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We study exact Wentzel–Kramers–Brillouin analysis (EWKB) for a PT symmetric quantum mechanics
(QM) defined by the potential VPT ðxÞ ¼ ω2x2 þ gx2KðixÞε with ω∈R≥0, g∈R>0 and K; ε∈N to clarify
its perturbative/nonperturbative structure. In our analysis, we mainly consider the massless cases, i.e.,
ω ¼ 0, and derive the exact quantization conditions (QCs) for arbitrary ðK; εÞ including all perturbative/
nonperturbative corrections. From the exact QCs, we clarify full transseries structure of the energy spectra
with respect to the inverse energy level expansion, and then formulate the Gutzwiller trace formula, the
spectral summation form, and the Euclidean path integral. For the massive cases, i.e., ω > 0, we show the
fact that, by requiring the existence of the solution of the exact QCs, the path of analytic continuation in
EWKB is uniquely determined for a given N ¼ 2K þ ε, and in consequence the exact QCs, the energy
spectra, and the three formulas are all perturbative. Similarities to Hermitian QMs and resurgence are also
discussed as additional remarks.
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I. INTRODUCTION

Non-Hermitian quantum theories have important roles in a
wide area of physics and provide rich physically interesting
phenomena. Those theories are also interesting topics from
the viewpoints of mathematical and computational physics,
and those have been actively studied in recent years. A PT
symmetric theory is a particular class of non-Hermitian
theories. PT symmetric quantum mechanics (QM) was
proposed in Refs. [1,2], and its field theoretical generaliza-
tion was also considered in Ref. [3]. In high energy physics,
study of the PT symmetric theories is currently one of
the interesting subjects from various aspects, such as
field theoretical understanding [4,5], beyond the standard
model [6–12], and mathematical understanding [13,14]. See
also Refs. [15,16].
Owing to broken Hermiticity, PT symmetric potentials

can contain negative coupling, such as VðxÞ ¼ −gx4 with
g∈R>0, and be unstable at x ¼ �∞. For this reason, the
variable, x, is usually considered to be a complex value and
defined as a (real) one-dimensional orbit on the complex x
plane to be consistent with PT invariance and to gain
convergence of the wave functions. The remarkable prop-
erty of PT symmetric QMs is that, despite the lack of

Hermiticity in a Hamiltonian, energy spectra are real and
bounded [1,17–19]. Then, a naive question arises: in the
theoretical viewpoint, how much and in what sense are PT
symmetric QMs similar to/different from Hermitian QMs?
There are several approaches to partially answer to this
question, such as pseudo-Hermiticity [20–22], PT =CPT
duality [18,19], and the Ai-Bender-Sarkar conjecture
[23–25]. Each of them addressed quite important subjects
for their theoretical and mathematical structures as well-
defined quantum theories, i.e., Hilbert space and inner-
product, energy spectra, and correspondence to analytic
continuation of Hermitian QMs and their nonperturbative
contributions. They are also crucial for generalizations to
PT symmetric field theories.
In this paper, we study exact Wentzel–Kramers–

Brillouin analysis (EWKB) for the PT symmetric potential
defined by the following Schrödinger equation, Lψ ¼ 0:

L¼ −ℏ2
∂
2
x þVðxÞ−E; ℏ;E∈R>0; x∈C;

VPT ðxÞ ¼ ω2x2 þ gx2KðixÞε; ω∈R≥0; g∈R>0;K;ε∈N;

ð1Þ

to clarify its perturbative/nonperturbative structure. EWKB
is formulated based on Borel resummation theory, and it is
quite powerful to analyze nonperturbative physics in QMs.
We mainly consider the massless cases, i.e., ω ¼ 0, and
address the following issues:

(i) derivation of the exact quantization conditions
for arbitrary ðK; εÞ including all perturbative/
nonperturbative corrections,
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(ii) clarification of full transseries structure of the energy
spectra and their ðK; εÞ dependence,

(iii) formulating the Gutzwiller trace formula, the spec-
tral summation form, and the Euclidean path integral
from the exact quantization condition.

We firstly try to derive the exact quantization conditions
(QCs) which correspond to a generalization of the Bohr-
Sommerfeld condition by using EWKB. For application of
EWKB to the massless monomial potentials, it is conven-
ient to rescale x as x → ðEgÞ1=NxwithN ≔ 2K þ ε in Eq. (1)
and redefine the Schrödinger operator, L, as1

L
E
→ L ¼ −η2∂2x þQ; Q ≔ x2KðixÞε − 1; ð3Þ

η ≔
g1=Nℏ

EðNþ2Þ=ð2NÞ : ð4Þ

Thus, the wave function can be expanded by η, and all the
parameters ðℏ; g; EÞ appear in η only. ε in the potential is a
crucial parameter through this paper and is introduced as a
deformation parameter of a domain of x on the complex
plane from the real axis. In this sense, the potential has to be
complexified, and nontrivial nonperturbative structures
depending on ðN;KÞ are expected. Since energy spectra
including all perturbative/nonperturbative corrections can
be obtained by solving the exact QCs, we then clarify the
full transseries structure of the energy spectra from the
exact QCs. Finally, we try to obtain the picture of Fig. 1 for
arbitrary ðN;KÞ. Once constructing the exact QCs, one can
construct various formulas, such as the Gutzwiller trace

FIG. 1. Flowchart of various formulas from an exact quantization condition in EWKB. This figure was originally shown in Ref. [28].

1Rescaling not only x but also the time and the momentum
as ðt; pÞ → ððgEðN−2Þ=2Þ−1=Nt; E1=2pÞ gives the same time-
dependent Schrödinger equation and uncertainty relation, i.e.,

iℏ
∂

∂t
¼ Ĥ → iη

∂

∂t
¼ H̃; ½x; p� ¼ iℏ → ½x; p� ¼ iη; ð2Þ

where H̃ ≔ Ĥ=E, and H̃ψ ¼ ψ .
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formula (GTF) [26], the spectral summation form (SSF),
and the Euclidean path-integral (EPI) from only the exact
QCs [27]. It would be helpful to see nonperturbative effects
from the viewpoint of each formula.
We will also briefly discuss the massive case, i.e., ω > 0.

In the massive cases, the standard ℏ expansion works for
the energy spectra, and their transseries structures become
much simpler than those of the massless cases. It is
because, in contrast to the massless cases, a suitable
complex domain of x is uniquely determined for a given
N by requiring the existence of the solution of the exact
QCs. As a result, the exact QCs, the energy spectra, and the
formulas in Fig. 1 are all purely perturbative. We show
these facts.
This paper is organized as follows: In Sec. II, we review

EWKB. In Sec. III, we construct exact QCs for the massless
case with arbitrary ðN;KÞ using EWKB based on the η
expansion. In Sec. IV, by using the exact QCs, we consider
the transseries structure of the energy spectra with respect
to the inverse energy level expansion. In Sec. V, we
construct the three formulas, such as the Gutzwiller trace
formula, the spectral summation form, and the Euclidean
path integral, using the exact QCs. In Sec. VI, we discuss
the massive cases. In Sec. VII, we make some comments on
similarities to Hermitian QMs and resurgence. Section VIII
is devoted to summary and conclusion. Technical compu-
tations, such as construction of the CPT inner product,
derivation of Fact in Sec. VI, and the alien calculus in
Sec. VII B are summarized in Appendixes. A, B, and C,
respectively.
This study is a generalization of earlier works analyzed by

the (standard) WKB analysis, e.g., Refs. [1,2,15,23,29,30],
in ε∈N.Manyparts of our analyses in this paper are based on
Refs. [25,27,28,31].

II. EXACT WKB ANALYSIS

In this section, we review EWKB in our setup in Sec. II A,
and then explainVoros symbols and theDelabaere-Dillinger-
Pham formula (DDP) formula which have a key role for
Borel resummation in EWKB in Sec. II B. There are many
nice reviews for Borel resummation theory and EWKB. See,
for example, Refs. [32–39] and Refs. [40–49], respectively.

A. EWKB ansatz and connection formula

Through this paper, we perform EWKB to the PT
symmetric QM in Eq. (1). In the PT symmetric QM, the
variable, x, is extended to a complex value and can be
taken to be a (real) one-dimensional orbit to converge the
wave function at jxj ¼ ∞ on the complex x plane. Parity and
time-reversal transformations are defined as P∶x → −x
and T ∶ði; xÞ → ð−i; x̄Þ, where x̄ is the complex conjuga-
tion of x, respectively, so that PT symmetry, i.e.,
PT ∶ði; xÞ → ð−i;−x̄Þ, gives a constraint to the domain of
x. Despite the constraint from PT symmetry, in general the

domain is not uniquely determined because there are a
number of asymptotic domains to converge the wave
function. The asymptotic domains can be classified by a
pair, ðN;KÞ (or ðK; εÞ) with N ≔ 2K þ ε, by being con-
tinuously deformed by the change of εwith a fixedK. By this
manner, we take the following subspace on the complex x
plane as the domain of x:

γPT ðN;KÞ ¼ Θð−sÞseþiθðN;KÞsþ ΘðsÞse−iθðN;KÞ; ðs∈RÞ

θðN;KÞ ≔ πðN − 2KÞ
2ðN þ 2Þ ¼ πε

2ðN þ 2Þ ; ð5Þ

where ΘðsÞ is the step function. Notice that the domain can
be continuously deformed to not change the result when
performing the analytic continuation in EWKB.
In order to find the picture in Fig. 1, we firstly have

to obtain a generalized QC denoted by D by taking the
following procedure in EWKB:
(1) drawing a Stokes graph by preparing an ansatz to the

wave function,
(2) performing analytic continuation along the path,

γPT , in Eq. (5) to obtain a monodromy matrix.
One of the components corresponds to the QC by
imposing normalizability to the wave function.

The above process is the same for any values of ðN;KÞ. In
the below, we would explain the procedure for the massless
cases, i.e., ω ¼ 0 in Eq. (1), but for the massive cases the
similar analysis works by replacing η with ℏ as an
expansion parameter.
In our analysis, we use η for the expansion parameter by

beginning with Eq. (3) and assume the following EWKB
ansatz:

ψaðx; ηÞ ¼ σðηÞ exp
�Z

x

a
dy Sðy; ηÞ

�
;

Sðx; ηÞ ∼
X

l∈N0−1
SlðxÞηl as η → 0þ; ð6Þ

where σðηÞ is the integration constant generally depending
on η, and a∈C is a normalization point for the wave
function on the complex x plane. The coefficients, SlðxÞ,
are determined order by order from the Riccati equation
given by Eq. (3) as

Sðx; ηÞ2 þ ∂xSðx; ηÞ ¼ η−2QðxÞ; ð7Þ

where QðxÞ is defined in Eq. (3). Explicitly, it can be
written down as

S−1ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi
QðxÞ

p
; S0ðxÞ ¼ −

∂x logQðxÞ
4

;

Sþ1ðxÞ ¼ � 1

8
ffiffiffiffiffiffiffiffiffiffi
QðxÞp �

∂
2
x logQðxÞ − ð∂x logQðxÞÞ2

4

�
;

� � � : ð8Þ
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The formal expansion, Sðx; ηÞ, can be decomposed into two
parts as the odd- and even-power expansions as

Sodðx; ηÞ ¼
X
l∈N0

S2l−1ðxÞη2l−1; S−1 ¼
ffiffiffiffiffiffiffiffiffiffi
QðxÞ

p
; ð9Þ

Sevðx; ηÞ ¼
X
l∈N0

S2lðxÞη2l ¼ −
1

2
∂x log Sodðx; ηÞ; ð10Þ

and Sevðx; ηÞ can be expressed by Sodðx; ηÞ. As a result, the
wave function (6) can be expressed as

ψa�ðx; ηÞ ¼
σ�ðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sodðx; ηÞ

p exp

�
�
Z

x

a
dy Sodðy; ηÞ

�

¼ σ�ðηÞ exp
�
� 1

η

Z
x

a
dx0Sod;−1ðx0Þ

�

×
X
n∈N0

ψa�;nðxÞηnþ1
2; ð11Þ

where � corresponds to the two independent transseries
solutions of the Schrödinger equation. Borel resummation
is a composite operation of Borel transform B and Laplace
integral Lθ, i.e., Sθ ≔ Lθ ∘B. These operations to the wave
function are defined as

B½ψa��ðx; ξÞ ≔
ψa�;nðxÞ
Γðnþ 1

2
Þ ðξ� ξ0ðxÞÞn−1

2 ¼ ψB;a�ðx; ξÞ;

ξ0ðxÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
Q0ðxÞ

p
; ð12Þ

Lθ½ψB;a��ðx; ηÞ ≔
Z

∞eiθ

∓ξ0

dξ e−
ξ
ηψB;a�ðx; ξÞ: ð13Þ

Below, we take a vectorial form for the wave function,
as ψa ≔ ðψaþ;ψa−Þ⊤.
A Stokes graph holds all information of Borel summ-

ability of the wave function and can be drawn by a specific
form of η−1

R
dx Sod;−1ðxÞ, i.e., the leading order ofR

dx Sodðx; ηÞ. Turning points are defined from a potential
as TP ≔ fx∈CjQðxÞ ¼ 0g, and in our case it is given by

TP ¼ feπi4n−Nþ2K
2N ∈Cjn∈ f1;…; Ngg: ð14Þ

We attach labels to each turning point as a1;…; aN in such
a way that

Re½a1� ≤ � � � ≤ Re½aN �; and Im½an� < Im½anþ1�
if Re½an� ¼ Re½anþ1�: ð15Þ

By this manner, all the labels are uniquely determined.
These turning points are also used for the normalization
point in the wave function. After obtaining turning points,
we find Stokes lines which emerge from each turning point.

Those are defined as

Im

�
η−1

Z
x

a
dyS−1ðyÞ

�
¼ 0 with η∈C; a∈TP: ð16Þ

If Re½η−1 R x
a dy S−1ðyÞ� is monotonically increasing

(respectively decreasing) as going far away from the
turning point along the Stokes line, we attach a label,
“þ” (respectively “−”), to the line.
When performing analytic continuation along a certain

path on the complex x plane, one has to glue wave
functions on each domain separated by Stokes lines. In
EWKB, it is carried out by introducing connection matri-
ces. One has to be careful that an infinitesimally small
phase has to be introduced to η before performing the
analytic continuation if a Stokes phenomenon occurs at
argðηÞ ¼ 0. Otherwise, the wave function is Borel non-
summable on the entire complex domain. A specific form
of the connection matrices generally depends on a type of
the turning point, e.g., how many Stokes lines emerge from
it. When it is a simple turning point called as Airy-type
Stokes graph, the connection matrix for crossing the Stokes
line anticlockwise is given by

Mþ ¼
�
1 i

0 1

�
; M− ¼

�
1 0

i 1

�
; ð17Þ

where Mþ or M− is chosen by the label of the Stokes line
determined by the behavior of Re½η−1 R x

a dyS−1ðyÞ�, and
their inverse corresponds to crossing them clockwise.
Notice that the connection matrix is determined in such
a way that the Borel resummed wave function is continuous
at a point on the Stokes line, i.e.,

Sθ½ψ I
aðx� þ 0−Þ� ¼ Sθ½ψ I

aðx� þ 0þÞ�;
ψ I
aðx� þ 0þÞ ≔ M�ψ II

a ðx� þ 0þÞ; ð18Þ

where ψ I;II are wave functions defined on certain domains,
I and II, separated by the Stokes line, and x� is a point on
the Stokes line that we are crossing. In addition, we
assumed that x� þ 0− and x� þ 0þ belong to the I and II
domains, respectively. When there exists a number of
turning points, one has to change the normalization point
to an appropriate turning point for crossing the Stokes
line next. This is performed by operating the normalization
matrix as

ψan1
¼ Nan1 ;an2

ψan2
; an1 ; an@ ∈TP;

Nan1 ;an2
≔

0
B@ e

R
an2
an1

dx Sodðx;ηÞ
0

0 e
−
R

an2
an1

dx Sodðx;ηÞ

1
CA: ð19Þ

In addition, the Airy-type Stokes graph has a branch cut.
When the wave function goes through the branch cut, the
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effect on the wave function can be expressed by a branch-
cut matrix T defined as

T ≔
�

0 −i
−i 0

�
; M�T ¼ TM∓; Nan1 ;an2

T ¼ TN−1
an1 ;an2

;

ð20Þ

which swaps the components of the wave function. One can
compute a monodromy matrix, denoted by M, by taking
the path in Eq. (5) from s ¼ −∞ to þ∞ and appropriately
taking the connection matrices, normalization matrices, and
branch-cut matrices:

Sθ½ψ ðs¼−∞Þ
a �ðe−iθðN;KÞs;ℏÞ ¼ Sθ½M� · Sθ½ψ ðs¼þ∞Þ

a �
× ðe−iθðN;KÞs;ℏÞ; ðs ≫ 1Þ

ð21Þ

where Sθ½ψ ðs¼þ∞Þ� is the (Borel resummed) solution of the
Schrödinger equation in the domain corresponding to
s ≫ 1, and M consists of M�, Nan1 ;an2

, and T. As a result,

the Borel resummed wave function, Sθ½ψ ðs¼−∞Þ
a �, is ana-

lytic continued from s ¼ −∞ to þ∞. Imposing normal-
izability to the wave function requires vanishing one of the
components in M, which corresponds to the QC, D ¼ 0.
Since D is a function of E, solving D ¼ 0 in terms of E
gives an energy spectrum.
It is worthwhile to see Stokes graphs that we will

consider in this paper. Shapes of the Stokes graphs can
be also classified by ðN;KÞ (or ðK; εÞ) as follows:
(1) Even N

(E-1) K ∈ 2N and ε∈ 4N0 þ 2 ðN ∈ 4Nþ 2Þ: There
exists a pair of turning points ðaN

2
; aN

2
þ1Þ such

that Re½aN
2
� ¼ Re½aN

2
þ1� ¼ 0 and Im½aN

2
� ¼

−Im½aN
2
þ1� < 0.

(E-2) K ∈ 2N0 þ 1 and ε∈ 4N ðN ∈ 4Nþ 2Þ: There
exists a pair of turning points ða1; aNÞ such
that Re½a1� ¼ −Re½aN � < 0 and Im½a1� ¼
Im½aN � ¼ 0.

(E-3) K ∈ 2N and ε∈ 4N ðN ∈ 4NÞ: There exist pairs
of turning points ða1; aNÞ and ðaN

2
; aN

2
þ1Þ such

that Re½a1� ¼ −Re½aN � < 0 and Im½a1� ¼
Im½aN � ¼ 0, and Re½aN

2
� ¼ Re½aN

2
þ1� ¼ 0 and

Im½aN
2
� ¼ −Im½aN

2
þ1� < 0, respectively.

(E-4) K ∈ 2N0 þ 1 and ε∈ 4N0 þ 2 ðN ∈ 4NÞ: Such
a pair on the real and the imaginary axes does
not exist.

(2) Odd N
(O-1) K ∈ 2N: There exists a turning point aNþ1

2
such

that Re½aNþ1
2
� ¼ 0 and Im½aNþ1

2
� < 0.

(O-2) K ∈ 2N0 þ 1: There exists a turning point aNþ1
2

such that Re½aNþ1
2
� ¼ 0 and Im½aNþ1

2
� > 0.

The schematic figures for the even and odd N cases are
shown in Figs. 2 and 3, respectively. Owing to the ZN
symmetry given by

ZN∶ x → e2πi
n
Nx with n∈ f0;…; N − 1g ð22Þ

in the potential (3), the turning points distribute as a regular
polygon. In our convention, we choose branch cuts in such
a way that the labels of Stokes lines are all “−” (respec-
tively “þ”) if the associated asymptotic domains are above
(respectively below) the path of analytic continuation in
Eq. (5). By this manner, the lower component of the wave
function, ψa−, needs to be zero in the limit that s → �∞,
and thus, one can find the QC from the resulting mono-
dromy matrix M obtained by analytic continuation along
γPT as D∶ ∝ M12 ¼ 0. For even N, the Z2 symmetry
defined by

Z2∶ x → −x ⊂ ZN if N is even; ð23Þ

remains in the potential as a subgroup of the ZN symmetry
in Eq. (22).2 As we can see later, this Z2 symmetry has a
crucial role for nonperturbative structure in the QCs.

B. Voros symbol and Delabaere-Dillinger-Pham
formula

In EWKB, the QCs are generally expressed by Voros
symbols (periodic cycles) [50], and one has to take care of
their perturbative/nonperturbative relations when a Stokes
phenomenon happens at argðηÞ ¼ 0. The situation always
arises for any even N.
A cycle, Cðn1;n2Þ, is defined as a contour integration of

Sodðx; ηÞ going around two turning points as

Cðn1;n2ÞðηÞ ≔ exp

�I
an2

an1

dxSodðx; ηÞ
�
: ðan1 ; an2 ∈TPÞ

ð24Þ

These cycles generally satisfy

Cðn1;n2Þ ¼ C−1
ðn2;n1Þ; Cðn1;n2Þ ¼ Cðn1;n3Þ · Cðn3;n2Þ: ð25Þ

We show an example of the cycles in Fig. 4. In our case,
thanks to the ZN symmetry (22), all cycles with fixed
ðN;KÞ can be written by the same formal expansion
ϕðeiϑηÞ with a complex phase ϑ depending on a turning
point which Cðn1;n2Þ goes around. Explicitly, it can be
written as

2To avoid confusion, we distinguish this Z2 symmetry from
the P symmetry. It is because the domain of x on the complex
plane has been determined by the constraint from the PT
symmetry and is not invariant under the P symmetry.
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Cðn1;n2ÞðηÞ ¼ exp ½ϕðeiðargðan2 Þþπ
2
ÞηÞ − ϕðeiðargðan1 Þþπ

2
ÞηÞ�;

ð26Þ

where ϕðeiϑηÞ is given by

ϕðeiϑηÞ ¼
X

n∈ 2N0−1
vnðeiϑηÞn

¼
X

n∈ 2N0−1
vn cosðnϑÞηn þ i

X
n∈ 2N0−1

vn sinðnϑÞηn;

ð27Þ

with the real coefficients vn∈ 2N0−1 for all n given by

v−1 ¼
π1=2Γð1þ 1

NÞ
Γð3

2
þ 1

NÞ
; v1 ¼

π1=2NΓð2 − 1
NÞ

12Γð1
2
− 1

NÞ
;

v3 ¼
π1=2Nð2N2 þ N − 3ÞΓð2 − 3

NÞ
1440Γð− 1

2
− 3

NÞ
; � � � : ð28Þ

When a Stokes phenomenon occurs at a certain
θ ≔ argðηÞ, in particular θ ¼ 0, on the Stokes graph, the
effect has to be taken into account to write down the
energy spectrum from the QCs obtained by taking
argðηÞ ¼ θ þ 0�. The DDP formula gives perturbative/
nonperturbative relations among the cycles, which enable
us to achieve the purpose [51,52]. Here, we define a set of
cycles, denoted by CNP;θ, having a degeneracy of Stokes
lines from two turning points at θ. Schematically,

CNP;θ ≔ fCðn1;n2≠n1Þjan1 ↔ an2 connected by degenerated Stokes lines; an1 ; an2 ∈TPg: ð29Þ

FIG. 2. Stokes graphs given by even N for argðηÞ ¼ 0. The gray arrows are the real and imaginary axes. The blue dots, black lines, and
red waves denote turning points, Stokes lines, and branch cuts, respectively. The green lines denote the path of analytic continuation in
Eq. (5) which is the nearest to the real axis under the condition of ðK; εÞ.
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Notice that CNP;θ ¼ ∅ if no Stokes phenomenon happens
at θ. For arbitrary cycles given by Cðn1;n2Þ ∉ CNP;θ and
C̃ðn1;n2Þ ∈CNP;θ, the DDP formula can be expressed as a
one-parameter group Stokes automorphism Sν∈R

θ as

Sν
θ½Cðn1;n2Þ� ¼ Cðn1;n2Þ

Y
C̃∈CNP;θ

ð1þ C̃ÞνhCðn1 ;n2Þ;C̃i; ð30Þ

Sν
θ½C̃ðn1;n2Þ� ¼ C̃ðn1;n2Þ; ð31Þ

where hA;Bi is the intersection number between two
cycles, A and B, which is defined as

h→;↑i ¼ h←;↓i ¼ þ1; h←;↑i ¼ h→;↓i ¼ −1: ð32Þ

When one computes a QC (or monodromy matrix) at θ
with a Stokes phenomenon, a transseries of the QC depends
on θ þ 0�, i.e., Dθþ0þ ≠ Dθþ0− . In order to eliminate the
discontinuity at θ, we formulatemedian resummation using
the Stokes automorphism. The Stokes automorphism tak-
ing ν ¼ 1 compensates for a discontinuity caused by the
Stokes phenomenon at θ as

Sθþ0þ ¼ Sθþ0−
∘Sν¼1

θ ; ð33Þ
and the median resummation Smed;θ gives a Borel
resummed form without the discontinuity as

Smed;θ ≔ Sθþ0þ ∘Sν¼−1=2
θ ¼ Sθþ0−

∘Sν¼þ1=2
θ : ð34Þ

The transseries eliminated the discontinuity, Dθ, can be
uniquely determined by the Stokes automorphism as

Dθ ¼ Sν¼þ1=2
θ ½Dθþ0þ� ¼ Sν¼−1=2

θ ½Dθþ0− �; ð35Þ
which is derived by

Sθþ0þ½Dθþ0þ� ¼ Sθþ0−
∘Sν¼1

θ ½Dθþ0þ� ¼ Sθþ0−
½Dθþ0− �

⇒ Sν¼þ1=2
θ ½Dθþ0þ� ¼ Sν¼−1=2

θ ½Dθþ0− �:
ð36Þ

Thus, one finds that

Smed;θ½Dθ� ¼ Sθþ0þ½Dθþ0þ� ¼ Sθþ0−
½Dθþ0− � ∼jηj→0þDθ:

ð37Þ
Notice that the Stokes automorphism acts to a function of
the cycles, FðCðn1;n2Þ; Cðn3;n4Þ; � � �Þ, as a homomorphism:

Sν
θ½FðCðn1;n2Þ; Cðn3;n4Þ; � � �Þ�
¼ FðSν

θ½Cðn1;n2Þ�;Sν
θ½Cðn3;n4Þ�; � � �Þ: ð38Þ

FIG. 3. Stokes graphs given by odd N for argðηÞ ¼ 0. The gray arrows are the real and imaginary axes. The blue dots, black lines, and
red waves denote turning points, Stokes lines, and branch cuts, respectively. The green lines denote the path of analytic continuation in
Eq. (5) which is the nearest to the real axis under the condition of K.

FIG. 4. Example of cycles defined in Eq. (24). In this graph, the
set of nonperturbative cycles defined by Eq. (29) is CNP;θ ¼
fCð2;3Þg, where Cð2;3Þ ¼ C−1

ð1;2Þ · Cð1;3Þ ¼ Cð2;4Þ · C−1
ð3;4Þ. The inter-

section numbers defined in Eq. (32) are hCð1;2Þ; Bi ¼
hCð1;3Þ; Bi ¼ hCð2;4Þ; Bi ¼ hCð3;4Þ; Bi ¼ þ1, where B ≔ Cð2;3Þ.
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Cycles in CNP;θ defined in Eq. (29) do not all affect a QC
through the DDP formula (or Stokes automorphism), and
only elements having nonzero intersections with cycles
consisting of the QC are important. In the discussions
below, we suppose that only cycles relevant to the QC
would be given when we provide CNP;θ.
In this paper, we call an exact QC the object Dθ to

satisfy Eq. (35).

III. EXACT QUANTIZATION CONDITIONS

In this section, we construct exact QCs for a given
ðN;KÞ using EWKB. We firstly demonstrate the K ¼ 1
cases in Sec. III A, and then show the generalization to
K > 1 in Sec. III B.

A. The K = 1 cases

We consider the K ¼ 1 cases. The Stokes graphs and the
paths of analytic continuation are in Fig. 5. Since the
structure of the Stokes graphs depends on even or odd N
(or ε), we individually consider the two cases.

1. Even N

We consider the even N cases. In this case, a Stokes
phenomenon occurs at argðηÞ ¼ 0, so that one has to take
care of a discontinuity in QCs by using the DDP formula.
As we can see later, the resulting exact QC contains only a
perturbative cycle.
In order to see this fact, we firstly identify a perturbative

cycle. For finding the QC, we perform analytic continu-
ation along a certain path given by Eq. (5) with K ¼ 1.
From the path, γPT ðN;1Þ , and the location of turning points
(14) in (E-2) and (E-4) of Fig. 2, one can see that the
perturbative cycle is given as Cðp̄;p̄þ2Þ consisting of the two
turning points located at

ap̄ ¼ −ie−π
Ni; ap̄þ2 ¼ −ieþπ

Ni: ð39Þ

The specific form of Cðp̄;p̄þ2Þ is given by Eq. (26) as

Cðp̄;p̄þ2Þ ¼ exp ½ϕðeþπ
NiηÞ − ϕðe−π

NiηÞ�

¼ exp

�
2i

X
n∈ 2N0−1

vn sin
πn
N

· ηn
�
; ð40Þ

where the coefficients vn∈ 2N0−1 are given in Eq. (28).
Indeed, this cycle is a pure oscillation without an expo-
nential damping factor.
Since the Stokes graph has a Stokes phenomenon at

argðηÞ ¼ 0, we introduce an infinitesimally small phase
to η before finding monodromy matrices. The Stokes
graphs for argðηÞ ¼ 0� are drawn in Fig. 6. Then, by
taking the path of analytic continuation, γPT ðN;1Þ , one finds
the following monodromy matrices depending on
argðηÞ ¼ 0�:

M0þ ¼ MþNp̄;p̄þ1MþNp̄þ1;p̄þ2MþNp̄þ2;p̄; ð41Þ

M0− ¼ MþNp̄;p̄þ3MþNp̄þ3;p̄þ2MþNp̄þ2;p̄: ð42Þ

Here, we used the shortened notation for the normalization
matrices as Nan1 ;an2

→ Nn1;n2 . The QCs are extracted from

D0� ∝ M0�
12 ¼ 0 by normalizability of the wave function,

and those can be expressed by the cycles as

D0þ ∝ 1þ Cðp̄;p̄þ2Þ
1þ Cðp̄;p̄þ1Þ

;

D0− ∝ 1þ Cðp̄;p̄þ2Þð1þ Cðp̄þ2;p̄þ3ÞÞ: ð43Þ

A set of nonperturbative cycles can be found from the
Stokes graph, and its subset relevant to the above QCs is
given by

FIG. 5. Stokes graphs given by K ¼ 1 for argðηÞ ¼ 0. The green lines denote the path of analytic continuation.
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CNP;θ¼0 ¼ fCðp̄;p̄þ1Þ; Cðp̄þ2;p̄þ3Þg: ð44Þ

Notice that Cðp̄;p̄þ1Þ ¼ Cðp̄þ2;p̄þ3Þ because of the Z2 sym-
metry in Eq. (23). Owing to the Stokes phenomenon, the
DDP formula is nontrivial and obtained by counting
intersection numbers among the cycles as

Sν
0½Cðp̄;p̄þ2Þ� ¼ Cðp̄;p̄þ2Þ

Y1
n¼0

ð1þ Cðp̄þ2n;p̄þ2nþ1ÞÞν;

Sν
0½Cðp̄þ2n;p̄þ2nþ1Þ� ¼ Cðp̄þ2n;p̄þ2nþ1Þ for n ¼ 0; 1: ð45Þ

After removing the discontinuity by using Eq. (36), the
exact QC is given by

D0 ∝ 1þ Cðp̄;p̄þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Cðp̄þ2;p̄þ3Þ
1þ Cðp̄;p̄þ1Þ

s
¼ 1þ Cðp̄;p̄þ2Þ: ð46Þ

Here, we used Cðp̄;p̄þ1Þ ¼ Cðp̄þ2;p̄þ3Þ. The contributions
from the two cycles, Cðp̄;p̄þ1Þ and Cðp̄þ2;p̄þ3Þ, are canceled
to each other by the Z2 symmetry, and the remaining cycle,
Cðp̄;p̄þ2Þ, is a pure oscillation, as is shown in Eq. (40).
Therefore, the exact QC includes only the perturbative
contribution.

2. Odd N

Then, we consider the odd N cases. The procedure to
derive the exact QCs is the same as in Sec. III A 1, but the
main difference from the even N cases is that Stokes
phenomena do not happen at θ ¼ 0, and thus CNP;θ¼0 ¼ ∅.
Hence, one does not have to take care of discontinuities on
the Borel plane.
The monodromy matrix is obtained by taking the path

of analytic continuation in Eq. (5) with K ¼ 1, which is
given by

M ¼ MþNp̄;p̄þ1MþNp̄þ1;p̄þ2MþNp̄þ2;p̄; ð47Þ
where the turning points, ap̄ and ap̄þ2 are given by Eq. (39).
Imposing normalizability to the wave function yields the
exact QC, D ∝ M12 ¼ 0, which takes the form of

D ∝ 1þ Cðp̄;p̄þ2Þ þ Cðp̄;p̄þ1Þ: ð48Þ

The exact QC contains two cycles, Cðp̄;p̄þ2Þ and Cðp̄;p̄þ1Þ,
and the former and the latter correspond to perturbative and
nonperturbative contributions, respectively. Cðp̄;p̄þ2Þ has
the same form as Eq. (40), and Cðp̄;p̄þ1Þ is expressed as

Cðp̄;p̄þ1Þ ¼ exp½ϕð−ηÞ − ϕðe−π
NiηÞ�

¼ exp

�
−

X
n∈ 2N0−1

vn

�
cos

πn
N

þ 1

�
· ηn

þ i
X

n∈ 2N0−1
vn sin

πn
N

· ηn
�
; ð49Þ

where the coefficients vn∈ 2N0−1 are given by Eq. (28). In
order to specify the perturbative/nonperturbative structure
of the exact QC, it is helpful to replace the cycles with P
and B which are purely oscillating and exponentially
damping, respectively. By these symbols, Eq. (48) can
be expressed by

D ∝
1

C1=2
ðp̄;p̄þ2Þ

½1þ Cðp̄;p̄þ2Þ þ Cðp̄;p̄þ1Þ�

¼ P−1=2 þ Pþ1=2 þ B; ð50Þ

P ≔ exp

"
2i

X
n∈ 2N0−1

vn sin
πn
N

· ηn
#
; ð51Þ

B ≔ exp

"
−

X
n∈ 2N0−1

vn

�
cos

πn
N

þ 1

�
· ηn

#
; ð52Þ

FIG. 6. Stokes graphs given by even N with K ¼ 1 for argðηÞ ¼ 0�. The green lines denote the path of analytic continuation.
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where Cðp̄;p̄þ2Þ ¼ P, and Cðp̄;p̄þ1Þ ¼ BP1=2. Since K½P� ¼
P−1 and K½B� ¼ B, where K is the complex conjugate
operator, the exact QC can take the form invariant under
complex conjugation, and thus the energy spectrum is also
expected to be real.

B. Generalization to K > 1

We consider the generalization toK > 1. Once fixing the
values of ðN;KÞ, one can count the number of cycles in the
QC because the number of cycles roughly corresponds to
that of the normalization matrices, Nn1;n2 in the QC. In
other words, one has to deal only with cycles intersecting
with the path of analytic continuation, γPT . Notice that
Eq. (5) implies that taking a largerK with a fixedN makes a
path closer to the real axis. This fact implies that the
number of relevant cycles in the QC more increases by
taking larger K, and as a result a specific form of the QC
and its transseries structure become more complicated.
By looking to the number of the normalization matrices,

Nn1;n2 , intersecting with the path of analytic continuation
(5) in the Stokes graphs in Figs. 2 and 3, one can identify
the number of relevant turning points to the QCs for a given
ðN;KÞ as

no:of relevant turning points ¼
�
2K þ 2 for even N

2K þ 1 for odd N
;

ð53Þ

and cycles in the QCs consist of these turning points. In
addition, turning points corresponding to a perturbative
cycle, ðap̄; apÞ, can be found as

ap̄ ¼ −ie−πiKN; ap ¼ −ieþπiKN; p ¼ p̄þ 2K: ð54Þ

Notice that Re½ap� ¼ −Re½ap̄� > 0 and Im½ap̄� ¼
Im½ap� < 0, and it is a consequence of PT symmetry,

PT ∶x → −x̄. From Eq. (54), the perturbative cycle is
given by

P ≔ Cðp̄;p¼p̄þ2KÞ ¼ exp ½ϕðeþπK
N iηÞ − ϕðe−πK

N iηÞ�

¼ exp

�
2i

X
n∈ 2N0−1

vn sin
πKn
N

· ηn
�
; ð55Þ

where the coefficients vn∈ 2N0−1 are the same as Eq. (28). In
contrast, nonperturbative parts in the QCs are quite non-
trivial. Those nonperturbative cycles indeed depend on the
values of ðN;KÞ, and their structure on the Borel plane has
a difference between even and odd N, as we considered for
K ¼ 1. Below, we find cycle representations of the exact
QCs for arbitrary ðN;KÞ. Details of their perturbative/
nonperturbative structure would be discussed in Sec. IV.
For even N, a Stokes phenomenon occurs at argðηÞ ¼ 0,

so that one has to take care of discontinuities in the QCs,
D0� , obtained from the monodromy matrices, M0� . These
can be found by taking the path in Eq. (5) as

M0þ ¼MþNap̄;ap̄þ1

"YK−1
l¼1

MþNap̄þ2l−1;ap̄þ2l
M−1

− Nap̄þ2l;ap̄þ2lþ1

#

×MþNap̄þ2K−1;ap̄þ2K
MþNap̄þ2K;ap̄ ; ð56Þ

M0− ¼MþNap̄;ap̄þ3

"YK−1
l¼1

MþNap̄þ2lþ1;ap̄þ2l
M−1

− Nap̄þ2l;ap̄þ2lþ3

#

×MþNap̄þ2Kþ1;ap̄þ2K
MþNap̄þ2K;ap̄ : ð57Þ

Imposing normalizability to the wave function requires
M0�

12 ¼ 0, and one can find the QCs as

D0� ∝
X

ðn1;…;nKÞ∈ f0;1gK

"YK−1
l¼1

DðlÞ0�
nl;nlþ1

#
DðKÞ0�

nK ; ð58Þ

Dðl∈ f1;2;…;K−1gÞ0�
nl;nlþ1

≔ ðC̃0�
ðp̄þ2l−2;p̄þ2lþ1ÞÞnlðδnlþ1;0 þ B̃−1

ðp̄þ2lþ1;p̄þ2lÞ · δnlþ1;1Þnl ;
DðKÞ0�

nK ≔ ðC̃0�
ðp̄þ2K−2;p̄þ2KÞÞnK ; ð59Þ

where p̄ is the label associated with ap̄ in Eq. (54), and

C̃0�
ðp̄þ2l−2;p̄þ2lþ1Þ ≔

Cðp̄þ2l−2;p̄þ2lþ1ÞQ
1
n¼0ð1þ Bðp̄þ2lþ2n−2;p̄þ2lþ2n−1ÞÞð1�1Þ=2 ; ð60Þ

C̃0�
ðp̄þ2K−2;p̄þ2KÞ ≔ Cðp̄þ2K−2;p̄þ2KÞ

ð1þ Bðp̄þ2K;p̄þ2Kþ1ÞÞð1∓1Þ=2

ð1þ Bðp̄þ2K−2;p̄þ2K−1ÞÞð1�1Þ=2 ; ð61Þ

B̃−1
ðp̄þ2lþ1;p̄þ2lÞ ≔

1þ Bðp̄þ2l;p̄þ2lþ1Þ
Bðp̄þ2l;p̄þ2lþ1Þ

∈R>0; ð62Þ
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with l∈ f1; 2;…; K − 1g. Here, we defined symbols, Bðp̄þ2l;p̄þ2lþ1Þ ≔ Cðp̄þ2l;p̄þ2lþ1Þ, to emphasize nonperturbative
cycles with degeneracies of the Stokes lines at argðηÞ ¼ 0. From them, the set of nonperturbative cycles relevant to the DDP
formula is given by

CNP;θ¼0 ¼ fBðp̄;p̄þ1Þ; Bðp̄þ2;p̄þ3Þ;…; Bðp−2;p−1Þ; Bðp;pþ1Þg; p ¼ p̄þ 2K: ð63Þ
One can easily construct the DDP formula by counting the intersection number of the other cycles with the B cycles, and it
is given by

Sν
0½Cðp̄þ2l−2;p̄þ2lþ1Þ� ¼ Cðp̄þ2l−2;p̄þ2lþ1Þ

Y1
n¼0

ð1þ Bðp̄þ2lþ2n−2;p̄þ2lþ2n−1ÞÞν;

Sν
0½Bðp̄þ2lþ2n−2;p̄þ2lþ2n−1Þ� ¼ Bðp̄þ2lþ2n−2;p̄þ2lþ2n−1Þ for n ¼ 0; 1; ð64Þ

with l∈ f1; 2;…; Kg. Eliminating the discontinuity by the DDP formula as D0 ∝ S�1=2
0 ½D0�� leads to the exact QC as

D0 ∝
1

P1=2

X
ðn1;…;nKÞ∈ f0;1gK

�YK−1
l¼1

DðlÞ
nl;nlþ1

�
DðKÞ

nK ;

Dðl∈ f1;2;…;K−1gÞ
nl;nlþ1

≔ ðC̃0
ðp̄þ2l−2;p̄þ2lþ1ÞÞnlðδnlþ1;0 þ B̃−1

ðp̄þ2lþ1;p̄þ2lÞ · δnlþ1;1Þnl ;
DðKÞ

nK ≔ ðC̃0
ðp̄þ2K−2;p̄þ2KÞÞnK ; ð65Þ

where δn1;n2 is the Kronecker delta, and C̃0
ðp̄þ2l−2;p̄þ2lþ1Þ and C̃0

ðp̄þ2K−2;p̄þ2KÞ are defined as

C̃0
ðp̄þ2l−2;p̄þ2lþ1Þ ≔ S�1=2

0 ½C̃0�
ðp̄þ2l−2;p̄þ2lþ1Þ�

¼ Cðp̄þ2l−2;p̄þ2lþ1ÞQ
1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bðp̄þ2lþ2n−2;p̄þ2lþ2n−1Þ

p ; ð66Þ

C̃0
ðp̄þ2K−2;p̄þ2KÞ ≔ S�1=2

0 ½C̃0�
ðp̄þ2K−2;p̄þ2KÞ�

¼ Cðp̄þ2K−2;p̄þ2KÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bðp̄þ2K;p̄þ2Kþ1Þ
1þ Bðp̄þ2K−2;p̄þ2K−1Þ

s
: ð67Þ

In Eq. (65), we multiplied P−1=2 to make D0 invariant under complex conjugation, i.e., K½D0� ¼ D0. It is notable that,
owing to the ZN symmetry in Eq. (22), the cycles in the QC are not all independent of each other and have relations that

Re½logCðp̄þ2n−2;p̄þ2nþ1Þ� ¼
1

2
ðlogBðp̄þ2n−2;p̄þ2n−1Þ þ logBðp̄þ2n;p̄þ2nþ1ÞÞ

¼ Re½logCðp̄þ2K−2n;p̄þ2K−2nþ3Þ�; ð68Þ
Im½logCðp̄þ2n−2;p̄þ2nþ1Þ� ¼ Im½logCðp̄þ2K−2n;p̄þ2K−2nþ3Þ�; ð69Þ
logBðp̄þ2n−2;p̄þ2n−1Þ ¼ logBðp̄þ2K−2nþ2;p̄þ2K−2nþ3Þ ∈R>0; ð70Þ

for n∈ f1; 2 � � � ; bK=2c þ 1g.
The generalization for odd N is simpler than even N because of a lack of the Z2 symmetry in Eq. (23), i.e., no Stokes

phenomenon at argðηÞ ¼ 0. Hence, one does not need to take care of the DDP formula. Performing analytic continuation
along the path, γPT , in Eq. (5) yields the exact QC as

D ∝
1

P1=2

X
ðn1;…;nKÞ∈ f0;1gK

�YK−1
l¼1

DðlÞ
nl;nlþ1

�
DðKÞ

nK ;

Dðl∈ f1;2;…;K−1gÞ
nl;nlþ1

≔ Cnl
ðp̄þ2l−2;p̄þ2l−1Þð1þ Cðp̄þ2l−1;p̄þ2lÞ · δnlþ1;1Þnl ;

DðKÞ
nK ≔ CnK

ðp̄þ2K−2;p̄þ2K−1Þð1þ Cðp̄þ2K−1;p̄þ2KÞÞnK : ð71Þ
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Owing to the ZN symmetry in Eq. (22), those cycles have dependencies on each other such that

Re½logCðp̄þn−1;p̄þnÞ� ¼ −Re½logCðp̄þ2K−n;p̄þ2K−nþ1Þ�; ð72Þ

Im½logCðp̄þn−1;p̄þnÞ� ¼ Im½logCðp̄þ2K−n;p̄þ2K−nþ1Þ�; ð73Þ

for n∈ f1; 2;…; Kg.

IV. ENERGY SPECTRA AND THEIR
TRANSSERIES STRUCTURE

In this section, we find the transseries structure of
the energy spectra from the exact QCs constructed in
Sec. III. A slightly nontrivial issue is that, according to
Eq. (3), the energy solution should take the form of

Ek ¼ eðkÞðg1=NℏÞ2N=ðNþ2Þ; ðk∈N0Þ ð74Þ

where k is an energy level, and eðkÞ is a dimensionless
function depending only on k. This means that η has no
dependence of ℏ in total, and thus, our main task is to find
the functional form of eðkÞ. Although it is quite tough to
obtain the exact analytic function, finding its transseries
solution is in principle possible by using the (inverse)
energy level, k, as an expansion parameter [41,53].
Before looking to the structure, we briefly explain

the relation between the η and k expansions in (Exact)
Wentzel–Kramers–Brillouin ((E)WKB) analyses. Although
the ℏ expansion seems not to work, expanding k around
k ¼ þ∞ is compatible with (E)WKB analyses. As we will
describe precisely later, we employ an ansatz for η which is
an expansion in terms of κ−1 as κ → þ∞, where κ ≔
πðkþ 1=2Þ with k∈N0. By taking the ansatz as
η−1 ∼

P
l∈ 2N0−1 clκ

−l, we recursively determine the coef-
ficients, cl∈ 2N0−1, by solving the QCs. Since the η

expansion is nothing but an expansion of cðkÞ−1 ¼
eðkÞ−ðNþ2Þ=ð2NÞ as cðkÞ → þ∞, the result of cl can be
converted to a transseries of eðkÞ by Eq. (4). In addition,
topology of the Stokes graphs generated by η and κ−1 is the
same if c−1 is a nonzero real value. The relation between
the two graphs can be seen from Eqs. (3) and (4) by
multiplying η−2 to L and substituting η−1 ∼ c−1κ−1 þ
c1κ1 þ � � � into it; one finds

η−2L ∼ −∂2x þ κ2Q̃;

Q̃ ≔ η−2κ−2Q ∼ ½c2−1 þ 2c−1c1κ−2 þOðκ−4Þ�Q: ð75Þ

By assuming c−1 ≠ 0, the leading and the higher orders of
κ−1 in Q̃ can be regarded as a some sort of classical part and
quantum deformations, respectively, in the sense of ℏ
expansion. Therefore, from the viewpoint of the κ−1

expansion, solving the QC is identical to determining
the specific potential form of Q̃, which is a kind of inverse

problem to the standard (E)WKB method to determine
energy spectra using the ℏ expansion.
Below, we clarify the transseries structure of the energy

spectra for arbitrary ðN;KÞ. Since the dependence of K in
the energy solutions is in general quite complicated,
we explicitly write down the solutions only for K ¼ 1 in
Sec. IVA and derive the transseries ansatz of the energy
spectra only in Sec. IV B. By using the ansatz, the same
procedure in Sec. IVAworks to find the energy solutions for
arbitrary ðN;KÞ. This study is a direct generalization of the
results found by the standard WKB analysis, e.g., in
Refs. [1,25,46,54,55].

A. The K = 1 cases

1. Even N

We consider the energy solution for even N and write
down it as a transseries by solving the exact QC in Eq. (46).
Taking D0 ¼ 0 gives

1þ Cðp̄;p̄þ2Þ ¼ 0 ⇒
X

n∈ 2N0−1
vn sin

πn
N

· ηn ¼ π

�
kþ 1

2

�
;

ðk∈ZÞ ð76Þ

where the coefficients, vn∈ 2N0−1, are defined in Eq. (28).
When choosing a suitable ansatz for η, one has to be careful
that it should be consistent with asymptotics of the EWKB
ansatz which is the η expansion as η → 0þ. Since the
leading term in Eq. (76) is Oðη−1Þ, the ansatz of η−1 has to
be the large k expansion. For this reason, we prepare ansatz
for η as3

η−1 ¼ EðNþ2Þ=ð2NÞ

g1=Nℏ
∼

X
l∈ 2N0−1

cð0Þl κ−l as κ → þ∞; ð78Þ

κ ¼ κðkÞ ≔ π

�
kþ 1

2

�
; ðk∈N0Þ ð79Þ

3The transseries of η is available from that of η−1, which begins
with Oðκ−1Þ and can be written as

η ∼
X

l∈ 2N0þ1

dð0Þl κ−l as κ → þ∞: ð77Þ

The coefficients dð0Þl are uniquely determined from cð0Þl in
Eq. (78).
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where k is the energy level, and we assume that eð0Þ−1 > 0 to make the energy spectrum positive when taking a

non-negative k. Substituting Eq. (78) into Eq. (76) determines the coefficients, eð0Þl∈ 2N0−1, recursively, and the solution is
given by

cð0Þ−1 ¼ Γð3
2
þ 1

NÞ
π1=2Γð1þ 1

NÞ sin π
N

;

cð0Þ1 ¼ π1=2NΓð2 − 1
NÞ sin π

N

12Γð1
2
− 1

NÞ
;

cð0Þ3 ¼ π3=2NΓð1þ 1
NÞsin2 π

N

1440Γð3
2
þ 1

NÞ2
·

�ð2N2 þ N − 3ÞΓð2 − 3
NÞΓð1þ 1

NÞ sin 3π
N

Γð− 1
2
− 3

NÞ
−
10NΓð2 − 1

NÞ2Γð32 þ 1
NÞ sin π

N

Γð1
2
− 1

NÞ2
�
;

..

.
: ð80Þ

From Eq. (78), one can find the transseries energy solution as

E

ðg1=NℏÞ 2N
Nþ2

∼ κ
N−2
Nþ2

X
l∈ 2N0−1

eð0Þl κ−l; eð0Þl∈ 2N0−1 ∈R; ð81Þ

where the coefficients eð0Þl can be found from cð0Þl as

ẽð0Þ−1 ¼ 1;

ẽð0Þ1 ¼ πðN − 1ÞN cot πN sin
2 π

N

3ðN þ 2Þ2 ;

ẽð0Þ3 ¼ ðN − 1ÞNsin3 π
N

720ðN þ 2Þ4 ·

�ðN þ 2Þ3ð2N þ 3ÞΓð2 − 3
NÞΓð1þ 1

NÞ2Γð1NÞΓð− 1
2
− 1

NÞ2cos2 π
N sin

3π
N

Γð3
2
þ 1

NÞΓð− 1
2
− 3

NÞ

− 20π2ðN − 1ÞðN þ 6Þcot2 π

N
sin

π

N

�
;

..

. ð82Þ

where ẽð0Þl ≔ eð0Þl =eð0Þ−1 normalized by eð0Þ−1 ¼ π−
N

Nþ2 ×�
Γð3

2
þ1

NÞ
Γð1þ1

NÞ sinπ
N

	 2N
Nþ2. The energy solution does not contain

nonperturbative sectors because the exact QC only contains
the perturbative cycle. Notice that the resulting energy
spectrum is positive real.

2. Odd N

Next, we find the energy solutions for odd N. As
different from the even N cases in Eq. (46), the exact
QCs for odd N contain the nonperturbative contribu-
tions, denoted by B in Eq. (50). The same ansatz in
Eq. (78) works for the perturbative sector, but we
need to identify higher transmonomials corresponding

to the nonperturbative sectors and add them to the
ansatz of η.
The higher transmonomial can be easily found using the

leading order of κ−1 in η. Since the perturbative sector is
derived from P as

1þ P ∼ 0 ⇒ cos

�
v−1 sin

π

N
· η−1

�
∼ 0; ð83Þ

one can find the leading order of η−1 as

η−1 ∼
κ

v−1 sin
π
N

¼ Γð3
2
þ 1

NÞ
π1=2Γð1þ 1

NÞ sin π
N

κ; ð84Þ
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where κ is defined in Eq. (79) with the energy level, k. From
Eq. (52), the exponential damping factor, i.e., higher
transmonomial, is obtained from the leading order of B as

B ∼ exp

�
−v−1

�
cos

π

N
þ 1

�
· η−1

�
∼ exp ½−S1κ�; ð85Þ

S1 ≔
cos π

N þ 1

sin π
N

∈R>0: ð86Þ

Hence, in order to obtain a closed form for all algebraic
operations in the exact QC, the transseries ansatz for η has
to take the following form:

η−1 ¼ EðNþ2Þ=ð2NÞ

g1=Nℏ
∼

X
l∈ 2N0−1

cð0Þl κ−l þ
X
n∈N

X
l∈N0

cðnÞl σnκ−l

as κ → þ∞; ð87Þ

σ ≔ sin κ · e−S1κ ¼ ð−1Þke−S1κ: ð88Þ

Substituting the ansatz into Eq. (50) and solving D ¼ 0

recursively determines the coefficients, cðnÞl ∈R. The per-

turbative coefficients, cð0Þl∈ 2N0−1, are the same as in Eq. (80),

and the first two nonperturbative sectors, cðn¼1;2Þ
l∈N0

, can be
written down as

cð1Þ0 ¼ Γð3
2
þ 1

NÞ
2π1=2Γð1þ 1

NÞ sin π
N

;

cð1Þ1 ¼ −
π1=2NΓð2 − 1

NÞ
12Γð1

2
− 1

NÞ
�
cos

π

N
þ 1

�
;

cð1Þ2 ¼ π1=2NΓð2 − 1
NÞ sin π

N

72Γð1
2
− 1

NÞ2Γð32 þ 1
NÞ

·

�
2πNΓ

�
2 −

1

N

�
Γ
�
1þ 1

N

�
cos4

π

2N
− 3Γ

�
1

2
−

1

N

�
Γ
�
3

2
þ 1

N

��
;

..

. ð89Þ

cð2Þ0 ¼ −
Γð3

2
þ 1

NÞ
8π1=2Γð1þ 1

NÞsin2 π
2N

;

cð2Þ1 ¼ π1=2NΓð2 − 1
NÞcos3 π

2N

6Γð1
2
− 1

NÞ sin π
2N

;

cð2Þ2 ¼ π1=2NΓð2 − 1
NÞcos2 π

2N

72ðN þ 2ÞΓð1
2
− 1

NÞ
�
9ðN þ 2Þ − 8πðN − 1Þcos3 π

2N cos
π
N

sin π
2N

�
;

..

.
: ð90Þ

The higher nonperturbative sectors, cðn>2Þl∈N0
, can be also determined in a similar way. The energy spectrum is obtained from

the above results from Eq. (87) and holds a similar nonperturbative structure to that of η, which is expressed by

E

ðg1=NℏÞ 2N
Nþ2

∼ κ
N−2
Nþ2

� X
l∈ 2N0−1

eð0Þl κ−l þ
X
n∈N

X
l∈N0

σneðnÞl κ−l
�
; eðnÞl ∈R: ð91Þ

The perturbative coefficients, denoted by eð0Þl , are the same as in Eq. (82), and the first two nonperturbative sectors, eðn¼1;2Þ
l ,

can be written down as

ẽð1Þ0 ¼ N
N þ 2

;

ẽð1Þ1 ¼ πðN − 1ÞN cos π
N

3ðN þ 2Þ2
�
cos

π

N
þ 1

�
;

ẽð1Þ2 ¼ −
2πðN − 1ÞN sin π

N cos
π
N

9ðN þ 2Þ3
�
3 − πðN − 1Þcos4 π

2N
cot

π

N

�
;

..

. ð92Þ
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ẽð2Þ0 ¼ 1

4

�
π−1=2Γð1

2
þ 1

NÞ
Γð1þ 1

NÞ sin π
N

−
2N cot π

2N

N þ 2

�
;

ẽð2Þ1 ¼ −
N

12ðN þ 2Þ3
�
8π−1=2N2Γ

�
2 −

1

N

�
Γ
�
3

2
þ 1

N

�
cos

π

N
cos2

π

2N
− 3ðN − 2Þ − 16πðN − 1Þcos4 π

2N
cot

π

N

�
;

ẽð2Þ2 ¼ N sin 2π
N

144ðN þ 2Þ3
�
2π1=2N2Γð2 − 1

NÞ
Γð− 1

2
− 1

NÞ
�
3ðN þ 6Þ
cos π

N

−
πðN − 1Þsin3 π

N

sin4 π
2N

�

− πðN − 1Þ
�
12ðN − 2Þ cot π

2N
þ πðN − 1Þsin3 π

N sin
2π
N

2sin6 π
2N

��
;

..

. ð93Þ

where ẽðnÞl ≔ eðnÞl =eð0Þ−1 are normalized coefficients divided

by eð0Þ−1 ¼ π−
N

Nþ2

�
Γð3

2
þ1

NÞ
Γð1þ1

NÞ sinπ
N

	 2N
Nþ2. Notice that, the same as in

the even N cases, the resulting energy spectrum is positive
real.

B. Generalization to K > 1

We consider the generalization to K > 1 from Eqs. (65)
and (71). Since the analysis for the perturbative part is
almost the same as in the K ¼ 1 cases, one can straight-
forwardly find the perturbative coefficients of η−1 and the

energy spectrum, i.e., cð0Þl and eð0Þl . These can be expressed
from the results of K ¼ 1, Eqs. (80) and (82), by replacing
sin πn

N as sin πn
N → sin πKn

N (but not for cos πnN and cot πnN ).
Therefore, the perturbative sector has been already solved.

Below, we investigate the nonperturbative structure in
their transseries. Since transseries structures of the energy
spectra are essentially the same as that of η, we mainly
address the derivation of a transseries ansatz of η. We
would not write down specific forms of the nonpertur-
bative coefficients for K > 1 because they highly depend
on the value of ðN;KÞ, but construction of the ansatz is
indeed sufficient to see properties of the energy solutions,
such as the nonperturbative structure and the spectral
reality.
Firstly, we see the even N cases. The number of

independent nonperturbative sectors in the energy spectra
can be found by counting that of independent exponential
damping factors of the cycles contained in the exact QCs
(65) using Eqs. (68) and (70). It is determined as

no: of independent NP sectors ¼
�
0 for K ¼ 1

bK=2c þ 1 otherwise
: ð94Þ

We should recall that the case of K ¼ 1 is special because, as we saw in Sec. III A 1, their contributions are canceled to each
other. It is notable that the number is determined only by K and irrelevant to N. Such a nonperturbative sector can be
classified by its damping ratio such as S1 for K ¼ 1 in Eq. (86). For K > 1 in even N, the damping ratios are defined as

Sn ≔ −
sin argðap̄þ2nÞ − sin argðap̄Þ

sin πK
N

¼ cos πðK−2nÞN − cos πKN
sin πK

N

; ðn∈ f1; 2;…; bK=2cgÞ

SbK=2cþ1 ≔
sin argðap̄þ1Þ − sin argðap̄Þ

sin πK
N

¼ 2 cos πKN
sin πK

N

: ð95Þ

By these ratios, the leading orders of the cycles in the exact QCs (65) can be identified as

Re½logCðp̄þ2n−2;p̄þ2nþ1Þ� ∼

8>><
>>:

−ðS1 þ SbK=2cþ1Þκ þOðκ−1Þ for n ¼ 1

−ðSn−1 þ Sn þ SbK=2cþ1Þκ þOðκ−1Þ for n∈ f2;…; bK=2cg
−ð2SbK=2c þ SbK=2cþ1Þκ þOðκ−1Þ for n ¼ bK=2c þ 1 if K ∈ 2N0 þ 1

; ð96Þ

Re½logCðp̄þ2K−2;p̄þ2KÞ� ∼ −S1κ þOðκ−1Þ; ð97Þ
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logBðp̄þ2n−2;p̄þ2n−1Þ ∼
�−SbK=2cþ1κ þOðκ−1Þ for n ¼ 1

−ð2Sn−1 þ SbK=2cþ1Þκ þOðκ−1Þ for n∈ f2;…; bK=2c þ 1g : ð98Þ

Hence, one can construct the ansatz of η−1 as

η−1 ¼ EðNþ2Þ=ð2NÞ

g1=Nℏ
∼

X
l∈ 2N0−1

cð0Þl κ−l þ
X

n∈N
bK=2cþ1

0jnj>0

X
l∈N0

σncðnÞl κ−l as κ → þ∞; ð99Þ

σn ≔
YbK=2cþ1

j¼1

σ
nj
ðjÞ; σðjÞ ≔ sin κ · e−Sjκ ¼ ð−1Þke−Sjκ: ð100Þ

Notice that, from Eqs. (65), (68), and (70), one can find that cð0;…;0;nÞ
l ¼ 0 for any l∈N0 and n∈N.

Then, we consider the odd N cases. In a similar way to the even N cases, counting the number of independent
nonperturbative sectors in the exact QCs (71) using Eq. (72) gives

no: of independent NP sectors ¼ K: ð101Þ

Similar to the situation for even N, the number is determined only by K. By defining the damping ratios as

Sn ≔ ð−1Þnþ1
sin argðap̄þnÞ − sin argðap̄Þ

sin πK
N

¼ cos πðK−nÞN − ð−1Þn cos πKN
sin πK

N

; ðn∈ f1;…; KgÞ ð102Þ

the leading orders of the cycles can be written as

Re½logCðp̄þn−1;p̄þnÞ� ∼
�
−S1κ þOðκ−1Þ for n ¼ 1

ð−1ÞnðSn−1 þ SnÞκ þOðκ−1Þ for n∈ f2; 3;…; Kg : ð103Þ

In consequence, one can find the following transseries ansatz for η−1:

η−1 ¼ EðNþ2Þ=ð2NÞ

g1=Nℏ
∼

X
l∈ 2N0−1

cð0Þl κ−l þ
X
n∈NK

0jnj>0

X
l∈N0

σncðnÞl κ−l as κ → þ∞; ð104Þ

σn ≔
YK
j¼1

σ
nj
ðjÞ; σðjÞ ≔ sin κ · e−Sjκ ¼ ð−1Þke−Sjκ: ð105Þ

It is remarkable that the number of the nonpertur-
bative sectors is roughly twice as the even cases
with the same K due to lack of the Z2 symmetry
in Eq. (23).
We show below some examples of the exact QCs

obtained by Eqs. (65) and (71) and their re-expressions.
In these examples, we use the symbols, Bn∈N, to denote
nonperturbative cycles such that Bn ∝ e−Snκ with the
damping ratios Sn given by Eqs. (95) and (102) for even

and odd N, respectively. From the re-expressions, one can
see consistency with the ansatz in Eqs. (99) and (104) and
the spectral reality. The corresponding Stokes graphs are
shown in Fig. 7.

1. Example 1: ðN;KÞ= ð6; 2Þ
We show the case of ðN;KÞ ¼ ð6; 2Þ. Equation (65)

leads to

D0 ∝
1

P1=2

"
1þ Cð1;5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð5;6Þ
1þ Bð1;2Þ

s
þ Cð1;4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð1;2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð3;4Þ
p þ Cð3;5Þ þ Cð3;6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð3;4Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð5;6Þ
p

#
: ð106Þ
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Redefining the cycles by splitting into the damping and oscillation parts, it can be reexpressed by

D0 ∝ P−1=2 þ Pþ1=2 þ B1 þ 2B1B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

1B2

p : ð107Þ

In Eq. (106), the perturbative cycle corresponds to P ¼ Cð1;5Þ, and
ffiffiffiffiffiffiffiffiffiffiffiffi
1þBð5;6Þ
1þBð1;2Þ

q
¼ 1.

2. Example 2: ðN;KÞ= ð8; 3Þ
Then, we consider the case of ðN;KÞ ¼ ð8; 3Þ. Equation (65) leads to

D0 ∝
1

P1=2

"
1þ Cð1;7Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð7;8Þ
1þ Bð1;2Þ

s
þ Cð1;4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð1;2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð3;4Þ
p þ Cð1;6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð1;2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð5;6Þ
p þ Cð3;7Þ þ Cð3;8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð3.4Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð7;8Þ
p

þ Cð5;7Þ þ Cð5;8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð5;6Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð7;8Þ

p þ Cð3;6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð3;4Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð5;6Þ

p þ Cð1;4ÞCð5;7Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð7;8Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð1;2Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð3;4Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð5;6Þ

p
#
: ð108Þ

It can be re-expressed by

FIG. 7. Stokes graphs with argðηÞ ¼ 0 for some ðN;KÞ shown in Example 1-4. The green lines denote the path of analytic
continuation. For even N, (a) and (b), degeneracies of the Stokes lines occur between the turning points in complex conjugated pairs.
The length labeled by Bn corresponds to half of the integration contour in the exponent of the associated B cycles in Eqs. (107), (109),
(111), and (113).
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D0 ∝ P−1=2 þ Pþ1=2 þ B1 þ 2B1B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

1B2

p ðA−1=2
ð3;5Þ þ Aþ1=2

ð3;5Þ Þ þ
B2
1B2

1þ B2
1B2

ðP−1=2Að3;5Þ þ Pþ1=2A−1
ð3;5ÞÞ; ð109Þ

where Að3;5Þ ≔ Cð3;5Þ is a cycle with a pure oscillation. In Eq. (108), the perturbative cycle corresponds to P ¼ Cð1;7Þ,

and
ffiffiffiffiffiffiffiffiffiffiffiffi
1þBð7;8Þ
1þBð1;2Þ

q
¼ 1.

3. Example 3: ðN;KÞ= ð5; 2Þ
We show the case of ðN;KÞ ¼ ð5; 2Þ. Equation (71) gives

D ∝
1

P1=2 ½1þ Cð1;2Þ þ Cð1;4Þ þ Cð1;5Þ þ Cð3;4Þ þ Cð3;5Þ þ Cð1;2ÞCð3;4Þ þ Cð1;2ÞCð3;5Þ�; ð110Þ

which can be expressed by

D ∝ P−1=2 þ Pþ1=2 þ B1ðA−1
ð2;3Þ þ Að2;3ÞÞ þ B2 þ B1B2ðA−1

ð1;2Þ þ Að1;2ÞÞ þ B2
1B2; ð111Þ

where Aðn1;n2Þ ≔ exp ½i · Im½logCðn1;n2Þ��. In Eq. (110), the perturbative cycle corresponds to P ¼ Cð1;5Þ.

4. Example 4: ðN;KÞ= ð7; 3Þ
Then, we consider the case of ðN;KÞ ¼ ð7; 3Þ. Equation (71) leads to

D ∝
1

P1=2 ½1þ Cð1;2Þ þ Cð1;4Þ þ Cð1;6Þ þ Cð1;7Þ þ Cð3;4Þ þ Cð3;6Þ þ Cð3;7Þ þ Cð5;6Þ þ Cð5;7Þ þ Cð1;2ÞCð3;4Þ þ Cð1;2ÞCð3;6Þ

þ Cð1;2ÞCð3;7Þ þ Cð1;2ÞCð5;6Þ þ Cð1;2ÞCð5;7Þ þ Cð1;4ÞCð5;6Þ þ Cð1;4ÞCð5;7Þ þ Cð3;4ÞCð5;6Þ þ Cð3;4ÞCð5;7Þ
þ Cð1;2ÞCð3;4ÞCð5;6Þ þ Cð1;2ÞCð3;4ÞCð5;7Þ�; ð112Þ

and it can be written as

D ∝ P−1=2 þ Pþ1=2 þ B1ðA−1
ð2;4Þ þ Að2;4ÞÞ þ B2ðA−1

ð3;4Þ þ Að3;4ÞÞ þ B3 þ B1B2ðA−1
ð1;2Þ þ Að1;2ÞÞðA−1

ð3;4Þ þ Að3;4ÞÞ
þ B2B3ðA−1

ð1;3Þ þ Að1;3ÞÞ þ B1B2B3ðA−1
ð2;3Þ þ Að2;3ÞÞ þ B2

1B2ðA−1
ð3;4Þ þ Að3;4ÞÞ þ B2

2B3 þ B1B2
2B3ðA−1

ð1;2Þ þ Að1;2ÞÞ
þ B2

1B
2
2B3; ð113Þ

where Aðn1;n2Þ ≔ exp ½i · Im½logCðn1;n2Þ��. Notice that
Aðn1;n2Þ · Aðn2;n3Þ ¼ Aðn1;n3Þ. In Eq. (112), the perturbative
cycle corresponds to P ¼ Cð1;7Þ.

V. FORMULAS FROM THE EXACT
QUANTIZATION CONDITIONS

In this section, we derive formulas in Fig. 1 using
the exact QCs constructed in Sec. III. In Sec. VA, we
consider the Gutzwiller trace formula. In Secs. V B and
V C, we derive the spectral summation form and the
Euclidean path integral, respectively. We would like to
notice that, in the discussions below, we use cycles and
energy spectra expressed by transseries, but those can be
formally replaced with their Borel resummed forms,
which are analytic functions, by operating the median
resummation, Smed;0.

A. Gutzwiller trace formula

We derive the GTF using the resolvent method [26].
Roughly speaking, the GTF describes a particle’s periodic
orbits on a constant energy plane in a given potential.
The GTF is usually formulated in the semiclassical level
(subleading of the stationary phase approximation) and has
the form of

GðEÞ ¼
X
n∈N

X
p:p:o:

iTðEÞð−1Þnen·i
H
p:p:o:

pdx




 det δ2Sδxδx





−1=2;
ð114Þ

where “p.p.o.” denotes primal periodic orbits, and TðEÞ is a
period with a fixed energy, E. Especially, the sign ð−1Þn
known as the Maslov index plays a key role of this formula,
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and this originates from the number of negative eigenvalues
of the Hessianmatrix, δ2S

δxδx, expanded around the correspond-
ing classical solutions. See, for example, Refs. [56–67] for
applications of the GTF and the Maslov index.
One of the ways to construct the GTF is to use the

partition function ZðβÞ. By denoting a (Hermitian)
Hamiltonian operator as Ĥ, (trace of) the resolvent,
GðEÞ, is defined as [47]

GðEÞ ≔
Z þ∞

0

dβZðβÞeβE ¼ Tr
1

Ĥ − E
; ð115Þ

ZðβÞ ¼ 1

2πi

Z
δþi∞

δ−i∞
GðEÞe−βEdE; ð116Þ

where ZðβÞ is the partition function, Tr denotes trace over
the (Hermitian) Hilbert space, and 0 < δ ≪ 1 is a regu-
larization parameter to avoid E ¼ 0. The resolvent GðEÞ
can be also expressed by the Fredholm determinant,
DFHðEÞ, as

DFHðEÞ ¼ det ðĤ − EÞ ¼ 0; ð117Þ

GðEÞ ¼ −∂E logDFHðEÞ: ð118Þ

The important point is that Eq. (117) is essentially the
same as our exact QCs, DðEÞ, and can be generalized by
replacing DFHðEÞ with DðEÞ [27]. Furthermore, as the
greatest benefit, translating from the exact QCs into
the GTF is technically and intuitively simple thanks to
the cycle representations of the exact QCs.
The GTF for ðN;KÞ with K ¼ 1 for even N is almost

trivial because of vanishing nonperturbative effects in the
exact QC so that, we firstly show a slightly nontrivial
example, K ¼ 1 for odd N, by using Eq. (48). In order to
see the nonperturbative effects more clearly, we factorize
the QC into the perturbative and the nonperturbative parts,
denoted by DP and DNP, as

D ∝ 1þ Pþ Cðp̄;p̄þ1Þ ¼ DP ·DNP;

DP ¼ 1þ P; DNP ¼ 1þ Cðp̄;p̄þ1Þ
1þ P

; ð119Þ

where P ≔ Cðp̄;p̄þ2Þ is the perturbative cycle. From
Eq. (118), the resolvent GðEÞ is written by the cycles as

GðEÞ ¼ GPðEÞ þGNPðEÞ; ð120Þ

GP ¼ −
∂EP
1þ P

¼ −∂EP
X
n∈N0

ð−1ÞnPn

¼ i
ℏ
TPðEÞP

X
n∈N0

ð−1ÞnPn; ð121Þ

GNP ¼ −
∂EL
1þ L

¼ −∂EL
X
n∈N0

ð−1ÞnLn

¼ i
ℏ
TLðEÞL

X
n∈N0

ð−1ÞnLn; ð122Þ

L ¼ Cðp̄;p̄þ1Þ
1þ P

¼ Cðp̄;p̄þ1Þ
X
n∈N0

ð−1ÞnPn; ð123Þ

where GP and GNP are the perturbative and nonperturbative
parts, respectively, and L corresponds to the nonperturba-
tive p.p.o. in GNP. The Maslov index, ð−1Þn, naturally
arises from the P and the L cycles in Eqs. (121) and (122),
and the same index also appears from P in the L cycle in
Eq. (123). The schematic figure of the p.p.o.s is shown
in Fig. 8. Moreover, by identification with Eq. (114),
the quantum periods including all ℏ orders in GP=NP

are identified from the derivative parts as, TPðEÞ ≔
iℏ∂E logP and TLðEÞ ≔ iℏ∂E logL, respectively. Speci-
fically (cf. Ref. [1]),

FIG. 8. Schematic figure of p.p.o.s for ðN; 1Þ with odd N.
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TPðEÞ
ℏ

¼ ðN þ 2Þg1=N
NE

X
n∈ 2N0−1

nvn sin
πn
N

· ηn; ð124Þ

TCðEÞ
ℏ

¼ iðN þ 2Þg1=N
2NE

X
n∈ 2N0−1

nvnðe−iπnN þ 1Þ · ηn; ð125Þ

TLðEÞ ¼ TCðEÞ −
P

1þ P
TPðEÞ; ð126Þ

where TCðEÞ ≔ iℏ∂E logCðp̄;p̄þ1Þ, and the coefficients,
vn∈ 2N0−1, are defined in Eq. (28). Notice that η ∝ ℏ as
is shown in Eq. (4). One can easily see that TPðEÞ is real,
but TC=LðEÞ are complex values. It is because the period
is defined to be real if the associated cycle is a pure
oscillation. Hence, the nonperturbative cycle with a damp-
ing factor generates a complex period [27].
It is notable that Eqs. (121) and (122) do not contain

cycles with negative oscillations, i.e., Im½logP� > 0 and
Im½logCðp̄;p̄þ1Þ� > 0, but the GTF including negative oscil-
lations is available by using complex conjugation of the
exact QC, D̄ ¼ K½D�. Since D ∝ D̄, replacing D with
ðDD̄Þ1=2 in Eq. (118) can generate all p.p.o.s with positive
and negative oscillations.
One can also formulate the generalization of the GTF for

K > 1 in a similar way. Since the exact QCs can be
generally expressed as

D ∝ 1þ Pþ δD; ð127Þ

where δD is the nonperturbative part, substituting Eq. (127)
into Eq. (118) leads to the GTF for K > 1. As a result, one
can find the same forms for Eqs. (121) and (122), but the
nonperturbative p.p.o. in Eq. (123) is modified as

L ¼ δD
1þ P

: ð128Þ

For example, from Eqs. (106) and (110), the specific forms
of L for ðN;KÞ ¼ ð6; 2Þ and (5,2) can be expressed as

Lð6;2Þ ¼
X

n;m1;m2 ∈N0

�Y2
j¼1

ð2mjÞ!
ð2mjmj!Þ2

�

· ½Cð1;4Þð−1Þnþm1þm2Bm1

ð1;2ÞB
m2

ð3;4ÞP
n

þ ðCð3;5Þ þ Cð3;6ÞÞð−1Þnþm1þm2Bm1

ð3;4ÞB
m2

ð5;6ÞP
n�;
ð129Þ

Lð5;2Þ ¼
X
n∈N0

½Cð1;2Þ þ Cð1;4Þ þ Cð3;4Þ þ Cð3;5Þ

þ Cð1;2ÞCð3;4Þ þ Cð1;2ÞCð3;5Þ�ð−1ÞnPn: ð130Þ

The schematic figure of their nonperturbative p.p.o.s is
shown in Fig. 9.
It is notable that the main difference between the cases of

odd and even N is nonperturbative contributions from B
cycles constituting CNP;θ¼0, which is a consequence of the
Z2 symmetry in Eq. (23).

B. Spectral summation form

The SSF can be easily derived by replacing the Fredholm
determinant in Eqs. (116) and (118) with the exact QC.
For construction of non-Hermitian QMs, there generally
exist some issues in Hilbert spaces, such as the inner
product and the unitarity condition. In PT symmetric
QMs, while the unitarity condition holds, the PT sym-
metric inner product is nevertheless indefinite. There
is, however, another inner product compatible with a
PT symmetric Hamiltonian and holding both positive

FIG. 9. Schematic figure of nonperturbative p.p.o.s for ðN;KÞ ¼ ð6; 2Þ and ðN;KÞ ¼ ð5; 2Þ. A nonperturbative p.p.o. can be generally
constructed by certain combinations of cycles in its QC.
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definiteness and the unitarity condition. This is called the
CPT inner product. We summarize the construction in
Appendix A. See Refs. [20–22,68–70] and references
therein in more detail.
We denote the CPT inner product as ≺≺ ψ jϕ≻≻, which

is defined in Eq. (A15). The PT symmetric Hamiltonian,
ĤPT , satisfies

≺≺ Ek1 jĤPT jEk2≻≻ ¼≺≺ Ek1 jĤ†
PT jEk2≻≻ ¼ Ek1δk1;k2 :

ðk1; k2 ∈N0Þ ð131Þ

We also define trace over the Hilbert space using the CPT
inner product as TrCPT ½Â� ≔ P

k∈N0
≺≺ EkjÂjEk≻≻,

where Â is a P (and χ) pseudo-Hermitian operator
satisfying Â ¼ PÂ†P ¼ χÂ†χ−1 with χ ≔ PC. By the
CPT inner product, Eqs. (115) and (116) are modified as

GðEÞ ¼ TrCPT

�
1

ĤPT − E

�
;

ZðβÞ ≔ TrCPT ½e−βĤPT � ¼
X
k∈N0

e−βEk ; ð132Þ

and thus, the resulting forms are essentially the same as the
Hermitian cases.
Let us reproduce the SSF in Eq. (132) from Eqs. (115)

and (116) using our exact QCs. For simplicity, we firstly
suppose that the QCs include only the perturbative
cycle, i.e., D ∝ 1þ P. By taking PðEÞ ¼ eiaPðEÞ with
aPðEÞ∈R>0, Eqs. (116) and (118) lead to

ZðβÞ ¼ −
1

2πi

Z
δþi∞

δ−i∞
∂E logð1þ PÞe−βEdE

¼ −
1

2π

I
∞þi0þ

∞þ0−

P∂EaP
1þ P

e−βEdE

¼ −
1

2π

I
∞þi0þ

∞þi0−

e−βEðaPÞ

1þ e−iaP
daP; ð133Þ

where
H∞þi0þ
∞þi0−

dE is the Hankel contour going around E ¼
δ with 0 < δ ≪ 1. This has simple poles at aP ¼ 2κ ¼
πð2kþ 1Þ with k∈N0, that is the same condition as
Eq. (76). Therefore, it can be evaluated by the residue
integration, and EðaPÞ has to be the energy solution of the
exact QC. This means that Eq. (133) is identical to the
perturbative part of the SSF in Eq. (132).
One can also obtain the generalization including non-

perturbative sectors by replacing P with Pþ δD in
Eq. (127), where δD denotes all nonperturbative parts in
the exact QC. By defining

RðEÞ ≔ eiãðEÞ; ãðEÞ ≔ −i logðPðEÞ þ δDðEÞÞ; ð134Þ

Eq. (133) is generalized by replacing aP with ã, i.e.,

ZðβÞ ¼ −
1

2πi

Z
δþi∞

δ−i∞
∂E logð1þ RÞe−βEdE

¼ −
1

2π

I
∞þi0þ

∞þ0−

R∂Eã
1þ R

e−βEdE

¼ −
1

2π

I
∞þi0þ

∞þi0−

e−βEðãÞ

1þ e−iã
dã; ð135Þ

where EðãÞ is the energy solution of the exact QC
depending on the energy level, ã ¼ 2κ ¼ πð2kþ 1Þ
with k∈N0.

C. Euclidean path integral

We formulate the EPI under the periodic boundary
condition that xð0Þ ¼ xðτÞ≕ xτ using the exact QCs.4

In a similar way to the Hermitian cases, the EPI is defined
by introducing the complete set, I ¼ R

γPT
dxτjxτihxτj with

hxτj ≔ jxτi†, as5

Zðβ ¼ τ=ℏÞ ≔
Z
γPT

dxτhxτje−βĤPT jxτi; ð138Þ

where γPT is the domain of x given by Eq. (5). Thanks
to the CPT inner product, one can construct its familiar
form expressed by the Euclidean action, SPT ¼ R

τ
0 dt LPT ,

with the Lagrangian, LPT in the standard way. Defining
the complete set of momentum, I ¼ R dp

2πℏ jpihpj with
hpjxi ¼ eipx=ℏ, and using the Legendre transform, one
can obtain

ZðβÞ ¼
Z
γPT

dxτhxτje−βĤPT jxτi

¼
Z
γPT

Dx
Z

Dpe
R

β

0
dt½ipℏ dq

dt−HPT �

¼ N
Z
γPT

Dxe−
1
ℏSPT ; Dx ≔

Y
t∈ ½0;τÞ

dxðtÞ;

Dp ≔
Y

t∈ ½0;τÞ

dpðtÞ
2π

; ð139Þ

where N is a normalization factor.

4The Minkowskian path integral can be also formulated in a
similar way.

5The states jxi and hxj are consistent with the inner product
with the CPT states, jEk≻≻ and ≺≺ Ekj, as

hxjEk≻≻ ¼ hxjEki ¼ ϕkðxÞ; ð136Þ

≺≺ Ekjxi ¼ hEkjPCjxi ¼ hxjCPjEki ¼ CPT ½ϕkðxÞ�
¼ ζkϕkð−xÞ; ðζ2k ¼ 1Þ ð137Þ

where ϕkðxÞ ¼ ϕkð−xÞ is the PT symmetric energy eigenfunc-
tion with

R
γPT

dxϕk1ðxÞϕk2ðxÞ ¼ ζk1δk1;k2 .
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As is well known in the Hermitian cases, the EPI is
identical to the SSF in Eq. (132), i.e., ZðβÞ ¼ ZðβÞ. The
same argument works for the PT symmetric Hamiltonian,
due to the CPT inner product. Hence, the simplest way to
find a transseries of the EPI is expanding the energy
solution in the SSF. Since the energy for the massless
cases is a monomial of ℏ

2N
Nþ2, one can write down its explicit

form as

ZðβÞ ¼
X
k∈N0

e−βEk ¼
X
k∈N0

X
n∈N0

ð−τeðkÞÞn
n!

½g2ℏN−2� n
Nþ2;

ð140Þ

where the energy is given by Eq. (74) with a transseries
eðkÞ of the energy level, k. Notice that eðkÞ in Eq. (140) is a
divergent series of k−1 or κ−1 ¼ ½πðkþ 1

2
Þ�−1. Using the

property of the Stokes automorphism which is a homo-
morphism, the Borel resummed form is formally obtained
by replacing eðkÞ in Ek with êðkÞ, where f̂ ¼ Smed;0½f�.
As is shown in Fig. 1, the same result can be derived by

the integration by part as

ZðβÞ ¼ −
β

2πi

Z
δþi∞

δ−i∞
logD · e−βEdE

¼ −
β

2πi

Z
δþi∞

δ−i∞
log

�
2 cos

ãðEÞ
2

�
e−βEdE

¼ β

2πi

Z
δþi∞

δ−i∞
log

�
Γ
�
1

2
−
ãðEÞ
2π

��
e−βEdE; ð141Þ

where ãðEÞ is defined in Eq. (134). Singularities appear
from the gamma function at ãðEÞ ¼ 2κ ¼ πð2kþ 1Þ with
k∈N0 and consequently lead to the same form as the SSF
in Eq. (135).

VI. THE MASSIVE CASES

We briefly describe the massive cases defined by
the potential in Eq. (1) with ω > 0. In contrast to the
massless cases, the perturbative expansion using ℏ naively
works, and the dependence of the energy level appears as a
polynomial in each of the coefficients. Application of
EWKB to the ðN;KÞ ¼ ð4; 1Þ case was investigated in
Ref. [25], and its exact QC has the form of

D0 ∝ 1þA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB1

1þB2

s
¼ 1þA; B1 ¼ B2; ð142Þ

where A is a perturbative cycle and is given by a residue
integration of Sod around x ¼ 0. The double turning point at
x ¼ 0 is connected to two single turning points by Stokes
lines which corresponds to B1;2, but those contributions
canceled each other due to the Z2 symmetry in Eq. (23).
Hence, the energy spectrum contains the perturbative sector

only. When considering the potential in Eq. (1) with ω > 0
for an arbitrary N, the above situation is unchanged due to
the following fact:

Fact (Uniqueness of γPT and Borel summability
of energy spectra). Consider the potential in
Eq. (1) with ω > 0, and suppose that the path
of analytic continuation γPT is defined by Eq. (5).
Then, for any N ∈Nþ 2, the path providing a
solution of the exact QC is uniquely determined
as the nearest path to the real axis, i.e., K ¼
bðN − 1Þ=2c (ε ¼ 1 and 2 for odd and even N,
respectively). The resulting exact QC contains
only the perturbative cycle around x ¼ 0, A, as
D ¼ 1þA. The A-cycle is Borel nonsummable
and summable for even and odd N, respectively.
Borel summability of the energy spectrum is also
the same.

The derivation is summarized in Appendix B. As a
result, the resulting energy spectrum, the GTF, the SSF, and
the EPI are all purely perturbative.
We would emphasize that the same statement as the

above Fact holds for a wide class of classical PT
symmetric polynomial potentials with a single quadratic
vacuum. Here, let us remove the choice of the real axis for a
path of analytic continuation even when the wave function
is normalizable at x ¼ �∞, such as (E-2) and (E-3) of
Fig. 2, because it is a Hermitian QM. In such a case, once a
Stokes graph is drawn, a suitable path of analytic continu-
ation is automatically determined to give a quantized
energy by ℏ without introducing ε as a deformation
parameter from the real axis. The uniqueness of γPT is
broken when the set of turning points is invariant under
complex conjugation, which arises from the Z2 symmetry
(23) in the potential. However, the reasonable paths are
given as a complex conjugate pair, and either choice from
the pair gives the same result.6 Examples of the Stokes
graphs given by polynomial potentials with a mass term are
depicted in Fig. 10. The energy spectrum is Borel non-
summable only if a Stokes phenomenon occurs by degen-
eracies of Stokes lines, which are flowing parallel to the
real axis, from the double turning point to simple turning
points. See discussions in Appendix B.
In summary, this Fact tells us a nice observation;

even for more generic polynomial potentials, exact QCs
for the massive PT symmetric QMs with a single quad-
ratic vacuum have the same form as Eq. (142) and can be
calculated by performing only the residue integration of
Sodðx; Ẽ;ℏÞ around the vacuum in Eq. (B19). These results

6In this sense, the uniqueness of γPT in Fact for even N is
guaranteed by positivity of ε. When ε∈Z for N ∈ 2Nþ 2, those
paths of analytic continuation are given by ðN;KÞ ¼ ðN; N

2
− 1Þ

and ðN;KÞ ¼ ðN; N
2
þ 1Þ which correspond to ε ¼ þ2 and

ε ¼ −2, respectively, and these give the same exact QC.
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lead to the energy spectra and the three formulas in Fig. 1 as
simple forms without nonperturbative sectors.

VII. ADDITIONAL REMARKS

In this section, we make some additional remarks related
to our analysis. We briefly discuss similarities to the
Hermitian cases in Sec. VII A, and then comment on
resurgence in Sec. VII B.

A. Similarities to Hermitian QMs

We discuss similarities of transseries structure to
Hermitian QMs. Here, we consider the Hermitian potential
defined by

VHðxÞ ≔ ω2x2 þ λxN; ω∈R≥0;

λ∈R>0; N ∈ 2Nþ 2; ð143Þ

and take ω ¼ 0 for a while. Stokes graphs of the Hermitian
potential for N ∈ 4Nþ 2 and N ∈ 4N are the same as (E-2)
or (E-3) in Fig. 2, respectively, and a path of analytic
continuation is taken along a line slightly below the real
axis. As we can see below, the transseries structure of the
Hermitian QM is quite similar to the PT symmetric QM.
In this part, we only consider exact QCs of the Hermitian

QM because the procedure for each formula is parallel to
analyses in the above sections. In the Hermitian cases,
turning points consisting of a perturbative cycle are a1 and
aN , and the cycle P can be evaluated as

P ¼ exp

"
2i

X
n∈ 2N0−1

ð−1Þn−12 vn · ηn
#
; ð144Þ

where the coefficients, vn∈ 2N0−1, are given in Eq. (28).
Since the Stokes graphs (E-2) and (E-3) in Fig. 2 have a

FIG. 10. Examples of the Stokes graph for the massive cases with a polynomial potential, VPT ¼ ω2x2 þ δVPT for ω; gi ∈R>0 and
the zero-classical energy, E0 ¼ 0, with argðℏÞ ¼ 0. The green dot at the origin and the blue ones denote the double and the simple
turning points, respectively. In order to find a quantized energy spectrum by ℏ, the path of analytic continuation, γPT , has to be taken as
the green dashed line. In (c), there exist two suitable paths as a complex conjugation pair giving the same result because of the Z2

symmetry (23) in VPT .

EXACT QUANTIZATION CONDITIONS AND FULL … PHYS. REV. D 110, 045022 (2024)

045022-23



Stokes phenomenon at argðηÞ ¼ 0, one has to treat dis-
continuities in the QCs. In a similar way to Sec. III, the
exact QCs take the forms of

D0 ∝
1

P1=2

X
ðn1;…;nN=2Þ∈ f0;1gN=2

" YN=2−1

l¼1

DðlÞ
nl;nlþ1

#
DðN=2Þ

nN=2 ;

Dð1Þ
n1;n2 ≔ C̃n1

ð1;3Þðδn2;0 þ B̃−1
ð3;2Þ · δn2;1Þn1 ;

Dðl∈ f2;3;…;N=2−1gÞ
nl;nlþ1

≔ C̃nl
ð2l−2;2lþ1Þðδnlþ1;0 þ B̃−1

ð2lþ1;2lÞ · δnlþ1;1Þnl ;
DðN=2Þ

nN=2 ≔ C̃
nN=2

ðN−2;NÞ; ð145Þ

where

C̃ð1;3Þ ≔
Cð1;3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð2;3Þ

p ;

C̃ð2l−2;2lþ1Þ ≔
Cð2l−2;2lþ1ÞQ

1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð2lþ2n−2;2lþ2n−1Þ

p ;

ðl∈ f2; 3;…; N=2gÞ

C̃ðN−2;NÞ ≔
CðN−2;NÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ BðN−2;N−1Þ
p ;

B̃−1
ð2lþ1;2lÞ ≔

1þ Bð2l;2lþ1Þ
Bð2l;2lþ1Þ

∈R>0: ð146Þ

For N ¼ 4 and 6, those can be explicitly written down as

D0
N¼4 ∝

1

P1=2

�
1þ Pþ Cð1;3Þ þ Cð2;4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð2;3Þ
p �

; ð147Þ

D0
N¼6 ∝

1

P1=2

�
1þ Pþ Cð1;3Þ þ Cð2;6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð2;3Þ
p þ Cð1;5Þ þ Cð4;6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bð4;5Þ
p

þ Cð2;5Þ þ Cð1;3ÞCð4;6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð2;3Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð4;5Þ

p �
: ð148Þ

As one can see from Eq. (65), the Hermitian QCs have a
similar feature to the PT symmetric QCs for even N.
Although details of the energy spectra of the Hermitian
QM such as the specific values and the number of non-
perturbative sectors differ from the PT symmetric QM
with the same N, the fundamental feature is almost the
same because the difference comes only from the paths
of analytic continuation on the same Stokes graphs. In
addition, the PT symmetry, PT ∶x → −x, constrains
locations of turning points, and the real part of both turning
points and paths of analytic continuation are always Z2

symmetric. This is also the same in the Hermitian cases
and the crucial reason to give the similar feature in the
transseries.

As we discussed in Sec. VI, the similarity also holds in
the massive cases, i.e., ω > 0, but there is generally a
difference in Borel summability from the Hermitian QM.
In other words, although both the exact QCs are purely
perturbative, the exact QCs of the Hermitian QM defined
by Eq. (143) are always Borel summable, but it is not
always true for the PT symmetric QM defined
by Eq. (1).

B. Resurgence

We make some comments on resurgence. Construction
of resurgent relations of the energy spectra for the massless
cases is possible by alien calculus, but it does not mean
that these resurgent relations each perfectly reproduce
the nonperturbative sector. Indeed, even the first alien
derivative does not generate information of all nonpertur-
bative cycles, Bðn1;n2Þ and Cðn1;n2Þ, in Eqs. (65) and (71). We
summarize the details in Appendix C.
This reason originates from the structure of the Stokes

graphs. In order to extract all the nonperturbative informa-
tion from the perturbative cycle at once by the alien
derivatives at a certain complex phase, θ ¼ argðηÞ, all
the nonperturbative cycles in the exact QCs need to
simultaneously have degeneracies of Stokes lines and
intersections with the perturbative cycle. However, this
situation cannot be realized by any θ, and only some of the
nonperturbative cycles can have them at a certain θ. In this
sense, the resurgent relations can only extract partial
nonperturbative information from the perturbative part
for each θ causing a Stokes phenomenon. This situation
is also unchanged for the Hermitian cases discussed in
Sec. VII A.
In contrast, the situation in the massive cases completely

differs from the massless cases. As we described in Sec. VI,
the exact QCs contain only a perturbative cycle even if a
Stokes phenomenon happens at θ ¼ 0. This is a conse-
quence of the fact that Borel nonsummability is in general
irrelevant to the existence of nonperturbative contributions
in the exact QCs, i.e., it only concludes performability
of Borel resummation due to Borel singularities. In the
Hermitian cases with a single quadratic vacuum, the exact
QCs are always not only purely perturbative but also Borel
summable.

VIII. SUMMARY AND CONCLUSION

In this paper, we have studied EWKB for a PT
symmetric QM defined by the potential that VPT ðxÞ ¼
ω2x2 þ gx2KðixÞε with ω∈R≥0, g∈R>0 and K; ε∈N to
clarify its perturbative/nonperturbative structure. In our
analysis, we have mainly considered the massless cases,
i.e., ω ¼ 0, and obtained the following:

(I) the exact QCs for arbitrary ðK; εÞ including all order
nonperturbative corrections (Sec. III),
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(II) clarification of the full transseries structure of the
energy spectra with respect to the inverse energy
level expansion (Sec. IV), and

(III) derivations of the GTF, the SSF, and the EPI using
the exact QCs (Sec. V).

After the investigation of the massless cases, we have then
discussed the massive cases, i.e., ω > 0, and shown
(IV) uniqueness of the path of analytic continuation for a

given N, and nonexistence of nonperturbative con-
tributions in the exact QCs, the energy spectra, and
all the formulas in III (Sec. VI).

We have finally made additional remarks on similarities to
the Hermitian cases for even N and resurgence (Sec. VII).
In our EWKB, the exact QCs can be expressed by Voros

symbols (periodic cycles), and the cycle representation of
the QCs is quite helpful for the analysis based on Borel
resummation theory. For the massless cases, the Z2

symmetry, Z2∶ x → −x, in the potential crucially affects
their transseries and nonperturbative structures through the
DDP formula, and the effect appears as (non)existence of
extra nonperturbative cycles without oscillations in the
cases of even (odd) N ¼ 2K þ ε. The perturbative/non-
perturbative structure of the exact QCs directly propagates
not only to the energy spectra but also to all the formulas in
III. We should emphasize that, although we have performed
those analyses by using transseries, their analytic forms can
be formally obtained by taking the median resummation to
them. Thus, our results are formally exact.
For the massive cases, from the requirement of the

existence of a solution of the exact QCs, the path of analytic
continuation is uniquely determined, and in consequence
the transseries structure becomes quite simplified because
of a constrained K as K ¼ bðN − 1Þ=2c. As a result, the
nonperturbative contributions do not appear in the exact
QCs, and thus, the energy spectra and all the formulas in III
are perturbative. However, those are in general Borel
nonsummable. This result is extendable to more generic
polynomial potentials with a single quadratic vacuum.
Notice that, for constructions of the formulas in Fig. 1

from the exact QCs, pseudo-Hermiticity and the CPT inner
product are quite essential, which guarantees the unitarity
condition and positive definiteness.
Since this study addressed a quite simple potential, there

are many questions remaining even in the quantum
mechanical level: more generic potentials, constraint to
nonperturbative effects by PT symmetry, generalizations
of PT =CPT duality and their nonperturbative effects, and
so on. Furthermore, a generalization to field theories and
study of their nonperturbative structure are interesting
problems as a future work.
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APPENDIX A: PSEUDO-HERMITICITY
AND CPT INNER PRODUCT

In this part, we briefly review pseudo-Hermiticity and
construction of the CPT inner product. For now, we
consider the Minkowski spacetime, but extension to the
Euclid spacetime is straightforward by the Wick rotation.
See Refs. [20–22,68–70] and references therein in detail.
We denote ĤPT as a PT Hamiltonian operator and

define C, P, and T operators which satisfy

½ĤPT ;PT � ¼ ½ĤPT ; C� ¼ ½C;PT � ¼ 0; ðA1Þ

O2 ¼ OO† ¼ O†O ¼ I; O∈ fC;P; T g; ðA2Þ

where ½A;B� ≔ AB − BA. The parity operator, P, flips the
sign of space as x → −x, and the time-reversal operator, T ,
corresponds to complex conjugation, K. The “charge
conjugation,” C, is not a usual transform acting to a charged
particle and will be determined to find the CPT inner
product later. Notice that the time-reversal, T , is an
antiunitary operator.
There are a couple of notations of the PT symmetric

Hilbert space, but the most familiar way might be to start
with the Dirac bra ket of the energy eigenstates:

ĤPT jEki ¼ EkjEki; PT jEki ¼ jEki; hEkj ≔ jEki†;
ðA3Þ

Ĥ†
PT jĒki ¼ ĒkjĒki; PT jĒki ¼ jĒki; hĒkj ≔ jĒki†;

ðA4Þ

where k is a label of the energy level. Here, we assume that
the energy does not have degeneracies and that PT
symmetry is unbroken, i.e., the energy spectrum is real
andK½Ek� ¼ Ēk, whereK is complex conjugation. The fact
that the Hamiltonian is not Hermitian, i.e., ĤPT ≠ Ĥ†

PT ,
implies that Ĥ†

PT jEki ≠ EkjEki even if the spectrum is real.
Although the PT Hamiltonian is not Hermitian, it satisfies
P-pseudo-Hermiticity condition [20]:

Ĥ†
PT ¼ PĤPT P: ðA5Þ

By this condition, one finds that

hEkjPĤPT jEki ¼ hEkjĤ†
PT PjEki ¼ EkhEkjPjEki; ðA6Þ

and, according to Ref. [68], hEkjPjEki in the last equality
can be replaced with

ζk ¼ hEkjPjEki; ζ2k ¼ 1: ðA7Þ
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Equation (A6) also implies that the PT symmetric states,
jEk) and ðEkj ≔ PT jEkÞ, can be found by the identification
that

jEki → jEkÞ; hEkjP → ðEkj; ðEk1 jEk2Þ ¼ ζk1δk1;k2 ;

ðA8Þ

where δk1;k2 is the Kronecker delta. Hence, the inner
product of the PT symmetric states is indefinite, and
the complete set is given by

I ¼
X
k

ζkPjEkihEkj ¼
X
k

ζkjEkihEkjP: ðA9Þ

This implies that the jĒki in Eq. (A4) can be expressed by
jEki as

jĒki ¼ ζkPjEki; hĒkj ¼ ζkhEkjP;
hEk1 jĒk2i ¼ hĒk1 jEk2i ¼ δk1;k2 : ðA10Þ

However, for the time-dependent PT symmetric states, the
inner product is invariant under the time evolution:

∂

∂t
ðEkðtÞjEkðtÞÞ ¼

1

iℏ
hEkðtÞjð−Ĥ†

PT P þ PĤPT ÞjEkðtÞi
¼ 0: ðA11Þ

Therefore, the unitarity condition is satisfied due to the
pseudo-Hermiticity in Eq. (A5).
As we saw above, the inner product of the PT

symmetric states is indefinite. One can solve this problem
by introducing C operator and constructing the CPT inner
product. We define action of the C operator to the energy
state as

CjEki ¼ ζkjEki ⇒ jĒki ¼ ζkPjEki ¼ PCjEki: ðA12Þ

By this operator, one can find the CPT inner product which
is positive definite:

δk1;k2 ¼ hEk1 jĒk2i ¼ hEk1 jPCjEk2i

¼
Z
γPT

dxhEk1 jPCjxihxjEk2i

¼
Z
γPT

dxCP½ϕk1ðxÞ�ϕk2ðxÞ

¼
Z
γPT

dxCPT½ϕk1ðxÞ�ϕk2ðxÞ; ðA13Þ

where ϕkðxÞ ≔ hxjEki is the PT symmetric energy eigen-
function satisfying PT ½ϕkðxÞ� ¼ hxjPT jEki ¼ ϕkð−xÞ ¼
ϕkðxÞ. By denoting χ ≔ PC, ĤPT is χ-pseudo-Hermitian:

PCĤPT ¼ PĤPT C ¼ Ĥ†
PT PC ⇒ Ĥ†

PT ¼ χĤPT χ
−1:

ðA14Þ

Finally, we define the CPT inner product, ≺≺ ψ jϕ≻≻, as

≺≺ ψ jϕ≻≻ ≔ hψ jχϕi ¼ hχ−1ψ jϕi: ðA15Þ

By using χ ¼ PC, the complete set (A9) is expressed by

I ¼
X
k

jχEkihEkj ¼
X
k

jEkihχ−1Ekj; ðA16Þ

and one can derive

δðx − yÞ ¼ hxjyi ¼
X
k

hxjEkihχ−1Ekjyi

¼
X
k

ϕkðxÞχϕkðyÞ ¼
X
k

CPT ½ϕkðyÞ�ϕkðxÞ:

ðA17Þ

One can easily prove the unitarity condition for the CPT
inner product in a similar way to Eq. (A11).

APPENDIX B: DERIVATION OF FACT
IN SEC. VI

. We explain the derivation of Fact in Sec. VI. As an
example, we consider N ¼ 10 and take the two paths given
by K ¼ 2 and K ¼ 4 in Eq. (5) for analytic continuations.
By these choices of ðN;KÞ, the potential is given by

VPT ðxÞ ¼ ω2x2 − gx10; ω; g∈R>0: ðB1Þ

The Stokes graph and the two paths, γPT ð10;2Þ and γPT ð10;4Þ ,
are shown in Fig. 11. In the discussion below, the labels of
turning points are taken in the manner of Fig. 11.
We firstly consider the lower path, γPT ð10;2Þ, for analytic

continuation. The monodromy matrices are given by

M0þ ¼ MþNa2;a3MþNa3;a4M
−1
− Na4;a8MþNa8;a5MþNa5;a7MþNa7;a6MþNa6;a2 ; ðB2Þ

M0− ¼ MþNa2;a1MþNa1;a3MþNa3;a8MþNa8;a4M
−1
− Na4;a5MþNa5;a6MþNa6;a2 ; ðB3Þ
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and thus, normalizability of the wave function, M�0
12 ¼ 0, gives

D0þ ∝ Cð4;2Þ þ Cð4;3Þ þ ð1þ Cð4;2Þ þ Cð4;3ÞÞðCð4;5Þ þ Cð4;6Þ þ Cð4;7Þ þ Cð4;8ÞÞ; ðB4Þ

D0− ∝ Cð4;5Þ þ Cð4;6Þ þ ð1þ Cð4;5Þ þ Cð4;6ÞÞðCð4;1Þ þ Cð4;2Þ þ Cð4;3Þ þ Cð4;8ÞÞ: ðB5Þ

Even though the QCs have a discontinuity, a perturbative part of the energy should be derived from a common perturbative
part in the QCs, which is

D0�
P ∝ 1þ Cð2;6Þ: ðB6Þ

When the energy in the cycles is replaced as E → Ẽℏ with Ẽ ¼ Oðℏ0Þ, the two simple turning points, a3 and a5, become a
double turning point, but Eq. (B6) is unchanged. One can see that, by this replacement, the leading order of logCð2;6Þ is
Oðℏ−1Þ, but the energy parameter, Ẽ, is not included in the same order. This means that the QC in Eq. (B6) has no solution
of the energy to satisfy D0�

P ¼ 0.
Next, let us consider the upper path, γPT ð10;4Þ . The monodromy matrices are obtained by

M0þ ¼ MþNa3;a4M
−1
− Na4;a8MþNa8;a5MþNa5;a7MþNa7;a2 ; ðB7Þ

M0− ¼ Na3;a1MþNa1;a3MþNa3;a8MþNa8;a4M
−1
− Na4;a5MþNa5;a2 : ðB8Þ

By imposing normalizability to the wave function, i.e., M0�
12 ¼ 0, the QCs are obtained as

D0þ ∝ 1þ Að3;5Þð1þ Bð5;7ÞÞ þ Cð3;8Þ þ Cð4;5Þ þ Cð4;7Þ þ Bð4;8Þ; ðB9Þ

D0− ∝ 1þ A−1
ð3;5Þð1þ Bð3;1ÞÞ þ Cð5;8Þ þ Cð4;3Þ þ Cð4;1Þ þ Bð4;8Þ: ðB10Þ

Here, we used the symbols, Að3;5Þ ¼ Cð3;5Þ and Bð•;•Þ ¼ Cð•;•Þ, to emphasize being purely perturbative and nonperturbative
cycles, respectively. The DDP formula for the cycles is available by counting the intersections and given by

Sν
0½Að3;5Þ� ¼ Að3;5Þð1þ Bð3;1ÞÞ−νð1þ Bð5;7ÞÞ−νð1þ Bð4;8ÞÞþ2ν; ðB11Þ

Sν
0½Bð•;•Þ� ¼ Bð•;•Þ; ðB12Þ

FIG. 11. Stokes graphs in the massive cases with argðℏÞ ¼ 0� for ðN;KÞ ¼ ð10; 2Þ and ðN;KÞ ¼ ð10; 4Þ. The red and green lines
denote the path of analytic continuation for K ¼ 2 and K ¼ 4, respectively. In these figures, we assume that E ¼ Oð1Þ in the
Schrödinger equation, so that the perturbative cycle Cð3;5Þ consists of two simple turning points.
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Sν
0½Cð3;8Þ� ¼ Cð3;8Þð1þ Bð3;1ÞÞ−νð1þ Bð4;8ÞÞþν;

Sν
0½Cð4;5Þ� ¼ Cð4;5Þð1þ Bð5;7ÞÞ−νð1þ Bð4;8ÞÞþν;

Sν
0½Cð4;7Þ� ¼ Cð4;7Þð1þ Bð5;7ÞÞ−νð1þ Bð4;8ÞÞþν;

Sν
0½Cð5;8Þ� ¼ Cð5;8Þð1þ Bð5;7ÞÞþνð1þ Bð4;8ÞÞ−ν;

Sν
0½Cð4;3Þ� ¼ Cð4;3Þð1þ Bð3;1ÞÞþνð1þ Bð4;8ÞÞ−ν;

Sν
0½Cð4;1Þ� ¼ Cð4;1Þð1þ Bð3;1ÞÞþνð1þ Bð4;8ÞÞ−ν: ðB13Þ

From these, one can obtain the exact QC, D0 ≔ S�1=2
0 ½D0��, as

D0 ∝ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð5;7Þ
1þ Bð3;1Þ

s
Að3;5Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð5;7Þ
1þ Bð4;8Þ

s
Cð4;5Þ þ

Cð3;8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð3;1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bð4;8Þ

p : ðB14Þ

By replacing E → Ẽℏ, the quadratic vacuum at the origin becomes a double turning point, as is shown in Fig. 12. Using the
Z2 symmetry in Eq. (23), the exact QC becomes

D0 ∝ 1þAþ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þB−
p

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB−

p
�

Bþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB2þ

p ; ðB15Þ

where Að3;5Þ → A is a perturbative cycle going around the double turning point corresponding to the quadratic vacuum, and
B∓ are introduced through E → Ẽℏ as

Bð3;1Þ ¼ Bð5;7Þ → B−; Cð4;5Þ ¼ Cð3;8Þ → Bþ; Bð4;8Þ → B2þ: ðB16Þ

Figure 13 shows the cycles on the Stokes graph with E ¼ OðℏÞ. These cycles are expressed by F as [25,28,31,53],

A ¼ e−2πiF; ðB17Þ

B∓ ¼ C2∓
ffiffiffiffiffiffi
2π

p
B0e�πiFℏ�F

Γð1=2 ∓ FÞ ; B0 ≔ e−
SB
ℏ ; ðSB ∈R>0Þ ðB18Þ

FIG. 12. Stokes graphs in the massive cases with argðℏÞ ¼ 0 for ðN;KÞ ¼ ð10; 2Þ and ðN;KÞ ¼ ð10; 4Þ using Airy-type and
degenerate Weber-type for the quadratic vacuum at the origin. The two simple turning points blue-colored in (a), a3 and a5, collide into
each other as varying E0 → 0þ, where E0 is the zeroth order of the energy, and consequently become a double turning point green-
colored in (b).
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where F and C∓ are the formal power series of Ẽ and ℏ,
and F is obtained by a residue integration of Sod around
x ¼ 0 as

FðẼ;ℏÞ ¼ −Resx¼0Sodðx; Ẽ;ℏÞ ¼ −cẼþOðℏÞ; ðB19Þ

with c∈R>0. The perturbative energy solution is given by

D0
P ∝ 1þA ¼ 0; ðB20Þ

and the positive energy condition leads to

F ¼ −k ⇒ Ẽ ¼ k
c
þOðℏÞ; k∈N0 þ

1

2
: ðB21Þ

Substituting F into Eq. (B18) gives

Bþ ¼ 0; ðB22Þ

because of the gamma function in the denominator. Thus,
the exact QC (B15) becomes

D0 ∝ 1þA; ðB23Þ

which contains the perturbative cycle only, i.e., the energy
solution contains no nonperturbative part. Notice that the
DDP formula ofA is still nontrivial becauseB− ≠ 0, which
means that the energy solution is Borel nonsummable.
The same discussions are applicable to any other ðN;KÞ.

Here are observations from the above analysis:
(1) The perturbative part of the energy solution is given

by a cycle with pure oscillation. When replacing the
energy as E → Ẽℏ with Ẽ ¼ Oðℏ0Þ, if the pertur-
bative cycle consists of two simple turning points in
the exact QC, no appropriate solution can be found
from the exact QC. This means that the exact QC
must contain a cycle going around a double turning
point as a reasonable perturbative cycle. It is possible
only when the nearest path to the real axis is taken as

the path of analytic continuation. As a result, the
exact QCs for arbitrary ðN;KÞ consist of a pertur-
bative cycle defined by the double turning point and
nonperturbative cycles having nontrivial intersection
numbers with the perturbative cycle.

(2) By taking E → Ẽℏ, the quadratic vacuum is ex-
pressed by the degenerate Weber-type Stokes graph
shown in Fig. 14. Suppose that there exists a single
quadratic vacuum and that the asymptotic behavior
of the local Stokes graph is taken in a similar way to
Fig. 14 by appropriately taking branch cuts. When
there exist nonperturbative cycles along the “þ”-
directions in Fig. 14, which correspond to Bþ in
Eq. (B15), their contributions do not exist be-
cause Bþ ¼ 0.

(3) When there exist nonperturbative cycles along the
“−”-directions in Fig. 14, which correspond toB− in
Eq. (B15), their contributions are canceled in the
exact QC. In such a case, the energy solution is Borel
nonsummable. It is notable that these B−-type
nonperturbative cycles coupled to A, always appear
as a pair in the numerator and denominator as,
e.g., ðBð3;1Þ; Bð5;7ÞÞ in Eq. (B14). Such a pair appears
when theZ2 symmetry in Eq. (23) is preserved in the
potential, and these two contributions are equivalent
to each other.

One can generate other double turning points from the
simple turning points by changing E0 ∈R as a control
parameter and inducing bifurcations. In the potential (1),
however, the solution can be obtained only when a double
turning point exists at the origin due to the above (1)–(3)
and topology of those Stokes graphs. By using these
observations, Fact in Sec. VI can be proved for any ðN;KÞ.
Notice that the locations of the branch cuts and the

asymptotic behaviors of the Stokes graph, “�”, are arbi-
trary as far as being consistent with each other, and thus, the
result must be unchanged by changing them.

FIG. 13. Cycles on the Stokes graph defined by the potential in
Eq. (B1) with E0 ¼ 0.

FIG. 14. Stokes graph for the degenerate Weber equation. The
green dot is a double turning point. The black solid and red wave
lines denote Stokes lines and a branch cut, respectively. This
figure is brought from Ref. [25]. See Refs. [25,28,31,53] in detail,
for example.
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APPENDIX C: ALIEN CALCULUS
FOR ENERGY SPECTRA

In this part, we describe alien calculus for the energy
spectra. We begin with the exact QCs given by Eqs. (65)
and (71). Suppose that we have already found a transseries
solution of the energy, denoted by EðκÞ, which satisfies7

D0jE¼EðκÞ ¼ 0: ðC1Þ

The Stokes automorphism Sν∈R
θ can be generally

expressed by the alien derivative Δ
•

θ as

Sν∈R
θ ¼ exp ½νΔ• θ� ∼ 1þ νΔ

•

θ; ðC2Þ

where θ is the angle of the integration ray in the
Laplace integral, Lθ. Below, we consider the case of θ ≔
argðηÞ ¼ 0 for simplicity, but a generalization to nonzero θ
is straightforward.
Instead of seeing the energy solutions, it is con-

venient to deal with η because our exact QCs for the
massless cases are transseries of η. We should recall that
the DDP formula of the cycles in Eq. (64) is related to
argðηÞ, but η (or the energy E) is a free parameter until
solving the exact QCs. Hence, for the transseries of η in
the cycles, ηðκÞ, the alien derivative can be split into two
parts as

Δ
•

0½fðηðκÞÞ� ≔ ∂η−1fðηÞjη¼ηðκÞ · Δ
•

0½η−1ðκÞ� þ Δ
•

η;0½fðηðκÞÞ�;
ðC3Þ

Δ
•

η;0½fðηðκÞÞ� ≔ Δ
•

η;0½fðηÞ�jη¼ηðκÞ; ðC4Þ

where Δ
•

η;0 is the transformation law of the DDP formula

with a constant η in Eq. (64). If one acts Δ
•

η;0 to
D0ðηðκÞÞ, the result is in general nonzero. Thus, from

Eq. (C3), we determine Δ
•

0½η� to keep zero under the

action of Δ
•

0 to D0ðηðκÞÞ. From Eq. (C3), one can readily
find that

Δ
•

0½D0ðηðκÞÞ� ¼ 0 ⇒ Δ
•

0½η−1ðκÞ� ¼ −
Δ
•

η;0½D0ðηÞ�
∂η−1D

0ðηÞ





η¼ηðκÞ

:

ðC5Þ

After obtaining Δ
•

0½η−1ðκÞ�, the result can be translated

into Δ
•

0½EðκÞ� by using Eq. (4), that is

Δ
•

0½EðκÞ� ¼
2N

N þ 2
·
EðκÞ
η−1ðκÞ · Δ

•

0½η−1ðκÞ�: ðC6Þ

By repeating the same procedure, one can recursively

obtain the higher order alien derivatives, ðΔ• 0Þn½η−1ðκÞ�
(or ðΔ• 0Þn½EðκÞ�), by

Xn
s¼1

XP
s
t¼1

tkt≤n

k∈Ns
0

νn

ðn −
P

s
t¼1 tktÞ!

·

�Ys
t¼1

ððΔ• 0Þt½η−1ðκÞ�Þkt
ðt!Þktkt!

ðΔ• η;0Þ−tkt
�
ðΔ• η;0Þn½∂jkjη−1

D0ðηðκÞÞ�

¼ 0; ðC7Þ

where jvj denotes the L1 norm.
In Sec. C 1, we demonstrate the specific calculations

using these formulas. In this paper, since it is sufficient for
our purpose, we only argue the first order alien derivative.

1. Even N

We consider resurgent relations for the even N cases.
From the DDP formula given in Eq. (64), the alien
derivative to the cycles is obtained as

Δ
•

η;0½Cðp̄þ2l−2;p̄þ2lþ1Þ� ¼ Cðp̄þ2l−2;p̄þ2lþ1Þ

· log

�Y1
n¼0

ð1þ Bðp̄þ2lþ2n−2;p̄þ2lþ2n−1ÞÞ
�
;

Δ
•

η;0½Bðp̄þ2lþ2n−2;p̄þ2lþ2n−1Þ� ¼ 0 with n ¼ 0; 1; ðC8Þ

with l∈ f1; 2;…; Kg. Here, let us consider the perturba-
tive sector. This sector can be extracted by picking up the
part corresponding to nl ¼ 0 and nl ¼ 1 for all l from the
summation in Eq. (65), and it is given by

D0
P ∝ 1þ Cðp;p̄þ2KÞ ¼ 1þ P; ðC9Þ

where D0
P denotes the perturbative sector in the exact QC.

Since Δ
•

θ½EðκÞ� is given from Δ
•

θ½η−1ðκÞ� in Eq. (C6), we

argue below that Δ
•

θ½η−1ðκÞ�.
We compute Eq. (C5) using the definition of P in

Eq. (55). We suppose that the specific form of η−1ðκÞ
(or ηðκÞ) has been known by solving Eq. (C9). Since

∂η−1D
0
PðηÞ ¼ −2iP ·

X
n∈ 2N0−1

nvn sin
πKn
N

· ηnþ1; ðC10Þ

7In the discussions below such as Sec. C 1, we mainly address
action of the alien derivative to a perturbative sector for
simplicity, but the solution does not need to only contain a
perturbative cycle. It generally contains nonperturbative contri-
butions, and action of the alien derivative to nonperturbative
sectors is nontrivial.
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Δ
•

η;0½D0
PðηÞ� ¼P · log

�YK−1
l¼1

Y1
n¼0

ð1þBðp̄þ2lþ2n−2;p̄þ2lþ2n−1ÞÞ
�

¼P · log

�
ð1þBðp̄;p̄þ1ÞÞð1þBðp̄þ2K;p̄þ2Kþ1ÞÞ

YK−1
l¼1

ð1þBðp̄þ2l;p̄þ2lþ1ÞÞ2
�

¼ 2P · ½logð1þBðp̄;p̄þ1ÞÞþ log ð1þBðp̄þK;p̄þKþ1ÞÞδK mod 2;0�þ 4P ·
XbðK−1Þ=2c

l¼1

log ð1þBðp̄þ2l;p̄þ2lþ1ÞÞ; ðC11Þ

where we used Bðp̄þ2l−2;p̄þ2l−1Þ ¼ Bðp̄þ2K−2lþ2;p̄þ2K−2lþ3Þ for l ¼ f1;…; bðK þ 1Þ=2cg, one can find the alien derivative
to ηðκÞ from Eq. (C6) as

Δ
•

0½η−1ðκÞ� ¼
log ð1þ Bðp̄;p̄þ1ÞÞ þ log ð1þ Bðp̄þK;p̄þKþ1ÞÞδKmod 2;0 þ 2

PbðK−1Þ=2c
l¼1 log ð1þ Bðp̄þ2l;p̄þ2lþ1ÞÞ

i
P

n∈ 2N0−1nvn sin
πKn
N · ηnþ1






η¼ηðκÞ

¼ Bðp̄;p̄þ1Þ þ Bðp̄þK;p̄þKþ1ÞδKmod 2;0 þ 2
PbðK−1Þ=2c

l¼1 Bðp̄þ2l;p̄þ2lþ1Þ
i
P

n∈ 2N0−1nvn sin
πKn
N · ηnþ1






η¼ηðκÞ

þOðB2Þ: ðC12Þ

Notice that, although the nonperturbative sector associated to
Bðp̄;p̄þ1Þ, which corresponds to σðbK=2cþ1Þ in Eq. (100), does
not arise alone in the energy solution, it appears in the alien
derivative in Eq. (C12). In addition, the alien derivative has
information related to only Bð•;•Þ but does not contain the
other cycles, Cð•;•Þ. Moreover, the alien derivative is pure
imaginary and does not provide information of ð−1Þk in
Eq. (100). These facts imply that it is impossible to fully
figure out information of the nonperturbative sectors from the
perturbative sector in the transseries solution of the energy.
Then, let us try to extract some information due to the

other cycles in Eq. (100) from the perturbative sector in
Eq. (C9) by introducing nonzero θ into Eq. (C8). Actually,
Stokes phenomena occur at not only θ ¼ 0 but also nonzero
θ, and the similar analysis is applicable to the other cycles.
For any θ ¼ argðηÞ inducing Stokes phenomena, the alien
derivative to any cycles Cðn1;n2Þ ∉ CNP;θ, where CNP;θ is a
set of nonperturbative cycles going around degenerated
Stokes lines induced at a θ, is written as

Δ
•

η;θ½Cðn1;n2Þ� ¼ Cðn1;n2Þ · log
� Y
Bj ∈CNP;θ

ð1þ BjÞhCðn1 ;n2Þ;Bji
�
;

Cðn1;n2Þ ∉ CNP;θ; ðC13Þ
θ ¼ πn

N
with n∈ f−N;−N þ 1;…; N − 1g: ðC14Þ

By this DDP formula, Eq. (C11) is modified as8

Δ
•

η;θ½D0
P� ¼ P · log

� Y
Bj ∈CNP;θ

ð1þ BjÞhP;Bji
�
: ðC15Þ

Finally, the generalization of the alien derivative of η−1 to
an arbitrary θ is written as

Δ
•

θ½η−1ðκÞ� ¼
log ½QBj∈CNP;θ

ð1þBjÞhP;Bji�
2i
P

n∈2N0−1nvn sin
πKn
N · ηnþ1






η¼ηðκÞ

¼
P

Bj∈CNP;θ
hP;Bji logð1þBjÞ

2i
P

n∈2N0−1nvn sin
πKn
N · ηnþ1






η¼ηðκÞ

þOðB2
jÞ:

ðC16Þ
Notice that, by taking θ ¼ 0, any elements Bj in CNP;θ at a
certain nonzero θ become some cycles expressed by Cðn1;n2Þ
in Eq. (65). Thus, Eq. (C16) can extract nonperturbative
information due toCðn1;n2Þ from the perturbative sector (C9)
by introducing a nonzero θ. However, it is extremely tough
to make relations of the alien derivatives for each θ to the
full transseries solution of the energy (or η) at once.

2. Odd N

In this part, we briefly describe the oddN cases. Since no
Stokes phenomenon occurs at θ ¼ 0, one has to take a
nonzero θ to induce a Stokes phenomenon. The phases θ
inducing Stokes phenomena are given by

θ¼ πn
N

with n∈
�
−Nþ 1

2
;−Nþ 3

2
;…;N −

1

2

�
: ðC17Þ

We do not argue the specific alien calculus for the odd N
cases in more detail because the procedure is the same as
the even N cases. It can be easily derived by using
Eqs. (C13), (C15), and (C16) and taking θ in Eq. (C17).

8The DDP formula generally changes the cycle representation
of the exact QC depending on each Stokes phenomenon, but in
this procedure the phase is introduced only to the alien derivative
as fixing the exact QC,D0. It is because our purpose is extracting
nonperturbative information from the solution, i.e., ηðκÞ, which
has been already obtained by D0.
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