
Bestiary of 6D (1, 0) SCFTs: Nilpotent orbits and anomalies

Florent Baume 1,* and Craig Lawrie 2,†

1II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149,
22607 Hamburg, Germany

2Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany

(Received 22 April 2024; accepted 12 July 2024; published 23 August 2024)

Many six-dimensional (1, 0) superconformal field theories (SCFTs) are known to fall into families
labeled by nilpotent orbits of certain simple Lie algebras. For each of the three infinite series of such
families, we show that the anomalies for the continuous zero-form global symmetries of a theory labelled
by a nilpotent orbit O of g can be determined from the anomalies of the theory associated to the trivial
nilpotent orbit (the parent theory), together with the data ofO. In particular, knowledge of the tensor branch
field theory is bypassed completely. We show that the known anomalies, previously determined from the
geometric/atomic construction, are reproduced by analyzing the Nambu-Goldstone modes inside of the
moment map associated to the g flavor symmetry of the parent SCFT. This provides further evidence for
the physics underlying the labeling of the SCFTs by nilpotent orbits. We remark on some consequences,
such as the reinterpretation of the 6D a-theorem for such SCFTs in terms of group theory.
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I. INTRODUCTION

In recent years, the study of six-dimensional super-
conformal field theories (SCFTs) has undergone rapid
progress. While such theories were conjectured to exist
from an analysis of superconformal algebras [1], the
absence of any concrete bottom-up construction led to
the widespread doubt of their existence. Such SCFTs can be
shown to lack any relevant or marginal (supersymmetry-
preserving) parameters [2–6], precluding the existence of a
straightforward Lagrangian approach, and rendering the
usual weakly coupled perturbative techniques impotent.
Instead, it is necessary to develop alternative techniques,
often string-theoretic, to both understand the existence of
such inherently strongly coupled quantum field theories,
and to extract their physical behavior.
It was not until the heyday of string theory that a

construction giving rise to an interacting 6D SCFT
with maximal supersymmetry was developed. Con-
sider type IIB string theory compactified on an orbifold
singularity:

C2=Λ; ð1:1Þ

where Λ is a finite subgroup of SUð2Þ. As the orbifold is a
noncompact Calabi-Yau twofold, the compactification does
not break supersymmetry entirely, but preserves half the
supersymmetry in the resulting effective six-dimensional
theory. The fundamental degrees of freedom of the com-
pactified theory are tensionless self-dual strings, which
arise from the type IIB perspective from D3-branes wrap-
ping the collapsed, zero-volume cycles associated to the
orbifold singularity. However, it was shown in [7–9], that
these are, in fact, local superconformal field theories, and
each tensionless string couples to a self-dual two-form
potential which belongs to a tensor multiplet. There is a
moduli space of supersymmetric vacua parametrized by the
vacuum expectation values of the scalar fields inside of
these tensor multiplets; this is the tensor branch of the
SCFT. At the generic point of the tensor branch all of the
self-dual strings are tensionful. The classification of finite
subgroups of SUð2Þ is an ADE-classification; thus, there
are two infinite series of 6D (2, 0) SCFTs and three
sporadic SCFTs, corresponding to

AN≥1; DN≥4; E6; E7; E8: ð1:2Þ
Typically, we use this ADE-classification to label each 6D
(2, 0) SCFT by a simple and simply laced Lie algebra. The
top-down construction of strongly coupled superconformal
field theories, either from string theory or from higher-
dimensional field theory, has been extremely powerful over
the last thirty years; see [10] for a recent review.
The type IIB string theoretic construction just descri-

bed yields 6D SCFTs with maximal supersymmetry. It is
natural to consider an analogous construction for 6D
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SCFTs with minimal supersymmetry. Instead of the orbi-
fold in Eq. (1.1), we can consider the compactification of
type IIB string theory on a noncompact Kähler surface
which is not Calabi-Yau. Naively, this breaks all of the
supersymmetry in the effective six dimensional theory,
however, it is possible to simultaneously turn on a non-
trivial axio-dilaton profile such that one quarter of the
supersymmetry is preserved. In this way, we should replace
the noncompact Calabi-Yau twofold of Eq. (1.1) with a
noncompact elliptically fibered Calabi-Yau threefold,
where the elliptic fibration captures the axio-dilaton profile;
this puts us squarely in the realm of F-theory [11–13].
The generalization to such Calabi-Yau threefold com-

pactifications has been worked out in [14,15]. Consider a
noncompact elliptically fibered Calabi-Yau threefold

π∶ Y → B; ð1:3Þ

where the base of the fibration, B, contains no complex
curves of finite volume. The base may be singular, in which
case we assume that it has at most one singular point, which
we label as b0. Further, we assume that π−1ðbÞ is an
irreducible, possibly degenerate, genus-one curve, for all
points b∈B; thus [16], we can write the elliptic fibration Y
as a Weierstrass model over B. Assume that the Weierstrass
model has at most one nonminimal fiber,1 supported over
the point b0 in B. Then F-theory compactified on Y leads to
an interacting 6D (1, 0) SCFT with a single energy-
momentum tensor.2 Thus, to construct 6D (1, 0) SCFTs,
it is necessary to know how to construct Calabi-Yau
threefolds satisfying the requisite properties.
We know that for the construction of the 6D (2, 0)

SCFTs, the base B takes the form of an orbifold singularity:

B ¼ C2=Λ: ð1:4Þ

In [14], it was shown that for any Y that engineers a 6D
SCFT, the base must instead be a “generalized orbifold.”
These take the same form as in Eq. (1.4), however Λ is now
allowed to be particular finite subgroups ofUð2Þ, instead of
SUð2Þ. We refer the reader to [14] for a review of the
generalized orbifolds, in particular the action of the finite
group Λ on the coordinates of C2. In the end, there are two
families of generalized orbifolds, known as generalized
A-type and generalized D-type orbifolds, each parame-
trized by a pair of integers p, q, and which we write as

Aðp;qÞ; Dðpþq;qÞ: ð1:5Þ

For particular combinations of the parameters, the general-
ized orbifolds reduce to the standard orbifold singularities.
There is no generalization of the standard E-type orbifolds.
Once a generalized orbifold C2=Λ has been specified, it

is necessary to provide information which captures the
nature of the nonminimal singular fiber supported over the
orbifold point. In fact, as we review in Sec. II, it is sufficient
to encode this data in a choice of (possibly trivial) ADE Lie
algebra, g. In the end, then, one can obtain the following
families of 6D (1, 0) SCFTs:

Ag
ðp;qÞ; Dg

ðpþq;qÞ; Eg
6; Eg

7; Eg
8: ð1:6Þ

This constitutes a natural generalization of the families of
6D (2, 0) SCFTs in Eq. (1.2). Here the possibilities for g are
constrained by the surface singularity. Similarly, the values
of p and q that can appear are constrained as only certain
combinations correspond to 6D (1, 0) SCFTs, see [14].
In this paper, we focus on families of theories where the

number of tensor multiplets can be taken to be arbitrarily
large. As such, we do not consider the E-type bases further
here, however, see [18] for an analysis of those SCFTs.
Similarly, when the theories Ag

ðp;qÞ and Dg
ðpþq;qÞ admit a

large N limit in the number of tensors, the combinations
ðp; q; gÞ are further constrained. In particular, for Ag

ðp;qÞ,
they are specified by an integerN ≥ 1, and two fractions fL
and fR which belong to the set�

1

6
;
1

5
;
1

4
;
1

3
;
2

5
;
1

2
;
3

5
;
2

3
;
3

4
;
4

5
;
5

6
; 1

�
: ð1:7Þ

The fL and fR are related to the numbers of fractional
M5-branes in the M-theory dual descriptions of these 6D
(1, 0) SCFTs, as we discuss momentarily. For a choice of
ðp; qÞ, specified by fractions fL and fR, the choice of
algebra g must satisfy that

maxðdenomðfLÞ; denomðfRÞÞ ≤
ng
2
; ð1:8Þ

where denomð·Þ is the denominator of the fraction and
ng ¼ 2, 4, 6, 8, 12 for g ¼ suðKÞ, soð2KÞ, e6, e7, e8,
respectively. Similarly, the Dg

ðpþq;qÞ theories that exist for
large numbers of tensors can be specified by an integer
N ≥ 4, a fraction f belonging to the set in Eq. (1.7), and an
ADE Lie algebra g which satisfies the analogous condition
to Eq. (1.8). We write these theories as

Ag
N−1;fL;fR ; and Dg

N;f: ð1:9Þ
for convenience. These are the families of 6D (1, 0) SCFTs that
generalize the infinite series of AD-type 6D (2, 0) SCFTs.31The definition of nonminimal is somewhat technical and not

particularly illuminating, so we suppress it here. We refer the
reader to [17] for a full review of the construction of 6D (1, 0)
SCFTs from F-theory.

2The edge-case, where there is neither a singular point in the
base, nor a nonminimal singular fiber, leads to a trivial SCFT.

3When fL ¼ fR ¼ 1 or f ¼ 1, then the generalized
orbifold is just the standard orbifold. We will use the shorthand
Ag
N−1 ¼ Ag

N−1;1;1 and Dg
N ¼ Dg

N;1 for convenience.
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Here, we have constructed the theories in Eq. (1.9)
from type IIB string theory (or its nonperturbative avatar,
F-theory). However, each member of these families of
theories can also be realized in M-theory. The description
ofAg

N−1 in terms ofM5-branes is straightforward. It is the 6D
(1, 0) SCFT that lives on the world volume of a stack of N
M5-branes probing a C2=Γ orbifold singularity, where Γ is
the finite subgroup of SUð2Þ with the same ADE-type as g.
Notice that both the M-theory and F-theory descriptions
involve an orbifold, but in the former it is associated to the
“fiber data,” g, and in the later it is instead associated to the
base of the elliptic fibration:AN−1. As we discuss later, when
the fractional numbers are different than 1, there are “frac-
tional” M5-branes, and when the base is of generalized
D-type, there are orientifold 5-branes in the M-theory
description.
The theory Ag

N−1;fL;fR, which is known as (fractional)
conformal matter [19], typically has a non-Abelian flavor
algebra which is

f ¼ gfL ⊕ gfR ; ð1:10Þ

wheregfL and gfR are simpleLie algebras fixedbyfL andfR.
WhenAN−1;fL;fR ¼ AN−1, this theory is simply rankN ðg; gÞ
conformal matter, and gfL¼1 ¼ gfR¼1 ¼ g. It has been
proposed that giving a nilpotent vacuum expectation value
to the moment map associated to the gfL ⊕ gfR flavor
symmetry triggers a Higgs branch renormalization group
flow to a new interacting 6D (1, 0) SCFT [20–22], for N
sufficiently large.4 Such vacuum expectation values depend
only on a choice of nilpotent orbit, rather than the nilpotent
element itself, and thus we can consider a family of 6D (1, 0)
SCFTs

Ag
N−1;fL;fRðOL;ORÞ; ð1:11Þ

where OL and OR are nilpotent orbits of gLfr and gRfr,
respectively. Similarly, the theories Dg

N;f have only a single
non-Abelian flavor factor

f ¼ gf; ð1:12Þ

and again new interacting 6D SCFTs can be obtained via
nilpotent Higgsing of that flavor symmetry. Picking O as a
nilpotent orbit of gf, we then have the family of theories5

Dg
N;fðOÞ: ð1:13Þ

Another interesting family of 6D (1, 0) SCFTs that are
realized in the geometric F-theory construction are the
so-called rank N ðe8; gÞ orbi-instanton theories [19]. From
the M-theory perspective, these SCFTs live on the world
volume of N M5-branes probing a C2=Γ orbifold, where Γ
is the finite ADE group corresponding to the simple
Lie algebra g, and contained inside of an end-of-the-world
M9-brane. Furthermore, we can choose an f belonging to
the set in Eq. (1.7), such that f and g satisfy the analogous
condition to that in Eq. (1.8). Let N ≥ 1, then we can
denote this family of theories as

Og
N;f: ð1:14Þ

These theories possess a flavor symmetry which is

f ¼ e8 ⊕ gf; ð1:15Þ

where gf is again fixed by the fraction f. The gf arises from
the orbifold singularity in M-theory, and again it is
expected that giving a vacuum expectation value to the
associated moment map generically triggers a Higgs branch
renormalization group flow that leads to a new interacting
6D (1, 0) SCFT. On the other hand, the e8 flavor symmetry
does not arise from the orbifold singularity, but instead
from the M9-brane; in particular, it is necessary to pick a
choice of boundary conditions, on the S3=Γ boundary of
the C2=Γ orbifold, for the E8-bundle associated to the
M9-brane. Such a boundary condition corresponds to a
choice of homomorphism

σ∶ Γ → E8: ð1:16Þ

The e8 flavor symmetry factor is realized when σ is the
trivial homomorphism, and the symmetry is broken to a
subalgebra for any other choice of ρ. It is widely believed
that there exists a Higgs branch renormalization group flow
from the theory with σ trivial to any theory where the
homomorphism is nontrivial [29]. That is, there is a family
of 6D (1, 0) SCFTs

Og
N;fðσ; OÞ; ð1:17Þ

where σ belongs to HomðΓ; E8Þ andO is a nilpotent orbit of
gf, which arise via Higgs branch renormalization group
flows from Og

N;f.
It turns out that, once the effective field theory at the

generic point of the tensor branch involves a sufficiently
large number of tensor multiplets,6 every known 6D SCFT

4The Higgs branch renormalization group flows triggered by
such vacuum expectation values do not exhaust the interacting
fixed points on the Higgs branch, in general. For example, there
are also flows triggered by giving vevs to so-called end-to-end
operators, such as have been studied in [23–28]. We do not study
the effects of this “end-to-end Higgsing” in this paper.

5The Higgs branch of the Dg
f;NðOÞ family of SCFTs is

analyzed extensively in [18].

6The required number of tensor multiplets is not particularly
large.
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belongs to one of the families in Eqs. (1.11), (1.13),
and (1.17).7

We have now discussed, in some detail, a mechanism for
constructing 6D (1, 0) SCFTs via the compactification of
F-theory on certain noncompact elliptically fibered Calabi-
Yau threefolds. However, since these theories are inherently
strongly coupled, and cannot be written down in a
Lagrangian formulation, it is generally hard to extract
the physical properties. Anomalies are by nature topologi-
cal, and thus it should be possible to determine them
without detailed access to the microscopics of the SCFT.
Consider first the 6D (2, 0) SCFTs that are engineered

via type IIB string theory compactified on an orbifold
singularity, C2=Λ. When Λ ¼ ZK , the SCFT has an
alternative interpretation as the world volume theory on
a stack of K M5-branes in M-theory. The anomalies of the
(2, 0) SCFT can then be determined by considering
anomaly inflow from the M-theory bulk. The dependence
of the anomalies of all 6D (2, 0) SCFTs on the finite group
Λ has been determined [31–37]:

I8 ¼
h∨g dg
24

p2ðNÞ þ rg
48

ðp2ðNÞ − p2ðTÞ

þ 1

4
ðp1ðTÞ − p1ðNÞÞ2Þ: ð1:18Þ

This is a formal eight-form polynomial in the characteristic
classes of the global symmetries of the SCFT. The piðTÞ
are the Pontryagin classes of the tangent bundle to the 6D
spacetime, this captures the soð1; 5Þ Lorentz group; piðNÞ
are the Pontryagin classes of the bundle associated to the
soð5ÞR R-symmetry. The coefficients h∨g , dg, and rg are,
respectively, the dual Coxeter number, the dimension, and
the rank of the ADE Lie algebra g of the same ADE-type as
the finite group Λ.
Similarly, the anomaly polynomials for the 6D (1, 0)

SCFTs can be worked out from the geometric description
of the effective tensor branch field theory. Generically, the
anomaly polynomial can be written as follows8:

I8 ¼
α

24
c2ðRÞ2 þ

β

24
c2ðRÞp1ðTÞ þ

γ

24
p1ðTÞ2 þ

δ

24
p2ðTÞ

þ
X
a

TrF2
a

�
κap1ðTÞ þ νac2ðRÞ þ

X
b

ρabTrF2
b

�
þ
X
a

μaTrF4
a: ð1:19Þ

Now, c2ðRÞ is the second Chern class of the bundle
associated to the suð2ÞR R-symmetry; and, TrF2

a and
TrF4

a are the one-instanton normalized traces of the
curvature, Fa, for each simple non-Abelian factor in the
flavor algebra.
On the tensor branch of the SCFT, where the strings

become tensionful, the superconformal symmetry is bro-
ken, however, the Lorentz symmetry, the R-symmetry, and
any flavor symmetry remains unbroken. As the coefficients
in the anomaly polynomial in Eq. (1.19) are coefficients of
characteristic classes of unbroken symmetry, they are
unchanged under the movement onto the tensor branch.
Thus, one can determine the anomaly polynomial of the
effective field theory at the generic point of the tensor
branch, and then use a variant of ’t Hooft anomaly
matching [40], to determine the anomaly polynomial of
the SCFT at the origin of the tensor branch [37,41–43].9
In particular, see Algorithm 1 of [43] for a concise and
comprehensive algorithm to determine the SCFT anomaly
polynomial from any tensor branch configuration in the
F-theory construction.
For the 6D (2, 0) SCFTs, we could see precisely how the

anomaly coefficients in Eq. (1.18) depended on the data of
the F-theory compactification; in this case, the noncompact
elliptically fibered Calabi-Yau threefold is the trivial elliptic
fibration over the orbifold singularity in Eq. (1.1), and we
see directly how the coefficients in Eq. (1.18) depend on Λ.
Of course, using the tensor branch effective field theory,
it is straightforward to apply ’t Hooft anomaly matching to
determine the anomaly coefficients in terms of the data of the
tensor branch theory. In particular, the dependence of the
anomaly coefficients on the tensor branch data, such as the
number of vector multiplets, hypermultiplets, the Green-
Schwarz couplings, etc., has been determined for many of
theories studied here, see, for example, [37,43,47–52].
In this paper, we take an orthogonal approach: we would

like to know how the anomalies of the theories

Ag
N−1;fL;fRðOL;ORÞ; Dg

N;fðOÞ; Og
N;fð∅; OÞ; ð1:20Þ

where∅ represents the trivial homomorphism σ∶ Γg → E8,
can be determined from a bottom-up SCFT perspective.

7There are two subtleties here. First, we are considering only
the local operator spectrum of the 6D SCFT; when considering
extended operators, each member of the families given here may
correspond to multiple SCFTs that differ only in their spectrum of
extended operators. Second, there are discretely gauged versions
of some members of these families; these are distinct as local
SCFTs, however, for the purposes of the anomalies that we
consider in this paper, they can be treated as equivalent. For more
details on the discretely gauged 6D (1, 0) SCFTs, and especially
their Higgs branches, see [30].

8Throughout this paper, we typically ignore Abelian flavor
symmetries; it is straightforward to generalize the analysis to
include the anomalies for such symmetries. Abelian symmetries
require additional care due to the presence of ABJ anomalies
which does not occur with non-Abelian Lie algebras as their
generators are traceless [38,39].

9Alternatively, one can attempt to determine certain combi-
nations of the ’t Hooft anomaly coefficients from the conformal
bootstrap; this orthogonal approach has been shown, in certain
cases, to recover the anomaly coefficients determined from the
F-theory geometry [44–46].
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We determine the anomalies of the, so-called, parent, or
ultraviolet, theories

Ag
N−1;fL;fR ; Dg

N;f; Og
N;f; ð1:21Þ

from the tensor branch effective field theory. Then, we
argue that the anomalies of the infrared theories in
Eq. (1.20) can be written in terms of the anomalies of
the parent theories in Eq. (1.21) and the nilpotent orbits,
without further recourse to the effective field theory on the
tensor branch. In particular, we determine the anomalies
from the tensor branch, and we show that the resulting
anomalies are exactly what one would expect from the
bottom-up nilpotent Higgsing of the moment map of an
SCFT, where the only modes to decouple in the infrared are
the Nambu-Goldstone modes inside of the moment map.
The structure of this paper is as follows. In Sec. II,

we review the atomic construction of 6D (1, 0) SCFTs in
F-theory, and detail the three infinite series of SCFTs whose
anomalies we explore in this paper. We determine the
anomaly polynomials for the three infinite series of 6D
(1, 0) SCFTs, written in terms of the nilpotent orbit data,
that we consider in this paper in Sec. III. In Sec. IV, we
compute the contribution to the anomaly polynomial from
the Nambu-Goldstone modes inside of the moment map
upon Higgsing, and show that the bottom-up approach,
captured inAlgorithm1, reproduces the anomaly polynomial
known from the tensor branch description. We discuss some
consequences and future directions in Sec. V. Finally, in
Appendices A–D, we provide a comprehensive review of the
necessary data for nilpotent orbits, and enumerate how
nilpotent orbits are related to 6D (1, 0) tensor branch
geometries.

II. THE BESTIARY OF LONG 6D SCFTS

In Sec. I, we have explained how a noncompact
elliptically fibered Calabi-Yau threefold, subject to certain
conditions, can give rise to a 6D (1, 0) SCFT via the
medium of F-theory. Unfortunately, these elliptic fibrations
involve nonminimal fibers supported over points of the
base of the fibration, which, a priori, renders them
challenging to work with directly. Luckily, a method is

known through which such elliptic fibrations can be
obtained [14,15].
The general strategy to obtain a 6D (1, 0) SCFT via

F-theory is to construct an elliptically fibered Calabi-Yau
threefold, Ỹ, with a smooth base B̃ containing a set of
curves Σi ⊂ B̃, such that the elliptic fibration is minimal.
F-theory compactified on this elliptic fibration in fact gives
a description of the theory on the generic point of the tensor
branch of the SCFT. The conformal fixed point is reached
by shrinking all curves in the base to zero volume. The
possible Ỹ such that the contraction map leads to a Y which
engineers a 6D (1, 0) SCFT are highly constrained. The
curves must then have self-intersection Σi · Σi ¼ −n with
12 ≤ n ≤ 1, and to be able to contract them simultaneously
for all curves, their adjacency matrix must furthermore be
negative definite:

Aij ¼ Σi · Σj ≺ 0: ð2:1Þ

One can enumerate every elliptically fibered Calabi-Yau
threefold Ỹ satisfying the necessary conditions. Collapsing
all curves to zero size one can then reach the geometries Y
describing any 6D (1, 0) SCFT admitting a construction via
F-theory. This was achieved in [14,15], where it was
concluded that at the fixed point, all bases are given by
a choice of orbifold B ¼ C2=Λ, with Λ a discrete subgroup
of Uð2Þ. We now review the procedure whereby elliptic
fibrations Ỹ, that lead to elliptic fibrations Y that engineer a
6D (1, 0) SCFT, can be constructed.
As is now common in the literature, we denote a curve of

self-interaction (−n) with a nontrivial fiber associated with
a gauge algebra g by:

n
g
: ð2:2Þ

When the fiber is trivial, g ¼ ∅, we omit it and only write
the curve associated with the tensor multiplet. Furthermore,
if two curves intersect, which they can only do with
intersection number 1, they are depicted side by side.
The tensor branch of any 6D (1, 0) SCFT can then be

constructed from a small number of building blocks
associated to non-Higgsable clusters (NHCs) [12,13,53]

3
su3

; 4
so8

; 5
f4
; 6

e6
; 7

e7
; 8

e7
; ð12Þ

e8
; 2

su2

3
g2
; 2 2

su2

3
g2
; 2

su2

3
so7

2
su2

; ð2:3Þ

or to ADE Dynkin diagrams constructed out of (−2)-curves

2…2|ffl{zffl}
N−1

; 2…2|ffl{zffl}
N−3

2
2
2; 222

2
22; 2222

2
22; 22222

2
22: ð2:4Þ

The fiber over each of these curves may be tuned so
that it corresponds to a larger algebra as long as it leads

to a well-defined elliptic fibration. These enhancements
may give rise to additional matter fields on these
curves, and there may be a flavor symmetry f rotating
them. We denote the presence of additional flavor sym-
metries as

n
g ½f�: ð2:5Þ
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Any SCFT is then obtained by gluing non-Higgsable
clusters—possibly with enhanced fibers—via (−1)-curves
that have a flavor symmetry f. For instance, if we consider

two curves m
gL and n

gR, we can gauge a subalgebra of f to
obtain a new theory:

m
gL
1
g
n
gR; gL ⊕ gR ⊂ f: ð2:6Þ

Note that when the subalgebra is not maximal, there might
be a residual flavor symmetry in the new configuration.
This process can then be repeated as many times as

necessary to obtain bases of an elliptic fibration with an
arbitrary number of curves subject to the condition that
there are only minimal singularities and that the adjacency
matrix Aij is negative definite. On the tensor branch, where
the curves have finite volume, one can then find the gauge
spectrum straightforwardly. In practice, it is done simply by
reading off the matter content from tables in the large
majority of cases. For a concise review of the tensor branch
description of 6D (1, 0) SCFTs we have summarized here
and the subtleties that may arise, we defer to [17].
A simple example of this pictorial description of the

geometry is that of minimal ðe6; e6Þ conformal matter. In
the blown-up phase, it is constructed out of two (−1)-curves
with trivial fibers intersecting a (−3)-curve with a type-IV
fiber corresponding to an su3 algebra. An inspection
of the geometry further reveals the presence of two non-
compact curves with e6 fibers, giving rise to two flavor
symmetries. The theory on the tensor branch is therefore
denoted by:

½e6�1 3
su3

1½e6�: ð2:7Þ

The conformal fixed point is then reached by simulta-
neously shrinking every curve to zero volume. This
example will be used throughout this section to illustrate
some of the features of long quivers.
Depictions of the blown-up geometry—or equivalently

of the tensor branch of a 6D SCFT—like the one in
Eq. (2.7) are called generalized quivers (or often simply
quivers, for short), dubbed so due to their resemblance
with those appearing in usual gauge theories, but where
the links symbolizing bifundamental hypermultiplets are
now potentially replaced by more complicated objects,
generalizing the notion of matter. A quiver describing
the generic point of tensor branch of a 6D SCFT is
unique in all but a handful of cases; by abuse of language
we will often refer to a specific SCFT and its quiver
interchangeably.
The possible curve configurations of the generalized

quivers are very constrained by demanding that the
elliptically fibered Calabi-Yau is well defined, or equiv-
alently by demanding the absence of gauge anomalies
of the field theory. When the number of curves—or

equivalently tensor multiplets—is taken to be large enough,
it turns out that they must arrange themselves into a long
linear spine with repeating patterns, up to possible “dec-
orations” at each side. The constituents of the spine are
themselves 6D (1, 0) SCFTs called minimal ðg; gÞ con-
formal matter [19], of which Eq. (2.7) is an example. In the
M-theory picture, these correspond to the world volume
theory on a single M5-brane probing a C2=Γ singularity,
where Γ is a finite subgroup of SUð2Þ. These theories
follow an ADE classification and have a f ¼ g⊕ g flavor
symmetry, where g is of the same ADE type as Γ.
When Γ ¼ ZK , the SCFT is nothing else but a single

hypermultiplet transforming in the bifundamental repre-
sentation of suK ⊕ suK . For the other types of simply
laced algebras, conformal matter can therefore be thought
of as a generalization of ordinary bifundamental matter—
hence their name—and we will use the following shorthand
to depict them:

½g�—½g�; ð2:8Þ

where the brackets indicate the presence of the two flavor
symmetries. The ADE algebra g uniquely determines the
quiver of minimal conformal matter, and is summarized in
Table I.
The interpretation of minimal conformal matter as a

generalization of bifundamental hypermultiplets does not
simply come from their flavor symmetries, but as simple
building blocks of more involved theories. Indeed, we can
“glue” two minimal conformal matter theories together to
obtain a larger SCFT through a procedure called fusion
[22], which generalizes the usual notion of gauging.
Indeed, while in four dimensions gauging a flavor sym-
metry by introducing a vector multiplet to mediate the
interaction is sufficient, this is not always the case in six
dimensions, and the new theory may still be plagued by
gauge anomalies. However, one of the features of six-
dimensional QFTs is the presence of tensor multiplets,
which can be involved in a Green-Schwarz-West-Sagnotti

TABLE I. ADE classification of minimal conformal matter and
the associated nodes of self-intersection ð−ngÞ. Type A conformal
matter corresponds to a (1, 0) hypermultiplet transforming in the
bifundamental representation of suðKÞ⊕ suðKÞ, and is simply
denoted by a dot ð·Þ.
g Ag

0∶ ½g�—½g� Node ng

suK ½suK � · ½suK �
2

suK

so2K ½so2K � 1
spK−4½so2K� 4

so2K

e6 ½e6�1 3
su3

1½e6� 6
e6

e7 ½e7�1 2
su2

3
so7

2
su2

1½e7� 8
e7

e8 ½e8�12 2
su2

3
g2
15
f4
13
g2

2
su2

21½e8� ð12Þ
e8
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mechanism [54–56] curing any such anomalies, and lead-
ing to a well-defined theory. We come back to this point in
more detail in Sec. III.
From the geometric point of view, the fusion procedure

corresponds to identifying the two noncompact curves
associated with the flavor symmetries and make the resul-
ting curve compact. In the quiver language, these parti-
cular curves are called nodes, and their self-intersection
numbers are fixed by demanding consistency of the F-theory
geometry. The particular numerology depends on the ADE
algebra, and are given in Table I.10

For instance, in the case g ¼ e6 encountered in Eq. (2.7),
the fusion process applied to two minimal conformal matter
theories leads to the presence of a (−6)-curve with a
type-IV� fiber associated with an e6 gauge interaction

½e6�1 3
su3

1½e6�⊕ ½e6�1 3
su3

1½e6� ¼ ½e6�1 3
su3

1ð6
e6Þ1 3

su3

1½e6�: ð2:9Þ

Heuristically, we obtain something very similar to quiver
theories, namely links of (conformal) matter and nodes
associated with gauging. However, in our case the links
correspond to conformal matter rather than the usual
bifundamental hypermultiplets familiar from 4d N ¼ 2
gauge theories, while the nodes necessitate the presence
of tensor multiplets to mediate a Green-Schwarz-West-
Sagnotti mechanism and ensure that the resulting theory is
free of any gauge anomalies. The fusion process can then
be concisely summarized utilizing the notation introduced
in Eq. (2.8) as:

½g�—½g�⊕ ½g�—½g� ¼ ½g�—g—½g�; ð2:10Þ

where we used the symbol⊕ to denote fusion. The absence
of brackets for the middle algebra indicates that the flavor
symmetry has been gauged, and that there is an additional
compact curve corresponding to a tensor. This notation for
fusion of minimal conformal matter completely determines
the quiver, the links and nodes being those given in Table I.
This process can of course be repeated ad nauseam to

obtain patterns of minimal conformal matter joined by
vector and tensor multiplets. When N minimal conformal
matter of the same type undergo the fusion process, one
obtains rank N conformal matter, Ag

N−1. In M-theory, this
theory is realized as a stack ofN M5-branes probing aC2=Γ
singularity, where Γ is the McKay-dual discrete group of g.
We will refer to the SCFTs that are part of the infinite

series described in the introduction as long quivers. Such

long quivers can be constructed by fusing additonal
building blocks on each ends of higher-rank conformal
matter. Furthermore, all long quivers can be understood as
deformations of three families of parent or ultraviolet
theories [20,22]:
(1) (Fractional) higher-rank conformal matter,Ag

N−1;fL;fR .
(2) Theories whose bases are generalized type-D orbi-

folds,Dg
N;f, existing only for a few specific choice of

algebras.
(3) Orbi-instantons, Og

N;f, a class of SCFTs with an e8
flavor symmetry on one end.

Given a 6D SCFTwith a flavor symmetry, one can give a
vacuum expectation value to the associated moment map—
the scalar operator inside the same supermultiplet as the
flavor current—triggering a renormalization group flow. In
the infrared, one obtains a new conformal fixed point. In the
F-theory picture, these Higgs branch flows correspond to
complex-structure deformations of the Calabi-Yau three-
fold. For long quivers, the deformations are labelled by
nilpotent orbits of the flavor symmetries, or by embeddings
of an ADE discrete group into E8 in the case of orbi-
instanton. In the remainder of this section, we will review
how to construct each of the classes of parent theories, and
then turn to their deformations.
Before doing so however, we further introduce the concept

of the partial tensor branch (PTB), which provides an
alternative bookkeeping device for the parent theories.
Given the generalized quiver depicting the tensor branch
of a 6D SCFT, one can successively blow down all (−1)-
curves, reaching the so-called endpoint of the base. Ignoring
the fiber data, there are only a handful of possible partial
tensor branches, which follow an ADE classification:

n1n2…nN−2nN−1; 2n3
2
n4…nN−1nN;

222
2
22; 222

2
222; 222

2
2222: ð2:11Þ

These partial tensor branches were used in the original
classification [14] to find the possible bases, see Eq. (1.1),
and one can read of the type of generalized orbifold from the
intersection pattern. Generically, partial tensor branches of a
quiver have nonminimal singularities supported over the
intersection points of the curves in the base. The original
quivers on the generic point of the tensor branch is then
recovered through a series of blow-ups, reversing the
process.11

This special point of the tensor branch has an interpre-
tation in the M-theory language: it is the point where all
fractional M5-branes recombine into the maximal number10Note that for minimal conformal matter of type soð2KÞ, the

flavor symmetry enhances, soð2KÞ⊕ soð2KÞ → soð4KÞ, and
when g ¼ soð8Þ, we have an undecorated (−1)-curve associated
with the E-string theory endowed with e8 flavor. However, when
two of them are fused together, only a soð2KÞ⊕ soð2KÞ flavor
symmetry remains. As we are only discussing long quivers in this
work, we will not encounter such enhancements.

11Technically, orbi-instantons are associated with the trivial
orbifold and have in principle an empty partial tensor branch as
we blow down successively all (−1)-curves. However, one
generally defines their partial tensor branch to be nontrivial
and reproduce the M-theory picture, see Sec. II C.
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of full M5-branes. This description is particularly useful, as
it makes the fusion processes, as well as Higgs branch
deformations, clearer. Moreover, when discussing the
anomalies of the associated 6D SCFTs, once the anomaly
polynomial of minimal conformal matter is known, the
partial tensor branch intersection pattern is—up to a few
additional input data—enough to compute that of any long
quiver.

A. (Fractional) conformal matter

The simplest class of parent theories with long quivers
is the set of rank N ðg; gÞ conformal matter theories:
Ag

ðN;N−1Þ ¼ Ag
N−1. In M-theory, they are realized as the

world volume theory of a stack of N M5-brane probing a
C2=Γ orbifold, where Γ ⊂ SUð2Þ is the McKay-dual
discrete group of g [19]. In the F-theory picture, one
engineers them by compactification on a elliptically fibered
Calabi-Yau three-fold with a base B ¼ C2=ZN and fibers of
type g.12 The partial tensor branch of these theories is given
by a collection of (−2)-curves with g fibers intersecting like
an AN−1 Dynkin diagram:

2
g
� � � 2

g|fflffl{zfflffl}
N−1

: ð2:12Þ

Except in cases where g ¼ suðKÞ, these geometries have
nonminimal singularities over the intersection points of the
(−2)-curves; thus, we need to perform a series of blow-ups
to move to the generic point of the tensor branch. As an
example, let us consider the case where g ¼ e6. After
blowing-up, one finds a repeating pattern of minimal
conformal matter

Ae6
N−1∶ 2

e6 � � � 2
e6|fflfflffl{zfflfflffl}

N−1

⟶ ½e6�1 3
su3

16
e6
1 3
su3

16
e6 � � � 6

e6
1 3
su3

16
e6
1 3
su3

1½e6�:

ð2:13Þ

The sequence 1 3
su3

1 occurs N times, and there are N − 1

nodes 6
e6
. For the other cases, one can go through a similar

procedure and find a long spine of N minimal conformal
matter Ag

0 that underwent the fusion process. We can
therefore use the notation of links ½g�—½g� to denote the
resulting curve configurations as

Ag
N−1∶ 2

g
� � � 2

g|fflffl{zfflffl}
N−1

⟶ ½g�—g—…—g—|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N

½g�; ð2:14Þ

where the links and nodes are summarized in Table I. In all
cases, there is a flavor symmetry associated with either
outermost curves fixed by the choice of g, and the total
flavor symmetry of higher-rank conformal matter Ag

N−1 is

f ¼ g⊕ g; ð2:15Þ

which we will often refer to as the “left” and “right” factors,
respectively.

1. Fractional conformal matter

We have seen that there are additional SCFTs with long
quivers that are associated with generalized A-type orbi-
folds Aðp;qÞ. Moreover, for a large-enough number of
curves and given an ADE algebra, there are only a few
possibilities. The associated long quivers are again made
out of conformal matter as in Eq. (2.14), but either ends of
the spine are now truncated versions of conformal matter,
where one or more curves have been removed. As men-
tioned in the Introduction, when discussing long quivers the
choices of ðp; qÞ and g is quite constrained, and it is more
convenient to use the fractions ðfL; fRÞ introduced around
Eq. (1.7). We denote the base of the elliptic fibration as
AN−1;fL;fR . The triplet ðfL; fR; gÞ then constrains the form
of the quiver for the theory Ag

N−1;fL;fR uniquely.
To illustrate this, let us come back to the case where

g ¼ e6. All possible A-type long quivers for this choice of
algebra take the form:

Ag
N−1;fL;fR∶ LfL1 3

su3

16
e6 � � � 6

e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−2

LfR ; ð2:16Þ

where there are N − 2 minimal conformal matter in the
center, and LL and LR denote an extra link that can be
attached at each ends of the spine, and which can be chosen
among the following possibilities:

L1 ¼ 6
e6
1 3
su3

1½e6�; L2
3
¼ 6

e6
1 3
su3

;

L1
2
¼ 6

e6
1½su3�; L1

3
¼ 6

e6
: ð2:17Þ

Note that for LfL, the curve configuration is understood as

being read in such a way that the node 6
e6
is connected to the

rest of the spine. We can see that fL;R ¼ 1 gives a complete
conformal matter, and smaller fraction corresponds to
removing some of the curves.
Similar patterns occur for all other ADE algebras. The

possible fractions f depends on the algebra g, and are of the
form:

f ¼ 2k
ng

; k ¼ 1; 2;…;
ng
2
; ð2:18Þ

12Note that, while similar in form, the two orbifolds appearing
in either descriptions are different. In M-theory, the quotient Γ is
related to the flavor algebra g, while in F-theory, it is associated
with the intersection pattern AN−1 of the curves.
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where ng ¼ 2, 4, 6, 8, 12 for g ¼ suðKÞ, soð2KÞ, e6, e7, e8,
respectively. Note that ng is (minus) the self-intersection
of the corresponding nodes, see Table I. In the case of
g ¼ suðKÞ, there are no new possibilities as the only
allowed fraction is f ¼ 1, while g ¼ e8 has the largest
number of choices. As the fraction becomes smaller, we are
retaining fewer and fewer curves to obtain only part of a full
conformal matter theory, giving its name to this class of
theories. This further means that the choice of f is also

changing the flavor symmetry of the theory to a—possibly
trivial—subalgebra gf ⊆ g. All combinations of fractions
of a given algebra, their curve configurations, flavor
symmetry gf, and the associated data that will be useful
for the compuation of their anomaly polynomials are
collated in Table II.
In the same way that rank N conformal matter can be

built out of minimal conformal matter via the fusion
process, we can define a new type of building block which
is a fractional version of minimal conformal matter, Ag

0;f;1.
Pictorially, we will denote them as

Ag
0;f;1∶ ½gf�—½g�: ð2:19Þ

This theory can be glued to an arbitrary number of complete
conformal matter (that is, those with f ¼ 1) through fusion
to obtain the theory Ag

N−1;fL;fR.

Ag
N−1;fL;fR∶ ½gfL �—g—g—…—g—

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{N−2

g—½gfR �: ð2:20Þ

Each link can be considered as a theory in its own right. As
they are only part of a full-fledged minimal conformal
matter, we refer to these theories as fractional conformal
matter. We can therefore unambiguously define the parent
theories of all long quivers associated with an A-type
generalized orbifolds. Indeed, given a quiver in the notation
above, the complete curve configurations can be read out
from Tables I and II. Of course, when fL ¼ 1 ¼ fR, we
recover rank N conformal matter as shown in Eq. (2.14)
and we have Ag

N−1;1;1 ¼ Ag
N−1.

While the assignment of a fractional number to each
of the curve configurations of fractional minimal con-
formal matter may at first seem somewhat ad hoc, it
finds its origin in the M-theory construction. There, these
SCFTs are realized as the world volume of M5-branes
probing a (partially) frozen version of the C2=Γ singularity
[48,57–61], where there exist BPS solutions characterized
by discrete three-form fluxes:Z

S3=Γ
C3 ¼ f mod 1: ð2:21Þ

These frozen versions of the singularity are associated with
the (possibly empty) Lie algebra gf ⊂ g, that depends on
the value of f, and can now be nonsimply laced. The
possible values of the fractions and the algebras arising in
this way perfectly match the numerology of the F-theory
picture, as expected.
The partial tensor branch of fractional conformal matter

Ag
N−1;fL;fR is slightly different that those of higher-rank

conformal matter, see Eq. (2.12). When the fraction is of
the form f ¼ 1

df
, we obtain a curve of self-intersection

−ðdf þ 1Þ with an algebra g rather than −2. When the

TABLE II. Data for fractional conformal matter, Ag
N−1;fL;fR .

For ease of visualization, the building blocks for minimal
conformal matter includes the node. The partial tensor branch
(PTB) gives the curve configuration obtained after successively
blowing down all (−1)-curves.

g f ½gf�—g gf PTB df e

so2K 1
2 4

so2K spK−4
3

so2K � � � 2 0

1 1
spK−4

4
so2K so2K 2

so2K � � � 1 0

e6 1
3 6

e6 ∅
4
e6 � � � 3 −4

1
2 16

e6 su3 3
e6 � � � 2 0

2
3 3

su3

16
e6 ∅ 2

su3

3
e6 � � � 3 4

1 1 3
su3

16
e6 e6 2

e6 � � � 1 0

e7 1
4 8

e7 ∅
5
e7 � � � 4 −9

1
3 18

e7 su2 4
e7 � � � 3 −4

1
2 2

su2

18
e7 so7 3

e7 � � � 2 0

2
3 3

so7
2
su2

18
e7 su2 2

so7
3
e7 � � � 3 4

3
4 2

su2

3
so7

2
su2

18
e7 ∅ 2

su2

2
so7

3
e7 � � � 4 9

1 1 2
su2

3
so7

2
su2

18
e7 e7 2

e7 � � � 1 0

e8 1
6 ð12Þ

e8 ∅
7
e8 � � � 6 −20

1
5 1ð12Þ

e8 ∅ 6
e8 � � � 5 − 72

5

1
4 21ð12Þ

e8 su2 5
e8 � � � 4 −9

1
3 2

su2

21ð12Þ
e8 g2 4

e8 � � � 3 −4
2
5 3

g2
2
su2

21ð12Þ
e8 ∅ 2

g2
4
e8 � � � 5 0

1
2 13

g2
2
su2

21ð12Þ
e8 f4 3

e8 � � � 2 0

3
5 5

f4
13
g2

2
su2

21ð12Þ
e8 ∅ 3

f4
3
e8 � � � 5 0

2
3 15

f4
13
g2

2
su2

21ð12Þ
e8 g2 2

f4
3
e8 � � � 3 4

3
4 3

g2
15
f4
13
g2

2
su2

21ð12Þ
e8 su2 2

g2
2
f4
3
e8 � � � 4 9

4
5 2

su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8 ∅ 2

su2

2
g2
2
f4
3
e8 � � � 5 72

5

5
6 2 2

su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8 ∅ 2 2

su2

2
g2
2
f4
3
e8 � � � 6 20

1 12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8 e8 2

e8 � � � 1 0
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numerator is different than one, we may obtain different
patterns, which in the M-theory picture can be under-
stood as a recombination of the M5-branes into fractional
branes [48]. For instance the theory Ag

N−1;1
2
;2
3

has a partial

tensor branch of the form

½su3�16
e6
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

16
e6
1 3
su3

⟶ 3
e6
2
e6
2
e6 � � � 2

e6
2
e6
3
e6

2
su3

:

ð2:22Þ
For completeness, we have given the curve configuration of
the partial tensor branch at one side of the quiver given the
choice of fraction and algebra in Table II.

B. Type-D bases

Let us nowmove to long quivers whose F-theory bases are
given by generalized type-D orbifolds that are part of the
infinite series Dðp;qÞ ¼ DN;f. As with generalized A-type
orbifolds, the tensor branch of these SCFTs can again be
constructed through fusion of minimal conformal matter
theories together, but now they exhibit the trivalent vertex
typical to type-D Dynkin diagram on one end. In M-theory,
they are the world volume theory of a stack of N M5-branes
probing aC2=Γ singularity, but contrary to ordinary conformal
matter, the stack also contains OM5-branes [52,62,63].
Focusing for a moment on theories with a DN base, on

the partial tensor branch we have a collection of (−2)-
curves arranging like the associated Dynkin diagram:

22
2
2 � � � 2|fflffl{zfflffl}
N−3

: ð2:23Þ

Undecorated, this quiver corresponds to the type-D (2, 0)
theory. As in the case of conformal matter, the fibers over
each curve can be tuned to obtain theories with minimal
supersymmetry, which lead to more general quivers after
blowing up nonminimal singularities. However, demanding
that there are only minimal singularities after this procedure
is very restrictive. There are indeed only a few cases for
which this is possible, corresponding to a choice of
algebras g ¼ suð3Þ; suð2LÞ; soð8Þ; e6. We will not go into
the details of the blow-up procedure, but rather enumerate
all the possible theories of type Dg

N , and argue that the
generalized-orbifold versions follow immediately.
The first class of D-shaped quivers is obtained by con-

sidering hypermultiplets transforming in the bifundamental
representation of suðKÞ⊕ suðKÞ and a collection of (−2)-
curves. Anomaly cancellation then dictates that on the
trivalent intersection K is even. This fixes the algebras on
the spine and up to decorations on the other end, one finds

Dsu2L
N ∶ 2

suL

2
su2L

2
suL

2
su2L � � � 2

su2L|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−3

½su2L�: ð2:24Þ

There is however an exception to this condition. When
dealing with the low-rank algebras suð2Þ and suð3Þ, the
absence of independent quartic Casimir invariants relaxes
the constraints and one finds that the following quiver leads
to a well-defined theory:

Dsu3

N ∶ 2 2
su2

2

2
su3 � � � 2

su3|fflfflfflfflffl{zfflfflfflfflffl}
N−3

½su3�: ð2:25Þ

Note that in both cases, there are versions of these theories
with algebras of lower rank at the end of the spine. As we
will explain shortly, these can be obtained as deformations
of these quivers.
One may wonder why we are not considering a variation

of the quivers above, but where there is a ramp of suðKÞ
algebras of ever-increasing ranks:

2 2
su2

2

2
su3

2
su4 � � � ? ð2:26Þ

Naively, it appears that the suð3Þ gauge algebra has the
correct number of fundamental hypermultiplets (i.e., six) to
cancel the gauge anomaly induced by the vector multiplet.
However, due to the trivalent pattern, the matter arising

from the intersection of two curves 2
su2

2
su3

transforms in the
representation ð2⊕ 1; 3Þ rather than the usual bifundamen-
tal of suð2Þ⊕ suð3Þ [64]. An suð4Þ algebra is therefore
not allowed, and quivers with such a ramp do not lead to
consistent theories.
A similar phenomenon occurs for algebra of type

soð2KÞ. There, the only allowed parent theory is given
by ðsoð8Þ; soð8ÞÞ conformal matter attached to one of the
non-Higgsable clusters given in Eq. (2.3) to obtain the
type-D shape

Dso8
N ∶ 2

su2

3
so7
2
su2

1 4
so8

1 4
so8 � � � 4

so8
1½so8�: ð2:27Þ

One could once again imagine a ramp of increasing rank,
but an analysis of the associated geometry reveals that
having anything but an soð8Þ algebra on the left-most (−4)-
curve does not lead to a consistent F-theory model [65].
Finally, if one consider exceptional algebras, there is a

single case for which a trivalent intersection can be obtained
using the gluing procedure of non-Higgsable clusters dis-
cussed around Eq. (2.6), and involves the algebra g ¼ e6

De6
N∶ 3

su3

1 6
e6
1
3
su3

1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{N−3

½e6�: ð2:28Þ
This quiver can be understood as fusing a rank (N − 2)
conformal matter theory, Ae6

N−3, with two 1
3
-fractional theo-

ries Ae6
0;1;1

3

.
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In fact, all type-D families can be constructed in a similar
way: the trivalent node is obtained by fusing a higher-rank
conformal matter with two fractional (possibly deformed)
minimal ones. To respect the symmetry of the type-D
Dynkin diagram, the latter two are the same. We are also of
course free to choose the other end to be associated with
fractional conformal matter. Using fusion, we then easily
find the fractional version associated with generalized
type-D orbifolds

Dg
N;f ¼ Dg

p ⊕Ag
N−p−1;1;f: ð2:29Þ

In the pictorial description we have used, any theory with a
type-D endpoint can therefore be summarized as

Dg
N;f∶ g1—g1

j
g2
—g—g—…—

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{N−4

g—½gf� ð2:30Þ

The allowed combinations g1—g2 are summarized in
Table III, while the fractional conformal matter at the other
end can be found in Table II. As expected, a choice of
algebra g and a fractional number f (or equivalently the
parameters ðp; qÞ of the orbifold) completely defines the
quiver.

C. Orbi-instantons

The last class of long quivers corresponds to orbi-
instanton theories, Og

N;f. In the M-theory picture, they

arise as the world volume theories on a stack of N M5-
branes probing a C2=Γ orbifold, and inside an end-of-the-
world M9-brane. When there are no frozen singularities,
they are realized in F-theory by an elliptically fibered
Calabi-Yau with a trivial base B ¼ C2. On the partial tensor
branch, their quivers take the following form [19]:

½e8�1
g
2
g
2
g
…2

g
2
g|fflfflfflfflffl{zfflfflfflfflffl}

N−1

½g�: ð2:31Þ

On a generic point of the tensor branch, we once again
recover a long spine of fused minimal ðg; gÞ conformal
matter, but demanding the e8 symmetry associated with the
M9-brane at one end gives a more involved curve con-
figuration. For instance, when g ¼ suðKÞ, we obtain a
single undecorated (−1)-curve followed by a long ramp of

2
sup

curves where the rank increases until it reaches p ¼ K

OsuK
N ∶ 12 2

su2

2
su3 � � � 2

suK

2
suK � � � 2

suK|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N−1

: ð2:32Þ

This pattern extends to any of the ADE algebras: a
rank N ðg; gÞ conformal matter is attached to the minimal
orbi-instanton, another building block we depict by

and whose curve configuration is given in
Table IV for any algebra g. If there are frozen singularities
in the M-theory realization of these theories, in F-theory the
base of the elliptic Calabi-Yau will not be trivial, but rather
a generalized type-A orbifold of low order associated with
the presence of the fractional conformal matter. The fusion
point of view is again very useful, as the curve configu-
ration of any orbi-instanton can be uniquely depicted as

ð2:33Þ
The links and nodes can then be read off from
Tables I, II, and IV. The non-Abelian flavor symmetry

TABLE III. Quiver description of the trivalent attachments used
6D (1, 0) SCFTs of type Dg

N;f.

g g1—g2—g

su2K
2
suL

2
su2L

2
su2L

su3
2 2
su2

2
su3

so8
2
su2

3
so7

1 4
so8

e6
3
su3

16
e6
1 3
su3

16
e6

TABLE IV. Quiver for the minimal orbi-instantons, used as a building block for 6D (1, 0) SCFTs of type Og
N;f .

The numbers fOI and α0 are coefficients appearing in their anomaly polynomial.

g fOI α0

suK
12 2

su2

2
su3 � � � 2

suK−1
2

suK K þ 1 2KðK2−1Þ
15

ð3K2 − 32Þ
so2K

12 2
su2

3
g2
1 4
so9

1
sp1

4
so11 � � � 1

spK−4
4

so2K
1

spK−4 K þ 1 8KðK−1Þ
15

ð82 − 203K þ 27K2 þ 12K3Þ
e6

12 2
su2

3
g2
15
f4
1 3
su3

16
e6
1 3
su3

1
6 93120

e7
12 2

su2

3
g2
15
f4
13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

1
6 575232

e8
12 2

su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21

6 5204096
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of these theories is generically given by

f ¼ e8 ⊕ gf: ð2:34Þ

D. Nilpotent orbits and deformations

So far, we have seen that there are three classes of long
quivers associated with generalized ADE orbifolds: higher-
rank (fractional) conformal matterAg

N−1;fL;fR, orbi-instanton
theories Og

N;f, and SCFTs with generalized type-D bases,
Dg

N;f, for which only a handful of algebras are allowed. In the
pictorial notation we have utilized throughout this section,
the parent theories can all be summarized as

ð2:35Þ
The curve configuration of these quivers can be inferred from
Tables I–IV collated throughout this section without any
ambiguity, as a choice of base and algebra fixes it uniquely if
N is large.
Given a parent theory, one can perform a complex-

structure deformation of the associated elliptically fibered
Calabi-Yau threefold, and reach a curve configuration
corresponding to the tensor branch description of a new
6D (1, 0) SCFT [14,15]. In the field theory, these are
equivalent to Higgs branch renormalization group flow.
Starting from the parent theory in the ultraviolet, and giving
a particular nontrivial vacuum expectation value to a gauge-
invariant operator, we are led to a new interacting 6D SCFT
in the deep infrared.
For instance, starting with the quiver of the theory

T UV ¼ Ae6
N−1, we can consider the complex-structure

deformation of the geometry at the superconformal fixed
point in such a way that in passing to the tensor branch
geometry it was no longer necessary to perform the blow-
up creating the final (−1)-curve on the left. Thus, we obtain
a new quiver for the tensor branch of an SCFT T IR

satisfying all the required properties

T UV∶ ½e6�1 3
su3

16
e6
1 3
su3

1 � � � ⟶ T IR∶½su6� 2
su3

16
e6
1 3
su3

1 � � � :
ð2:36Þ

In the IR theory, there are six hypermultiplets arising from
the left-most curve, which are rotated by a new flavor
symmetry suð6Þ ⊂ e6. This is in fact a generic feature of
deformed theories: if the generalized quiver is long enough,
the remnant flavor symmetry is always a subalgebra of that
of its parent. Indeed, a property of the parent theories T UV

is that each family has a (possibly trivial) flavor symmetry

fUV arising at each end of the quiver. Then, if one deforms it
to a new theory T IR its flavor satisfies

fIR ⊆ fUV: ð2:37Þ

Moreover, if one end of the quiver of a parent theory
has no flavor, either because it corresponds to the
trivalent end of a type-D theory, or there is a fraction
with a trivial flavor, there exists no deformation pre-
serving the algebra g on the spine or the rank N of the
base, and there are no new SCFTs descending from that
end of the quiver.
Based on these observations it has been proposed that

in the field theory, the operator given a vacuum expect-
ation value should be the moment map, the adjoint-
valued scalar belonging to the same supermultiplet as a
flavor conserved current [15,19]. The flavor fIR is then
understood as being generated by the unbroken gener-
ators. The notion of parent theory was in fact introduced
precisely because any other long theories can be under-
stood in such a fashion.
As the deformations are associated to each side of the

quiver, we can distinguish two types: those related to an
end of a quiver whose flavor come from (fractional)
conformal matter, or with the e8 symmetry of an of orbi-
instanton theory Og

N;f. For the latter, it has been argued
from M-theory that since the e8 flavor symmetry arises
from an end-of-the-world M9-brane, deformations should
correspond to choices of boundary condition on the
S3=Γ boundary of the C2=Γ orbifold, amounting to embed-
dings of Γ into E8 [15,19]. The quiver description of the
resulting theory can then be mapped from the choice of
embedding [29,49].
On the other hand, when a deformation is performed on

the side of the quiver associated with fractional conformal
matter with flavor gf, the resulting theories can be labeled
by nilpotent orbits of gf. As we review in more detail in
Sec. III B, nilpotent orbits O of a simple Lie algebra gf are
equivalent to embeddings ρO∶ suð2Þ → gf. It was then
shown that the centralizer f of the embedding precisely
matches the flavor symmetry of the deformed theories [20].
We can therefore denote all possible SCFTs obtained by

deforming one of the three parent families by either a
nilpotent orbit of the corresponding flavor symmetry, or in
the case of orbi-instantons a choice of embedding of the
corresponding discrete group into E8

Ag
N−1;fL;fRðOL;ORÞ; Dg

N;fðOÞ; Og
N;fðσ; OÞ; ð2:38Þ

where

σ ∈HomðΓ; E8Þ; O ⇔ ρO ∈Homðsu2; gfÞ: ð2:39Þ
The discrete group Γ is the McKay-dual of the simple
algebra g defining the parent theory. When the choice of
embedding is trivial, which we denote σ ¼ ∅, O ¼ ∅,
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corresponding to the undeformed theory, we write simply
e.g. Og

N;fð∅;∅Þ ¼ Og
N;f and similarly for the other two

families.
In this work, we will only focus on theories associated

with a nilpotent orbit of the corresponding possible flavor,
and will refer to them as obtained through nilpotent
deformations, or nilpotent RG flows when discussing the
corresponding field theory description. Moreover, a pos-
sible deformation might propagate through the spine of the
parent theory. We will therefore only consider cases where
the parameter N of the orbifold base is taken to be large
enough such that a deformation on one end does not affect
the other. We will refer to the quivers defined through
Eq. (2.38) satisfying this property as long quivers. In this
work, we will focus on the anomaly polynomial of long
quivers and their nilpotent deformations. We leave a more
detailed analysis of short quivers and orbi-instantons
associated with nontrivial choices σ ∈HomðΓ; E8Þ for
future work.
What is more, nilpotent orbits are equipped with a partial

ordering given by the Zariski closure operation. One says
that for two nilpotent orbits O;O0 ⊂ g of a given simple
algebra, then O ≤ O0 if O ⊆ Ō0, see, e.g., [66,67] and
references therein for a detailed exposition. This partial
ordering then enables one to arrange the corresponding 6D
(1, 0) SCFTs into a Hasse diagram, establishing a hierarchy
of the possible complex-structure deformations/nilpotent
RG flows [20–22]. These Hasse diagrams refine the above
classification as it tells us that, starting with, e.g., a theory
Ag
N−1ð∅; ORÞ, we can reach the SCFT Ag

N−1ð∅; O0
RÞ by

further deformations only if OR ≤ O0
R. In Appendix C, we

give the Hasse diagrams of all the simple algebras appear-
ing in conformal matter theories of exceptional types and
their fractions.
Coming back to ðe6; e6Þ conformal matter, in Fig. 1 we

show all possible deformations, and how they fit in the
Hasse diagram of e6. One can see that as one goes deeper in
the diagram, there are fewer and fewer curves at the generic
point of the tensor branch, and more than one minimal
conformal matter is ultimately removed from the quiver.
This occurs in the vast majority of cases, as nilpotent
deformations will usually propagate throughout a portion
of the spine, and justifies our focus on long quivers.
The notation for the SCFT defined in Eq. (2.38) is

sufficient to (essentially) fully determine the curve
configuration of any long quiver.13 The dictionary
between the choice of orbit and the quiver describing FIG. 1. Hasse diagram for the nilpotent orbits of e6 and the

associated quivers. Each SCFT arising from a nilpotent defor-
mation of the theory Ae6

N−1 can be associated with a nilpotent
orbit, and each arrow can be understood as a possible RG flow.
Blue arrows indicate that a new minimal conformal matter is
affected with respect to the previous quiver.

13In the special the case of g ¼ so2K , very-even partitions lead
to the same quiver, but are in fact different theories. This can be
shown by computing the Schur index of their T2 compactification
[68,69].
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the tensor branch of the SCFT depends on the type of
algebra—and the fraction, when applicable. For classical
flavor algebras, nilpotent orbits are labelled by integer
partitions, from which the quiver can be found straight-
forwardly. In the exceptional cases, we will use Bala-
Carter labels [70,71]; there are only a finite number of
possibilities, which we have tabulated in Appendix D,
where we also give the procedure to obtain the quivers
from integer partitions.
We close this section by noting that nilpotent deforma-

tions of parent theories and those associated with embed-
dings of discrete groups into E8 do not exhaust all
possibilities. While SCFTs with the same choice of base
C2=Λ are on the same Higgs branch, there exists more
types of deformations of the geometry or, equivalently,
Higgs branch RG flows. Indeed, as mentioned above, there
also exist Higgs flows between deformed theories, which
are described by transverse Slowdowy slices in the asso-
ciated Higgs branch moduli space. For completeness, we
have labelled each of these transitions using the notation
introduced by Kraft and Procesi [72,73] in the Hasse
diagrams given in Appendix C. Furthermore, there also
exists so-called semisimple deformations [22], which,
while keeping the same choice of base in the geometry,
changes the algebra, e.g., Ag

N−1 → Ag0
N−1 with g0 ⊂ g. We

will focus here only on nilpotent deformations of parent
theories, as we will show that the anomaly polynomial of
these theories is encoded uniquely in the notation given
in Eq. (2.38).

III. ANOMALY POLYNOMIAL
OF LONG 6D SCFTS

Having reviewed the possible 6D (1,0) SCFTs asso-
ciated with long quivers that can be realized via F-theory
engineering, we can now study part of their conformal
data. We will focus on the anomaly polynomial, which
encodes several features of its protected sector, such as
the central charges. In six dimensions, the anomaly
polynomial of a (1, 0) quantum field theory takes the
general form

I8 ¼
α

24
c2ðRÞ2 þ

β

24
c2ðRÞp1ðTÞ þ

γ

24
p1ðTÞ2 þ

δ

24
p2ðTÞ

þ
X
a

TrF2
a

�
κap1ðTÞ þ νac2ðRÞ þ

X
b

ρabTrF2
b

�
þ
X
a

μaTrF4
a; ð3:1Þ

where c2ðRÞ is the second Chern class of the background
R-symmetry bundle, while p1;2ðTÞ are the Pontryagin
classes of the spacetime tangent bundle. The index a runs
over all simple non-Abelian flavor symmetry factors with
background field strength Fa and the traces TrFn

a are
chosen to be one-instanton normalized by convention.

The coefficients appearing in the anomaly polynomial of
a 6D theory at the SCFT point can be determined from the
tensor branch theory using a variation of ’t Hooft anomaly
matching [37,42]. Indeed, moving onto the tensor branch
does not break supersymmetry, nor the possible flavor
symmetries. The anomaly polynomial, being a topological
quantity, is preserved under this type of deformations and
we can therefore reach a point where a gauge theory
description in terms of weakly coupled supermultiplets is
available. There, the procedure to compute the anomaly
polynomial is purely algorithmic, and was described
concisely in [43] where it was applied to a large number
of theories, closing potential loopholes of the original
derivation in the presence of flavor symmetries. Let us
now summarize the salient points of the algorithm needed
to find Eq. (3.1) for any 6D SCFT.
First, one distinguishes between two different terms,

a “one-loop” part, and a Green-Schwarz (GS) contribution:

I8 ¼ I1-loop8 þ IGS8 : ð3:2Þ

The first contains the individual contributions of fermionic
and tensor fields inside (1, 0) supermultiplets, and can be
understood in terms of four-point correlators of particular
protected operators. On the tensor branch where a weakly
coupled description is available, these can be computed as
one-loop-exact square Feynman diagrams involving the
energy-momentum tensor or conserved currents—hence its
name. The result of such a computation shows that it is
equivalent to study the index of the appropriate differential
operator [74]. Indeed, for left-handed chiral fermions
transforming in the complex representation R of a sym-
metry algebra, it is well known that the formal eight-form
related to the Dirac operator is given by14:

Ifermion
8 ¼ 1

2
ÂðTÞchRðFÞ

����
8-form

; chRðFÞ ¼ trReiF; ð3:3Þ

where the A-roof genus ÂðTÞ is associated with gravita-
tional anomalies while the Chern character chRðFÞ encodes
gauge or flavor anomalies. The definitions of these
characteristic classes and related quantities are collected
in Appendix A.
Note that the traces appearing in the Chern character are

performed over a given representation, trRFn, whereas the
anomaly polynomial in Eq. (3.1) is defined in terms of one-
instanton normalized traces TrFn. The conversion between
the two is related to Casimir invariants of the symmetry
algebras, and up to quartic order we have

14The result of the computation of the Dirac index takes into
account both the representation and its conjugate: R⊕ R̄. This
explain the factor of 1

2
in Eq. (3.3).
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trRF2 ¼ ARTrF2; trRF4 ¼ BRTrF4 þ CRðTrF2Þ2: ð3:4Þ

The coefficients AR; BR, and CR depend on the repre-
sentation R; for representations appearing in the matter
spectrum needed in the study of 6D SCFTs, these values
have been tabulated in [17].15 The study of nilpotent
deformations and the associated breaking patterns how-
ever involves representations that go beyond those
usually encountered in the quiver description. The
trace-relation coefficients of a representation can none-
theless be found in a straightforward manner knowing the
weight system of the Lie algebra. This procedure is
reviewed in Appendix A 1.
In addition to contributions from the standard weakly

coupled hypermultiplets, the one-loop term I1-loop8 of a
theory might also involve (2, 0) tensor multiplets and
E-strings, which may arise in the presence of undecorated
(−1)- and (−2)-curves, respectively. The anomaly poly-
nomial of the former can be decomposed in terms of its
(1, 0) supermultiplet content, while the contribution of an
E-string can be computed via anomaly inflow [41]. The
explicit expression of each individual contribution to
the one-loop term can be found in, e.g., [37,41,43]. The
particular cases of the tensor and vector multiplets, which
are the supermultiplets most relevant in this work, are
written explicitly later in this section, see Eqs. (3.13)
and (3.14).
After summing the contributions of each multiplet in

the matter spectrum—which can be read directly from the
tensor branch quiver—the one-loop term will generically
not be free of all gauge anomalies. However, due to
the presence of tensor multiplets in the spectrum, these
can be cured via a six-dimensional Green-Schwarz-
West-Sagnotti mechanism [54–56], leading to a well-
defined theory. This term is a generalized version of the

celebrated Green-Schwarz mechanism in ten dimensions,
and is therefore commonly referred to simply as the
Green-Schwarz or “GS” term.
The contribution IGS8 is found at a nongeneric point

of the tensor branch reached by successively blowing down
all undecorated (−1)-curves. At that point the quiver is
described by an adjacency matrix Ãij, and the GS term is
given by

IGS8 ¼−
1

2
ÃijIiIj;

Ii ¼−Ãijc2ðFjÞ−Biac2ðFaÞ− ð2þ ÃiiÞp1ðTÞþyic2ðRÞ;
ð3:6Þ

where Ãij ¼ ðÃ−1Þij, and c2ðFÞ ¼ 1
4
TrF2 denotes the

second Chern class of the gauge and flavor bundles.
Note that we will always define them in terms of one-
instanton normalized traces, see Eq. (3.4). The four-form Ii

is furthermore related to the Bianchi identity for the
three-form field strength of the tensor multiplet Hi on
the ith curve:

dHi ¼ Ii: ð3:7Þ

At the generic point of the tensor branch, the coefficients
yi are given by the dual Coxeter number h∨gi of the
algebra on the curve, and their changes must be tracked
when blowing down (−1)-curves. Finally, the matrix Bia

encodes the intersection of noncompact flavor curves
with those associated with gauge algebras and is often
either zero or one, although special care must be taken
when the flavor involves E-strings or (pseudo)-real
representations. We defer to the algorithm described in
[43] for a detailed explanation of how to obtain the GS
contribution.
Once both the one-loop and Green-Schwarz-West-

Sagnotti terms have been determined, one obtains a final
expression free of any gauge anomaly. While it may seem
very cumbersome to track the various coefficients asso-
ciated to the potentially quite large number of curves for
either terms given a quiver, under the classification
scheme described in Sec. II, it turns out that the resulting
anomaly polynomial always takes a relatively simple
form depending only on the parent theory and the nilpotent
orbit describing the Higgs mechanism applied to the
moment map.

A. Anomaly polynomial of conformal matter

To emphasize the simplicity of the resulting expres-
sions, let us first consider the case of Ag

N−1, the rank N
ðg; gÞ conformal matter theory, see Sec. II A. Going
through the algorithm summarized above, one finds
expressions that depend solely on quantities related
to g [37]

15A word of caution to the reader: while most of the recent
literature on the anomaly polynomial of 6D SCFTs follow the
same conventions as in this work, there has been a myriad of
different choices, which sometimes make comparisons arduous.
To wit, our normalizations for the traces are:

tradjF2 ¼ h∨TrF2; trFF4 ¼ 1 · TrF4; ð3:5Þ

where F refers to the defining representation of classical
algebras. For exceptional cases, BR ¼ 0 due to the absence
of an independent order-four Casimir invariant, and the normali-
zation Aadj ¼ h∨ fixes that of CR. Additionally, the case of so8
needs special attention as it has two independent quartic Casimir
invariants. More details can be found in Appendix A and
references therein.

Moreover, since there is no uniform normalization of the trace-
relation coefficients, their names also vary greatly across different
fields of both mathematics and physics. In the review of 6D
SCFTs [17], which tabulates them in Appendix F for represen-
tations appearing in generalized quivers, they are defined as:
hR ¼ AR, xR ¼ BR, and yR ¼ CR.
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I8ðAg
N−1Þ ¼

αCM
24

c2ðRÞ2 þ
βCM
24

c2ðRÞp1ðTÞ þ
γCM
24

p1ðTÞ2 þ
δCM
24

p2ðTÞ þ
Badj

48
ðTrF4

L þTrF4
RÞ

−
�

1

32N
−
Cadj

48

�
ððTrF2

LÞ2 þ ðTrF2
RÞ2Þ þ

1

16N
TrF2

LTrF
2
R þ

�
h∨g
4

p1ðTÞ
24

−
1

8
ðΓN − h∨g Þc2ðRÞ

�
ðTrF2

L þTrF2
RÞ:

ð3:8Þ

By abuse of notation, Γwill denote the order of the McKay-
dual discrete group of g—that is, the ADE discrete
subgroup of SUð2Þ of the same type—when appearing
in expressions related to the anomaly polynomial. Its value
as well as some of the main quantities of simple Lie
algebras are collated in Table V for convenience. The
coefficients involving purely R-symmetry or spacetime
terms are given by

αCM ¼ Γ2N3 − 2ΓχN þ ðdimðgÞ − 1Þ;

βCM ¼ −
1

2
ðΓχ − 1ÞN þ 1

2
ðdimðgÞ − 1Þ;

γCM ¼ N
8
þ 7 dimðgÞ − 23

240
;

δCM ¼ −
N
2
−
dimðgÞ − 29

60
: ð3:9Þ

The form of the tensor branch description of conformal
matter depends on the choice of g, see Table I, and the
gauge spectrum entails various representations of the
involved algebras, in particular for exceptional algebras.
However, note that the above expressions only depend on
standard group-theoretical quantities associated with g and
its adjoint representation, rather than the details of the
quiver. In particular, χ is a combination of the rank of the

algebra and the order of the associated discrete group, and
is defined as

χ ¼ rg þ 1 −
1

Γ
: ð3:10Þ

This is our first hint that the moment map—falling in the
same multiplet as the flavor current—plays a special role in
the anomaly polynomial of conformal matter and its
deformations.
The expression given in Eq. (3.8) was first obtained

from the tensor branch description in [37], where the
result of the algorithm was also cross-checked with an
anomaly inflow computation from the M-theory realiza-
tion, namely as the world volume theory of a stack N M5-
branes probing a C2=Γ singularity. Through this method,
one obtains a more elegant and compact expression for the
anomaly polynomial

I8ðAg
N−1Þ ¼

N3

24
ðc2ðRÞΓÞ2 −

N
2
ðc2ðRÞΓÞðJðFLÞ þ JðFRÞÞ

−
1

2N
ðJðFLÞ − JðFRÞÞ2 þ NIsing − Itensor8

−
1

2
ðIvec8 ðFLÞ − Ivec8 ðFLÞÞ; ð3:11Þ

where we defined the following quantities:

Ising ¼
1

24

�
1

2
p1ðTÞc2ðRÞ þ

1

8
p1ðTÞ2 −

1

2
p2ðTÞ

�
;

JðFÞ ¼ χ

48
ð4c2ðRÞ þ p1ðTÞÞ þ c2ðFÞ; ð3:12Þ

which find their origin in the reduction of the M-theory
Chern-Simons terms, and lead to contributions from
degrees of freedom localized at the orbifold singularity.16

In the M-theory realization, one must also remove con-
tributions from the center-of-mass tensor multiplet and
those associated with boundary conditions for directions
normal to the M5-branes. These are proportional to the
anomaly polynomial of tensor and vector multiplets,
respectively. As mentioned above, the contribution of these

TABLE V. Group-theoretic quantities associated with simple
Lie algebras relevant in this work. Note that the order of the
McKay-dual discrete group, Γ, is defined only for ADE algebra
sun; so2k; e6;7;8. Furthermore, exceptional algebras, including
su2; su3 do not have quartic Casimir invariant, while so8 has
two. This changes the values of Badj and Cadj for these algebras
as a result, see Appendix A for additional details.

g rg dimðgÞ h∨g Γ Badj Cadj

su2 1 3 2 2 0 2
su3 2 8 3 3 0 9

4

sun≥4 n − 1 n2 − 1 n n 2n 3
2

so8 4 28 6 8 6 3
sop≠8 bp

2
c 1

2
pðp − 1Þ p − 2 2p − 8 p − 8 3

spk k kð2kþ 1Þ kþ 1 � � � 2kþ 8 3
4

g2 2 14 4 � � � 0 5
2

f4 4 52 9 � � � 0 15
4

e6 6 78 12 24 0 9
2

e7 7 133 18 48 0 6
2

e8 8 248 30 120 0 9
2

16The term proportional to N−1 is associated with center-of-
mass contributions and was written in Ref. [37] simply as
− 1

8N ðTrF2
L − TrF2

LÞ2. While a priori unrelated to the reduction
of terms near the singularity, in Eq. (3.11) we write it in terms of
JðFÞ for later convenience.
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two types of multiplet are given in terms of characteristic
classes, see Appendix A

Itensor8 ¼
�
1

2
ch2ðRÞÂðTÞ −

1

8
LðTÞ

�����
8-form

¼ 1

24
c2ðRÞ2 þ

1

48
c2ðRÞp1ðTÞ

þ 1

5760
ð23p1ðTÞ2 − 116p2ðTÞÞ; ð3:13Þ

Ivec8 ðFÞ ¼ −
1

2
ÂðTÞch2ðRÞchadjðFÞ

����
8-form

¼ −
1

24
ðtradjF4 þ 6c2ðRÞtradjF2 þ dimðgÞc2ðRÞ2Þ

−
1

48
p1ðTÞðtradjF2 þ dimðgÞc2ðRÞÞ

−
dimðgÞ
5760

ð7p1ðTÞ2 − 4p2ðTÞÞ: ð3:14Þ

Equation (3.11) therefore neatly repackages every flavor
contribution either in the Chern character of the adjoint
representation, or quantities scaling with N, and encoded in
JðFÞ. The only remaining explicit dependence on g appears
through the order of the McKay dual discrete group Γ.
Beyond its elegant form, the usefulness of this expres-

sion for the anomaly polynomial is its behavior under
fusion, as it makes clear that the resulting theory will be
free of any gauge anomaly. Indeed, we have reviewed in
the previous section that fusion allows us to “glue”
quivers together by gauging common flavor symmetries.
Equivalently, in the field theory we are gauging this flavor,
and using the tensor multiplet to mediate a Green-Schwarz-
West-Sagnotti mechanism so as to ensure a gauge-
anomaly-free result. Therefore, the form of the anomaly
polynomial in Eq. (3.11) teaches us that we can in fact use it
as if it was a one-loop contribution.
To illustrate this, let us consider two minimal, i.e., rank

one, ðg; gÞ conformal matter theories, Ag
0. If we fuse them

together by gauging one of the common flavor factors, we
obtain rank two conformal matter, Ag

1

½gL�—½g1�⊕ ½g1�—½gR� ¼ ½gL�—g1—½gR�; ð3:15Þ

where we differentiated the different factors of the same
algebra g by their respective subscript. By gauging the
common the flavor factor g1, we introduce a vector
multiplet in the spectrum, as well as a tensor multiplet
to mediate the Green-Schwarz-West-Sagnotti mechanism.
The effective one-loop term of the new theory is then
given by

I1-loop8 ¼ I8ðAg
0;FL;F1Þþ I8ðAg

0;F1;FRÞþ Ivec8 ðF1Þþ Itensor8 ;

ð3:16Þ

where for clarity, we have shown each of the field strengths
explicitly. The form of the anomaly polynomial for Ag

N−1,
given in Eq. (3.11), makes it clear that the one-loop
contribution cannot depend on quartic traces of the gauge
algebra, TrF4

1, as all contributions I
vec
8 ðF1Þ cancel, and only

potentially dangerous terms involving the second Chern
class c2ðF1Þ remain. These can however be canceled via
Green-Schwarz-West-Sagnotti mechanism, using a term of
the form

IGS8 ¼ −
1

2
ðÃ11Þ−1ðI1Þ2;

I1 ¼ −Ã11JðF1Þ − B1LJðFLÞ − B1RJðFRÞ þ χe1c2ðRÞ:
ð3:17Þ

A short inspection of the involved terms reveals that we
must choose Ã11 ¼ −2, B1L ¼ B1R ¼ e1 ¼ 1. This is
precisely what we expect from the partial tensor branch
description. In the F-theory construction, when fusing two
conformal matter links together we must introduce a
compact curve of self-intersection (−2), possibly leading
to nonminimal fibers, see the discussion around Eq. (2.12).
We therefore find the base corresponding to the algebra A1.
Moreover, B1L and B1R can also be understood as the
intersection numbers between this (−2)-curve and the
noncompact curves supporting the flavor symmetries.
Adding the two contributions from Eqs. (3.16) and

(3.17) together, we obtain an expression free of gauge
anomalies:

I8ðAg
1Þ ¼ I8ðAg

0;FL; F1Þ þ I8ðAg
0;F1; FRÞ þ Ivec8 ðF1Þ

þ Itensor8 þ IGS8 : ð3:18Þ

Comparing this result with Eq. (3.11), one can check that
this exactly reproduces the anomaly polynomial of rank
two conformal matter, Ag

1. By recursion, this is true also for
higher-rank conformal matter; we simply need to fuse N of
them together as if they were simple hypermultiplets. The
one-loop term is

I1-loop8 ¼ I8ðAg
0;FL;F1Þ þ I8ðAg

0;FN−1;FRÞ þ ðN − 1ÞItensor8

þ
XN−1

i¼1

�
I8ðAg

0;Fi;Fiþ1Þ þ Ivec8 ðFiÞ
	
; ð3:19Þ

and the remaining gauge terms are cancelled by a similar
Green-Schwarz-West-Sagnotti mechanism:

IGS8 ¼ −
1

2
ÃijIiIj;

Ii ¼ −ÃikJðFkÞ − BiaJðFaÞ þ χeic2ðRÞ; ð3:20Þ

where ei ¼ 1 ∀ i, Ãij ¼ ðÃijÞ−1, and Bia ¼ δi−a¼1. It is
easy to see the adjacency matrix Ãij must be exactly
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(minus) the Cartan matrix of the algebra AN−1 associated
with the base. The quantity JðFÞ is then interpreted as a
contribution to the Bianchi identity related to the associated
tensionless string:

dH ∼ JðFÞ; ð3:21Þ

where H is the field strength of the associated tensor field.
This should not be too surprising, as in the anomaly inflow
computation in M-theory, the quantity J is by construction
associated with a solution for the four-flux form in eleven
dimensions: G4 ∼ J [37]. In Eq. (3.11), we can therefore
think of the second line as a “one-loop” contribution,
essentially depending simply on characteristic classes,
while the first originates from the GS term.
This simple argument teaches us that while ’t Hooft

anomaly matching enables us to find the anomaly poly-
nomial via the full tensor branch description, once we know
the contribution of a single elementary building block at the
singular point, namely minimal conformal matter Ag

0, the
rest follows as if we were in a weakly coupled regime. It is
in spirit much the same as the case of E-strings: these
theories are themselves nonperturbative objects, but once
their contribution to the anomaly polynomial has been
determined [41], when they are coupled to other weakly
coupled supermultiplets to form a more complicated
theory, they follow the same rules as if they were regular
supermultiplets.
One might think that the case of conformal matter is

quite special, and this line of thought should not generalize
to more complicated theories. However, since long quivers
are made up by fusing minimal conformal matter together
up to decorations at each ends, we will now see that a
similar reasoning can be applied not only to any parent
theory of long quivers, but their nilpotent breakings as well.
Let us first consider the case of fractional conformal

matter Ag
N−1;fL;fR. Since the fractions are only allowed for

algebras g of type DE and their number limited, it is
straightforward to apply the algorithm and compute the
anomaly polynomial of the long quivers in each case. When
fL ¼ fR, this analysis was already performed in [48] by
fusing together multiple copies of fractional theories.17

Based on their results, we have obtained an expression
that also applies in cases where fL ≠ fR. As we have seen
in the previous section, fractional conformal matter can be
depicted as

Ag
N−1;fL;fR∶ ½gfL �—g—g—…—g—

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{N−2

g—½gfR �; ð3:22Þ

and we can see that there are N − 2 “full” minimal
conformal matter forming the long spine, and two
Ag

0;1;fL;R
theories with a fraction at each end. Defining

the “effective” total number of conformal matter as

Neff ¼ ðN − 2Þ þ fL þ fR; ð3:23Þ

the anomaly polynomial of Ag
N;fL;fR

takes a form that,
barring the use of Neff rather than N, closely resembles that
of its nonfractional cousin—see Eq. (3.11)

I8ðAg
N−1;fL;fRÞ ¼

N3
eff

24
ðc2ðRÞΓÞ2

−
Neff

2
ðc2ðRÞΓÞðJfrðFLÞ þ JfrðFRÞÞ

−
1

2Neff
ðJfrðFLÞ − JfrðFRÞÞ2 þ NeffIsing

− Itensor8 −
1

2
ðIvec8 ðFLÞ þ Ivec8 ðFRÞÞ

− ðeL þ eRÞIfr; ð3:24Þ

where the coefficients eL;R are collated in Table II and Ifr is
defined in Eq. (3.26) below. The main difference between
this case and the original anomaly polynomial of conformal
matter is that the contribution of the vector multiplets are
now taken with respect to the algebras associated with the
fractions, gfL and gfR , see Table II, and the four-form
related to the Bianchi identity at the fixed point needs to be
slightly modified

JfrðFÞ ¼
χfr
48

ð4c2ðRÞ þ p1ðTÞÞ þ
1

df
c2ðFÞ;

χfr ¼ χ þ 12

�
1 −

1

df

�
; df ¼ denomðfÞ: ð3:25Þ

In Eq. (3.24), we stress that rg;Γ are those associated with
the “full” algebra g, rather than gfL;R ⊆ g, and JfrðFL;RÞ is
defined with respect to the left, respectively right, fraction.
In addition, there is also an extra contribution whose
prefactor depends on the fractions

Ifr¼
1

24

�
c2ðRÞ2þ

1

6
c2ðRÞp1ðTÞ−

1

48
ðp1ðTÞ2−4p2ðTÞÞ

�
;

ð3:26Þ

This terms can be understood as coming from the frozen
singularity, or equivalently as descending from the con-
tribution of the full, nonfractional, vector multiplet
Ivec8 ðFgÞ, which is now decomposed into the fractional

17We note that we use different conventions than in [48] to
label the theories. There, a long quiver is obtained by fusing
different types of quiver than the one we have defined in Table II.
For instance, the theory we defined as Ae6

N−1;1
3
;1
3

is obtained by

fusing the N times the quiver 16
e6
1 with N − 1 “nodes” 3

su3

. This
notation unfortunately obscures the possibility of having different
fractions at each end, and makes breaking patterns harder to track.
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part of the remnant flavor symmetry and Ifr. The particular
values of the coefficients eL;R are given in Table II. While
we have not found a closed-form expression in terms of the
fraction numbers and characters such as the A-roof genus
Â, we observe that they do not depend on the full algebra g
but rather on the fractional number itself, and have a
reflection symmetry around f ¼ 1

2
.

As a sanity check, we can see that when fL ¼ 1 ¼ fR,
we recover the result for conformal matter: JfrðFÞ ¼ JðFÞ
and e ¼ 0 in that case, and the above expression is identical
to that of Eq. (3.11).
The anomaly polynomial of higher-rank fractional con-

formal matter Ag
N−1;fL;fR given in Eq. (3.24) once again

enables us to understand this theory as coming from
quantities computed directly at the partial tensor branch
by fusing rank one building blocks

I8ðAg
N−1;fL;fRÞ ¼ I8ðAg

0;fL;1
;FL; F1Þ

þ
XN−2

i¼1

ðI8ðAg
0;Fi; Fiþ1Þ þ Ivec8 ðFiÞÞ

þ I8ðAg
0;1;fR

;FN−1; FRÞ þ ðN − 1ÞItensor8

þ IGS8 : ð3:27Þ

The GS terms takes the same form as in Eq. (3.20) with the
replacement JðFÞ → JfrðOÞ for the contribution at each
end, and the pairing matrix Ãij must be slightly modified
with respect to that of conformal matter. Taking the
fractions with unit numerators, fL;R ¼ 1

dL;R
, the presence

of incomplete minimal conformal matter at either sides will
change the charge of the strings associated with the gauge
algebras at both ends of the quiver, and a short computation
shows that the pairing matrix is that of the quiver

ð1þ dLÞ
g

2
g
…2

g|ffl{zffl}
N−2

ð1þ dRÞ
g

: ð3:28Þ

This is again exactly what one would expect for the
geometry, as it is the partial tensor branch quiver obtained
after successively shrinking all (−1)-curves, see Table II.
When the numerators of the fractions are not one, this

interpretation gets slightly obscured and the form of the
partial tensor branch in Eq. (3.28) needs to be modified.
Indeed, as we have discussed in Sec. II, the bases in those
cases involve more curves than for the complete conformal
matter theories of the same rank. These can however be
understood as being realized by fusing further rank one
fractional theories to the main spine until the correct
fractional number has been achieved. The self-intersection
of the additional branes is then understood as above:
coming from the Green-Schwarz-West-Sagnotti mecha-
nism the singular point. In the M-theory picture, this
phenomenon can also be understood as the recombination

of fractional M5-branes into larger fractional—or even
full—M5-branes [48].
Beyond conformal matter, other long quivers with type-D

bases Dg
N;f and orbi-instantons O

g
N;f can be understood in a

similar fashion. We come back to those cases in Sec. III C.

B. Nilpotent Higgs branch flows in six dimensions

The interpretation of the anomaly polynomial of con-
formal matter as obtained by fusing minimal conformal
matter theories together to obtain arbitrary large quivers is
quite suggestive, and we will now show that there are
similar expressions when a parent theory is deformed to
another with deformations associated to nilpotent orbits of
the flavor symmetries.
For a given F-theory base, AN−1;fL;fR , DN;f and ON;f,

there can be multiple 6D (1, 0) SCFTs, which from the
geometric point of view are reached through complex-
structure deformations. As alluded to above, in the case of
long quivers—that is for large-enough values of N—it has
been proposed that a partial classification scheme is given
by nilpotent orbits O of simple components of the flavor
symmetry [20,47].
Field theoretically, these are interpreted as renormaliza-

tion group flows. More precisely, the presence of flavor
implies the existence of a conserved flavor current, which is
part of aD½2� superconformal multiplet in the nomenclature
of [5,6]. Its superconformal primary, called the moment
map, is a scalar operator ϕ of conformal dimension Δ ¼ 4,
transforming in the adjoint representation of the flavor
symmetry, as well as a doublet of the SUð2Þ R-symmetry.
Through the usual arguments, giving a vacuum expectation
value to the moment map will trigger an RG flow,
ultimately reaching another conformal fixed point in the
infrared. The flows of interest are then associated with
those where the vacuum expectation values of ϕ is chosen
to be a representative of the nilpotent orbit

hϕi ¼ X∈O: ð3:29Þ

We will refer to such deformations as nilpotent RG flows.
Note that in the case of orbi-instantons, nilpotent RG flows
are not sufficient to classify all long quivers, and must be
supplemented by a choice of embedding of a discrete group
Γ ⊂ SUð2Þ into E8. The associated flows are more involved
that those coming from nilpotent orbits, and will not be
considered here—see however [14,15,29,75,76]. We leave
a systematic analysis of their anomaly polynomial for
future work.
The case of (fractional) conformal matter corresponds to

an unbroken gL ⊕ gR flavor symmetry, and therefore the
trivial nilpotent orbits OL;R ¼ ∅ are used: Ag

N−1;fL;fR ¼
Ag

N−1;fL;fRð∅;∅Þ. As we have discussed above, at the level
of the anomaly polynomial, these theories can be under-
stood without referring to the details of the F-theory
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geometry. One may therefore ask whether the proposed
classification scheme from nilpotent orbits can also be
understood fully in terms of the gauge-invariant con-
formal data.
This is indeed the case, and as we will now show,

knowing the anomaly polynomial of a parent theory, that of
an SCFT reached via an RG flow described by a nilpotent
orbit can be obtained directly from simple group-theoretic
data, without going through the tensor branch description
and the associated algorithm invoking ’t Hooft anomaly-
matching arguments.
Before describing the prescription to obtain the IR

anomaly polynomial, let us first summarize some of the
relevant properties of nilpotent orbits of a simple algebra g.
For an in-depth treatment of the topic, we refer to [67].
Given a nilpotent orbit O, by the Jacobson-Morozov
theorem one can construct a triplet ðX; Y;HÞ of generators
of g satisfying the standard su2 commutation relations,
withX∈O andH in the Cartan subalgebra of g. A nilpotent
orbit therefore defines a homomorphism ρO∶ suð2Þ ↪ g.
It follows that for any generator Ei of g associated with a

simple root, H-eigenvalues of these generators can only
take values 0,1, and 2 (up to conjugacy). They can then be
arranged into a weighted Dynkin diagram labeling uniquely
the nilpotent orbit O18:

O∶½w1…; wrg �; ½H;Ei� ¼ wiEi; wi ¼ 0; 1; 2: ð3:30Þ

While this labeling exists for any type of simple Lie
algebra, it is sometimes useful to use an algebra-specific
scheme. For instance, nilpotent orbits of suK are in one-to-
one correspondence with partitions of K, while those of
so2K are associated with even partitions of K. For excep-
tional algebras, there are no classification in terms of
partitions, and it is common to use so-called Bala-Carter
labels [70,71]—see [67] for a discussion of the different
ways to label nilpotent orbits. While there is a procedure to
find the quiver from a partition for classical algebras, we are
not aware of a simple connection between the weighted
Dynkin diagram of a nilpotent orbit or its Bala-Carter labels
and its curve configuration. We recall that the procedure for
partitions and the tables giving the mapping between Bala-
Carter labels of exceptional algebras and the associated
quivers are given in Appendix D.
As the triplet ðX; Y;HÞ defines the embedding ρO, it also

induces a branching rule for the adjoint (or any other)
representation:

ρO∶ g ⟶ suð2ÞX ⊕ f;

adj ⟶ ⨁
l
ðdl;RlÞ; ð3:31Þ

where suð2ÞX is written so to emphasize that it is related to
the nilpotent element X, rather than the R-symmetry, and f
is its centralizer in g. When X is interpreted as the vacuum
expectation value of the moment map, f is the (possibly
semisimple, or even trivial) remnant flavor symmetry of the
infrared theory. For nilpotent deformations of 6D (1, 0)
SCFT, they perfectly match the ones that can be read
off the tensor branch quivers described in the previous
section [20–22].
In the mathematics literature, the branching rule defined

in Eq. (3.31) is known as the Jacobson-Morozov decom-
position. While the weighted Dynkin diagrams defined in
Eq. (3.30) are in principle enough to obtain the branching
rule of the adjoint representation of g, we have tabulated
them in Appendix B for all exceptional algebras. For the
classical series, the Jacobson-Morozov decomposition of
the defining representation can be read off directly from
partitions, and that of the adjoint can then be found using
tensor products. This procedure is explained in detail in the
same Appendix.
We will now show that the Jacobson-Morozov decom-

position is not only enough to find find the flavor of a given
6D (1, 0) theory, but the complete anomaly polynomial as
well. We will focus first on conformal matter theories with
only a single nilpotent orbit turned on, that is the class of
SCFT given by Ag

N−1;1;1ðO;∅Þ. If N is large, the breaking
on the left will not affect the right-hand side of the quiver.
The anomaly polynomial of the parent theory—that is

when O is trivial—in the form given in Eq. (3.11), in
addition to its compact form and making it easier to
implement the fusion process, has the property that the
flavor dependence appears only through JðFÞ and Ivec8 .
These two quantities have the advantage that by construc-
tion, they behave nicely under branching rules, and will be
the basis for our prescription to obtain the anomaly
polynomial of the IR theory. It is therefore easy to imple-
ment the branching rule given in Eq. (3.31) and rewrite the
anomaly polynomial of the parent theory in terms of the
flavor data of the IR description. Of course, along the RG
flows, there are modes that will decouple, and the IR
anomaly polynomial must take this into account. As we
will see shortly, once we have found the prescription for
conformal matter, we may argue that in the same way that
other long quivers are obtained through fusion of lower-
rank conformal matter, the prescription also applies to any
theory with large-enough N.
To illustrate how the Jacobson-Morozov decomposition

encodes data in the IR theory, let us first focus on the
anomaly coefficient δ. As the Green-Schwarz-West-
Sagnotti mechanism described above does not involve
terms proportional to p2ðTÞ, this ensures that from the
tensor branch point of view, δ can only arise from one-loop
contributions. In [47], it was observed that in the case of
conformal matter, the difference in this coefficient between
the UV parent theory and the IR SCFT obtained by turning

18The converse is not true, not all weighted Dynkin diagrams
with wi ¼ 0, 1, 2 are associated with a nilpotent orbit.
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on a nilpotent orbit O was given by

δUV − δIR ¼ −
1

120
dimðOÞ: ð3:32Þ

Through the tensor branch description, it can be understood
as decoupling the various vector and hypermultiplets
getting massive after performing a complex-structure
deformation. In fact, this coefficient is related to the
dimension of the Higgs branch of the SCFTs [47,60,61]

dimðHBUVÞ − dimðHBIRÞ ¼ −60ðδUV − δIRÞ; ð3:33Þ

and it is therefore natural to expect that it decreases as we go
to the IR fixed point. Note that the complex dimension of a
nilpotent orbit is always even, and thus that the change in the
quaternionic dimension of the Higgs branch is an integer.
One can however interpret Eq. (3.32) from a slightly

different, but ultimately equivalent, point of view that does
not involve fields charged under a gauge symmetry and is
agnostic about the details of the parent theory: the appear-
ance of the dimension of the orbit is a consequence of
Goldstone’s theorem. In the UV theory, the moment map
transforms in the adjoint representation of the flavor
symmetry and there are therefore dimðgÞ degrees of free-
dom. After turning on a nilpotent vacuum expectation
value hϕi ¼ X, there is a massless field associated with
each of the unbroken generators. That is, they are part of the
commutant of the image of ρO

CðOÞ ¼ fZ∈ adjj½X; Z� ¼ 0g: ð3:34Þ

Using that dimðgÞ ¼ dimðOÞ þ dimðCðOÞÞ, there are
therefore dimðOÞ degrees of freedom that become massive,
and whose contributions must be removed from the
anomaly polynomial.
More generally, given a representation ðdl;RlÞ appear-

ing in the Jacobson-Morozov decomposition ofO, there are
dimðRlÞ elements commuting with X: by definition, given
an irreducible representations of su2, only the highest-
weight state commutes with X. In the infrared the coef-
ficient δ is therefore given by

δUV − δIR ¼ −
1

120

�
dimðgÞ −

X
l

dimðRlÞ
�

¼ −
1

120
dimðOÞ: ð3:35Þ

Note that while the original argument [47,60,61] used the
tensor branch description to argue the validity of Eq. (3.32),
here we reinterpret this result by invoking solely the
Jacobson-Morozov decomposition of the nilpotent orbit,
and in terms of gauge-invariant data of the SCFTs. The
number of unbroken generators in the adjoint representa-
tion are thus explained as a consequence of Goldstone’s

theorem applied to the moment-map superconformal
multiplet.
Since we are giving a nilpotent vacuum expectation to

the moment map, it is therefore not surprising that all
complex-structure deformations of conformal matter
arrange themselves into Hasse diagrams of the relevant
nilpotent orbits. We however need to argue that the
remaining coefficients of the anomaly polynomial can be
explained in a similar fashion. A key point to obtain such a
result is that the modification of the coefficient δ can be
traced back to the contribution proportional to Ivec8 ðFLÞ
in Eq. (3.11).
“One-loop” contributions of vector multiplets depend on

the Chern character of the flavor bundle, see Eq. (3.14). As
summarized in Appendix A the Chern character has, by
construction, particularly nice properties under branching
rules. In the parent UV theory, we can therefore decompose
quantities involving the background field strength of the
flavor symmetry Fg into those appearing in the Jacobson-
Morozov decomposition given in Eq. (3.31)

chadjðFgÞ ¼
X
l

chdlðFXÞchRl
ðFfÞ; ð3:36Þ

where we have used the notation FX to emphasize that
this su2 background field strength is associated with the
element X∈O, rather than a possible remnant flavor
symmetry.
Note that at this point, the above decomposition simply

amounts to a relabeling of the various roots of the adjoint
representation of g in the yet-unbroken parent theory. Now,
when one does turn on a vacuum expectation value for the
momentum map, the symmetry associated with FX is
broken, and only the highest-weight states remain massless.
Moreover, as ϕ also transforms as a doublet of the
R-symmetry, supersymmetry is also broken away from
the fixed point. However, in the IR a new R-symmetry
emerges as the unbroken diagonal subgroup of suð2ÞRUV ⊕
suð2ÞX [77,78]

c2ðRIRÞ ¼ c2ðRUVÞ þ c2ðFXÞ; ð3:37Þ

in the obvious notation. The second Chern classes are
given in terms of one-instanton normalized traces, that
is c2ðFÞ ¼ 1

4
TrF2.

While the result for δ, see Eq. (3.35), suggests to sum
over all multiplets in the commutant of X, from the
discussion above we must take the new R-symmetry into
account. The Chern characters appearing in the definition
of Ivec8 ðFgÞ after taking into account the Jacobson-Morozov
decomposition, need to be rewritten in terms of the one-
instanton normalized second Chern class, c2ðRIRÞ, and only
take into account unbroken modes. We find that the correct
combination is given by
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ch2ðRUVÞchdðFXÞ ⟶IR fchdðRIRÞ ¼ 2 − ðdc2ðRIRÞÞ

þ 1

12
ðdc2ðRIRÞÞ2 þ � � � :

ð3:38Þ
Comparing the right-hand side of Eq. (3.38) with the

usual definition of the Chern character, see, e.g., Eq. (A4),
we see that ˜chdlðRÞ can be understood as a “twisted”
version that selects only the highest-weight state of the su2

representation with Cartan eigenvalue d. This quantity is
enough to completely account for the one-loop part of the
anomaly polynomial after the nilpotent Higgs branch
renormalization flow. Indeed, as the contribution from
the vector multiplet is the only source of the broken flavor
symmetry in second line of Eq. (3.11), which we have
interpreted as the one-loop part of the anomaly polynomial,
we must simply replace

Ivec8 ðFg;RUVÞ⟶IR Ivec8 ðOÞ¼−
1

2
ÂðTÞ

X
l

c̃hdlðRIRÞchRl
ðFfÞ;

ð3:39Þ
where by abuse of language Ivec8 ðOÞ denotes the contribu-
tion in the infrared after the decoupling of the massive
modes, and is written in terms of the IR R-symmetry. Note
that the terms involving the remnant flavor symmetry must
once again be converted to one-instanton normalized traces.
Generically, they will now involve representations beyond
the usual singlet, defining, and adjoint representations. The
procedure to find the trace-relation coefficients for arbitrary
representation can be obtained from the associated weight
system, and is reviewed in Appendix A.
Having given a prescription on how to find the one-loop

contributions of the IR theory, let us now turn our attention
to the Green-Schwarz-West-Sagnotti mechanism. There,
the flavor only appears via its second Chern class c2ðFgÞ.
To rewrite it in terms of the IR data, we can simply use the
branching-rules properties of the Chern character shown in
Eq. (3.36)

c2ðFgÞ ¼
1

4
TrF2

g ¼
1

4h∨g
tradjF2

g ¼
1

2h∨ chadjðFgÞ
����
4-form

:

ð3:40Þ

It is then straightforward to see that the decomposition of
the second Chern class depends only on the second-order
embedding indices

c2ðFgÞ ¼ Isu2↪gc2ðFXÞ þ
X
a

Ifa↪gc2ðFfaÞ; ð3:41Þ

where we have allowed for the remnant flavor symmetry to
have semisimple components: f ¼ ⊕afa. The embedding
index of a subalgebra g0 into g can be computed from the

branching rule of a representation as

Ig0↪g ¼
1

AR

X
l

mlARl
; R → ⨁

l
mlRl; ð3:42Þ

where ml is the multiplicity of Rl and ARl
its Dynkin

index, see Eq. (3.4) as well as Appendix A for details. It is
furthermore possible to show that the embedding index
does not depend on the representation, only the choice
of embedding.19 Moreover, if g0 is semisimple, it is
computed independently for each simple factor, and we
sum over each component as in Eq. (3.41).
For the particular case of nilpotent orbits, the embedding

index can be computed directly from the orbit data. As
reviewed earlier in this section, every nilpotent orbit can be
uniquely labelled by a weighted Dynkin diagram w, seen as
a vector in the weight lattice of g. It satisfies the property

IX ¼ Isu2↪g ¼
1

2
hw;wi; ð3:43Þ

where h·; ·i is the pairing on the root lattice. For simply
laced algebras, it is given via the Cartan matrix; using
the conventions defined in Table VIII, we have
hα; βi ¼ αT · C−1 · β. In practical applications, such as
when studying the central charges of the SCFT, it is often
enough to compute terms of the anomaly polynomial
involving only c2ðRÞ; piðTÞ, and Eq. (3.43) can therefore
give a way of directly finding them without going through
the Jacobson-Morozov decomposition. For the reader’s
convenience, the embedding indices IX and Ifa↪g are
tabulated in Appendix B.
The GS contribution to the anomaly polynomial, namely

the first line in Eq. (3.11), therefore simply needs to be
rewritten in term of the IR R-symmetry, which corresponds
to the replacement

c2ðFgÞ⟶IR IXc2ðRIRÞ þ Ig→fc2ðFÞ: ð3:44Þ

As the second Chern class of the flavor symmetry appears
through JðFÞ in the anomaly polynomial of conformal
matter given in Eq. (3.11), we can define an IR version

JðOÞ¼ χ

48
ð4c2ðRÞþp1ðTÞÞþ IXc2ðRÞþ

X
a

Ifa↪gc2ðFfaÞ;

ð3:45Þ

where we have again allowed for the possible presence of
semisimple factors, f ¼ ⊕afa in the remnant symmetry.
We have now found an IR prescription for every

contribution involving the flavor symmetry after a nilpotent

19For a recent review in the physics literature of Dynkin
indices, Dynkin embedding indices, and their relevant properties,
see [79].
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Higgs branch flow. Moreover, since in the GS term we only
need to replace c2ðRUVÞ → c2ðRIRÞ, see the discussion
around Eq. (3.37), we conclude that the anomaly poly-
nomial of a theory obtained by a nilpotent deformation of
conformal matter is given by

I8ðAg
N−1ðOL;∅ÞÞ ¼ I8ðAg

N−1ÞjJðFLÞ→JðOÞ;Ivec
8

ðFLÞ→Ivec
8

ðOLÞ;

ð3:46Þ

where on the right-hand side, everything is understood to
be in terms of the IR R-symmetry.
While we have so far argued for this prescription only for

long conformal matter theories where only one of the flavor
is broken, nothing prevents us to consider a nilpotent
breaking on each end. By assumption, the quiver is long
enough so that a deformation on one end cannot affect the
other. We can therefore repeat our argument applied to both
sides independently. As can be seen from Eq. (3.11), the
anomaly polynomial is symmetric under exchange of the
left and right flavor, and the generalization of Eq. (3.46) is
straightforward. We need only consider the fusion of two
different conformal matter theories with only one defor-
mation

Ag
N−1ðOL;ORÞ ¼ Ag

N−p−1ðOL;∅Þ⊕ Ag
pð∅; ORÞ: ð3:47Þ

We then obtain the same prescription as in Eq. (3.46), but
doing the replacement for nilpotent orbits on both sides.
Moreover, the approach described above is unaffected by
the presence of fractional conformal matter. The anomaly
polynomial has only minimal changes: as long as the
fraction does not imply the absence of a flavor symmetry,
there is still a moment map for which a nilpotent vacuum
expectation can be turned on, and our prescription remains
valid. The only difference is the presence of the term Ifr,
and the four-form JðOÞ is changed to

JfrðOÞ ¼ χfr
48

ð4c2ðRÞ þ p1ðTÞÞ þ
IX
df

c2ðRÞ

þ 1

df

X
a

Ifa↪gfc2ðFfaÞ; ð3:48Þ

where we recall that df is the denominator of the associated
fraction f, andO is a nilpotent orbit of the flavor symmetry
associated with the fraction, gf.
In summary, given a parent theory Ag

N−1;fL;fR for which
we turn on (possibly trivial) vacuum expectation values
for the moment maps associated with nilpotent orbits OL,
OR, the anomaly polynomial of the resulting theory
Ag

N−1;fL;fRðOL;ORÞ is given by

I8ðAg
N−1;fL;fRðOL;ORÞÞ

¼ N3
eff

24
ðc2ðRÞΓÞ2 −

Neff

2
ðc2ðRÞΓÞðJfrðOLÞ þ JfrðORÞÞ

−
1

2Neff
ðJðOLÞ − JðORÞÞ2 þ NeffIsing − Itensor8

−
1

2
ðIvec8 ðOLÞ þ Ivec8 ðORÞÞ − ðeL þ eRÞIfr: ð3:49Þ

The R-symmetry is understood to be that of the IR theory,
and the decomposition of the quantities Ivec8 ðOLÞ and
JfrðORÞ are given in Eqs. (3.39) and (3.48), respectively.
The other contributions have been defined around
Eq. (3.24). In all cases, only the Jacobson-Morozov
decomposition of the adjoint representation is required.
For all relevant cases, these branching rules are summarized
in Appendix B.
Note that Ivec8 ðOLÞ is associated with the “one-loop”

contribution of the surviving moment map modes after the
nilpotent flow. While the definition of ˜chdlðRÞ in Eq. (3.38)
taking into account the IR R-symmetry might seem ad hoc,
in Sec. IV we will show that it is justified and equivalent
to removing the contributions of the Nambu-Goldstone
modes decoupling from the parent theory. We have indeed
checked using the tensor branch description that Eq. (3.49)
is correct. In the case of exceptional algebras, the proof is
done by exhaustion as the number of possible cases is
finite, and we give a derivation of the validity of this
formula for type-A algebras in the next section. While we
have not performed a similar proof for type-D algebras—
this is left as an exercise for the diligent reader—we have
checked it exhaustively for rg ≤ 20 and fL;R ¼ 1

2
; 1, with

some additional sporadic crosschecks at rg ¼ Oð100Þ.
We stress once again that while the tensor branch

description can be used to confirm the validity of the
formula given in Eq. (3.49), the details of the underlying
geometric description does not matter: for long quivers, the
complete data needed is encoded into the notation
Ag

N−1;fL;fRðOL;ORÞ, up to the Jacobon-Morozov decom-
positions that can be easily computed or read off from
tables. The gauge spectrum and the curve-intersection
patterns specific to a given algebra g is completely
irrelevant, and the anomaly polynomial is only given in
terms of gauge-invariant data.

C. Other long quivers

So far, we have focused solely on (possibly fractional)
conformal matter theories and their deformations. We have
however seen that there are three families of long quivers

Ag
N−1;fL;fRðOL;ORÞ; Dg

N;fðOÞ; Og
N;fðρ; OÞ: ð3:50Þ

Except for orbi-instanton theories, which also have defor-
mations parameterized by embedding of ADE discrete
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groups into E8, all other possible deformations of the
parents theories are nilpotent. As such, the same kind of
arguments that allowed us to find the anomaly polynomial
of Ag

N−1;fL;fRðOL;ORÞ from that of Ag
N−1;1;fRð∅; ORÞ, can

be repeated for the other types of long quivers. Indeed, as
we have described in Sec. II, we can use the fusion point of
view to obtain them from their undeformed counterparts
fused with deformed conformal matter

Dg
N;fðOÞ ¼ Dg

N−pð∅Þ⊕Ap−1;1;fð∅; OÞ;
Og

N;fð∅; OÞ ¼ Og
N−pð∅;∅Þ⊕Ap−1;1;fð∅; OÞ; ð3:51Þ

where we used ⊕ to indicate fusion of the unbroken
common g factors. This means that if we can find the
anomaly polynomial of orbi-instantons or type-D SCFTs at
low rank, which is achieved easily through the tensor
branch algorithm, that of the broken theory can be found for
an arbitrary quiver length N by recurrence, and the
prescription for its anomaly polynomial is the same sort
of replacements showed in Eq. (3.46).
For type D, the result turns out to be quite simple. We

however must distinguish between g ¼ suð2KÞ and the
three sporadic series g ¼ suð3Þ; soð8Þ; e6. For the former,
there cannot be fractions, i.e., f ¼ 1, and we find

I8ðDsu2K
N ðOÞÞ ¼ N3

eff

6
ðc2ðRÞΓÞ2 − Neffðc2ðRÞΓÞJðOÞ

þ NeffIsing −
1

2
Ivec8 ðOÞ þ Itensor8 þ 3

2
Ifree8 ;

ð3:52Þ

with Neff ¼ N − 1, and Ifree8 is the contribution of a free
fermion transforming in the doublet of the R-symmetry, see
Eq. (A6). For the latter three cases, the expression is
slightly different, and of course may depend on the
fractions

I8ðDg;N;fðOÞÞ ¼ N3
eff

6
ðc2ðRÞΓÞ2 − Neffðc2ðRÞΓÞJfrðOÞ

þ NeffIsing −
1

2
Ivec8 ðOÞ − Itensor8

− ðeþ 15ÞIfr þ ID;g
8 : ð3:53Þ

In this case, the parameter Neff must be slightly modified

Neff ¼ ðN − 3Þ þ f þ 1

2
ð3:54Þ

This trivalent pattern also gives rise to an extra term
depending only on the c2ðRÞ and p1ðTÞ but whose
coefficients depend on the choice of algebra g; they are
given in Table VI. The quantities depending explicitly on
the nilpotent orbit O are the ones appearing in the anomaly
polynomial of conformal matter, see Eqs. (3.38) and (3.45).

Orbi-instantons theories are dealt with in a similar
fashion. We note however that turning on a deformation
for the e8 flavor associated with an end-of-the-world brane
in the M-theory description substantially complicates the
analysis. When g ¼ suðKÞ, corresponding to Γ ¼ ZK , the
anomaly polynomial of theories with nontrivial ρ—but
trivial nilpotent orbits of suK—were studied in [49]. Here,
we will conversely allow for any choice of g and its
nilpotent orbits, but keep ρ trivial.
While slightly more involved than previous cases, we

find a closed-form expression for the anomaly polynomial
that depends once again only group-theoretical quantities
related to g

I8ðOg
N;fð∅; OÞÞ

¼ N3
eff

6
ðc2ðRÞΓÞ2 −

N2
eff

2
ðc2ðRÞΓÞJ̃ðFe8Þ þ NeffIsing

þ Neff

�
1

2
J̃ðFe8Þ2 − ðΓc2ðRÞÞJfrðOÞ

�
þ J̃ðFe8Þ

�
JfrðOÞ − χfr

48
ð4c2ðRÞ þ p1ðTÞÞ

�
−
α0
24

c2ðRÞ2 þ
rg
2
Ifree −

dimðgÞh∨g
6

c2ðRÞ

×

�
1

6
p1ðTÞ þ c2ðFe8Þ

�
−
1

2
Ivec8 ðOÞ − eIfr: ð3:55Þ

The possible values of e given a fraction f are shown in
Table II, and quantities depending on the nilpotent orbit are
given in Eqs. (3.39) and (3.48). The contribution of a free
fermion in a doublet of the R-symmetry Ifree is given in
Eq. (A6), and we have defined

Neff ¼ ðN − 2Þ þ fOI þ f; ð3:56Þ

J̃ðFe8Þ ¼
1

2
ðΓχ − 1Þc2ðRÞ þ

1

4
p1ðTÞ þ c2ðFe8Þ: ð3:57Þ

The quantity J̃ðFe8Þ can be understood in the same way as
JðFgÞ, namely as a contribution to the Green-Schwarz term
appearing in the Bianchi identity for the tensor multiplet
dual to the tensionless strings at the fixed point, see the
discussion around Eq. (3.20). Contrary to other long
quivers, the “effective” number of conformal matter the-
ories Neff now depends on the choice of algebra g, and in

TABLE VI. Term appearing in the anomaly polynomial of
type-D quiver, originating from the trivalent intersection.

g ID;g
8

su3 c2ðRÞð2316 c2ðRÞ þ 25
96
p1ðTÞÞ

so8 c2ðRÞð52 c2ðRÞ þ 7
24
p1ðTÞÞ

e6 c2ðRÞð52 c2ðRÞ þ 7
24
p1ðTÞÞ
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the anomaly polynomial is encoded in the parameter fOI.
Additionally, there is a contribution to the c2ðRÞ2 term, α0,
for which we did not find a simple expression in terms of
the data of g. We show the values for both these quantities
in Table IV.

D. Examples

To illustrate the simplicity of the formula given in
Eq. (3.49), we now turn to two examples. For ease of
exposition we will only consider conformal matter with
fL;R ¼ 1, and a single deformation.
The minimal orbit of e6: we first consider the theory

obtained by breaking the left flavor of higher-rank ðe6; e6Þ
conformal with the A1 nilpotent orbit of e6 in the Bala-
Carter notation. It is therefore the Ae6

N−1ðA1; 0Þ theory,
described at a generic point of the tensor branch by the
following quiver:

Ae6
N−1ðA1;0Þ∶ ½su6� 2

su3

16
e6
1 3
su3

1 �� �6
e6
1 3
su3

16
e6
1 3
su3

1½e6�: ð3:58Þ

This nilpotent orbit is minimal, in the sense that it is
smallest with respect to the partial ordering of nilpotent
orbits, i.e., the first nontrivial level in the corresponding
Hasse diagram. In the geometric description, this is
reflected by the fact that the simplest deformation is
obtained by blowing down the left-most (−1)-curve of

the conformal matter quiver. Furthermore, its weighted
Dynkin diagram is given by w ¼ ½0; 0; 0; 0; 0; 1�, and
Jacobson-Morozov decomposition for the adjoint repre-
sentation yields

ρA1
∶ e6 ⟶ suð2ÞX ⊕ suð6Þ
78 ⟶ ð1; 35Þ⊕ ð2; 20Þ⊕ ð3; 1Þ: ð3:59Þ

This branching rule is simple, and as can be checked from
the tables collated in Appendix B, or using Eq. (3.42), the
embedding indices are both equal to one. The second Chern
class decomposes as

c2ðFe6Þ ¼ c2ðFXÞ þ c2ðFsu6
Þ: ð3:60Þ

Using that after the nilpotent breaking we must replace
c2ðRUVÞ ¼ c2ðRÞ ¼ c2ðFXÞ, we have

JðA1Þ ¼
455

288
c2ðRÞ þ

167

1152
p1ðTÞ þ c2ðFsu6

Þ: ð3:61Þ

To use the decomposition of Ivec8 ðA1Þ defined in
Eq. (3.39), we need to convert the traces over the
representations 20 and 35 of su6 into one-instanton
normalized traces. Using the techniques explained above
and in Appendix A, one finds

ch20ðFsu6
Þ ¼ 20 −

1

2
ð3TrF2

su6
Þ þ 1

4!

�
−6TrF4

su6
þ 3

2
ðTrF2

su6
Þ2
�
þ � � � ; ð3:62Þ

ch35ðFsu6
Þ ¼ 35 −

1

2
ð6TrF2

su6
Þ þ 1

4!

�
12TrF4

su6
þ 3

2
ðTrF2

su6
Þ2
�
þ � � � : ð3:63Þ

Taking into account the “twisted” character for the R-symmetry in the deformed theory, we have

Ivec8 ðA1Þ ¼ −
1

2
ÂðTÞð ˜ch1ðRÞch35ðFsu6

Þ þ ˜ch2ðRÞch20ðFsu6
Þ þ ˜ch3ðRÞÞ ð3:64Þ

¼ −
109

6
c2ðRÞ2 −

31

12
c2ðRÞp1ðTÞ −

56

5760
ð7p1ðTÞ2 − 4p2ðTÞÞ ð3:65Þ

−
9

2
c2ðRÞTrðF2

su6
Þ − 3

16
p1ðTÞTrF2

su6
−
1

8
ðTrFsu6

Þ2 − 1

4
TrF4

su6
: ð3:66Þ

Note that the coefficient of p2ðTÞ is proportional to the dimension of the commutant of the nilpotent orbit
dimðe6Þ − dimðA1Þ ¼ 56, as expected. Putting everything together as in Eq. (3.49), the complete anomaly polynomial
of the theory after breaking is given by

I8ðAe6
N−1ðA1; 0ÞÞ ¼

288N4 − 311N2 þ 128N − 6

12N
c2ðRÞ2 −

83N − 50

24
p1ðTÞc2ðRÞ þ

15N þ 223

2880
p1ðTÞ2 −

15N þ 19

720
p2ðTÞ

þ p1ðTÞ
�
1

8
TrF2

e6 þ
3

32
TrF2

su6

�
− c2ðRÞ

�
12N2 − 6N − 1

4N
TrF2

e6 þ
12N2 − 9N þ 1

4N
TrF2

su6

�
þ 3N − 1

32N
ðTrF2

e6Þ2 þ
1

16N
TrF2

e6TrF
2
su6

þ 2N − 1

32N
ðTrF2

su6
Þ2 þ 1

8
TrF4

su6
: ð3:67Þ
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This result can then be compared against the computa-
tion on the tensor branch description, and one can check
that the two results agree.
Partitions of su8: when the flavor algebra is of type suK ,

conformal matter takes a particularly simple form, and the
nilpotent deformations are described by partitions of K. We
now specialize to g ¼ suð8Þ, where conformal matter has
been deformed by the nilpotent orbit associated with the
partition ½24� on the left, while the right flavor is left
untouched—or equivalently described by the trivial parti-
tion ½18�

Asu8

N−1ð½24�; ½18�Þ∶ ½su4� 2
su4

2
su8

2
su8 � � � 2

su8

2
su8|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1

½su8�: ð3:68Þ

The relations between the partitions and the tensor branch
quivers are discussed in Appendix D. As discussed there,
the remnant flavor is found from the multiplicities of each
partition, and we therefore have total non-Abelian flavor
f ¼ su4 ⊕ su8 in the IR theory.
We once again need to use the Jacobson-Morozov

decomposition to find the anomaly polynomial. For the
fundamental representation, it can be read of directly from
the partition, from which that of the adjoint is easily
computed, as K ⊗ K ¼ adj⊕ 1 for type-A algebras

ρ½24�∶ suð8Þ → suð2ÞX ⊕ suð4Þ;
8 → ð2; 4Þ;

63 → ð3; 1Þ⊕ ð1; 15Þ⊕ ð3; 15Þ: ð3:69Þ

In the IR theory, using Eq. (3.44), we therefore have

c2ðFLÞ ¼ 4c2ðRÞ þ 2c2ðFsu4
Þ;

Ivec8 ð½24�Þ ¼ −
1

2
ÂðTÞð ˜ch3ðRÞ þ ð ˜ch1ðRÞ

þ ˜ch3ðRÞÞch15ðFsu4
ÞÞ; ð3:70Þ

where we have written everything in terms of the IR
R-symmetry. For completeness, we recall that the weighted
Dynkin diagram of this nilpotent orbit is given by
w ¼ ½0; 0; 0; 2; 0; 0; 0� [67], and one can check that the
index of the su2 embedding is indeed given by IX ¼ 4
via Eq. (3.43).
Note that this case is simpler than the minimal orbit of e6,

as the only nontrivial representation is the adjoint, for
which the trace relations are given by

tradjF2
suK

¼ KTrFsuK
; tradjF4

suK

¼ 2KTrF4
suK

þ 3

2
ðTrF2

suK
Þ2: ð3:71Þ

The anomaly polynomial of the theory Asu8

N−1ð½24�; ½18�Þ is
finally obtained by plugging back Eq. (3.70) into the
formula given in Eq. (3.49). When the dust settles, we
obtain

I8ðAsu8

N−1ð½24�; ½18�ÞÞ ¼
32N4 − 255N2 þ 343N − 96

12N
c2ðRÞ2 −

31N − 55

24
p1ðTÞc2ðRÞ þ

5N þ 51

960
p1ðTÞ2 −

5N þ 3

240
p2ðTÞ

þ p1ðTÞ
�
1

12
TrF2

su8
þ 1

12
TrF2

su4

�
− c2ðRÞ

�
N2 − N − 1

N
TrF2

su8
þ 2N2 − 5N þ 2

N
TrF2

su4

�
þ N − 1

32N
ðTrF2

su8
Þ2 þ 1

8N
TrF2

su8
TrF2

su4
þ N − 2

16N
ðTrF2

su4
Þ2 þ 1

3
TrF4

su8
þ 1

3
TrF4

su4
: ð3:72Þ

In Sec. IV, we will give the form of the anomaly polynomial
for any theory of type AsuK

N−1ðOL;ORÞ, and one can check
that the above result is correct.

IV. ANOMALIES FROM NAMBU-GOLDSTONE
MODES

In the previous section, we have given closed-form
expressions for the anomaly polynomials of every long
6D (1, 0) SCFT. We found them using the anomaly
polynomial of conformal matter and obtained that of its

nilpotent deformations by studying which moment map
modes were surviving the flow to the infrared theory. The
other cases were then reached through fusion, and our
results confirmed by using the generic tensor branch
geometry. In this section, we will determine the putative
anomaly polynomials from a bottom-up perspective with-
out invoking the tensor branch geometry and show that they
match with the closed-form expressions.
We consider here the parent theory of a long quiver,

which we will refer to as the UV theory, T UV. To wit, these
are the three classes of infinite series
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Ag
N−1;fL;fR ; Dg

N;f; Og
N;f: ð4:1Þ

We assume that N is large enough such that giving
nilpotent vacuum expectation values to the moment
maps lead to an interacting SCFT, and, when the parent
theory is of conformal matter type, that the Higgsing of
the left and right moment maps do not influence each
other.20 Giving a nilpotent vacuum expectation to these
operators, hϕi ¼ X∈O, where O is a nilpotent orbit, we
trigger a Higgs branch renormalization group flow
leading to an infrared fixed point corresponding to an
interacting SCFT which we label as T IR.
It is natural to ask: can we determine the anomaly

polynomial of the SCFT T IR using only the information
of the anomaly polynomial of T UV and the information
contained in the nilpotent orbit O by which we Higgs.
Of course, if we allow ourselves to use the tensor
branch description of T UV the path to determining the
anomaly polynomial of T IR is straightforward, if circu-
itous: we know how the tensor branch geometry is
modified by the nilpotent orbit O, and then it is direct to
determine the infrared anomaly polynomial from the
known tensor branch description of T IR. Instead, we
only assume knowledge of the anomaly polynomial of
T UV, and no additional, microscopic details of the
theory.
Under a nilpotent Higgsing, the superconformal sym-

metry, and thus the suð2ÞR R-symmetry, is broken along
the flow. At the interacting fixed point a new R-symmetry
emerges: suð2ÞRIR . A nilpotent orbit of a simple flavor
symmetry factor f corresponds to a homomorphism
suð2ÞX → g, and when a nilpotent Higgsing is per-
formed, the new infrared R-symmetry is simply the
diagonal of the original suð2ÞR and the suð2ÞX. See
[78] for a review of nilpotent Higgsing, particularly in the
context of 4d N ¼ 2 SCFTs. In addition to the breaking
and emergence of the R-symmetry, we must take care of
modes which decouple along the flow into the infrared.
One class of modes which decouple belong to the
moment map (and its superpartners) to which we give
the VEV; we refer to these as the Nambu-Goldstone
modes inside of the moment map. In particular, the
moment map supermultiplet contains chiral fermions, and
the decoupling of these fermions in the infrared affects
the anomalies of T IR.
In six dimensions, a positive-chirality fermion trans-

forming in the representation l of suð2ÞRIR and some
representation R of a flavor symmetry f contributes to the

anomaly polynomial as21

Ifermion
8 ðl;RÞ ¼ 1

2
ÂðTÞchlðRIRÞchRðFÞ

����
8-form

: ð4:2Þ

Thus, once we know the representations of suð2ÞRIR and f
under which the Nambu-Goldstone fermions inside of the
moment map transform, we can determine the contribution
to the anomaly polynomial from these modes, which must
be removed in the IR. Conveniently, the representations
under the global symmetries of the Nambu-Goldstone
modes belonging to the moment map are known [78].22

Given the homomorphism suð2ÞX → g associated to the
nilpotent orbit, there is an induced branching rule

g ⟶ suð2ÞX ⊕ f;

adj ⟶ ⨁
l
ðdl;RlÞ; ð4:3Þ

where f is the centralizer of the image of the homomor-
phism. The Nambu-Goldstone fermions transform in the
suð2ÞRIR ⊕ f representations

⨁
l
ðdl − 1;RlÞ: ð4:4Þ

Thus, we can determine the contribution to the infrared
anomaly polynomial that comes from the decoupled
Nambu-Goldstone modes inside of the moment map.
In principle, there may be anomaly-contributing

modes that decouple along the flow into the infrared
that do not belong to the Nambu-Goldstone fermions
inside of the moment map supermultiplet. In fact, such
modes often exist when considering the nilpotent
Higgsing of the flavor symmetry factor g in an arbitrary
SCFT, as has been noted in both 4d N ¼ 2 and 6D
(1, 0) contexts in [80,81]. We propose that when the
parent theory is one of those in Eq. (4.1), then the only
modes that decouple in the infrared and contribute
nontrivially to the anomaly are those that belong to
the moment map; we verify this by demonstrating that
the anomaly polynomial worked out under such an
assumption is identical to the anomaly polynomial
worked out using the tensor branch geometry.
Putting everything together concisely, the anomaly

polynomial of the interacting infrared SCFT can be
determined via the following algorithm.

20Recall that we are not considering Higgsing by giving a
nilpotent vacuum expectation value to the moment map of the e8
flavor symmetry on the left in the parent theory Og

N;f.

21The 1=2-prefactor appears in Eq. (4.2) as R may be a real
irreducible representation of f.

22The analysis in [78] focused on 4d N ¼ 2 SCFTs, however
the generalization to the structure of the Nambu-Goldstone
modes inside of the moment map in 6D (1, 0) is clear.

BESTIARY OF 6D (1, 0) SCFTS: NILPOTENT ORBITS AND … PHYS. REV. D 110, 045021 (2024)

045021-27



ALGORITHM 1.

Given the anomaly polynomial, I8ðT UVÞ, for a long quiver, T UV, chosen among the theories given in Eq. (4.1), and a nilpotent orbit,O,
of one of the simple flavor factors, g, of T UV, the anomaly polynomial, I8ðT IRÞ, of the SCFT T IR obtained via giving a VEV valued in
O to the moment map of g is found as follows.
(1) In I8ðT UVÞ, rewrite the one-instanton normalized traces of the flavor symmetries in terms of the curvatures of the algebras

suð2ÞX and f appearing in Eq. (4.3): TrFn
X and TrFn

f .

(2) Replace the second Chern class of the UV R-symmetry c2ðRUVÞ and c2ðFXÞ by that of the IR R-symmetry

c2ðRUVÞ; c2ðFXÞ → c2ðRIRÞ: ð4:5Þ

Steps 1 and 2 define the quantity I8ðT UV;RIRÞ.
(3) The IR anomaly polynomial is then obtained by removing the Nambu-Goldstone modes

I8ðT IRÞ ¼ I8ðT UV;RIRÞ −
X
l

Ifermion
8 ðdl − 1;RlÞ; ð4:6Þ

where the representations of fermions are given from the decomposition in Eq. (4.3). The contribution of each fermionic Nambu-
Goldstone mode is as defined in Eq. (4.2).

If T UV ¼ Ag
N−1;fL;fR , there can be a nilpotent vacuum expectation value for both moment maps. Then we perform the three steps

sequentially for each nilpotent deformations.

Having given the algorithm, one can show that its result
is equivalent to the closed-form expression presented in
Sec. III. To see this, recall that we have interpreted these
anomaly polynomials as coming from both one-loop and
GS contributions at the fixed point. The quantity Ivec8 ðOÞ,
defined in Eq. (3.38), was introduced as a way to sum only
over the contribution of massless modes of the adjoint
representation after the nilpotent breaking. It is straightfor-
ward to show that this contribution and that of the Nambu-
Goldstone modes as defined above reorganize into the
anomaly polynomial of a full vector multiplet written in
terms of the IR data. This is expected, as Ivec8 ðOÞ counts
suð2ÞX highest-weight states appearing in the Jacobson-
Morozov, weighted by the IR R-symmetry through the
twisted character fchd, while the Nambu-Goldstone modes
are by definition those that do not commute with the
representative X of the nilpotent orbit. This takes care of
the one-loop part of the closed-form expression, while the
replacement JfrðFÞ → JfrðOÞ is equivalent to steps 1 and 2

of the Algorithm 1 applied to the Green-Schwarz contri-
bution, when the R-symmetry is understood to be that of
the infrared theory. This therefore justifies a posteriori the
introduction of fchd as a quantity encoding the R-symmetry
of the modes remaining massless in the IR theory.
Note that while equivalent, the results of previous section

and Algorithm 1 have different advantages. Starting from a
nilpotent deformation of conformal matter, we can reach a
long quiver of, e.g., an orbi-instanton through fusion, and
both the one-loop and Green-Schwarz terms can be easily
identified with the closed-form expressions. One the other
hand, using Algorithm 1 we can find the anomaly poly-
nomial of any 6D (1, 0) SCFT reached by nilpotent RG
flows without knowing the precise details of its quiver.
For completeness, and as they are usually the most

relevant quantities in practical computations, we give here
the shifts that the gravitational and R-symmetry anomaly
coefficients undergo when (fractional) conformal matter
Ag

N−1;fL;fR is Higgsed via nilpotent orbits OL and OR

αUV − αIR ¼ 12ΓNeff

�
IXL

dfL
þ IXR

dfR

�
þ 12

Neff

�
IXL

dfL
−
IXR

dfR

�
2

þ 4ðβUV − βIRÞ − ð4φ3ðwLÞ þ φ0ðwLÞ þ 4φ3ðwRÞ þ φ0ðwRÞÞ;

βUV − βIR ¼ þ 6

Neff

�
1

dfL
−

1

dfR

��
IXL

dfL
−
IXR

dfR

�
−
�
φ1ðwLÞ −

1

2
φ0ðwLÞ þ φ1ðwRÞ −

1

2
φ0ðwRÞ

�
;

γUV − γIR ¼ þ 7

240
ðdimðOLÞ þ dimðORÞÞ;

δUV − δIR ¼ −
1

120
ðdimðOLÞ þ dimðORÞÞ: ð4:7Þ
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Here, Neff is as given in Eq. (3.23), dfL and dfR are the
denominators of the fractions fL and fR, respectively, and
IXL

, IXR
are the embedding indices for the suð2ÞX under the

branching of the respective nilpotent orbits. The quantity
φnðwÞ can be obtained directly from the weighted Dynkin
diagram associated with O, and the set of positive roots Λþ
of gf

φnðwÞ ¼
X
α∈Λþ

hα; win; ð4:8Þ

with the weighted Dynkin diagram understood as an
element of the weight lattice, and the scalar product is
the pairing on that lattice. We remind the reader than in our
convention, for simply laced algebras, it is given by
hα; βi ¼ αT · C−1 · β, where C is the associated Cartan
matrix, see Table VIII. Note that φ0ðwÞ is understood as
counting the number of positive roots α for which
hα; wi ≠ 0. The quantities defined in Eq. (4.7) are therefore
easy to compute from the tables in Appendix B for any
theory without needing to know the complete Jacobson-
Morozov decomposition, but only the weighted Dynkin
diagrams of the nilpotent orbits.
In Sec. IVA, we provide a proof that Algorithm 1 as

applied to nilpotent RG flows of rank N ðsuK; suKÞ
conformal matter leads to the same anomaly polynomial
that is obtained froman analysis of the tensor branch effective
field theory, following [37,42,43]. In essence, we can
consider this as a proof that when a nilpotent vacuum
expectation value is given to the moment map of the flavor
symmetry of these theories, the only modes to decouple
along the flow are theNambu-Goldstonemodes arising from
the moment map itself. General proofs that Algorithm 1
reproduces the known anomaly polynomials (as determined
from the tensor branch geometry) for the theories

Ag
N−1;fL;fRðOL;ORÞ; Dg

N;fðOÞ; Og
N;fð∅; OÞ; ð4:9Þ

where g is any allowed simply laced classical Lie algebra can
be shown in a similar manner; it is tedious to be explicit.
When g is an allowed exceptional Lie algebra, then the
number of nilpotent orbits is finite, and the proof of the
matching between Algorithm 1 and the tensor branch
analysis can be shown by exhaustion; in Sec. IV B, we
provide an explicit example: Ae6

N−1ð0; A1Þ. In particular, this
requires the knowledge of the branching rules of the adjoint
representation for the nilpotent orbits of the exceptional
simple Lie algebras, which we collate for convenience in
Appendix B.

A. General proof for AsuK
N − 1ðOL;ORÞ

In this section, we provide a general proof that
Algorithm 1 determines the correct anomaly polynomial
for arbitrary nilpotent deformations of rank N ðsuðKÞ;
suðKÞÞ conformal matter. We apply the algorithm to

AsuK
N−1ðOL;ORÞ generically, and we show that this produces

the same anomaly polynomial as can be read off from the
known tensor branch geometry. For ease of notation, we
assume that K ≥ 4.

1. From the algorithm

The first step in Algorithm 1 is to determine the
decompositions of the traces under the decomposition of
the suðKÞ algebra induced by the choice of nilpotent orbits.
We begin by writing the one-instanton normalized traces in
terms of traces over the fundamental representation

TrF2 ¼ 2trfundF2; TrF4 ¼ trfundF4: ð4:10Þ

Let O be a nilpotent orbit of suðKÞ represented by the
integer partition

PO ¼ ½1m1 ; 2m2 ;…; KmK � such that
XK
i¼1

imi ¼ K:

ð4:11Þ
The decomposition of Lie algebras associated to this
nilpotent orbit is

suðKÞ → suð2ÞX ⊕⨁
K

i¼1

suðmiÞ; ð4:12Þ

where we have ignored Abelian factors.23 Under this
decomposition, the branching rule of the fundamental
representation is

K → ⨁
K

i¼1

ði;miÞ; ð4:13Þ

where i is the i-dimensional irreducible representation of
suð2ÞX and mi is the fundamental representation of
suðmiÞ.24 Recalling the following simple identities regard-
ing the traces

trA⊕BFk ¼ trAFk þ trBFk;

trA⊗BF2 ¼ dimðBÞtrAF2 þ dimðAÞtrBF2;

trA⊗BF4 ¼ dimðBÞtrAF4 þ dimðAÞtrBF4 þ 6trAF2trBF2;

ð4:14Þ
it is then straightforward to determine the decompositions
of the traces. In particular, let FX denote the curvature of the

23We also assume that the Higgsing is not the trivial Higgsing,
i.e., O ≠ ½1K �.

24More precisely, mi is the representation of ⨁K
j¼1suðmjÞ

obtained by taking the tensor product of the fundamental
representation of suðmiÞ with the trivial representation of all
suðmj≠iÞ factors.
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suð2ÞX bundle and Fi the curvature of the suðmiÞ bundle,
then

TrF2 →
XK
i¼1

�
iTrF2

i þ
miiði2 − 1Þ

6
TrF2

X

�
; ð4:15Þ

where we have used that

trdF2 ¼ dðd2 − 1Þ
12

TrF2; ð4:16Þ

for an arbitrary irreducible representation d of suð2Þ. We
can now utilize a similar procedure to work out the
decomposition of TrF4. We find

TrF4 →
XK
i¼1

ðitrmi
F4
i þmitriF4

X þ 6trmi
F2
i triF

2
XÞ: ð4:17Þ

To convert all the traces to one-instanton normalized traces,
we need to know several identities. First, for an arbitrary
d-dimensional irreducible representation of suð2Þ, we have

trdF4 ¼ dð3d4 − 10d2 þ 7Þ
240

ðTrF2Þ2: ð4:18Þ

For the trmi
F4
i , the trace converts differently depending on

whether mi ¼ 2, 3 or mi ≥ 4. We have

trmi
F4
i ¼

(
TrF4

i if mi ≥ 4;
1
8
ðTrF2

i Þ2 if mi ¼ 2; 3:
ð4:19Þ

Thus, we have completed the first step of decomposing the
traces.
Next, we need to determine the anomaly polynomial of

the Nambu-Goldstone modes arising from the moment
map. Under the algebras after the decomposition in
Eq. (4.12), where we recall that suð2ÞX is replaced with
suð2ÞRIR , the Nambu-Goldstone modes transform in the
following reducible representation:

R ¼ ⨁
K

i;j¼1
j≠i

⨁
minði;jÞ

k¼1

ðiþ j − 2k;mi;mjÞ

⊕⨁
K

i¼1

⨁
i

k¼1

ð2i − 2k; adji ⊕ 1Þ; ð4:20Þ

where adji is the adjoint representation of suðmiÞ. The
anomaly contribution from the Nambu-Goldstone modes
is simply

ING8 ¼ 1

2
chRðfRIR; FigÞÂðTÞ; ð4:21Þ

where we use fRIR; Fig to collectively denote the curva-
tures of the suð2ÞRIR bundles and all the suðmiÞ bundles.

Recalling that the Chern character can bewritten in terms of
the traces as

chρðFÞ ¼ trρF0 −
1

2
trρF2 þ 1

24
trρF4 þ � � � ; ð4:22Þ

where we have ignored the terms of odd form-degree,
it is straightforward to expand the anomaly polynomial in
Eq. (4.21) in terms of the irreducible components of
the representation in Eq. (4.20). As we will see, certain
expressions appear regularly in the expansions of the
traces; for convenience we define the following matrices

Xi;j ¼ ij −minði; jÞ;
Yi;j ¼ ðij −minði; jÞÞði2 þ j2 − 2ðiþ j −minði; jÞÞ − 1Þ;

Zi;j ¼
1

15

Xminði;jÞ

k¼1

ðiþ j − 2kþ 1Þðiþ j − 2kÞ

× ðiþ j − 2k − 1Þð3ðiþ j − 2kÞ2 − 7Þ: ð4:23Þ

Now we consider the traces appearing in the expansion
of the Nambu-Goldstone anomaly polynomial. We begin
with

trRF0 ¼
XK
i;j¼1

mimjXi;j ¼ dimðRÞ; ð4:24Þ

which is simply the dimension of the representation R.
We now turn to the second term, which decomposes as

trRF2 ¼
XK
i;j¼1

1

2
Xi;jðmiTrF2

j þmjTrF2
i Þ

þ
XK
i;j¼1

1

3
mimjYi;jc2ðRIRÞ: ð4:25Þ

Here we have used that

c2ðRIRÞ ¼ 1

4
TrF2

RIR : ð4:26Þ

The quartic trace is the most tedious term to decompose,
however, after a little algebra, one finds the following:

trRF4¼
XK
i;j¼1

mimjZi;jc2ðRIRÞ2þXi;jðmitrmj
F4
j þmjtrmi

F4
i Þ

þYi;jðmiTrF2
j þmjTrF2

i Þc2ðRIRÞþ3

2
Xi;jTrF2

iTrF
2
j :

ð4:27Þ

Now that we have determined the appropriate decom-
positions of the traces and the anomaly contribution for the
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Nambu-Goldstone modes, we are ready to apply
Algorithm 1 to determine the anomaly polynomial of

AsuðKÞ
N−1 ðOL;ORÞ. Let the integer partitions of K associated

to the nilpotent orbits OL and OR be

POL
¼ ½1m1 ; 2m2 ;…; KmK �; POR

¼ ½1m0
1 ; 2m

0
2 ;…; Km0

K �:
ð4:28Þ

To aid in the comparison with the tensor branch ’t Hooft
anomaly matching approach to determining the anomaly
polynomial, we will be extremely explicit here, and go
coefficient-by-coefficient.
First, the contributions to the coefficients γIR and δIR

come only from the Nambu-Goldstone modes

γIR ¼ γUV −
7

480

XK
i;j¼1

ðmimj þm0
im

0
jÞXi;j

¼ γUV −
7

480
ðdimðOLÞ þ dimðORÞÞ;

δIR ¼ δUV þ 1

120

XK
i;j¼1

ðmimj þm0
im

0
jÞXi;j

¼ δUV þ 1

120
ðdimðOLÞ þ dimðORÞÞ: ð4:29Þ

The relation between the partition data and the dimension
of the orbit can be found in, e.g., [47,67], and this result is
therefore consistent with Eq. (4.7).
Next, we turn to βIR; there are three contributions to the

infrared anomaly from the ultraviolet anomaly polynomial,
coming from the terms

c2ðRÞp1ðTÞ; p1ðTÞTrF2
L; and p1ðTÞTrF2

R; ð4:30Þ

together with the Nambu-Goldstone contribution. To suc-
cinctly write how these UV terms enter in the infrared
anomaly coefficients, we define the embedding index for
the suð2ÞX factor associated to the nilpotent orbit OL,
following Eq. (3.43), as

IXL
¼

XK
i¼1

mi
iði2 − 1Þ

6
; ð4:31Þ

and similarly we define IXR
. Putting all four contributions

together, we find

βIR ¼ βUV þ 96ðIXL
κUVL þ IXR

κUVR Þ

−
1

12

XK
i;j¼1

ðmimj þm0
im

0
jÞYi;j: ð4:32Þ

Finally, we turn to the c2ðRIRÞ2 anomaly coefficient αIR. In
addition to the Nambu-Goldstone modes, there exist eight

terms in the UVanomaly polynomial that contribute to this
IR coefficient; these are

c2ðRÞ2; c2ðRÞTrF2
L; c2ðRÞTrF2

R; TrF4
L; TrF4

R;

TrF2
LTrF

2
L; TrF2

LTrF
2
R; TrF2

RTrF
2
R: ð4:33Þ

For ease of notation, we define the following quantity:

IO2
L
¼

XK
i¼1

mi
ið3i4 − 10i2 þ 7Þ

240
; ð4:34Þ

and again analogously for IO2
R
. Then

αIR ¼ αUV þ 96ðIXL
νUVL þ IXR

νUVR Þ
þ 384ðIO2

L
μUVL þ IO2

R
μUVR Þ

þ 384ðI2XL
ρUVLL þ IXL

IXR
ρUVLR þ I2XR

ρUVRR Þ

−
1

2

XK
i;j¼1

ðmimj þm0
im

0
jÞZi;j: ð4:35Þ

The anomalies involving the infrared non-Abelian flavor
symmetries are our next port of call. We begin with the
mixed flavor-gravitational anomalies. We find

κIRL;i ¼ iκUVL −
1

96

XK
j¼1

mjXi;j; κIRR;i ¼ iκUVR −
1

96

XK
j¼1

m0
jXi;j:

ð4:36Þ

Next, we consider the quartic anomalies of the suðmiÞ
flavor symmetries—obviously these TrF4

i terms can only
exist if the flavor algebra admits an independent quartic
Casimir, i.e., mi > 3. Assuming that this condition is
satisfied, we find

μIRL;i ¼ iμUVL −
1

24

XK
j¼1

mjXi;j; μIRR;i ¼ iμUVR −
1

24

XK
j¼1

m0
jXi;j:

ð4:37Þ

Let us now consider the mixed R-flavor anomalies. In
addition to the Nambu-Goldstone modes which must be
subtracted, these anomalies have contributions from three
distinct UV anomalies. We have

νIRL;i ¼ iνUVL þ 8iIXL
ρUVLL þ iði2 − 1ÞμUVL −

1

24

XK
j¼1

mjYi;j;

ð4:38Þ

and analogously for νIRR;i. Finally, we consider the mixed
flavor-flavor anomalies. We begin with the anomalies from
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the infrared flavor algebras that come from either the left or
the right UV flavor algebra. We have

ρIRLL;ij ¼ ijρUVLL −
1

32
Xi;j: ð4:39Þ

If i is such that mi ¼ 2, 3, then there are two extra
contributions to the j ¼ i anomaly coefficient

ρIRLL;ii ¼ i2ρUVLL þ i
8
μUVL −

1

32
Xi;i −

1

192

XK
j¼1

Xi;jmj: ð4:40Þ

The obvious modifications hold for the anomaly coeffi-
cients ρRR;ij. We also consider the flavor-flavor anomalies
that mix the flavor symmetry factors localized on the left
and the right; such anomalies lack a Nambu-Goldstone
contribution. We find

ρIRLR;ij ¼ ijρUVLR : ð4:41Þ

We have now used Algorithm 1 to determine the generic
form of the anomaly polynomial AsuK

N−1ðOL;ORÞ written in
terms of the partitions in Eq. (4.28) defining the nilpotent
orbits OL and OR. While we have focused on the cases
whereK > 3, the special cases ofK ¼ 2, 3 are governed by
identical formulas, except that one needs to formally set
μUVL ¼ μUVR ¼ 0, to account for the absence of an indepen-
dent quartic Casimir for suð2Þ and suð3Þ.

2. From the tensor branch

We now determine the anomaly polynomial of
AsuK
N−1ðOL;ORÞ from the geometric description of the

effective field theory at the generic point of the tensor
branch. The tensor branch configuration takes the form

AsuK
N−1ðOL;ORÞ∶ 2

suk1

½m1�
2

suk2

½m2�
� � � 2

sukK

½mK �
2

suK � � � 2
suK|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N−2K−1

2

suk0
K

½m0
K �
� � � 2

suk0
2

½m0
2
�
2

suk0
1

½m0
1
�
;

ð4:42Þ
as described in Appendix D. We will assume that neither
OL nor OR are the nilpotent orbits associated to the [K]
partition; these special cases can be handled individually.
The anomaly polynomial can be written as

I8 ¼ I1-loop8 þ IGS8 ; ð4:43Þ
where the one-loop contribution is the sum of the con-
tributions of the vector, tensor and hypermultiplets. We
refer in particular to [43], where the algorithm to determine
the anomaly polynomial from the tensor branch geometry
is given explicitly, and for the anomaly contributions from
each multiplet. The Green-Schwarz contribution is

IGS8 ¼ −
1

2
Ãi;jIiIj; Ii ¼ −

1

4
BiaTrF2

a þ h∨i c2ðRÞ: ð4:44Þ

Here i, j index the (−2)-curves, left-to-right. We have not
written the gauge field strengths in Ii as they all cancel in
the final result, a runs over the simple non-Abelian flavor
factors of the SCFT, and h∨i is the dual Coxeter number of
the algebra supported over the ith curve. Finally, the matrix
Ã is the inverse of the (negative-definite) Cartan matrix of
AN−1; it has entries

Ãi;j ¼
ij
N
−minði; jÞ: ð4:45Þ

To compare to the anomalies as determined by
Algorithm 1, we need to know the UVanomaly coefficients
for conformal matter; these appear in Eq. (3.8). We study
the ’t Hooft anomalies associated to the flavor symmetries
first, as they are they simplest. Consider κL;i; the only
contribution is from the bifundamental hypermultiplet
charged under suðmiÞ. We find that

κL;i ¼
1

96
ki ¼

1

96

�
K −

XK−i
j¼1

jmiþj

�

¼ i

�
K
96

�
−

1

96

XK
j¼1

mjXi;j: ð4:46Þ

Here we have used the elementary fact about integer
partitions of K that

K −
XK−i
j¼1

jmiþj ¼ iK −
XK
j¼1

mjðij −minði; jÞÞ: ð4:47Þ

We have thus verified Eq. (4.36). Contributions of μL;i
similarly arise only from the bifundamental hypermultiplet
between suðmiÞ and suðkiÞ, and thus almost identical
manipulations reveal that the tensor branch calculation
reproduces Eq. (4.37). Consider now the ρLR;ij coefficient;
the only contribution is the Green-Schwarz term and
we find

ρLR;ij ¼ −
1

16
Ãi;N−j ¼

1

16

�
minði; N − jÞ − iðN − jÞ

N

�
¼ 1

16
ij

�
1 −

N − 1

N

�
¼ ij

�
−
Ã1;N−1

16

�
: ð4:48Þ

This verifies Eq. (4.41). Henceforth, we silently use the
fact that

Ãi;N−j ¼ ijÃ1;N−1: ð4:49Þ

Next, we consider ρLL;ij; we first assume that i ≠ j or
mi > 3. The only contribution is from the Green-Schwarz
term and we find
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ρLL;ij ¼ −
1

16
Ãi;j ¼

1

32

�
minði; jÞ − ij

N

�
¼ ij

�
N − 1

32N

�
−

1

32
ðij −minði; jÞÞ: ð4:50Þ

When i ¼ j and mi ¼ 2, 3 then there is an additional
contribution from the bifundamental hypermultiplet
charged under suðmiÞ. This contributes in the same way
as the bifundamental hypermultiplet for the κL;i and μL;i,
and thus we find

ρLL;ii ¼ i2
�
N − 1

32N

�
−

1

32
iði − 1Þ þ i

8

�
K
24

�
−

1

192

XK
j¼1

Xi;jmj: ð4:51Þ

Thus, we have shown that Eqs. (4.39) and (4.40) from the
algorithm agree with the geometric calculation. Next, we
turn to νL;i. Only Green-Schwarz terms can contribute to
this anomaly coefficient. We find

νL;i ¼
1

4

XN−1

j¼1

kiÃj;i ¼
i
4N

þ ðN − 1ÞIXL
þ K
24

iði2 þ 2Þ

−
iKN
8

−
1

24

XK
j¼1

mjYi;j; ð4:52Þ

where we have rewritten the sum over the whole quiver in
terms of the partition data, therefore recovering Eq. (4.38).
We now move on to the terms that do not involve the

flavor symmetry. Closed-form expression in terms of the
gauge group ranks ki and the pairing matrix are straightfor-
ward to determine, see, e.g., [47]. We must therefore
convert them into the partition data to compare them with
the expressions found in the previous subsection.
The coefficients γ and δ have contributions from all three

types of multiplets, but not from the Green-Schwarz term.
For the former, one finds that

δ ¼ −
N − 1

2
−

1

120

XN−1

i¼1

kimi ¼ −
N
2
−
ðK2 − 1Þ − 29

60

þ 1

120

XK
i;j¼1

ðmimj þm0
im

0
jÞXi;j; ð4:53Þ

where we have used the relation between the value of ki
for the gauge algebra and the partition data, see
Appendix (D5), as well as Eq. (4.47) to simplify the result
and put it in the same form the value of δ given in
Eq. (4.29). Up to small difference in the numerology of
the constant factors, one can verify that the same is also
true for γ.

For β, the only contributions are from the tensor and
vector multiplets in the one-loop anomaly polynomial.
We find

β ¼ −
1

2

�XK
i¼1

ðk2i þ k02i Þ − 2K3 − K2 þ 2þ NðK2 − 2Þ
�
;

ð4:54Þ

where we written the Green-Schwarz contribution in terms
of the ki on the left and the right. These can then be
converted to the partition data using the relation

XK
i¼1

k2i ¼ K3 − 2IXK þ 1

6

XK
i¼1

mimjYi;j; ð4:55Þ

and we therefore recover what we have found for in the
previous subsection, see Eq. (4.32). Finally, the c2ðRÞ2
term arise from contributions of both tensor and vector
multiplets, as well as the Green-Schwarz term

α ¼ −12
XN−1

i;j¼1

kikjÃi;j þ 2β: ð4:56Þ

Decomposing the first term into the partition orders mi and
m0

i is tedious, but straightforward. When the dust settles,
one finds

XN−1

i;j¼1

kikjÃi;j ¼ −
NðN2 − 1Þ

12
þ 1

N
ðIXL

þ IXR
Þ− ðI2XL

þ I2XR
Þ

þ 6N − 5

6
KðIXL

þ IXR
Þ− 4

3
ðIO2

L
þ IO2

R
Þ

þ 1

24

XK
i;j¼1

ðmimj þm0
im

0
jÞ
�
Zi;j −

1

3
Yi;j

�
;

ð4:57Þ

from which we once obtain the same expression as in
Eq. (4.35), as expected.
Thus, we have proven that the anomaly polynomial of

Higgsed rank N ðsuðKÞ; suðKÞÞ as determined from the
geometric description of the tensor branch is identical to the
anomaly polynomial obtained by following Algorithm 1.

B. An exceptional example: Ae6
N − 1ðA1; 0Þ

For the parent theories in Eq. (4.1) where g is an
exceptional Lie group, there are only a finite number of
nilpotent orbits, and thus one can verify that Algorithm 1
produces the same result as the geometry, exhaustively.
While we have carried out this exhaustive process, we
present here only one example: Ae6

N−1ð0; A1Þ. This example
also appeared in Sec. III D.
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First, we consider the anomalies of the ultraviolet theory: Ae6
N−1. These can be determined directly from the geometry,

and we find

αUV ¼ 576N3 − 334N þ 77; βUV ¼ 77 − 166N
2

;

γUV ¼ 30N þ 523

240
; δUV ¼ −30N − 49

60
; κUVL;R ¼ 1

8
;

νUVL;R ¼ 3 − 6N
2

; μUVL;R ¼ 0; ρUVLL;RR ¼ 3N − 1

32N
; ρUVLR;RL ¼ 1

16N
; ð4:58Þ

where the subscripts L and R refer to the “left” and “right” e6 flavor symmetry factors, respectively. Similarly, we can
determine the anomalies of the infrared theory, Ae6

N−1ð0; A1Þ, from the geometry. In this case, the effective field theory on the
tensor branch is

1 3
su3

16
e6 � � � 1 3

su3

16
e6|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1

1 2
su3

; ð4:59Þ

and thus we find that the anomaly coefficients are

αIR ¼ 576N3 − 622N þ 256 −
12

N
; βIR ¼ 100 − 166N

2
;

γIR ¼ 30N þ 446

240
; δIR ¼ −30N − 38

60
; κIRL ¼ 1

8
; κIRR ¼ 3

32
;

νIRL ¼ 3 − 6N
2

þ 1

4N
; νIRR ¼ 3 − 6N

2
þ 3N − 1

4N
; μIRL ¼ 0; μIRR ¼ 1

8
;

ρIRLL ¼ 3N − 1

32N
; ρIRRR ¼ 2N − 1

32N
; ρIRLR;RL ¼ 1

16N
; ð4:60Þ

where the subscript L denotes the unbroken e6 flavor
symmetry, and R is for the suð6Þ flavor that right e6 is
broken to by the Higgsing.
We would now like to reproduce these infrared anoma-

lies from the Nambu-Goldstone analysis of Algorithm 1.
The nilpotent orbit A1 of e6 is associated to the decom-
position

e6 → suð2ÞX ⊕ suð6Þ; ð4:61Þ

where both factors in the decomposition have embedding
index one; this can be seen easily from the adjoint
branching, which is

78 → ð3; 1Þ⊕ ð1; 35Þ⊕ ð2; 20Þ: ð4:62Þ

Thus, we can see that we must decompose the curvature of
the right e6 flavor bundle as

TrF2
R → TrF2

X þ TrF2
R; ð4:63Þ

where we have abused notation and used FR on the left to
refer to the curvature of the UV e6 bundle, and on the right
to refer to the curvature of the IR suð6Þ bundle. We do not

need to discuss the decomposition of the TrF4
R as e6 does

not possess a quartic Casimir.
From the decomposition of the adjoint representation in

Eq. (4.62), the Nambu-Goldstone fermions transform in the
following representations of the suð2ÞRIR ⊕ suð6Þ infrared
global symmetry

ð2; 1Þ; ð1; 20Þ: ð4:64Þ

Thus, the contribution to the anomaly polynomial from the
Nambu-Goldstone modes is

ING8 ¼ 1

2
ch2ðRIRÞÂðTÞ þ 1

2
ch20ðFRÞÂðTÞ

����
8-form

; ð4:65Þ

where we have just written RIR for the curvature of the
suð2ÞRIR bundle. To expand this, we must convert traces in
the 20 representation of suð6Þ to one-instanton normalized
traces

ch20ðFRÞ ¼ 20 −
3

2
TrF2

R þ 1

24

�
−6TrF4

R þ 3

2
ðTrF2

RÞ2
�

þ � � � : ð4:66Þ
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Altogether, then, we find that the Nambu-Goldstone
modes contribute to the infrared anomaly in the following
explicit way

ING8 ¼ 11 ×
1

5760
ð7p1ðTÞ2 − 4p2ðTÞÞ

þ
�
−
3

4
TrF2

R −
1

2
c2ðRIRÞ

�
×

�
−

1

24
p1ðTÞ

�
þ 1

24
c2ðRIRÞ2 þ 1

32
ðTrF2

RÞ2 −
1

8
TrF4

R: ð4:67Þ

Now that we have determined ING8 , we can combine it with
the UV anomaly coefficients as in Eq. (4.58), following
Algorithm 1, and we see that the infrared anomalies that
were given via the geometry in Eq. (4.60) appear directly. It
is straightforward to apply this simple procedure to any
exceptional parent theory by utilizing the nilpotent orbit
data collated in Appendix B.

V. DISCUSSION

The main results of our work are the closed-form
expressions for the anomaly polynomials of any long
quivers, or equivalently Algorithm 1, giving a prescription
to find the complete anomaly polynomial of a 6D (1, 0)
SCFT obtained through nilpotent renormalization group
flows of the parent theories. Beyond their usefulness as
tools to efficiently obtain the numerical values of its
coefficients, they also enable us to study the deformed
theories purely in terms of gauge-invariant quantities
computed directly at the conformal fixed point, without
invoking the effective field theory on the generic point of
the tensor branch. That is, we can understand the complete
anomaly polynomial of an SCFT in terms of its conformal
spectrum rather than its geometric description.
As we have already alluded to, a particularly important

set of quantities of a 6D conformal field theory are its
central charges. These are part of the conformal data, and
are in principle defined independently of any gauge
description or geometric engineering. For instance, the
central charges CT and CJ are obtained by computing the
two-point correlators of the energy-momentum tensor Tμν

and flavor currents Jμa, respectively [82,83]

hTμνðxÞTρσð0Þi ¼ CT

VolðS5Þ2
Pμνρσ

x12
;

hJμaðxÞJμbð0Þi ¼
CJ;a

VolðS5Þ2
δabPμν

x10
; ð5:1Þ

where Pμνρσ and Pμν are the spin-two and spin-one
projectors, respectively. It is also well-known that in the
presence of a background metric, there is a Weyl anomaly
and the tracelessness condition of the energy-momentum
tensor is broken [84,85]

hTμ
μi ¼ a

ð4πÞ3 E6 þ � � � ; ð5:2Þ

where E6 is the six-dimensional Euler density, while the � � �
encode both Weyl-invariant and scheme-dependent terms.
In unitary theories, the central charges and the coefficient a
must be positive. They are in particular also related to OPE
coefficients, which makes them particularly relevant in the
modern incarnation—numerical or analytical—of the con-
formal bootstrap [86,87]. These quantities are furthermore
related to particular combinations of the coefficients
appearing in the anomaly polynomial of a given (1, 0)
SCFT [2,83]

CT ¼ 168ð2α − 3β þ 4γ þ δÞ; ð5:3Þ

CJ;a ¼ 240ðκa − νaÞ; ð5:4Þ

a ¼ 16

7

�
α − β þ γ þ 3

8
δ

�
: ð5:5Þ

Our results therefore make it particularly easy to
find them directly without going through geometric
engineering.
In Sec. VA, we discuss how the anomaly polynomial of

theories described by short quivers can be understood as
limits of long quivers, and how one can define additional
minimal building blocks encoding the nilpotent breakings
that are well behaved under fusion, despite possibly having
negative central charges. In Sec. V B, we come back to the
Weyl anomaly coefficient a defined in Eq. (5.2), and give a
proof of the a-theorem for nilpotent RG flows using only
the group theory related to nilpotent orbits. We close by
discussing possible future directions in Sec. V C.

A. Building blocks and analytic continuation

As we go along the Higgs branch RG flows, there are
fewer and fewer curves in the tensor branch description,
and we have assumed throughout that the quiver is long
enough so that either of its ends cannot influence the other.
On the other hand, even when one of its tails is kept
undeformed, if the quiver is short enough, as we go through
nilpotent RG flows we could ultimately have no curves left
even though the end of the Hasse diagram of the associated
flavor symmetry has not been reached.
It is however possible to “analytically continue” the

anomaly polynomial of long quivers [22,48] and consider
values of N that are smaller than the number of minimal
conformal matter affected by the nilpotent orbits. When
g ¼ suK for instance, a nilpotent orbit can affect the gauge
symmetry of up to K curves, but we can in principle set
N < K in the anomaly polynomial. This enables us to
formally define a deformed version of minimal conformal
matter
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Ag
0;1;fð∅; OÞ∶ ½g�—½O�; ð5:6Þ

which we have depicted in a pictorial way as before. These
putative theories, along with the other types of building
blocks we have encountered, allow us to construct any long
quiver, even when the nilpotent orbit corresponds to a curve
configuration where one or more conformal matter links are
“eaten” by a nilpotent deformation, and the building block
therefore does not have an associated quiver. In fact, in
many cases, when the nilpotent orbit O is located too deep
in the Hasse diagram, the central charges, CT or CJ;a, of
Ag

0;1;fð∅; OÞ are negative, in apparent violation of unitarity.
In Sec. III A, we have however seen that we can compute

the anomaly polynomial directly at the conformal fixed
point, and consider minimal conformal matter as a one-loop
contribution. Even though Ag

0;1;fð∅; OÞ might have a
seemingly inconsistent anomaly polynomial, when it is
fused with more minimal conformal matter theories, we
obtain an anomaly polynomial that matches exactly that of
the tensor branch computation. This is shown in the same
way we have done around Eq. (3.20) for higher-rank
conformal matter, but now using Ag

0;1;fð∅; OÞ at both ends
of the quiver. This further has the advantage of completely
bypassing the possible propagation of the breaking
throughout the quiver.
Furthermore, the fact that the minimal building blocks

defined in Eq. (5.6) do not have a quiver that can be read
out from a table or a partition does not means that that they
do not correspond to well-defined theories. In fact, a
number of theories with short bases—that is, those with
a small number of curves on the tensor branch—can be
understood as an analytical continuation of a long quiver
[22,48]. For instance, one can find that the following non-
Higgsable cluster

T ∶ 2
su2

3
g2
; ð5:7Þ

has the same anomaly polynomial as a fractional ðe6; e6Þ
conformal matter deformed with a nilpotent orbit O ¼
A4 þ A1 when N → 2

I8ðT Þ ¼ I8
�
Ae6

1;1;2
3

ðA4 þ A1;∅Þ
	
;

T ≃ ½A4 þ A1�—g—½g2
3
¼ ∅�: ð5:8Þ

These two theories have a priori nothing in common. No e6
node appears in the quiver of T , and as can be seen from
Table XV, a complete minimal conformal matter has been
“eaten” in the quiver ofAe6

N−1;1;2
3

ðA4 þ A1;∅Þ. Nonetheless,
it is straightforward to check that both anomaly polyno-
mials precisely match. This can be extended to all non-
Higgsable clusters [22]. In this sense, as our results do not
involve the tensor branch description and we can work
directly at the conformal fixed point; we can not only deal

with long quivers by fusing the building blocks defined in
Eq. (5.6) to other conformal matter, but they can describe
short quivers as well.
In [22], it was also shown that in some cases, short

quivers obtained by analytic continuation exhibit flavor
enhancement. It would therefore be interesting to see if
more general types of short quivers can be obtained using
these deformed building blocks, and whether the enhance-
ment can be understood from the Jacobson-Morozov
decomposition.
On the other hand, we stress the fact that using analytical

continuation gives rise to negative central charges does
not necessarily mean that giving a vacuum expectation
value to the moment map with the corresponding nilpotent
orbit is forbidden. At the field theory level, there is a priori
nothing preventing one to do so, and the apparent violation
of unitarity should be thought of more as a failure of
Algorithm 1 rather than an obstruction to the corresponding
deformation. Indeed we have assumed the quiver to be long
enough precisely to avoid these kinds of edge cases. It
might well be that there are additional modes decoupling,
or that our prescription to find the IR R-symmetry is not
correct. Since the relations between the central charges and
the anomaly polynomial all involve R-symmetry terms, it
might be that a modification of the prescription in the case
of short bases cures this apparent problem. Note that in
three dimensions something similar happens for “ugly”
theories, where a naive IR R-symmetry assignment for
certain BPS monopoles lead to similar “violations” of
unitarity [88]. We leave a systematic analysis of short
quivers, including the question of these types of breaking
and analytic continuation for future work.

B. The a-theorem for nilpotent deformations

The a-anomaly has a preeminent role in the study of RG
flows. In two [89] and four [90] dimensions, an a-theorem
has been shown: along an RG flow between two (a priori
nonsupersymmetric) CFTs, the coefficient a decreases

aUV − aIR > 0: ð5:9Þ

This can be understood as a statement on the irreversibility
of RG flows, as a is a measure of the number of degrees of
freedom of the CFT. In six dimensions, the question has
been tackled using a background dilaton [91–94], but the
fate of a general a-theorem remains uncertain in even
dimensions higher than four. For 6D (1, 0) SCFTs, the
a-theorem has been shown for tensor branch flows, as well
as for large classes of Higgs branch flows [2,47,95,96].
Following the spirit of [47,95], we can use our results to

establish the a-theorem for nilpotent flows in a short and
concise way. Since the anomaly polynomial depends only
on group-theoretical quantities, we need only describe how
the coefficients change as we go from one theory to another.
We will focus on conformal matter with a nilpotent
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deformation on one side Ag
N−1ðO;∅Þ for ease of exposition,

but the argument extends to all other theories. From
Eq. (4.7), the shifts in the relevant coefficients are given by

αUV − αIR ¼ 12ΓNIX þ 12

N
I2X þ 4ðβUV − βIRÞ

− ð4φ3ðwÞ þ φ0ðwÞÞ;

βUV − βIR ¼ −φ1ðwÞ þ
1

2
φ0ðwÞ;

γUV − γIR ¼ þ 7

240
dimðOÞ; δUV − δIR ¼ −

1

120
dimðOÞ:
ð5:10Þ

Using Eq. (5.5), the change in the quantity a between the
two theories related by a nilpotent deformation is given by

aUV − aIR ¼ 16

7

�
ðαUV − αIRÞ − ðβUV − βIRÞ þ ðγUV − γIRÞ

þ 3

8
ðδUV − δIRÞ

	
; ð5:11Þ

The shifts of γ, δ depending only on the dimension of the
nilpotent orbit, their combined contribution is clearly
positive. To establish the a-theorem for nilpotent deforma-
tions, we therefore need only show that the shift in α is
always positive, while that of β is always negative. The
signs of these shifts depends on the behavior of the function
φnðwÞ defined in Eq. (4.8), which we recall here for
convenience

φnðwÞ ¼
X
α∈Λþ

hα; win; ð5:12Þ

As discussed around Eq. (3.30), the entries of the vector w
defining the weighted Dynkin diagram labeling the nilpo-
tent orbit correspond to the charges of the simple roots
under the suð2ÞX Cartan element, which can only take
values 0, 1, 2. One can then show that for a given nilpotent
orbit with weighted Dynkin diagram w, if m ≤ n, then
φmðwÞ ≤ φnðwÞ. The shift in β is therefore always negative.
On the other hand that of α is more involved and depends
on the embedding index IX, which can also be written as a
function of φ2ðwÞ

IX ¼ 1

2
hw;wi ¼ φ2ðwÞ

2h∨g
; ð5:13Þ

as a consequence of the definition of the Killing form. As
can be seen from Appendix D, long quivers must have
N ≥ rg.

25 From the strange formula of Freudenthal and de

Vries, one can then show that IX < 6rgΓ, and using
φ3ðwÞ ≤ φ2ðwÞ2, it is then straightforward to see that the
shift in α is always positive for long quivers. The con-
tribution from γ and δ depending only on the dimension of
the nilpotent orbits, this establishes the a-theorem for RG
flows between conformal matter and the SCFT associated
with the nilpotent orbit O.
We can however do better and consider flows between

two theories in the Hasse diagram of the corresponding
flavor algebras. Under the partial ordering of nilpotent
orbits, see Sec. II D, one can check that if O1 < O2 then
φnðw1Þ ≥ φnðw2Þ for n ≤ 3. This can be understood as
follows: as we go deeper in the Hasse diagram of a given
algebra, more and more roots are charged under the suð2Þ
subalgebra defining the embedding ρO. The quantity φnðwÞ
being essentially a positive weighted sum over those
charges, this explains the relation. For instance, in the
case of φ0ðwÞ, this is immediate, and for φ2ðwÞ this can be
understood as a consequence of the embedding index IX
growing along the Hasse diagram.
Now, since the a-theorem is satisfied for any choice of

nilpotent deformations of the parent theory, these relations
imply that if O1 < O2, it is also satisfied for an RG flow
between Ag

N−1ðO1;∅Þ and Ag
N−1ðO2;∅Þ.

This can be extended to any type of long quiver,
including possible fractions, generalizing the results pre-
viously obtained in [47]. From these simple group-
theoretical arguments, we have therefore shown that a is
monotonically decreasing as we go down in the Hasse
diagram without needing to ever refer to the tensor branch
description or the F-theory construction.
We note that there can be theories Ag

N−1ðO;∅Þ for which
N < rg. From Eq. (5.10), one will sometimes find that the
value of aUV − aIR becomes negative. Those cases however
correspond to analytically continued theories in the sense
used in the previous subsection: the nilpotent orbit is too
large and there is no associated quiver describing the tensor
branch of the theory. Similar cases also occur when there is
a deformation on both sides and one end of the quiver is
affecting the other.

C. Beyond nilpotent orbits

Algorithm 1 heavily utilizes the properties of the
Jacobson-Morozov decomposition to find the IR anomaly
polynomial, as well as the fact that in the infrared, the
R-symmetry is diagonal combination of the suð2ÞR UV
R-symmetry and the suð2ÞX subalgebra of the flavor
symmetry. A natural generalization would be to see if
a similar prescription can be found in the case of defor-
mations of orbi-instantons related to embedding of ADE
discrete groups into E8. In the case of OsuK

N ðσ;∅Þ, closed-
form expressions for the gravitational and R-symmetry
coefficients resembling those appearing in Eq. (4.7) are
known [49]. Indeed, in those cases the homomorphisms

25For exceptional algebras, the long quiver condition is
N ≥ 5, but the bound on the embedding indices is also satisfied
in that case.

BESTIARY OF 6D (1, 0) SCFTS: NILPOTENT ORBITS AND … PHYS. REV. D 110, 045021 (2024)

045021-37



σ ∈HomðZK; E8Þ are classified by Kac labels, which can
be interpreted as weighted Dynkin diagrams similar to
those labeling nilpotent orbits.
When the Kac labels are equivalent to the weighted

Dynkin diagrams of nilpotent orbits of e8, applying
Algorithm 1 as if the orbi-instanton deformation was
nilpotent often, but not always, leads to the correct result.
However, this only occurs in a handful of cases given a
choice of K, and Kac labels have no generalizations
to algebras of DE type. Moreover, expressing the IR
R-symmetry in terms of the UV data is more opaque in
those cases, as we now deal with embeddings of discrete
groups rather than suð2Þ subalgebras into the unbroken
flavor symmetry. Finding an algorithm in terms of the
Nambu-Goldstone modes decoupling from the UV theory
Og

N would however help us better understand the orbi-
instanton theory. Indeed if there are modes beyond those
associated with the moment map becoming massive along
the RG flow, this would teach us about the other low-lying
protected superconformal multiplets in its gauge-invariant
spectrum, and how they are related to the moment map.
Having closed-form expressions for the anomaly polyno-
mials of Higgsed orbi-instanton theories is particularly
interesting as these 6D (1, 0) SCFTs are very Higgsable,
and thus their anomalies behave in a simple way under
torus-compactification [49,60,61]. Such understanding
would be especially useful to study torus-compactifications
with nontrivial twists, such as Stiefel-Whitney twists,
turned on along the torus [97–99].
Beyond superconformal theories, the techniques we have

used throughout this work can also be applied to Little
String Theories (LSTs). These theories, specific to six
dimensions, describe strings decoupled from gravity and
can be realized in F-theory in a very similar way to SCFT,
and also admit a classification scheme [100], see [101] for a
concise review. In the case of heterotic LSTs, the structure
of the Higgs branch flows are similar to those of orbi-
instantons, and has been under recent scrutiny, in particular
due to their connection to fiber-base duality [102–107]. For
type-II LSTs however, the flavor symmetries are severely
constrained by both field- and string-theoretic arguments
[108], and therefore so are their Higgs branch flows. Since
some of the quantities relevant to the study of the duality
are captured via anomalies [96], performing a similar
analysis as in this work for LSTs could shed additional
light on how gauge-invariant quantities are related under
the duality from a bottom-up perspective.
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APPENDIX A: CHARACTERISTIC CLASSES
AND TRACE RELATIONS

In d dimensions, the contribution of a left-handed Weyl
fermion transforming in a representation R to the anomaly
polynomial is given by the index of the Dirac operator [74],
which can in turn be written in terms of characteristic
classes of the curvatures via the Atiyah-Singer theorem

Ifermion
dþ2 ¼ 1

2
ÂðTÞchRðFÞ

����
dþ2

: ðA1Þ

Note that we are using a convention giving only the
contribution of the representation R, justifying the presence
of the one-half factor. Other conventions may not have this
prefactor, as the counting includes the conjugate represen-
tation: R⊕ R. The A-roof genus ÂðTÞ can be expanded in
terms of Pontryagin classes pnðTÞ of the tangent bundle of
spacetime. Up to eighth order, one finds

ÂðTÞ ¼ 1 −
1

24
p1ðTÞ þ

1

5760
ð7p1ðTÞ2 − 4p2ðTÞÞ þ � � � ;

ðA2Þ

LðTÞ ¼ 1þ 1

3
p1ðTÞ−

1

45
ðp1ðTÞ2 − 7p2ðTÞÞ þ � � � ; ðA3Þ

where we also defined the Hirzebruch genus LðTÞ appear-
ing in the anomaly polynomials of anti-symmetric chiral
two-forms. Similarly, the Chern character associated with
the various gauge and flavor bundles can be expanded into
traces of their field strength F. As in [37], we follow a
convention where F is anti-Hermitian and rescaled to
absorb the usual factors of ð2πÞ, so that the Chern character
of non-Abelian algebras is defined as

chRðFÞ ¼ trReiF ¼ dimðRÞ − 1

2
trRF2 þ 1

24
trRF4 þ � � � :

ðA4Þ
For the special case of the R-symmetry suð2ÞR bundle, we
have for the d-dimensional representation

chdðRÞ ¼ d−
dðd2 − 1Þ

6
c2ðRÞ þ

dð7− 10d2 þ 3d4Þ
360

c2ðRÞ2

þ � � � ; c2ðRÞ ¼
1

4
TrðR2Þ; ðA5Þ
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where R is understood as the background field strength, and
the traces are one-instanton normalized. The prefactors are
explained by the trace-relation identities, see below. For
instance, the anomaly polynomial of a free left-handed
fermion in six dimensions transforming as a doublet of the
suð2ÞR R-symmetry is given by

Ifree ¼
1

2
ÂðTÞch2ðRÞ

����
8-form

¼ 1

24
c2ðRÞ2 þ

1

48
c2ðRÞp1ðTÞ

þ 1

5760
ð7p1ðTÞ2 − 4p2ðTÞÞ: ðA6Þ

One of the advantages of writing the one-loop part of the
anomaly in terms of characteristic classes is that the Chern
character satisfies a set of useful properties under the tensor
product and direct sum of representations, which are
utilized extensively in the main text

chR⊗R0 ðFÞ ¼ chRðFÞchR0 ðFÞ;
chR⊕R0 ðFÞ ¼ chRðFÞ þ chR0 ðFÞ: ðA7Þ

Indeed, using these relations we find that under a given
branching rule

g ⟶ g0;

R ⟶ ⨁
l
mlRl; ðA8Þ

where the representation Rl of g0 appears with a possible
nontrivial multiplicity, ml, the character simply decom-
poses as

chRðFgÞ ¼
X
l

mlchRl
ðFg0 Þ; ðA9Þ

where Fg, Fg0 are the field strengths associated with g and
g0, respectively.

1. Representation indices and trace relations

The various traces in the Chern character, as in Eq. (A4),
must then be converted to one-instanton normalized traces,
TrFn. We again follow the conventions of [37,60]. For the
adjoint representation, we have

tradjF2 ¼ h∨TrF2; TrF2 ¼ TrðTaTbÞFa ∧ Fb; ðA10Þ

which fixes the overall normalization of the Killing form.
For our purpose we will only be interested in quadratic and
quartic traces, and the trace relations always take the
generic form

trRF2 ¼ ARTrF2; trRF4 ¼ BRTrF4 þCRðTrF2Þ2: ðA11Þ

The quadratic index, AR, was first introduced by Dynkin
[109], and was generalized to higher order in [110].
For specific cases, the trace relations defined in

Eq. (A11) are usually computed using algebra-specific
relations or via so-called Birdtrack techniques [111], and
the results having been tabulated for the most common
representations, see, e.g., [112], as well as [17,113] for
applications in six dimensions specifically. While the
literature is often mostly concerned about the adjoint
and fundamental representations, when discussing nilpo-
tent orbits we are led to deal with more exotic representa-
tions. Furthermore as there are various normalizations
for the trace-relation coefficients in the literature, we
now review how to obtain them for arbitrary representa-
tions following the works pioneered by Okubo and Patera
[114–116], enabling us to at the same time set the
conventions used in this work.
Representation indices are closely related to Casimir

invariants, defined as polynomial operators of a fixed
degree commuting with all generators

Cp ¼ ga1…apTa1…Tap; ½Cp; Ta� ¼ 0; ðA12Þ

where ga1…ap is an invariant symmetric tensor and
indices are raised and lowered with the Killing metric,
gab ¼ TrðTaTbÞ.
It is well-known that if the algebra g is simple there are

exactly rg independent invariant tensors. It is then always
possible to choose those invariants so that they satisfy
orthogonality relations, e.g., gabgcdgabcd ¼ 0. In that basis,
the Casimir operators are unique up to a normalization
constant, and Cp ¼ 0 if there are no independent Casimir
operator of order p. There is then at most one Casimir
operator for a given p, except for g ¼ Dn which has two
at order n. For p ¼ 2, 4, the quartic and quadratic invariants
form a basis of the symmetrized traces over the generator
of any algebra g ≠ soð8Þ and we therefore have the
decomposition

trRF2 ¼ el2ðRÞgabFa ∧ Fb; ðA13Þ

trRF4 ¼ ðel4ðRÞgabcd þ el2;2ðRÞgðabgcdÞÞFa

∧ Fb ∧ Fc ∧ Fd: ðA14Þ

The special case of g ¼ soð8Þ is treated below. The
coefficients eln were first studied in [117] and are called
the fundamental indices of R. They were furthermore
shown to be well behaved under branching rules and tensor
products [114,115,117]. They moreover can be obtained
directly from the weight system WðRÞ of a representation.
We first define the quantities
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l2kðRÞ ¼
X

μ∈WðRÞ
hμ; μik;

KðRÞ ¼ 3

2þ dimðgÞ
�
dimðgÞ
dimðRÞ −

1

6

l2ðadjÞ
l2ðRÞ

�
; ðA15Þ

with h·; ·i the pairing on the root space—normalized such
that the longest root has length two. We note that l2n also
defines representation indices of order 2n, but they are not
fundamental in the sense that they are not independent. The
fundamental indices are instead given by [114,115,117]

el2ðRÞ ¼
l2ðRÞ
2rg

;

el4ðRÞ ¼ l4ðRÞ −
2þ rg
3rg

KðRÞðl2ðRÞÞ2;

el2;2ðRÞ ¼ KðRÞðel2ðRÞÞ2: ðA16Þ

From there we can compute the trace relations for any
representation. For quadratic traces, and using our nor-
malization of the Killing form, one can straightforwardly
show that el2ðRÞ is equivalent to the usual definition of the
Dynkin index

AR ¼ el2ðRÞ ¼
l2ðRÞ
2rg

¼ dimðRÞ
2 dimðgÞ hΛ;Λþ 2ρi; ðA17Þ

where Λ is the highest weight of the representation, and
satisfies AR ¼ h∨g , as expected. At quartic order, we need to
set a reference representation, F , such that trF ðF4Þ¼TrF4,
i.e., BF ¼ 1. The usual convention—which we adopt
here—is to choose the reference representation to be the
so-called defining representation for a classical algebra,
namely the fundamental n of suðnÞ, 2n of spðnÞ, and the
vector nv of soðnÞ.26 Comparing Eq. (A14) for both the
desired and reference representations, we finally find that
when g ≠ so8

BR ¼
el4ðRÞel4ðF Þ ; CR ¼ KðRÞðel2ðRÞÞ2 −BRKðF Þðel2ðF ÞÞ2:

ðA18Þ

For exceptional algebras as well as suð2Þ and suð3Þ, there
is no independent quartic Casimir, and the reference
representation is ill defined. However, in those casesel4ðRÞ ¼ 0 ¼ BR by construction and the formula given
above for CR also works for exceptional algebras.
Given the machinery reviewed in this appendix, it is then

straightforward to compute the trace-relation indices for a
given representation of any algebra, as everything can be

obtained from its weight lattice. It can then be achieved in a
programmatic way using dedicated software such as LieART
[118,119], or by finding them in tables [120]. We note that
for the latter, only the values of l2nðRÞ defined in Eq. (A15)
are given, not the fundamental indices.
The case of soð8Þ: due to the presence of an additional

quartic Casimir, computing the fundamental indices is
slightly more involved than in other cases. However, in
this work we only have to deal with the adjoint, vector, and
spinor representations of soð8Þ. For brevity, we have
simply collated the trace relations for those cases in
Table VII. Additional details on the fourth-order Casimir
invariants and their trace relations can be found in,
e.g., [114].

APPENDIX B: NILPOTENT ORBITS
AND THEIR BRANCHING RULES

As we have used repeatedly throughout this paper, each
nilpotent orbit, O, of a simple Lie algebra, g, is associated
to a homomorphism ρO∶ suð2ÞX → g via the Jacobson-
Morozov theorem. Let f be the centralizer in g of the image
of ρO. Then each nilpotent orbit has an associated decom-
position

g → suð2ÞX ⊕ f; ðB1Þ

where we choose to ignore the nonsemisimple part of f. In
the special case of the maximal nilpotent orbit, the
homomorphism ρO embeds suð2ÞX trivially into g, and
thus f ¼ g; despite this subtlety in this case, we keep the
notation as in Eq. (B1) for convenience. Under such a
decomposition, we are interested in the branching rule of
the adjoint representation

adj → ⨁
l
ðdl;RlÞ; ðB2Þ

where dl are irreducible suð2ÞX representations, and Rl
are (not-necessarily irreducible) representations of f.
First, we consider the case of g ¼ suðKÞ.27 Nilpotent

orbits of suðKÞ are in one-to-one correspondence with
integer partitions of K. Given a nilpotent orbit O, we write
the partition associated to O in the following way

TABLE VII. Trace-relation coefficients for representations of
soð8Þ relevant in this work.

R 1 8v 8s 8c 28

AR 0 1 1 1 6
BR 0 1 − 1

2
− 1

2
0

CR 0 0 3
8

3
8

3

26In our convention, spðkÞ has rank k, such that spð1Þ ¼
suð2Þ, and the fundamental representation has dimension 2k.

27When g is a classical Lie algebra, the adjoint branching rules
induced by nilpotent orbits is reviewed in detail in [121].
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½1m1 ; 2m2 ;…; KmK �; where
XK
i¼1

imi ¼ K: ðB3Þ

The branching rule of the fundamental representation under
the decomposition as in Eq. (B1) is given in terms of the
partition as

K → ⨁
K

i¼1

ði;miÞ: ðB4Þ

Here, we have used that the commutant of the image of
suð2ÞX is

f ¼ ⨁
K

i¼1

suðmiÞ; ðB5Þ

and mi is the representation of f obtained by taking the
tensor product of the fundamental representation of suðmiÞ
with the singlet representation of all other factors. Once
the branching rule of the fundamental representation of
suðKÞ is known, the branching rules of all other irreducible
representations can be determined. In particular, the
branching rule of the adjoint representation can be straight-
forwardly derived from the tensor product

K ⊗ K̄ ¼ adj⊕ 1: ðB6Þ

Similarly, we can consider the case of g ¼ uspðKÞ,
for which nilpotent orbits are in one-to-one correspon-
dence with C-partitions of K.28 A C-partition of K can be
written as

½1m1 ; 2m2 ;…; KmK � where
XK
i¼1

imi ¼ K

such that i odd ⇒ mi even: ðB7Þ

The commutant of the image of suð2ÞX is

f ¼ ⨁
K

i¼1

jðmiÞ where j ¼
�
usp if i odd

so if i even;
ðB8Þ

and the branching of the fundamental representation is

K → ⨁
K

i¼1

ði;miÞ: ðB9Þ

Here, mi is either the fundamental representation of
uspðmiÞ (if i is odd) or the vector representation of

soðmiÞ (if i is even), tensored with the trivial representation
of all other factors in f. The branching rule for the adjoint
representation then follows from

adj ¼ SymðK ⊗ KÞ: ðB10Þ

Next, we can consider the case of g ¼ soðKÞ. Each
nilpotent orbit of soðKÞ has an underlying BD-partition; a
BD-partition of K can be written as

½1m1 ; 2m2 ;…; KmK � where
XK
i¼1

imi ¼ K

such that i even ⇒ mi even: ðB11Þ

The commutant of the image of suð2ÞX is

f ¼ ⨁
K

i¼1

jðmiÞ where j ¼
�
so if i odd

usp if i even;
ðB12Þ

and the branching of the vector representation is

TABLE VIII. Cartan matrices for the exceptional algebras,
with our choice of ordering for the weighted Dynkin diagrams
uniquely labeling every nilpotent orbit.

g C w

g2
�

2 −3
−1 2

	 w1w2

f4
0BB@

2 −1 0 0

−1 2 −2 0

0 −1 2 −1
0 0 −1 2

1CCA
w1w2w3w4

e6
0BBBBB@

2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 −1
0 0 −1 2 −1 0

0 0 0 −1 2 0

0 0 −1 0 0 2

1CCCCCA
w1w2w3

w6w4w5

e7
0BBBBBBBB@

2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 −1
0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 0

0 0 −1 0 0 0 2

1CCCCCCCCA

w1w2w3

w7w4w5w6

e8
0BBBBBBBBBB@

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 −1 0 0 0 0 2

1CCCCCCCCCCA

w1w2w3

w8w4w5w6w7

28To avoid the proliferation of half-integer quantities, in this
appendix we temporarily use the notation uspðKÞ rather
than spðK

2
Þ, recalling that we follow the convention where

uspð2Þ ¼ spð1Þ ¼ suð2Þ. In the rest of the main text, the
notation sp is used.
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K → ⨁
K

i¼1

ði;miÞ: ðB13Þ

Again, mi is either the fundamental representation of
uspðmiÞ (if i is even) or the vector representation of
soðmiÞ (if i is odd), tensored with the trivial representation
of all other factors in f. The branching rule for the adjoint
representation then follows directly from

adj ¼ ASymðK ⊗ KÞ: ðB14Þ

Finally, we turn to the cases where g is an exceptional Lie
algebra, where we use both the Bala-Carter notation [70,71]
and the weighted Dynkin diagrams to label the nilpotent
orbits. Recall that a corollary of the Jacobson-Morozov
theorem is that for each nilpotent orbit, it is always
possible to uniquely define an suð2Þ triplet ðX; Y;HÞ of

generators such that H is in the Cartan subalgebra, and for
which each of the simple roots Ei has eigenvalue wi ¼ 0,
1, 2, see Eq. (3.30). Of course, this labeling then depends
on the ordering of the simple roots of the simple algebra g.
We choose a basis where they correspond to the rows
of the Cartan matrix, C, and the weights defining the
nilpotent orbits are arranged as in Table VIII. Note that for a
classical algebra, one can obtain obtain the weighted
Dynkin diagram of a nilpotent orbit given directly from
its partition [67].
For exceptional algebras, the Jacobson-Morozov decom-

position involves representations that go beyond the usual
adjoint, and defining representations. The associated
branching rules can be found in, e.g., [122–126], and have
been reproduced in Tables IX–XIII. For convenience, we
also included the weighted Dynkin diagram of the nilpotent
orbits following the above ordering, as well as the Dynkin
embedding index for each flavor factor.

TABLE IX. Nilpotent orbits of g2.

w Bala-Carter g2 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

[0, 0] 0 suð0Þ
2 ⊕ gð1Þ2

0 ð1; 14Þ
[1, 0] A1 suð1Þ

2 ⊕ suð3Þ
2

6 ð3; 1Þ⊕ ð2; 4Þ⊕ ð1; 3Þ
[0, 1] Ã1 suð3Þ

2 ⊕ suð1Þ
2

8 ð3; 1Þ⊕ ð4; 2Þ⊕ ð1; 3Þ
[2, 0] G2ða1Þ suð4Þ

2 ⊕∅ 10 5⊕ 3 · 3

[2, 2] G2 suð28Þ
2 ⊕∅ 12 11⊕ 3

TABLE X. Nilpotent orbits of f4.

w Bala-Carter f4 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

[0, 0, 0, 0] 0 suð0Þ
2 ⊕ fð1Þ4

0 ð1; 52Þ
[1, 0, 0, 0] A1 suð1Þ

2 ⊕ spð1Þ3
16 ð3; 1Þ⊕ ð2; 140Þ⊕ ð1; 21Þ

[0, 0, 0, 1] Ã1 suð2Þ
2 ⊕ suð1Þ

4
22 ð3; 1Þ⊕ ð3; 6Þ⊕ ð2; 4Þ⊕ ð2; 4Þ⊕ ð1; 15Þ

[0, 1, 0, 0] A1 þ Ã1 suð3Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð2Þ
2 Þ 28 ð1; 3; 1Þ⊕ ð1; 1; 3Þ⊕ ð2; 5; 2Þ⊕ ð3; 1; 1Þ⊕ ð3; 5; 1Þ⊕ ð4; 1; 2Þ

[2, 0, 0, 0] A2 suð4Þ
2 ⊕ suð2Þ

3
30 ð3; 1Þ⊕ ð3; 6Þ⊕ ð3; 6̄Þ⊕ ð5; 1Þ⊕ ð1; 8Þ

[0, 0, 0, 2] Ã2 suð8Þ
2 ⊕ gð1Þ2

30 ð3; 1Þ⊕ ð5; 7Þ⊕ ð1; 14Þ
[0, 0, 1, 0] A2 þ Ã1 suð6Þ

2 ⊕ suð6Þ
2

34 ð3; 1Þ⊕ ð3; 5Þ⊕ ð5; 3Þ⊕ ð4; 2Þ⊕ ð2; 4Þ⊕ ð1; 3Þ
[2, 0, 0, 1] B2 suð10Þ

2 ⊕ ðsuð1Þ
2 ⊕ suð1Þ

2 Þ 36 ð7; 1; 1Þ⊕ ð5; 2; 2Þ⊕ ð4; 2; 1Þ⊕ ð4; 1; 2Þ
⊕ð3; 1; 1Þ⊕ ð1; 3; 1Þ⊕ ð1; 1; 3Þ

[0, 1, 0, 1] Ã2 þ A1 suð9Þ
2 ⊕ suð3Þ

2
36 2 · ð3; 1Þ⊕ ð6; 2Þ⊕ ð5; 3Þ⊕ ð4; 2Þ⊕ ð2; 4Þ⊕ ð1; 3Þ

[1, 0, 1, 0] C3ða1Þ suð11Þ
2 ⊕ suð1Þ

2
38 3 · ð3; 1Þ⊕ ð7; 1Þ⊕ ð6; 2Þ⊕ ð5; 1Þ⊕ 2 · ð4; 2Þ⊕ ð1; 3Þ

[0, 2, 0, 0] F4ða3Þ suð12Þ
2 ⊕∅ 40 2 · 7⊕ 4 · 5⊕ 6 · 3

[2, 2, 0, 0] B3 suð28Þ
2 ⊕ suð8Þ

2
42 ð3; 1Þ⊕ ð11; 1Þ⊕ ð7; 5Þ⊕ ð1; 3Þ

[1, 0, 1, 2] C3 suð35Þ
2 ⊕ suð1Þ

2
42 ð11; 1Þ⊕ ð10; 2Þ⊕ ð7; 1Þ⊕ ð4; 2Þ⊕ ð3; 1Þ⊕ ð1; 3Þ

[0, 2, 0, 2] F4ða2Þ suð36Þ
2 ⊕∅ 44 2 · 11⊕ 9⊕ 7⊕ 5⊕ 3 · 3

[2, 2, 0, 2] F4ða1Þ suð60Þ
2 ⊕∅ 46 15⊕ 2 · 11⊕ 7⊕ 5⊕ 3

[2, 2, 2, 2] F4 suð156Þ
2 ⊕∅ 48 23⊕ 15⊕ 11⊕ 3
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TABLE XI. Nilpotent orbits of e6.

w Bala-Carter e6 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

[0, 0, 0, 0, 0, 0] 0 suð0Þ
2 ⊕ eð1Þ6

0 ð1; 78Þ
[0, 0, 0, 0, 0, 1] A1 suð1Þ

2 ⊕ suð1Þ
6

22 ð1; 35Þ⊕ ð2; 20Þ⊕ ð3; 1Þ
[1, 0, 0, 0, 1, 0] 2A1 suð2Þ

2 ⊕ soð1Þ7
32 ð1; 21Þ⊕ ð1; 1Þ⊕ 2 · ð2; 8Þ⊕ ð3; 7Þ⊕ ð3; 1Þ

[0, 0, 1, 0, 0, 0] 3A1 suð3Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð2Þ
3 Þ 40 ð1; 1; 8Þ⊕ ð1; 3; 1Þ⊕ ð2; 2; 8Þ⊕ ð3; 1; 1Þ⊕ ð3; 1; 8Þ⊕

ð4; 2; 1Þ
[0, 0, 0, 0, 0, 2] A2 suð4Þ

2 ⊕ ðsuð1Þ
3 ⊕ suð1Þ

3 Þ 42 ð1; 8; 1Þ⊕ ð1; 1; 8Þ⊕ ð3; 1; 1Þ⊕ ð3; 3; 3Þ⊕ ð3; 3̄; 3̄Þ⊕
ð5; 1; 1Þ

[1, 0, 0, 0, 1, 1] A2 þ A1 suð5Þ
2 ⊕ suð1Þ

3
46 ð1; 1Þ⊕ ð1; 8Þ⊕ ð2; 3Þ⊕ ð2; 3̄Þ⊕ 2 · ð2; 1Þ⊕ ð3; 3Þ⊕

ð3; 3̄Þ⊕ 2 · ð3; 1Þ⊕ ð4; 3Þ⊕ ð4; 3̄Þ⊕ ð5; 1Þ
[2, 0, 0, 0, 2, 0] 2A2 suð8Þ

2 ⊕ gð1Þ2
48 ð1; 14Þ⊕ ð3; 7Þ⊕ ð3; 1Þ⊕ ð5; 7Þ⊕ ð5; 1Þ

[0, 1, 0, 1, 0, 0] A2 þ 2A1 suð6Þ
2 ⊕ suð6Þ

2
50 ð1; 1Þ⊕ ð1; 3Þ⊕ 2 · ð2; 4Þ⊕ ð3; 1Þ⊕ ð3; 3Þ⊕ ð3; 5Þ⊕ 2 ·

ð4; 2Þ⊕ ð5; 3Þ
[1, 0, 1, 0, 1, 0] 2A2 þ A1 suð9Þ

2 ⊕ suð3Þ
2

54 ð1; 3Þ⊕ ð2; 4Þ⊕ ð2; 2Þ⊕ ð3; 3Þ⊕ 2 · ð3; 1Þ⊕ 2 · ð4; 2Þ⊕
ð5; 3Þ⊕ ð5; 1Þ⊕ ð6; 2Þ

[1, 0, 0, 0, 1, 2] A3 suð10Þ
2 ⊕ spð1Þ2

52 ð1; 10Þ⊕ ð1; 1Þ⊕ ð3; 1Þ⊕ 2 · ð4; 4Þ⊕ ð5; 5Þ⊕ ð7; 1Þ
[0, 1, 0, 1, 0, 1] A3 þ A1 suð11Þ

2 ⊕ suð1Þ
2

56 ð1; 1Þ⊕ ð1; 3Þ⊕ ð2; 2Þ⊕ 4 · ð3; 1Þ⊕ 3 · ð4; 2Þ⊕ 3 ·
ð5; 1Þ⊕ ð6; 2Þ⊕ ð7; 1Þ

[0, 0, 2, 0, 0, 0] D4ða1Þ suð12Þ
2 ⊕∅ 58 2 · 1⊕ 9 · 3⊕ 7 · 5⊕ 2 · 7

[2, 0, 0, 0, 2, 2] A4 suð20Þ
2 ⊕ suð1Þ

2
60 ð1; 3Þ⊕ ð1; 1Þ⊕ 2 · ð3; 2Þ⊕ ð3; 1Þ⊕ 3 · ð5; 1Þ⊕ 2 ·

ð7; 2Þ⊕ ð7; 1Þ⊕ ð9; 1Þ
[1, 1, 0, 1, 1, 1] A4 þ A1 suð21Þ

2 ⊕∅ 62 1⊕ 2 · 2⊕ 2 · 3⊕ 2 · 4⊕ 3 · 5⊕ 2 · 6⊕ 7⊕ 2 · 8⊕ 9

[0, 0, 2, 0, 0, 2] D4 suð28Þ
2 ⊕ suð2Þ

3
60 ð1; 8Þ⊕ ð3; 1Þ⊕ ð7; 8Þ⊕ ð11; 1Þ

[2, 1, 0, 1, 2, 1] A5 suð35Þ
2 ⊕ suð1Þ

2
64 ð1; 3Þ⊕ ð3; 1Þ⊕ ð4; 2Þ⊕ ð5; 1Þ⊕ ð6; 2Þ⊕ ð7; 1Þ⊕

ð9; 1Þ⊕ ð10; 2Þ⊕ ð11; 1Þ
[1, 1, 0, 1, 1, 2] D5ða1Þ suð30Þ

2 ⊕∅ 64 1⊕ 2 · 2⊕ 2 · 3⊕ 5⊕ 2 · 6⊕ 2 · 7⊕ 2 · 8⊕ 9⊕ 11

[2, 0, 2, 0, 2, 0] E6ða3Þ suð36Þ
2 ⊕∅ 66 3 · 3⊕ 3 · 5⊕ 2 · 7⊕ 2 · 9⊕ 2 · 11

[2, 0, 2, 0, 2, 2] D5 suð60Þ
2 ⊕∅ 68 1⊕ 3⊕ 2 · 5⊕ 7⊕ 9⊕ 3 · 11⊕ 15

[2, 2, 0, 2, 2, 2] E6ða1Þ suð84Þ
2 ⊕∅ 70 3⊕ 5⊕ 7⊕ 9⊕ 2 · 11⊕ 15⊕ 17

[2, 2, 2, 2, 2, 2] E6 suð156Þ
2 ⊕∅ 72 3⊕ 9⊕ 11⊕ 15⊕ 17⊕ 23

TABLE XII. Nilpotent orbits of e7.

w Bala-Carter e7 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

[0, 0, 0, 0, 0, 0, 0] 0 suð0Þ
2 ⊕ eð1Þ7

0 ð1; 133Þ
[1, 0, 0, 0, 0, 0, 0] A1 suð1Þ

2 ⊕ soð1Þ12
34 ð1; 66Þ⊕ ð2; 32Þ⊕ ð3; 1Þ

[0, 0, 0, 0, 1, 0, 0] 2A1 suð2Þ
2 ⊕ ðsoð1Þ9 ⊕ suð1Þ

2 Þ 52 ð1; 1; 3Þ⊕ ð1; 36; 1Þ⊕ ð2; 16; 2Þ⊕ ð3; 1; 1Þ⊕
ð3; 9; 1Þ

[0, 1, 0, 0, 0, 0, 0] ð3A1Þ0 suð3Þ
2 ⊕ ðspð1Þ3 ⊕ suð1Þ

2 Þ 64 ð1; 1; 3Þ⊕ ð1; 21; 1Þ⊕ ð2; 14; 2Þ⊕ ð3; 1; 1Þ⊕
ð3; 14; 1Þ⊕ ð4; 1; 2Þ

[0, 0, 0, 0, 0, 2, 0] ð3A1Þ00 suð3Þ
2 ⊕ fð1Þ4

54 ð1; 52Þ⊕ ð3; 1Þ⊕ ð3; 26Þ
[0, 0, 0, 0, 0, 1, 1] 4A1 suð4Þ

2 ⊕ spð1Þ3
70 ð1; 21Þ⊕ ð2; 6Þ⊕ ð2; 140Þ⊕ 2 · ð3; 1Þ⊕ ð3; 14Þ⊕

ð4; 6Þ
[2, 0, 0, 0, 0, 0, 0] A2 suð4Þ

2 ⊕ suð1Þ
6

66 ð1; 35Þ⊕ ð3; 1Þ⊕ ð3; 15Þ⊕ ð3; 15Þ⊕ ð5; 1Þ
(Table continued)
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TABLE XII. (Continued)

w Bala-Carter e7 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

[1, 0, 0, 0, 1, 0, 0] A2 þ A1 suð5Þ
2 ⊕ suð1Þ

4
76 ð1; 1Þ⊕ ð1; 15Þ⊕ 2 · ð2; 4Þ⊕ 2 · ð2; 4̄Þ⊕ 4 · ð3; 1Þ⊕

2 · ð3; 6Þ⊕ ð4; 4Þ⊕ ð4; 4̄Þ⊕ ð5; 1Þ
[0, 0, 1, 0, 0, 0, 0] A2 þ 2A1 suð6Þ

2 ⊕ ðsuð1Þ
2 ⊕ suð2Þ

2 ⊕ suð6Þ
2 Þ 82 ð1; 3; 1; 1Þ⊕ ð1; 1; 3; 1Þ⊕ ð1; 1; 1; 3Þ⊕ ð2; 2; 2; 4Þ⊕

ð3; 1; 1; 1Þ
⊕ð3; 1; 3; 3Þ⊕ ð3; 1; 1; 5Þ⊕ ð4; 2; 2; 2Þ⊕ ð5; 1; 1; 3Þ

[0, 0, 0, 0, 2, 0, 0] 2A2 suð8Þ
2 ⊕ ðgð1Þ2 ⊕ suð3Þ

2 Þ 84 ð1; 1; 3Þ⊕ ð1; 14; 1Þ⊕ ð3; 1; 1Þ⊕ ð3; 7; 3Þ⊕
ð5; 1; 3Þ⊕ ð5; 7; 1Þ

[0, 0, 0, 0, 0, 0, 2] A2 þ 3A1 suð7Þ
2 ⊕ gð2Þ2

84 ð1; 14Þ⊕ ð3; 1Þ⊕ ð3; 27Þ⊕ ð5; 7Þ
[0, 1, 0, 0, 1, 0, 0] 2A2 þ A1 suð9Þ

2 ⊕ ðsuð3Þ
2 ⊕ suð3Þ

2 Þ 90 ð1; 3; 1Þ⊕ ð1; 1; 3Þ⊕ ð2; 3; 2Þ⊕ ð2; 1; 4Þ⊕ 2 ·
ð3; 1; 1Þ

⊕ð3; 3; 3Þ⊕ ð4; 1; 2Þ⊕ ð4; 3; 2Þ⊕ ð5; 3; 1Þ⊕
ð5; 1; 3Þ⊕ ð6; 1; 2Þ

[2, 0, 0, 0, 1, 0, 0] A3 suð10Þ
2 ⊕ ðsoð1Þ7 ⊕ suð1Þ

2 Þ 84 ð1; 1; 3Þ⊕ ð1; 21; 1Þ⊕ ð3; 1; 1Þ⊕ ð4; 8; 2Þ⊕
ð5; 7; 1Þ⊕ ð7; 1; 1Þ

[1, 0, 1, 0, 0, 0, 0] ðA3 þ A1Þ0 suð11Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð2Þ
2 ⊕ suð1Þ

2 Þ 92 ð1; 3; 1; 1Þ⊕ ð1; 1; 3; 1Þ⊕ ð1; 1; 1; 3Þ⊕ ð2; 2; 3; 1Þ⊕
2 · ð3; 1; 1; 1Þ

⊕ð3; 1; 2; 2Þ⊕ ð4; 2; 1; 1Þ⊕ ð4; 2; 2; 2Þ⊕
ð5; 1; 2; 2Þ⊕ ð5; 1; 3; 1Þ

⊕ð6; 2; 1; 1Þ⊕ ð7; 1; 1; 1Þ
[2, 0, 0, 0, 0, 2, 0] ðA3 þ A1Þ00 suð11Þ

2 ⊕ soð1Þ7
86 ð1; 21Þ⊕ 2 · ð3; 1Þ⊕ ð3; 8Þ⊕ ð5; 7Þ⊕ ð5; 8Þ⊕ ð7; 1Þ

[1, 0, 0, 1, 0, 1, 0] A3 þ 2A1 suð12Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð2Þ
2 Þ 94 ð1; 3; 1Þ⊕ ð1; 1; 3Þ⊕ ð2; 1; 2Þ⊕ ð2; 2; 3Þ⊕ 3 ·

ð3; 1; 1Þ⊕ ð3; 2; 2Þ
⊕ð4; 2; 1Þ⊕ 2 · ð4; 1; 2Þ⊕ ð5; 2; 2Þ⊕ ð5; 1; 3Þ

⊕ð6; 2; 1Þ⊕ ð6; 1; 2Þ⊕ ð7; 1; 1Þ
[0, 2, 0, 0, 0, 0, 0] D4ða1Þ suð12Þ

2 ⊕ ðsuð1Þ
2 ⊕ suð1Þ

2 ⊕ suð1Þ
2 Þ 94 ð1; 3; 1; 1Þ⊕ ð1; 1; 3; 1Þ⊕ ð1; 1; 1; 3Þ⊕ 3 ·

ð3; 1; 1; 1Þ⊕ ð3; 2; 2; 1Þ
⊕ð3; 2; 1; 2Þ⊕ ð3; 1; 2; 2Þ⊕ ð5; 1; 1; 1Þ⊕ ð5; 2; 2; 1Þ

⊕ð5; 2; 1; 2Þ⊕ ð5; 1; 2; 2Þ⊕ 2 · ð7; 1; 1; 1Þ
[0, 1, 0, 0, 0, 1, 1] D4ða1Þ þ A1 suð13Þ

2 ⊕ ðsuð1Þ
2 ⊕ suð1Þ

2 Þ 96 ð1; 3; 1Þ⊕ ð1; 1; 3Þ⊕ ð2; 2; 1Þ⊕ ð2; 1; 2Þ⊕ 4 ·
ð3; 1; 1Þ⊕ ð3; 2; 2Þ

⊕2 · ð4; 2; 1Þ⊕ 2 · ð4; 1; 2Þ⊕ ð5; 1; 1Þ⊕ ð5; 2; 2Þ
⊕ð6; 2; 1Þ⊕ ð6; 1; 2Þ⊕ 2 · ð7; 1; 1Þ

[0, 0, 1, 0, 1, 0, 0] A3 þ A2 suð14Þ
2 ⊕ suð1Þ

2
98 ð1; 1Þ⊕ ð1; 3Þ⊕ 2 · ð2; 2Þ⊕ 8 · ð3; 1Þ⊕ 4 · ð4; 2Þ⊕

4 · ð5; 1Þ ⊕2 · ð6; 2Þ⊕ 3 · ð7; 1Þ
[2, 2, 0, 0, 0, 0, 0] D4 suð28Þ

2 ⊕ spð1Þ3
96 ð1; 21Þ⊕ ð3; 1Þ⊕ ð7; 14Þ⊕ ð11; 1Þ

[0, 0, 0, 2, 0, 0, 0] A3 þ A2 þ A1 suð15Þ
2 ⊕ suð24Þ

2
100 ð1; 3Þ⊕ ð3; 1Þ⊕ ð3; 5Þ⊕ ð3; 9Þ⊕ ð5; 3Þ⊕ ð5; 7Þ⊕

ð7; 5Þ
[2, 0, 0, 0, 2, 0, 0] A4 suð20Þ

2 ⊕ suð1Þ
3

100 ð1; 1Þ⊕ ð1; 8Þ⊕ ð3; 1Þ⊕ ð3; 3Þ⊕ ð3; 3̄Þ⊕ 3 ·
ð5; 1Þ⊕ ð5; 3Þ

⊕ð5; 3̄Þ⊕ ð7; 1Þ⊕ ð7; 3Þ⊕ ð7; 3̄Þ⊕ ð9; 1Þ
[1, 0, 1, 0, 1, 0, 0] A4 þ A1 suð21Þ

2 ⊕∅ 104 2 · 1⊕ 4 · 2⊕ 4 · 3⊕ 4 · 4⊕ 5 · 5⊕ 4 · 6⊕ 3 · 7⊕
2 · 8⊕ 9

[2, 1, 0, 0, 0, 1, 1] D4 þ A1 suð29Þ
2 ⊕ spð1Þ2

102 ð1; 10Þ⊕ ð2; 4Þ⊕ 2 · ð3; 1Þ⊕ ð6; 4Þ⊕ ð7; 1Þ⊕
ð7; 5Þ⊕ ð8; 4Þ⊕ ð11; 1Þ

[2, 0, 1, 0, 1, 0, 0] D5ða1Þ suð30Þ
2 ⊕ suð1Þ

2
106 ð1; 1Þ⊕ ð1; 3Þ⊕ 2 · ð2; 2Þ⊕ 4 · ð3; 1Þ⊕ ð5; 1Þ⊕ 2 ·

ð6; 2Þ⊕ 4 · ð7; 1Þ
⊕2 · ð8; 2Þ⊕ ð9; 1Þ⊕ ð11; 1Þ

[0, 0, 2, 0, 0, 0, 0] A4 þ A2 suð24Þ
2 ⊕ suð15Þ

2
106 ð1; 3Þ⊕ ð3; 1Þ⊕ ð3; 5Þ⊕ ð5; 3Þ⊕ ð5; 7Þ⊕ ð7; 5Þ⊕

ð9; 3Þ
[2, 0, 0, 0, 2, 2, 0] A00

5 suð35Þ
2 ⊕ gð1Þ2

102 ð1; 14Þ⊕ ð3; 1Þ⊕ ð5; 7Þ⊕ ð7; 1Þ⊕ ð9; 7Þ⊕ ð11; 1Þ
[1, 0, 1, 0, 1, 2, 0] A5 þ A1 suð36Þ

2 ⊕ suð3Þ
2

108 ð1; 3Þ⊕ ð2; 4Þ⊕ 2 · ð3; 1Þ⊕ ð4; 2Þ⊕ ð5; 3Þ⊕
ð6; 2Þ⊕ ð7; 1Þ⊕ ð8; 2Þ

(Table continued)

FLORENT BAUME and CRAIG LAWRIE PHYS. REV. D 110, 045021 (2024)

045021-44



TABLE XII. (Continued)

w Bala-Carter e7 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

⊕ð9; 3Þ⊕ ð10; 2Þ⊕ ð11; 1Þ
[2, 0, 0, 2, 0, 0, 0] D5ða1Þ þ A1 suð31Þ

2 ⊕ suð8Þ
2

108 ð11; 1Þ⊕ ð9; 3Þ⊕ ð7; 5Þ⊕ ð7; 3Þ⊕ ð5; 3Þ⊕ ð3; 5Þ⊕
2 · ð3; 1Þ⊕ ð1; 3Þ

[1, 0, 1, 0, 2, 0, 0] A0
5 suð35Þ

2 ⊕ ðsuð1Þ
2 ⊕ suð3Þ

2 Þ 108 ð1; 3; 1Þ⊕ ð1; 1; 3Þ⊕ ð3; 1; 1Þ⊕ ð4; 2; 1Þ⊕
ð5; 1; 3Þ⊕ ð6; 2; 3Þ

⊕ð7; 1; 1Þ⊕ ð9; 1; 3Þ⊕ ð10; 2; 1Þ⊕ ð11; 1; 1Þ
[0, 1, 0, 1, 0, 2, 1] D6ða2Þ suð38Þ

2 ⊕ suð1Þ
2

110 ð1; 3Þ⊕ 3 · ð3; 1Þ⊕ 2 · ð4; 2Þ⊕ ð5; 1Þ⊕ ð6; 2Þ⊕ 3 ·
ð7; 1Þ⊕ ð8; 2Þ

⊕ð9; 1Þ⊕ ð10; 2Þ⊕ 2 · ð11; 1Þ
[0, 2, 0, 0, 2, 0, 0] E6ða3Þ suð36Þ

2 ⊕ suð3Þ
2

110 ð1; 3Þ⊕ 3 · ð3; 1Þ⊕ 2 · ð5; 3Þ⊕ ð5; 1Þ⊕ ð7; 3Þ⊕
ð7; 1Þ⊕ ð9; 1Þ

⊕ð9; 3Þ⊕ 2 · ð11; 1Þ
[0, 0, 2, 0, 0, 2, 0] E7ða5Þ suð39Þ

2 ⊕∅ 112 6 · 3⊕ 4 · 5⊕ 5 · 7⊕ 3 · 9⊕ 3 · 11

[2, 2, 0, 0, 2, 0, 0] D5 suð60Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð2Þ
2 Þ 112 ð1; 3; 1Þ⊕ ð1; 1; 3Þ⊕ ð3; 1; 1Þ⊕ ð5; 2; 2Þ⊕

ð7; 1; 1Þ⊕ ð9; 1; 3Þ
⊕ð11; 1; 1Þ⊕ ð11; 2; 2Þ⊕ ð15; 1; 1Þ

[0, 0, 2, 0, 2, 0, 0] A6 suð56Þ
2 ⊕ suð7Þ

2
114 ð1; 3Þ⊕ ð3; 1Þ⊕ ð5; 3Þ⊕ ð7; 5Þ⊕ ð9; 3Þ⊕ ð11; 1Þ⊕

ð13; 3Þ
[2, 1, 0, 1, 0, 2, 1] D6ða1Þ suð62Þ

2 ⊕ suð1Þ
2

114 ð1; 3Þ⊕ 2 · ð3; 1Þ⊕ ð4; 2Þ⊕ ð6; 2Þ⊕ 2 · ð7; 1Þ⊕
ð9; 1Þ⊕ ð10; 2Þ

⊕2 · ð11; 1Þ⊕ ð12; 2Þ⊕ ð15; 1Þ
[2, 1, 0, 1, 1, 0, 1] D5 þ A1 suð61Þ

2 ⊕ suð2Þ
2

114 ð1; 3Þ⊕ 2 · ð3; 1Þ⊕ ð4; 2Þ⊕ ð6; 2Þ⊕ ð7; 1Þ⊕
ð9; 3Þ⊕ ð10; 2Þ

⊕ð11; 1Þ⊕ ð12; 2Þ⊕ ð15; 1Þ
[2, 0, 2, 0, 0, 2, 0] E7ða4Þ suð63Þ

2 ⊕∅ 116 4 · 3⊕ 2 · 5⊕ 3 · 7⊕ 2 · 9⊕ 4 · 11⊕ 13⊕ 15

[2, 1, 0, 1, 2, 2, 1] D6 suð110Þ
2 ⊕ suð1Þ

2
118 ð1; 3Þ⊕ ð3; 1Þ⊕ ð6; 2Þ⊕ ð7; 1Þ⊕ ð10; 2Þ⊕ 2 ·

ð11; 1Þ⊕ ð15; 1Þ
⊕ð16; 2Þ⊕ ð19; 1Þ

[2, 0, 2, 0, 2, 0, 0] E6ða1Þ suð84Þ
2 ⊕∅ 118 1⊕ 3⊕ 3 · 5⊕ 7⊕ 3 · 9⊕ 2 · 11⊕ 2 · 13⊕

15⊕ 17
[2, 0, 2, 0, 2, 2, 0] E7ða3Þ suð111Þ

2 ⊕∅ 120 2 · 3⊕ 5⊕ 2 · 7⊕ 9⊕ 3 · 11⊕ 2 · 15⊕ 17⊕ 19

[2, 2, 2, 0, 2, 0, 0] E6 suð156Þ
2 ⊕ suð3Þ

2
120 ð1; 3Þ⊕ ð3; 1Þ⊕ ð9; 3Þ⊕ ð11; 1Þ⊕ ð15; 1Þ⊕

ð17; 3Þ⊕ ð23; 1Þ
[2, 2, 0, 2, 0, 2, 2] E7ða2Þ suð159Þ

2 ⊕∅ 122 2 · 3⊕ 7⊕ 9⊕ 2 · 11⊕ 2 · 15⊕ 17⊕ 19⊕ 23

[2, 2, 0, 2, 2, 2, 2] E7ða1Þ suð231Þ
2 ⊕∅ 124 3⊕ 7⊕ 2 · 11⊕ 15⊕ 17⊕ 19⊕ 23⊕ 27

[2, 2, 2, 2, 2, 2, 2] E7 suð399Þ
2 ⊕∅ 126 3⊕ 11⊕ 15⊕ 19⊕ 23⊕ 27⊕ 35

TABLE XIII. Nilpotent orbits of e8.

w Bala-Carter e8 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

[0, 0, 0, 0, 0, 0, 0, 0] 0 suð0Þ
2 ⊕ eð1Þ8

0 ð1; 248Þ
[0, 0, 0, 0, 0, 0, 1, 0] A1 suð1Þ

2 ⊕ eð1Þ7
58 ð3; 1Þ⊕ ð2; 56Þ⊕ ð1; 133Þ

[1, 0, 0, 0, 0, 0, 0, 0] 2A1 suð2Þ
2 ⊕ soð1Þ13

92 ð1; 78Þ⊕ ð2; 64Þ⊕ ð3; 1Þ⊕ ð3; 13Þ
[0, 0, 0, 0, 0, 1, 0, 0] 3A1 suð3Þ

2 ⊕ ðfð1Þ4 ⊕ suð1Þ
2 Þ 112 ð1; 1; 3Þ⊕ ð1; 52; 1Þ⊕ ð2; 26; 2Þ⊕ ð3; 1; 1Þ⊕

ð3; 26; 1Þ⊕ ð4; 1; 2Þ
(Table continued)
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TABLE XIII. (Continued)

w Bala-Carter e8 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

[0, 0, 0, 0, 0, 0, 2, 0] A2 suð4Þ
2 ⊕ eð1Þ6

114 ð1; 78Þ⊕ ð3; 1Þ⊕ ð3; 27Þ⊕ ð3; 2̄7Þ⊕ ð5; 1Þ
[0, 0, 0, 0, 0, 0, 0, 1] 4A1 suð4Þ

2 ⊕ spð1Þ4
128 ð1; 36Þ⊕ ð2; 48Þ⊕ ð3; 1Þ⊕ ð3; 27Þ⊕ ð4; 8Þ

[1, 0, 0, 0, 0, 0, 1, 0] A2 þ A1 suð5Þ
2 ⊕ suð1Þ

6
136 ð1; 35Þ⊕ ð2; 6Þ⊕ ð2; 6̄Þ⊕ ð2; 20Þ⊕ 2 · ð3; 1Þ⊕

ð3; 15Þ⊕ ð3; 1̄5Þ⊕ ð4; 6Þ⊕ ð4; 6̄Þ⊕ ð5; 1Þ
[0, 0, 0, 0, 1, 0, 0, 0] A2 þ 2A1 suð6Þ

2 ⊕ ðsoð1Þ7 ⊕ suð6Þ
2 Þ 146 ð1; 1; 3Þ⊕ ð1; 21; 1Þ⊕ ð2; 8; 4Þ⊕ ð3; 7; 3Þ⊕ ð3; 1; 5Þ⊕

ð3; 1; 1Þ
⊕ð4; 8; 2Þ⊕ ð5; 1; 3Þ

[1, 0, 0, 0, 0, 0, 2, 0] A3 suð10Þ
2 ⊕ soð1Þ11

148 ð1; 55Þ⊕ ð3; 1Þ⊕ ð4; 32Þ⊕ ð5; 11Þ⊕ ð7; 1Þ
[0, 1, 0, 0, 0, 0, 0, 0] A2 þ 3A1 suð7Þ

2 ⊕ ðgð2Þ2 ⊕ suð1Þ
2 Þ 154 ð1; 14; 1Þ⊕ ð1; 1; 3Þ⊕ ð2; 14; 2Þ⊕ ð3; 27; 1Þ⊕

ð3; 1; 1Þ⊕ ð4; 7; 2Þ⊕ ð5; 7; 1Þ
[2, 0, 0, 0, 0, 0, 0, 0] 2A2 suð8Þ

2 ⊕ ðgð1Þ2 ⊕ gð1Þ2 Þ 156 ð1; 14; 1Þ⊕ ð1; 1; 14Þ⊕ ð3; 7; 7Þ⊕ ð3; 1; 1Þ⊕
ð5; 1; 7Þ⊕ ð5; 7; 1Þ

[1, 0, 0, 0, 0, 1, 0, 0] 2A2 þ A1 suð9Þ
2 ⊕ ðgð1Þ2 ⊕ suð3Þ

2 Þ 162 ð1; 1; 3Þ⊕ ð1; 14; 1Þ⊕ ð2; 1; 4Þ⊕ ð2; 7; 2Þ⊕ 2 ·
ð3; 1; 1Þ⊕ ð3; 7; 3Þ

⊕ð4; 1; 2Þ⊕ ð4; 7; 2Þ⊕ ð5; 1; 3Þ⊕ ð5; 7; 1Þ⊕ ð6; 1; 2Þ
[0, 0, 0, 0, 1, 0, 1, 0] A3 þ A1 suð11Þ

2 ⊕ ðsoð1Þ7 ⊕ suð1Þ
2 Þ 164 ð1; 1; 3Þ⊕ ð1; 21; 1Þ⊕ ð2; 7; 2Þ⊕ 2 · ð3; 1; 1Þ⊕

ð3; 8; 1Þ⊕ ð4; 8; 2Þ
⊕ð4; 1; 2Þ⊕ ð5; 8; 1Þ⊕ ð5; 7; 1Þ⊕ ð6; 1; 2Þ⊕ ð7; 1; 1Þ

[0, 0, 0, 1, 0, 0, 0, 0] 2A2 þ 2A1 suð10Þ
2 ⊕ spð3Þ2

168 ð1; 10Þ⊕ ð2; 20Þ⊕ ð3; 1Þ⊕ ð3; 5Þ⊕ ð3; 14Þ⊕
ð4; 16Þ⊕ ð5; 10Þ⊕ ð6; 4Þ

[0, 0, 0, 0, 0, 2, 0, 0] D4ða1Þ suð12Þ
2 ⊕ soð1Þ8

166 ð1; 28Þ⊕ 3 · ð3; 1Þ⊕ ð3; 8vÞ⊕ ð3; 8cÞ⊕ ð3; 8sÞ⊕
ð5; 1Þ⊕ ð5; 8vÞ

⊕ð5; 8cÞ⊕ ð5; 8sÞ⊕ 2 · ð7; 1Þ
[0, 1, 0, 0, 0, 0, 1, 0] A3 þ 2A1 suð12Þ

2 ⊕ ðspð1Þ2 ⊕ suð2Þ
2 Þ 172 ð1; 10; 1Þ⊕ ð1; 1; 3Þ⊕ ð2; 4; 3Þ⊕ ð2; 1; 2Þ⊕ 2 ·

ð3; 1; 1Þ⊕ ð3; 5; 1Þ
⊕ð3; 4; 2Þ⊕ ð4; 1; 2Þ⊕ ð4; 4; 1Þ⊕ ð4; 5; 2Þ⊕

ð5; 4; 2Þ⊕ ð5; 1; 3Þ
⊕ð6; 4; 1Þ⊕ ð6; 1; 2Þ⊕ ð7; 1; 1Þ

[0, 0, 0, 0, 0, 1, 0, 1] D4ða1Þ þ A1 suð13Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð1Þ
2 ⊕ suð1Þ

2 Þ 176 ð1; 1; 1; 3Þ⊕ ð1; 1; 3; 1Þ⊕ ð1; 3; 1; 1Þ⊕ ð2; 2; 2; 2Þ⊕
ð2; 2; 1; 1Þ⊕ ð2; 1; 1; 2Þ⊕ ð2; 1; 2; 1Þ⊕ 4 · ð3; 1; 1; 1Þ⊕
ð3; 1; 2; 2Þ⊕ ð3; 2; 2; 1Þ⊕ ð3; 2; 1; 2Þ⊕ 2 · ð4; 2; 1; 1Þ⊕

2 · ð4; 1; 2; 1Þ⊕ 2 · ð4; 1; 1; 2Þ⊕ ð5; 1; 1; 1Þ⊕
ð5; 2; 2; 1Þ⊕ ð5; 1; 2; 2Þ⊕ ð5; 2; 1; 2Þ⊕ ð6; 2; 1; 1Þ⊕

ð6; 1; 2; 1Þ⊕ ð6; 1; 1; 2Þ
⊕2 · ð7; 1; 1; 1Þ

[0, 0, 0, 0, 0, 2, 2, 0] D4 suð28Þ
2 ⊕ fð1Þ4

168 ð1; 52Þ⊕ ð3; 1Þ⊕ ð7; 26Þ⊕ ð11; 1Þ
[1, 0, 0, 0, 1, 0, 0, 0] A3 þ A2 suð14Þ

2 ⊕ spð1Þ2
178 ð1; 10Þ⊕ ð1; 1Þ⊕ 2 · ð2; 4Þ⊕ 6 · ð3; 1Þ⊕ 2 · ð3; 5Þ⊕ 4 ·

ð4; 4Þ⊕ 3 · ð5; 1Þ⊕ ð5; 5Þ⊕ 2 · ð6; 4Þ⊕ 3 · ð7; 1Þ
[2, 0, 0, 0, 0, 0, 2, 0] A4 suð20Þ

2 ⊕ suð1Þ
5

180 ð1; 24Þ⊕ ð3; 1Þ⊕ ð3; 5Þ⊕ ð3; 5̄Þ⊕ ð5; 1Þ⊕ ð5; 10Þ⊕
ð5; 1̄0Þ⊕ ð7; 1Þ⊕ ð7; 5Þ⊕ ð7; 5̄Þ⊕ ð9; 1Þ

[0, 0, 1, 0, 0, 0, 0, 0] A3 þ A2 þ A1 suð15Þ
2 ⊕ ðsuð24Þ

2 ⊕ suð1Þ
2 Þ 182 ð7; 5; 1Þ⊕ ð5; 7; 1Þ⊕ ð5; 3; 1Þ⊕ ð6; 3; 2Þ⊕ ð4; 7; 2Þ⊕

ð3; 9; 1Þ
⊕ð3; 5; 1Þ⊕ ð3; 1; 1Þ⊕ ð2; 5; 2Þ⊕ ð1; 3; 1Þ⊕ ð1; 1; 3Þ

[0, 0, 0, 0, 0, 1, 2, 1] D4 þ A1 suð29Þ
2 ⊕ spð1Þ3

184 ð1; 21Þ⊕ ð2; 140Þ⊕ 2 · ð3; 1Þ⊕ ð6; 6Þ⊕ ð7; 14Þ⊕
ð8; 6Þ⊕ ð11; 1Þ

[0, 0, 0, 0, 0, 0, 0, 2] D4ða1Þ þ A2 suð16Þ
2 ⊕ suð6Þ

3
184 ð1; 8Þ⊕ ð3; 1Þ⊕ ð3; 27Þ⊕ ð5; 10Þ⊕ ð5; 10Þ⊕ ð7; 8Þ

[1, 0, 0, 0, 1, 0, 1, 0] A4 þ A1 suð21Þ
2 ⊕ suð1Þ

3
188 ð1; 1Þ⊕ ð1; 8Þ⊕ ð2; 3Þ⊕ ð2; 3̄Þ⊕ 2 · ð2; 1Þ⊕ 2 ·

ð3; 1Þ⊕ ð3; 3Þ
⊕ð3; 3̄Þ⊕ 2 · ð4; 1Þ⊕ ð4; 3Þ⊕ ð4; 3̄Þ⊕ 3 · ð5; 1Þ⊕

ð5; 3Þ
⊕ð5; 3̄Þ⊕ ð6; 3Þ⊕ ð6; 3̄Þ⊕ 2 · ð6; 1Þ⊕ ð7; 1Þ⊕ ð7; 3Þ

(Table continued)
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TABLE XIII. (Continued)

w Bala-Carter e8 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

⊕ð7; 3̄Þ⊕ 2 · ð8; 1Þ⊕ ð9; 1Þ
[1, 0, 0, 1, 0, 0, 0, 0] 2A3 suð20Þ

2 ⊕ spð2Þ2
188 ð8; 4Þ⊕ ð7; 5Þ⊕ ð7; 1Þ⊕ ð6; 4Þ⊕ ð5; 10Þ⊕ ð4; 16Þ⊕

ð3; 5Þ⊕ ð3; 1Þ⊕ ð2; 4Þ⊕ ð1; 10Þ
[1, 0, 0, 0, 1, 0, 2, 0] D5ða1Þ suð30Þ

2 ⊕ suð1Þ
4

190 ð1; 15Þ⊕ ð2; 4Þ⊕ ð2; 4̄Þ⊕ 2 · ð3; 1Þ⊕ ð3; 6Þ⊕
ð5; 1Þ⊕ ð6; 4Þ

⊕ð6; 4̄Þ⊕ 2 · ð7; 1Þ⊕ ð7; 6Þ⊕ ð8; 4Þ⊕ ð8; 4̄Þ⊕
ð9; 1Þ⊕ ð11; 1Þ

[0, 0, 1, 0, 0, 0, 1, 0] A4 þ 2A1 suð22Þ
2 ⊕ suð2Þ

2
192 ð9; 1Þ⊕ 2 · ð8; 2Þ⊕ 5 · ð7; 1Þ⊕ 4 · ð6; 2Þ⊕ 3 · ð5; 1Þ⊕

2 · ð5; 3Þ
⊕4 · ð4; 2Þ⊕ 6 · ð3; 1Þ⊕ ð3; 3Þ⊕ 4 · ð2; 2Þ⊕ ð1; 1Þ⊕

ð1; 3Þ
[0, 0, 0, 0, 2, 0, 0, 0] A4 þ A2 suð24Þ

2 ⊕ ðsuð1Þ
2 ⊕ suð15Þ

2 Þ 194 ð1; 3; 1Þ⊕ ð1; 1; 3Þ⊕ ð3; 1; 1Þ⊕ ð3; 2; 6Þ⊕ ð3; 1; 5Þ⊕
ð5; 1; 7Þ

⊕ð5; 1; 3Þ⊕ ð5; 2; 2Þ⊕ ð7; 1; 5Þ⊕ ð7; 2; 4Þ⊕ ð9; 1; 3Þ
[0, 0, 1, 0, 0, 0, 2, 0] D5ða1Þ þ A1 suð31Þ

2 ⊕ ðsuð1Þ
2 ⊕ suð8Þ

2 Þ 196 ð1; 1; 3Þ⊕ ð1; 3; 1Þ⊕ ð2; 2; 5Þ⊕ ð3; 1; 5Þ⊕ 2 ·
ð3; 1; 1Þ⊕ ð4; 2; 1Þ

⊕ð5; 1; 3Þ⊕ ð6; 2; 3Þ⊕ ð7; 1; 5Þ⊕ ð7; 1; 3Þ⊕ ð8; 2; 3Þ
⊕ð9; 1; 3Þ⊕ ð11; 1; 1Þ

[0, 1, 0, 0, 1, 0, 0, 0] A4 þ A2 þ A1 suð25Þ
2 ⊕ suð15Þ

2
196 ð9; 3Þ⊕ ð8; 4Þ⊕ ð7; 5Þ⊕ ð6; 2Þ⊕ ð6; 4Þ⊕ ð5; 3Þ⊕

ð5; 7Þ⊕ ð4; 2Þ
⊕ð4; 6Þ⊕ 2 · ð3; 1Þ⊕ ð3; 5Þ⊕ ð2; 6Þ⊕ ð1; 3Þ

[2, 0, 0, 0, 1, 0, 1, 0] A5 suð35Þ
2 ⊕ ðgð1Þ2 ⊕ suð1Þ

2 Þ 196 ð1; 1; 3Þ⊕ ð1; 14; 1Þ⊕ ð3; 1; 1Þ⊕ ð4; 1; 2Þ⊕ ð5; 7; 1Þ⊕
ð6; 7; 2Þ

⊕ð7; 1; 1Þ⊕ ð9; 7; 1Þ⊕ ð10; 1; 2Þ⊕ ð11; 1; 1Þ
[0, 0, 1, 0, 0, 1, 0, 0] A4 þ A3 suð30Þ

2 ⊕ suð10Þ
2

200 ð10; 2Þ⊕ ð9; 3Þ⊕ ð8; 4Þ⊕ ð7; 1Þ⊕ ð7; 5Þ⊕ ð6; 2Þ⊕
ð6; 4Þ

⊕2 · ð5; 3Þ⊕ ð4; 2Þ⊕ ð4; 6Þ⊕ ð3; 5Þ⊕ ð3; 1Þ⊕
ð2; 4Þ⊕ ð1; 3Þ

[0, 0, 0, 0, 0, 0, 2, 2] D4 þ A2 suð32Þ
2 ⊕ suð2Þ

3
198 ð1; 8Þ⊕ 2 · ð3; 1Þ⊕ ð3; 6Þ⊕ ð3; 6̄Þ⊕ ð5; 1Þ⊕ ð5; 3Þ⊕

ð5; 3̄Þ
⊕ð7; 3Þ⊕ ð7; 3̄Þ⊕ ð7; 8Þ⊕ ð9; 3Þ⊕ ð9; 3̄Þ⊕ ð11; 1Þ

[2, 0, 0, 0, 0, 2, 0, 0] E6ða3Þ suð36Þ
2 ⊕ gð1Þ2

198 ð1; 14Þ⊕ 3 · ð3; 1Þ⊕ ð5; 1Þ⊕ 2 · ð5; 7Þ⊕ ð7; 1Þ⊕
ð7; 7Þ⊕ ð9; 1Þ⊕ ð9; 7Þ⊕ 2 · ð11; 1Þ

[1, 0, 1, 0, 0, 0, 1, 0] A5 þ A1 suð36Þ
2 ⊕ ðsuð3Þ

2 ⊕ suð1Þ
2 Þ 202 ð1; 1; 3Þ⊕ ð1; 3; 1Þ⊕ ð2; 4; 1Þ⊕ 2 · ð3; 1; 1Þ⊕

ð4; 1; 2Þ⊕ ð4; 2; 1Þ
⊕ð5; 3; 1Þ⊕ ð5; 2; 2Þ⊕ ð6; 2; 1Þ⊕ ð6; 3; 2Þ⊕ ð7; 1; 1Þ

⊕ð7; 2; 2Þ⊕ ð8; 2; 1Þ⊕ ð9; 3; 1Þ⊕ ð10; 1; 2Þ⊕
ð10; 2; 1Þ⊕ ð11; 1; 1Þ

[0, 1, 0, 0, 1, 0, 1, 0] D5ða1Þ þ A2 suð34Þ
2 ⊕ suð6Þ

2
202 ð11; 1Þ⊕ ð10; 2Þ⊕ ð9; 3Þ⊕ ð8; 4Þ⊕ ð8; 2Þ⊕ ð7; 3Þ⊕

ð7; 1Þ
⊕ð6; 4Þ⊕ ð6; 2Þ⊕ 2 · ð5; 3Þ⊕ 2 · ð4; 2Þ⊕ 2 · ð3; 1Þ⊕

ð3; 5Þ⊕ ð2; 4Þ⊕ ð1; 3Þ
[1, 0, 0, 1, 0, 1, 0, 0] E6ða3Þ þ A1 suð37Þ

2 ⊕ suð3Þ
2

204 ð1; 3Þ⊕ ð2; 4Þ⊕ 4 · ð3; 1Þ⊕ 2 · ð4; 2Þ⊕ ð5; 1Þ⊕ 2 ·
ð5; 3Þ

⊕3 · ð6; 2Þ⊕ ð7; 1Þ⊕ ð7; 3Þ⊕ 2 · ð8; 2Þ⊕ ð9; 1Þ⊕
ð9; 3Þ⊕ ð10; 2Þ⊕ 2 · ð11; 1Þ

[0, 1, 0, 0, 0, 1, 0, 1] D6ða2Þ suð38Þ
2 ⊕ suð4=5Þ

2
204 ð1; 1; 3Þ⊕ ð1; 3; 1Þ⊕ 3 · ð3; 1; 1Þ⊕ 2 · ð4; 2; 1Þ⊕ 2 ·

ð4; 1; 2Þ
⊕ð5; 1; 1Þ⊕ ð5; 2; 2Þ⊕ ð6; 1; 2Þ⊕ ð6; 2; 1Þ⊕ 3 ·

ð7; 1; 1Þ
⊕ð7; 2; 2Þ⊕ ð8; 1; 2Þ⊕ ð8; 2; 1Þ⊕ ð9; 1; 1Þ⊕

ð10; 1; 2Þ⊕ ð10; 2; 1Þ⊕ 2 · ð11; 1; 1Þ
(Table continued)
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TABLE XIII. (Continued)

w Bala-Carter e8 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

[2, 0, 0, 0, 0, 2, 2, 0] D5 suð60Þ
2 ⊕ soð1Þ7

200 ð1; 21Þ⊕ ð3; 1Þ⊕ ð5; 8Þ⊕ ð7; 1Þ⊕ ð9; 7Þ⊕ ð11; 1Þ
⊕ð11; 8Þ⊕ ð15; 1Þ

[0, 0, 1, 0, 1, 0, 0, 0] E7ða5Þ suð39Þ
2 ⊕ suð1Þ

2
206 ð1; 3Þ⊕ 6 · ð3; 1Þ⊕ 3 · ð4; 2Þ⊕ 4 · ð5; 1Þ⊕ 3 · ð6; 2Þ⊕

5 · ð7; 1Þ
⊕2 · ð8; 2Þ⊕ 3 · ð9; 1Þ⊕ ð10; 2Þ⊕ 3 · ð11; 1Þ

[1, 0, 0, 1, 0, 1, 2, 0] D5 þ A1 suð61Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð2Þ
2 Þ 208 ð1; 1; 3Þ⊕ ð1; 3; 1Þ⊕ ð2; 2; 3Þ⊕ 2 · ð3; 1; 1Þ⊕

ð4; 1; 2Þ⊕ ð5; 2; 2Þ
⊕ð6; 1; 2Þ⊕ ð7; 1; 1Þ⊕ ð8; 2; 1Þ⊕ ð9; 1; 3Þ⊕ ð10; 1; 2Þ
⊕ð10; 2; 1Þ⊕ ð11; 1; 1Þ⊕ ð11; 2; 2Þ⊕ ð12; 1; 2Þ⊕

ð15; 1; 1Þ
[0, 0, 0, 2, 0, 0, 0, 0] E8ða7Þ suð40Þ

2 ⊕∅ 208 4 · 11⊕ 6 · 9⊕ 10 · 7⊕ 10 · 5⊕ 10 · 3

[0, 1, 0, 0, 0, 1, 2, 1] D6ða1Þ suð62Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð1Þ
2 Þ 210 ð1; 1; 3Þ⊕ ð1; 3; 1Þ⊕ 2 · ð3; 1; 1Þ⊕ ð3; 2; 2Þ⊕

ð4; 1; 2Þ⊕ ð4; 2; 1Þ
⊕ð6; 1; 2Þ⊕ ð6; 2; 1Þ⊕ 2 · ð7; 1; 1Þ⊕ ð9; 1; 1Þ⊕

ð9; 2; 2Þ
⊕ð10; 1; 2Þ⊕ ð10; 2; 1Þ⊕ 2 · ð11; 1; 1Þ⊕ ð12; 1; 2Þ⊕

ð12; 2; 1Þ
⊕ð15; 1; 1Þ

[2, 0, 0, 0, 2, 0, 0, 0] A6 suð56Þ
2 ⊕ ðsuð1Þ

2 ⊕ suð7Þ
2 Þ 210 ð1; 1; 3Þ⊕ ð1; 3; 1Þ⊕ ð3; 1; 1Þ⊕ ð3; 2; 2Þ⊕ ð5; 1; 3Þ⊕

ð7; 1; 5Þ
⊕ð7; 2; 4Þ⊕ ð9; 1; 3Þ⊕ ð11; 1; 1Þ⊕ ð11; 2; 2Þ⊕

ð13; 1; 3Þ
[0, 0, 1, 0, 1, 0, 2, 0] E7ða4Þ suð63Þ

2 ⊕ suð1Þ
2

212 ð1; 3Þ⊕ ð2; 2Þ⊕ 4 · ð3; 1Þ⊕ 2 · ð4; 2Þ⊕ 2 · ð5; 1Þ⊕
ð6; 2Þ

⊕3 · ð7; 1Þ⊕ ð8; 2Þ⊕ 2 · ð9; 1Þ⊕ 2 · ð10; 2Þ⊕ 4 ·
ð11; 1Þ⊕ ð12; 2Þ⊕ ð13; 1Þ⊕ ð15; 1Þ

[1, 0, 1, 0, 1, 0, 0, 0] A6 þ A1 suð57Þ
2 ⊕ suð7Þ

2
212 ð1; 3Þ⊕ ð2; 2Þ⊕ 2 · ð3; 1Þ⊕ ð4; 2Þ⊕ ð5; 3Þ⊕ ð6; 4Þ⊕

ð7; 5Þ
⊕ð8; 4Þ⊕ ð9; 3Þ⊕ ð10; 2Þ⊕ ð11; 1Þ⊕ ð12; 2Þ⊕ ð13; 3Þ

[2, 0, 0, 0, 2, 0, 2, 0] E6ða1Þ suð84Þ
2 ⊕ suð1Þ

3
214 ð1; 8Þ⊕ ð3; 1Þ⊕ ð5; 1Þ⊕ ð5; 3Þ⊕ ð5; 3̄Þ⊕ ð7; 1Þ⊕

ð9; 1Þ
⊕ð9; 3Þ⊕ ð9; 3̄Þ⊕ 2 · ð11; 1Þ⊕ ð13; 3Þ⊕ ð13; 3̄Þ⊕

ð15; 1Þ⊕ ð17; 1Þ
[0, 0, 0, 2, 0, 0, 2, 0] D5 þ A2 suð64Þ

2 ⊕∅ 214 15⊕ 2 · 13⊕ 7 · 11⊕ 5 · 9⊕ 5 · 7⊕ 5 · 5⊕ 8 · 3⊕ 1

[1, 0, 1, 0, 1, 0, 1, 0] D7ða2Þ suð70Þ
2 ⊕∅ 216 15⊕ 2 · 14⊕ 13⊕ 2 · 12⊕ 2 · 11⊕ 2 · 10⊕ 3 · 9⊕ 4 ·

8
⊕3 · 7⊕ 2 · 6⊕ 3 · 5⊕ 2 · 4⊕ 2 · 3⊕ 2 · 2⊕ 1

[2, 0, 0, 0, 2, 2, 2, 0] E6 suð156Þ
2 ⊕ gð1Þ2

216 ð1; 14Þ⊕ ð3; 1Þ⊕ ð9; 7Þ⊕ ð11; 1Þ⊕ ð15; 1Þ⊕
ð17; 7Þ⊕ ð23; 1Þ

[1, 0, 1, 0, 1, 1, 0, 0] A7 suð84Þ
2 ⊕ suð4Þ

2
218 ð16; 2Þ⊕ ð15; 1Þ⊕ ð13; 3Þ⊕ ð12; 2Þ⊕ ð11; 1Þ⊕ ð10; 2Þ

⊕ð9; 3Þ⊕ ð8; 4Þ⊕ ð7; 1Þ⊕ ð6; 2Þ⊕ ð5; 3Þ⊕ ð4; 2Þ
⊕ð3; 1Þ⊕ ð1; 3Þ

[1, 0, 1, 0, 1, 0, 2, 0] E6ða1Þ þ A1 suð85Þ
2 ⊕∅ 218 17⊕ 15⊕ 2 · 14⊕ 2 · 13⊕ 2 · 12⊕ 2 · 11⊕ 2 · 10⊕

3 · 9
⊕2 · 8⊕ 7⊕ 2 · 6⊕ 3 · 5⊕ 2 · 4⊕ 2 · 3⊕ 2 · 2⊕ 1

[0, 0, 2, 0, 0, 0, 2, 0] E8ðb6Þ suð88Þ
2 ⊕∅ 220 17⊕ 3 · 15⊕ 2 · 13⊕ 6 · 11⊕ 3 · 9⊕ 5 · 7⊕ 4 · 5⊕ 4 ·

3
[2, 1, 0, 0, 0, 1, 2, 1] D6 suð110Þ

2 ⊕ spð1Þ2
216 ð1; 10Þ⊕ ð3; 1Þ⊕ ð6; 4Þ⊕ ð7; 1Þ⊕ ð10; 4Þ⊕ ð11; 1Þ⊕

ð11; 5Þ
⊕ð15; 1Þ⊕ ð16; 4Þ⊕ ð19; 1Þ

[2, 0, 1, 0, 1, 0, 2, 0] E7ða3Þ suð111Þ
2 ⊕ suð1Þ

2
220 ð1; 3Þ⊕ ð2; 2Þ⊕ 2 · ð3; 1Þ⊕ ð5; 1Þ⊕ ð6; 2Þ⊕ 2 ·

ð7; 1Þ⊕ ð9; 1Þ
(Table continued)
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TABLE XIII. (Continued)

w Bala-Carter e8 → suðIOÞ
2 ⊕ fðIÞ dimO adj → ⨁iðdi;RiÞ

⊕2 · ð10; 2Þ⊕ 3 · ð11; 1Þ⊕ ð12; 2Þ⊕ 2 · ð15; 1Þ⊕
ð16; 2Þ⊕ ð17; 1Þ⊕ ð19; 1Þ

[2, 0, 0, 2, 0, 0, 2, 0] D7ða1Þ suð112Þ
2 ⊕∅ 222 19⊕ 2 · 17⊕ 3 · 15⊕ 13⊕ 6 · 11⊕ 3 · 9⊕ 3 · 7⊕ 2 ·

5⊕ 4 · 3⊕ 1
[1, 0, 1, 0, 1, 2, 2, 0] E6 þ A1 suð157Þ

2 ⊕ suð3Þ
2

222 ð23; 1Þ⊕ ð18; 2Þ⊕ ð17; 3Þ⊕ ð16; 2Þ⊕ ð15; 1Þ⊕ ð11; 1Þ
⊕ð10; 2Þ⊕ ð9; 3Þ⊕ ð8; 2Þ⊕ 2 · ð3; 1Þ⊕ ð2; 4Þ⊕ ð1; 3Þ

[0, 1, 0, 1, 0, 2, 2, 1] E7ða2Þ suð159Þ
2 ⊕ suð1Þ

2
224 ð23; 1Þ⊕ ð19; 1Þ⊕ ð18; 2Þ⊕ ð17; 1Þ⊕ ð16; 2Þ⊕ 2 ·

ð15; 1Þ
⊕2 · ð11; 1Þ⊕ ð10; 2Þ⊕ ð9; 1Þ⊕ ð8; 2Þ⊕ ð7; 1Þ⊕

ð4; 2Þ⊕ 2 · ð3; 1Þ⊕ ð1; 3Þ
[0, 0, 2, 0, 0, 2, 0, 0] E8ða6Þ suð120Þ

2 ⊕∅ 224 2 · ð19; 1Þ⊕ ð17; 1Þ⊕ 3 · 15⊕ 3 · 13⊕ 3 · 11⊕ 3 · 9

⊕5 · 7⊕ 5⊕ 3 · 3
[2, 1, 0, 1, 1, 0, 1, 1] D7 suð182Þ

2 ⊕ suð2Þ
2

226 ð23; 1Þ⊕ ð22; 2Þ⊕ ð19; 1Þ⊕ ð16; 2Þ⊕ ð15; 1Þ⊕ ð13; 3Þ
⊕ð12; 2Þ⊕ ð11; 1Þ⊕ ð10; 2Þ⊕ ð7; 1Þ⊕ ð4; 2Þ⊕

ð3; 1Þ⊕ ð1; 3Þ
[0, 0, 2, 0, 0, 2, 2, 0] E8ðb5Þ suð160Þ

2 ⊕∅ 226 23⊕ 2 · 19⊕ 3 · 17⊕ 3 · 15⊕ 3 · 11⊕ 3 · 9⊕ 2 · 7⊕
5⊕ 4 · 3

[2, 1, 0, 1, 0, 2, 2, 1] E7ða1Þ suð231Þ
2 ⊕ suð1Þ

2
228 ð27; 1Þ⊕ ð23; 1Þ⊕ ð22; 2Þ⊕ ð19; 1Þ⊕ ð17; 1Þ⊕

ð16; 2Þ⊕ ð15; 1Þ
⊕ð12; 2Þ⊕ 2 · ð11; 1Þ⊕ ð7; 1Þ⊕ ð6; 2Þ⊕ ð3; 1Þ⊕ ð1; 3Þ

[2, 0, 2, 0, 0, 2, 0, 0] E8ða5Þ suð184Þ
2 ⊕∅ 228 2 · 23⊕ 21⊕ 19⊕ 17⊕ 3 · 15⊕ 2 · 13⊕ 4 · 11⊕ 9⊕

7 ⊕ 5⊕ 3 · 3
[2, 0, 2, 0, 0, 2, 2, 0] E8ðb4Þ suð232Þ

2 ⊕∅ 230 27⊕ 2 · 23⊕ 21⊕ 19⊕ 2 · 17⊕ 2 · 15⊕ 13⊕ 3 · 11

⊕2 · 7⊕ 5⊕ 2 · 3
[2, 1, 0, 1, 2, 2, 2, 1] E7 suð399Þ

2 ⊕ suð1Þ
2

232 ð35; 1Þ⊕ ð28; 2Þ⊕ ð27; 1Þ⊕ ð23; 1Þ⊕ ð19; 1Þ⊕ ð18; 2Þ
⊕ð15; 1Þ⊕ ð11; 1Þ⊕ ð10; 2Þ⊕ ð3; 1Þ⊕ ð1; 3Þ

[2, 0, 2, 0, 2, 0, 2, 0] E8ða4Þ suð280Þ
2 ⊕∅ 232 29⊕ 27⊕ 2 · 23⊕ 2 · 19⊕ 17⊕ 3 · 15⊕ 2 · 11⊕ 9⊕

7⊕ 5⊕ 3
[2, 0, 2, 0, 2, 2, 2, 0] E8ða3Þ suð400Þ

2 ⊕∅ 234 35⊕ 29⊕ 2 · 27⊕ 23⊕ 2 · 19⊕ 17⊕ 15⊕ 2 · 11⊕
9⊕ 2 · 3

[2, 2, 0, 2, 0, 2, 2, 2] E8ða2Þ suð520Þ
2 ⊕∅ 236 39⊕ 35⊕ 29⊕ 27⊕ 2 · 23⊕ 19⊕ 17⊕ 15⊕ 11⊕

7⊕ 3
[2, 2, 0, 2, 2, 2, 2, 2] E8ða1Þ suð760Þ

2 ⊕∅ 238 47⊕ 39⊕ 35⊕ 29⊕ 27⊕ 23⊕ 19⊕ 15⊕ 11⊕ 3

[2, 2, 2, 2, 2, 2, 2, 2] E8 suð1240Þ
2 ⊕∅ 240 59⊕ 47⊕ 39⊕ 35⊕ 27⊕ 23⊕ 15⊕ 3
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APPENDIX C: HASSE DIAGRAMS

For completeness, in this appendix we collate the Hasse
diagrams of the nilpotent orbits associated with the Lie
algebras appearing in long quivers of exceptional types
in Figs. 2–6. For each orbit, we give the weighted
Dynkin diagram and the Jacobson-Morozov decomposition
g → suð2ÞX ⊕ f. The superscripts indicate the Dynkin
embedding index of each factor. For the reader’s conven-
ience, individual versions of all the Hasse diagrams can be
found as ancillary files in the arXiv version of this work.
For completeness, we have also included the name of the

transverse Slodowy slices between nilpotent orbits, follow-
ing the notation introduced by Kraft and Procesi [72],

FIG. 2. Hasse diagram for the nilpotent orbit of various low-
rank algebras. Each orbit is labeled by its partition or Bala-Carter
label for classical or exceptional algebras, respectively.

FIG. 3. Hasse diagram for the nilpotent orbits of f4. Each orbit
is labeled by its Bala-Carter label.
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FIG. 4. Hasse diagram for the nilpotent orbits of e6. Each orbit
is labeled by its Bala-Carter label.

FIG. 5. Hasse diagram for the nilpotent orbits of e7. Each orbit
is labeled by its Bala-Carter label.
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see also [73] for exceptional cases. Transitions colored in
blue indicate than in the associated quiver, another minimal
conformal matter is affected, and the transition is not
allowed if the quiver is too short.

APPENDIX D: FROM A NILPOTENT ORBIT
TO A TENSOR BRANCH

While our main result is that the anomaly polynomial of
long quivers rely only on a few parameters that do not
depend on the details of the geometric engineering, the
tensor branch effective field theory of a 6D (1, 0) SCFT
associated to a particular noncompact elliptically fibered
Calabi-Yau threefold is a pivotal component underlying our
analysis. As was noted already in [15] (see also [22]), the
tensor branch configurations appear to organize themselves
into families associated to nilpotent orbits of simple Lie
algebras. In this appendix, we provide a comprehensive
mapping between the nilpotent orbits and the tensor branch
descriptions that they are purported to be associated to.
In the main body of this paper, we show that the

difference in the anomaly polynomials for the theories
with the tensor branch configurations associated to the
maximal nilpotent orbit and any other nilpotent orbit is
precisely what we would expect from a bottom-up
Higgsing by giving a vacuum expectation value valued
in the nilpotent orbit to the moment map of the flavor
symmetry associated to the maximal nilpotent orbit.
It is important to note that the correspondence described

in the previous literature does not directly relate a nilpotent
orbit to a tensor branch. First, one needs to pick a parent
theory of the family with a g flavor symmetry factor, and
then, for certain choices of parent theory, one notices that
there is a family of descendant theories that are in one-to-
one correspondence with the nilpotent orbits of g.29 The
parent theories for such families were enumerated in [22],
and in this appendix we give the correspondence between
nilpotent orbits and descendant tensor branch configura-
tions for each family.

1. A-series

We start by considering parent SCFTs with an suðKÞ
flavor algebra and a tensor branch configuration that takes
the form

2
suK � � � 2

suK � � � ; ðD1Þ

where the � � � on the right indicates any attached collection
of curves and algebras. To satisfy the long quiver condition,
which we assume throughout this paper, it is sufficient to

take the number of 2
suK

on the left to be at leastK þ 1. LetO

FIG. 6. Hasse diagram for the nilpotent orbits of e8. Each orbit
is labeled by its Bala-Carter label. 29In fact, one defines the notion of a parent theory in this way.
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be a nilpotent orbit of suðKÞ; O can be written uniquely as
an integer partition of K

½1m1 ; 2m2 ;…; KmK �; such that
XK
i¼1

imi ¼ K: ðD2Þ

Then, the tensor branch effective field theory associated to
the nilpotent orbit O can be described as [47]

2
suk1

2
suk2

2
suk3 � � � 2

sukK

2
suK � � � : ðD3Þ

The rightmost-written suðKÞ gauge algebra is always
present when we consider long quivers. The ki are fixed
in terms of the exponents of the partition by the anomaly
cancellation conditions

2ki − ki−1 − kiþ1 ¼ mi; ðD4Þ

where, for convenience, we have defined k0 ¼ 0 and
kKþ1 ¼ K. This system of equations can be solved to yield
an exact expression for ki. Taking into account that the
coefficients mi define a partition of K, it is straightforward
to show that

ki ¼ K −
XK−i
j¼1

jmiþj: ðD5Þ

Thus, we have determined the putative tensor branch
description of the 6D (1, 0) SCFT associated to the parent
SCFT in Eq. (D1) and the nilpotent orbit in Eq. (D2).

2. C-series

Next, we consider the tensor branch descriptions asso-
ciated to parent theories which take the form

4
so2Kþ8

1
spK

4
so2Kþ8 � � � 1

spK
4

so2Kþ8 � � � ; ðD6Þ

and a choice of nilpotent orbit of spðKÞ. The � � � on the
right in Eq. (D6) represents any combinations of curves and
algebras that can be consistently attached. In this case, the
long quiver condition is satisfied if we have at least K þ 1

copies of 4
so2Kþ8

on the left in Eq. (D6). A nilpotent orbit of
spðKÞ is given by a C-partition of 2K, as described
around Eq. (B7).
It was proposed that the descendant of the parent theory

in Eq. (D6) associated to the nilpotent orbit in Eq. (B7) has
the tensor branch description

4
sok1

1
spk2

4
sok3 � � � 1

spk2K
4

so2Kþ8 � � � : ðD7Þ

The ki are again fixed in terms of the C-partition via the
anomaly cancellation conditions. We have

ki − 8 − ki−1 − kiþ1 ¼
mi

2
if i odd;

4ki þ 16 − ki−1 − kiþ1 ¼ mi if i even: ðD8Þ

Note that the right-hand side (rhs) is always guaranteed to
be an integer from the C-partition condition, and we have
defined k0 ¼ 0 and k2Kþ1 ¼ 2K þ 8. Again, as for the
A-series, we can solve for ki and find a compact expression

ki ¼ 2ðK þ 4Þ −
X2K−i
j¼1

jmiþj if i odd;

ki ¼ K −
X2K−i
j¼1

j
2
miþj if i even: ðD9Þ

3. D-series

The next set of families of 6D (1, 0) SCFTs that we
consider are those progenated from a parent theory of
the form

1
spK−4

4
so2K

1
spK−4 � � � 4

so2K
1

spK−4 � � � : ðD10Þ

Such a parent theory has an soð2KÞ flavor symmetry.
Each nilpotent orbit O has an underlying D-partition, as
in Eq. (B11).
As we have already discussed, the association of a

nilpotent orbit to be D-partition is not unique. In this
paper, we determine the anomaly polynomials of the
relevant 6D SCFTs from both a top-down tensor branch
perspective, and from a bottom-up nilpotent Higgsing
perspective, where the latter depends only on the parent
theory and the choice of nilpotent orbit. For parent theories
with an soð2KÞ flavor algebra, the anomaly polynomial is
actually agnostic to the precise nilpotent orbit, and instead
only depends on the underlying D-partition. The depend-
ence of the tensor branch description on the choice of
nilpotent orbit itself has been discussed in detail in [69],
however, for our purposes, we only need to know the tensor
branch as depending on the D-partition; while this would
appear to give two distinct SCFTs with the same tensor
branch, there are in fact choices of discrete θ-angles by
which the tensor branch effective field theories differ. We
do not write the θ-angles here and refer the reader to [69]
for the full details.
Given a parent theory of the form in Eq. (D10) and a

nilpotent orbit associated to a D-partition as in Eq. (B11),
the descendant theory is proposed to have the tensor branch
effective descriptions

1
spk1

4
sok2

1
spk3 � � � 4

sok2K
1

spK−4 � � � : ðD11Þ

As usual, the anomaly cancellation conditions fix the ranks
of the various gauge algebras in terms of the multiplicities
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specifying the D-partition. We must have

ki − 8 − ki−1 − kiþ1 ¼
mi

2
if i even;

4ki þ 16 − ki−1 − kiþ1 ¼ mi if i odd: ðD12Þ
The D-partition condition now guarantees thatmi is an even
integer for i even, and thus the rhs is always an integer. We
have defined k0 ¼ 0 and k2Kþ1 ¼ K − 4 for convenience.
As for the C-series, a closed expression can be found

ki ¼ 2K −
X2K−i
j¼1

jmiþj if i even;

ki ¼ ðK − 4Þ −
X2K−i
j¼1

j
2
miþj if i odd: ðD13Þ

Interestingly, the ki that one obtains in this way are
sometimes inconsistent with the allowed F-theory configu-
rations. For example, one may obtain a ki ¼ 7 for i even,
which would indicate that the tensor description is of the

form � � � 4
so7 � � �, which cannot be engineered from a non-

compact elliptically fibered Calabi-Yau threefold in the
F-theory construction of 6D (1, 0) SCFTs. In fact, when the
ranks of the gauge algebras are “too small,” the prescription
for the tensor branch geometry associated to the nilpotent
orbit, which we gave in Eq. (D11) needs to be modified.
The modification can be summarized in the following short
list of replacement rules

1
sp−3

4
so3

1
sp−2

4
so5

1
sp−1

4
so7 � � � ⟶ 2 2

su2

3
g2 � � � ;

1
sp−3

4
so4

1
sp−1

4
so7 � � � ⟶ 2

su2

3
g2 � � � ;

1
sp−3

4
so4

1
sp−1

4
so8 � � � ⟶ 2

su2

3
so7 � � � ;

1
sp−2

4
so5

1
sp−1

4
so7 � � � ⟶ 2

su2

3
so7 � � � ;

1
sp−2

4
so6 � � � ⟶ 3

su3 � � � ;

1
sp−2

4
so7 � � � ⟶ 3

g2 � � � ;

1
sp−2

4
so8 � � � ⟶ 3

so7 � � � ;

1
sp−1

4
g
� � � ⟶ 3

g
� � � : ðD14Þ

In this way, we have specified a way of assigning to a
parent theory of the form in Eq. (D10) and a choice of
nilpotent orbit of soð2KÞ as in Eq. (B11) a 6D (1, 0) tensor
branch.

4. E-series

Finally, we turn to what we call the “E-series” of tensor
branch descriptions. These will be long quivers whose spine
contains a repeating pattern of exceptional conformal matter.

Note that when the fractions f ≠ 1, the tensor branch
translations that we describe herein do not all involve a
nilpotent orbit of an exceptional Lie algebra as gf ⊆ g.
Due to the sporadic nature of this series, we present the

dictionary between parent theory with flavor symmetry
factor g plus each nilpotent orbit of g and the tensor branch
description in the form of tables, which were first described
explicitly in [20] when f ¼ 1. These are Tables XIV and
XV for e6, Tables XVI–XIX for e7, and Tables XX–XXV
for e8. In each table, the nilpotent orbit labelled as either
½1K� or 0—and appearing on the first row—provides the
form of the tensor branch description of the parent theory.
Subsequent rows provide the tensor branch effective field
theory corresponding to that parent theory plus each
nilpotent of the given flavor algebra of the parent theory.

TABLE XIV. The tensor branch descriptions associated to
nilpotent Higgsing of the su3 flavor symmetry for a long quiver
associated to e6 conformal matter with fraction number f ¼ 1

2
.

Nilpotent orbit f Tensor branch

½13� su3 16
e6 � � �

[2, 1] ∅
5
e6 � � �

[3] ∅
5
f4 � � �

TABLE XV. The tensor branch descriptions associated to
nilpotent Higgsing of the e6 flavor symmetry for a long quiver
associated to e6 conformal matter with fraction number f ¼ 1.

Nilpotent orbit f Tensor branch

0 e6
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

A1 su6
2
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

2A1 so7
2
su2

16
e6
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

3A1 su2 ⊕ su3
216

e6
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

A2 su3 ⊕ su3

16
e6
1

1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

A2 þ A1 su3
15
e6
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

2A2 g2
15
f4
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

A2 þ 2A1 su2
4
e6
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

2A2 þ A1 su2
4
f4
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

A3 sp2
4

so10
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

A3 þ A1 su2
4
so9

1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

D4ða1Þ ∅
4
so8

1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

A4 su2
3
so7

2
su2

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

A4 þ A1 ∅
3
g2

2
su2

16
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

(Table continued)
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TABLE XVI. The tensor branch descriptions associated to
nilpotent Higgsing of the su2 flavor symmetry for a long quiver
associated to e7 conformal matter with fraction number f ¼ 1

3
.

Nilpotent orbit f Tensor branch

½12� su2 18
e7 � � �

[2] ∅
7
e7 � � �

TABLE XVII. The tensor branch descriptions associated to
nilpotent Higgsing of the so7 flavor symmetry for a long quiver
associated to e7 conformal matter with fraction number f ¼ 1

2
.

Nilpotent orbit f Tensor branch

½17� so7
2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

½22; 13� su2 ⊕ su2
218

e7
1 2
su2

3
so7

2
su2

18
e7 � � �

½3; 14� su2 ⊕ su2

18
e7
1

1 2
su2

3
so7

2
su2

18
e7 � � �

½3; 22� su2
17
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

½32; 1� ∅
6
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

½5; 12� ∅
6
e6
1 2
su2

3
so7

2
su2

18
e7 � � �

½7� ∅
5
f4
13
g2

2
su2

18
e7 � � �

TABLE XVIII. The tensor branch descriptions associated to
nilpotent Higgsing of the su2 flavor symmetry for a long quiver
associated to e7 conformal matter with fraction number f ¼ 2

3
.

Nilpotent orbit f Tensor branch

½12� su2
3
so7

2
su2

18
e7 � � �

[2] ∅
3
g2

2
su2

18
e7 � � �

TABLE XIX. The tensor branch descriptions associated to nilpotent Higgsing of the e7 flavor symmetry for a long
quiver associated to e7 conformal matter with fraction number f ¼ 1.

Nilpotent orbit f Tensor branch

0 e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A1 so12
1
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

2A1 so9 ⊕ su2
1 3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

ð3A1Þ0 sp3 ⊕ su2
2
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

ð3A1Þ00 f4
13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

4A1 sp3
2
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A2 su6
2
su4

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A2 þ A1 su4
2
su3

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A2 þ 2A1 su⊕3
2 2

su2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

2A2 g2 ⊕ su2
2
su2

218
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A2 þ 3A1 g2
2 2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

2A2 þ A1 su2 ⊕ su2
2218

e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A3 so7 ⊕ su2

2
su2

18
e7
1

1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

ðA3 þ A1Þ0 su⊕3
2

218
e7
1

1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

(Table continued)

TABLE XV. (Continued)

Nilpotent orbit f Tensor branch

D4 su3

3
su3

1 6
6
e6

1 3
su3

16
e6
1 3
su3

16
e6 � � �

A5 su2
3
g2
15
f4
1 3
su3

16
e6
1 3
su3

16
e6 � � �

D5ða1Þ ∅
3
su3

15
e6
1 3
su3

16
e6
1 3
su3

16
e6 � � �

E6ða3Þ ∅
3
su3

15
f4
1 3
su3

16
e6
1 3
su3

16
e6 � � �

D5 ∅
2
su2

3
so7

2
su2

16
e6
1 3
su3

16
e6 � � �

E6ða1Þ ∅
2
su2

3
g2
15
f4
1 3
su3

16
e6 � � �

E6 ∅
2 2
su2

3
g2
15
f4 � � �
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TABLE XIX. (Continued)

Nilpotent orbit f Tensor branch

ðA3 þ A1Þ00 so7
2
su2

17
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A3 þ 2A1 su2 ⊕ su2
217

e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D4ða1Þ su⊕3
2

18
e7
1

1
1

1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D4ða1Þ þ A1 su2 ⊕ su2
11
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A3 þ A2 su2
16
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D4 sp3
4

so12
1
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A3 þ A2 þ A1 su2
5
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A4 su3
16
e6
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A4 þ A1 ∅
5
e6
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D4 þ A1 sp2
4

so11
1
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D5ða1Þ su2
4

so10
1
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A4 þ A2 su2
5
f4
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A00
5 g2

15
f4
13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A5 þ A1 su2
4
f4
13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D5ða1Þ þ A1 su2
4
so9

1
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A0
5 su2 ⊕ su2

4
so9

1 3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D6ða2Þ su2
4
so9

13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E6ða3Þ su2
4
so8

1 3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E7ða5Þ ∅
4
so8

13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D5 su2 ⊕ su2

3
so7

2
su2

18
e7
1

1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

A6 su2
3
g2

2
su2

218
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D6ða1Þ su2
3
so7

2
su2

17
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D5 þ A1 su2

3
g2

2
su2

18
e7
1

1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E7ða4Þ ∅
3
g2

2
su2

17
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

D6 su2
3
g2
15
f4
13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E6ða1Þ ∅
3
su3

16
e6
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E7ða3Þ ∅
3
su3

15
f4
13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E6 su2

2
su2

3
so7

2
su2

18
e7
1

1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E7ða2Þ ∅
2
su2

3
so7

2
su2

17
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E7ða1Þ ∅
2
su2

3
g2
15
f4
13
g2

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7 � � �

E7 ∅
2 2
su2

3
g2
15
f4
13
g2

2
su2

18
e7 � � �

FLORENT BAUME and CRAIG LAWRIE PHYS. REV. D 110, 045021 (2024)

045021-56



TABLE XX. The tensor branch descriptions associated to
nilpotent Higgsing of the su2 flavor symmetry for a long quiver
associated to e8 conformal matter with fraction number f ¼ 1

4
.

Nilpotent orbit f Tensor branch

½12� su2
21ð12Þ

e8
� � �

[2] ∅
1ð12Þ

e8
1

� � �

TABLE XXI. The tensor branch descriptions associated to
nilpotent Higgsing of the g2 flavor symmetry for a long quiver
associated to e8 conformal matter with fraction number f ¼ 1

3
.

Nilpotent orbit f Tensor branch

0 g2
2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A1 su2

221ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
Ã1 su2

21ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
G2ða1Þ ∅

1ð12Þ
e8
1

1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
G2 ∅

8
e7
1 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �

TABLE XXII. The tensor branch descriptions associated to nilpotent Higgsing of the f4 flavor symmetry for a
long quiver associated to e8 conformal matter with fraction number f ¼ 1

2
.

Nilpotent orbit f Tensor branch

0 f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A1 sp3

2
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
Ã1 su4

2
su3

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A1 þ Ã1 su2 ⊕ su2

2
su2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A2 su3

2 2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
Ã2 g2

2
su2

21ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A2 þ Ã1 su2

2221ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
B2 su2 ⊕ su2

21ð12Þ
1

e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
Ã2 þ A1 su2

221ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
C3ða1Þ su2

21ð12Þ
e8
1

1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
F4ða3Þ ∅

ð12Þ
1 1

e8
1 1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
B3 su2

8
e7
12 2

su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
C3 su2

18
e7
1 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
F4ða2Þ ∅

7
e7
1 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
F4ða1Þ ∅

6
e6
1 3
su3

15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
F4 ∅

5
f4
13
g2

2
su2

21ð12Þ
e8
1

� � �
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TABLE XXIII. The tensor branch descriptions associated to
nilpotent Higgsing of the g2 flavor symmetry for a long quiver
associated to e8 conformal matter with fraction number f ¼ 2

3
.

Nilpotent orbit f Tensor branch

0 g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A1 su2

4
f4
13
g2

2
su2

21ð12Þ
e8

� � �
Ã1 su2

4
so9

13
g2

2
su2

21ð12Þ
e8

� � �
G2ða1Þ ∅

4
so8

13
g2

2
su2

21ð12Þ
e8

� � �
G2 ∅

3
g2

2
su2

21ð12Þ
e8
1

� � �

TABLE XXIV. The tensor branch descriptions associated to
nilpotent Higgsing of the su2 flavor symmetry for a long quiver
associated to e8 conformal matter with fraction number f ¼ 3

4
.

Nilpotent orbit f Tensor branch

½12� su2
3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
[2] ∅

3
su3

15
f4
13
g2

2
su2

21ð12Þ
e8

� � �

TABLE XXV. The tensor branch descriptions associated to nilpotent Higgsing of the e8 flavor symmetry for a long quiver associated
to e8 conformal matter with fraction number f ¼ 1.

Nilpotent orbit f Tensor branch

0 e8
12 2

su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A1 e7

1 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
2A1 so13

1
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8 � � �

3A1 f4 ⊕ su2
13
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A2 e6

1 3
su3

15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
4A1 sp4

2
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A2 þ A1 su6

2
su3

15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A2 þ 2A1 so7 ⊕ su2

2
su2

15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A3 so11

1
su2

4
so9

13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A2 þ 3A1 g2 ⊕ su2

215
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
2A2 g2 ⊕ g2

15
f4
1

13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
2A2 þ A1 g2 ⊕ su2

14
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A3 þ A1 so7 ⊕ su2

1 4
so9

13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
2A2 þ 2A1 sp2

3
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D4ða1Þ so8

1 4
so8

13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8 � � �

A3 þ 2A1 sp2 ⊕ su2
3
so9

13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D4ða1Þ þ A1 su⊕3

2 3
so8

13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D4 f4

13
g2

2
su2

21 1
ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A3 þ A2 sp2

3
so7

13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A4 su5

2
su4

2
su3

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A3 þ A2 þ A1 su2 ⊕ su2

3
g2
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D4 þ A1 sp3

2
g2

2
su2

21ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D4ða1Þ þ A2 su3

3
su3

13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A4 þ A1 su3

2
su3

2
su3

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
(Table continued)
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TABLE XXV. (Continued)

Nilpotent orbit f Tensor branch

2A3 sp2
2
su2

2
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D5ða1Þ su4

2
su3

2
su2

21ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A4 þ 2A1 su2

2
su2

2
su3

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A4 þ A2 su2 ⊕ su2

2
su2

2
su2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D5ða1Þ þ A1 su2 ⊕ su2

2
su2

2
su2

21ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A4 þ A2 þ A1 su2

2 2
su2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A5 g2 ⊕ su2

2
su2

21ð12Þ
e8
1
2

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A4 þ A3 su2

22221ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D4 þ A2 su3

2 2
su2

21ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
E6ða3Þ g2

2
su2

21ð12Þ
e8
1

1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
A5 þ A1 su2 ⊕ su2

221ð12Þ
e8
1
2

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D5ða1Þ þ A2 su2

2221ð12Þ
e8
1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
E6ða3Þ þ A1 su2

221ð12Þ
e8
1

1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8 � � �

D6ða2Þ su2 ⊕ su2

21ð12Þ
e8
1
2

1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D5 so7

2
su2

18
e7
1 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
E7ða5Þ su2

21ð12Þ
e8
1 1

1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D5 þ A1 su2 ⊕ su2

218
e7
1 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
E8ða7Þ ∅

1ð12Þ
e8
1 1

1 1

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

12 2
su2

3
g2
15
f4
13
g2

2
su2

21ð12Þ
e8

� � �
D6ða1Þ su2 ⊕ su2
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