurgence

We make some comments on resurgence. Construction
of resurgent relations of the energy spectra for the massless
cases is possible by alien calculus, but it does not mean
that these resurgent relations each perfectly reproduce
the nonperturbative sector. Indeed, even the first alien
derivative does not generate information of all nonpertur-
bative cycles, B(,, ,,) and C,, ,,), in Egs. (65) and (71). We
summarize the details in Appendix C.

This reason originates from the structure of the Stokes
graphs. In order to extract all the nonperturbative informa-
tion from the perturbative cycle at once by the alien
derivatives at a certain complex phase, 6 = arg(y), all
the nonperturbative cycles in the exact QCs need to
simultaneously have degeneracies of Stokes lines and
intersections with the perturbative cycle. However, this
situation cannot be realized by any 6, and only some of the
nonperturbative cycles can have them at a certain 6. In this
sense, the resurgent relations can only extract partial
nonperturbative information from the perturbative part
for each 6 causing a Stokes phenomenon. This situation
is also unchanged for the Hermitian cases discussed in
Sec. VII A.

In contrast, the situation in the massive cases completely
differs from the massless cases. As we described in Sec. VI,
the exact QCs contain only a perturbative cycle even if a
Stokes phenomenon happens at 6§ = 0. This is a conse-
quence of the fact that Borel nonsummability is in general
irrelevant to the existence of nonperturbative contributions
in the exact QCs, i.e., it only concludes performability
of Borel resummation due to Borel singularities. In the
Hermitian cases with a single quadratic vacuum, the exact
QCs are always not only purely perturbative but also Borel
summable.

VIII. SUMMARY AND CONCLUSION

In this paper, we have studied EWKB for a P7T
symmetric QM defined by the potential that Vpr(x) =
0*x? + gx*K(ix)® with w € Ry, g€R_ and K,e€N to
clarify its perturbative/nonperturbative structure. In our
analysis, we have mainly considered the massless cases,
i.e., = 0, and obtained the following:

(I) the exact QCs for arbitrary (K, €) including all order

nonperturbative corrections (Sec. III),
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(IT) clarification of the full transseries structure of the
energy spectra with respect to the inverse energy
level expansion (Sec. IV), and

(IIT) derivations of the GTF, the SSF, and the EPI using
the exact QCs (Sec. V).

After the investigation of the massless cases, we have then
discussed the massive cases, i.e., @ > 0, and shown
(IV) uniqueness of the path of analytic continuation for a
given N, and nonexistence of nonperturbative con-
tributions in the exact QCs, the energy spectra, and
all the formulas in III (Sec. VI).
We have finally made additional remarks on similarities to
the Hermitian cases for even N and resurgence (Sec. VII).

In our EWKB, the exact QCs can be expressed by Voros
symbols (periodic cycles), and the cycle representation of
the QCs is quite helpful for the analysis based on Borel
resummation theory. For the massless cases, the Z,
symmetry, Z,: x — —x, in the potential crucially affects
their transseries and nonperturbative structures through the
DDP formula, and the effect appears as (non)existence of
extra nonperturbative cycles without oscillations in the
cases of even (odd) N = 2K + . The perturbative/non-
perturbative structure of the exact QCs directly propagates
not only to the energy spectra but also to all the formulas in
1. We should emphasize that, although we have performed
those analyses by using transseries, their analytic forms can
be formally obtained by taking the median resummation to
them. Thus, our results are formally exact.

For the massive cases, from the requirement of the
existence of a solution of the exact QCs, the path of analytic
continuation is uniquely determined, and in consequence
the transseries structure becomes quite simplified because
of a constrained K as K = [(N —1)/2]. As a result, the
nonperturbative contributions do not appear in the exact
QCs, and thus, the energy spectra and all the formulas in III
are perturbative. However, those are in general Borel
nonsummable. This result is extendable to more generic
polynomial potentials with a single quadratic vacuum.

Notice that, for constructions of the formulas in Fig. 1
from the exact QCs, pseudo-Hermiticity and the CP7 inner
product are quite essential, which guarantees the unitarity
condition and positive definiteness.

Since this study addressed a quite simple potential, there
are many questions remaining even in the quantum
mechanical level: more generic potentials, constraint to
nonperturbative effects by P7 symmetry, generalizations
of PT /CPT duality and their nonperturbative effects, and
so on. Furthermore, a generalization to field theories and
study of their nonperturbative structure are interesting
problems as a future work.
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APPENDIX A: PSEUDO-HERMITICITY
AND CP7 INNER PRODUCT

In this part, we briefly review pseudo-Hermiticity and
construction of the CP7 inner product. For now, we
consider the Minkowski spacetime, but extension to the
Euclid spacetime is straightforward by the Wick rotation.
See Refs. [20-22,68-70] and references therein in detail.

We denote Hpy as a P7 Hamiltonian operator and
define C, P, and 7 operators which satisfy

[Apr. PT] = [Hpr.C] = [C.PT] =0,  (Al)

0? = 00" = 00 =1, Oe{C,P, T}, (A2)
where [A, B] := AB — BA. The parity operator, P, flips the
sign of space as x — —x, and the time-reversal operator, 7,
corresponds to complex conjugation, K. The “charge
conjugation,” C, is not a usual transform acting to a charged
particle and will be determined to find the CP7 inner
product later. Notice that the time-reversal, 7, is an
antiunitary operator.

There are a couple of notations of the P7 symmetric
Hilbert space, but the most familiar way might be to start
with the Dirac bra ket of the energy eigenstates:

Hpr|Ey) = EJE). PTIE) =|E). (E = |E),
(A3)

H;T|Ek> = Ek|Ek>7 7D7—|E1<> = |Ek>’ <Ek| = |Ek>-‘-7
(A4)

where k is a label of the energy level. Here, we assume that
the energy does not have degeneracies and that P7
symmetry is unbroken, i.e., the energy spectrum is real
and K[E,| = E;, where K is complex conjugation. The fact
that the Hamiltonian is not Hermitian, i.e., FIPT + I-AI;,T,

implies that A ;T|E «) # E¢|Ey) even if the spectrum is real.
Although the P7 Hamiltonian is not Hermitian, it satisfies
‘P-pseudo-Hermiticity condition [20]:

A, = PHprP. (A5)
By this condition, one finds that
(Ex|PHpr|E) = (Ef|Hp PIE) = E(EL|P|EL).  (A6)

and, according to Ref. [68], (E;|P|E) in the last equality
can be replaced with
Sk = (Ex|PIE).

G=1 (A7)
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Equation (A6) also implies that the P7 symmetric states,
|Ey) and (E;| == PT |E}), can be found by the identification
that

|Ex) = |Er),  (EiP - (

(Ex,|Ex,) = $k, 0k, s

(A8)

where & ,, is the Kronecker delta. Hence, the inner
product of the P7 symmetric states is indefinite, and
the complete set is given by

1= GPIENES =D GIEN(EP.  (A9)

This implies that the |E;) in Eq. (A4) can be expressed by
|Ey) as

|Ex) = CiPIE),
(Ey,|Ex,) = (Ex,|Ev,)

(E = Ce(ER|P,
— 5k1,k2' (AIO)
However, for the time-dependent P7 symmetric states, the
inner product is invariant under the time evolution:

_ ih (Ec()|(~Aby P + PHpp) | E(1))
o (Al1)

< EIED)

Therefore, the unitarity condition is satisfied due to the
pseudo-Hermiticity in Eq. (AS).

As we saw above, the inner product of the P7T
symmetric states is indefinite. One can solve this problem
by introducing C operator and constructing the CP7 inner
product. We define action of the C operator to the energy
state as

ClEy) = GilEx) = |Ex) = GPIE) = PCIEy).  (Al2)
By this operator, one can find the CP7 inner product which
is positive definite:

= (Ey, |Ey,) =

_ / dx(E,, [PClx) (x| Ey,)

rpT

Ok, ky (Ey,|PCIEy,)

_ / dxCP [y, (9, (x)

= / dxCPT |y, (x)]ep, (%), (A13)

M0+ = M+Naz,a3M+N M_lNa4 agM+Na8,a5M+Na5,a7M+Na7,a5M+Na6.az7

as,ay

M07 = M+Na2,a1M+Na1,a3M+Na3.agM+Na8,a4M:1Na4.a5M+Na5,a6M+Na6,a2 ’

where ¢ (x) := (x|E}) is the P7 symmetric energy eigen-
function satisfying P7 [¢;(x)] = (x|PT|E;) = ¢p(—x) =
¢(x). By denoting y := PC, Hpy is y-pseudo-Hermitian:

PCI:IPT = PI:IPTC = FI;)TPC = I:I;;"T :)(H'pr]*){_l
(A14)
Finally, we define the CP7 inner product, << y|¢>>, as
<< ylp=>:= 'wle).

(wlrd) = (A15)

By using y = PC, the complete set (A9) is expressed by

I= ZI)(Ek><Ek| = Z|Ek><Z_lEk|» (Al16)
% %

and one can derive

lEk|)’>

Z (x|Ex)(x
k
= Z(f)k )(Q{’k

S(x—y) = (xly) =
ZCPT Gy ().

(A17)

One can easily prove the unitarity condition for the CP7
inner product in a similar way to Eq. (A11).

APPENDIX B: DERIVATION OF FACT
IN SEC. VI

. We explain the derivation of Fact in Sec. VI. As an
example, we consider N = 10 and take the two paths given
by K =2 and K = 4 in Eq. (5) for analytic continuations.
By these choices of (N, K), the potential is given by

Vpr(x) = w*x? — gx'°, w,geR.y.  (Bl)
The Stokes graph and the two paths, ypr . and ypr .\

are shown in Fig. 11. In the discussion below, the labels of
turning points are taken in the manner of Fig. 11.
We firstly consider the lower path, yp7(10.2), for analytic

continuation. The monodromy matrices are given by

(B2)

(B3)
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FIG. 11. Stokes graphs in the massive cases with arg(#) = 0, for (N, K) = (10,2) and (N, K) = (10,4). The red and green lines
denote the path of analytic continuation for K =2 and K = 4, respectively. In these figures, we assume that £ = O(1) in the
Schrodinger equation, so that the perturbative cycle C35) consists of two simple turning points.

and thus, normalizability of the wave function, /\/lfzo =0, gives
D0+ Cup) + Cuz + (1 + Cuny + Cuz)(Cus)y + Cup) + Cuzy + Cug))s (B4)
D% & Cias)+ Cag) + (1 + Clas) + Cag))(Ciany + Can) + Caz) + Cas))- (BS)

Even though the QCs have a discontinuity, a perturbative part of the energy should be derived from a common perturbative
part in the QCs, which is

Dyt & 1+ Cra). (B6)

When the energy in the cycles is replaced as E — E# with E = O(h), the two simple turning points, a5 and as, become a
double turning point, but Eq. (B6) is unchanged. One can see that, by this replacement, the leading order of log C, ) is

O(h~"), but the energy parameter, £, is not included in the same order. This means that the QC in Eq. (B6) has no solution
of the energy to satisfy ‘é)?,i =0.

Next, let us consider the upper path, ypr . The monodromy matrices are obtained by

104) "
M0+ = M+Na3,a4M:lNa4,a8M+Nag,a5M+Na5,a7M+Na7,a2 ’ (B7)
MO = Na3,a1M+Na1,a3M+Na3,a8M+Nag.a4M:1Na4,a5M+Na5.a2' (Bg)

By imposing normalizability to the wave function, i.e., M% =0, the QCs are obtained as
D0+ x 1+ A(3,5)(1 + B(5‘7)) + C<3,g) + C(4,5) + C<4,7) + B(4,8)7 (B9)
D o 1+ Ay (1+ Biy) + Cisg) + Caz) + Crany + Blag- (B10)

Here, we used the symbols, A3 5) = C(35) and B(, ) = C, ), to emphasize being purely perturbative and nonperturbative

o0

cycles, respectively. The DDP formula for the cycles is available by counting the intersections and given by
©4[Ans) =Aps)(1+Ba1y)™(1+Bsg) (1 + Bug) ™, (B11)

&[B(..)] = B (B12)

o)’
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@4[Cs)] = Ciag)(1 +Ba1) (14 Bug)™,
@4[Clas)] = Clas)(1 + B(s7)) (1 4+ Bag))™,
@4[Cur] = Cuzy(1 4+ B(s7)) (1 4+ Bag))™,
©@4[Cs8)] = Csg)(1 + B(s7))™(1 + Bug))™,
@4[Craz)] = Cuz)(1 + B )™ (1 + Bug))™,
@4[Ciany] = Cuy(1 + B1)™(1 + Bug))™. (B13)
From these, one can obtain the exact QC, D := ©§ 1/2 [D0%+], as
1+ B 1+ B C
D0 o 1+ 4 O DA ) 4y [ D C 5 + o) . (B14)
I+ B 1+ By VI+Bany/T+ Bug)

By replacing E — En, the quadratic vacuum at the origin becomes a double turning point, as is shown in Fig. 12. Using the
Z, symmetry in Eq. (23), the exact QC becomes

1 B
Q)Oo<1+2[+( 1+98B_+ ) | B15
VI+8B_)\/1+82 (BIS)

where A3 5y — 2 is a perturbative cycle going around the double turning point corresponding to the quadratic vacuum, and
B are introduced through E — Enh as

B(371) — B(577) g ?B_, C(4,5> — C(3,8) g §B+, B(4,8) b d ?Bi (B16)

Figure 13 shows the cycles on the Stokes graph with E = O(h). These cycles are expressed by F as [25,28,31,53],

A = e—Zn'iF’ (B17)
\/2_7[_% e:tm'Fh:I:F s
%:F = CgF F(I/OZ ES F) ’ %0 = e_TB7 (S% € |:R>0) (Blg)

N %
ag asg

(a) Airy type (0 < Ep < 1) (b) Degenerate Weber-type (Ey = 0)

FIG. 12. Stokes graphs in the massive cases with arg(f) =0 for (N,K) = (10,2) and (N,K) = (10,4) using Airy-type and
degenerate Weber-type for the quadratic vacuum at the origin. The two simple turning points blue-colored in (a), a3 and as, collide into
each other as varying Ey — 0., where E| is the zeroth order of the energy, and consequently become a double turning point green-
colored in (b).
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+

.___>___.-OO

FIG. 13. Cycles on the Stokes graph defined by the potential in
Eq. (B1) with E, = 0.

where F' and C. are the formal power series of E and A,
and F is obtained by a residue integration of S,y around
x=0as

F(E;n) = —Res,_¢Soq(x. E;h) = —cE + O(h),  (B19)

with ¢ € R.. The perturbative energy solution is given by

DN x14+A=0, (B20)
and the positive energy condition leads to
F:—k:>E:§+0(h), keN0+%. (B21)
Substituting F into Eq. (B18) gives
B, =0, (B22)

because of the gamma function in the denominator. Thus,
the exact QC (B15) becomes
D1+ (B23)
which contains the perturbative cycle only, i.e., the energy
solution contains no nonperturbative part. Notice that the
DDP formula of 2 is still nontrivial because B_ # 0, which
means that the energy solution is Borel nonsummable.
The same discussions are applicable to any other (N, K).
Here are observations from the above analysis:

(1) The perturbative part of the energy solution is given
by a cycle with pure oscillation. When replacing the
energy as E — Eh with E = O(A"), if the pertur-
bative cycle consists of two simple turning points in
the exact QC, no appropriate solution can be found
from the exact QC. This means that the exact QC
must contain a cycle going around a double turning
point as a reasonable perturbative cycle. It is possible
only when the nearest path to the real axis is taken as

+
]| |
] \N\;\/\N"\'\N‘ )
1] v
+

FIG. 14. Stokes graph for the degenerate Weber equation. The
green dot is a double turning point. The black solid and red wave
lines denote Stokes lines and a branch cut, respectively. This
figure is brought from Ref. [25]. See Refs. [25,28,31,53] in detail,
for example.

the path of analytic continuation. As a result, the
exact QCs for arbitrary (N, K) consist of a pertur-
bative cycle defined by the double turning point and
nonperturbative cycles having nontrivial intersection
numbers with the perturbative cycle.

(2) By taking E — Eh, the quadratic vacuum is ex-
pressed by the degenerate Weber-type Stokes graph
shown in Fig. 14. Suppose that there exists a single
quadratic vacuum and that the asymptotic behavior
of the local Stokes graph is taken in a similar way to
Fig. 14 by appropriately taking branch cuts. When
there exist nonperturbative cycles along the “+-
directions in Fig. 14, which correspond to B_ in
Eq. (B15), their contributions do not exist be-
cause B, = 0.

(3) When there exist nonperturbative cycles along the
“—"-directions in Fig. 14, which correspond to B_ in
Eq. (B15), their contributions are canceled in the
exact QC. In such a case, the energy solution is Borel
nonsummable. It is notable that these B_-type
nonperturbative cycles coupled to 2, always appear
as a pair in the numerator and denominator as,
e.g., (B(3.1), B(s7)) in Eq. (B14). Such a pair appears
when the Z, symmetry in Eq. (23) is preserved in the
potential, and these two contributions are equivalent
to each other.

One can generate other double turning points from the
simple turning points by changing Ey€R as a control
parameter and inducing bifurcations. In the potential (1),
however, the solution can be obtained only when a double
turning point exists at the origin due to the above (1)—(3)
and topology of those Stokes graphs. By using these
observations, Fact in Sec. VI can be proved for any (N, K).

Notice that the locations of the branch cuts and the
asymptotic behaviors of the Stokes graph, “+”, are arbi-
trary as far as being consistent with each other, and thus, the
result must be unchanged by changing them.
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APPENDIX C: ALIEN CALCULUS
FOR ENERGY SPECTRA

In this part, we describe alien calculus for the energy
spectra. We begin with the exact QCs given by Egs. (65)
and (71). Suppose that we have already found a transseries
solution of the energy, denoted by E(x), which satisfies’

C330|E=E(;<) =0. (Cl)

The Stokes automorphism &4€® can be generally

expressed by the alien derivative A, as

@4<R = exp [Z/AQ] ~ 1+ vy, (C2)
where € is the angle of the integration ray in the
Laplace integral, £,. Below, we consider the case of § :=
arg(n) = 0 for simplicity, but a generalization to nonzero 6
is straightforward.

Instead of seeing the energy solutions, it is con-
venient to deal with n because our exact QCs for the
massless cases are transseries of 7. We should recall that
the DDP formula of the cycles in Eq. (64) is related to
arg(n), but 5 (or the energy E) is a free parameter until
solving the exact QCs. Hence, for the transseries of # in
the cycles, n(k), the alien derivative can be split into two
parts as

AoF ()] = 0, F ()], - Doln™ ()] + Ao [F(n ()],
(C3)

Ao lF ()] = Ay o[ (1)l (C4)

where A, is the transformation law of the DDP formula
with a constant n in Eq. (64). If one acts An,o to
D%(n(x)), the result is in general nonzero. Thus, from
Eq. (C3), we determine Ao[’ﬂ to keep zero under the

action of AO to D°(5(x)). From Eq. (C3), one can readily
find that

A,0[D°(n)]

Bal(n(x))) =0 = Aofr! (o)) = =12 S

n=n(x)

(C5)

In the discussions below such as Sec. C 1, we mainly address
action of the alien derivative to a perturbative sector for
simplicity, but the solution does not need to only contain a
perturbative cycle. It generally contains nonperturbative contri-
butions, and action of the alien derivative to nonperturbative
sectors is nontrivial.

After obtaining AO[I’]_I(K)], the result can be translated
into AO[E(K)] by using Eq. (4), that is
. 2N

ol = s

Aol (k). (Co)

By repeating the same procedure, one can recursively
obtain the higher order alien derivatives, (AO)"[W_I(K)]
(or (Ag)"[E(x)]), by

n Z;:I thi<n Y
SZ]: k;[s] (I’L - le tkt)!

(Ay0) ™| (A,0)"[0, DO (n(x))]

(C7)

(Do) ™ (1))

where |v| denotes the L; norm.

In Sec. C1, we demonstrate the specific calculations
using these formulas. In this paper, since it is sufficient for
our purpose, we only argue the first order alien derivative.

1. Even N

We consider resurgent relations for the even N cases.
From the DDP formula given in Eq. (64), the alien
derivative to the cycles is obtained as

Aq.o[c(mzf—z,mzmlﬂ = C(ﬁ+2f—2,ﬁ+2f+1)
1
-log [H(l + B(ps2e42n-2,542042n-1)) | 5
n=0

A, 0[B(piae+on-2pr2e42m-1)) =0 with n=0,1, (C8)

with #€{1,2,...,K}. Here, let us consider the perturba-
tive sector. This sector can be extracted by picking up the
part corresponding to n, = 0 and n, = 1 for all # from the
summation in Eq. (65), and it is given by

D« 14 Cizpox) =1+ P, (C9)

where DY denotes the perturbative sector in the exact QC.
Since AQ[E(K)] is given from AQ[H_I(K)] in Eq. (C6), we
argue below that A~ (k).

We compute Eq. (C5) using the definition of P in

Eq. (55). We suppose that the specific form of 77! (k)
(or 7(x)) has been known by solving Eq. (C9). Since

K
0,1 DY(n) = ~2iP- Y nvnsin%-n”“, (C10)
neNy-1

045022-30



EXACT QUANTIZATION CONDITIONS AND FULL ...

PHYS. REV. D 110, 045022 (2024)

K-1 1
An.o[@g(ﬂ)] P-log [H H(l + B(p12¢12n-2.p+2¢42n-1) }

¢=1n=0

K-1
=P-lo 0og |:(1+B(pp+1 )(1+Bp+2Kp+2K+1 H 1+Bp+25p+2f+1)>2:|

\

=2P-[log(1+ B +1)) +10g (1 + Bk prk+1))0k mod 2.0) + 4P

where we used B 1202 p1o/-1)
to n(x) from Eq. (C6) as

= B(piok—2042 p42k-2043) Tor € = {1, ...,

L(K=1)/2]

Z log (1+ B(p10r.p42041))
=

(C11)

| (K 4 1)/2]}, one can find the alien derivative

K-1)/2
A ()] = log (1 + B 541)) +10g (1 + B(p ik pirk+1))9Kmod 2.0 T+ 225:1 72 log (1 + B(piaepr2r+1))
0 - nKn n
1D ean,—1711, Sin ﬁ -yt n=n(x)
B +B 5 2 AN g
(p.p+1) (p+K.p+K+1)9Kmod 2,0 (p+2¢.p+26+1) O(B2 C12
- ﬂKﬂ n+1 + ( ) ( )
lZnEZNO—lnvn sin " - n n=n(x)

Notice that, although the nonperturbative sector associated to
B (5 5+1)> Which corresponds to 6 k/2+1) in Eq. (100), does
not arise alone in the energy solution, it appears in the alien
derivative in Eq. (C12). In addition, the alien derivative has
information related to only B, ,) but does not contain the

other cycles, C, ,). Moreover, the alien derivative is pure

imaginary and does not provide information of (—1)* in

Eq. (100). These facts imply that it is impossible to fully
figure out information of the nonperturbative sectors from the
perturbative sector in the transseries solution of the energy.

Then, let us try to extract some information due to the
other cycles in Eq. (100) from the perturbative sector in
Eq. (C9) by introducing nonzero € into Eq. (C8). Actually,
Stokes phenomena occur at not only & = 0 but also nonzero
0, and the similar analysis is applicable to the other cycles.
For any 6 = arg(#n) inducing Stokes phenomena, the alien
derivative to any cycles C,, ,,) & Cnpg, Where Cypy is a
set of nonperturbative cycles going around degenerated
Stokes lines induced at a @, is written as

Aﬂﬂ[c(nhnz)] = C("]an) .log |: H <1 + Bf)<C(n]'”2).Bj> ’

B; € Cxpy
C(nl,n2) & CNP,G’ (C13)
0="3 with ne{-N.-N+1L..N-1}. (Cl4)

By this DDP formula, Eq. (C11) is modified as®

The DDP formula generally changes the cycle representation
of the exact QC depending on each Stokes phenomenon, but in
this procedure the phase is introduced only to the alien derivative
as fixing the exact QC, D°. It is because our purpose is extracting
nonperturbative information from the solution, i.e., #(x), which
has been already obtained by @°.

An,e[i’)%]—P-log[ 11 (1+B,,~)<”*Bf>} (C15)

B; € Cxpy

Finally, the generalization of the alien derivative of 77! to
an arbitrary @ is written as

A [7’]_1(K>] log [HB eCNpg(l +B]) PBj)]
0 zKn  n
203 o, MU SN I
S5 ey (P By} log(1+B)) 2
=5~ Kn il +O(Bj).
20 2, con, -1V, SINERE 1"

n=n(x)
(C16)

Notice that, by taking & = 0, any elements B; in Cyp g at a
certain nonzero & become some cycles expressed by C(,, )
in Eq. (65). Thus, Eq. (C16) can extract nonperturbative
information due to C,, ,,) from the perturbative sector (C9)
by introducing a nonzero 6. However, it is extremely tough
to make relations of the alien derivatives for each 0 to the
full transseries solution of the energy (or #) at once.

2. Odd N

In this part, we briefly describe the odd N cases. Since no
Stokes phenomenon occurs at @ = 0, one has to take a
nonzero 0 to induce a Stokes phenomenon. The phases 0
inducing Stokes phenomena are given by

. 1 3 1
H_W with n€ {—N+2,—N+2, ...,N—2}. (C17)
We do not argue the specific alien calculus for the odd N
cases in more detail because the procedure is the same as
the even N cases. It can be easily derived by using
Egs. (C13), (C15), and (C16) and taking 6 in Eq. (C17).
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